WorldWideScience

Sample records for chemical radiation detectors

  1. Radiation damages in chemical components of organic scintillator detectors

    International Nuclear Information System (INIS)

    Samples containing PPO (1%, g/ml), diluted in toluene, they were irradiated in a 60Co irradiator (6.46 kGy/h) at different doses. The PPO concentration decay bi-exponentially with the dose, generating the degradation products: benzoic acid, benzamide and benzilic alcohol. The liquid scintillator system was not sensitive to the radiation damage until 20 kGy. Otherwise, the pulse height analysis showed that dose among 30 to 40 kGy generate significant loss of quality of the sensor (liquid scintillating) and the light yield was reduced in half with the dose of (34.04 ± 0.80) kGy. This value practically was confirmed by the photo peak position analysis that resulted D1/2 = (31.7 ± 1,4) kGy, The transmittance, at 360 nm, of the irradiated solution decreased exponentially. The compartmental model using five compartments (fast decay PPO, slow decay PPO, benzamide, benzoic acid and benzilic alcohol) it was satisfactory to explain the decay of the PPO in its degradation products in function of the dose. The explanation coefficient r2 = 0.985636 assures that the model was capable to explain 98.6% of the experimental variations. The Target Theory together with the Compartmental Analysis showed that PPO irradiated in toluene solution presents two sensitive molecular diameters both of them larger than the true PPO diameter. >From this analysis it showed that the radiolytic are generated, comparatively, at four toluene molecules diameter far from PPO molecules. For each one PPO-target it was calculated the G parameter (damage/100 eV). For the target expressed by the fast decay the G value was (418.4 ± 54.1) damages/100 eV, and for the slow decay target the G value was (54.5 ± 8.9) damages/100 eV. The energies involved in the chemical reactions were w (0.239 ± 0.031) eV/damage (fast decay) and w = (1 834 ± 0.301) eV/damage (slow decay). (author)

  2. Radiation detector

    Science.gov (United States)

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  3. Radiation detector

    International Nuclear Information System (INIS)

    The scintillation crystal is suitable for use in computer tomography. It is in the form of a wedge, at whose wide end there is a photo-electric diode. The X-rays or γ-radiation impinges on one of the wedge surfaces. The other wedge surfaces, except the wide end, are provided with light scattering coatings, so that all the light produced is directed to the photo-electric diode. (DG)

  4. Tin Can Radiation Detector.

    Science.gov (United States)

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  5. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  6. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  7. Mossbauer spectrometer radiation detector

    Science.gov (United States)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  8. Microwave Radiation Detector

    Science.gov (United States)

    Lesh, J. R.

    1984-01-01

    Direct photon detector responds to microwave frequencies. Method based on trapped-ion frequency-generation standards proposed to detect radio-frequency (RF) radiation at 40.5 GHz. Technique used for directdetection (RF) communication, radar, and radio astronomy.

  9. Department of Radiation Detectors - Overview

    International Nuclear Information System (INIS)

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author)

  10. Transition Radiation Detectors

    CERN Document Server

    Andronic, A

    2012-01-01

    We review the basic features of transition radiation and how they are used for the design of modern Transition Radiation Detectors (TRD). The discussion will include the various realizations of radiators as well as a discussion of the detection media and aspects of detector construction. With regard to particle identification we assess the different methods for efficient discrimination of different particles and outline the methods for the quantification of this property. Since a number of comprehensive reviews already exist, we predominantly focus on the detectors currently operated at the LHC. To a lesser extent we also cover some other TRDs, which are planned or are currently being operated in balloon or space-borne astro-particle physics experiments.

  11. Radiation damages in chemical components of organic scintillator detectors; Danos de radiacao em componentes quimicos de detectores cintiladores organicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Neto, Jose Maria

    2003-07-01

    Samples containing PPO (1%, g/ml), diluted in toluene, they were irradiated in a {sup 60}Co irradiator (6.46 kGy/h) at different doses. The PPO concentration decay bi-exponentially with the dose, generating the degradation products: benzoic acid, benzamide and benzilic alcohol. The liquid scintillator system was not sensitive to the radiation damage until 20 kGy. Otherwise, the pulse height analysis showed that dose among 30 to 40 kGy generate significant loss of quality of the sensor (liquid scintillating) and the light yield was reduced in half with the dose of (34.04 {+-} 0.80) kGy. This value practically was confirmed by the photo peak position analysis that resulted D{sub 1/2} = (31.7 {+-} 1,4) kGy, The transmittance, at 360 nm, of the irradiated solution decreased exponentially. The compartmental model using five compartments (fast decay PPO, slow decay PPO, benzamide, benzoic acid and benzilic alcohol) it was satisfactory to explain the decay of the PPO in its degradation products in function of the dose. The explanation coefficient r{sup 2} = 0.985636 assures that the model was capable to explain 98.6% of the experimental variations. The Target Theory together with the Compartmental Analysis showed that PPO irradiated in toluene solution presents two sensitive molecular diameters both of them larger than the true PPO diameter. >From this analysis it showed that the radiolytic are generated, comparatively, at four toluene molecules diameter far from PPO molecules. For each one PPO-target it was calculated the G parameter (damage/100 eV). For the target expressed by the fast decay the G value was (418.4 {+-} 54.1) damages/100 eV, and for the slow decay target the G value was (54.5 {+-} 8.9) damages/100 eV. The energies involved in the chemical reactions were w (0.239 {+-} 0.031) eV/damage (fast decay) and w = (1 834 {+-} 0.301) eV/damage (slow decay). (author)

  12. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  13. Radiation damage effects on solid state detectors

    Science.gov (United States)

    Trainor, J. H.

    1972-01-01

    Totally depleted silicon diodes are discussed which are used as nuclear particle detectors in investigations of galactic and solar cosmic radiation and trapped radiation. A study of radiation and chemical effects on the diodes was conducted. Work on electron and proton irradiation of surface barrier detectors with thicknesses up to 1 mm was completed, and work on lithium-drifted silicon devices with thicknesses of several millimeters was begun.

  14. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  15. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d' Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  16. Workshops on radiation imaging detectors

    International Nuclear Information System (INIS)

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications

  17. Department of Radiation Detectors: Overview

    International Nuclear Information System (INIS)

    (full text) Work carried out in 1997 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification using Ion and Plasma Beams. Semiconductor detectors: Semiconductor detectors of ionizing radiation are among the basic tools utilized in such fields of research and industry as nuclear physics, high energy physics, medical (oncology) radiotherapy, radiological protection, environmental monitoring, energy dispersive X-ray fluorescence non-destructive analysis of chemical composition, nuclear power industry. The Department all objectives are: - search for new types of detectors, - adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, - producing unique detectors tailored for physics experiments, - manufacturing standard detectors for radiation measuring instruments, - scientific development of the staff. These 1997 objectives were accomplished particularly by: - research on unique detectors for nuclear physics (e.g. transmission type Si(Li) detectors with extremely thin entrance and exit window), - development of technology of high-resistivity (HRSi) silicon detectors and thermoelectric cooling systems (KBN grant), - study of the applicability of industrial planar technology in producing detectors, - manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. In accomplishing of the above, the Department cooperated with interested groups of physicists from our Institute (P-I and P-II Departments), Warsaw University, Warsaw Heavy Ion Laboratory and with some technology Institutes based in Warsaw (ITME, ITE). Some detectors and services have been delivered to customers on a commercial basis. X-Rat tube generators: The Department conducts research on design and technology of producing X-ray generators based on X-ray tubes of special construction. In 1997, work on a special

  18. Radiation detector with spodumene

    Energy Technology Data Exchange (ETDEWEB)

    D' Amorim, Raquel Aline P.O.; Lima, Hestia Raissa B.R.; Souza, Susana O. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Sasaki, Jose M., E-mail: sasaki@fisica.ufc.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica; Caldas, Linda V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work, {beta}-spodumene potentiality as a radiation detector was evaluated by making use of thermoluminescence (TL) and thermally stimulated exoelectron emission (TSEE) techniques. The pellets were obtained from the {beta}-spodumene powder mixed with Teflon followed by a sintering process of thermal treatments of 300 deg/30 min and 400 deg/1.5 h. The samples were irradiated in standard gamma radiation beams with doses between 5 Gy and 10 kGy. The TL emission curve showed a prominent peak at 160 deg and in the case of TSEE a prominent peak at 145 Celsius approximately. Initial results show that the material is promising for high-dose dosimetry. (author)

  19. Radiation Hazard Detector

    Science.gov (United States)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  20. Development of new radiation detectors

    International Nuclear Information System (INIS)

    The works on the development of radiation detectors performed at Waseda University are described. As the fundamental studies on radiation detectors, measurement was made for the Z3 dependence of the power of metal targets to stop alpha particles or C-ions, the Fano factor in rare gas, the peak value of the energy given by fast charged particles to materials and its fluctuation, the W-value and the Fano factor of liquid rare gas, and the LET dependence of the luminescence efficiency of liquid rare gas by radiation. The development of liquid rare gas detectors has been made. The considered detector types were a pulse ionization chamber with grid (liquid Xe), a proportional luminescent counter (liquid Xe), an electromagnetic calorimeter (liquid Ar, liquid Xe), and a photo-ionization detector. The development of silicon detectors is also in progress. The silicon detectors under development are a silicon detector telescope for satellite experiment, a silicon shower detector for balloon experiment, and a micron strip silicon detector for synchrotron radiation or elementary particle experiment. The use of plastic track detectors for cosmic ray observation has been examined. The discrimination of isotopes by using a new plastic CR-39 was able to be done. The detectors for low level alpha and gamma spectroscopy have been investigated. For alpha particles, a pulse ionization chamber with a cylindrical grid has been used. For gamma-ray, a Compton-suppressed Ge(Li) detector has been used. (Kato, T.)

  1. Radiation level detector

    International Nuclear Information System (INIS)

    The free surface of a fluid (e.g. molten steel) dense to particular ionising radiations and contained within a vessel (e.g. a casting mould) is monitored by a device which includes a radio active source (A) on oneside of the vessel and, on the other side, a detector head having a casing housing a photo-multiplier having a photo cathode coupled to a phosphor scintillator (B) of sufficient length to cover the predicted range of movement of the liquid free surface. (A) may be a point gamma source. (B) may be an activated organic crystal. The photomultiplier may operate at a constant voltage to provide linear high impedance output signals which are transformed to a low tension electric current. Low tension power supplied through a terminal is converted to high tension for the photomultiplier. (author)

  2. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  3. Status of radiation detector and neutron monitor technology

    International Nuclear Information System (INIS)

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The status of the technology development of these fields are also described

  4. Radiation damage of germanium detectors

    Science.gov (United States)

    Pehl, R. H.

    1978-01-01

    Energetic particles can produce interstitial-vacancy pairs in a crystal by knocking the atoms from their normal positions. Detectors are unique among semiconductor devices in depending on very low concentrations of electrically active impurities, and also on efficient transport of holes and electrons over relatively large distances. Because the dense regions of damage produced by energetic particles may result in donors and/or acceptors, and also provide trapping sites for holes and electrons, detectors are very sensitive to radiation damage. In addition to these effects occurring within the detector, radiation may also change the characteristics of the exposed surfaces causing unpredictable effects on the detector leakage current. Radiation-induced surface degradation has rarely, if ever, been observed for germanium detectors. The possibility of minimizing hole trapping in charge collection by the use of a high-purity germanium coaxial detector configured with the p (+) contact on the coaxial periphery is discussed.

  5. Simple dynamic electromagnetic radiation detector

    Science.gov (United States)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  6. Radiation hard cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, L. E-mail: luca.casagrande@cern.ch; Abreu, M.C.; Bell, W.H.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chapuy, S.; Cindro, V.; Collins, P.; D' Ambrosio, N.; Da Via, C.; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O' Shea, V.; Pagano, S.; Palmieuri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M

    2002-01-21

    It has been recently observed that heavily irradiated silicon detectors, no longer functional at room temperature, 'resuscitate' when operated at temperatures below 130 K. This is often referred to as the 'Lazarus effect'. The results presented here show that cryogenic operation represents a new and reliable solution to the problem of radiation tolerance of silicon detectors.

  7. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  8. Nuclear radiation detector

    International Nuclear Information System (INIS)

    The present invention concerns a nuclear detector for neutrons and gamma rays. They are generally self quenching. They come back to initial state after the traversal of the particle which has triggered a detection. The detectors which deliver the higher charges are those which work in the regime of Geiger-Mueller. However, one does not know in the present state of the technique a gas detector which is sensitive to neutrons working in the Geiger-Mueller regime, self quenching and sensitive to neutrons and γ rays. The aim of the present invention is to overcome these difficulties

  9. Metallisation of single crystal diamond radiation detectors

    Directory of Open Access Journals (Sweden)

    Ong Lucas

    2012-10-01

    Full Text Available Properties such as a large band gap, high thermal conductivity and resistance to radiation damage make diamond an extremely attractive candidate for detectors in next generation particle physics experiments. This paper presents our technique for metallisation of a single crystal diamond grown by chemical vapour deposition (CVD for use as a radiation detector, suitable for operation in places such as the Large Hadron Collider. The front and back side of the diamond are metalised with aluminium and gold on top of titanium respectively, after which the diamond is mounted and read out via a charge sensitive preamplifier. The device is found to collect charge at an efficiency of 97%.

  10. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  11. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique

    International Nuclear Information System (INIS)

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead η to decrease. In contrast, η was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp2 phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  12. 49 CFR 173.310 - Exceptions for radiation detectors.

    Science.gov (United States)

    2010-10-01

    ... for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization...) Radiation detectors must be single-trip, hermetically sealed, welded metal inside containers that will...

  13. Broadband optical radiation detector

    Science.gov (United States)

    Gupta, A.; Hong, S. D.; Moacanin, J. (Inventor)

    1981-01-01

    A method and apparatus for detecting optical radiation by optically monitoring temperature changes in a microvolume caused by absorption of the optical radiation to be detected is described. More specifically, a thermal lens forming material is provided which has first and second opposite, substantially parallel surfaces. A reflective coating is formed on the first surface, and a radiation absorbing coating is formed on the reflective coating. Chopped, incoming optical radiation to be detected is directed to irradiate a small portion of the radiation absorbing coating. Heat generated in this small area is conducted to the lens forming material through the reflective coating, thereby raising the temperature of a small portion of the lens forming material and causing a thermal lens to be formed therein.

  14. Portable Radiation Detectors

    Science.gov (United States)

    1997-01-01

    Through a Small Business Innovation Research (SBIR) contract from Kennedy Space Center, General Pneumatics Corporation's Western Research Center satisfied a NASA need for a non-clogging Joule-Thomson cryostat to provide very low temperature cooling for various sensors. This NASA-supported cryostat development played a key part in the development of more portable high-purity geranium gamma-ray detectors. Such are necessary to discern between the radionuclides in medical, fuel, weapon, and waste materials. The outcome of the SBIR project is a cryostat that can cool gamma-ray detectors, without vibration, using compressed gas that can be stored compactly and indefinitely in a standby mode. General Pneumatics also produces custom J-T cryostats for other government, commercial and medical applications.

  15. Surprising radiation detectors

    CERN Document Server

    Fleischer, Robert

    2003-01-01

    Radiation doses received by the human body can be measured indirectly and retrospectively by counting the tracks left by particles in ordinary objects like pair of spectacles, glassware, compact disks...This method has been successfully applied to determine neutron radiation doses received 50 years ago on the Hiroshima site. Neutrons themselves do not leave tracks in bulk matter but glass contains atoms of uranium that may fission when hurt by a neutron, the recoil of the fission fragments generates a track that is detectable. The most difficult is to find adequate glass items and to evaluate the radiation shield they benefited at their initial place. The same method has been used to determine the radiation dose due to the pile-up of radon in houses. In that case the tracks left by alpha particles due to the radioactive decay of polonium-210 have been counted on the superficial layer of the window panes. Other materials like polycarbonate plastics have been used to determine the radiation dose due to heavy io...

  16. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  17. Flexible composite radiation detector

    Science.gov (United States)

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  18. Advanced Radiation Detector Development

    International Nuclear Information System (INIS)

    Since our last progress report, the project at The University of Michigan has continued to concentrate on the development of gamma ray spectrometers fabricated from cadmium zinc telluride (CZT). This material is capable of providing energy resolution that is superior to that of scintillation detectors, while avoiding the necessity for cooling associated with germanium systems. In our past reports, we have described one approach (the coplanar grid electrode) that we have used to partially overcome some of the major limitations on charge collection that is found in samples of CZT. This approach largely eliminates the effect of hole motion in the formation of the output signal, and therefore leads to pulses that depend only on the motion of a single carrier (electrons). Since electrons move much more readily through CZT than do holes, much better energy resolution can be achieved under these conditions. In our past reports, we have described a 1 cm cube CZT spectrometer fitted with coplanar grids that achieved an energy resolution of 1.8% from the entire volume of the crystal. This still represents, to our knowledge, the best energy resolution ever demonstrated in a CZT detector of this size

  19. Radiation detector device for measuring ionizing radiation

    International Nuclear Information System (INIS)

    The device contains a compensating filter circuit, which guarantees measurement of the radiation dose independent of the energy or independent of the energy and direction. The compensating filter circuit contains a carrier tube of a slightly absorbing metal with an order number not higher than 35, which surrounds a tubular detector and which carries several annular filter parts on its surface. (orig./HP)

  20. Chemical effects of radiation

    International Nuclear Information System (INIS)

    Ionizing radiations initiate chemical changes in materials because of the high energy of their quanta. In water, highly reactive free radicals are produced which can initiate secondary changes of solutes, and in chemical of biological molecules in contact with the water. Free radicals can also be directly produced in irradiated medical products. Their fate can be identified and the molecular basis of radiation inactivation clarified. Methods have now been developed to protect and minimise such radiation damage. (author)

  1. Detectors for radiation dosimetry

    International Nuclear Information System (INIS)

    For our purposes in this review, we note the following points: (1) for charged particle detection, these counters can be filled with any noble gas-quenching gas mixture that produces satisfactory electrical signals; (2) neutron counters, in which the neutrons are detected by their interaction with the specific filling of the chamber to yield an ionizing particle, require special gas mixtures containing 3He or BF3, an alternative approach is to coat the inner surface of the cathode with a boron or lithium compound; (3) proportional counters are used if there is any need to discriminate between different types of radiation incident on the chamber by the magnitude of the ionizing energy retained within the sensitive volume of the counter; (4) proportional counters can operate at higher speeds than Geiger counters, typically up to 107 cts/sec versus less than 105/sec for the Geiger counters; and (5) Geiger counters produce very large uniform pulses which can be scaled by very simple electronics, hence, they are often used in survey meters and other portable monitoring instruments

  2. A low temperature gravitational radiation detector

    Science.gov (United States)

    Hamilton, W. O.

    1971-01-01

    The beginning design of an experiment is discussed for studying gravitational radiation by using massive detectors which are cooled to ultralow temperatures in order to improve the signal to noise ratios and the effective range and stability of the detectors. The gravitational detector, a low detection system, a cooled detector, magnetic support, superconducting shielding, and superconducting accelerometer detector are described.

  3. Method of manufacturing radiation detectors

    International Nuclear Information System (INIS)

    The method for manufacturing the detector for ionizing radiation and/or photons provides for an insulating layer of Si3N4, SiO2, Al2O3, Be2O3, varnish or plastic to be surfaced and above it a metal coating e.g. by means of planar technique or photoetching technique. Thereby metal insulation contacts (MIS contacts) will be created. The metal or resistance layer may be strip-shaped. In order to use the detector as neutron flux detector it is possible to put an additional strip- or raster-shaped coating of 10B or 6Li on the insulating resp. the metal layer. (DG)

  4. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  5. Development of CVD diamond radiation detectors

    CERN Document Server

    Adam, W; Berdermann, E; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fisch, D; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Meier, D; Mishina, M; Le Normand, F; Pan, L S; Pernegger, H; Pernicka, Manfred; Pirollo, S; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zoeller, M M

    1998-01-01

    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, $d=\\mu E \\tau$, the average distance electron-hole pairs move apart under the influence of an electric field, where $\\mu$ is the sum of carrier mo bilities, $E$ is the applied electric field, and $\\tau$ is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from $\\sim$ 75 $\\mu$m to over 200 $\\mu$ m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors w...

  6. Alpha particle response study of polycrstalline diamond radiation detector

    Science.gov (United States)

    Kumar, Amit; Topkar, Anita

    2016-05-01

    Chemical vapor deposition has opened the possibility to grow high purity synthetic diamond at relatively low cost. This has opened up uses of diamond based detectors for wide range of applications. These detectors are most suitable for harsh environments where standard semiconductor detectors cannot work. In this paper, we present the fabrication details and performance study of polycrystalline diamond based radiation detector. Effect of different operating parameters such as bias voltage and shaping time for charge collection on the performance of detector has been studied.

  7. Radiation tolerance of a high quality synthetic single crystal chemical vapor deposition diamond detector irradiated by 14.8 MeV neutrons

    Science.gov (United States)

    Pillon, M.; Angelone, M.; Aielli, G.; Almaviva, S.; Marinelli, Marco; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G.

    2008-09-01

    Diamond exhibits many properties such as an outstanding radiation hardness and fast response time both important to design detectors working in extremely radioactive environments. Among the many applications these devices can be used for, there is the development of a fast and radiation hard neutron detector for the next generation of fusion reactors, such as the International Thermonuclear Experimental Reactor project, under construction at Cadarache in France. A technology to routinely produce electronic grade synthetic single crystal diamond detectors was recently developed by our group. One of such detectors, with an energy resolution of 0.9% as measured using an A241m α particle source, has been heavily irradiated with 14.8 MeV neutrons produced by the Frascati Neutron Generator. The modifications of its spectroscopic properties have been studied as a function of the neutron fluence up to 2.0×1014 n/cm2. In the early stage of the irradiation procedure an improvement in the spectroscopic performance of the detector was observed. Subsequently the detection performance remains stable for all the given neutron fluence up to the final one thus assessing a remarkable radiation hardness of the device. The neutron damage in materials has been calculated and compared with the experimental results. This comparison is discussed within the nonionizing energy loss (NIEL) hypothesis, which states that performance degradation is proportional to NIEL.

  8. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  9. Radiation experience with the CDF silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Husemann, Ulrich; /Rochester U.

    2005-11-01

    The silicon detectors of the CDF experiment at the Tevatron collider are operated in a harsh radiation environment. The lifetime of the silicon detectors is limited by radiation damage, and beam-related incidents are an additional risk. This article describes the impact of beam-related incidents on detector operation and the effects of radiation damage on electronics noise and the silicon sensors. From measurements of the depletion voltage as a function of the integrated luminosity, estimates of the silicon detector lifetime are derived.

  10. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  11. High sensitive radiation detector for radiology dosimetry

    International Nuclear Information System (INIS)

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  12. High sensitive radiation detector for radiology dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Valente, M.; Malano, F. [Instituto de Fisica Enrique Gaviola, Oficina 102 FaMAF - UNC, Av. Luis Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Molina, W.; Vedelago, J., E-mail: valente@famac.unc.edu.ar [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  13. A novel compact real time radiation detector.

    Science.gov (United States)

    Li, Shiping; Xu, Xiufeng; Cao, Hongrui; Tang, Shibiao; Ding, Baogang; Yin, Zejie

    2012-08-01

    A novel compact real time radiation detector with cost-effective, ultralow power and high sensitivity based on Geiger counter is presented. The power consumption of this detector which employs CMOS electro circuit and ultralow-power microcontroller is down to only 12.8 mW. It can identify the presences of 0.22 μCi (60)Co at a distance of 1.29 m. Furthermore, the detector supports both USB bus and serial interface. It can be used for personal radiation monitoring and also fits the distributed sensor network for radiation detection. PMID:22738843

  14. Development of a plasma panel radiation detector

    CERN Document Server

    Ball, R; Ben-Moshe, M; Benhammou, Y; Bensimon, R; Chapman, J W; Etzion, E; Ferretti, C; Friedman, P S; Levin, D S; Silver, Y; Varner, R L; Weaverdyck, C; Wetzel, R; Zhou, B; Anderson, T; McKinny, K; Bentefour, E H

    2014-01-01

    This article reports on an investigation of a radiation detector based on plasma display panel technology. The plasma panel sensor (PPS) is a variant of micropattern gas radiation detectors. PPS components are non-reactive and intrinsically radiation-hard materials, such as glass substrates, metal electrodes and inert gas mixtures. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons, and thermal neutrons. The results demonstrated risetimes and time resolution of a few nanoseconds, as well as spatial resolution compatible with the pixel pitch.

  15. Development of innovative silicon radiation detectors

    CERN Document Server

    Balbuena, JuanPablo

    Silicon radiation detectors fabricated at the IMB-CNM (CSIC) Clean Room facilities using the most innovative techniques in detector technology are presented in this thesis. TCAD simulation comprises an important part in this work as becomes an essential tool to achieve exhaustive performance information of modelled detectors prior their fabrication and subsequent electrical characterization. Radiation tolerance is also investigated in this work using TCAD simulations through the potential and electric field distributions, leakage current and capacitance characteristics and the response of the detectors to the pass of different particles for charge collection efficiencies. Silicon detectors investigated in this thesis were developed for specific projects but also for applications in experiments which can benefit from their improved characteristics, as described in Chapter 1. Double-sided double type columns 3D (3D-DDTC) detectors have been developed under the NEWATLASPIXEL project in the framework of the CERN ...

  16. Semiconductor High-Energy Radiation Scintillation Detector

    CERN Document Server

    Kastalsky, A; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. The most important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombi...

  17. Property of the diamond radiation detector

    International Nuclear Information System (INIS)

    The outstanding properties of diamond, such as radiation hardness, high carrier mobility, high band gap and breakdown field, distinguish it as a good candidate for radiation detectors. In the dosimetry for radiotherapy is permanently searched the detector with high sensitivity, high stability, linear dependence of the response, small size, tissue equivalent material and fast response, for the measuring of the temporal and space variations of the dose. The diamond detector properties as high sensitivity, good spatial and temporal resolution, low Leakage currents, low capacitance, possibility to fabricate robust and compact device and high temperature operation make it possible to use these detectors in many fields from high energy physics till radiation monitoring, from Medical therapy dosimetry till synchrotron radiation measurement. (authors)

  18. Radiation damage in semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kraner, H.W.

    1981-12-01

    A survey is presented of the important damage-producing interactions in semiconductor detectors and estimates of defect numbers are made for MeV protons, neutrons and electrons. Damage effects of fast neutrons in germanium gamma ray spectrometers are given in some detail. General effects in silicon detectors are discussed and damage constants and their relationship to leakage current is introduced.

  19. Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Ullaland, O

    2011-01-01

    Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors in 'Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors 3.3.1 Introduction 3.3.2 Time of Flight Measurements 3.3.2.1 Scintillator hodoscopes 3.3.2.2 Parallel plate ToF detectors 3.3.3 Cherenkov Radiation 3.3.3.1 ...

  20. Radiation tests of semiconductor detectors

    OpenAIRE

    Chmill, Valery

    2006-01-01

    This thesis investigates the response of Gallium Arsenide (GaAs) detectors to ionizing irradiation. Detectors based on π-υ junction formed by deep level centers doping. The detectors have been irradiated with 137Cs γ-rays up to 110 kGy, with 6 MeV mean energy neutron up to approximately 6 · 1014 n/cm2, with protons and mixed beam up to 1015 p/cm2. Results are presented for the effects on leakage currents and charge collection efficiencies for minimum ionizing electrons and alpha particles. Th...

  1. Processing circuitry for single channel radiation detector

    Science.gov (United States)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2009-01-01

    Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.

  2. CVD diamond detectors for ionizing radiation

    CERN Document Server

    Friedl, M; Bauer, C; Berfermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernegger, H; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2*4 cm/sup 2/ have been grown and refined for better charge collection properties, which are measured with a beta source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5*10/sup 15/ cm/sup -2/ to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (16 refs).

  3. CVD diamond detectors for ionizing radiation

    International Nuclear Information System (INIS)

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x1015 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  4. CVD diamond detectors for ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M. E-mail: markus.friedl@cern.ch; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm{sup 2} have been grown and refined for better charge collection properties, which are measured with a {beta} source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x10{sup 15} cm{sup -2} to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  5. New materials for radiation hard semiconductor detectors

    CERN Document Server

    Sellin, P J; CERN. Geneva

    2006-01-01

    We present a review of the current status of research into new semiconductor materials for use as particle tracking detectors in very high radiation environments. This work is carried out within the framework of the CERN RD50 collaboration, which is investigating detector technologies suitable for operation at the proposed Super-LHC facility (SLHC). Tracking detectors operating at the SLHC in this environment will have to be capable of withstanding radiation levels arising from a luminosity of 1035 cm-2s-1 which will present severe challenges to current tracking detector technologies. The "new materials" activity within RD50 is investigating the performance of various semiconductor materials that potentially offer radiation hard alternatives to silicon devices. The main contenders in this study are silicon carbide, gallium nitride and amorphous silicon. In this paper we review the current status of these materials, in terms of material quality, commercial availability, charge transport properties, and radiati...

  6. Neutron detectors made from chemically vapor deposited semiconductors

    International Nuclear Information System (INIS)

    In this paper, the authors present the results of investigations on the use of semiconductors deposited by chemical vapor deposition (CVD) for the fabrication of neutron detectors. For this purpose, 20 microm thick hydrogenated amorphous silicon (a-Si:H) pin diodes and 100 microm thick polycrystalline diamond resistive detectors were fabricated. The detectors were coupled to a neutron-charged particle converter: a layer of either gadolinium or boron (isotope 10 enriched) deposited by evaporation. They have demonstrated the capability of such neutron detectors to operate at neutron fluxes ranging from 101 to 106 neutrons/cm2.s. The fabrication of large area detectors for neutron counting or cartography through the use of multichannel reading circuits is discussed. The advantages of these detectors include the ability to produce large area detectors at low cost, radiation hardness (∼ 4 Mrad for a-Si:H and ∼ 100 Mrad for diamond), and for diamond, operation at temperatures up to 500 C. These properties enable the use of these devices for neutron detection in harsh environments. Thermal neutron detection efficiency up to 22% and 3% are expected by coupling a-Si:H diodes and diamond detectors to 3 microm thick gadolinium (isotope 157) and 2 microm thick boron layers, respectively

  7. Recent results on the development of radiation-hard diamond detectors

    CERN Document Server

    Conway, J S; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Dabrowski, W; Da Graca, J; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Jamieson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Plano, R; Polesello, P; Prawer, S; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Russ, J; Schnetzer, S; Sciortino, S; Somalwar, S V; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Thomson, G B; Trawick, M; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    Charged particle detectors made from chemical vapor deposition (CVD) diamond have radiation hardness greatly exceeding that of silicon- based detectors. The CERN-based RD42 Collaboration has developed and tested CVD diamond microstrip and pixel detectors with an eye to their application in the intense radiation environment near the interaction region of hadron colliders. This paper presents recent results from tests of these detectors. (4 refs).

  8. Radiation detector with a trapezoidal scintillator

    International Nuclear Information System (INIS)

    The detector (CsI:Tl) is suited for application in the computerized X-ray tomography. It has a pair of collimator plates from W or Ta, alligned parallel to the direction of the incident radiation. Between the collimator plates there is the scintillator with a non-rectangular parallelepipedon shape and trapezoidal cross-section. The photons released by the scintillator are collected by a photosensor lying across the direction of radiation. By the shape of the scintillator the variation in detector response for radiation of different energies is reduced for a range of angles of incidence with respect to the vertical on the scintillator base. (DG)

  9. Heavy ion measurement by chemical detectors

    International Nuclear Information System (INIS)

    In testing the applicability of the threshold system polyvinyl alcohol/methyl orange/chloral hydrate/sodium tetraborate to the quantitative detection of single particles, the chemical detector was irradiated with 4He, 12C, 18O, 22He ions of different LET. Detectors with 4 different borax concentrations (chloral hydrate concentration kept constant) have been irradiated. The dose causing the colour change increased linearly with the borax concentration. For equal borax concentrations this dose increases with increasing LET due to the decreasing G value of the HCl. The fluence ranges measurable with the various detector compositions are given. 4He and 18O ion ranges have been determined. The measured depth dose curves have been corrected because the dose is LET-dependent. The experimentally determined ranges are in good agreement with values calculated for the detector material

  10. Radiation sterilization - chemical considerations

    International Nuclear Information System (INIS)

    The effects of ionizing radiation on cartilage and on a protein polysaccharide extract (CMP) from cartilage are evaluated. The results indicate that the hydroxyl radicals (produced when ionizing radiation interacts with water) are the most important species in altering the integrity of the cartilage during sterilization. Further data show how suitably designed chemial agents can protect the tissue from radiation damage. It is now hoped that practical use can be made of these developments during the radiation sterilization of tissues. (author)

  11. Electromechanically cooled germanium radiation detector system

    International Nuclear Information System (INIS)

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  12. Radiation and particle detector and amplifier

    Science.gov (United States)

    Schmidt, K. C. (Inventor)

    1973-01-01

    A radiation or charged particle detector is described which incorporates a channel multiplier structure to amplify the detected rays or particles. The channel multiplier structure has a support multiplying element with a longitudinal slot along one side. The element supports a pair of plates positioned contiguous with the slot. The plates funnel the particles or rays to be detected into the slotted aperture and the element, thus creating an effectively wide aperture detector of the windowless type.

  13. Semiconductor High-Energy Radiation Scintillation Detector

    OpenAIRE

    Kastalsky, A.; Luryi, S.; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on d...

  14. CVD diamond detectors of ionising radiation

    International Nuclear Information System (INIS)

    Diamond is a resilient material with excellent physical properties for radiation experiments. As such it is an interesting material for fabrication of high performance solid-state particle detectors operating at room temperature. Its high radiation hardness makes it an ideal material in high radiation environment. High breakdown voltage allows application of high electric field and so speeds up the charge collection. Diamond manufacturing technology (CVD) allows low cost diamond production in large sheets and with higher purity than nature diamonds. There have been already produced CVD diamond detectors with coaxial geometry, planar, micro-strip and pixel detectors. Also at Slovak University of Technology have been already produced first CVD diamond layers. (authors)

  15. Neutron radiation damage studies on silicon detectors

    International Nuclear Information System (INIS)

    Effects of neutron radiation on electrical properties of Si detectors have been studied. At high neutron fluence (Φn ≥ 1012 n/cm2), C-V characteristics of detectors with high resistivities (ρ ≥ 1 kΩ-cm) become frequency dependent. A two-trap level model describing this frequency dependent effect is proposed. Room temperature anneal of neutron damaged (at LN2 temperature) detectors shows three anneal stages, while only two anneal stages were observed in elevated temperature anneal. 19 refs., 14 figs

  16. Cadmium telluride nuclear radiation detectors

    International Nuclear Information System (INIS)

    The characteristics and performance of undoped high resistivity cadmium telluride detectors are compared to chlorine lifted counters. It is shown, in particular, that Undodep CdTe is in fact aluminium doped and that compensation occurs, as an silicon or germanium, by pair and triplet formation between the group III donor and the doubly charged cadmium vacancy acceptor. Furthermore, in chlorine doped samples, the polarization effect results from the unpaired level at Esub(c)-0,6eV

  17. Multiple-mode radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Claus, Liam D.; Derzon, Mark S.; Kay, Randolph R.; Bauer, Todd; Trotter, Douglas Chandler; Henry, Michael David

    2015-08-25

    An apparatus for detecting radiation is provided. In embodiments, at least one sensor medium is provided, of a kind that interacts with radiation to generate photons and/or charge carriers. The apparatus also includes at least one electrode arrangement configured to collect radiation-generated charge from a sensor medium that has been provided. The apparatus also includes at least one photodetector configured to produce an electrical output in response to photons generated by radiation in such a sensor medium, and an electronic circuit configured to produce an output that is jointly responsive to the collected charge and to the photodetector output. At least one such electrode arrangement, at least one such photodetector, and at least one such sensor medium are combined to form an integral unit.

  18. Semiconductor high-energy radiation scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Kastalsky, A. [University at Stony Brook, ECE Department and NY State Center for Advanced Sensor Technology, Stony Brook, NY 11794-2350 (United States); Luryi, S. [University at Stony Brook, ECE Department and NY State Center for Advanced Sensor Technology, Stony Brook, NY 11794-2350 (United States)]. E-mail: serge.luryi@stonybrook.edu; Spivak, B. [Department of Physics, University of Washington, Seattle, WA 98195 (United States)

    2006-09-15

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability.

  19. Ionization box type radiation detector

    International Nuclear Information System (INIS)

    An ionization box for monitoring radiation rays, a first amplification circuit of a multi-stage amplification circuit employing a MOS type FET as an initial stage amplification device, a second amplification circuit employing a junction type FET as an initial stage amplification device, a first change-over switch for switching ionization current depending on input signals, a second change-over switch for switching output signals, and a signal level discrimination circuit are constituted integrally. When radiation dose rate is low, the ionization current is inputted to the first amplification circuit and outputted as a radiation ray monitor signal and, when the radiation dose rate is increased to higher than a predetermined value, the ionization current is inputted to the second amplification circuit and outputted as a radiation ray monitor signal. That is, monitoring accuracy is high when the ionization current is low since the MOS type FET of high input impedance is used. If the ionization current is higher than a predetermined value, there is no worry that the detection becomes impossible since the junction type FET having less worry of causing characteristic change due to high radiation dose rate is used. Accordingly, ionization box type monitor at a high monitoring reliability can be obtained. (N.H.)

  20. Low-Power Multi-Aspect Space Radiation Detector System

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  1. Radiation effects in IRAS extrinsic infrared detectors

    Science.gov (United States)

    Varnell, L.; Langford, D. E.

    1982-01-01

    During the calibration and testing of the Infrared Astronomy Satellite (IRAS) focal plane, it was observed that the extrinsic photoconductor detectors were affected by gamma radiation at dose levels of the order of one rad. Since the flight environment will subject the focal plane to dose levels of this order from protons in single pass through the South Atlantic Anomaly, an extensive program of radiation tests was carried out to measure the radiation effects and to devise a method to counteract these effects. The effects observed after irradiation are increased responsivity, noise, and rate of spiking of the detectors after gamma-ray doses of less than 0.1 rad. The detectors can be returned almost to pre-irradiation performance by increasing the detector bias to breakdown and allowing a large current to flow for several minutes. No adverse effects on the detectors have been observed from this bias boost, and this technique will be used for IRAS with frequent calibration to ensure the accuracy of observations made with the instrument.

  2. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with the good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high-efficiency, room temperature gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, the authors have procured and tested a commercial device with operating characteristics similar to those of a single layer of the composite device. They have modeled the radiation transport in a multi-layered device, to verify the initial calculations of layer thickness and composition. They have modeled the electrostatic field in different device designs to locate and remove high-field regions that can cause device breakdown. They have fabricated 14 single layer prototypes

  3. Radiation damage in barium fluoride detector materials

    Energy Technology Data Exchange (ETDEWEB)

    Levey, P.W.; Kierstead, J.A.; Woody, C.L.

    1988-01-01

    To develop radiation hard detectors, particularly for high energy physics studies, radiation damage is being studied in BaF/sub 2/, both undoped and doped with La, Ce, Nd, Eu, Gd and Tm. Some dopants reduce radiation damage. In La doped BaF/sub 2/ they reduce the unwanted long lifetime luminescence which interferes with the short-lived fluorescence used to detect particles. Radiation induced coloring is being studied with facilities for making optical measurements before, during and after irradiation with /sup 60/C0 gamma rays. Doses of 10/sup 6/ rad, or less, create only ionization induced charge transfer effects since lattice atom displacement damage is negligible at these doses. All crystals studied exhibit color center formation, between approximately 200 and 800 nm, during irradiation and color center decay after irradiation. Thus only measurements made during irradiation show the total absorption present in a radiation field. Both undoped and La doped BaF/sub 2/ develop damage at minimum detectable levels in the UV---which is important for particle detectors. For particle detector applications these studies must be extended to high dose irradiations with particles energetic enough to cause lattice atom displacement damage. In principle, the reduction in damage provided by dopants could apply to other applications requiring radiation damage resistant materials.

  4. Radiation treatment of toxic chemicals

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCBs) were commercially produced from 1920s as complex mixtures containing multiple isomers for a variety of applications. They are very toxic, chemically stable and resist microbial, photochemical, chemical, and thermal degradation. The public, legal, and scientific concerns about PCBs arose from research indicating they were environmental contaminants that had a potential to adversely impact the environment, and, therefore, were undesirable as commercial products. Eventually, most producers reduced or stopped production of PCBs in the 1970s. Stockholm convention on POPs (Persistent Organic Pollutants), which was effective on May 2004 and 151 nations including Korea were joined on June 2005, asked to dispose of PCBs by 2028 with environmental friendly methods. Korean government also has declared to conduct by 2015. According to the Environmental law of Korea, over 2 ppm of PCBs has to be decomposed by legal methods of incineration and thermal destruction. But those are inapplicable owing to the environmental groups. KAERI(Korea Atomic Energy Research Institute) has recently developed a remarkable technology for radiation treatment of toxic chemicals including chlorides using an electron beam accelerator. Electron beam accelerator of 2.5 MeV energy and 100 kW power capacity was used to decompose of PCBs having been used as a commercial transformer oil for more than 30 years. The oil were irradiated with ∼ 0.1 percent of TEA (Triethyl Amin) to make chloride ion aparted off from the PCBs into precipitate at the conditions of normal temperature and pressure. The concentrations of PCBs were measured by GC (Gas Chromatography) with ECD (Electron Capture Detector) following the KS (Korean Standard) test procedure. Electron beam should be a useful tool for environmental conservation. Residual concentrations of PCBs after irradiation were depended on the absorption dose of electron beam energy. Advantages comparing to other methods such as

  5. Integrator Circuitry for Single Channel Radiation Detector

    Science.gov (United States)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2008-01-01

    Input circuitry is provided for a high voltage operated radiation detector to receive pulses from the detector having a rise time in the range of from about one nanosecond to about ten nanoseconds. An integrator circuit, which utilizes current feedback, receives the incoming charge from the radiation detector and creates voltage by integrating across a small capacitor. The integrator utilizes an amplifier which closely follows the voltage across the capacitor to produce an integrator output pulse with a peak value which may be used to determine the energy which produced the pulse. The pulse width of the output is stretched to approximately 50 to 300 nanoseconds for use by subsequent circuits which may then use amplifiers with lower slew rates.

  6. Radiation detectors: needs and prospects

    International Nuclear Information System (INIS)

    Important applications for x- and γ-ray spectroscopy are found in prospecting, materials characterization, environmental monitoring, the life sciences, and nuclear physics. The specific requirements vary for each application with varying degrees of emphasis on either spectrometer resolution, detection efficiency, or both. Since no one spectrometer is ideally suited to this wide range of needs, compromises are usually required. Gas and scintillation spectrometers have reached a level of maturity, and recent interest has concentrated on semiconductor spectrometers. Germanium detectors are showing continuing refinement and are the spectrometers of choice for high resolution applications. The new high-Z semiconductors, such as CdTe and HgI2, have shown steady improvement but are limited in both resolution and size and will likely be used only in applications which require their unique properties

  7. SIRAD – Personal radiation detectors

    International Nuclear Information System (INIS)

    SIRAD badge dosimeters provide a visual qualitative measurement of exposure to radiation for mid range dose exposure. This is performed using an active radiochromic dosimeter in a transparent window, combined into a badge assembly. When irradiated, the badges active window turns blue, which can be matched against the given colour chart for a qualitative assessment of the exposure received. Two peaks in the absorption spectra located at 617 nm and 567 nm were found. When analysed with a common computer desktop scanner, the optical density response of the film to radiation exposure is non-linear but reproducible. The net OD of the film was 0.21 when exposed to 50cGyand 0.31 at 200 cGy exposure when irradiated with a 6 MV x-ray energy beam and analysed using a broad spectrum light source. These values reduced when exposed with kilovoltage x-rays with an approximate 30% reducing in sensitivity at 50 kVp. The film provides an adequate measurement and visually qualitative assessment of radiation exposure for levels in the range of 0–50 cGy.

  8. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  9. Luminescent detectors of ionising radiation

    International Nuclear Information System (INIS)

    At present in slow neutron imaging an active layer of an imaging plate IP contains a mixture of storage phosphors, usually BaFBr:Eu2+ used for imaging of X-rays, and a neutron converter material, usually Gd2O3, LiF. A novel Li-containing luminescent material perspective for a direct neutron conversion and storage is discussed. Irradiation of LiBaF3 crystals results in generation of Frenkel defect pairs and creation of F-type centres responsible for three absorption bands in UV-and visible spectral region. Because photo-stimulation in each of these absorption bands leads to bleaching of induced absorption, the F-type colour centres are convenient for storage of radiation dose. Photo-stimulated decay of F-centres causes recombination luminescence of impurity centres. Thermoactivated decay of F-type centres is governed by ionic process. The thermal stability of F-centres at RT and consequent material storage characteristics can be improved by doping of the LiBaF3 with heterovalent oxygen impurities. The obtained radiation energy storage, photo- and thermostimulated read-out characteristics justify that LiBaF3 is a suitable active media for imaging of slow neutrons

  10. A radiation detector. Lead tungstate

    Energy Technology Data Exchange (ETDEWEB)

    Susuki, Yoshiyuki [Furukawa Co. Ltd., Tokyo (Japan); Ishii, Mitsuru; Kobayashi, Masaaki

    2000-05-01

    Lead tungstate (PbWO) is a material for scintillator luminous by irradiation of gamma-ray, X-ray, UV-light, and so forth. As it has short attenuation time of light after its luminescence and the largest density among the scintillator materials producible industrially at present. It is focussed by decision of its adoption to the next accelerator, LHC (large Hadron collider) in CERN. On the other hand, it is also under development onto lower energy application such as SPring-8 and medical PET (position emission tomography). However, it has many problems such as evaporation of PbO which is a raw element, fragile crystal, presence of cleavage, anisotropy in thermal expansion coefficient, low radiation resistance, and so forth. By optimization of pulling-up condition, a production technique of large size crystal could be established at this time. And, by addition of rare earth elements with three equivalence such as La, and so forth, it transmission and radiation resistance were extremely improved, which was confirmed to be used for actual applications. (G.K.)

  11. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  12. Development of a plasma panel radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Beene, J.R. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN 737831 (United States); Ben-Moshe, M.; Benhammou, Y.; Bensimon, B. [Tel Aviv University, Beverly and Raymond Sackler School of Physics and Astronomy, Tel Aviv (Israel); Chapman, J.W. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Etzion, E. [Tel Aviv University, Beverly and Raymond Sackler School of Physics and Astronomy, Tel Aviv (Israel); Ferretti, C. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Friedman, P.S. [Integrated Sensors, LLC, Ottawa Hills, OH 43606 (United States); Levin, D.S. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Silver, Y. [Tel Aviv University, Beverly and Raymond Sackler School of Physics and Astronomy, Tel Aviv (Israel); Varner, R.L. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN 737831 (United States); Weaverdyck, C.; Wetzel, R.; Zhou, B. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Anderson, T.; McKinny, K. [GE Measurement and Control, Reuter-Stokes Product Line, Twinsburg, OH 44087 (United States); Bentefour, E.H. [Ion Beam Applications S.A., Louvain La Neuve, B-1348 Belgium (Belgium)

    2014-11-11

    This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensor (PPS) design and materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons, and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch.

  13. Development of a plasma panel radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Bensimon, B [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Etzion, E [Tel Aviv University; Ferretti, Claudio [University of Michigan; Friedman, Dr. Peter S. [Integrated Sensors, LLC; Levin, Daniel S. [University of Michigan; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Wetzel, R. [University of Michigan; Zhou, Bing [University of Michigan; Anderson, T [GE Measurement and Control Solutions; McKinny, K [GE Measurement and Control Solutions; Bentefour, E [Ion Beam Applications

    2014-11-01

    This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensor (PPS) design and materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons, and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch.

  14. The Use of Radiation Detectors in Medicine: Radiation Detectors for Functional Imaging (2/3)

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  15. The Use of Radiation Detectors in Medicine: Radiation Detectors for Morphological Imaging (1/3)

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  16. Radiation Experience with the CMS Pixel Detector

    CERN Document Server

    Veszpremi, Viktor

    2015-01-01

    The CMS pixel detector is the innermost component of the CMS tracker occupying the region around the centre of CMS, where the LHC beams are crossed, between 4.3~cm and 30~cm in radius and 46.5~cm along the beam axis. It operates in a high-occupancy and high-radiation environment created by particle collisions. Studies of radiation damage effects to the sensors were performed throughout the first running period of the LHC. Leakage current, depletion voltage, pixel read-out thresholds, and hit finding efficiencies were monitored as functions of the increasing particle fluence. The methods and results of these measurements will be described together with their implications to detector operation as well as to performance parameters in offline hit reconstruction.

  17. Radiation experience with the CMS pixel detector

    Science.gov (United States)

    Veszpremi, V.

    2015-04-01

    The CMS pixel detector is the innermost component of the CMS tracker occupying the region around the centre of CMS, where the LHC beams are crossed, between 4.3 cm and 30 cm in radius and 46.5 cm along the beam axis. It operates in a high-occupancy and high-radiation environment created by particle collisions. Studies of radiation damage effects to the sensors were performed throughout the first running period of the LHC . Leakage current, depletion voltage, pixel readout thresholds, and hit finding efficiencies were monitored as functions of the increasing particle fluence. The methods and results of these measurements will be described together with their implications to detector operation as well as to performance parameters in offline hit reconstruction.

  18. Radiation response issues for infrared detectors

    Science.gov (United States)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  19. Electronic systems associated with radiation detectors

    International Nuclear Information System (INIS)

    This article deals with the instrumentation used for the detection of radiations in nuclear reactors and fuel reprocessing plants. In power reactors, the control of nuclear fissions is performed with the measurement of the neutron flux emitted by the pressure vessel. In fuel reprocessing plants the quantities of nuclear material are controlled all along the process by the measurement of the neutrons and gamma photons emitted. The measurement systems use the information contained in the series of electrical pulses delivered by the detectors. The number of pulses and the particular characteristics of each pulse are the methods used in the two different classes of measurements performed in nuclear facilities. Measurement systems are particularly sensible to the signal/noise ratio which is a determining factor in the quality of measurements: 1 - sources of error and filtering of detector pulses: detectors and processing of pulses; sources of errors (electronic noise, thermal drift, electromagnetic disturbances, piling up effects, ballistic deficit); optimum estimation and filtering (optimum energy estimation, counting optimization); 2 - measurement chains associated with detectors: counting and measurement of weak currents (effect of the connection cable, effects of high counting rates, method of fluctuations and advantage of a numerical processing of the signal, measurement of weak currents, effect of radiations on electronic components); energy measurement (filter for energy measurements, design of low-noise preamplifiers, high counting rate measurements). (J.S.)

  20. Nano structural anodes for radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  1. Mobile robot prototype detector of gamma radiation

    International Nuclear Information System (INIS)

    In this paper the technological development of a mobile robot prototype detector of gamma radiation is shown. This prototype has been developed for the purpose of algorithms implementation for the applications of terrestrial radiation monitoring of exposed sources, search for missing radioactive sources, identification and delineation of radioactive contamination areas and distribution maps generating of radioactive exposure. Mobile robot detector of radiation is an experimental technology development platform to operate in laboratory environment or flat floor facilities. The prototype integrates a driving section of differential configuration robot on wheels, a support mechanism and rotation of shielded detector, actuator controller cards, acquisition and processing of sensor data, detection algorithms programming and control actuators, data recording (Data Logger) and data transmission in wireless way. The robot in this first phase is remotely operated in wireless way with a range of approximately 150 m line of sight and can extend that range to 300 m or more with the use of signal repeaters. The gamma radiation detection is performed using a Geiger detector shielded. Scan detection is performed at various time sampling periods and diverse positions of discrete or continuous angular orientation on the horizon. The captured data are geographical coordinates of robot GPS (latitude and longitude), orientation angle of shield, counting by sampling time, date, hours, minutes and seconds. The data is saved in a file in the Micro Sd memory on the robot. They are also sent in wireless way by an X Bee card to a remote station that receives for their online monitoring on a laptop through an acquisition program by serial port on Mat Lab. Additionally a voice synthesizing card with a horn, both in the robot, periodically pronounced in Spanish, data length, latitude, orientation angle of shield and detected accounts. (Author)

  2. Miniature detector measures deep space radiation

    Science.gov (United States)

    Schultz, Colin

    2011-08-01

    The 1972 journey of Apollo 17 marked not only the last time a human walked on the Moon but also the most recent manned venture beyond the outer reaches of the Earth's atmosphere. With preparations being made for humans to once again explore deep space, important steps are under way to quantify the hazards of leaving low-Earth orbit. One significant risk for long-distance missions is the increased exposure to ionizing radiation—energetic particles that can strip electrons off of otherwise neutral materials, affecting human health and the functioning of spacecraft equipment. The deep space probes that are being sent to measure the risks from ionizing radiation and other hazards can be costly, so maximizing the scientific value of each launch is important. With this goal in mind, Mazur et al. designed and developed a miniature dosimeter that was sent into lunar orbit aboard NASA's Lunar Reconnaissance Orbiter (LRO) in 2009. Weighing only 20 grams, the detector is able to measure fluctuations in ionizing radiation as low as 1 microrad (equivalent to 1.0 × 10-8 joules of energy deposited into 1 kilogram) while requiring minimal power and computer processing. The postage stamp-sized detector tracked radiation dosages for the first year of LRO's mission, with the results being confirmed by other onboard and near-Earth detectors. (Space Weather, doi:10.1029/2010SW000641, 2011)

  3. Chemical radioprotectors in radiation protection

    International Nuclear Information System (INIS)

    The different demands for the ways of the administration of chemical radioprotectors as a cystamine or WR-2721 (amifostine, gammaphos, Ethyol) e.g. S-containing compounds, their distribution and further pharmacological properties of protective agents in mentioned indications are discussed in presented lecture. A special attention is concerned on the practical use of chemical radioprotectors in the emergency and clean-up workers after a radiation accident or nuclear catastrophes. (author)

  4. Semiconductor scintillator detector for gamma radiation

    International Nuclear Information System (INIS)

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  5. Chemical protection against ionizing radiation

    Science.gov (United States)

    Maisin, J. R.

    Some of the problems related to chemical protection against ionizing radiation are discussed with emphasis on : definition, classification, degree of protection, mechanisms of action and toxicity. Results on the biological response modifyers (BRMs) and on the combination of nontoxic (i.e. low) doses of sulphydryl radioprotectors and BRMs are presented.

  6. Chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Over 40 years have passed since the research of the Manhattan Project suggested the possibility of chemical protection against ionizing radiation. During that time, much has been learned about the nature of radiation-induced injury and the factors governing the expression of that injury. Thousands of compounds have been tested for radioprotective efficacy, and numerous theories have been proposed to account for these actions. The literature on chemical radioprotection is large. In this article, the authors consider several of the mechanisms by which chemicals may protect against radiation injury. They have chosen to accent this view of radioprotector research as opposed to that research geared toward developing specific molecules as protective agents because they feel that such an approach is more beneficial in stimulating research of general applicability. This paper describes the matrix of biological factors upon which an exogenous radioprotector is superimposed, and examines evidence for and against various mechanisms by which these agents may protect biological systems against ionizing radiation. It concludes with a brief outlook for research in chemical radioprotection

  7. Radiation Damage Effect on Si and SiC Detectors

    International Nuclear Information System (INIS)

    Silicon is an extraordinary semiconductor suited for the fabrication of radiation detector. Charge carrier lifetime and mobility are high, which is very important to make the radiation detector with low noise and good time behavior. Since the fabrication technology of the silicon was mature, one could easily make a radiation detector with a sophisticated structure. Therefore, silicon detector could be the best choice for the various application areas. The depletion layers of the reverse bias rectifying barriers are used to make the silicon radiation detector with low noise. The depletion layer could be made by a silicon surface barrier (SSB) structure or a PIN junction structure. SSB detector was made by depositing the metal electrode on the n or p type silicon wafer. The p-n junction could be made with the semiconductor fabrication process, and the X-ray or α particles could be measured with the detector. The radiation tolerance of the radiation detector is also very important for the application of the detector to the harsh environment. A study on the effect of the structure of the depletion layer on the radiation tolerance was rare in most of the previous works In the present work, the silicon detectors with two types were fabricated, and their operation characteristics are compared. The dependency of the radiation damage on the detector type was studied. We also fabricated SiC detector and the neutron and gamma irradiation effect on the detector was studied. The radiation tolerance of the detector was studied. One could see the change of the leakage current and the energy resolution in SSB detector, and the operating performance of the Si PIN detector was more stable than Si Schottky detector.

  8. Radiation damage effects in silicon detectors

    International Nuclear Information System (INIS)

    Radiation damage in silicon detectors produced by monoenergetic 14 MeV neutrons, 25 MeV protons and 20 keV X-rays was investigated. The irradiation was performed up to fluences of 1012 particles per cm2 resp. 5 kGy in short time exposures of less than 1 hour. The resulting increase of the leakage current (damage rate), change of the resistivity (impurity removal) and charge collection deficiency (decrease of trapping time constant) is discussed. Long term storage at room temperature and short term heat treatments showed appreciable annealing effects

  9. A new transition radiation detector for cosmic ray nuclei

    Science.gov (United States)

    Lheureux, J.; Meyer, P.; Muller, D.; Swordy, S.

    1981-01-01

    Test measurements on materials for transition radiation detectors at a low Lorentz factor are reported. The materials will be based on board Spacelab-2 for determining the composition and energy spectra of nuclear cosmic rays in the 1 TeV/nucleon range. The transition radiation detectors consist of a sandwich of radiator-photon detector combinations. The radiators emit X-rays and are composed of polyolefin fibers used with Xe filled multiwired proportional chamber (MWPC) detectors capable of detecting particle Lorentz factors of several hundred. The sizing of the detectors is outlined, noting the requirement of a thickness which provides a maximum ratio of transition radiation to total signal in the chambers. The fiber radiator-MWPC responses were tested at Fermilab and in an electron cyclotron. An increase in transition radiation detection was found as a square power law of Z, and the use of six radiator-MWPC on board the Spacelab-2 is outlined.

  10. Features of manufacturing Cd1–xZnxTe ionizing radiation detector

    Directory of Open Access Journals (Sweden)

    Tomashik Z. F.

    2013-02-01

    Full Text Available The article describes a newly-developed method of manufacturing of an operating element of the Cd1–xZnxTe-detector of ionizing radiation with high sensitivity to low-energy gamma radiation of the americium 241Am radioactive isotope. The proposed two-step method of chemical surface treatment with the use of new bromine releasing polishing etchants significantly improves the quality of the detector material and increases its specific sensitivity to ionizing radiation. This allows to use smaller Cd1–xZnxTe plates, which results in lowering of the cost of detectors.

  11. Method of neutralising the effects of electromagnetic radiation in a radiation detector and a radiation detector applying the procedure

    International Nuclear Information System (INIS)

    Circuitry is described by means of which radiation detectors of the Neher-White type, employing ionisation chambers can be unaffected by electromagnetic radiation which would otherwise cause inductive effects leading to erroneous signals. It is therefore unnecessary to use shielded cables for these instruments. (JIW)

  12. Ruggedization of CdZnTe detectors and detector assemblies for radiation detection applications

    International Nuclear Information System (INIS)

    This paper described improvements in the ruggedization of CdZnTe detectors and detector assemblies for use in radiation detection applications. Research included experimenting with various conductive and underfill adhesive material systems suitable for CZT substrates. A detector design with encapsulation patterning was developed to protect detector surfaces and to control spacing between CZT anode and PCB carrier. Robustness of bare detectors was evaluated through temperature cycling and metallization shear testing. Attachment processes using well-chosen adhesives and PCB carrier materials were optimized to improve reliability of detector assemblies, resulted in Improved Attachment Detector Assembly. These detector assemblies were subjected to aggressive temperature cycling, and varying levels of drop/shock and vibration, in accordance with modified JEDEC, ANSI and FedEx testing standards, to assess their ruggedness. Further enhanced detector assembly ruggedization methods were investigated involving adhesive conformal coating, potting and dam filling on detector assemblies, which resulted in the Enhanced Ruggedization Detector Assembly. Large numbers of CZT detectors and detector assemblies with 5 mm and 15 mm thick, over 200 in total, were tested. Their performance was evaluated by exposure to various radioactive sources using comprehensive predefined detector specifications and testing protocols. Detector assemblies from improved attachment and enhanced ruggedization showed stable performances during the harsh environmental condition tests. In conclusion, significant progress has been made in improving the reliability and enhancing the ruggedness of CZT detector assemblies for radiation detection applications deployed in operational environments. - Highlights: • We developed ruggedization methods to enhance reliability of CZT detector assemblies. • Attachment of CZT radiation detectors was improved through comparative studies. • Bare detector metallization

  13. X-ray diffuse scattering for evaluation of wide bandgap semiconductor nuclear radiation detectors

    International Nuclear Information System (INIS)

    The crystalline perfection of solid state radiation detectors was examined using triple axis x-ray diffraction. Triple axis techniques provide a means to analyze the origin of diffraction peak broadening: the effects of strain (due to deviations in alloy composition or stoichiometry) and lattice tilts (mosaic structure) can be separated. Cd1-xZnxTe (x∼0.1), HgI2, and GaAs detector materials were studied. In the cases of Cd1-xZnxTe and HgI2 the crystalline properties of detectors with different spectral responses to γ-radiation were determined. Increased mosaicity was universally found to be related to deteriorated detector properties. For Cd1-xZnxTe, detectors with poor performance possessed greater levels of diffuse scatter due to lattice tilts than did high quality detectors. For GaAs, low angle grain boundaries were attributed to impaired detector performance. Additionally, in large HgI2 detectors, deviations from stoichiometry were also related to reduced performance. Interestingly, HgI2 detectors which possessed a sharp spectral response to γ-radiation but also showed polarization were of comparable crystallinity to those detectors which did not exhibit polarization effects. This initial analysis suggests that polarization is related to native point defects or chemical impurities which do not significantly alter the crystallinity of the material. Overall, within a given class of materials, improved detector performance (better spectral response) always correlated with better material quality. (orig.)

  14. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    OpenAIRE

    Barry, Mamadou Yaya

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next-generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, ...

  15. Space Radiation Detector with Spherical Geometry

    Science.gov (United States)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2012-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  16. The HERMES dual-radiator RICH detector

    International Nuclear Information System (INIS)

    The HERMES experiment emphasizes measurements of semi-inclusive deep-inelastic scattering. Most of the hadrons produced lie between 2 and 10 GeV, a region in which it had not previously been feasible to separate pions, kaons, and protons with standard particle identification (PID) techniques. The recent development of new clear, large, homogeneous and hydrophobic silica aerogel material with a low index of refraction offered the means to apply RICH PID techniques to this difficult momentum region. The HERMES instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. A lightweight spherical mirror constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality provides optical focusing on a photon detector consisting of 1934 photomultiplier tubes (PMT) for each detector half. The PMT array is held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet. Ring reconstruction is accomplished with pattern recognition techniques based on a combination of inverse and direct ray tracing

  17. The HERMES dual-radiator RICH detector

    CERN Document Server

    Jackson, H E

    2003-01-01

    The HERMES experiment emphasizes measurements of semi-inclusive deep-inelastic scattering. Most of the hadrons produced lie between 2 and 10 GeV, a region in which it had not previously been feasible to separate pions, kaons, and protons with standard particle identification (PID) techniques. The recent development of new clear, large, homogeneous and hydrophobic silica aerogel material with a low index of refraction offered the means to apply RICH PID techniques to this difficult momentum region. The HERMES instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. A lightweight spherical mirror constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality provides optical focusing on a photon detector consisting of 1934 photomultiplier tubes (PMT) for each detector half. The PMT array is held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet. Ring recon...

  18. Studies of ionizing radiation effects on STAR silicon drift detectors

    International Nuclear Information System (INIS)

    A 63 x 63 mm rectangular silicon drift detector was irradiated using a 60Co source and its performance was studied. The total accumulated dose was 23.5 krad. The detector performance after room temperature annealing was studied. The detector was found to be sufficiently radiation hard for RHIC applications

  19. Radiation-chemical antielectrostatic finishing

    International Nuclear Information System (INIS)

    Antielectrostatic finishing of textile fabrics of poly(ethylene terephthalate) was performed by radiation-chemical coating of poly(ethyleneglycol acrylate)s. The achieved modification effect was investigated with regard to its permanence mainly by recording the course of surface resistivity, and as a function of the composition of the modifier (monoacrylate/diacrylate ratio, molar mass), impregnation time and temperature, residual moisture, mass increase, energy dose, and dose rate. Detailed analytical and microscopic investigations evidenced important findings concerning the optimal technology of modification. The results permitted to suggest favorable modification parameters for satisfactory permanence of the effect. (author)

  20. Pyroelectric detector development for the Radiation Measurement system

    Science.gov (United States)

    Hubbard, G. S.; Mcmurray, Robert E., Jr.; Hanel, R. P.; Dominguez, D. E.; Valero, F. P. J.; Baumann, Hilary; Hansen, W. L.; Haller, E. E.

    1993-01-01

    A new class of high detectivity pyroelectric detectors developed for optimization of the radiation measurement system within the framework of the Atmospheric Radiation Measurement program is described. These devices are intended to provide detectivities of up to about 10 exp 11 cm Hz exp 0.5/W with cooling to about 100 K required for the detector focal plane.

  1. Embedded silicon detector to investigate the natural radiative environment

    International Nuclear Information System (INIS)

    A detector based on a silicon diode was developed to investigate the natural radiative environment. As the detector is embeddable, it has low power consumption and is lightweight and small. The instrument was tested under different neutron beams and used during stratospheric balloon flights. A comparison of the experimental results with Monte Carlo simulation results shows that the embeddable detector is a promising means of investigating the natural radiative environment.

  2. Wire chamber radiation detector with discharge control

    International Nuclear Information System (INIS)

    A wire chamber radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced

  3. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuki, E-mail: y.sato@riken.jp [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimaoka, Takehiro; Kaneko, Junichi H. [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Murakami, Hiroyuki [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho Toki-city, Gifu 509-5292 (Japan); Tsubota, Masakatsu [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-06-01

    We have fabricated a particle detector using single crystal diamond grown by chemical vapor deposition. The irradiation dose dependence of the output pulse height from the diamond detector was measured using 3 MeV protons. The pulse height of the output signals from the diamond detector decreases as the amount of irradiation increases at count rates of 1.6–8.9 kcps because of polarization effects inside the diamond crystal. The polarization effect can be cancelled by applying a reverse bias voltage, which restores the pulse heights. Additionally, the radiation hardness performance for MeV energy protons was compared with that of a silicon surface barrier detector.

  4. Particle and radiation detectors based on diamond

    Energy Technology Data Exchange (ETDEWEB)

    Bergonzo, P.; Tromson, D.; Mer, C.; Guizard, B.; Foulon, F.; Brambilla, A. [LIST/DIMRI/SIAR, CEA/Saclay, Gif-sur-Yvette (France)

    2001-05-16

    CVD diamond is a remarkable material for the fabrication of particle and photon radiation detectors. The improvement of the electronic properties of the material has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. In particular, we have used diamond layers for industrial applications where it exhibits attractive characteristics as compared with other materials: e.g., radiation and corrosion hardness for {alpha}-counters or high gamma-meters at high fluxes; high transparency to low energy X-rays for synchrotron beam line monitoring devices, etc. These specific properties can motivate the use of diamond even though the detection properties remain relatively poor. Indeed, one inherent problem with diamond is the presence of defect levels that are altering the detection characteristics. These are observed in all CVD materials but also in very high quality natural diamonds. They result in unstable responses and carrier losses. Also, it has been observed that high sensitivities may result from the progressive filling of deep levels, e.g. pumping effects, with a detrimental effect on the stability and the response time. Also, the polycrystalline nature is somewhat detrimental as it induces significant non-uniformities of the device response with respect to the position of interaction. We have investigated these features by imaging the response of CVD diamond using a micrometer size focused X-ray beam. The comparison with the grain structure showed that it has a strong influence on the field distribution. We present here recent developments studied at CEA in Saclay for the optimisation of the material with respect to the specific requirements of several applications. They include radiation hard counters; X-ray intensity, shape and beam position monitors, solar blind photodetectors, and high dose rate gamma-meters. (orig.)

  5. Design of SJ-10 Space Radiation Detector Prototype

    CERN Document Server

    Liu, Yaqing; Cui, Xingzhu; Peng, Wenxi; Fan, Ruirui; Gao, Xiaohua Liang Ming; Zhang, Yunlong; Zhang, Chengmo; Zhang, Jiayu; Yang, Jiawei; Wang, Jinzhou; Dong, Fei Zhang Yifan; Guo, Dongya; Zhou, Dawei

    2014-01-01

    The space radiation detector is a space apparatus for detecting the outer-space particles and monitoring the radiation environment. Though identifying the particles and acquiring the biological experimental data, we can learn about the space radiation impacts on the human body and defend the space radiation damage. This paper designed a prototype of the space radiation detector for SJ-10 and evaluated the performance by the system simulation. More specifically, the space radiation impacts on the human body were analyzed including the different particles, the radiation flux and the energy channels. Then the detector system based on analysis results were built by the Monte Carlo simulation. Finally, the detection algorithms of incident energy range were proposed to identify the outer-space particles and provide the reliable radiation environment data for biological experimental apparatus.

  6. Optical Analysis of a Linear-Array Thermal Radiation Detector for Geostationary Earth Radiation Budget Applications

    OpenAIRE

    Sanchez, Maria Cristina

    1998-01-01

    The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently working to develop a new technology for thermal radiation detectors. The Group is also studying the viability of replacing current Earth Radiation Budget radiometers with this new concept. This next-generation detector consists of a thermopile linear array thermal radiation detector. The principal objective of t...

  7. Radiation field mapping using a mechanical-electronic detector

    Science.gov (United States)

    Czayka, M.; Fisch, M.

    2010-04-01

    A method of radiation field mapping of a scanned electron beam using a Faraday-type detector and an electromechanical linear translator is presented. Utilizing this arrangement, fluence and fluence rate measurements can be made at different locations within the radiation field. The Faraday-type detector used in these experiments differs from most as it consists of a hollow stainless steel sphere. Results are presented in two- and three-dimensional views of the radiation field.

  8. Radiation damage studies for the DOe silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Frank E-mail: lehnerf@physik.unizh.ch

    2004-09-01

    We report on irradiation studies performed on spare production silicon detector modules for the current DOe silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10{sup 14} p/cm{sup 2} at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalisation techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling.

  9. Fabrication of advanced military radiation detector sensor and performance evaluation

    International Nuclear Information System (INIS)

    Recently, our country is facing a continuous nuclear weapons threat. Therefore, we must have a high-level nuclear weapons protection system. The best protection against nuclear weapons is detecting their use to reduce casualties in our country to a minimum. That means, the development of a military radiation detector is a very important issue. The Korea army is using the 'PDR - 1K portable military radiation surveymeter' in NBC (Nuclear, Biological, Chemical warfare) operations. The PDR - 1K military detector can measure beta and gamma rays only but it cannot detect alpha particles. Because of its characteristics, the Korea army has weaknesses in tactical operations. The PDR - 1K sensor is based on a GM - tube sensor system. For the mechanical structure, detectors utilizing a GM-tube sensor do not work on a high - radiation battlefield and they do not carry out nuclide analysis for fixed electron signal output. In the meantime, the United States of America and Germany are using 'AN/PDR - 77' and 'SVG - 2' that were made from scintillator sensors. They have excellent physical qualities and radiation responses for military use. Also, nuclide analysis is available. Therefore, in this study we fabricated a military - grade scintillator radiation sensor that is able to detect alpha, beta, and gamma - rays to overcome PDR - 1K's weaknesses. Also, physical characteristics and radiation response evaluation for the fabricated sensors was carried out. The alpha - particle sensor and beta - ray sensor were fabricated using a ZnS(Ag) powder state scintillator, and a Saint - Gobain organic plastic scintillator BC-408 panel, respectively. The gamma ray sensor was manufactured using a 10 x 10 x 10 mm3 CsI(Tl) inorganic scintillator crystal. A detailed explanation follows. The alpha particle sensor was fabricated by using air - brushing method to Zns(Ag) powder scintillator spreading. The ZnS(Ag) layer thickness was 35 μm (detection efficiency: 41%). This alpha - particle sensor

  10. A conductive surface coating for Si-CNT radiation detectors

    International Nuclear Information System (INIS)

    Silicon–Carbon Nanotube radiation detectors need an electrically conductive coating layer to avoid the nanotube detachment from the silicon substrate and uniformly transmit the electric field to the entire nanotube active surface. Coating material must be transparent to the radiation of interest, and must provide the drain voltage necessary to collect charges generated by incident photons. For this purpose various materials have been tested and proposed in photodetector and photoconverter applications. In this article interface properties and electrical contact behavior of Indium Tin Oxide films on Carbon Nanotubes have been analyzed. Ion Beam Sputtering has been used to grow the transparent conductive layer on the nanotubes. The films were deposited at room temperature with Oxygen/Argon mixture into the sputtering beam, at fixed current and for different beam energies. Optical and electrical analyses have been performed on films. Surface chemical analysis and in depth profiling results obtained by X-ray Photoelectron Spectroscopy of the Indium Tin Oxide layer on nanotubes have been used to obtain the interface composition. Results have been applied in photodetectors realization based on multi wall Carbon Nanotubes on silicon. - Highlights: • ITO was deposited by Ion Beam Sputtering on MWCNT. • ITO on CNT makes an inter-diffusion layer of the order of one hundred nanometers. • Improvements of quantum efficiency of photon detectors based on CNT with ITO

  11. Radiation damage measurements in room-temperature semiconductor radiation detectors

    CERN Document Server

    Franks, L A; Olsen, R W; Walsh, D S; Vizkelethy, G; Trombka, J I; Doyle, B L; James, R B

    1999-01-01

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI sub 2) is reviewed and in the case of CZT supplemented by new alpha particle data. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10 sup 1 sup 0 p/cm sup 2 and significant bulk leakage after 10 sup 1 sup 2 p/cm sup 2. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5x10 sup 9 p/cm sup 2 in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from a moderated fission spectrum of neutrons after fluences up to 10 sup 1 sup 0 n/cm sup 2 , although activation was evident. Exposures of CZT to 5 MeV alpha particles at fluences up to 1.5x10 sup 1 sup 0 alpha/cm sup 2 produced a near linear decrease in peak position with fluence and increases in FWHM beginning at about 7.5x10 sup 9 alpha/cm sup 2. CT detectors show resolution...

  12. Radiation environment and shielding for a high luminosity collider detector

    International Nuclear Information System (INIS)

    Detectors now under design for use in the proposed high energy high luminosity colliders must deal with unprecedented radiation levels. We have performed a comprehensive study for the GEM detector at the SSC to determine the best way to shield critical detector components from excessive radiation, with special attention paid to the low energy neutrons and photons. We have used several detailed Monte-Carlo simulations to calculate the particle fluxes in the detector. We describe these methods and demonstrate that two orders of magnitude reduction in the neutron and photon fluxes can be obtained with appropriate shielding of critical forward regions such as the low beta quadrupoles and the forward calorimeter

  13. A Xylophone Detector of Gravitational Radiation

    Science.gov (United States)

    Tinto, Massimo

    1997-01-01

    We discuss spacecraft Doppler tracking searches for gravitational waves in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine, we describe a new method for removing from the combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. This technique provides also a way for reducing by several orders of magnitude, at selected Fourier components, the frequency fluctuations due to other noise sources, such as the clock on board the spacecraft or the antenna and buffeting of the probe by nongravitational forces. In this respect spacecraft Doppler tracking can be regarded as a xylophone detector of gravitational radiation. In the assumption of calibrating the frequency fluctuations induced by the interplanetary plasma, a strain sensitivity equal to 4.7 x 10(exp -18) at 10(exp -3) Hz is estimated. This experimental technique could be extended to other tests of the theory of relativity, and to radio science experiments that rely on high-precision Doppler measurements.

  14. Flame detector operable in presence of proton radiation

    Science.gov (United States)

    Walker, D. J.; Turnage, J. E.; Linford, R. M. F.; Cornish, S. D. (Inventor)

    1974-01-01

    A detector of ultraviolet radiation for operation in a space vehicle which orbits through high intensity radiation areas is described. Two identical ultraviolet sensor tubes are mounted within a shield which limits to acceptable levels the amount of proton radiation reaching the sensor tubes. The shield has an opening which permits ultraviolet radiation to reach one of the sensing tubes. The shield keeps ultraviolet radiation from reaching the other sensor tube, designated the reference tube. The circuitry of the detector subtracts the output of the reference tube from the output of the sensing tube, and any portion of the output of the sensing tube which is due to proton radiation is offset by the output of the reference tube. A delay circuit in the detector prevents false alarms by keeping statistical variations in the proton radiation sensed by the two sensor tubes from developing an output signal.

  15. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    Science.gov (United States)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  16. A hybrid radiation detector based on a plasma display panel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sungho; Lee, Rena [Radiation Oncology, Ewha Womans University Mokdong Hospital, Seoul 158-710 (Korea, Republic of); Yun, Min-Seok; Jang, Gi-Won [Department of Biomedical Engineering, Inje University, Gimhae 621-749 (Korea, Republic of); Park, Jikoon [Department of Radiology Science, International University of Korea, Jinjoo 660-759 (Korea, Republic of); Choi, Jang-Yong [Korea Food and Drug Administration, Seoul 122-704 (Korea, Republic of); Nam, Sanghee [Department of Biomedical Engineering, Inje University, Gimhae 621-749 (Korea, Republic of)], E-mail: nsh@bme.inje.ac.kr

    2009-10-11

    Recently, large-area image detectors have been investigated for X-ray imaging in medical diagnostic and other applications. In this paper, a new type of radiation detector is described, based on the integration of a photoconductor into a plasma display panel (PDP). This device, called a hybrid PDP detector, should be quite inexpensive, because it can directly leverage off the fabrication and materials technologies widely used in plasma display panels. Also, these new radiation detectors should operate under the most challenging environmental conditions, because they are inherently rugged and radiation-resistant and insensitive to magnetic fields. In this paper, we describe a hybrid digital radiation detector device, based on plasma display. The PDP panel is 7 in. in size with a 1000-{mu}m pixel pitch, and filled with 700 Torr of Xe gas; the hybrid PDP panel is of the same structure, except for the photoconductor deposit. The glass absorption, dark current, X-ray sensitivity, and linearity as a function of electric field were measured to investigate its electrical properties. From the results, stabilized dark current density and significant X-ray sensitivity were obtained with both panels; however, the hybrid PDP detector showed better characteristics than the PDP detector. It also had good signal response and linearity. The hybrid digital radiation detector device based on a plasma display seems to be a promising technology for use in radiology and dynamic moving imaging.

  17. Comparison of radiation and chemical risks

    International Nuclear Information System (INIS)

    Injury to living cells is caused by mechanisms which in many cases are similar for radiation and chemicals. It is thus not surprising that radiation and many chemicals can cause similar biological effects, e.g. cancer, fetal injury and hereditary disease. Both radiation and chemicals are always found in our environment. One agent may strengthen or weaken the effect of another, be it radiation in combination with chemicals or one chemical with another. The implications of such synergistic or antagonistic effects are discussed. Intricate mechanisms help the body to defend itself against threats to health from radiation and chemicals, even against cancer risks. In a strategy for health, it might be worth to exploit actively these defense mechanisms, in parallel with decreasing the exposures. On particular interest are the large exposures from commonly known sources such as smoking, sun tanning and high fat contents of food. (author)

  18. Study on performance of GaN radiation detector

    International Nuclear Information System (INIS)

    Gallium nitride (GaN) as a radiation detector has many advantages, such as wide forbidden band, high resistant radiation and so on. It can be applied in high temperature and high density radiation field environment. The energy spectrum of 241Am α particle was measured by GaN semiconductor detector, and the energy resolution of which is about 30%. At the same time, the energy and detection efficiency calibration of GaN detector was carried out using Si semiconductor detector which was assumed to have 100% detection efficiency. The detection efficiency of GaN detector was up to 80.1%. Finally, current-voltage (I-V) curve was measured using Keithley 2635 electrometer. The background current density is less than 70 nA/cm2 at -15 V reverse bias. (authors)

  19. Temperature effects on radiation damage in plastic detectors

    International Nuclear Information System (INIS)

    The objective of present work was to study the temperature effect on radiation damage registration in the structure of a Solid State Nuclear Track Detector of the type CR-39. In order to study the radiation damage as a function of irradiation temperature, sheets of CR-39 detectors were irradiated with electron beams, simulating the interaction of positive ions. CR-39 detectors were maintained at a constant temperature from room temperature up to 373 K during irradiation. Two techniques were used from analyzing changes in the detector structure: Electronic Paramagnetic Resonance (EPR) and Infrared Spectroscopy (IR). It was found by EPR analysis that the amount of free radicals decrease as irradiation temperature increases. The IR spectrums show yield of new functional group identified as an hydroxyl group (OH). A proposed model of interaction of radiation with CR-39 detectors is discussed. (Author)

  20. Fabrication and utilization of semiconductor radiation detectors

    International Nuclear Information System (INIS)

    This paper describes the assembly of the equipment for the fabrication of Ge-Li drifted detectors and the technique used in the preparation of a Planar detector of 7 cm2 x 0,5 cm for the Laboratory of the Linear Accelerator at the University of Sao Paulo, as well as the utilization of a 22 cm3 coaxial detector for the analysis of fission product gamma rays at the Instituto de Engenharia Nuclear, Rio de Janeiro, R J, Brazil. (author)

  1. Solid-state radiation detectors technology and applications

    CERN Document Server

    2015-01-01

    The book discusses the current solid state material used in advance detectors manufacturing and their pros and cons and how one can tailor them using different techniques, to get the maximum performance. The book is application oriented to radiation detectors for medical, X and gamma rays application, and good reference with in-depth discussion of detector's physics as it relates to medical application tailored for engineers and scientists.

  2. Effects of ionizing radiation on cryogenic infrared detectors

    Science.gov (United States)

    Moseley, S. H.; Silverberg, R. F.; Lakew, B.

    1989-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5 K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. Here, ionizing radiation tests carried out on all the DIRBE photodetectors are reported. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  3. On the limit of energy resolution in radiation detectors

    International Nuclear Information System (INIS)

    The limit of energy resolution in various radiation detectors is reviewed from the theoretical view-point. Fano-factors in gaseous, liquid and solid detector media for ionization and for scintillation are discussed and the limit of energy resolution in micro-calorimeters operated at low temperature is also discussed. (author)

  4. Development of CdTe radiation detectors and their applications

    International Nuclear Information System (INIS)

    We have been developing radiation detectors using cadmium telluride (CdTe), which has the high radiation absorption characteristic. The image pickup tube using polycrystalline CdTe thin film has been developed at the first stage. Furthermore, the X-ray imaging line sensor with high scanning speed and the radiation spectrometer with thermo-electric Peltier cooler were developed by using CdTe single crystal, which has high electric charge collection characteristics. At present, the energy discriminating photon counting radiation line sensors are developing. In this presentation, the feature of the detector using CdTe and their applications are described examples of development until now. (author)

  5. Solid-state cadmium telluride radiation detector

    International Nuclear Information System (INIS)

    The growth of CdTe single crystal and its application to CdTe detector array was studied for X-ray computed tomography (XCT) equipment. A p-type CdTe single crystal with 104 ohm.cm specific resistivity was grown in a quartz ampoule under vapor pressure control of Cd in a vertical Bridgman furnace. An 18-element detector array was fabricated with this single crystal. The detector was operated with no bias and the sensitivity was confirmed to be between 2.8 x 10-12 and 14 x 10-12 A.h/(R.mm2). Commercial CdTe single crystal was used to manufacture as 560-element detector array for XCT. Results show that CdTe detector is sensitive, linear and has high resolution. (author)

  6. Chemical mechanisms of the interaction between radiation and chemical carcinogens

    International Nuclear Information System (INIS)

    There is evidence to suggest that ionizing radiation and chemical carcinogens can act synergistically to produce deleterious biological effects. In addition, many carcinogens undergo metabolic activation in vivo. This activation, initiated by biochemical redox reactions, can be simulated chemically, electrochemically, photochemically and radiation chemically. The principal reactive species formed by the action of ionizing radiation on aqueous solutions of macromolecules and mammalian cells, are hydroxyl radicals and superoxide anions. Pulse and steady-state radiolysis studies of model chemical systems have established that these species can 'activate' chemical carcinogens by a radical oxidation process, and that the resulting activated carcinogens can subsequently react with nucleophilic sites on DNA and other potential target macromolecules. Rate constants for some of the fast reactions involved in the radiation activation of carcinogens and in the subsequent carcinogen-DNA interactions have been determined, together with the yields of radiation-induced covalent DNA-carcinogen binding. A redox models for radiation-induced chemical carcinogenesis is proposed which describes a possible mechanism of action involving free radical species generated in the aqueous cellular milieu, which diffuse to and react with carcinogens located within the micro-environment of the cell. Preliminary experiments suggest that protection against radiation and chemical carcinogenesis can be achieved by radical scavenging or by competitive free radical inhibition

  7. Bremstrahlung Detection and Chamber Obstruction Localisation Using Scanning Radiation Detectors

    CERN Document Server

    Naylor, G A; Robinson, D

    2005-01-01

    Radiation monitors consisting of scintillating plastic coupled to photomultipliers are used for diagnostic purposes. By scanning such a detector or a radiation scatterer, two applications are demonstrated: i) Monitoring of vacuum chamber conditioning by monitoring gas Bremstrahlung from residual gas. ii) Localisation of beam interception (beam losses) by longitudinal scanning of a radiation detector. The measurement of gas pressure inside long, small cross section, vacuum vessels is difficult due to the distance between the centre of the vacuum vessel and vacuum gauges (leading to a low vacuum conductance). The narrow beam of gamma Bremstrahlung radiation is intercepted by scanning tungsten blades in the beam line front-end allowing a radiation shower to be detected outside the vacuum vessel proportional to the gas pressure in the corresponding storage ring straight section. A second detector mounted on rails can be moved over a length of 6.5m parallel to the ESRF storage ring so as to localise regions of bea...

  8. Ion radiation damage in plastic detectors

    International Nuclear Information System (INIS)

    Plastic detectors are widely used for particle identification, micro pore and nano pore technology, neutron, gamma, radon and electron dosimeters. For some applications, plastic detectors have unique advantages among electronic detectors as 4 solid angles for ion identification in nuclear and cosmic ray physics; low-cost for massive use in indoors radon and neutron dosimeters; wide dose-range response for gamma and electron dosimetry; easy to use detectors in active geological faults in prospecting geothermal energy etc. There is a grate diversity of plastic detectors, which further improves their use in a particular application. However, the comparison test between different kinds of plastics can be time consuming, being therefore necessary to have methods for rapidly assessing plastic detectors properties. This invited talk deals in the first part with overview applications in Mexico of plastic detectors mentioned in the first paragraph. In the second part presents a general experimental relationship between the diameter-grow of positive ions tracks in several plastics for light ions, that allow to compare their energy resolution and to predict the track diameter of isotopes beams, as well as to predict the uniformity of micro pores. The formation of Nano pores produced by 238 U ions is also discussed. (Author)

  9. Detection of nuclear radiations; Detectores de radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A.

    1959-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs.

  10. New detectors of neutron, gamma- and X-radiations

    CERN Document Server

    Lobanov, N S

    2002-01-01

    Paper presents new detectors to record absorbed doses of neutron, gamma- and X-ray radiations within 0-1500 Mrad range. DBF dosimeter is based on dibutyl phthalate. EDS dosimeter is based on epoxy (epoxide) resin, while SD 5-40 detector is based on a mixture of dibutyl phthalate and epoxy resin. Paper describes experimental techniques to calibrate and interprets the measurement results of absorbed doses for all detectors. All three detectors cover 0-30000 Mrad measured does range. The accuracy of measurements is +- 10% independent (practically) of irradiation dose rates within 20-2000 rad/s limits under 20-80 deg C temperature

  11. Use of HgI2 as gamma radiation detector

    International Nuclear Information System (INIS)

    The Mercuric Iodide (HgI2) has become one of the most promising room temperature semiconductors for the construction of X and gamma radiation detectors. The classical methods of spectroscopy have not demonstrated to achieve optimum results with HgI2 detectors, mainly due to its particular carrier transport properties. Several alternative spectroscopic methods developed in the last ten years are presented and commented, selecting for a complete study one of them: 'The Partial Charge Collection Method'. The transport properties of the carriers generated by the radiation in the detector is specially important for understanding the spectroscopic behaviour of the HgI2 detectors. For a rigorous characterization of this transport, it has been studied a digital technique for the analysis of the electric pulses produced by the radiation. Theoretically, it has been developed a Monte Carlo simulation of the radiation detection and the electronic signal treatment processes with these detectors in the energy range of 60-1300 KeV. These codes are applied to the study of the The Partial Charge Collection Method and its comparison with gaussian methods. Experimentally, this digital techniques is used for the study of the transport properties of thin HgI2 detectors. Special interest is given to the contribution of the slower carriers, the holes, obtaining some consequent of spectroscopic interest. Finally, it is presented the results obtained with the first detectors grown and mounted in CIEMAT with own technology. (author). 129 ref

  12. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Harris; Kass, Richard; Gan, K. K.

    2014-01-23

    With the LHC upgrades in 2013, and further LHC upgrades scheduled in 2018, most LHC experiments are planning for detector upgrades which require more radiation hard technologies than presently available. At present all LHC experiments now have some form of diamond detector. As a result Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of all LHC experiments. Moreover CVD diamond is now being discussed as an alternative sensor material for tracking very close to the interaction region of the HL-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications. Our accomplishments include: • Developed a two U.S.companies to produce electronic grade diamond, • Worked with companies and acquired large area diamond pieces, • Performed radiation hardness tests using various proton energies: 70 MeV (Cyric, Japan), 800 MeV (Los Alamos), and 24 GeV (CERN).

  13. Proton-induced radiation damage in germanium detectors

    Science.gov (United States)

    Brueckner, J.; Koerfer, M.; Waenke, H.; Schroeder, A. N. F.; Filges, D.; Dragovitsch, P.; Englert, P. A. J.; Starr, R.; Trombka, J. I.

    1991-01-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process, several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10 to the 8th protons/sq cm (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific and engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation, all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage, the detectors were stepwise-annealed at temperatures below 110 C, while kept in their specially designed cryostats. This study shows that n-type HPGe detectors can be used in charged-particle environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  14. RD50 Collaboration overview: Development of new radiation hard detectors

    Science.gov (United States)

    Kuehn, S.

    2016-07-01

    Silicon sensors are widely used as tracking detectors in high energy physics experiments. This results in several specific requirements like radiation hardness and granularity. Therefore research for highly performing silicon detectors is required. The RD50 Collaboration is a CERN R&D collaboration dedicated to the development of radiation hard silicon devices for application in high luminosity collider experiments. Extensive research is ongoing in different fields since 2001. The collaboration investigates both defect and material characterization, detector characterization, the development of new structures and full detector systems. The report gives selected results of the collaboration and places an emphasis on the development of new structures, namely 3D devices, CMOS sensors in HV technology and low gain avalanche detectors.

  15. Monolithic active pixel radiation detector with shielding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  16. Design of a transition radiation detector for cosmic rays

    Science.gov (United States)

    Hartmann, G.; Mueller, D.; Prince, T.

    1975-01-01

    Transition radiation detectors consisting of sandwiches of plastic foam radiators and multiwire proportional chambers can be used to identify cosmic ray particles with energies gamma ? E/mc-squared is greater than 10 to the 3rd and to measure their energy in the region gamma is roughly equal to 10 to the 3rd

  17. Radiation, chemicals, and occupational health research

    International Nuclear Information System (INIS)

    Radiation protection and its interplay with physical research programs are described. Differences and similarities between problems in health protection for chemicals and for radiation are discussed. The importance of dosimetry in radiation work and its relevance to chemicals are cited. A collaborative program between physical and biological scientists on the toxicity of metals is briefly described. It serves as an example of new research directed toward the development of fundamental concepts and principles as a basis for understanding and controlling occupational and population exposures to chemicals. 12 references, 4 figures

  18. A conductive surface coating for Si-CNT radiation detectors

    Science.gov (United States)

    Valentini, Antonio; Valentini, Marco; Ditaranto, Nicoletta; Melisi, Domenico; Aramo, Carla; Ambrosio, Antonio; Casamassima, Giuseppe; Cilmo, Marco; Fiandrini, Emanuele; Grossi, Valentina; Guarino, Fausto; Angela Nitti, Maria; Passacantando, Maurizio; Santucci, Sandro; Ambrosio, Michelangelo

    2015-08-01

    Silicon-Carbon Nanotube radiation detectors need an electrically conductive coating layer to avoid the nanotube detachment from the silicon substrate and uniformly transmit the electric field to the entire nanotube active surface. Coating material must be transparent to the radiation of interest, and must provide the drain voltage necessary to collect charges generated by incident photons. For this purpose various materials have been tested and proposed in photodetector and photoconverter applications. In this article interface properties and electrical contact behavior of Indium Tin Oxide films on Carbon Nanotubes have been analyzed. Ion Beam Sputtering has been used to grow the transparent conductive layer on the nanotubes. The films were deposited at room temperature with Oxygen/Argon mixture into the sputtering beam, at fixed current and for different beam energies. Optical and electrical analyses have been performed on films. Surface chemical analysis and in depth profiling results obtained by X-ray Photoelectron Spectroscopy of the Indium Tin Oxide layer on nanotubes have been used to obtain the interface composition. Results have been applied in photodetectors realization based on multi wall Carbon Nanotubes on silicon.

  19. Nuclear radiation-warning detector that measures impedance

    Science.gov (United States)

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  20. Development of radiation hard radiation detectors : differences between Czochralski silicon and float zone silicon

    OpenAIRE

    Tuominen, Eija

    2003-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made of silicon are cost effective and have excellent position resolution. Therefore, they are widely used for track finding and particle analysis in large high-energy physics experiments. Silicon detectors will also be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (Large Hadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work w...

  1. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    William H. Miller; Manuel Diaz de Leon

    2003-04-15

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed.

  2. Radiation hardness of cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Niinikoski, T.O. E-mail: tapio.niinikoski@cern.ch; Abreu, M.; Bell, W.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Casagrande, L.; Chapuy, S.; Cindro, V.; Collins, P.; D' Ambrosio, N.; Da Via, C.; Devine, S.R.H.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Grohmann, S.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; O' Shea, V.; Pagano, S.; Palmieri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Mendes, P.Rato; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M

    2002-01-11

    We shall review test results which show that silicon detectors can withstand at 130 K temperature a fluence of 2x10{sup 15} cm{sup -2} of 1 MeV neutrons, which is about 10 times higher than the fluence tolerated by the best detectors operated close to room temperature. The tests were carried out on simple pad devices and on microstrip detectors of different types. The devices were irradiated at room temperature using reactor neutrons, and in situ at low temperatures using high-energy protons and lead ions. No substantial difference was observed between samples irradiated at low temperature and those irradiated at room temperature, after beneficial annealing. The design of low-mass modules for low-temperature trackers is discussed briefly, together with the cooling circuits for small and large systems.

  3. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  4. Monitoring Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Schorlemmer, André Lukas; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  5. Recent progress in the development of transition radiation detectors

    Science.gov (United States)

    Cherry, M. L.; Hartmann, G.; Prince, T.; Mueller, D.

    1978-01-01

    Transition-radiation detectors have been used in several recent cosmic-ray experiments for particle identification at energies E/mc-squared of at least about 1000. In order to optimize the design of such detectors and to use them for energy measurements over a broad energy range, it is necessary to study the details of the transition-radiation process. Experimental results are presented which test the theoretical predictions more precisely and at higher energies than in previous experiments. The dependence of the interference pattern in the frequency spectrum on the radiator dimensions is studied, and the total transition-radiation yield generated by electrons in various radiators is measured over a very wide energy range, from 5 to 300 GeV. The significance of the individual experimental parameters in the design of transition radiation detectors is reviewed, and the characteristics of transition-radiation detectors capable of measuring particle energies over the range E/mc-squared from about 300 to 100,000 are discussed.

  6. Circuitry for use with an ionizing-radiation detector

    International Nuclear Information System (INIS)

    An improved system of circuitry for use in combination with an ionizing-radiation detector over a wide range of radiation levels includes a current-to-frequency converter together with a digital data processor for respectively producing and measuring a pulse repetition frequency which is proportional to the output current of the ionizing-radiation detector, a dc-to-dc converter for providing closely regulated operating voltages from a rechargeable battery and a bias supply for providing high voltage to the ionization chamber. The ionizing-radiation detector operating as a part of this system produces a signal responsive to the level of ionizing radiation in the vicinity of the detector, and this signal is converted into a pulse frequency which will vary in direct proportion to such level of ionizing-radiation. The data processor, by counting the number of pulses from the converter over a selected integration interval, provides a digital indication of radiation dose rate, and by accumulating the total of all such pulses provides a digital indication of total integrated dose. Ordinary frequency-to-voltage conversion devices or digital display techniques can be used as a means for providing audible and visible indications of dose and dose-rate levels

  7. High sensitivity radiation detector for capillary electrophoresis

    International Nuclear Information System (INIS)

    Capillary electrophoresis is an important new instrumental technique capable of high resolution separation and analysis of small quantities of nucleotides, amino acids, peptides, and proteins with very high efficiency and throughput. The unprecedented sensitivity of this technique will be useful for such new applications as in vivo labeling and identification of trace substances and single cell work. The principle limitation of this technique for radiolabeled molecules has been identified as the sensitivity of the detector, primarily due to the small sample volume (32P-labeled biomolecules with unprecedented sensitivity. This detector can be easily retrofitted into existing CE apparatus

  8. Cryogenic Si detectors for ultra radiation hardness in SLHC environment

    International Nuclear Information System (INIS)

    Radiation hardness up to 1016 neq/cm2 is required in the future HEP experiments for most inner detectors. However, 1016 neq/cm2 fluence is well beyond the radiation tolerance of even the most advanced semiconductor detectors fabricated by commonly adopted technologies: the carrier trapping will limit the charge collection depth to an effective range of 20-30 μm regardless of depletion depth. Significant improvement of the radiation hardness of silicon sensors has been taken place within RD39. Fortunately the cryogenic tool we have been using provides us a convenient way to solve the detector charge collection efficiency (CCE) problem at SLHC radiation level (1016 neq/cm2). There are two key approaches in our efforts: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range (≤230 K); and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the LN2 temperature. In our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models of radiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures. In this approach, we intend to study the trapping effect at temperatures below LN2 temperature. A freeze-out of trapping can certainly help in the development of ultra-radiation hard Si detectors for SLHC. A detector CCE measurement system using ultra-fast picosecond laser with a He cryostat has been built at CERN. This system can be used to find out the practical cryogenic temperature range that can be used to freeze out the radiation

  9. Experimental studies of radiation damage of silicon detectors

    International Nuclear Information System (INIS)

    New particle physics experiments are correlated with high luminosity and/or high energy. The new generation of colliding beam machines which will be constructed will make an extrapolation of a factor of 100 in the center of mass energy and of 1000 in luminosity beyond present accelerators. The scientific community hopes that very exciting physics results could be achieved this way, from the solution to the problem of electroweak symmetry breaking to the possible discovery of new, unpredicted phenomena. The particles which compose the radiation field are: electrons, pions, neutrons, protons and photons. It has become evident that the problem of the radiation resistance of detectors in this severe environment is a crucial one. This situation is complicated more by the fact that detectors must work all the run time of the machine, and better all the time of the experiment, without replacement (part or whole). So, studies related to the investigation of the radiation hardness of all detector parts, are developing. The studies are in part material and device characterization after irradiation, and in part technological developments, made in order to find harder, cheaper technologies, for larger surfaces. Semiconductor detectors have proven to be a good choice for vertex and calorimeter. Both fixed target machines and colliders had utilized in the past silicon junction detectors as the whole or part of the detection system. Precision beam hodoscopes and sophisticated trigger devices with silicon are equally used. The associated electronics in located near the detectors, and is subjected to the same radiation fields. Studies of material and device radiation hardness are developing in parallel. Here the authors present results on the radiation hardness of silicon, both as a bulk material and as detectors, to neutron irradiation at high fluences

  10. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  11. The HERMES dual-radiator ring imaging Cerenkov detector

    CERN Document Server

    Akopov, N Z; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van de Kerckhove, K; Van de Vyver, R; Yoneyama, S; Zohrabyan, H G; Zhang, L F

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cerenkov(RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasizes measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  12. The HERMES dual-radiator ring imaging Cherenkov detector

    International Nuclear Information System (INIS)

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet

  13. Tests of large Cherenkov detectors with silica aerogel as radiator

    CERN Document Server

    Bénot, M; Tavernier, S; Van Den Bogaert, F; Henri, V P; Herquet, P; Kesteman, J; Pingot, O; Johansson, K E; Norrby, J; Lagnaux, J P

    1978-01-01

    Cerenkov detectors with silica aerogel as radiator, and a detector surface of about 18*52 cm/sup 2/, have been tested in a particle beam at the CERN Proton Synchrotron. For 9 cm thickness of silica aerogel the number of photoelectrons for beta =1 particles was found to be 4.6 and 5.5 respectively, depending on the light collection system used. (11 refs).

  14. Tests of large Cerenkov detectors with silica aerogel as radiator

    International Nuclear Information System (INIS)

    Cerenkov detectors with silica aerogel as radiator, and a detector surface of about 18X52cm2, have been tested in a particle beam at the CERN Proton Synchrotron. For 9cm thickness of silica aerogel the number of photoelectrons for β=1 particles was found to be 4.6 and 5.5 respectively, depending on the light collection system used. (Auth.)

  15. Chemical Processes in Astrophysical Radiation Fields

    International Nuclear Information System (INIS)

    The effects of stimulated photon emission on chemical processes in a radiation field are considered and their influence on the chemistry of the early universe and other astrophysical environments is investigated. Spontaneous and stimulated radiative attachment rate coefficients for H(-), Li(-) and C(-) are presented

  16. Radiation hardness of three-dimensional polycrystalline diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, Stefano, E-mail: lagomarsino@fi.infn.it; Sciortino, Silvio [National Institute of Nuclear Physics (INFN), Via B. Rossi, 1-3, 50019 Sesto Fiorentino (Italy); Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Bellini, Marco [European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Istituto Nazionale di Ottica (INO-CNR), Largo Enrico Fermi 6, 50125 Firenze (Italy); Corsi, Chiara [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Cindro, Vladimir [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Kanxheri, Keida; Servoli, Leonello [National Institute of Nuclear Physics (INFN), Via A. Pascoli, 06123 Perugia (Italy); Department of Physics, University of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Morozzi, Arianna [Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia (Italy); Passeri, Daniele [National Institute of Nuclear Physics (INFN), Via A. Pascoli, 06123 Perugia (Italy); Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia (Italy); Schmidt, Christian J. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  17. The Dielectric Bolometer, A New Type of Thermal Radiation Detector

    Science.gov (United States)

    Hanel, R. A.

    1960-01-01

    Thermal detectors for the infrared, such as thermocouples and bolometers, are limited in their ultimate sensitivity predominantly by Johnson noise rather than temperature noise. Low noise figures are hard to achieve since Johnson noise preponderates temperature noise, which is the only essential noise for thermal detectors. The dielectric constants of some materials are sufficiently temperature dependent to make a new type of bolometer feasible. The basic theory of a dielectric bolometer, as shown here, promises noise figures below 3 decibels even at chopper frequencies well above the 1/tau value of the detector. Ferroelectrics such as barium-strontium titanate and others seem to be well suited for radiation-cooled dielectric bolometers.

  18. Radiation damage measurements on CZT drift strip detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Korsbech, Uffe C C;

    2003-01-01

    At DSRI, in collaboration with the cyclotron facility at Copenhagen University Hospital, we have performed a study of radiation effects exposing a 2.7 mm thick CZT drift strip detector to 30 MeV protons. The detector characteristics were evaluated after exposure to a number of fluences in the range....... A numerical model that emulates the physical processes of the charge transport in the CZT detector was used to derive the charge trapping parameter, mutau(e), (the product of charge mobility and trapping time) as a function of fluence. The analysis showed that the electron trapping increased proportionately...

  19. Radiation detectors as surveillance monitors for IAEA safeguards

    International Nuclear Information System (INIS)

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development

  20. The Gamma-Ray Response of Silicon Carbide Radiation Detectors

    International Nuclear Information System (INIS)

    Silicon Carbide (SiC) radiation detectors are being developed for charged-particle, neutron, and gamma-ray detection. SiC is a wide band gap semiconductor that offers several advantages for use as a solid-state radiation detector. Among these are the ability of SiC devices to operate at elevated temperatures and their improved resistance to radiation compared to other semiconductors. SiC charged-particle detectors have been shown to have good energy resolution for alpha particles. Furthermore, pulse heights and full-widths at half-maximum were found to be completely unperturbed by changes in temperature up to 89 C. In subsequent measurements, SiC neutron detectors based on detection of neutron-induced tritons from a juxtaposed 6LiF foil were shown to have a highly linear response to thermal neutron flux in the range from 1.76 x 104 to 3.59 x 1010 cm-2/s in National Institute of Standards and Technology neutron fields. An important attribute of SiC radiation detectors is their ability to operate in and monitor intense gamma-ray fields while in pulse-mode operation

  1. R&D for Better Nuclear Security: Radiation Detector Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E

    2009-04-02

    I am going to talk about the need for better materials for radiation detectors. I believe that government investment in this area can enable transformational technology change that could impact domestic nuclear security and also national nuclear security in some very positive and powerful ways. I'm not going to give you a lecture on how radiation detectors work, but I am going to tell you a bit about today's off-the-shelf technology and why it is not sufficient, what we need, and what security benefit you could get from improvements. I think we're at a critical point in time for some very impactful investments. In particular I'm going to focus on the use of gamma-ray radiation detectors at ports of entry. Not long before DHS was formed, Congress decreed that counter measures against the delivery of radiological and nuclear threats would be put in place at US ports of entry, under the authority of US Customs (later Customs and Border Protection in DHS). This included the screening of all cars and trucks passing through a port of entry. Existing off-the-shelf radiation detectors had to be selected for this purpose. Plans were made to make the most of the available technologies, but there are some inherent limitations of these detectors, plus the operational setting can bring out other limitations.

  2. Transition-radiation-Compton-scattering detector for very relativistic nuclei

    Science.gov (United States)

    Osborne, W. Z.; Mack, J. E.

    1975-01-01

    The paper presents the design and predicted performance of a large acceptance (2 sq m sr) transition-radiation-Compton-scattering detector system which can be used to measure energy spectra up to several thousand Gev/nucleon for nuclei with Z between 6 and 28, as well as up to 40,000 GeV/nucleon for He. The following circumstances made such a detector system practicable: (1) transition radiation output is proportional to the square of particle charge; (2) output varies at least as rapidly as the square of Lorentz factor over the range from several hundred to several thousand.

  3. Effect of temperature on silicon PIN photodiode radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Jeong, Man Hee; Kim, Young Soo; HA, Jang Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seong Yeon [Yonsei University, Wonju (Korea, Republic of)

    2014-03-15

    One of the noise sources of a semiconductor radiation detector is thermal noise, which degrades the performance, such as the energy resolution and unexpected random pulse signals. In this study, PIN photodiode radiation detectors, with different active areas were designed and fabricated for an experimental comparison of the energy resolutions for different temperatures and capacitances by using a Ba-133 calibration gamma-ray source. The experimental temperature was approximately in the range from -7 to 24 .deg. C and was controlled by using a peltier device. The design considerations and the electrical characteristics, such as the I-V and the C-V characteristics, are also addressed.

  4. Radiation hardness of polysulphone and polycarbonate elements for LHC detectors

    CERN Document Server

    Hauviller, Claude; Bychkov, V; Golikov, V V; Kekelidze, G D; Lobastov, S P; Luschikov, V I; Peshekhonov, V D

    1998-01-01

    In the TRT Inner Detector being developed for ATLAS, elements made from plastic materials are widely used. In order to meet necessary requirements of the construction, these materials should have a high radiation hardness. This work presents a study of mechanical features of polysulphone and polycarbonate in dependence on the radiation dose. The results of measurements have shown a weak dependence of mechanical properties of polysulphone and polycarbonate on the absorbed dose up to the value of 1 MGy. So, the products from these materials could be used to construct detectors at LHC, at least on the mechanical point of view.

  5. Organic semiconductors as real-time radiation detectors

    International Nuclear Information System (INIS)

    In this study, the possibility of using π-conjugated organic semiconducting polymers as real-time radiation detectors was explored. Polyaniline (PAni) was used to fabricate radiation sensors because of its relative long-term stability in air. Each fabricated sensor was then subjected to irradiation by α- and β-particles, and the real-time response was measured. The multichannel analyzer (MCA) data of the response signal for each irradiation was acquired and the detection efficiency, relative to the electrode bias voltage of the detector, was extracted

  6. An intercomparison of detectors for measurement of background radiation

    International Nuclear Information System (INIS)

    Measurements of the background radiation were made in 1978 at 14 locations with a high-pressure ionization chamber, thermoluminiscence dosimeters (TLD's), two NaI(Tl) detectors, and a Ge(Li) spectrometer system. Simultaneous measurements with the ionization chamber and the spectrometer system provide reliable estimates of the total background exposure rate, of the individual contributors to the terrestrial exposure rate, and of the exposure rate from the secondary cosmic radiation. The TLD results agree with those of the ionization chamber. The NaI(Tl) detector results show that accurate estimates of the terrestrial exposure rate can be obtained if empirical corrections are applied. (author)

  7. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition.

    Science.gov (United States)

    Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S

    2015-05-01

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot. PMID:26026521

  8. Review on the characteristics of radiation detectors for dosimetry and imaging

    Science.gov (United States)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  9. [Effects of ionizing radiation on scintillators and other particle detectors

    International Nuclear Information System (INIS)

    It is my task to summarise the great variety of topics (covering a refreshing mix of physics, chemistry and technology) presented at this conference, which has focused on the effects of ionising radiation on scintillators and other particle detectors. One of the reasons and the central interest of many of the participants was the use of such detectors in experiments at two future large hadron colliders: the Superconducting Super Collider to be operating outside of Dallas in the United States by the turn of the decade and its European counterpart the Large Hadron Collider to be operating outside of Geneva in Switzerland on a similar time scale. These accelerators are the ''apple of the high energy physicist's eye.'' Their goal is to uncover the elusive Higgs particle and thereby set the cornerstone in our current knowledge of elementary particle interactions. This is the Quest, and from this lofty height the presentations rapidly moved on to the specific questions of experimental science: how such an experiment is carried out; why radiation damage is an issue; how radiation damage affects detectors; which factors affect radiation damage characteristics; which factors are not affected by radiation damage; and how better detectors may be constructed. These were the substance of this conference

  10. The pin detector - a simple, robust, cheap and effective nuclear radiation detector

    International Nuclear Information System (INIS)

    The development of a series of radiation detectors based on the point anode is reported. Using readily available preformed pins from a variety of electrical connectors as the anodes, a family of devices has been created with useful properties as X-ray detectors, radiation monitors and internal beta counters. A wide variety of gas fillings can be used, argon/CH4 premix being the most convenient. The structures are robust and call for no precision alignments so keeping costs down. Performance of the devices in respect of sensitivity and pulse height resolution is comparable to that of conventional wire counters. (orig.)

  11. Recent progress in the transition radiation detector techniques

    Science.gov (United States)

    Yuan, L. C. L.

    1973-01-01

    A list of some of the major experimental achievements involving charged particles in the relativistic region are presented. With the emphasis mainly directed to the X-ray region, certain modes of application of the transition radiation for the identification and separation of relativistic charged particles are discussed. Some recent developments in detection techniques and improvements in detector performances are presented. Experiments were also carried out to detect the dynamic radiation, but no evidence of such an effect was observed.

  12. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  13. Construction of lithium-drifted silicon radiation detectors

    International Nuclear Information System (INIS)

    The purpose of this work was to develop, at the Nuclear Instrumentation Laboratory (LIN) of COPPE/UFRJ, the technique of the construction of Lithium-Drifted Silicon Radiation Detectors (Si(Li)), that would be a cheaper alternative for detectors normally used in bone densitometer and mainly, computerized tomographs, which requires a large number of detectors to operate efficiently. Among 24 detectors constructed 8 had no guard ring. All detectors were evaluated at room temperature and 5O C, taking energy spectra from several radioactive sources (241 Am, 133 Ba, 57 Co e 137 Cs). Most of the detectors showed sensibility to radiation incidence. These without guard ring, presented high leakage currents, but only two of them, gave reasonable spectra, with resolutions for 241 Am (60 KeV), of 20 KeV at room temperature and 14 keV, when cooled to 50 C. For gamma rays from 60 to 662 keV at 50 C, had resolutions between 14 and 18 keV. (author)

  14. Application of solid state nuclear track detectors in radiation protection

    International Nuclear Information System (INIS)

    This article reviews the current status of the application of nuclear track detectors with emphasis on recent developments in the field of radiation protection. Track etch detectors have been used for the measurements of low level radiation in the environment, fast neutron and radon daughter inhalation dose. Recent developments in the field of dosimetry seem to be promising. In fast neutron dosimetry, track etch detectors can be used without inclusion of fissile materials by using the electrochemical etching technique. These detectors can provide important information in the energy range upto 250 keV. Survey of this range of energy with TLD is difficult because they are extremely energy dependent and over-respond to low energy neutrons. Measurement of radon using track detectors can help to lower the cost of the radon dosimeters. Certain detectors are sensitive to alpha particles from radon and their progeny. Higher sensitivity permits their use in a passive type of personnel dosimeter, which does not require the troublesome aspects of air sampling for the collection of radon daughter samples. (author), 38 refs., 8 tabs., 12 figs

  15. Experimental investigation of the radiation shielding of a MCP detector in the radiation environment near Europa

    Science.gov (United States)

    Tulej, Marek; Wurz, Peter; Meyer, Stefan; Lasi, Davide; Lüthi, Matthias; Galli, André; Piazza, Daniele; Desorgher, Laurent; Hajdas, Wojciech; Reggiani, Davide; Karlsson, Stefan; Kalla, Leif

    2016-04-01

    The Neutral Ion Mass spectrometer (NIM) is one of the six instruments in the Particle Environmental Package (PEP) designed for the JUICE mission of ESA to the Jupiter system. NIM will conduct detailed measurements of chemical composition of Jovian moon exospheres and is equipped with a sensitive MCP ion detector. To maintain high sensitivity of the NIM instrument, background signals arising from the presence of a large background of penetrating radiation (mostly high-energy electrons and protons) in Jupiter's magnetosphere have to be minimised. We investigate the performance of a layered-Z radiation shield, an Al-Ta-Al sandwich, as a potential shielding against high-energy electrons. The experimental investigations were performed at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The facility delivers a particle beam containing e,  and  with an adjustable momentum ranging from 17.5 to 345 MeV/c. The measurements of the induced radiation background generated during the interaction of primary particles with Al-Ta-Al sandwich were conducted by beam diagnostic methods and a MCP detector. Diagnostic methods provided for the characterisation of the beam parameters (beam geometry, flux and intensity) and identification of individual particles in the primary beam and in the flux of secondary particles. The MCP detector measurements provided information on the effects of radiation and the results of these measurements define the performance of the shielding material in reducing the background arising from penetrating radiation. In parallel, we performed modelling studies using GEANT 4 and GRASS methods to identify products of the interaction and predict their fluxes and particle rates at the MCP detector. Combination of the experiment and modelling studies yields detailed characterisation of the radiation effects produced by the interaction of the incident e- in the

  16. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique; Etude et realisation de detecteurs de rayonnements a base de films de diamant polycristallin elabores par depot chimique en phase vapeur assiste par plasma micro-onde

    Energy Technology Data Exchange (ETDEWEB)

    Jany, Ch

    1998-10-29

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead {eta} to decrease. In contrast, {eta} was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp{sup 2} phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  17. Compensation of radiation damages for SOI pixel detector via tunneling

    CERN Document Server

    Yamada, Miho; Kurachi, Ikuo

    2015-01-01

    We are developing monolithic pixel detectors based on SOI technology for high energy physics, X-ray applications and so on.To employ SOI pixel detector on such radiation environments, we have to solve effects of total ionization damages (TID) for transistors which are enclosed in oxide layer.The holes which are generated and trapped in the oxide layers after irradiation affect characteristics of near-by transistors due to its positive electric field.Annealing and radiation of ultraviolet are not realistic to remove trapped holes for a fabricated detector due to thermal resistance of components and difficulty of handling. We studied compensation of TID effects by tunneling using a high-voltage. For decrease of trapped holes, applied high-voltage to buried p-well which is under oxide layer to inject the electrons into the oxide layer.In this report, recent progress of this study is shown.

  18. Advances in the project about Pin type silicon radiation detectors

    International Nuclear Information System (INIS)

    The obtained advances in the collaboration project ININ-CINVESTAV about development of Pin type semiconductor radiation detectors here are presented. It has been characterized the response to different types of radiation made in CINVESTAV and INAOE. Measurements have been realized with different types of sensitive to charge preamplifiers determining the main characteristics which must be executed to be able to be employed with low capacitance detectors. As applications it has been possible to measure the irradiation time in a mammography machine and X-ray energy spectra have been obtained in the order of 14 KeV, with 4 KeV at ambient temperature. The future actions of project have been indicated and the possible applications of these detectors. (Author)

  19. Charge collection in semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Semiconductor particle-detectors operate like ion chambers by collecting the charge liberated by an incident-ionizing particle. However the mechanism of charge collection is much more complicated than that of the ion chamber, depending in detail on the properties of the semiconductor, the potential distribution in the device and the ionization density along the initial track. Loss of charge can be attributed to two effects - recombination along the initial track and subsequent trapping of the moving carriers. These effects can be separated by using particles of widely differing ionization densities. Such investigations have been carried out for various silicon devices fabricated in different ways and covering a wide range of resistivities. Analytical results have been derived applicable to the general case of charge loss through trapping, and some results have also been obtained concerning recombination loss. (author)

  20. Radiation Response of Emerging High Gain, Low Noise Detectors

    Science.gov (United States)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  1. Easy Mode Course for Personal Radiation Detectors Thermo Rad Eye

    International Nuclear Information System (INIS)

    The presentation describes the use of the Rad Eye Personal Radiation Detector for monitoring and searching.The search alarm of the Rad Eye is based on 6 sigma and its safety alarm is set at 10000 counts per second and 100 micro Sv/h, which is the IAEA default setting

  2. Research on radiation detectors, boiling transients, and organic lubricants

    Science.gov (United States)

    1974-01-01

    The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.

  3. Spectra of radioactive nuclides radiation, measured with semiconductor detectors. 2

    International Nuclear Information System (INIS)

    The second part of the atlas 'Radiation spectra of radionuclides measured with semiconductor detectors' is presented including 259 spectra of 126 alpha, beta, gamma, and X ray emitters. Some spectra of the first part of the atlas are given at another scale and sometimes for other energy ranges. The total number of investigated radionuclides amounts to 261 of which 69 are new ones

  4. Evaluation of a digital optical ionizing radiation particle track detector

    International Nuclear Information System (INIS)

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies

  5. Proximity focusing RICH detector based on multilayer silica aerogel radiator

    International Nuclear Information System (INIS)

    The performance of a proximity focusing Ring Imaging Cherenkov detector equipped with a radiator of silica aerogel is presented. The aerogel tile used is a monolith with variable index of refraction. Cherenkov photons are detected with high granularity by eight Hamamatsu H9500 flat panel multi anode phototubes.

  6. Proximity focusing RICH detector based on multilayer silica aerogel radiator

    CERN Document Server

    De Leo, R; Bellunato, T; Calvi, M; Cisbani, E; Cusanno, F; Garibaldi, F; Lagamba, L; Marra, M; Marrone, S; Matteuzzi, C; Musico, P; Nappi, E; Perego, D L; Torrioli, S; Vilardi, I

    2010-01-01

    The performance of a proximity focusing Ring Imaging Cherenkov detector equipped with a radiator of silica aerogel is presented. The aerogel tile used is a monolith with variable index of refraction. Cherenkov photons are detected with high granularity by eight Hamamatsu H9500 flat panel multi anode phototubes.

  7. Gas analysis system for ageing studies of gaseous radiation detectors

    International Nuclear Information System (INIS)

    A special gas analysis system has been constructed to analyze compounds created in electron avalanches in gaseous radiation detectors during their operation. The analysis method is based on utilisation of cryogenic concentration unit connected to a tandem gas chromatograph and a mass spectrometer. The system has been designed for quantitative analysis of organic compounds potentially involved in ageing processes of detectors. It can be exploited to identify compounds prone to polymerise and to measure variation of compounds as a function of detector construction materials and additives in the gas mixture. As a quantitative instrument it can be used to measure dependence of concentration of compounds on operating parameters of detectors, e.g. gas amplification and irradiation rate and type

  8. The effects of radiation on gallium arsenide radiation detectors

    International Nuclear Information System (INIS)

    Semi-insulating, undoped, liquid encapsulated Czochralski (SI-U LEC) GaAs detectors have been irradiated with 1 MeV neutrons, 24 GeV/c protons, and 300 MeV/c pions. The maximum fluences used were 6 x 1014, 3 x 1014, and 1.8 x 1014 particles/cm2, respectively. For all three types of irradiation, the charge collection efficiencies (cce) of the detector are reduced due to the reduction in the electron and hole mean free paths. Pion and proton irradiations produce a greater reduction in cce than neutron irradiation, with the pions having the greatest effect. The effect of annealing the detectors at room temperature, at 200 C and at 450 C with a flash lamp have been shown to reduce the leakage current and increase the cce of the irradiated detectors. The flash-lamp anneal produced the greatest increase in the cce from 26% to 70% by increasing the mean free path of the electrons. Two indium-doped samples were irradiated with 24 GeV/c protons and demonstrated no improvement over SI-U GaAs with respect to post-irradiation cce. (orig.)

  9. Low Cost Long Distance Detector for Explosives and Chemical Analysis by IEC Application

    Directory of Open Access Journals (Sweden)

    George H. Miley

    2005-01-01

    Full Text Available A radiation source for detecting specific chemicals at several meter distances even behind walls, car doors or other barriers is the application of Million electron Volts (MeV neutrons from nuclear fusion reactions at such low intensities to avoid any danger for human bodies. The chemical analysis consists in the neutron activation of nuclei emitting then gamma radiation of lines very specific for the excited nuclei. The neutron generation by the Inertial Electrostatic Confinement (IEC had been developed to a level where very low cost neutron generators in mass production may be developed with a power supply from a normal AC plug-in or a battery. For specific chemicals e.g. the ratio of nitrogen against other elements used in all explosives, the selection of few specific gamma lines for the detectors may be of sufficiently low cost in the case of mass production.

  10. Monte Carlo simulation of gas-filled radiation detectors

    International Nuclear Information System (INIS)

    A new simulation code has been developed that allows the response of gas-filled proportional counters to be calculated. The code is an electron transport code that simulates the elastic and inelastic scattering processes that occur as a result of electron-impact collisions with the gas atoms. The simulation concentrates on the avalanche development after the primary ionising particle has freed electrons in the gas volume, by tracking electrons until they reach the anode of the counter. The dynamics of the ions that accumulate in the gas volume are also considered. A major motivation for this work is the general renewed interest in proportional counters over the last decade, since the advent of micro-pattern detectors such as the micro-strip and the micro-gap detector. It is argued that the low relative cost, intrinsic amplification and environmental stability of these detectors gives them considerable advantages over other types of radiation detectors. The code has been benchmarked against experimental data. The manner in which the variation in the avalanche statistics affects the energy resolution properties of the detector is examined for single wire counters, micro-strip and micro-gap counters. The stability of micro-gap detectors when subjected to high rates of irradiation is also examined. It is envisaged that these detectors will be used in the future as part of a multiphase flow tomography device for imaging the flow of oil/water/natural gas mixtures that have been pumped through pipes from the seabed. (author)

  11. Fabrication of HgI2 nuclear radiation detectors

    International Nuclear Information System (INIS)

    HgI2 nuclear radiation detectors were fabricated and their performance was tested. Crystals of a few mm squares and about one mm thickness were grown by vapor transport method using a two-temperature-region electric furnace in which commercially-available HgI2 powder of 99.2 to 99.8%. Purity was sealed in a Pylex ampoule. Detectors were fabricated using Aquadag-paint electrodes and tested using 5.5MeV alpha-particles, 59.5keV gamma-rays and LX-rays from 241Am. The best detector showed a FWHM energy resolution of 4.9keV for 59.5 keV gamma-rays while it is difficult to obtain detectors having good energy resolution. The following were confirmed; charge collection of holes was worse than that of electrons. Crystals having better transparency and better cleavability resulted in better detector performance. Dark solidified residue was found after one vapor transport of the commercially-available powder. Humiseal paint on the detector surface improved the applicable high voltage, the long-term stability and also the energy resolution. The average energy per electron-hole pair was about 4.2eV. The energy resolution improved as the temperature decreased from 500C to 00C. The performance of the detectors made of solvent-evaporation method was worse than that made of vacuum transport method. (author)

  12. A radiation detector design mitigating problems related to sawed edges

    International Nuclear Information System (INIS)

    In pixelated silicon radiation detectors that are utilized for the detection of UV, visible, and in particular Near Infra-Red (NIR) light it is desirable to utilize a relatively thick fully depleted Back-Side Illuminated (BSI) detector design providing 100% Fill Factor (FF), low Cross-Talk (CT), and high Quantum Efficiency (QE). The optimal thickness of such detectors is typically less than 300μm and above 40μm and thus it is more or less mandatory to thin the detector wafer from the backside after the front side of the detector has been processed and before a conductive layer is formed on the backside. A TAIKO thinning process is optimal for such a thickness range since neither a support substrate on the front side nor lithographic steps on the backside are required. The conductive backside layer should, however, be homogenous throughout the wafer and it should be biased from the front side of the detector. In order to provide good QE for blue and UV light the conductive backside layer should be of opposite doping type than the substrate. The problem with a homogeneous backside layer being of opposite doping type than the substrate is that a lot of leakage current is typically generated at the sawed chip edges, which may increase the dark noise and the power consumption. These problems are substantially mitigated with a proposed detector edge arrangement which 2D simulation results are presented in this paper

  13. CdZnTe array detectors for synchrotron radiation applications

    International Nuclear Information System (INIS)

    An X-ray linear-array detector was fabricated using high-pressure Bridgman-grown CdZnTe. The detector area was 175 x 800 μm and the pitch size was 250 μm. The measured dark current for the test 16-element detector was as low as 0.1 pA at 800 V cm-1 with excellent uniformity. Energy spectra were measured using a 57Co radiation source. Both a small-pixel effect and charge sharing were observed. For the arrays, an average 5.8% full width a half-maximum (FWHM) at the 122 keV photopeak was obtained with a standard deviation of 0.2%. A large-area detector (1 x 1 cm) of the same material before fabrication exhibited a low-energy tail at the photopeak, which limits the photopeak FWHM to 8%, typically due to hole trapping. At energies below 60 keV, charge sharing between elements was observed. The charge sharing was greatly reduced by providing a path to ground for unwanted charges. A prototype readout electronic system for an eight-channel array detector was developed. A readout system intended for a multielement solid-state detector system was also used. The array detector will be used for high-energy diffraction and Compton scattering measurements at the Advanced Photon Source. (au)

  14. Galaxy formation with radiative and chemical feedback

    CERN Document Server

    Graziani, L; Schneider, R; Kawata, D; de Bennassuti, M; Maselli, A

    2015-01-01

    Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post process realistic outputs of a N-body simulation describing the redshift evolution of the forming galaxy. After introducing the GAMESH implementation and its features, we apply the code to a low-resolution N-body simulation of the Milky Way formation and we investigate the combined effects of self-consistent radiative and chemical feedback. Many physical properties, which can be directly compared with observations in the Galaxy and its surrounding satellites, are predicted by the code along the merger-tree assembly. The resulting redshift evolution of the Local Group star formation rates, reionisation and metal enrichment along with the predicted Metallicity Distribution Function of halo stars are critically compared with observations. We dis...

  15. Joint chemical agent detector (JCAD): the future of chemical agent detection

    Science.gov (United States)

    Laljer, Charles E.

    2003-08-01

    The Joint Chemical Agent Detector (JCAD) has continued development through 2002. The JCAD has completed Contractor Validation Testing (CVT) that included chemical warfare agent testing, environmental testing, electromagnetic interferent testing, and platform integration validation. The JCAD provides state of the art chemical warfare agent detection capability to military and homeland security operators. Intelligence sources estimate that over twenty countries have active chemical weapons programs. The spread of weapons of mass destruction (and the industrial capability for manufacture of these weapons) to third world nations and terrorist organizations has greatly increased the chemical agent threat to U.S. interests. Coupled with the potential for U.S. involvement in localized conflicts in an operational or support capacity, increases the probability that the military Joint Services may encounter chemical agents anywhere in the world. The JCAD is a small (45 in3), lightweight (2 lb.) chemical agent detector for vehicle interiors, aircraft, individual personnel, shipboard, and fixed site locations. The system provides a common detection component across multi-service platforms. This common detector system will allow the Joint Services to use the same operational and support concept for more efficient utilization of resources. The JCAD detects, identifies, quantifies, and warns of the presence of chemical agents prior to onset of miosis. Upon detection of chemical agents, the detector provides local and remote audible and visual alarms to the operators. Advance warning will provide the vehicle crew and other personnel in the local area with the time necessary to protect themselves from the lethal effects of chemical agents. The JCAD is capable of being upgraded to protect against future chemical agent threats. The JCAD provides the operator with the warning necessary to survive and fight in a chemical warfare agent threat environment.

  16. Natural radiation, nuclear wastes and chemical pollutants

    International Nuclear Information System (INIS)

    Doses from natural radiation to the population in the Nordic Countries are summarized and man made modifications of the natural radiation environment are discussed. An account is given of the radiological consequences of energy conservation by reduced ventilation. Risks from possible future releases of radioactivity from final repositories of spent nuclear fuel are compared to the risks from present natural radioactivity in the environment. The possibilities for comparison between chemical and radiological risks are discussed. (author) 13 refs

  17. PIN photo-diodes as radiation detectors in accelerator applications

    International Nuclear Information System (INIS)

    We have been using PIN photo-diodes originally suited for light detection as radiation detectors in several applications: photon monitoring in X-ray machines in industrial and medical applications, X-ray spectroscopy for identification of radioactive materials and XRF, and charged particle spectroscopy. The versatility of these devices as radiation detectors has led us to apply it in several accelerator experiments. This work presents an overview of the results obtained in several experiments: the measurement of charged particles up to 12 MeV in a Tandem accelerator, the measurement of the Bremstralung radiation obtained in an experimental electron accelerator in the range from 70 keV to 470 keV, the direct measurement of the intensity of the electron beam; also the application of PIN photo-diodes in the measurement of the intensity of photons in lineal accelerators used in radiotherapy up to 18 MeV. The front end conditioning electronics associated with the detectors is also described for every application: low noise charge sensitive preamplifiers and current amplifiers are used. The PIN diodes are a good choice for radiation detection in several accelerator applications with the advantage of a good position resolution due to its small size, good sensitivity for different radiation fields and low cost, and can be used to build a wide variety of detection systems around accelerator experiments. (author)

  18. Studying radiative B decays with the Atlas detector

    International Nuclear Information System (INIS)

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b → sγ), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/√B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  19. Study of radiation detectors response in standard X, gamma and beta radiation standard beams

    International Nuclear Information System (INIS)

    The response of 76 Geiger-Mueller detectors, 4 semiconductor detectors and 34 ionization chambers were studied. Many of them were calibrated with gamma radiation beams (37Cs and 60Co), and some of them were tested in beta radiation (90Sr+9'0Y e 204Tl) and X radiation (N-60, N-80, N-100, N-150) beams. For all three types of radiation, the calibration factors of the instruments were obtained, and the energy and angular dependences were studied. For beta and gamma radiation, the angular dependence was studied for incident radiation angles of 0 deg and +- 45 deg. The curves of the response of the instruments were obtained over an angle interval of 0 deg to +- 90 deg, for gamma, beta and X radiations. The calibration factors obtained for beta radiation were compared to those obtained for gamma radiation. For gamma radiation, 24 of the 66 tested Geiger-Mueller detectors presented results for the energy dependence according to international recommendation of ISO 4037-2 and 56 were in accordance with the Brazilian ABNT 10011 recommendation. The ionization chambers and semiconductors were in accordance to national and international recommendations. All instruments showed angular dependence less than 40%. For beta radiation, the instruments showed unsatisfactory results for the energy dependence and angular dependence. For X radiation, the ionization chambers presented results for energy dependence according to the national recommendation, and the angular dependence was less than 40%. (author)

  20. Examination results of the Three Mile Island radiation detector HP-R-212

    International Nuclear Information System (INIS)

    Area radiation detector HP-R-212 was removed from the Three Mile Island containment building on November 13, 1981. The detector apparently started to fail during November 1979 and by the first part of December 1979 the detector readings had degraded from 1 R/hr to 20 mR/hr. This report discusses the cause of failure, detector radiation measurement characteristics, and our estimates of the total gamma radiation dose received by the detector electronics

  1. Multi-directional radiation detector using photographic film

    International Nuclear Information System (INIS)

    Ionising radiation has always been part of our surrounding and people are continuously exposed to it. Ionising radiation is harmful to human health, thus it is vital to monitor the radiation. To monitor radiation, there are three main points that should be observed cautiously, which are energy, quantity, and direction of the radiation sources. A three dimensional (3D) dosimeter is an example of a radiation detector that provide these three main points. This dosimeter is able to record the radiation dose distribution in 3D. Applying the concept of dose detection distribution, study has been done to design a multi-directional radiation detector of different filter thicknesses. This is obtained by designing a cylinder shaped aluminum filter with several layers of different thickness. Black and white photographic material is used as a radiation-sensitive material and a PVC material has been used as the enclosure. The device is then exposed to a radiation source with different exposure factors. For exposure factor 70 kVp, 16 mAs; the results have shown that optical density (OD) value at 135° is 1.86 higher compared with an OD value at 315° which is 0.71 as the 135° area received more radiation compare to 315° region. Furthermore, with an evidence of different angle of film give different value of OD shows that this device has a multidirectional ability. Materials used to develop this device are widely available in the market, thus reducing the cost of development and making it suitable for commercialisation

  2. Improved spectrometric characteristics of thallium bromide nuclear radiation detectors

    CERN Document Server

    Hitomi, K; Shoji, T; Suehiro, T; Hiratate, Y

    1999-01-01

    Thallium bromide (TlBr) is a compound semiconductor with a high atomic number and wide band gap. In this study, nuclear radiation detectors have been fabricated from the TlBr crystals. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using the materials purified by many pass zone refining. The crystals were characterized by measuring the resistivity, the mobility-lifetime (mu tau) product and the energy required to create an electron-hole pair (the epsilon value). Improved energy resolution has been obtained by the TlBr radiation detectors. At room temperature the full-width at half-maximum (FWHM) for the 59.5, 122 and 662 keV gamma-ray photo peak obtained from the detectors were 3.3, 8.8 and 29.5 keV, respectively. By comparing the saturated peak position of the TlBr detector with that of the CdTe detector, the epsilon value has been estimated to be about 5.85 eV for the TlBr crystal.

  3. Advanced technology lunar telescopes III. Radiation resistant detectors

    International Nuclear Information System (INIS)

    A practical lunar telescope requires high resolution imaging array detectors that are immune to (or can be easily shielded from) solar flare particle radiation and cosmic rays. Charge-coupled devices (CCDs), the detectors of choice for ground-based applications, fall short in this respect because of their high susceptibility to radiation induced bulk traps and loss of charge transfer efficiency (CTE). Blooming in CCDs also limits the dynamic range and degrades resolution, while the well known red leak problem hinders observations in the ultraviolet. The authors describe an ongoing program at NASA GSFC to develop intensified random-access Charge-Injection Devices (CIDs), a new generation of space uv detectors which do not have the shortcomings of CCDs. CIDs, like CCDs, are silicon array detectors. Unlike CCDs, however, CIDs have more than 100x greater tolerance to ionizing particle radiation. Since CIDs do not transfer charge, CTE degradation has very little effect on the overall sensitivity and noise level. CIDs can perform extremely fast windowing of selected regions of interest with high signal levels (e.g. bright cores of galaxies or strong emission lines, etc) while monitoring the remainder of the array at lower rates. This selective readout ability plus the lack of blooming give CIDs a high dynamic range of operation but with minimal demands on the memory storage and telemetry data bandwidth. The authors demonstrate the operation of a row-windowing CID and discuss the potential applications of these devices to astronomical research from the moon

  4. Characterization of a radiation detector for aircraft measurements

    Energy Technology Data Exchange (ETDEWEB)

    Holanda M, L. de; Federico, C. A.; Caldas, L. V. E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares, Av. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil)

    2014-08-15

    Air crews, as pilots and flight attendants, are subjected to cosmic ray doses which can be higher than the average doses on workers from the nuclear industry. The diversity of particles of high energies present in the radiation field on board of air crafts turns the determination of the incident dose difficult, and requires special care regarding dosimetric systems to be used in this kind of radiation field. The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA) in conjunction with the Institute of Energetic and Nuclear Research (Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP) are working on this subject since 2008. A prototype of a radiation detector for aircraft measurements was previously built and tested in flight and laboratory conditions. The detector is able of measuring a quantity known as absorbed dose (using passive dosimeters), which will subsequently be correlated to the ambient dose equivalent and the effective dose received by air crews. In this context, a theoretical approach through Monte Carlo simulations with the computational codes MCNP5 and MCNPX was used to model and characterize the detector response at such experimental conditions. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between the absorbed doses measured and simulated, and its relationship with the ambient dose equivalent and the effective dose for this detector. (author)

  5. Method of fabricating a self-powered radiation detector

    International Nuclear Information System (INIS)

    A method is disclosed of fabricating a self-powered nuclear radiation detector assembly, comprising detector portion of accurately predetermined dimensions and a cable portion connected to the detector portion to carry the signal current which is generated in a radiation flux field to remote monitor means. The detector portion consists of a radiation responsive elongated central emitter electrode which is insulated from a generally tubular sheath collector electrode. The emitter electrode and signal cable center wire are electrically connected at one end and disposed within the collector electrode tubular sheath with compressible insulating means disposed between the wires and the tubular sheath. The above assembly is reduced in diameter while elongating the tubular sheath and emitter wire and signal cable wire. The emitter wire is reduced to a predetermined desired diameter and is trimmed to a predetermined length. An end cap is hermetically sealed to the tubular sheath the extending end of the emitter with insulating means between the emitter end and the end cap

  6. The effects of ultraviolet radiation on some plastic detectors

    International Nuclear Information System (INIS)

    Exposure to ultraviolet (U.V.) radiation could lead to the development of phototoxicity, photoallergy and enhancement of photocarcinogenesis (IRPA 1979). For the measurement of the dose of ultraviolet radiation harmful to human bodies, it is desirable to use a detector with a response curve similar to the human action spectra for erythema and for ultraviolet radiation. It is not easy to obtain a detector which satisfies the requirement unless a very complicated setup of spectrometer with suitable photodetectors is employed. For the purpose of measuring the personal dose, a passive type of detector is preferred. Davis et al (1976) has developed a detector using polysulphone for this purpose. The response curve shows a broad peak extending from 260 to 325 nm. Other detectors (spectrosonics, Partridge and Barton 1978, Fanslow et al 1983), which were developed for similar purposes, have a sharp peak around 280 to 320 nm. These response curves are not very good approximations to the human action spectrum which has a sharp cut-off at around 300 nm. They tend to overestimate the contribution on the long wavelength region (300-320 nm) of UV-B. The integrated response in the UV-B region could be twice the total area of the human action spectrum in the same region of wavelength. The irradiance of these long wavelengths is at least ten times that of the short wavelengths (less than 300 nm) in the solar spectrum. A search for materials with a better approximation than the three types of detectors mentioned above would be useful in the development of a more accurate dosimeter. In this paper, we will report our preliminary results on a new type of plastic material

  7. Response of radiation detectors in electron accelerator environment

    International Nuclear Information System (INIS)

    Full text: Due to the complex nature of radiation field present in high-energy electron accelerators and in associated systems, radiation measurements and interpretation of the results become a difficult task. In the present paper response of radiation instruments due to pulsed radiation of different duty cycle, radio frequency (RF) and low frequency (LF) interference from radio frequency generators (eg. magnetron) and associated systems are studied and the results are presented. The results show that gas filled detectors operated in the multiplicative region (eg. GM tube) severely underestimate the radiation field at very low duty cycles. The response is found to improve as the duty cycle is increased. RF, LF and magnetic field interference also is studied and the results are discussed

  8. Ionizing radiation solid detectors on the base of amorphous arsenic chalcogenides

    International Nuclear Information System (INIS)

    The possibility to use radiation-sensitive elements of solid chalcogenide glass-like semiconductors (CGS) - special class of oxygen-free amorphous substances, which are alloys of groups 3, 4 and 5 elements with chalcogens (S, Se, Te), was analyzed. The materials feature lower temperatures of radiation information erasure (440-470 K) than oxide glasses. Radiation-induced electron-defect processes lay at physical basis of operation of CGS-based solid detectors. The processes consist in violation of atom normal coordination at the expense of chemical bond rupture and appearance of other bonds. The main principles of operation are reduced to registration of CGS density at a certain wavelength prior to and after total dose collection. The use of helium-neon laser as a probing radiation source simplifies considerably measurement procedure and permits making measurements without sensor extraction from radiation field

  9. Radiation damage monitoring of the ATLAS pixel detector

    CERN Document Server

    Seidel, Sally; The ATLAS collaboration

    2015-01-01

    A measurement has been made of the radiation damage incurred by the ATLAS Pixel Detector barrel silicon modules from the beginning of operations through the end of 2012. This translates to hadronic fluence received over the full period of operation at energies up to and including 8 TeV. The measurement is based on a per-module record of the silicon sensor leakage current. The results are presented as a function of integrated luminosity and compared to predictions by the Hamburg Model. This information can be used to predict limits on the lifetime of the Pixel Detector due to current, for various operating scenarios.

  10. Development of Superconducting Tunnel Junction as an Imaging Radiation Detector

    Science.gov (United States)

    Yamasaki, N. Y.; Rokutanda, E.; Kikuchi, K.; Kushino, A.; Ohashi, T.; Kurakado, M.

    Superconducting tunnel junctions (STJs) as X-ray detectors have been developed mainly aiming at high resolution spectrometers. We archived an energy resolution of 106 eV at 5.9 keV (FWHM) using an STJ developed at Nippon Steel Corporation with a cooled (~ 100K) FET. Furthermore, series-connected STJs as an imaging radiation detector are developed. Both the pulse hight and the rise time of signals from 241Am α-particles irradiated on a series-connected STJ give a good position sensitivity, indicating the intrinsic position resolution less than 0.5 mm

  11. Analysis of portable gamma flaw detectors concerning radiation hygiene

    International Nuclear Information System (INIS)

    Design and shields of gamma flaw detectors as one of the main factors responsible for personnel dose were studied. The analysis was conducted using the results of radiation hygienic surveys of gamma flaw detection laboratories functioning constantly in Estonia. It is shown that recently the replacement of GUP apparatuses by flaw detectors of RID and ''Gamma-RID'' (types which have design and shielding advantages is observed. However personnel doses have not reduced considerably for the last 10 years. This fact is attributed to design disadvantages of the RID and ''Gamma-RID'' apparatuses the removing of which will give the decreasing of annual personnel dose by 80 %

  12. Radiation non-multiply harmonics in nonlinear junction detector.

    Directory of Open Access Journals (Sweden)

    M. V. Zinchenko

    2011-06-01

    Full Text Available In the theoretically investigated experimentally detected the effect of negative differential resistance on the current-voltage characteristics OF the diode structures with the impact of powerful MICROWAVE radiation. Proved the expediency of usage in nonlinear junction detector high levels of power probing signal, because with a certain probability, it becomes possible to generate the object of the study of nonlinear radar own fluctuations. That in turn allows to introduce additional mode of identification mortgage devices for not the multiple harmonic in the nonlinear junction detector.

  13. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  14. Proceedings of the workshop on radiation detector and its application

    International Nuclear Information System (INIS)

    This workshop was held from January 23 to 25, 1996 at National Laboratory for High Energy Physics. At the workshop, lectures were given on the development of the single ion detector using MCP in heavy ion microbeam device, the response of MCP to single heavy ion, the response of a superheated liquid drop type detector to low LET radiation, the response characteristics of a CR-39 flight track detector to hydrogen isotopes, the analysis of small nuclear flight tracks on CR-39 with an interatomic force microscope, charge-sensible amplifiers, the signal-processing circuit for position detection, time and depth-resolved measurement of ion tracks in condensed matter, the response of a thin Si detector to electrons, the method of expressing gas-amplifying rate curves in proportional count gas for low temperature, the characteristics of self annihilating streamer by ultraviolet laser, the development of slow positron beam using radioisotopes, the development of a tunnel junction type x-ray detector, the development of the pattern-analyzing system for PIXE spectra, the characteristics of NE213-CaF2 bond type neutron detector and many others. In this report, the gists of these papers are collected. (K.I.)

  15. Responses of diode detectors to radiation beams from teletherapy machines

    International Nuclear Information System (INIS)

    Responses of diode detectors to radiation beams from teletherapy machines. It has been carried out responses to two sets of diode detector by using the beams of teletherapy Co-60 and medical linear accelerator. Each set of consist of 8 diode detectors was irradiated by using gamma beams from teletherapy Co-60 machines and 6 MV and 10 MV foron beams from medical linear accelerator and 6.9.12.16. and 20 MeV electron beams from medical linear accelerator. The detectors were positioned on the phantom circularly and radially and electronic equilibrium condition for all type and energy beams. It was found that every detectors had own individual response and it is not to be uniformity, since the fluctuation in between 16.6 % to 30.9 %. All detectors responses are linear to gamma and foron beams, and also for energy above 6 MeV for electron beams. Nonlinearity response occurs for 6 MeV electron beam, it is probably from the assumption of electronic equilibrium

  16. Development of Radiation Hard Radiation Detectors, Differences between Czochralski Silicon and Float Zone Silicon

    CERN Document Server

    Tuominen, Eija

    2012-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made ofsilicon are cost effective and have excellent position resolution. Therefore, they are widely used fortrack finding and particle analysis in large high-energy physics experiments. Silicon detectors willalso be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (LargeHadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work wasdone in the CMS programme of Helsinki Institute of Physics (HIP).Exposure of the silicon material to particle radiation causes irreversible defects that deteriorate theperformance of the silicon detectors. In HIP CMS Programme, our approach was to improve theradiation hardness of the silicon material with increased oxygen concentration in silicon material. Westudied two different methods: diffusion oxygenation of Float Zone silicon and use of high resistivityCzochralski silicon.We processed, characterised, tested in a parti...

  17. Radiation damage in silicon. Defect analysis and detector properties

    International Nuclear Information System (INIS)

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after γ-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VOi, CiOi, CiCs, VP or V2 several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO2 defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep acceptor, a model has been introduced to describe the

  18. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after {gamma}-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO{sub i}, C{sub i}O{sub i}, C{sub i}C{sub s}, VP or V{sub 2} several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO{sub 2} defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep

  19. Multipurpose High Sensitivity Radiation Detector: Terradex

    International Nuclear Information System (INIS)

    Terradex project aims to realise an accurate and programmable multiparametric tool which will measure relevant physical quantities such as observation time, energy and type of all decay products of three naturally occurring decay chains of uranium and thorium series present in nature as well as the decay products of man-made radioactivity. The measurements described in this work are based on the performance tests of the first version of an instrument that is designed to provide high counting accuracy, by introducing self-triggering, delayed time-coincidence technique, of products of a given decay chain. In order to qualify the technique and to calibrate the Terradex, a 222Rn source is used. The continuous and accurate monitoring of radon concentration in air is realised by observing the alpha and beta particles produced by the decay of 222Rn and its daughters and tag each of them with a precise occurrence time. The validity of delayed coincident technique by using the state of the art electronics with application of novel data sampling and analysis methods are discussed. The flexibility of sampling protocols and the advantages of online calibration capability to achieve the highest level of precision in natural and man-made radiation measurements are also described

  20. Multipurpose High Sensitivity Radiation Detector: Terradex

    Energy Technology Data Exchange (ETDEWEB)

    Alpat, Behcet [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy)]. E-mail: behcet.alpat@pg.infn.it; Aisa, Damiano [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Bizzarri, Marco [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Blasko, Sandor [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Esposito, Gennaro [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Farnesini, Lucio [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Fiori, Emmanuel [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Papi, Andrea [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Postolache, Vasile [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Renzi, Francesca [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Ionica, Romeo [Politecnica University of Bucarest, Splaiul Indipendentei, Bucharest (Romania); Manolescu, Florentina [Space Science Institute of Bucharest, Maugurele, Bucharest (Romania); Ozkorucuklu, Suat [Suleyman Demirel Universitesi, Isparta (Turkey); Denizli, Haluk [Abant Izzet Baysal Universitesi, Bolu (Turkey); Tapan, Ilhan [Uludag Universitesi, Bursa (Turkey); Ercan Pilicer [Uludag Universitesi, Bursa (Turkey); Egidi, Felice [SITE Technology, Carsoli (Italy); Moretti, Cesare [SITE Technology, Carsoli(AQ) (Italy); Dicola, Luca [SITE Technology, Carsoli(AQ) (Italy)

    2007-05-11

    Terradex project aims to realise an accurate and programmable multiparametric tool which will measure relevant physical quantities such as observation time, energy and type of all decay products of three naturally occurring decay chains of uranium and thorium series present in nature as well as the decay products of man-made radioactivity. The measurements described in this work are based on the performance tests of the first version of an instrument that is designed to provide high counting accuracy, by introducing self-triggering, delayed time-coincidence technique, of products of a given decay chain. In order to qualify the technique and to calibrate the Terradex, a {sup 222}Rn source is used. The continuous and accurate monitoring of radon concentration in air is realised by observing the alpha and beta particles produced by the decay of {sup 222}Rn and its daughters and tag each of them with a precise occurrence time. The validity of delayed coincident technique by using the state of the art electronics with application of novel data sampling and analysis methods are discussed. The flexibility of sampling protocols and the advantages of online calibration capability to achieve the highest level of precision in natural and man-made radiation measurements are also described.

  1. Variable-Temperature Cryostat For Radiation-Damage Testing Of Germanium Detectors

    Science.gov (United States)

    Floyd, Samuel R.; Puc, Bernard P.

    1992-01-01

    Variable-temperature cryostats developed to study radiation damage to, and annealing of, germanium gamma-ray detectors. Two styles: one accommodates large single detector and one accommodates two medium-sized detectors. New cryostats allow complete testing of large-volume germanium gamma-ray detectors without breaking cryostat vacuum and removing detectors for annealing.

  2. Thermochemical and radiation chemical hydrogen production

    International Nuclear Information System (INIS)

    In search of closed-cycle hydrogen production processes by nuclear energy, thermochemical and radiation chemical reactions have been studied which are related to candidate processes. In a hopeful thermochemical process, nickel, iodine and sulfur are used (NIS process). This process is an improved iodine-sulfur process, and is characterized by the separation of nickel iodide and sulfate by solvent extraction and the high temperature decomposition of sulfur trioxide in the absence of water. Experimental results of main unit operations are described. Another feasible process with carbon dioxide was also studied using ferrous iodide. For radiation chemical hydrogen production, radiolysis of carbon dioxide was studied by gamma-rays and reactor radiations containing fission fragments, and with nitrogen dioxide and propane as additives. The mechanism of reoxidation of carbon monoxide, the back reaction, is discussed, because the back reaction determines the carbon monoxide yield. (author)

  3. Solid-state radiation detectors for active personal dosimetry and radiations source tracking

    International Nuclear Information System (INIS)

    We report on the design of the readout electronics using PIN diode radiation detector of 5 mm thickness for nuclear safety and active personal dosimetry. Our effort consisted in designing and fabricating the electronics to reflect the needs of gamma radiations dosimetry and hybrids PIN diode arrays for charged particle detectors. We report results obtained during testing and characterizing the new devices in gamma fields, operating at room temperature. There were determined the energy spectrum resolution, radiation hardness and readout rate. Also, data recording methods and parallel acquisition problems from a transducer matrix are presented. (authors)

  4. Radiation tests of the Silicon Drift Detectors for LOFT

    CERN Document Server

    Del Monte, E; Bozzo, E; Bugiel, S; Diebold, S; Evangelista, Y; Kendziorra, E; Muleri, F; Perinati, E; Rachevski, A; Zampa, G; Zampa, N; Feroci, M; Pohl, M; Santangelo, A; Vacchi, A

    2014-01-01

    During the three years long assessment phase of the LOFT mission, candidate to the M3 launch opportunity of the ESA Cosmic Vision programme, we estimated and measured the radiation damage of the silicon drift detectors (SDDs) of the satellite instrumentation. In particular, we irradiated the detectors with protons (of 0.8 and 11 MeV energy) to study the increment of leakage current and the variation of the charge collection efficiency produced by the displacement damage, and we "bombarded" the detectors with hypervelocity dust grains to measure the effect of the debris impacts. In this paper we describe the measurements and discuss the results in the context of the LOFT mission.

  5. Charge transport properties of CdMnTe radiation detectors

    Directory of Open Access Journals (Sweden)

    Prokopovich D. A.

    2012-10-01

    Full Text Available Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading charge collection is reduced with increasing values of bias voltage. The electron drift velocity was calculated from the rise time distribution of the preamplifier output pulses at each measured bias. From the dependence of drift velocity on applied electric field the electron mobility was found to be μn = (718 ± 55 cm2/Vs at room temperature.

  6. Development of high voltage power supply for nuclear radiation detectors

    International Nuclear Information System (INIS)

    The purpose of this thesis is to develop a versatile NIM compatible high voltage power supply for proper operation of nuclear radiation detectors especially for those high resolution detectors such as semiconductor detectors, and proportional counters which require high voltage power supply with very low output ripple and high output stability. A driven type dc-ac inverter and a voltage multiplier are applied to convert a low de voltage to high dc voltage. The filter circuit is used to reduce the output ripple when the power supply is loaded and a close-loop voltage control circuit is used to minimize the drift in the output voltage. Adjustment of the output level for desired value is done through a three turn high precision potentiometer. Besides, micro-circuits are used in order to reduce undesirable temperature effect and at the same time to minimize size and weight of the high voltage module

  7. Charge transport properties of CdMnTe radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.

    2012-04-11

    Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.

  8. Radiation Tolerance of Aluminum Microwave Kinetic Inductance Detector

    Science.gov (United States)

    Karatsu, K.; Dominjon, A.; Fujino, T.; Funaki, T.; Hazumi, M.; Irie, F.; Ishino, H.; Kida, Y.; Matsumura, T.; Mizukami, K.; Naruse, M.; Nitta, T.; Noguchi, T.; Oka, N.; Sekiguchi, S.; Sekimoto, Y.; Sekine, M.; Shu, S.; Yamada, Y.; Yamashita, T.

    2016-08-01

    Microwave kinetic inductance detector (MKID) is one of the candidates of focal plane detector for future satellite missions such as LiteBIRD. For the space use of MKIDs, the radiation tolerance is one of the challenges to be characterized prior to the launch. Aluminum (Al) MKIDs with 50 nm thickness on silicon substrate and on sapphire substrate were irradiated with a proton beam of 160 MeV at the heavy ion medical accelerator in Chiba. The total water-equivalent absorbed dose was ˜ 10 krad which should simulate the worst radiation absorption of 5 years observation at the Lagrange point L2. We measured characteristics of these MKIDs before and after the irradiation. We found no significant changes on resonator quality factor, responsivity, and recombination time of quasi-particles. The change on electrical noise equivalent power was also evaluated, and no significant increase was found at the noise level of O(10^{-18}) W/√{ Hz }.

  9. Plane electrode device for multiwire detector for ionizing radiations

    International Nuclear Information System (INIS)

    A multiwire proportional counter type detector with thin slits instead of wires is presented. It can detect either charged particles (positive or negative) or radiation. The detector can be used as a counter or as an image converter. In radiography, it can replace photographic film or TV camera systems. It can also be used to measure particle or radiation energy. The slits which replace wires in the anode are introduced between two parallel microstrip conductors with different potentials. A quasi-polar electric field is produced between these strips. To obtain high fields, the slits are extremely narrow. Microstrips less than a micron can be obtained, giving structural dimensions of a few microns, i.e., 100 times smaller than the spacing in a classic wire anode

  10. Synchrotron radiation computed laminography using an inclined detector.

    Science.gov (United States)

    Zhang, Jie; Li, Gang; Yi, Qiru; Chen, Yu; Gao, Zhenhua; Jiang, Xiaoming

    2015-01-01

    Synchrotron radiation computed laminography (SR-CL) has been in use in three-dimensional non-destructive imaging of flat objects for several years. A new set-up is proposed based on the traditional SR-CL method but with the detector inclined at the same angle as the sample inclination to collect projections. The results of computer simulations and real-sample experiments demonstrate that reconstructions acquired using an inclined detector are of better quality compared with those acquired using ordinary detecting methods, especially for the situation of few projections and small difference of attenuation ratio of the sample. This method could be applied to obtain high-quality images of weak-contrast samples with short measurement time and mild radiation damage. PMID:25537599

  11. A study of radiation-hard detectors using proton beam

    International Nuclear Information System (INIS)

    We studied radiation damage effect of inorganic and organic scintillators developed in Korea by proton beam irradiation using the MC-50 Cyclotron facility in Atomic Cancer Hospital. After developing radiation hard detectors, it can be used for the proton beam flux and energy monitoring in a real time. We also perform a research on electronics and DAQ for such a device. The following is our major study : a development of liquid scintillator, a development of plastic scintillator, a study on liquid scintillator response, simulation study of liquid scintillator by proton beam interaction, detector irradiation at MC-50 Cyclotron facility and a study of response change, a development of electronics for proton flux monitoring and a feasibility study of low proton flux monitoring, initial study of inorganic scintillator by the proton beamtest

  12. Radiation damage of the HEAO C-1 germanium detectors

    Science.gov (United States)

    Mahoney, W. A.; Ling, J. C.; Jacobson, A. S.

    1981-01-01

    The effects of radiation damage from proton bombardment of the four HEAO C-1 high purity germanium detectors have been measured and compared to predictions. Because of the presence of numerous gamma-ray lines in the detector background spectra and because of the relatively long exposure time of the HEAO 3 satellite to cosmic-ray and trapped protons, it has been possible to measure both the energy and time dependence of radiation damage. After 100 d in orbit, each of the four detectors has been exposed to approximately 3 x 10 to the 7th protons/sq cm, and the average energy resolution at 1460 keV had degraded from 3.2 keV fwhm to 8.6 keV fwhm. The lines were all broadened to the low energy side although the line profile was different for each of the four detectors. The damage-related contribution to the degradation in energy resolution was found to be linear in energy and proton influence.

  13. Radiation-hard semiconductor detectors for SuperLHC

    CERN Document Server

    Bruzzi, Mara; Al-Ajili, A A; Alexandrov, P; Alfieri, G; Allport, Philip P; Andreazza, A; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Baranova, E; Barcz, A; Basile, A; Bates, R; Belova, N; Betta, G F D; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Brukhanov, A; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Chilingarov, A G; Chren, D; Cindro, V; Citterio, M; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Cvetkov, V; Davies, G; Dawson, I; De Palma, M; Demina, R; Dervan, P; Dierlamm, A; Dittongo, S; Dobrzanski, L; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Franchenko, S; Fretwurst, E; Gamaz, F; García-Navarro, J E; García, C; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Gorelov, I; Goss, J; Gouldwell, A; Grégoire, G; Gregori, P; Grigoriev, E; Grigson, C; Grillo, A; Groza, A; Guskov, J; Haddad, L; Harding, R; Härkönen, J; Hauler, F; Hayama, S; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hruban, A; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Jin, T; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Kleverman, M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Kowalik, A; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lari, T; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Latushkin, S T; Lazanu, I; Lazanu, S; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Lindström, L; Linhart, V; Litovchenko, A P; Litovchenko, P G; Litvinov, V; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Mainwood, A; Makarenko, L F; Mandic, I; Manfredotti, C; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Meroni, C; Messineo, A; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Mozzanti, A; Murin, L; Naoumov, D; Nava, F; Nossarzhevska, E; Nummela, S; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piatkowski, B; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A I; Popule, J; Pospísil, S; Pucker, G; Radicci, V; Rafí, J M; Ragusa, F; Rahman, M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Roy, P; Ruzin, A; Ryazanov, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Sevilla, S G; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Spencer, N; Stahl, J; Stavitski, I; Stolze, D; Stone, R; Storasta, J; Strokan, N; Strupinski, W; Sudzius, M; Surma, B; Suuronen, J; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Troncon, C; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Vanni, P; Velthuis, J; Verbitskaya, E; Verzellesi, G; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N; de Boer, Wim

    2005-01-01

    An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10/sup 35/ cm-/sup 2/s-/sup 1/ has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 10 /sup 16/ cm-/sup 2/. The CERN-RD50 project "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" has been established in 2002 to explore detector materials and technologies that will allow to operate devices up to, or beyond, this limit. The strategies followed by RD50 to enhance the radiation tolerance include the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon, oxygen enriched Flo...

  14. Calibration of the active radiation detector for Spacelab-One

    Science.gov (United States)

    1982-01-01

    The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.

  15. CMOS sensor as charged particles and ionizing radiation detector

    International Nuclear Information System (INIS)

    This paper reports results of CMOS sensor suitable for use as charged particles and ionizing radiation detector. The CMOS sensor with 640 × 480 pixels area has been integrated into an electronic circuit for detection of ionizing radiation and it was exposed to alpha particle (Am-241, Unat), beta (Sr-90), and gamma photons (Cs-137). Results show after long period of time (168 h) irradiation the sensor had not loss of functionality and also the energy of the charge particles and photons were very well obtained

  16. Radiation damage of pixelated photon detector by neutron irradiation

    Science.gov (United States)

    Nakamura, Isamu

    2009-10-01

    Radiation Damage of Pixelated Photon Detector by neutron irradiation is reported. MPPC, one of PPD or Geiger-mode APD, developed by Hamamatsu Photonics, is planned to be used in many high energy physics experiments. In such experiments radiation damage is a serious issue. A series of neutron irradiation tests is performed at the Reactor YAYOI of the University of Tokyo. MPPCs were irradiated at the reactor up to 1012 neutron/cm2. In this paper, the effect of neutron irradiation on the basic characteristics of PPD including gain, noise rate, photon detection efficiency is presented.

  17. Dielectric Resonators as Radiation Detectors at Low Temperatures

    Science.gov (United States)

    Yamasaki, N. Y.; Sekiya, N.; Kikuchi, T.; Hoshino, M.; Mitsuda, K.; Sato, K.

    2015-10-01

    GHz LC resonators whose resonance frequency depends on temperature may be put to use as radiation detectors. We have demonstrated that a resonator utilizing STO (SrTiO) at 4 and 2 K detected infrared light emitting diode (LED) light, by a shift of resonance frequency around 2 GHz. A suitable design of a resonator array with temperature-dependent dielectric material will be used as a large-format microcalorimeter array without or with only very small Johnson noise.

  18. Avalanche photodiodes as large dynamic range detectors for synchrotron radiation

    International Nuclear Information System (INIS)

    We investigated silicon-based avalanche photodiodes (APDs) as X-ray detectors in terms of their linearity, maximum counting rates, and dynamic range with 8.4 keV synchrotron radiation. Measurements resulted in counting rates that extend from the APD's noise level of 10-2 Hz to saturation counting rates in excess of 108 Hz. In addition, by monitoring the APD's noise level and photon counting efficiency between synchrotron bursts, we demonstrate nine orders of magnitude dynamic range. ((orig.))

  19. Chemical protection against ionizing radiation. Final report

    International Nuclear Information System (INIS)

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references

  20. Chemical protection against ionizing radiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  1. Chemical radiation protection in mammals and humans

    International Nuclear Information System (INIS)

    The development and the present situation in experimental research with animals as well as in clinical application in the field of chemical radioprotection are described. The efficacy of radioprotective substances in the case of acute radiation death, of radiation-induced changes in various tissues and organs as well as in late effects are reported. The mechanisms of actions are discussed. By comparison of radiation reactions in protected and unprotected animals radioprotective factors can be determined. Such factors depend, among other parameters, on the kind of the radioprotective agent and its dose, on the radiation reaction, on the quality of radiation as well as on the radiation dose. Up to now thiophosphate WR 2721 proved to be the most efficient substance. It was observed that the application of this compound yielded a protection factor of up to 2.7 for the acute radiation death in mice. The disadvantage of radioprotective agents must be seen in their side effects. Despite this behaviour thiophosphate, amongst others, is being tested in clinical radiotherapy. In order to apply radioprotective substances in foreseen emergency or catastrophic situations a number of demands were postulated. As yet, none of the tested radioprotectors meet these demands. Therefore, NATO has refrained from keeping radioprotective agents in reserve up to now. On the other hand, the USSR has included the radioprotective agent cystamine in their civil defence protection kit. (orig.)

  2. Radiation tests for a single-GEM-loaded gaseous detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong Sei; Hong, Byung Sik; Park, Sung Keun [Korea University, Seoul (Korea, Republic of); Kim, Sang Yeol [NoticeKorea, Anyang (Korea, Republic of)

    2014-11-15

    We report on a systematic study of a single-gas-electron-multiplier (GEM)-loaded gaseous detector developed for precision measurements of high-energy particle beams and for dose verification in particle therapy. In the present study, a 256-channel prototype detector having an active area of 16 x 16 cm{sup 2} and operating using a continuous current-integration-mode signal-processing method was manufactured and tested with X-rays emitted from a 70-kV X-ray generator and 43-MeV protons provided by the MC50 proton cyclotron at the Korea Institute of Radiological and Medical Science(KIRAMS). The amplified detector response was measured for X-rays with an intensity of about 5 x 10{sup 6} Hz cm{sup -2}. The linearity of the detector response to the particle flux was examined and validated by using 43-MeV proton beams. The non-uniform development of the amplification for the gas electrons in space was corrected by applying a proper calibration to the channel responses of the measured beam-profile data. We conclude from the radiation tests that the detector developed in the present study will allow us to perform quality measurements of various high-energy particle beams and to apply the technology to dose-verification measurements in particle therapy.

  3. VeriTainer radiation detector for intermodal shipping containers

    International Nuclear Information System (INIS)

    The VeriSpreaderTM radiation detection system will monitor every container passing through a shipping terminal without impeding the flow of commerce by making the radiation measurements during normal container handling. This is accomplished by integrating neutron and spectroscopic γ-ray detectors into a container crane spreader bar, the part of the crane that directly engages the intermodal shipping containers while moving from ship to shore and vice versa. The use of a spectroscopic γ-detector reduces the rate of nuisance alarms due to naturally occurring radioactive material (NORM). The combination of γ and neutron detection reduces the effectiveness of shielding and countermeasures. The challenges in this spreader bar-based approach arise from the harsh environment, particularly the mechanical shock and the vibration of the moving spreader bar, since the measurement is taken while the container is moving. The electrical interfaces in the port environment, from the crane to a central monitoring office, present further challenges. It is the packaging, electronic interfaces, and data processing software that distinguish this system, which is based on conventional radiation sensors. The core of the system is Amptek's GAMMA-RAD, which integrates a ruggedized scintillator/PMT, digital pulse shaping electronics, electronics for the neutron detector, power supplies, and an Ethernet interface. The design of the VeriTainer system and results from both the laboratory and a proof-of-concept test at the Port of Oakland, California will be presented

  4. Radiation damage effects on X-ray silicon detectors

    International Nuclear Information System (INIS)

    The paper describes some results concerning technology and behaviour of X-and gamma-ray n+pp+ silicon detectors used in physics research, industrial and medical radiography and non-destructive testing. These detectors work at the room-temperature and can be used individually to detect X-and soft gamma-rays, or coupled with scintillators for higher incoming energies. Electrical characteristics of these photodiodes, their modification after exposure to radiation and results of spectroscopic X-and gamma-ray measurements are discussed. Devices manufactured under this technology proved to be stable after an exposure in high intensity gamma field with the dose range of 10 Krad-5 Mrad. Nuclear radiation resistance was studied by irradiation with 60 Co gamma source (1.17 and 1.33 MeV) at dose rates of 59 Krad/hour and 570 Krad/hour. Results indicate that proposed structures enable the development of reliable silicon detectors to be used in a high gamma-radiation environments encountered in a lot of applications. (authors)

  5. Extending the C-V method of establishing MIS detector quality to mercuric iodide radiation detectors

    International Nuclear Information System (INIS)

    It has been observed that mercuric iodide capacitance measurements provide good indication about the quality of the crystal and its suitability as a room temperature radiation detector. Such capacitance / voltage measurements show a peak at low frequency. The sharpness of the peak is proportional to the quality of the crystal, and the peak is very similar to metal insulator semiconductor (MIS) capacitance curves. The paper proposes a model for the mercuric iodide capacitance. (author)

  6. Mobile robot prototype detector of gamma radiation; Prototipo de robot movil detector de radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez C, R.M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Duran V, M. D.; Jardon M, C. I., E-mail: raulmario.vazquez@inin.gob.mx [Tecnologico de Estudios Superiores de Villa Guerrero, Carretera Federal Toluca-Ixtapan de la Sal Km. 64.5, La Finca Villa Guerrero, Estado de Mexico (Mexico)

    2014-10-15

    In this paper the technological development of a mobile robot prototype detector of gamma radiation is shown. This prototype has been developed for the purpose of algorithms implementation for the applications of terrestrial radiation monitoring of exposed sources, search for missing radioactive sources, identification and delineation of radioactive contamination areas and distribution maps generating of radioactive exposure. Mobile robot detector of radiation is an experimental technology development platform to operate in laboratory environment or flat floor facilities. The prototype integrates a driving section of differential configuration robot on wheels, a support mechanism and rotation of shielded detector, actuator controller cards, acquisition and processing of sensor data, detection algorithms programming and control actuators, data recording (Data Logger) and data transmission in wireless way. The robot in this first phase is remotely operated in wireless way with a range of approximately 150 m line of sight and can extend that range to 300 m or more with the use of signal repeaters. The gamma radiation detection is performed using a Geiger detector shielded. Scan detection is performed at various time sampling periods and diverse positions of discrete or continuous angular orientation on the horizon. The captured data are geographical coordinates of robot GPS (latitude and longitude), orientation angle of shield, counting by sampling time, date, hours, minutes and seconds. The data is saved in a file in the Micro Sd memory on the robot. They are also sent in wireless way by an X Bee card to a remote station that receives for their online monitoring on a laptop through an acquisition program by serial port on Mat Lab. Additionally a voice synthesizing card with a horn, both in the robot, periodically pronounced in Spanish, data length, latitude, orientation angle of shield and detected accounts. (Author)

  7. Development of the mercury iodide semiconductor crystal for application as a radiation detector

    International Nuclear Information System (INIS)

    In this work, the establishment of a technique for HgI growth and preparation of crystals, for use as room temperature radiation semiconductor detectors is described. Three methods of crystal growth were studied while developing this work: physical vapor transport (PVT); saturated solution of HgI2, using two different solvents; (a) dimethyl sulfoxide (DMSO) and (b) acetone, and the Bridgman method. In order to evaluate the obtained crystals by the three methods, systematic measurements were carried out for determining the stoichiometry, structure, orientation, surface morphology and impurity of the crystal. The influence of these physical chemical properties on the crystals development was studied, evaluating their performance as radiation detectors. The X-ray diffractograms indicated that the crystals were, preferentially, oriented in the (001) e (101) directions with tetragonal structure for all crystals. Nevertheless, morphology with a smaller deformation level was observed for the crystal obtained by the PVT technique, comparing to other methods. Uniformity on the surface layer of the PVT crystal was detected, while clear incrustations of elements distinct from the crystal could be viewed on the DMSO crystal surface. The best results as to radiation response were found for the crystal grown by physical vapor transport. Significant improvement in the HgIz2 radiation detector performance was achieved for purer crystals, growing the crystal twice by PVT technique. (author)

  8. Influence of Detector Radiation Damage on CR Mammography Quality Control.

    Science.gov (United States)

    Moriwaki, Atsumi; Ishii, Mie; Terazono, Shiho; Arao, Keiko; Ishii, Rie; Sanada, Taizo; Yoshida, Akira

    2016-05-01

    Recently, radiation damage to the detector apparatus employed in computed radiography (CR) mammography has become problematic. The CR system and the imaging plate (IP) applied to quality control (QC) program were also used in clinical mammography in our hospital, and the IP to which radiation damage has occurred was used for approximately 5 years (approximately 13,000 exposures). We considered using previously acquired QC image data, which is stored in a server, to investigate the influence of radiation damage to an IP. The mammography unit employed in this study was a phase contrast mammography (PCM) Mermaid (KONICA MINOLTA) system. The QC image was made newly, and it was output in the film, and thereafter the optical density of the step-phantom image was measured. An input (digital value)-output (optical density) conversion curve was plotted using the obtained data. The digital values were then converted to optical density values using a reference optical density vs. digital value curve. When a high radiation dose was applied directly, radiation damage occurred at a position on the IP where no object was present. Daily QC for mammography is conducted using an American College of Radiology (ACR) accreditation phantom and acrylic disc, and an environmental background density measurement is performed as one of the management indexes. In this study, the radiation damage sustained by the acrylic disc was shown to differ from that of the background. Thus, it was revealed that QC results are influenced by radiation damage. PMID:27211088

  9. Microscopic model for chemical etchability along radiation damage paths in solids

    Institute of Scientific and Technical Information of China (English)

    Mukhtar Ahmed RANA

    2008-01-01

    It would be very interesting to develop a picture about removal of atoms from the radiation damaged paths or latent nuclear tracks and undamaged bulk material in track detectors. Here, theory of chemical etching is described briefly and a new model for chemical etching along radiation damaged paths in solids is developed based on basic scientific facts and valid assumptions. Dependence of chemical etching on radiation damage intensity and etching conditions is discussed. A new parameter for etching along radiation damaged paths is introduced, which is useful for investigation of relationship between chemical etchability and radiation damage in a solid. Results and discussion presented here are also useful for further development of nuclear waste immobilization.

  10. Field Testing of a Portable Radiation Detector and Mapping System

    International Nuclear Information System (INIS)

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system

  11. Study of chemical and radiation induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  12. SENTIRAD-An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier

    International Nuclear Information System (INIS)

    The alarming personal radiation detector (PRD) is a device intended for Homeland Security (HLS) applications. This portable device is designed to be worn or carried by security personnel to detect photon-emitting radioactive materials for the purpose of crime prevention. PRD is required to meet the scope of specifications defined by various HLS standards for radiation detection. It is mandatory that the device be sensitive and simultaneously small, pocket-sized, of robust mechanical design and carriable on the user's body. To serve these specialized purposes and requirements, we developed the SENTIRAD, a new radiation detector designed to meet the performance criteria established for counterterrorist applications. SENTIRAD is the first commercially available PRD based on a CsI(Tl) scintillation crystal that is optically coupled with a silicon photomultiplier (SiPM) serving as a light sensor. The rapidly developing technology of SiPM, a multipixel semiconductor photodiode that operates in Geiger mode, has been thoroughly investigated in previous studies. This paper presents the design considerations, constraints and radiological performance relating to the SENTIRAD radiation sensor.

  13. SENTIRAD—An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier

    Science.gov (United States)

    Osovizky, A.; Ginzburg, D.; Manor, A.; Seif, R.; Ghelman, M.; Cohen-Zada, I.; Ellenbogen, M.; Bronfenmakher, V.; Pushkarsky, V.; Gonen, E.; Mazor, T.; Cohen, Y.

    2011-10-01

    The alarming personal radiation detector (PRD) is a device intended for Homeland Security (HLS) applications. This portable device is designed to be worn or carried by security personnel to detect photon-emitting radioactive materials for the purpose of crime prevention. PRD is required to meet the scope of specifications defined by various HLS standards for radiation detection. It is mandatory that the device be sensitive and simultaneously small, pocket-sized, of robust mechanical design and carriable on the user's body. To serve these specialized purposes and requirements, we developed the SENTIRAD, a new radiation detector designed to meet the performance criteria established for counterterrorist applications. SENTIRAD is the first commercially available PRD based on a CsI(Tl) scintillation crystal that is optically coupled with a silicon photomultiplier (SiPM) serving as a light sensor. The rapidly developing technology of SiPM, a multipixel semiconductor photodiode that operates in Geiger mode, has been thoroughly investigated in previous studies. This paper presents the design considerations, constraints and radiological performance relating to the SENTIRAD radiation sensor.

  14. Semiconductor scintillator detector for gamma radiation; Detector cintilador semicondutor para radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Laan, F.T.V. der; Borges, V.; Zabadal, J.R.S., E-mail: ftvdl@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: jorge.zabadal@ufrgs.br [Universidade Federal do Rio Grande do Sul (GENUC/DEMEC/UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares. Departamento de Engenharia Mecanica

    2015-07-01

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  15. Photoluminescence and Photonics: from miniaturised light sources to radiation detectors

    International Nuclear Information System (INIS)

    Photonics is the science of the harnessing of light. Photonics encompasses the generation of light, the detection of light, the management of light through guidance, manipulation, and amplification. Luminescence phenomena are widely used in solid state light sources and radiation detectors based on point defects in insulators. Among them, 2 ed F3+ aggregate colour centres are induced in lithium fluoride (LiF) by various kinds of ionizing radiation and are laser active in the visible spectral region. They have been studied and successfully used at Frascati ENEA Research Centre for realizing prototypes of both miniaturized light sources, in the form of waveguides and vertical optical micro cavities for integrated optics, and of novel X-ray imaging detectors, based on the optical reading of photoluminescence of the locally induced defects. The highest intrinsic spatial resolution on a wide field of view and their versatility, achieved by the growth of LiF thin films by thermal evaporation, allow using such detectors in the frameworks of nano photonics, life science and energy. Recently, they have been also used in the advanced diagnostics of proton beams, with promising results in imaging and dosimetry based on photoluminescence

  16. Applications of noble gas radiation detectors to counter-terrorism

    International Nuclear Information System (INIS)

    Radiation detectors are essential tools in the detection, analysis and disposition of potential terrorist devices containing hazardous radioactive and/or fissionable materials. For applications where stand-off distance and source shielding are limiting factors, large detectors have advantages over small ones. The ability to distinguish between Special Nuclear Materials and false-positive signals from natural or man-made benign sources is also important. Ionization chambers containing compressed noble gases, notably xenon and helium-3, can be scaled up to very large sizes, improving the solid angle for acceptance of radiation from a distant source. Gamma spectrometers using Xe have a factor of three better energy resolution than NaI scintillators, allowing better discrimination between radioisotopes. Xenon detectors can be constructed so as to have extremely low leakage currents, enabling them to operate for long periods of time on batteries or solar cells. They are not sensitive to fluctuations in ambient temperature, and are therefore suitable for deployment in outdoor locations. Position-sensitive 3He chambers have been built as large as 3000 cm2, and with spatial resolution of less than 1 mm. Combined with coded apertures made of cadmium, they can be used to create images of thermal neutron sources. The natural background of spallation neutrons from cosmic rays generates a very low count rate, so this instrument could be quite effective at identifying a man-made source, such as a spontaneous fission source (Pu) in contact with a moderator (high explosive)

  17. Chemical protection against ionizing radiation: a survey of possible mechanisms

    International Nuclear Information System (INIS)

    A comparative survey is given of the hypotheses which have been proposed to explain the protecting and sensitizing action of chemical substances towards ionizing radiation such as gamma radiation or x radiation

  18. Intrinsic Radiation in Lutetium Based PET Detector: Advantages and Disadvantages

    CERN Document Server

    Wei, Qingyang

    2015-01-01

    Lutetium (Lu) based scintillators such as LSO and LYSO, are widely used in modern PET detectors due to their high stopping power for 511 keV gamma rays, high light yield and short decay time. However, 2.6% of naturally occurring Lu is 176Lu, a long-lived radioactive element including a beta decay and three major simultaneous gamma decays. This phenomenon introduces random events to PET systems that affects the system performance. On the other hand, the advantages of intrinsic radiation of 176Lu (IRL) continues to be exploited. In this paper, research literatures about IRL in PET detectors are reviewed. Details about the adverse effects of IRL to PET and their solutions, as well as the useful applications are presented and discussed.

  19. Progress in the development of a tracking transition radiation detector

    International Nuclear Information System (INIS)

    The purpose of the TRD/Tracker is to provide charged particle tracking in the r-z plane and to provide particle identification capabilities that are independent of and complementary to calorimetric methods. The tracking goals include observation of the charged particle multiplicity and topology, reconstruction of the primary vertex or vertices, and assignment of charged particles to the correct vertex. Particle identification goals include the independent validation of electron candidates selected by calorimetric signatures, the rejection of false electron candidates that rise from accidental overlaps of low momentum charged particles with photon-induced electromagnetic showers in the calorimeter, and the identification of electrons arising from Dalitz decays or from photon conversions. The authors report on progress towards the development of an integrated transition radiation detector and charged particle tracker. Mechanical design and simulation of a detector has been pursued; a prototype device with 240 channels has been constructed and tested. Innovative construction techniques have been developed

  20. Silicon detectors operating beyond the LHC collider conditions: scenarios for radiation fields and detector degradation

    International Nuclear Information System (INIS)

    Particle physics makes its greatest advances with experiments at the highest energies. The way to advance to a higher energy regime is through hadron colliders, or through non-accelerator experiments, as for example the space astroparticle missions. In the near future, the Large Hadron Collider (LHC) will be operational, and beyond that, its upgrades: the Super-LHC (SLHC) and the hypothetical Very Large Hadron Collider (VLHC). At the present time, there are no detailed studies for future accelerators, except those referring to LHC. For the new hadron collider LHC and some of its updates in luminosity and energy, the silicon detectors could represent an important option, especially for the tracking system and calorimetry. The main goal of this paper is to analyse the expected long-time degradation of the silicon as material and for silicon detectors, during continuous radiation, in these hostile conditions. The behaviour of silicon in relation to various scenarios for upgrade in energy and luminosity is discussed in the frame of a phenomenological model developed previously by the authors and now extended to include new mechanisms, able to explain and give solutions to discrepancies between model predictions and detector behaviour after hadron irradiation. Different silicon material parameters resulting from different technologies are considered to evaluate what materials are harder to radiation and consequently could minimise the degradation of device parameters in conditions of continuous long time operation. (authors)

  1. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sweany, M; Bernstein, A; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, S M

    2011-09-21

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 {+-} 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 {+-} 0.03 for Carbostyril-124, and 1.20 {+-} 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  2. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    International Nuclear Information System (INIS)

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultraviolet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as 1.88±0.02 for 4-Methylumbelliferone, stable within 0.5% over 50 days, 1.37±0.03 for Carbostyril-124, and 1.20±0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  3. Advanced radiation detector development mercuric iodide, silicon with internal gain, hybrid scintillator/semiconductor detectors. Comprehensive summary report, 1976-1985

    International Nuclear Information System (INIS)

    Accomplishments are reported in the development of a compound semi-insulator mercuric iodide (HgI2) for nuclear radiation detection and spectroscopy, early lung cancer detection and localization in the uranium miner/worker population, computer digital image processing and image reconstruction research, and a concept for multiple, filtered x-ray computed tomography scanning to reveal chemical compositional information. Another area of interest is the study of new advances in the area of silicon detectors with internal gain (''avalanche'')

  4. Cryogenic radiation detector with high-density conductor array

    International Nuclear Information System (INIS)

    A detector for infrared radiation, having a multicell photosensor disposed at the top of a cold finger in an evacuated container, comprises a stack of annular ceramic layers coaxially surrounding the cold finger and serving as supports for several arrays of radially extending metallic strips screen-printed on respective layers in angularly offset relationship. The metallic strips are conductively connected to respective cells of the sensor to serve as output leads thereof. The conductive connections include axially extending metal pins spacedly surrounding the cold finger while being linked with the sensor cells by short, thin wires spanning an intervening annular gap

  5. Radiation Hardness of CCD Vertex Detectors for the ILC

    OpenAIRE

    Sopczak, Andre; Bekhouche, Khaled; Bowdery, Chris; Damerell, Chris; Davies, Gavin; Dehimi, Lakhdar; Greenshaw, Tim; Koziel, Michal; Stefanov, Konstantin; Woolliscroft, Tim; Worm, Steve

    2006-01-01

    Results of detailed simulations of the charge transfer inefficiency of a prototype CCD chip are reported. The effect of radiation damage in a particle detector operating at a future accelerator is studied by examining two electron trap levels, 0.17 eV and 0.44 eV below the bottom of the conduction band. Good agreement is found between simulations using the ISE-TCAD DESSIS program and an analytical model for the 0.17 eV level. Optimum operation is predicted to be at about 250 K where the effec...

  6. Manufacturing process for electrodes for ionizing radiation detectors

    International Nuclear Information System (INIS)

    A manufacturing proces for electrodes for ionizing radiation detectors, particularly electrodes for X-ray multidetectors, is proposed. It consists of electrodepositing at least one layer of an electrically conducting material on at least one side of a relatively flat plate. A ductile material is used to form the conducting layer. The assembly formed by the plate covered by the ductile conducting material is subjected to pressing to crush the ductile conducting material at least in the zones where the assembly formed by the plate and the covering material has a total thickness superior to a constant thickness desired for the electrode

  7. IceCube: A Cubic Kilometer Radiation Detector

    International Nuclear Information System (INIS)

    IceCube is a 1 km3 neutrino detector now being built at the Amudsen-Scott South Pole Station. It consists of 4800 Digital Optical Modules (DOMs) which detect Cherenkov radiation from the charged particles produced in neutrino interactions. IceCube will observe astrophysical neutrinos with energies above about 100 GeV. IceCube will be able to separate νμ, νt, and ντ interactions because of their different topologies. IceCube construction is currently 50% complete

  8. A Study of an Acrylic Cerenkov Radiation Detector

    CERN Document Server

    Porter, B; De Barbaro, P; Bodek, Arie; Budd, H S

    1999-01-01

    An experiment investigating the angle of Cerenkov light emitted by 3-MeV electrons traversing an acrylic detector has been developed for use in the advanced physics laboratory course at the University of Rochester. In addition to exploring the experimental phenomena of Cerenkov radiation and total internal reflection, the experiment introduces students to several experimental techniques used in actual high energy and nuclear physics experiments, as well as to analysis techniques involving Poisson statistics. [to be published in Am. J. Phys. 67 (Oct/Nov 1999).

  9. Method of fabricating self-powered nuclear radiation detector assemblies

    International Nuclear Information System (INIS)

    In a method of fabricating a self-powered nuclear radiation detector assembly an emitter electrode wire and signal cable center wire are connected and disposed within the collector electrode tubular sheath with compressible insulating means disposed between the wires and the tubular sheath. The above assembly is reduced in diameter while elongating the tubular sheath and the emitter wire and signal cable wire. The emitter wire is reduced to a predetermined desired diameter, and is trimmed to a predetermined length. An end cap is hermetically sealed to the tubular sheath at the extending end of the emitter with insulating means between the emitter end and the end cap. (author)

  10. Intrinsic Radiation in Lutetium Based PET Detector: Advantages and Disadvantages

    OpenAIRE

    Wei, Qingyang

    2015-01-01

    Lutetium (Lu) based scintillators such as LSO and LYSO, are widely used in modern PET detectors due to their high stopping power for 511 keV gamma rays, high light yield and short decay time. However, 2.6% of naturally occurring Lu is 176Lu, a long-lived radioactive element including a beta decay and three major simultaneous gamma decays. This phenomenon introduces random events to PET systems that affects the system performance. On the other hand, the advantages of intrinsic radiation of 176...

  11. High-Speed, Low Power 256 Channel Gamma Radiation Array Detector ASIC Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Building on prior success in detector electronics, we propose to design and fabricate a 256 channel readout ASIC for solid state gamma radiation array detectors...

  12. Chemical applications of synchrotron radiation: Workshop report

    International Nuclear Information System (INIS)

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases

  13. Chemical applications of synchrotron radiation: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  14. High field CdS detector for infrared radiation

    Science.gov (United States)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  15. Response of personal radiation detectors to simulated criticality accident pulses

    International Nuclear Information System (INIS)

    Personal radiation detection instruments (PRDIs) are often used to augment the protection provided by the installed criticality accident alarm system (CAAS). ANSI/ANS-8.3-1997 provides examples of situations when PRDIs could be used, including hor ellipsisalarm system maintenance or testing, evacuation drills, activities in areas not normally occupied by personnel, or other special operations. These instruments were designed for use in radiological control applications. Consequently, documented performance capabilities under conditions typical of the initial pulse from a criticality accident are not readily available. This paper describes testing performed to demonstrate the capability of the PRDIs to respond to radiation pulses similar to that which would be expected to occur in the event of a criticality accident. Detector responses for low-power, oscillating, or slow excursions were either available from manufacturing data or bounded by the initial pulse

  16. Development of Personal Radiation Detector Instrument with Multi Channel Analyzer and Wireless Communication

    International Nuclear Information System (INIS)

    According to the Department of Homeland Security specifications regarding illicit traffic of nuclear materials, a Personal Radiation Detector has been developed. Personal Radiation Detectors are small, lightweight radiation monitors worn on the body, used to detect the presence of or to search for gamma and neutron radiation. This type of instrument can be supplied to unprofessional radiation trained personnel for detection and alert of radioactive materials. A wireless connection of Personal Radiation Detector instruments to a remote risk assessment center increases the possibly to contain a radiological incident in its beginning, until the nuclear Hazards Materials specialists estimate and evaluate the event. Integrating spectrometry capability and wireless communication into the Personal Radiation Detector has many advantages. For example, energy spectrum can be transmitted from the field in real time, enabling the specialist at the risk assessment center to manage the control actions in an event involving the presence of radioactive materials. A Personal Radiation Detector developed instrument, the Personal Detector system-100, includes internal low power Multi Channel Analyzer and Blue Tooth wireless communication. The detector includes neutron and gamma scintillators, a tube, novel pulse processing electronics and sophisticated software. In order to decrease the power consumption, a Cockcroft Walton type power supply was developed. The Personal Radiation Detector software enables fast alert in case of radiation increase over background. This work introduces the Multi Channel Analyzer design approach and experiments results showing the actual performances of the Personal Detector system-100

  17. Radiation Tolerance of Cryogenic Beam Loss Monitor Detectors

    CERN Document Server

    Kurfuerst, C; Bartosik, M; Dehning, B; Eisel, T; Sapinski, M; Eremin, V; Verbitskaya, E; Fabjan, C; Griesmayer, E

    2013-01-01

    At the triplet magnets, close to the interaction regions of the LHC, the current Beam Loss Monitoring system is sensitive to the particle showers resulting from the collision of the two beams. For the future, with beams of higher energy and intensity resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. Investigations are therefore underway to optimise the system by locating the beam loss detectors as close as possible to the superconducting coils of the triplet magnets. This means putting detectors inside the cold mass in superfluid helium at 1.9 K. Previous tests have shown that solid state diamond and silicon detectors as well as liquid helium ionisation chambers are promising candidates. This paper will address the final open question of their radiation resistance for 20 years of nominal LHC operation, by reporting on the results from high irradiation beam tests carried out at CERN in a...

  18. Large area radiation detectors based on II VI thin films

    Science.gov (United States)

    Quevedo-Lopez, Manuel

    2015-03-01

    The development of low temperature device technologies that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible, low metal content, sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, neutron/gamma-ray/x-ray detectors, etc. In this talk, our efforts to develop novel CMOS integration schemes, circuits, memory, sensors as well as novel contacts, dielectrics and semiconductors for flexible electronics are presented. In particular, in this presentation we discuss fundamental materials properties including crystalline structure, interfacial reactions, doping, etc. defining performance and reliability of II-VI-based radiation sensors. We investigate the optimal thickness of a semiconductor diode for thin-film solid state thermal neutron detectors. Besides II-VI materials, we also evaluated several diode materials, Si, CdTe,GaAs, C (diamond), and ZnO, and two neutron converter materials,10B and 6LiF. We determine the minimum semiconductor thickness needed to achieve maximum neutron detection efficiency. By keeping the semiconductor thickness to a minimum, gamma rejection is kept as high as possible. In this way, we optimize detector performance for different thin-film semiconductor materials.

  19. Processing and characterization of epitaxial GaAs radiation detectors

    CERN Document Server

    Wu, X; Arsenovich, T; Gädda, A; Härkönen, J; Junkes, A; Karadzhinova, A; Kostamo, P; Lipsanen, H; Luukka, P; Mattila, M; Nenonen, S; Riekkinen, T; Tuominen, E; Winkler, A

    2015-01-01

    GaAs devices have relatively high atomic numbers (Z=31, 33) and thus extend the X-ray absorption edge beyond that of Si (Z=14) devices. In this study, radiation detectors were processed on GaAs substrates with 110 $\\mu\\textrm{m}$ - 130 $\\mu\\textrm{m}$ thick epitaxial absorption volume. Thick undoped and heavily doped p$^+$ epitaxial layers were grown using a custom-made horizontal Chloride Vapor Phase Epitaxy (CVPE) reactor, the growth rate of which was about 10 $\\mu\\textrm{m}$/h. The GaAs p$^+$/i/n$^+$ detectors were characterized by Capacitance Voltage ($CV$), Current Voltage ($IV$), Transient Current Technique (TCT) and Deep Level Transient Spectroscopy (DLTS) measurements. The full depletion voltage ($V_{\\textrm{fd}}$) of the detectors with 110 $\\mu\\textrm{m}$ epi-layer thickness is in the range of 8 V - 15 V and the leakage current density is about 10 nA/cm$^2$. The signal transit time determined by TCT is about 5 ns when the bias voltage is well above the value that produces the peak saturation drift ve...

  20. Processing and characterization of epitaxial GaAs radiation detectors

    Science.gov (United States)

    Wu, X.; Peltola, T.; Arsenovich, T.; Gädda, A.; Härkönen, J.; Junkes, A.; Karadzhinova, A.; Kostamo, P.; Lipsanen, H.; Luukka, P.; Mattila, M.; Nenonen, S.; Riekkinen, T.; Tuominen, E.; Winkler, A.

    2015-10-01

    GaAs devices have relatively high atomic numbers (Z=31, 33) and thus extend the X-ray absorption edge beyond that of Si (Z=14) devices. In this study, radiation detectors were processed on GaAs substrates with 110 - 130 μm thick epitaxial absorption volume. Thick undoped and heavily doped p+ epitaxial layers were grown using a custom-made horizontal Chloride Vapor Phase Epitaxy (CVPE) reactor, the growth rate of which was about 10 μm / h. The GaAs p+/i/n+ detectors were characterized by Capacitance Voltage (CV), Current Voltage (IV), Transient Current Technique (TCT) and Deep Level Transient Spectroscopy (DLTS) measurements. The full depletion voltage (Vfd) of the detectors with 110 μm epi-layer thickness is in the range of 8-15 V and the leakage current density is about 10 nA/cm2. The signal transit time determined by TCT is about 5 ns when the bias voltage is well above the value that produces the peak saturation drift velocity of electrons in GaAs at a given thickness. Numerical simulations with an appropriate defect model agree with the experimental results.

  1. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    International Nuclear Information System (INIS)

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs

  2. Room temperature aluminum antimonide radiation detector and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W

    2015-03-03

    In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).

  3. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  4. Some issues of superconducting tunnel junction for radiation detector

    International Nuclear Information System (INIS)

    In the case of applying superconducting tunnel junctions to devices, it is roughly divided into those utilizing Josephson effect which is the tunnel effect of Cooper pair and those utilizing the tunnel effect of quasi-particles. Owing to the high speed switching of Josephson effect, the development of computer elements, analog signal processing, A/D converters and others is advanced. Owing to the high sensitivity to magnetic fields, there is SQUID application, and owing to the high accuracy, it is applied to voltage standard and potentiometers. As the devices utilizing the tunnel effect of quasi-particles, owing to its high sensitivity, the development of radiation detectors, and owing to its high speed and nonequilibrium superconductivity, the development of superconducting three-terminal elements are advanced. Owing to its high frequency, it is applied to receivers and amplifiers. As the general performance demanded for superconducting tunnel junctions, large gap voltage, large Vm value, mechanical strength, the stability to thermal cycles, the controllability and reproducibility of critical current, the flexibility of manufacturing processes and so on are enumerated. The tunnel junctions for radiation detectors are described. (K.I.)

  5. Methodology for Assessing Radiation Detectors Used by Emergency Responders

    International Nuclear Information System (INIS)

    The threat of weapons of mass destruction terrorism resulted in the U.S. Department of Homeland Security deploying large quantities of radiation detectors throughout the emergency responder community. However, emergency responders specific needs were not always met by standard health physics instrumentation used in radiation facilities. Several American National Standards Institute standards were developed and approved to evaluate the technical capabilities of detection equipment. Establishing technical capability is a critical step, but it is equally important to emergency responders that the instruments are easy to operate and can withstand the rugged situations they encounter. The System Assessment and Validation for Emergency Responders (SAVER) Program (managed by the U.S. Department of Homeland Security, Office of Grants and Training, Systems Support Division) focuses predominantly on the usability, ergonomics, readability, and other features of the detectors, rather than performance controlled by industry standards and the manufacturers. National Security Technologies, LLC, as a SAVER Technical Agent, conducts equipment evaluations using active emergency responders who are familiar with the detection equipment and knowledgeable of situations encountered in the field, which provides more relevant data to emergency responders

  6. A semiconductor parameter analyzer for ionizing radiation detectors

    International Nuclear Information System (INIS)

    Electrometers and ion chamber are normally used to make several types of measurements in a radiation field and there is a unique voltage applied to each detector type. Some electronic devices that are built of semiconductor materials like silicon crystal can also be used for the same purpose. In this case, a characteristic curve of the device must be acquired to choose an operation point which consists of an electrical current or voltage to be applied to the device. Unlike ion chambers, such an electronic device can have different operation points depending on its current versus voltage curve (I x V). The best operation point of the device is also a function of the radiation, energy, dose rate and fluence. The purpose of this work is to show a semiconductor parameter analyzer built to acquire I x V curves as usually, and the innovation here is the fact that it can be used to obtain such a parametric curve when a quad-polar device is under irradiation. The results demonstrate that the system is a very important tool to scientists interested to evaluate a semiconductor detector before, during and after irradiation. A collection of results for devices under an X-ray beam and a neutron fluence are presented: photodiode, phototransistors, bipolar transistor and MOSFET. (author)

  7. Radiation flaw detector for testing non-uniform surface bodies of revolution

    International Nuclear Information System (INIS)

    Radiation flaw detector for testing bodies of revolution with non-uniform surface, welded joints, etc., based on spatial filtration and differentiation of ionizing radiation flux has been described. The calculation of the most important unit of flaw detector - integrators - is made. Experimental studies of the sensitivity have shown, that the radiation flaw detector can be used for rapid testing of products with the sensitivity comparable with the sensitivity of radiographic testing of steel

  8. Experimental investigation of the radiation shielding efficiency of a MCP detector in the radiation environment near Jupiter's moon Europa

    Science.gov (United States)

    Tulej, M.; Meyer, S.; Lüthi, M.; Lasi, D.; Galli, A.; Piazza, D.; Desorgher, L.; Reggiani, D.; Hajdas, W.; Karlsson, S.; Kalla, L.; Wurz, P.

    2016-09-01

    Neutral Ion Mass spectrometer (NIM) is one of the instruments in the Particle Environmental Package (PEP) designed for the JUICE mission of ESA to the Jupiter system. NIM, equipped with a sensitive MCP ion detector, will conduct detailed measurements of the chemical composition of Jovian icy moons exospheres. To achieve high sensitivity of the instrument, radiation effects due to the high radiation background (high-energy electrons and protons) around Jupiter have to be minimised. We investigate the performance of an Al-Ta-Al composite stack as a potential shielding against high-energy electrons. Experiments were performed at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute, Villigen, Switzerland. The facility delivers a particle beam containing e-, μ- and π- with momentum from 17.5 to 345 MeV/c (Hajdas et al., 2014). The measurements of the radiation environment generated during the interaction of primary particles with the Al-Ta-Al material were conducted with dedicated beam diagnostic methods and with the NIM MCP detector. In parallel, modelling studies using GEANT4 and GRAS suites were performed to identify products of the interaction and predict ultimate fluxes and particle rates at the MCP detector. Combination of experiment and modelling studies yields detailed characterisation of the radiation fields produced by the interaction of the incident e- with the shielding material in the range of the beam momentum from 17.5 to 345 MeV/c. We derived the effective MCP detection efficiency to primary and secondary radiation and effective shielding transmission coefficients to incident high-energy electron beam in the range of applied beam momenta. This study shows that the applied shielding attenuates efficiently high-energy electrons. Nevertheless, owing to nearly linear increase of the bremsstrahlung production rate with incident beam energy, above 130 MeV their detection rates measured by the MCP

  9. Modifications of radiation detection response of PADC track detectors by photons

    CERN Document Server

    Sinha, D

    1998-01-01

    Photon induced modifications in polyalyldiglycol carbonate (PADC) track detectors have been studied in the dose range of 10 sup 1 -10 sup 6 Gy. It was found that some of the properties like bulk-etch rate, track-etch rate got enhanced at the dose of 10 sup 6 Gy. Activation energy for bulk-etching has been determined for different gamma doses. In order to correlate the high etch rate with the chemical modifications, UV-Vis, IR and ESR studies were carried out. These studies clearly give the indication that radiation damage results into radical formation through bond cleavage. TGA study was performed for understanding the thermal resistance of this detector. The results are presented and discussed.

  10. Advanced radiation detector development: Advanced semiconductor detector development: Development of a oom-temperature, gamma ray detector using gallium arsenide to develop an electrode detector

    International Nuclear Information System (INIS)

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. Our general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, we have worked primarily in the development of semiconductor spectrometers with open-quotes single carrierclose quotes response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. We have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in our laboratory in the Phoenix Building on the North Campus. In addition to our laboratory based activities, Professor Knoll has also been a participant in several Department of Energy review activities held in the Forrestal Building and at the Germantown site. The most recent of these has been service on a DOE review panel chaired by Dr. Hap Lamonds that is reviewing the detector development programs supported through the Office of Arms Control and International Security

  11. Radiation dose reduction by chemical decontamination

    International Nuclear Information System (INIS)

    The paper deals with the role of chemical decontamination for reducing radiation exposure during major maintenance activities like in-service inspection of coolant channels and EMCCR works on the Primary Heat Transport System and associated components. In order to achieve the man rem reduction, MAPS has successfully carried out six decontamination campaigns of PHT system, three for MAPS-1 and three for MAPS-2. The complexing agent EDTA used in the first four DCDs was changed over to Nitrilo Tri-Acetic acid (NTA) in the subsequent two DCDs and the beneficial effects of the same on dose reduction are detailed. With the use of Nitrilo Tri-Acetic acid (NTA) as complexing agent, the need to add during the process to augment the loss due to IX pickup and radiation decomposition was avoided as NTA displayed better radiation stability and was not getting picked up in the cation IX. Good decontamination factors were observed in the monel with NTA, as copper and nickel complexes of NTA had lower stability constants than that with EDTA. An overview of all these decontaminations along with the brief description of the process and benefits in terms of dose reduction is described. Further, the chemical decontamination procedures adopted for minimising the loose and the fixed contamination on the seal plugs of the 306 coolant channels of Unit-2 during EMCCR works is also presented. The pressure tubes are rolled into the end fittings which have got seal plugs to prevent the PHT water coming out of the system. The 612 seal plugs made of stainless steel were decontaminated using ∼ 10% diammonium hydrogen citrate maintaining a temperature of 70 to 80 deg C. All the 612 seal plugs were successfully decontaminated in 41 batches. The process details and results obtained are reviewed. (author)

  12. Use of radiation detectors in remote monitoring for containment and surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, S.A.; Ross, M. [Sandia National Labs., Albuquerque, NM (United States); Bonino, A. [Nuclear Regulatory Authority of Argentina, Buenos Aires (Argentina); Lucero, R.; Hasimoto, Yu [PNC Oarai Engineering Center, Ibaraki (Japan)

    1998-07-01

    Radiation detectors have been included in several remote monitoring field trial systems to date. The present study considers detectors at Embalse, Argentina, and Oarai, Japan. At Embalse four gamma detectors have been operating in the instrumentation tubes of spent fuel storage silos for up to three years. Except for minor fluctuations, three of the detectors have operated normally. One of the detectors appears never to have operated correctly. At Oarai two gamma detectors have been monitoring a spent-fuel transfer hatch for over 18 months. These detectors have operated normally throughout the period, although one shows occasional noise spikes.

  13. Field Deployable Gamma Radiation Detectors for DHS Use

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  14. Field Deployable Gamma Radiation Detectors for DHS Use

    International Nuclear Information System (INIS)

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER(trademark), which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack(trademark) that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  15. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    CERN Document Server

    Sweany, M; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, M

    2011-01-01

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 $\\pm$ 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 $\\pm$ 0.03 for Carbostyril-124, and 1.20 $\\pm$ 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modele...

  16. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Kutcher, Susan W [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Palsoz, Witold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Berding, Martha [SRI International, Menlo Park, CA (United States); Burger, Arnold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States)

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated. Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.

  17. Fabrication and performance of p-i-n CdTe radiation detectors

    International Nuclear Information System (INIS)

    We report on the fabrication and performance of CdTe radiation detectors in a new p-i-n structure which helps to reduce the leakage current to a minimum level. Chlorine-doped single-crystal CdTe substrates having resistivity in the order of 109 Ω cm were used in this study. Iodine-doped n-type CdTe layers were grown homoepitaxially on one face of each crystals using the hydrogen plasma-radical-assisted metalorganic chemical vapor deposition technique at low substrate temperature of 150 deg. C. Indium electrode was evaporated on the n-CdTe side while a gold electrode on the opposite side acted as a p-type contact. Detectors thus fabricated exhibited low leakage current (below 0.4 nA/mm2 at 250 V applied reverse bias for the best one) and good performance at room temperature. Spectral response of the detectors showed improved energy resolution for Am-241, Co-57, and Cs-137 radioisotopes. Detectors were further tested with X-ray photons of different intensities for their potential application in imaging systems and promising responses were obtained

  18. Construction and performance of the ALICE Transition Radiation Detector

    International Nuclear Information System (INIS)

    The Transition Radiation Detector (TRD) has been designed to identify electrons in the pion dominated background of heavy-ions collisions. As electrons do not interact strongly, they allow to probe the early phase of the interaction. As trigger on high-pt e+e- pairs within 6.5 μs after collision, the TRD can initiate the readout of the Time Projection Chamber (TPC). The TRD is composed of 18 super modules arranged in a barrel geometry in the central part of the ALICE detector. It offers almost 1.2 million readout channels on a total area of close to 700 m2. The particle detection properties of the TRD depend crucially on details in the design of the cathode pad readout plane. The design parameters of the TRD readout pad plane are introduced and analysed regarding their physical properties. The noise patterns observed in the detector can be directly linked to the static pad capacitance distribution and corrected for it. A summary is then given of the TRD services infrastructure at CERN: a 70 kW low voltage system, a 1080 channel 2.5 kV high voltage setup and the Ethernet network serving more than 600 nodes. Two beam tests were conducted at the CERN PS accelerator in 2004 and 2007 using full sized TRD chambers from series production. Details on the setups are presented with particular emphasis on the custom tailored data acquisition systems. Finally the performance of the TRD is studied, focusing on the pion rejection capability and the excellent position resolution. (orig.)

  19. Construction and performance of the ALICE Transition Radiation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Emschermann, David

    2010-01-20

    The Transition Radiation Detector (TRD) has been designed to identify electrons in the pion dominated background of heavy-ions collisions. As electrons do not interact strongly, they allow to probe the early phase of the interaction. As trigger on high-p{sub t} e{sup +}e{sup -} pairs within 6.5 {mu}s after collision, the TRD can initiate the readout of the Time Projection Chamber (TPC). The TRD is composed of 18 super modules arranged in a barrel geometry in the central part of the ALICE detector. It offers almost 1.2 million readout channels on a total area of close to 700 m{sup 2}. The particle detection properties of the TRD depend crucially on details in the design of the cathode pad readout plane. The design parameters of the TRD readout pad plane are introduced and analysed regarding their physical properties. The noise patterns observed in the detector can be directly linked to the static pad capacitance distribution and corrected for it. A summary is then given of the TRD services infrastructure at CERN: a 70 kW low voltage system, a 1080 channel 2.5 kV high voltage setup and the Ethernet network serving more than 600 nodes. Two beam tests were conducted at the CERN PS accelerator in 2004 and 2007 using full sized TRD chambers from series production. Details on the setups are presented with particular emphasis on the custom tailored data acquisition systems. Finally the performance of the TRD is studied, focusing on the pion rejection capability and the excellent position resolution. (orig.)

  20. A new TXRF vacuum chamber with sample changer for chemical analysis using silicon drift chamber detector

    International Nuclear Information System (INIS)

    Full text: Several TXRF spectrometers for chemical analysis as well as for wafer surface analysis are commercially available. But there is no one available for chemical analysis offering the possibility to measure the samples in vacuum conditions. Vacuum of 10-2 mbar in the sample environment helps to reduce the background due to scattering from air, thus to improve the detection limits as well as to reduce the absorption of low energy fluorescence radiation from low Z elements and extend the elemental range to be measured and removes the Ar lines from the spectrum. The x-ray group of the Atominstitut designed and fabricated a new vacuum chamber for TXRF equipped with a 12 position sample changer from Italstructures, Riva, Italy. The detector used was a 10 mm2 silicon drift detector (KETEK, Munich, Germany), offering the advantage of electrically cooling, so no LN2 is required. The chamber was designed to be attached to a diffraction tube housing, e.g. with a fine focus Mo-x-ray tube and uses a multilayer monochromator. Spectra are stored by a small AMTEK MCA and control between sample changer and MCA communication is done by a modified AMPTEK software. The performance is expressed in detection limits of 1 pg Rb for Mo Ka excitation with 50 kV, 40 mA excitation conditions, 1000 s lifetime, obtained from a sample containing 600 pg Rb as single element standard. Details on performance, reproducibility and light element excitation and detection are presented. (author)

  1. Technique of absolute efficiency determination for gamma radiation semiconductor detectors

    International Nuclear Information System (INIS)

    Simple technique is suggested to determine the absolute efficiency (E) of semiconductor detectors (SCD) which employes low-intensity neutron sources wide spread in scientific laboratories. The technique is based on using radioactive nuclide gamma radiation in decay chains of heavy element fission fragments, uranium-235, for example. Cumulative yields of a number of nulcides following heavy element fission are measured to a high accuracy (1-5%), which permits to . the value E is determined for a wide energy range (from X- ray to some MeV); using a nuclide with a well known decay scheme and measured to a high accuracy cumulative yield 140La, for example, one can calibrate in absolute values comparatively easily obtained plots of the SCD relative efficiency. The technique allows to determine the E value for extended plane (and volumetric) sources of an arbitrary form. Some nuclides, convenient for the determination of E, and their nuclear characteristics are tabulated

  2. Process guiding for the ZEUS transition-radiation detector

    International Nuclear Information System (INIS)

    The Transition-Radiation-Detector (TRD) has been built to separate electrons from pions. It needs a complex gassystem which has to be controlled and monitored by a computer. To enable a test of the gassystem and the TRD's highvoltagesystem a stand-alone-version of the HWC/HWM (hardware-control and hardware-monitoring) had been developed. This stand-alone-version consists of an elementary computer- and software-system. VIP and MVME-147 computers have been selected for the computer-hardware. The computers for realtimeprocessing base on this processors, the VMEbus and digital to analog converters and analog to digital converters. The software-system based on OS/9 device-drivers. With this components monitoring and controlling software has been written. (orig.)

  3. Personal Radiation Detector Field Test and Evaluation Campaign

    International Nuclear Information System (INIS)

    Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as 'Pagers'. This test, 'Bobcat', was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS

  4. Recent developments in photomultipliers for nuclear radiation detectors

    International Nuclear Information System (INIS)

    One of the recent developments in Hamamatsu photomultipliers for nuclear radiation detectors is a small photomultiplier developed for positron CT in nuclear medicine having excellent timing properties; the time resolution with BGO and CsF scintillators was observed for 511 keV positron annihilation γ-rays to be 2.24 ns and 0.34 ns, respectively. Two types of new photomultipliers having special structures have recently been developed. One is a photomultiplier for high pressure use capable of withstanding up to 600 atm pressure while another is a 'large-angle-of-view' photomultiplier for a proton decay experiment having a 20' diameter hemispherical photocathode. A newly developed proximity focus type of microchannel plate photomultiplier provides a very fast time response of 130 ps and is usable in strong magnetic fields such as in calorimeters. (orig.)

  5. Radiation damage test of position sensitive silicon detectors

    International Nuclear Information System (INIS)

    A study of radiation damage of position sensitive silicon detectors (PSDs), for use as a position monitor of high energy heavy ion beams, was carried out. It is revealed that the position linearity of the standard PSD is strongly affected even by an absorbed dose around 100 Gy. The reason of the distortion of position linearity was considered to be a positive charge build-up in the SiO2 layer covering the PSD. To overcome the problem, new types of PSDs have been developed raising impurity density in the resistive layer and removing the SiO2 layer. A PSD with a distortion of less than 100 μm over an effective area of 13 mm x 13 mm is obtained which is usable as a heavy ion beam monitor. (orig.)

  6. Personal Radiation Detector Field Test and Evaluation Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Chris A. Hodge, Ding Yuan, Raymond P. Keegan, Michael A. Krstich

    2007-07-09

    Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as 'Pagers'. This test, 'Bobcat', was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS.

  7. Two-dimension multiwire detector for ionizing radiation

    International Nuclear Information System (INIS)

    A multiwire proportional Counter of 100 x 100 mm2 sensitive area has been developed. The chamber is formed by three planes: a cathode plane of 50 μm gold coated tungsten wires stretched on an Epoxi frame; and anode plane made of 20 μm gold plated tungsten wires stretched at 45 deg C with respect to the first cathode wires; and second cathode plane made of copper strips on a printed circuit board at 90 deg C with respect to the first cathode. The cathode strips are connected to the taps of delay-lines chips. The position of the incidence of radiation is extracted by measuring the time difference of the pulse arriving at the extremities of the delay-line chain for each coordinate. The performance of the detector has been tested using 5.89 KeV X-rays from a 55 Fe source, and 8.04 KeV from Rigaku X-rays generator, operating the detector with 90% Ar + 10% CH4 gas mixture at 930 mbar. An energy resolution of 26% was obtained. An integral non linearity better than 0.3% and a position resolution better than 1 mm have been observed. The information corresponding to each one of the coordinates were digitized by a TDC in a CAMAC system and stored event by event in a micro-computer (IBM-AT). (author)

  8. Radiation Detector Characterization at APO While Stacking pbars in 1999

    International Nuclear Information System (INIS)

    The Main Injector provided beam for pbar stacking for the first time in 1999 over the period 12/20 to 12/21. The purpose of this memo is to record some observations on the response of various radiation detectors as a function of beam on the pbar targel. The detectors include a Scarecrow in the APO Vault, a Chipmunk just upstream of the APO vault, and a Chipmunk in the water cage adjacent to the Pulsed Magnet pump skid in the water systems cage. In addition, there are air monitors, one sampling in the PreVault enclosure and one sampling at the exhaust stack at the upstream end of lhe PreTarget enclosure. All data was collected by the ACNET system Lumberjack data logger. Beam intensity data was summed over consecutive 10 minute periods and normalized to an hourly intensity. The Chipmunk, Scarecrow, and Air Monitor data are based 10 minute averages taken over periods which coincide with normalized beam intensity.

  9. Advances in Physical and Biological Radiation Detectors. Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors

    International Nuclear Information System (INIS)

    Radiation dosimetry is a fundamental part of all radiation protection work. The measurements are made with a variety of instruments, and health physicists, after professional interpretation of the data, can assess the levels of exposure which might be encountered in a given area or the individual doses received by workers, visitors and others at places where the possibility of radiation exposure exists. The types of radiation concerned here are photon radiations, ranging from soft X-rays to gamma rays, and particulate radiations such as β-rays, α-particles, protons, neutrons and fission fragments. The type of technique used depends not only on the type of radiation but also on such factors as whether the radiation is from a source internal or external to the body. Radiation dosimetry is not only used at nuclear facilities; it has diverse applications, for example in determining doses when radiation sources are employed for medical diagnostics and therapy, in safeguarding workers in any industry where isotopes are used, and in assessing the effect of both naturally occurring and man-made radiations on the general public and the environment. The advances of modern technology have increased the variety of sources; an example can be given from colour television, where the high potential necessary in certain colour cathode-ray tubes generates a non-negligible amount of X-rays. The Symposium on New Developments in Physical and Biological Radiation Detectors was one of a continuing series of meetings in which the International Atomic Energy Agency furthers the exchange of information on all aspects of personnel and area dosimetry. The Symposium was devoted in particular to a study of the dose meters themselves - their radiation-sensitive elements (both physical and biological),their instrumentation, and calibration and standardization. Several speakers suggested that the situation in the standardization and calibration of measuring equipment and sources was

  10. On an inertial observer's interpretation of the detection of radiation by linearly accelerated particle detectors

    International Nuclear Information System (INIS)

    The detection of radiation by linearly accelerated particle detectors is discussed from the point of view of an inertial observer. An alternative interpretation to that of Unruh is presented. It is argued that the main physical effect is the emission of negative energy (as compared with Minkowski space) by the detector. This is shown to be the only important effect for 'macroscopic' detectors. (author)

  11. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    International Nuclear Information System (INIS)

    An optimized examination system and method based on the Reverse Geometry X-Ray trademark (RGX trademark) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs

  12. Chemical effects of ionizing radiation and sonic energy in the context of chemical evolution

    International Nuclear Information System (INIS)

    Ionizing radiation and sonic energy are considered as sources for chemical evolution processes. These sources have still a modest place in the interdisciplinary approach for the prebiological synthesis of organic compounds. Studies in Radiation Chemistry and Sonochemistry can provide a deeper insight into the chemical processes that may have importance for prebiotic chemistry. The present work concerns the analysis of some chemical reactions induced by ionizing radiation or cavitation in aqueous media that may be relevant to chemical evolution studies. (author)

  13. Silicon pixel detectors of a double-sided guard ring structure for radiation hardness

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyo Sung [Yonsei Univ., Wonju (Korea, Republic of); Chien, Chih Yung [Johns Hopkins Univ., Baltimore (United States)

    2003-08-01

    The lifetime of silicon detectors in a severe radiation environment at CERN LHC depends strongly upon careful detector design and material selection due to the anticipated radiation -induced damage. We recently fabricated more radiation-tolerant silicon pixel detectors of a double-sided guard ring structure. The electrical characterization of such detectors was performed before and after irradiation to neutron fluence (1Mev equivalent ) up to 6 x 10{sup 14} n/cm{sup 2} by measuring the leakage current, the full depletion voltage, and the potential distribution over the guard rings.

  14. Two-dimension multiwire detector for ionizing radiation; Detector multifilar bidimensional para radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Barberino, Carlos Henrique

    1993-12-31

    A multiwire proportional Counter of 100 x 100 mm{sup 2} sensitive area has been developed. The chamber is formed by three planes: a cathode plane of 50 {mu}m gold coated tungsten wires stretched on an Epoxi frame; and anode plane made of 20 {mu}m gold plated tungsten wires stretched at 45 deg C with respect to the first cathode wires; and second cathode plane made of copper strips on a printed circuit board at 90 deg C with respect to the first cathode. The cathode strips are connected to the taps of delay-lines chips. The position of the incidence of radiation is extracted by measuring the time difference of the pulse arriving at the extremities of the delay-line chain for each coordinate. The performance of the detector has been tested using 5.89 KeV X-rays from a {sup 55} Fe source, and 8.04 KeV from Rigaku X-rays generator, operating the detector with 90% Ar + 10% CH{sub 4} gas mixture at 930 mbar. An energy resolution of 26% was obtained. An integral non linearity better than 0.3% and a position resolution better than 1 mm have been observed. The information corresponding to each one of the coordinates were digitized by a TDC in a CAMAC system and stored event by event in a micro-computer (IBM-AT). (author) 56 refs., 68 figs.

  15. Radiation detector device for rejecting and excluding incomplete charge collection events

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Aleksey E.; De Geronimo, Gianluigi; Vernon, Emerson; Yang, Ge; Camarda, Giuseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B.

    2016-05-10

    A radiation detector device is provided that is capable of distinguishing between full charge collection (FCC) events and incomplete charge collection (ICC) events based upon a correlation value comparison algorithm that compares correlation values calculated for individually sensed radiation detection events with a calibrated FCC event correlation function. The calibrated FCC event correlation function serves as a reference curve utilized by a correlation value comparison algorithm to determine whether a sensed radiation detection event fits the profile of the FCC event correlation function within the noise tolerances of the radiation detector device. If the radiation detection event is determined to be an ICC event, then the spectrum for the ICC event is rejected and excluded from inclusion in the radiation detector device spectral analyses. The radiation detector device also can calculate a performance factor to determine the efficacy of distinguishing between FCC and ICC events.

  16. Performance characteristics of a silicon photomultiplier based compact radiation detector for Homeland Security applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Min, E-mail: ramilab2011@gmail.com; Joo, Koan Sik

    2015-05-01

    A next-generation compact radiation detector was studied for more accurate measurement of radiation and for improvement of detector reliability for the purpose of developing radiation protection technology and military applications. The previously used radiation detector had some limitations due to its bulky size, limited range and its environment for radiation measurement. On the other hand, the compact radiation detector examined in this study utilizes a silicon photomultiplier which appears to be more suitable for this application because of its physical superiority characterized by its small size, high sensitivity, and durability. Accordingly, a SiPM based scintillation detector has been developed as part of this basic study of military radiation detectors. The detector has been tested for its ability to obtain the operating characteristics of a sensor and analyzed with variations of parameter values and for efficiency of detection in accordance with its ability to measure radiation in the environment. Two SiPM based Scintillation detectors with LYSO, BGO and CsI:Tl scintillators were developed and the detectors were analyzed by a number of operating characteristics such as reverse bias, operating temperature and high magnetic field, that depend on environmental changes in radiation measurement. The Photon count rate and spectra were compared for these three scintillators. We found that there were variations in the radiation detection which were characterized by reverse bias, temperature and high magnetic field. It was also found that there was an 11.9% energy resolution for the LYSO, 15.5% for BGO and 13.5% for CsI:Tl using Array SiPM, and 18% for CsI:Tl energy resolution using single SiPM when we measured energy resolution of 511 keV for {sup 22}Na. These results demonstrate the potential widespread use of SiPM based compact radiation detectors for Homeland Security applications.

  17. Performance characteristics of a silicon photomultiplier based compact radiation detector for Homeland Security applications

    International Nuclear Information System (INIS)

    A next-generation compact radiation detector was studied for more accurate measurement of radiation and for improvement of detector reliability for the purpose of developing radiation protection technology and military applications. The previously used radiation detector had some limitations due to its bulky size, limited range and its environment for radiation measurement. On the other hand, the compact radiation detector examined in this study utilizes a silicon photomultiplier which appears to be more suitable for this application because of its physical superiority characterized by its small size, high sensitivity, and durability. Accordingly, a SiPM based scintillation detector has been developed as part of this basic study of military radiation detectors. The detector has been tested for its ability to obtain the operating characteristics of a sensor and analyzed with variations of parameter values and for efficiency of detection in accordance with its ability to measure radiation in the environment. Two SiPM based Scintillation detectors with LYSO, BGO and CsI:Tl scintillators were developed and the detectors were analyzed by a number of operating characteristics such as reverse bias, operating temperature and high magnetic field, that depend on environmental changes in radiation measurement. The Photon count rate and spectra were compared for these three scintillators. We found that there were variations in the radiation detection which were characterized by reverse bias, temperature and high magnetic field. It was also found that there was an 11.9% energy resolution for the LYSO, 15.5% for BGO and 13.5% for CsI:Tl using Array SiPM, and 18% for CsI:Tl energy resolution using single SiPM when we measured energy resolution of 511 keV for 22Na. These results demonstrate the potential widespread use of SiPM based compact radiation detectors for Homeland Security applications

  18. Design of a Silicon Photomultiplier Based Compact Radiation Detector for Homeland Security Screening

    International Nuclear Information System (INIS)

    Next-generation compact radiation detector was studied for more accurate measurement of radiation and improvement of reliability of the detector with purpose of developing of radiation protection technology and military application. The radiation detector which was used previously had some limitations due to the bulky size, limited range and the environment of radiation measurement. On the other hand, the compact radiation detector under this study which has adopted the silicon photomultiplier seems to be suitable for the application because of its physical excellence which are characterized by its small size, high sensitivity and durability. Accordingly, a SiPM based Scintillation detector has been made as a part of basic study of military radiation detector development. The detector has been tested for obtaining the operating characteristics of a sensor and analyzed with variation of parameter values and the efficiency of detection in accordance with the factor of measurement environment of radiation. The two SiPM based Scintillation detectors with the LYSO, BGO and CsI:Tl scintillator were made and the detectors were analyzed with the variation of operating characteristics as reverse bias, operating temperature and high magnetic field that are depend on environmental changes of radiation measurement. The results of three scintillators for a photon count rate and spectra were compared with each other. It was found that there are variations of radiation detection which are characterized by reverse bias, temperature and high magnetic field. Also, It was found that there were the 11.9 % for the LYSO, 15.5 % for BGO and 13.5 % for CsI:Tl energy resolution using array SiPM, and 18 % for CsI:Tl energy resolution using single SiPM, respectively when we measured energy resolution of 511 keV for 22Na. The results demonstrate the potential of SiPM based compact radiation detector to be used widely for Homeland Security applications. (authors)

  19. Fast neutron dosimetry using CR-39 track detectors with polyethylene as radiator

    International Nuclear Information System (INIS)

    The chemical etching parameters (etching time, temperature, normality of etchant, etc.) for the use of CR-39 (allyl diglycol carbonate – Lantrack®) as a fast neutron dosimeter have been optimized. The CR-39 chips, placed under a 1.5 mm polyethylene radiator, were exposed for calibration to an 241Am-Be source at different time intervals for a given neutron fluence. After several chemical etching processes of the detectors with different conditions, the optimum characteristics for the chemical etching were found at 6N KOH solution, 60 ± 1 °C, for 12 h. An accurate relationship between the dose and fluence calculations was obtained as a function of the track density. - Highlights: ► Optimum etching time for fast neutron irradiated CR-39 track detectors is found. ► Relationship between dose and fluence obtained as a function of the track density. ► Results are consistent with those reported elsewhere, and extend the dose range

  20. Novel computational methods for image analysis and quantification using position sensitive radiation detectors

    OpenAIRE

    Sanchez Crespo, Alejandro

    2005-01-01

    The major advantage of position sensitive radiation detector systems lies in their ability to non invasively map the regional distribution of the emitted radiation in real-time. Three of such detector systems were studied in this thesis, gamma-cameras, positron cameras and CMOS image sensors. A number of physical factors associated to these detectors degrade the qualitative and quantitative properties of the obtained images. These blurring factors could be divided into two groups. The first g...

  1. Radiation detection. Chapter 4. Effects of tellurium precipitates on charge collection in CZT (CdZnTe) nuclear radiation detectors

    International Nuclear Information System (INIS)

    It has been recently demonstrated that individual Tellurium (Te) precipitates identified with infrared (IR) transmission microscopes in radiation detector-grade CdZnTe (CZT) crystals correlate precisely with poor charge collection. This indicates that Te precipitates adversely affect the electron charge collection efficiency and thus the performance of nuclear radiation detectors produced from the crystals. By employing different techniques it is investigated how Te precipitates affect different CZT devices. These measurements indicate that Te precipitates put limits on the size, electrode configurations and spectral performance of CZT detectors. These limits can be relaxed by lowering the size and density of Te precipitates in the detectors

  2. Performance of bulk SiC radiation detectors

    CERN Document Server

    Cunningham, W; Lamb, G; Scott, J; Mathieson, K; Roy, P; Bates, R; Thornton, P; Smith, K M; Cusco, R; Glaser, M; Rahman, M

    2002-01-01

    SiC is a wide-gap material with excellent electrical and physical properties that may make it an important material for some future electronic devices. The most important possible applications of SiC are in hostile environments, such as in car/jet engines, within nuclear reactors, or in outer space. Another area where the material properties, most notably radiation hardness, would be valuable is in the inner tracking detectors of particle physics experiments. Here, we describe the performance of SiC diodes irradiated in the 24 GeV proton beam at CERN. Schottky measurements have been used to probe the irradiated material for changes in I-V characteristics. Other methods, borrowed from III-V research, used to study the irradiated surface include atomic force microscope scans and Raman spectroscopy. These have been used to observe the damage to the materials surface and internal lattice structure. We have also characterised the detection capabilities of bulk semi-insulating SiC for alpha radiation. By measuring ...

  3. Radiation damage on p-type silicon detectors

    CERN Document Server

    Pirollo, S; Borchi, E; Bruzzi, M; Catacchini, E; Lazanu, S; Li, Z; Sciortino, S

    1999-01-01

    Two sets of p-type silicon (high resistivity bulk and low resistivity epitaxial) samples and one set of n sup + -p junctions have been irradiated with fast neutrons up to 8x10 sup 1 sup 3 cm sup - sup 2. I-V and C-V characteristics as well as Thermally Stimulated Currents (TSC) and Hall Effect (HE) analyses have been performed on the irradiated samples and diodes in view to determine the radiation-induced damage and the change in the electrical properties. A change in the effective carrier concentration and in the leakage current after irradiation similar to the one found for p sup + -n detectors has been observed in p-type diodes. An increase with the fluence of the resistivity and Hall coefficient was measured at room temperature both for the low and high resistivity sets. This evidence has been explained in terms of a two-level model taking into account a linear increase in concentration with the fluence of the main radiation-induced defects observed with TSC, probably related to divacancy and carbon-oxyge...

  4. A cylindrical xenon ionization chamber detector for high resolution, room temperature gamma radiation spectroscopy

    International Nuclear Information System (INIS)

    A 0.75 l gridded cylindrical ionization chamber gamma radiation detector using highly purified xenon near the critical point as the detection medium is described. The detector operates at room temperature with a noise subtracted intrinsic energy resolution of 1.8% at 662 keV. The detector design and performance variables are discussed in comparison to previous planar and cylindrical xenon detectors. (orig.)

  5. Industrial workshop on LASL semiconductor radiation-detector research and development

    International Nuclear Information System (INIS)

    An Industrial Workshop on LASL Semiconductor Radiation Detector Research and Development was held at the Los Alamos Scientific Laboratory (LASL) in the spring of 1977. The purpose was to initiate communication between our detector research and development program and industry. LASL research programs were discussed with special emphasis on detector problems. Industrial needs and capabilities in detector research and development were also presented. Questions of technology transfer were addressed. The notes presented here are meant to be informal, as were the presentations

  6. Plural-wavelength flame detector that discriminates between direct and reflected radiation

    Science.gov (United States)

    Hall, Gregory H. (Inventor); Barnes, Heidi L. (Inventor); Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor); Smith, Harvey S. (Inventor)

    1997-01-01

    A flame detector employs a plurality of wavelength selective radiation detectors and a digital signal processor programmed to analyze each of the detector signals, and determine whether radiation is received directly from a small flame source that warrants generation of an alarm. The processor's algorithm employs a normalized cross-correlation analysis of the detector signals to discriminate between radiation received directly from a flame and radiation received from a reflection of a flame to insure that reflections will not trigger an alarm. In addition, the algorithm employs a Fast Fourier Transform (FFT) frequency spectrum analysis of one of the detector signals to discriminate between flames of different sizes. In a specific application, the detector incorporates two infrared (IR) detectors and one ultraviolet (UV) detector for discriminating between a directly sensed small hydrogen flame, and reflections from a large hydrogen flame. The signals generated by each of the detectors are sampled and digitized for analysis by the digital signal processor, preferably 250 times a second. A sliding time window of approximately 30 seconds of detector data is created using FIFO memories.

  7. Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

    Science.gov (United States)

    Koch, A.; Hart, M.; Nicholls, T.; Angelsen, C.; Coughlan, J.; French, M.; Hauf, S.; Kuster, M.; Sztuk-Dambietz, J.; Turcato, M.; Carini, G. A.; Chollet, M.; Herrmann, S. C.; Lemke, H. T.; Nelson, S.; Song, S.; Weaver, M.; Zhu, D.; Meents, A.; Fischer, P.

    2013-11-01

    A MHz frame rate X-ray area detector (LPD — Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 μm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASIC's preamplifier provides relatively low noise at high speed which results in a high dynamic range of 105 photons over an energy range of 5-20 keV. Small scale prototypes of 32 × 256 pixels (LPD 2-Tile detector) and 256 × 256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 104 at 12 keV with a readout noise equivalent to < 1 photon rms in its most sensitive mode.

  8. Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

    International Nuclear Information System (INIS)

    A MHz frame rate X-ray area detector (LPD — Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 μm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASIC's preamplifier provides relatively low noise at high speed which results in a high dynamic range of 105 photons over an energy range of 5–20 keV. Small scale prototypes of 32 × 256 pixels (LPD 2-Tile detector) and 256 × 256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 104 at 12 keV with a readout noise equivalent to < 1 photon rms in its most sensitive mode

  9. Improved fabrication of HgI2 nuclear radiation detectors by machine-cleaving

    International Nuclear Information System (INIS)

    The perfection of machine-cleaved sections from HgI2 bulk crystals was examined. The perfection of the machine-cleaved sections as established by gamma diffraction rocking curves was found to be much better than the perfection of hand-cleaved sections or as grown thin platelets, reaching a perfection similar to that of the wire-sawn sections of HgI2. A correlation between the perfection and the thickness of the machine-cleaved section was also found, i.e., the thicker the cleaved-section the more perfect it is. The reproducibility of the fabrication was significantly improved by using machine cleaving in the process of fabrication. Large single crystals of HgI2 weighing 20 to 200 g, can be grown from the vapor phase using the TOM Technique. In order to fabricate nuclear radiation detectors from these single crystals, thin sections of about 0.4 to 0.8 mm thickness have to be prepared. Up till now, the state-of-the-art of fabricating HgI2 nuclear radiation detectors involved two methods to get thin sections from the large single crystals: (1) hand-cleaving using a razor-blade and (2) solution wire sawing. The chemical wire sawing method involves a loss of about 50% of the crystal volume and is usually followed by a chemical polishing process which involves a significant loss of volume of the original volume. This procedure is complicated and wasteful. The traditional fabrication method, i.e., hand-cleaving followed by rapid nonselective chemical etching, is simpler and less wasteful

  10. A liquid radiation detector with high spatial resolution

    Science.gov (United States)

    Alvarez, L.

    1972-01-01

    Detector, using point anode, minimizes problem of oblique tracks by permitting construction of very thin counter. Detector is useful in cosmic ray and high energy physics research and X-ray and neutron diffraction technology.

  11. Radiation induced polarization in CdTe detectors

    Science.gov (United States)

    Vartsky, D.; Goldberg, M.; Eisen, Y.; Shamai, Y.; Dukhan, R.; Siffert, P.; Koebel, J. M.; Regal, R.; Gerber, J.

    1988-01-01

    Polarization induced by irradiation with intense gamma ray sources has been studied in chlorine-compensated CdTe detectors. The influence of several parameters, such as applied field strength, temperature and incident photon flux, on the polarization effect have been investigated. A relationship was found between the degree of polarization, detector efficiency and detector leakage current.

  12. Radiation induced polarization in CdTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vartsky, D.; Goldberg, M.; Eisen, Y.; Shamai, Y.; Dukhan, R.; Siffert, P.; Koebel, J.M.; Regal, R.; Gerber, J.

    1988-01-15

    Polarization induced by irradiation with intense gamma ray sources has been studied in chlorine-compensated CdTe detectors. The influence of several parameters, such as applied field strength, temperature and incident photon flux, on the polarization effect have been investigated. A relationship was found between the degree of polarization, detector efficiency and detector leakage current.

  13. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  14. Plasma Processes : Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    Mary Alex; V Balagi; K R Prasad; K P Sreekumar; P V Ananthapadmanabhan

    2000-11-01

    Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our Research Centre. These components act as thin spacers that have good mechanical strength as well as high electrical insulation and replace alumina insulators with the same dimensions. As a result, the design of the beam loss monitor ion chamber for CAT could be simplified by coating the outer surface of the HT electrode with alumina. One of the chambers developed for isotope calibrator for brachytherapy gamma sources has its outer aluminium electrode (60 mm dia × 220 mm long) coated with 250 thick alumina (97%) + titania (3%). In view of potential applications in neutron-sensitive ion chambers used in reactor control instrumentation, studies were carried out on alumina 100 to 500 thick coatings on copper, aluminium and SS components. The electrical insulation varied from 108 ohms to 1012 ohms for coating thicknesses above 200 . The porosity in the coating resulted in some fall in electrical insulation due to moisture absorption. An improvement could be achieved by providing the ceramic surface with moisture-repellent silicone oil coating. Irradiation at Apsara reactor core location showed that the coating on aluminium was found to be unaffected after exposure to 1017 nvt fluence.

  15. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    Science.gov (United States)

    Meier, Matthias M.; Trompier, François; Ambrozova, Iva; Kubancak, Jan; Matthiä, Daniel; Ploc, Ondrej; Santen, Nicole; Wirtz, Michael

    2016-05-01

    Space weather can strongly affect the complex radiation field at aviation altitudes. The assessment of the corresponding radiation exposure of aircrew and passengers has been a challenging task as well as a legal obligation in the European Union for many years. The response of several radiation measuring instruments operated by different European research groups during joint measuring flights was investigated in the framework of the CONCORD (COmparisoN of COsmic Radiation Detectors) campaign in the radiation field at aviation altitudes. This cooperation offered the opportunity to measure under the same space weather conditions and contributed to an independent quality control among the participating groups. The CONCORD flight campaign was performed with the twin-jet research aircraft Dassault Falcon 20E operated by the flight facility Oberpfaffenhofen of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR). Dose rates were measured at four positions in the atmosphere in European airspace for about one hour at each position in order to obtain acceptable counting statistics. The analysis of the space weather situation during the measuring flights demonstrates that short-term solar activity did not affect the results which show a very good agreement between the readings of the instruments of the different institutes.

  16. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    Directory of Open Access Journals (Sweden)

    Meier Matthias M.

    2016-01-01

    Full Text Available Space weather can strongly affect the complex radiation field at aviation altitudes. The assessment of the corresponding radiation exposure of aircrew and passengers has been a challenging task as well as a legal obligation in the European Union for many years. The response of several radiation measuring instruments operated by different European research groups during joint measuring flights was investigated in the framework of the CONCORD (COmparisoN of COsmic Radiation Detectors campaign in the radiation field at aviation altitudes. This cooperation offered the opportunity to measure under the same space weather conditions and contributed to an independent quality control among the participating groups. The CONCORD flight campaign was performed with the twin-jet research aircraft Dassault Falcon 20E operated by the flight facility Oberpfaffenhofen of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR. Dose rates were measured at four positions in the atmosphere in European airspace for about one hour at each position in order to obtain acceptable counting statistics. The analysis of the space weather situation during the measuring flights demonstrates that short-term solar activity did not affect the results which show a very good agreement between the readings of the instruments of the different institutes.

  17. Charged Particle Induced Radiation damage of Germanium Detectors in Space: Two Mars Observer Gamma-Ray Detectors

    Science.gov (United States)

    Bruekner, J.; Koenen, M.; Evans, L. G.; Starr, R.; Bailey, S. H.; Boynton W. V.

    1997-01-01

    The Mars Observer Gamma-Ray Spectrometer (MO GRS) was designed to measure gamma-rays emitted by the Martian surface. This gamma-ray emission is induced by energetic cosmic-ray particles penetrating the Martian surface and producing many secondary particles and gamma rays. The MO GRS consisted of an high-purity germanium (HPGe) detector with a passive cooler. Since radiation damage due to permanent bombardment of energetic cosmic ray particles (with energies up to several GeV) was expected for the MO GRS HPGe crystal, studies on radiation damage effects of HPGe crystals were carried on earth. One of the HPGe crystals (paradoxically called FLIGHT) was similar to the MO GRS crystal. Both detectors, MO GRS and FLIGHT, contained closed-end coaxial n-type HPGe crystals and had the same geometrical dimensions (5.6 x 5.6 cm). Many other parameters, such as HV and operation temperature, differed in space and on earth, which made it somewhat difficult to directly compare the performance of both detector systems. But among other detectors, detector FLIGHT provided many useful data to better understand radiation damage effects.

  18. Influence of radiation induced defect clusters on silicon particle detectors

    International Nuclear Information System (INIS)

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) addresses some of today's most fundamental questions of particle physics, like the existence of the Higgs boson and supersymmetry. Two large general-purpose experiments (ATLAS, CMS) are installed to detect the products of high energy protonproton and nucleon-nucleon collisions. Silicon detectors are largely employed in the innermost region, the tracking area of the experiments. The proven technology and large scale availability make them the favorite choice. Within the framework of the LHC upgrade to the high-luminosity LHC, the luminosity will be increased to L=1035 cm-2s-1. In particular the pixel sensors in the innermost layers of the silicon trackers will be exposed to an extremely intense radiation field of mainly hadronic particles with fluences of up to Φeq=1016 cm-2. The radiation induced bulk damage in silicon sensors will lead to a severe degradation of the performance during their operational time. This work focusses on the improvement of the radiation tolerance of silicon materials (Float Zone, Magnetic Czochralski, epitaxial silicon) based on the evaluation of radiation induced defects in the silicon lattice using the Deep Level Transient Spectroscopy and the Thermally Stimulated Current methods. It reveals the outstanding role of extended defects (clusters) on the degradation of sensor properties after hadron irradiation in contrast to previous works that treated effects as caused by point defects. It has been found that two cluster related defects are responsible for the main generation of leakage current, the E5 defects with a level in the band gap at EC-0.460 eV and E205a at EC-0.395 eV where EC is the energy of the edge of the conduction band. The E5 defect can be assigned to the tri-vacancy (V3) defect. Furthermore, isochronal annealing experiments have shown that the V3 defect exhibits a bistability, as does the leakage current. In oxygen rich material the

  19. Influence of radiation induced defect clusters on silicon particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Junkes, Alexandra

    2011-10-15

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) addresses some of today's most fundamental questions of particle physics, like the existence of the Higgs boson and supersymmetry. Two large general-purpose experiments (ATLAS, CMS) are installed to detect the products of high energy protonproton and nucleon-nucleon collisions. Silicon detectors are largely employed in the innermost region, the tracking area of the experiments. The proven technology and large scale availability make them the favorite choice. Within the framework of the LHC upgrade to the high-luminosity LHC, the luminosity will be increased to L=10{sup 35} cm{sup -2}s{sup -1}. In particular the pixel sensors in the innermost layers of the silicon trackers will be exposed to an extremely intense radiation field of mainly hadronic particles with fluences of up to {phi}{sub eq}=10{sup 16} cm{sup -2}. The radiation induced bulk damage in silicon sensors will lead to a severe degradation of the performance during their operational time. This work focusses on the improvement of the radiation tolerance of silicon materials (Float Zone, Magnetic Czochralski, epitaxial silicon) based on the evaluation of radiation induced defects in the silicon lattice using the Deep Level Transient Spectroscopy and the Thermally Stimulated Current methods. It reveals the outstanding role of extended defects (clusters) on the degradation of sensor properties after hadron irradiation in contrast to previous works that treated effects as caused by point defects. It has been found that two cluster related defects are responsible for the main generation of leakage current, the E5 defects with a level in the band gap at E{sub C}-0.460 eV and E205a at E{sub C}-0.395 eV where E{sub C} is the energy of the edge of the conduction band. The E5 defect can be assigned to the tri-vacancy (V{sub 3}) defect. Furthermore, isochronal annealing experiments have shown that the V{sub 3} defect

  20. Artificial diamonds as radiation-hard detectors for ultra-fast fission-fragment timing

    International Nuclear Information System (INIS)

    In the framework of the construction of the double time-of-flight spectrometer VERDI, where we aim at measuring pre- and post-neutron masses directly and simultaneously, ultra-fast time pick-up detectors based on artificial diamond material were investigated for the first time with fission fragments from 252Cf (0.5MeV/u9 fission-fragments/cm2 together with more than 3.5×109 neutrons/cm2 and 3×1010α-particles/cm2. This fluence is characteristic for fission experiments. The pre-requisite for the observed signal stability is the application of priming of the diamond material with a strong β-source for about 48 h. The intrinsic timing resolution of a 100μm thick polycrystalline CVD diamond detector with a size of 1×1 cm2 was determined to σint=(283±41)ps by comparison with Monte-Carlo simulations. Using broadband pre-amplifiers, 4-fold segmented detectors of same total size and with a thickness of 180μm show an intrinsic timing resolution of σint=(106±21)ps. This is highly competitive with the best micro-channel plate detectors. Due to the limited and batch-dependent charge collection efficiency of poly-crystalline diamond material, the detection efficiency for fission fragments may be smaller than 100%. -- Highlights: ► First use of chemical vapor deposited diamond for heavy ions with kinetic energies below 2 MeV per nucleon. ► Fission-fragment time-of-flight measurements with a timing resolution better than 150 ps. ► Radiation-hard fission event trigger to be used in an intense neutron field

  1. Accelerated detector-quantum field correlations: From vacuum fluctuations to radiation flux

    International Nuclear Information System (INIS)

    In this paper we analyze the interaction of a uniformly accelerated detector with a quantum field in (3+1)D spacetime, aiming at the issue of how kinematics can render vacuum fluctuations the appearance of thermal radiance in the detector (Unruh effect) and how they engender flux of radiation for observers afar. Two basic questions are addressed in this study: (a) How are vacuum fluctuations related to the emitted radiation? (b) Is there emitted radiation with energy flux in the Unruh effect? We adopt a method which places the detector and the field on an equal footing and derive the two-point correlation functions of the detector and of the field separately with full account of their interplay. From the exact solutions, we are able to study the complete process from the initial transient to the final steady state, keeping track of all activities they engage in and the physical effects manifested. We derive a quantum radiation formula for a Minkowski observer. We find that there does exist a positive radiated power of quantum nature emitted by the detector, with a hint of certain features of the Unruh effect. We further verify that the total energy of the dressed detector and a part of the radiated energy from the detector is conserved. However, this part of the radiation ceases in steady state. So the hint of the Unruh effect in radiated power is actually not directly from the energy flux that the detector experiences in Unruh effect. Since all the relevant quantum and statistical information about the detector (atom) and the field can be obtained from the results presented here, they are expected to be useful, when appropriately generalized, for addressing issues of quantum information processing in atomic and optical systems, such as quantum decoherence, entanglement, and teleportation

  2. Design and performance in the first flight of the transition radiation detector and charge detector of the CREAM balloon instrument

    International Nuclear Information System (INIS)

    The Cosmic Ray Energetics And Mass (CREAM) instrument flew on a high altitude balloon in Antarctica in 2004-2005 for a record breaking 42 days. An array of detectors was deployed to identify cosmic rays and measure their energies up to several hundred TeV. A major science goal is the measurement of secondary nuclei at high energy (produced by spallation reactions of heavier cosmic rays in the interstellar medium). This is done with a transition radiation detector using xenon-filled proportional tubes, and charge identification devices comprising plastic scintillator and Cherenkov counters. Accurate and stable performance of these detectors is necessary for the reliable identification of the secondary nuclei. The design of these detectors and their performance in flight are discussed, and preliminary data presented

  3. Performance And Radiation Hardness Of The Atlas/sct Detector Module

    CERN Document Server

    Eklund, L

    2003-01-01

    The ATLAS experiment is a general purpose experiment being constructed at the Large Hadron Collider (LHC) at FERN, Geneva. ATLAS is designed to exploit the full physics potential of LHC, in particular to study topics concerning the Higgs mechanism, Super-symmetry and CP violation. The cross sections for the processes under study are extremely small, requiring very high luminosity colliding beams. The Semiconductor Tracker (SCT) is an essential part of the Inner Detector tracking system of ATLAS. The active elements of the SCT is 4088 detector modules, tiled on four barrel cylinders and eighteen endcap disks. As a consequence of the high luminosity, the detector modules will operate in a harsh radiation environment. This thesis describes work concerning radiation hardness, beam test performance and methods for production testing of detector modules. The radiation hardness studies have been focused on the electrical performance of the front-end ASIC and the detector module. The results have identified features ...

  4. Ion Beam Induced Charge Collection (IBICC) Studies of Cadmium Zinc Telluride (CZT) Radiation Detectors

    International Nuclear Information System (INIS)

    Cadmium Zinc Telluride is an emerging material for room temperature radiation detectors. In order to optimize the performance of these detectors, it is important to determine how the electronic properties of CZT are related to the presence of impurities and defects that are introduced during the crystal growth and detector fabrication. At the Sandia microbeam facility IBICC and Time Resolved IBICC (TRIBICC) were used to image electronic properties of various CZT detectors. Two-dimensional areal maps of charge collection efficiency were deduced from the measurements. In order to determine radiation damage to the detectors, we measured the deterioration of the IBICC signal as the function of dose. A model to explain quantitatively the pattern observed in the charge collection efficiency maps of the damaged detectors has been developed and will be discussed in the paper

  5. Dynamic Electrothermal Model of a Sputtered Thermopile Thermal Radiation Detector for Earth Radiation Budget Applications

    Science.gov (United States)

    Weckmann, Stephanie

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.

  6. Novel radiation hard microfabricated scintillation detectors with high spatial resolution

    CERN Document Server

    Mapelli, A; Haguenauerc, M; Jiguet, S; Vico Triviño, N; Renaud, P

    2010-01-01

    A novel liquid scintillation detector with high spatial resolution is being developed with standard microfabrication techniques. It consists of a dense array of scintillating waveguides obtained by filling microfluidic channels with an organic liquid scintillator and optically coupled to a pixellated photodetector. Such a microfluidic device can be designed and processed to meet the requirements of a wide range of applications like medical imaging, homeland security and high-energy physics. High-spatial resolution miniaturized detectors as well as large-area detectors can easily be fabricated. The fabrication process of a prototype detector and experimental results are presented in this paper.

  7. Status of radiation damage measurements in room temperature semiconductor radiation detectors

    International Nuclear Information System (INIS)

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI2) is reviewed for the purpose of determining their applicability to space applications. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 1010 p/cm2 and significant bulk leakage after 1012 p/cm2. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5 x 109 p/cm2 in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum neutrons after fluences up to 1010 n/cm2, although activation was evident. CT detectors show resolution losses after fluences of 3 x 109 p/cm2 at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of 2 x 1010 n/cm2. Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to 1012 p/cm2 and with 1.5 GeV protons at fluences up to 1.2 x 108 p/cm2. Neutron exposures at 8 MeV have been reported at fluences up to 1015 n/cm2. No radiation damage was found under these irradiation conditions

  8. Chemical modification of neoplastic cell transformation by heavy ion radiation

    International Nuclear Information System (INIS)

    Quantitative data on chemical modification of neoplastic cell transformation by heavy-ion radiation was obtained using in-vitro cell transformation technique. The specific aims were 1) to test the potential effects of various chemicals on the expression of cell transformation, and 2) to systematically collect information on the mechanisms of expression and progression of cell transformation by ionizing radiation. Recent experimental studies with DMSO, 5-azacytidine, and dexamethasone suggest that DMSO can effectively suppress the neoplastic cell transformation by high-LET radiation and that some nonmutagenic changes in DNA may be important in modifying the expression, and progression of radiation-induced cell transformation

  9. Radiation tolerance studies of neutron irradiated double sided silicon microstrip detectors

    Science.gov (United States)

    Singla, M.; Larionov, P.; Balog, T.; Heuser, J.; Malygina, H.; Momot, I.; Sorokin, I.; Sturm, C.

    2016-07-01

    Radiation tolerance studies were made on double-sided silicon microstrip detectors for the Silicon Tracking System of the Compressed Baryonic Matter experiment at FAIR. The prototype detectors from two different vendors were irradiated to twice the highest expected fluence (1 ×1014 1 MeVneqcm-2) in the CBM experimental runs of several years. Test results from these prototype detectors both before and after irradiations have been discussed.

  10. Recent trends of X-ray detectors in synchrotron radiation science

    CERN Document Server

    Suzuki, M

    2003-01-01

    This article attempts to describe the recent trends of X-ray detectors in synchrotron radiation science in the light of not only the advance but also the stagnation of which are seriously dependent upon the current semiconductor technology. (author)

  11. Uncooled Radiation Hard SiC Schottky VUV Detectors Capable of Single Photon Sensing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, fabricate, characterize and commercialize very large area, uncooled and radiative hard 4H-SiC VUV detectors capable of near single...

  12. 175th International School of Physics "Enrico Fermi" : Radiation and Particle Detectors

    CERN Document Server

    Bottigli, U; Oliva, P

    2010-01-01

    High energy physics (HEP) has a crucial role in the context of fundamental physics. HEP experiments make use of a massive array of sophisticated detectors to analyze the particles produced in high-energy scattering events. This book contains the papers from the workshop 'Radiation and Particle Detectors', organized by the International School of Physics, and held in Varenna in July 2009. Its subject is the use of detectors for research in fundamental physics, astro-particle physics and applied physics. Subjects covered include the measurement of: the position and length of ionization trails, time of flight velocity, radius of curvature after bending the paths of charged particles with magnetic fields, coherent transition radiation, synchrotron radiation, electro-magnetic showers produced by calorimetric methods and nuclear cascades produced by hadrons in massive steel detectors using calorimetry. Detecting muons and the detection of Cherenkov radiation are also covered, as is the detection of neutrinos by ste...

  13. Radiation-detector optical-imaging device is of simplified construction

    Science.gov (United States)

    1965-01-01

    A simplified radiation detector was designed which employs an activated continuous front surface consisting of either the diffused or barrier type of semiconducting material with a grid structure on the nonactivated side of the detector. Its form may be either a rectangular coordinate or a polar coordinate system.

  14. One-dimensional ionizing radiation detector on the charge-coupled device basis

    International Nuclear Information System (INIS)

    Basic features of the one-dimensional ionizing radiation detector designed on the charge-coupled device (CCD) basis with surface as well as deepened channel are studied. The eta (E) dependence of the detector quantum efficiency on the density of soft X radiation energy is given. It has been found on the basis of the analysis of the eta(E) dependence that the most acceptable range of using CCD-detectors lies in the limits of radiation energy from 2 to 12 keV. In this energy region the linearity of ionizing radiation flux conversion into electrical charge is assured. The CCD-detector sensitivity constitutes 2x108 photon/(cm2xs). The upper limit of the detector dynamic range equals to 1010 photon/(cm2xs) while the whole dynamic range equals to 50. The effect of long-term irradiation on the basic features of the CCD-detectors is considered as well as restoration methods of their operating performances are proposed. The real irradiation levels, which the CCD-detectors made on the n-Si base withstand, constitute (1-3)x104 rad. It is pointed out that most prospective CCD-detectors are those with a deepened channel and Schottky gates in which control through the oxide layer is missing

  15. Thermal Characterization of Absorbing Coatings for Thermal Detectors of Radiation by Photopyroelectric Method

    OpenAIRE

    Bravina, Svetlana L.; Morozovsky, Nicholas V.; Dovbeshko, Galina I.; Obraztsova, Elena D.

    2006-01-01

    By photothermomodulatoin method the comparative study of thermal diffusivity of absorbing coating for sensitive elements of pyroelectric detectors of radiation formed from metal dispersion layer blacks, dielectric paint blacks and carbon nanotubes paint blacks has been performed. Prospects of using carbon nanotubes based black absorbing coatings for pyroelectric and other thermal detector application are shown.

  16. Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

    CERN Document Server

    Koch, Andreas; Nicholls, Tim; Angelsen, Christian; Coughlan, John; French, Marcus; Hauf, Steffen; Kuster, Markus; Sztuk-Dambietz, Jolanta; Turcato, Monica; Carini, Gabriella A; Chollet, Matthieu; Herrmann, Sven C; Lemke, Henrik T; Nelson, Silke; Song, Sanghoon; Weaver, Matt; Zhu, Diling; Meents, Alke; Fischer, Pontus

    2013-01-01

    A MHz frame rate X-ray area detector (LPD - Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 mm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASICs preamplifier provides relatively low noise at high speed which results in a high dynamic range of 10^5 photons over an energy range of 5-20 keV. Small scale prototypes of 32x256 pixels (LPD 2-Tile detector) and 256x256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampli...

  17. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L. [Valladolid Univ., Dept. de Quimica Analitica, Facultad de Ciencias (Spain); Garcia-Talavera, P.; Singi, G.M.; Martin, E. [Hospital Clinico Univ., Servicio de Medicina Nuclear, Salamanca (Spain)

    2006-07-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of {sup 131}I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  18. The iQID camera: An ionizing-radiation quantum imaging detector

    OpenAIRE

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2014-01-01

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector’s response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of...

  19. Low-noise analog front-end signal processing channel integration for pixelated semiconductor radiation detector

    OpenAIRE

    Lin, Ming-Cheng

    2012-01-01

    In the research development of the medical nuclear imaging, the low noise performance has always been a mandatory requirement in the design of the semiconductor pixelated radiation detector system in order to achieve the high detectability of the charge signal. The noise-optimized analog front-end signal processing channel composed of the charge sensitive amplifier and the pulse shaper is used extensively in processing the radiation charge signals from the pixelated semiconductor detector. Th...

  20. A Modular High Sensitive Radiation Detector for Homel and Security and Post Event Applications

    International Nuclear Information System (INIS)

    A modular, high sensitive radiation monitoring system designed for the homeland security radiological requirements and radiological post event applications is presented. The prevention of undocumented and potentially threatening shipment of radioactive and nuclear materials is a problem at seaports, border crossings, rail yards, airports and similar locations that requires the use of sensitive radiation detectors. Furthermore; radiological events such as the Fukushima nuclear incident emphasize the need for sensitive detector for monitoring food and commercial products

  1. Measurement of ionising radiation semiconductor detectors: a review

    International Nuclear Information System (INIS)

    Manufacturing techniques for nuclear detectors using semiconductors are constantly advancing, and a large range of models with different specificities and characteristics are available. After a theoretical reminder, this report describes the main types of detectors, their working and their preferential use. A comparative table guides the neophyte reader in his choice

  2. Characterizing the radiation response of Cherenkov glass detectors with isotopic sources

    International Nuclear Information System (INIS)

    Cherenkov detectors are widely used for particle identification and threshold detectors in high-energy physics. Glass Cherenkov detectors that are sensitive to beta emissions originating from neutron activation have been demonstrated recently as a potential replacement for activation foils. In this work, we set the groundwork to evaluate large Cherenkov glass detectors for sensitivity to MeV photons through first understanding the measured response of small Cherenkov glass detectors to isotopic gamma-ray sources. Counting and pulse height measurements are acquired with reflected glass Cherenkov detectors read out with a photomultiplier tube. Simulation was used to inform our understanding of the measured results. This simulation included radioactive source decay, radiation interaction, Cherenkov light generation, optical ray tracing, and photoelectron production. Implications for the use of Cherenkov glass detectors to measure low energy gammaray response are discussed.

  3. Search for Physics beyond the Standard Model with the ATLAS detector and the development of radiation detectors

    CERN Document Server

    Silver, Yiftah

    We are investigating a radiation detector based on plasma display panel technology, the principal component of plasma television displays. This Plasma Panel Sensor (PPS) technology is a variant of micro-pattern gas radiation detectors. Based on the properties of existing plasma display panels, we expect eventually to be able to build a sealed array of plasma discharge gas cells to detect ionizing radiation with fast rise time of less than 10ns and high spatial resolution using a pixel pitch of less than 100 micrometer. In this thesis I shall describe our program of testing plasma display panels as detectors, including simulations, design and the first laboratory and beam studies that demonstrate the detection of cosmic ray muons, beta rays and medium energy protons. The ATLAS detector is used to search for high-mass resonances, in particular heavy neutral gauge bosons (Z') and excited states of Kaluza-Klein γ/Z bosons decaying to an electron-positron pair or a muon-antimuon pair. Results are presented based ...

  4. Reference detectors for low flux optical radiation measurements

    International Nuclear Information System (INIS)

    The parametric down conversion of photons generated in a non-linear crystal gives rise to two correlated photons. Associated to a System of counting of coincidences, this phenomenon makes possible the quantum efficiency measurements of detectors working on photon counting levels, without using neither sources nor detectors of references. This new method was developed at BNMINM with the aim to realize new standards detectors in the field of weak flows. It allows the determination of quantum efficiency with a relative uncertainty of 1,1%. A comparison with the IENGF (Italy) bearing on the quantum determination of efficiency of one of BNM-FNM detectors made possible to confront the exactitude of the measuring equipment. This detector was also made the object of a comparison with the French reference of radiometry, the cryogenic radiometer, the results were in agreement with uncertainties of measurements. (author)

  5. Chemical and radiation carcinogenesis in man and experimental animals

    International Nuclear Information System (INIS)

    It is now well established that some cancer in man results from exposures to certain chemicals and radiations, both ultraviolet and ionizing radiations. These chemical and physical agents are also carcinogenic in experimental animals and, where adequately tested, in mammalian cell cultures. However, only very limited data are available on the relative roles of and the interrelationships, if any, between these various environmental agents in the causation of the majority of the cancers in man. Nothing is known of the relationship between these agents and possible carcinogenic viral information in the etiology of cancer in man. Furthermore, little is known about the molecular mechanisms by which chemicals and radiations induce cancers in either man or experimental animals. The objective of this brief review is to present certain aspects of chemical and radiation carcinogenesis in man and experimental animals and some of the problems in the elucidation of their roles in carinogenesis in the human

  6. Organic liquid scintillation detector shape and volume impact on radiation portal monitors

    Science.gov (United States)

    Paff, Marc G.; Clarke, Shaun D.; Pozzi, Sara A.

    2016-07-01

    We have developed and tested a radiation portal monitor using organic liquid scintillation detectors. In order to optimize our system designs, neutron measurements were carried out with three organic liquid scintillation detectors of different shapes and sizes, along with a 3He radiation portal monitor (RPM) as a reference. The three liquids tested were a 7.62 cm diameter by 7.62 cm length cylindrical active volume organic liquid scintillation detector, a 12.7 cm diameter by 12.7 cm length cylindrical active volume organic liquid scintillation detector, and a 25 cm by 25 cm by 10 cm "paddle" shaped organic liquid scintillation detector. Background and Cf-252 neutron measurements were recorded to allow for a comparison of neutron intrinsic efficiencies as well as receiver operating characteristics (ROC) curves between detectors. The 12.7 cm diameter cylindrical active volume organic liquid scintillation detector exhibited the highest intrinsic neutron efficiency (54%) of all three liquid scintillators. An ROC curve analysis for a heavily moderated Cf-252 measurement showed that using the 12.7 cm diameter by 12.7 cm length cylindrical active volume Eljen EJ309 organic liquid scintillation detector would result in the fewest needed detector units in order to achieve a near 100% positive neutron alarm rate while maintaining a better than 1 in 10,000 false alarm rate on natural neutron background. A small number of organic liquid scintillation detectors could therefore be a valid alternative to 3He in some RPM applications.

  7. Studies of radiation hardness of MOS devices for application in a linear collider vertex detector

    International Nuclear Information System (INIS)

    The proposed International Linear Collider (ILC) together with the Large Hadron Collider (LHC) at CERN serve as a combined tool to explore the mysteries of the universe: the former is a precision machine and the latter can be considered as a finding machine. The key component of the ILC is the vertex detector that should be placed as close as possible to the Interaction Point (IP) and has better radiation tolerance against the dominant electron-positron pair production background from beam-beam interactions. A new generation of MOS-type Depleted-Field-Effect Transistor (MOSDEPFET) active pixel detectors has been proposed and developed by Semiconductor Labor Munich for Physics and for extraterrestrial Physics in order to meet the requirements of the vertex detector at the ILC. Since all MOS devices are susceptible to ionizing radiation, the main topic is focused on the radiation hardness of detectors, by which a series of physical processes are analyzed: e.g. surface damage due to ionizing radiation as well as damage mechanisms and their associated radiation effects. As a consequence, the main part of this thesis consists of a large number of irradiation experiments and the corresponding discussions. Finally, radiation hardness of the detectors should be improved through a set of concluded experiences that are based on a series of analysis of the characteristic parameters using different measurement techniques. The feasibility of the MOSDEPFET-based vertex detector is, therefore, predicted at ILC. (orig.)

  8. Studies of radiation hardness of MOS devices for application in a linear collider vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyu

    2008-10-17

    The proposed International Linear Collider (ILC) together with the Large Hadron Collider (LHC) at CERN serve as a combined tool to explore the mysteries of the universe: the former is a precision machine and the latter can be considered as a finding machine. The key component of the ILC is the vertex detector that should be placed as close as possible to the Interaction Point (IP) and has better radiation tolerance against the dominant electron-positron pair production background from beam-beam interactions. A new generation of MOS-type Depleted-Field-Effect Transistor (MOSDEPFET) active pixel detectors has been proposed and developed by Semiconductor Labor Munich for Physics and for extraterrestrial Physics in order to meet the requirements of the vertex detector at the ILC. Since all MOS devices are susceptible to ionizing radiation, the main topic is focused on the radiation hardness of detectors, by which a series of physical processes are analyzed: e.g. surface damage due to ionizing radiation as well as damage mechanisms and their associated radiation effects. As a consequence, the main part of this thesis consists of a large number of irradiation experiments and the corresponding discussions. Finally, radiation hardness of the detectors should be improved through a set of concluded experiences that are based on a series of analysis of the characteristic parameters using different measurement techniques. The feasibility of the MOSDEPFET-based vertex detector is, therefore, predicted at ILC. (orig.)

  9. Large arrays of discrete ionizing radiation detectors multiplexed using fluorescent optical converters

    International Nuclear Information System (INIS)

    This invention provides a radiation imaging system employing arrays of scintillators. An object of the invention is to produce a detector with high spatial resolution, high gamma-photon absorption efficiency, excellent source and detector scatter rejection, and utilizing low-cost solid state opto-electronic devices. In one embodiment, it provides a radiation detection and conversion apparatus having an array of optically isolated radiation sensitive elements that emit optical radiation upon absorption of ionizing radiation. An array of channels, comprising a material that absorbs and traps the radiation emitted and transports it or radiation that has been shifted to longer wavelengths, is placed near the radiation-sensitive elements. Electro-optical detectors that convert the transported radiation into electrical signals are coupled to the channels. The activation of one of the electro-optical devices by radiation from one of the channels indicates that at least one of the radiation-sensitive elements near that channel has absorbed a quantity of radiation

  10. Radiation-chemical hardening of epoxyoligoesteracrylates

    International Nuclear Information System (INIS)

    The paint and varnish epoxide compositions radiation-hardened with the following warm-up (γ-radiation of 60%, dose rate 1 Gy/s; accelerated electrons, dose rate 1.7 kGy/s) are obtained. Therewith both methods of epoxy group inclusions into a three-dimensional net are coincided: preliminary epoxy resin modification by methacrylic acid and inclusion ternary amine into compositions. Physicomechanical and electric characteristics of oligomeric compositions are presented

  11. The use of detectors based on ionisation recombination in radiation protection

    International Nuclear Information System (INIS)

    Intitial recombination of ionisation in a gas depends on the ionisation density and hence on the linear energy transfer along the tracks of charged particles. This effect can be used as a basis for instruments that respond to different types of ionising radiation approximately in the way required by the quality factor-linear energy transfer relation recommended by the ICRP for use in radiation protection. Empirical instruments based on ionisation recombination that have been used for radiation protection measurements are reviewed, and relations are derived from recombination theory that show that the response of such detectors can be readily predicted. The usefulness of recombination instruments in radiation protection is discussed and their advantages and limitations assessed. It is shown that their main application will be as reference instruments against which other detectors can be calibrated. As an extension to using recombination detectors as reference instruments, the feasibility of specifying radiation quality in terms of ionisation recombination is investigated. (author)

  12. Development of CdZnTe radiation detectors

    Science.gov (United States)

    Bolotnikov, Aleksey; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Gul, Rubi; Cui, Yonggang; James, Ralph B.

    2011-08-01

    Cadmium Zinc Telluride (CdZnTe or CZT) is a very attractive material for room-temperature semiconductor detectors because of its wide band-gap and high atomic number. Despite these advantages, CZT still presents some material limitations and poor hole mobility. In the past decade most of the efforts developing CZT detectors focused on designing different electrode configurations, mainly to minimize the deleterious effect due to the poor hole mobility. A few different electrode geometries were designed and fabricated, such as pixelated anodes and Frisch-grid detectors developed at Brookhaven National Lab (BNL). However, crystal defects in CZT materials still limit the yield of detector-grade crystals, and, in general, dominate the detector's performance. In the past few years, our group's research extended to characterizing the CZT materials at the micro-scale, and to correlating crystal defects with the detector's performance. We built a set of unique tools for this purpose, including infrared (IR) transmission microscopy, X-ray micro-scale mapping using synchrotron light source, X-ray transmission- and reflection- topography, current deep level transient spectroscopy (I-DLTS), and photoluminescence measurements. Our most recent work on CZT detectors was directed towards detailing various crystal defects, studying the internal electrical field, and delineating the effects of thermal annealing on improving the material properties. In this paper, we report our most recent results.

  13. Development of stable nuclear radiation detectors based on n-silicon/cobalt-phthalocyanine heterojunctions

    Science.gov (United States)

    Ray, A.; Prasad, R.; Betty, C. A.; Chandrasekhar Rao, T. V.

    2016-03-01

    n-silicon/cobalt-phthalocyanine (CoPc) heterojunction based nuclear detectors have been fabricated using thermally evaporated CoPc films. Two different thicknesses of CoPc film (viz. 100 nm and 200 nm) were tried out to make detectors by depositing on chemically polished n-Si wafers. Gold film on CoPc was used as electrical contact. The detectors were characterized by measuring their current-voltage (I-V) and leakage current-time (I-t) characteristics, followed by alpha energy spectra obtained on exposure to α-particles. Variation of alpha energy resolution with applied reverse bias voltage for each of the detectors was also studied. The detectors showed very low leakage current and high breakdown voltage as compared to conventional Au/n-Si surface barrier detectors. Finally, the durability of the detectors was established by measuring their I-V characteristics and energy resolution for nearly 15 months.

  14. Radiative processes for Rindler and accelerating observers and the stress-tensor detector

    CERN Document Server

    De Paola, R

    1996-01-01

    We consider a monopole detector interacting with a massive scalar field. The radiative processes are discussed from the accelerated frame point of view. After this, we obtain the Minkowski vacuum stress tensor measured by the accelerated observer using a non-gravitational stress tensor detector as discussed by Ford and Roman (PRD 48, 776 (1993)). Finally, we analyse radiative processes of the monopole detector travelling in a world line that is inertial in the infinite past and has a constant proper acceleration in the infinite future.

  15. Defect analysis of silicon detectors made of different materials for radiation hardness

    CERN Document Server

    Dezillie, B; Li, Z

    1999-01-01

    A comparative study of the radiation hardness of single pad detectors, manufactured from standard float-zone (FZ) and epitaxial (Epi) n-type monocrystal silicon with comparable initial resistivity is presented. Detectors 2processed from FZ and Epi material with a low (400 OMEGA cm and 500 OMEGA cm) and a high (approx 2 k OMEGA cm) initial resistivity have been irradiated up to 4x10 sup 1 sup 4 n/cm sup 2 and measured under the same conditions in order to study the influence of the initial resistivity on the detector radiation hardness.

  16. Defect analysis of silicon detectors made of different materials for radiation hardness

    Energy Technology Data Exchange (ETDEWEB)

    Dezillie, B. E-mail: britta.dezillie@cern.ch; Eremin, V.; Li, Z

    1999-04-21

    A comparative study of the radiation hardness of single pad detectors, manufactured from standard float-zone (FZ) and epitaxial (Epi) n-type monocrystal silicon with comparable initial resistivity is presented. Detectors 2processed from FZ and Epi material with a low (400 {omega} cm and 500 {omega} cm) and a high ({approx}2 k{omega} cm) initial resistivity have been irradiated up to 4x10{sup 14} n/cm{sup 2} and measured under the same conditions in order to study the influence of the initial resistivity on the detector radiation hardness.

  17. Radiation protection in the pharmaceutical-chemical industry

    International Nuclear Information System (INIS)

    Some aspects of the use of ionizing radiation in research in the pharmaceutical and chemical industries will be discussed, the emphasis being placed on the handling of open radioactive materials in research laboratories. The compliance with official regulations and the preparation of company internal radiation protection regulations are described. 1 tab., 9 refs

  18. Large-volume high-resolution cadmium zinc telluride radiation detectors: recent developments

    Science.gov (United States)

    Chen, H.; Awadalla, S. A.; Iniewski, K.; Lu, P. H.; Harris, F.; Mackenzie, J.; Hasanen, T.; Chen, W.; Redden, R.; Bindley, G.; Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Luke, P.; Amman, M.; Lee, J. S.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; James, R. B.

    2007-09-01

    The excellent room temperature spectral performance of cadmium zinc telluride detectors grown via the Traveling Heater Method (THM) makes this approach suitable for the mass deployment of radiation detectors for applications in homeland security and medical imaging. This paper reports our progress in fabricating thicker and larger area detectors from THM grown CZT. We discuss the performance of such 20x20x10 mm 3, and 10x10x10 mm 3 monolithic pixellated detectors and virtual Frisch-Grid 4x4x12 mm3 devices, and describe the various physical properties of the materials.

  19. Radiation hardness of silicon detectors manufactured on wafers from various sources

    Energy Technology Data Exchange (ETDEWEB)

    Dezillie, B. [European Organization for Nuclear Research, Geneva (Switzerland); Bates, S. [European Organization for Nuclear Research, Geneva (Switzerland); Glaser, M. [European Organization for Nuclear Research, Geneva (Switzerland); Lemeilleur, F. [European Organization for Nuclear Research, Geneva (Switzerland); Leroy, C. [University of Montreal, Montreal (Canada)

    1997-04-01

    Impurity concentrations in the initial silicon material are expected to play an important role for the radiation hardness of silicon detectors, during their irradiation and for their evolution with time after irradiation. This work reports on the experimental results obtained with detectors manufactured using various float-zone (FZ) and epitaxial-grown material. Preliminary results comparing the changes in leakage current and full depletion voltage of FZ and epitaxial detectors as a function of fluence and of time after 10{sup 14} cm{sup -2} proton irradiation are given. The measurement of charge collection efficiency for epitaxial detectors is also presented. (orig.).

  20. Chemical resistance of optical plastics and resin for level detectors

    Science.gov (United States)

    Omegna, Cicero L.; Fontes Garcia, Jonas; Ramos-Gonzáles, Roddy E.; Barbosa, Luiz C.

    2015-09-01

    A test method was developed to find the ideal optical material that supports the chemical reaction of some fuels. Optical plastics and resin were submerged for long periods of time in reservoirs of ethanol, gasoline, Diesel and biodiesel. The dimensional change and weight change of the submerged samples was measured. A special resin successfully supported the chemical attack of fuels. Samples of acrylic polymer and polycarbonate were used as type of optical plastic.

  1. Radiation hard silicon microstrip detectors for use in ATLAS at CERN

    International Nuclear Information System (INIS)

    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will accelerate protons in colliding beams to a center of mass energy of 14 TeV at very high luminosities. The ATLAS detector is being built to explore the physics in this unprecedented energy range. Tracking of charged particles in high-energy physics (HEP) experiments requires a high spatial resolution and fast signal readout, all with as little material as possible. Silicon microstrip detectors meet these requirements well and have been chosen for the Semiconductor Tracker (SCT) which is part of the inner tracking system of ATLAS and has a total area of 61 m2. During the 10 years of operation at LHC, the total fluence received by the detectors is sufficiently large that they will suffer a severe degradation from radiation induced damage. The damage affects both the physics performance of the detectors as well as their operability and a great challenge has been to develop radiation hard detectors for this environment. An extensive irradiation programme has been carried out where detectors of various designs, including defect engineering by oxygen enriched silicon, have been irradiated to the expected fluence. A subsequent thermal annealing period is included to account for a realistic annual maintenance schedule at room temperature, during which the radiation induced defects alter the detector properties significantly. This thesis presents work that has been carried out in the Bergen ATLAS group with results both from the irradiation programme and from detector testing during the module production. (Author)

  2. Radiation hard silicon microstrip detectors for use in ATLAS at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Lars Gimmestad

    2005-07-01

    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will accelerate protons in colliding beams to a center of mass energy of 14 TeV at very high luminosities. The ATLAS detector is being built to explore the physics in this unprecedented energy range. Tracking of charged particles in high-energy physics (HEP) experiments requires a high spatial resolution and fast signal readout, all with as little material as possible. Silicon microstrip detectors meet these requirements well and have been chosen for the Semiconductor Tracker (SCT) which is part of the inner tracking system of ATLAS and has a total area of 61 m2. During the 10 years of operation at LHC, the total fluence received by the detectors is sufficiently large that they will suffer a severe degradation from radiation induced damage. The damage affects both the physics performance of the detectors as well as their operability and a great challenge has been to develop radiation hard detectors for this environment. An extensive irradiation programme has been carried out where detectors of various designs, including defect engineering by oxygen enriched silicon, have been irradiated to the expected fluence. A subsequent thermal annealing period is included to account for a realistic annual maintenance schedule at room temperature, during which the radiation induced defects alter the detector properties significantly. This thesis presents work that has been carried out in the Bergen ATLAS group with results both from the irradiation programme and from detector testing during the module production. (Author)

  3. Disk shaped radiation sources for education purposes made of chemical fertilizer

    International Nuclear Information System (INIS)

    A method for fabricating a disk-shaped radiation source from material containing natural radioisotopes was developed. In this compression and formation method, a certain amount of powdered material is placed in a stainless steel formwork and compressed to form a solid disk. Using this method, educational radiation sources were fabricated using commercially available chemical fertilizers that naturally contain the radionuclide, 40K, which emits either beta or gamma rays, at each disintegration. The compression and formation method was evaluated by inspecting eleven radiation sources thus fabricated. Then the suitability of the fertilizer radiation source as an education aid was evaluated. The results showed that the method could be used to fabricate radiation sources without the need for learning special skills or techniques. It was also found that the potassium fertilizer radiation source could be used to demonstrate that the inverse-square law can be applied to the distance between the radiation source and detector, and that an exponential relationship can be seen between the shielding effectiveness and the total thickness of the shielding materials. It is concluded that a natural fertilizer radiation source is an appropriate aid for demonstrating the characteristics of radiation. (author)

  4. Germanium junction detectors. Theoretical and practical factors governing their use in radiation spectrometry

    International Nuclear Information System (INIS)

    Semi-conductor detectors have recently greatly increased the possibilities available to nuclear spectroscopists for the study of α, β and γ radiations. Their use in radio-chemistry has encouraged us to study their principle, their mechanism and also the conditions under which they can be used. The first part, which is theoretical, consists of a summary of what should be known concerning the best use of junction detectors, in particular Ge (Li) detectors. The second part, which is experimental, summarizes the laboratory work carried out over a period of one year on Ge (Li) detectors. Stress is laid on the possibilities presented by the use of these detectors as photo-electric spectrometers, and also on the precautions required. Amongst the numerous results presented, the resolution of 2.52 keV obtained for the γ radiation of 145.5 keV for 141Ce may be particularly noted. (authors)

  5. Gamma-ray detectors for intelligent, hand-held radiation monitors

    International Nuclear Information System (INIS)

    Small radiation detectors based on HgI2, bismuth germanate (BGO), plastic, or NaI(Tl) detector materials were evaluated for use in small, lighweight radiation monitors. The two denser materials, HgI2 and BGO, had poor resolution at low-energy and thus performed less well than NaI(Tl) in detecting low-energy gamma rays from bare, enriched uranium. The plastic scintillator, a Compton recoil detector, also performed less well at low gamma-ray energy. Two small NaI(Tl) detectors were suitable for detecting bare uranium and sheilded plutonium. One became part of a new lightweight hand-held monitor and the other found uses as a pole-mounted detector for monitoring hard-to-reach locations

  6. Research, development and application of specialized silicon detectors for spectrometry of nuclear radiation

    International Nuclear Information System (INIS)

    The Research and Development of dE/dx and E- detectors with completely depleted area of volume charge, processes of dynamic etching in technology of silicon detectors with high-degree of flatness of the boundaries of sensitive area were studied. The following detectors were elaborated: precision current silicon detectors of ultra soft X-radiation; silicon telescope-spectrometers of charged particles including dE/dx and E-modules; detectors of thermal neutrons with efficiency of registration more than 31% thus permitting to use them in time of flight spectrometry d/L < 0.1%; spectrometers for α- and β radiation designated for measurements of radionuclides in environment samples. (author)

  7. Low radioactivity material for use in mounting radiation detectors

    Science.gov (United States)

    Fong, Marshall; Metzger, Albert E.; Fox, Richard L.

    1988-01-01

    Two materials, sapphire and synthetic quartz, have been found for use in Ge detector mounting assemblies. These materials combine desirable mechanical, thermal, and electrical properties with the radioactive cleanliness required to detect minimal amounts of K, Th, and U.

  8. Theoretical framework for mapping pulse shapes in semiconductor radiation detectors

    CERN Document Server

    Prettyman, T H

    1999-01-01

    An efficient method for calculating of charge pulses produced by semiconductor detectors is presented. The method is based on a quasi-steady-state model for semiconductor detector operation. A complete description of the model and underlying assumptions is given. Mapping of charge pulses is accomplished by solving an adjoint carrier continuity equation. The solution of the adjoint equation yields Green's function, a time- and position-dependent map that contains all possible charge pulses that can be produced by the detector for charge generated at discrete locations (e.g., by gamma-ray interactions). Because the map is generated by solving a single, time-dependent problem, the potential for reduction in computational effort over direct mapping methods is significant, particularly for detectors with complex electrode structures. In this paper, the adjoint equation is presented and the mapping method is validated for a benchmark problem.

  9. Alanine Radiation Detectors in Therapeutic Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo;

        Radiotherapy with particles is getting more attention in Europe. New facilities for protons and heavier ions are finished, or near to the final status, some more are planed. Particle therapy with heavy ions is a challenge to dosimetry, since mixed particle fields occur in the peak region...... of the depth dose curves. Solid state detectors, such as diamond detectors, radiochromic films, TLDs and the amino acid alanine are used due to there good spatial resolution. If used in particle beams their response often exhibits a dependence on particle energy and type, so the acquired signal is not always...... proportional to absorbed dose. A model by Hansen and Olsen, based on the Track Structure Theory is available, which can predict the relative efficiency of some detectors, when the particle spectrum is known. For alanine detectors the model was successfully validated by Hansen and Olsen for several ion species...

  10. Natural radiation sources fabricated from potassic chemical fertilizers and application to radiation education

    International Nuclear Information System (INIS)

    Potassic chemical fertilizers contain potassium, a small part of which is potassium-40. Since potassium-40 is a naturally occurring radioisotope, potassic chemical fertilizers are often used for demonstrations of the existence of natural radioisotopes and radiation. To fabricate radiation sources as educational tools, the compression and formation method developed by our previous study was applied to 13 brands of commercially available chemical fertilizers containing different amounts of potassium. The suitability (size, weight, and solidness) of thus fabricated sources was examined and 12 of them were selected as easy-to-use radiation sources at radiation educational courses. The radiation strength (radiation count rate measured by a GM survey meter) and potassium content of the 12 sources were examined. It was found that the count rate was wholly proportional to the percentage of potassium, and a new educational application was proposed and discussed for understanding that the substance emitting radiation must be the potassium present in the raw fertilizers. (author)

  11. Radiative Processes of the DeWitt-Takagi Detector

    CERN Document Server

    Díaz, D E

    2003-01-01

    We examine the excitation of a uniformly accelerated DeWitt-Takagi detector coupled quadratically to a Majorana-Dirac field. We obtain the transition probability from the ground state of the detector and the vacuum state of the field to an excited state with the emission of a Minkowski pair of quanta, in terms of elementary processes of absorption and scattering of Rindler quanta from the Fulling-Davies-Unruh thermal bath in the co-accelerated frame.

  12. A novel position sensitive detector for nuclear radiation. Final Report

    International Nuclear Information System (INIS)

    Current and next generation experiments in nuclear and elementary particle physics require detectors with high spatial resolution, fast response, and accurate energy information. Such detectors are required for spectroscopy, and imaging of optical and high-energy photons, charged particles, and neutrons, and are of interest not only in nuclear and high-energy physics, but also in other areas such as medical imaging, diffraction, astronomy, nuclear treaty verification, non-destructive evaluation, and geological exploration

  13. A new technique for the fabrication of thin silicon radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Rousseau, L.; Brambilla, A.; Bergonzo, P. [LETI/DEIN/SPE, Gif-sur-Yvette (France); Babadjian, L.; Spirkovitch, S. [Groupe ESIEE, Noisy-le-Grand (France)

    1999-06-01

    The fabrication of silicon radiation detectors with thicknesses lower than 30 {micro}m requires non-standard processing equipment and procedures. Such detectors are commonly manufactured by vias in thick silicon wafers of typically 300 {micro}m in order to locally create on small areas thin detectors. Since the etching step controls the thickness and uniformity of the detector, it must provide a constant and controllable etch rate and should not modify the surface micro-roughness, rendering this manufacturing technique critical. As an alternative, the authors have developed a new technique for the fabrication of thin detectors based on the use of substrates presenting a buried etch-stop layer. The detector thickness, its uniformity and the surface roughness are fixed and controlled by the substrate specifications. 5 to 30 {micro}m thick pin silicon diodes with surfaces ranging from 1 to 100 mm{sup 2} have been fabricated. Using this technique, thickness uniformity as low as {+-}0.05 {micro}m can be obtained on 5 {micro}m thick detectors over 100 mm{sup 2} area. 30 {micro}m thick pin detectors (S = 64 mm{sup 2}) are fully depleted at zero bias and exhibit an energy resolution of less than 120 keV ({approximately}2%) for 5.5 MeV alpha particles. This constitutes a breakthrough towards the low cost fabrication of thin silicon radiation detectors using planar technology.

  14. Real and limit sensitivity of some radiation detectors of THz/sub-THz ranges

    Directory of Open Access Journals (Sweden)

    Shevchik-Shekera A. V.

    2012-02-01

    Full Text Available It is shown that while calculating the NEP parameter of radiation detectors of THz/sub-THz range, the fluctuations of the background radiation flux at different temperatures of the background in the case of diffraction-limited beam should be taken into account.

  15. Evidence of Dopant Type-Inversion and Other Radiation Damage Effects of the CDF Silicon Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Ballarin, Roberto [Univ. of the Basque Country, Leioa (Spain)

    2010-06-01

    The aim of this document is to study the effect of radiation damage on the silicon sensors. The reflection of the effect of radiation can be observed in two fundamental parameters of the detector: the bias current and the bias voltage. The leakage current directly affects the noise, while the bias voltage is required to collect the maximum signal deposited by the charged particle.

  16. Test beam performance of a tracking TRD [Transition Radiation Detector] prototype

    International Nuclear Information System (INIS)

    A Tracking Transition Radiation Detector prototype has been constructed and tested. It consists of 240 straw tubes, 4 mm in diameter, imbedded in a polyethylene block acting as the radiator. Its performance as an electron identifier as well as a tracking device for minimum ionizing particles has been determined. 2 refs., 6 figs

  17. Total and Differential Efficiencies for a Circular Detector Viewing a Circular Radiator of Finite Thickness

    International Nuclear Information System (INIS)

    Total and differential detection efficiencies have been computed for a circular detector viewing a circular radiator of finite thickness. Isotropic, cosines and n-p scattering angular emission distributions of the radiated particles are considered. Tables are given for the total efficiencies as well as for the differential efficiencies in the n-p scattering case

  18. Radiation-chemical degradation of cellulose and other polysaccharides

    International Nuclear Information System (INIS)

    Results of studies on the radiation-chemical transformations of cellulose, its ethers, and some other polysaccharides (xylan, starch, dextran, chitin, chitosan, and heparin) are discussed. Ionising radiation causes the degradation of these compounds accompanied by decomposition of the pyranose ring and formation of compounds with carbonyl and carboxy groups, as well as formation of hydrogen, carbon dioxide, and carbon monoxide. The efficiency of degradation increases considerably with temperature and depends on the structure of the polysaccharide and the nature of its substituents. A mechanism of the radiation-chemical transformations of cellulose and other polysaccharides is suggested. The prospects of using radiation-chemical methods for processing of cellulose and other polysaccharides in industry and agriculture are considered. The bibliography includes 213 references.

  19. A program in detector development for the US synchrotron radiation community

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.; Mills, D.; Naday, S.; Gruner, S.; Siddons, P.; Arthur, J.; Wehlitz, R.; Padmore, H.

    2001-07-14

    There is a clear gulf between the capabilities of modern synchrotrons to deliver high photon fluxes, and the capabilities of detectors to measure the resulting photon, electron or ion signals. While a huge investment has been made in storage ring technology, there has not to date been a commensurate investment in detector systems. With appropriate detector technology, gains in data rates could be 3 to 4 orders of magnitude in some cases. The US community working in detector technology is under-funded and fragmented and works without the long term funding commitment required for development of the most advanced detector systems. It is becoming apparent that the US is falling behind its international competitors in provision of state-of-the-art detector technology for cutting edge synchrotron radiation based experiments.

  20. A program in detector development for the US synchrotron radiation community

    International Nuclear Information System (INIS)

    There is a clear gulf between the capabilities of modern synchrotrons to deliver high photon fluxes, and the capabilities of detectors to measure the resulting photon, electron or ion signals. While a huge investment has been made in storage ring technology, there has not to date been a commensurate investment in detector systems. With appropriate detector technology, gains in data rates could be 3 to 4 orders of magnitude in some cases. The US community working in detector technology is under-funded and fragmented and works without the long term funding commitment required for development of the most advanced detector systems. It is becoming apparent that the US is falling behind its international competitors in provision of state-of-the-art detector technology for cutting edge synchrotron radiation based experiments

  1. Effects of radiation and chemical substances on cells and organism

    International Nuclear Information System (INIS)

    The book treats the radiation chemistry part of biophysics and applied biophysics in the sphere of ionizing radiation. Discussed are the concepts of radiation units and radioactivity units and the relative biological efficiency. The effects of ionizing and UV radiations are analyzed at the level of macromolecular changes. Chapters dealing with genetic radiation effects discuss the effects at the cellular level with respect to cell proliferation. All these problems are used to illustrate the effect on the organism as a whole. The chapters on applied biophysics deal with the indications of radiation and chemical damage, sensitivity of cells and the organism, and the study and influencing of growth at the cellular level. The concluding chapter is devoted to the environmental impact of radiation. (J.P.)

  2. Radiation-induced chemical evolution of biomolecules

    International Nuclear Information System (INIS)

    Chemical evolution in glycilglycine (Gly2) films irradiated with 146 nm vacuum ultraviolet light was studied. It is found that quantum efficiency of chemical evolution from Gly2 to glycilglycilglycine (Gly3) is smaller than that to glycilglycilglycilglycine (Gly4) due to the multiple step of reaction. Furthermore, we have carried out measurement of soft X-ray natural circular dichroism spectra for serine and alanine films in the energy region of oxygen 1s transition and we report the splitting of 1s→π* transitions.

  3. The radiation effect of 60Co gamma rays on polycarbonate detector

    International Nuclear Information System (INIS)

    The irradiation of polymeric materials with ionizing radiation (gamma rays, X rays, accelerated electrons, ion beams) leads to the formation of very reactive intermediates products (excited states, ions and free radicals), which result in rearrangements and/or formation of new bonds. The effects of these reactions are formation of oxidized products, grafts, scission of main chain (degradation) or cross-linking. Often the two processes (degradation - cross- linking) occur simultaneously, and the outcome of the process is determined by a competition between the reactions. Polycarbonate detectors are used as a particle track detector for neutrons and alpha particles detection. This work aims to study the ionizing radiation dose response of polycarbonate samples using spectrophotometric technique. A commercially available polycarbonate was analysed and its dosimetric characteristics were studied: radiation-induced absorption spectra, ambient light, temperature and humidity influence, pre- and post-irradiation stability, reproducibility and dose range useful response. Samples of polycarbonate (3 x 1 cm2) were irradiated with 60Co gamma radiation in free air at electronic equilibrium with absorbed doses between 1 and 95 kGy. When exposed to gamma radiation the polycarbonate detectors undergoes changes in their optical response, the colour variation is used for determining the absorbed dose. A Shimadzu UV-2101PC spectrophotometer was used for scanning the absorption spectra and measuring the optical density of film detectors irradiated with different radiation doses. Polycarbonate film detector are easy to prepare and to analyse, of good optical quality, inexpensive and of small size. The dosimetric accuracy can be affect by environmental conditions so, the detectors must be stored in appropriate conditions. The reproducibility of the detectors response can be improved by careful monitoring of optical densities before irradiation. The dose response curve presents linear

  4. The radiation effect of 60Co gamma rays on polycarbonate detector

    International Nuclear Information System (INIS)

    The irradiation of polymeric materials with ionizing radiation (gamma rays, X rays, accelerated electrons, ion beams) leads to the formation of very reactive intermediates products (excited states, ions and free radicals), which result in rearrangements and/or formation of new bonds. The effects of these reactions are formation of oxidized products, grafts, scission of main chain (degradation) or cross-linking. Often the two processes (degradation - cross- linking) occur simultaneously, and the outcome of the process is determined by a competition between the reactions. Polycarbonate detectors are used as a particle track detector for neutrons and alpha particles detection. This work aims to study the ionizing radiation dose response of polycarbonate samples using spectrophotometric technique. A commercially available polycarbonate was analysed and its dosimetric characteristics were studied: radiation-induced absorption spectra, ambient light, temperature and humidity influence, pre- and post-irradiation stability, reproducibility and dose range useful response. Samples of polycarbonate (3 x 1 cm2) were irradiated with 60Co gamma radiation in free air at electronic equilibrium with absorbed doses between 1 and 95 kGy. When exposed to gamma radiation the polycarbonate detectors undergoes changes in their optical response, the colour variation is used for determining the absorbed dose. A Shimadzu UV- 2101PC spectrophotometer was used for scanning the absorption spectra and measuring the optical density of film detectors irradiated with different radiation doses. Polycarbonate film detector are easy to prepare and to analyse, of good optical quality, inexpensive and of small size. The dosimetric accuracy can be affect by environmental conditions so, the detectors must be stored in appropriate conditions. The reproducibility of the detectors response can be improved by careful monitoring of optical densities before irradiation. The dose response curve presents linear

  5. Chemical modification of polyurethanes by radiation-induced grafting

    International Nuclear Information System (INIS)

    Basic methods of radiation-induced modification of polyurethanes for biomedical applications and of their characterization are briefly described. The most important works found in literature on radiation grafting of polyurethanes are discussed. The radiation grafting of polyetherurethane films and tubings by the preswelling method using various monomers and their physico-chemical characterization are discussed in detail with respect to the antithrombogenic properties of the materials. Novel applications for radiation-modified polyurethanes as drug delivery systems or antiinfectious materials are briefly mentioned. 52 references

  6. Modeling detector response in solid-state systems for radiation therapy and radiobiology

    International Nuclear Information System (INIS)

    In order for the many advantageous properties of solid-state dosimeters to be realised in clinic, strategies must be evolved for the calibration of detector systems for an ever expanding range of radiation sources including spectrally complex and mixed radiation fields. Monte Carlo models of the source and detector systems provide a means to account in a precise way for energy absorbed in the detector allowing for primary and secondary radiation processes including multiple scattering. Solid- state dosimeters including Si diodes, MOSFET, diamond detectors and doped optical fibres have been calibrated for dose in monoenergetic synchrotron X-rays in the range 5-50 keV, for quasi monoenergetic X-rays sources from 20-200 keV and for megavoltage X-ray and proton sources, such as are used in radical radiation therapy. With careful consideration of the elemental composition of the detector it is possible to achieve high quality agreement (2-3%) between measurement and Monte Carlo models of the variation of the detector response over a wide energy range. This information is needed in radiation therapy dosimetry where, for large external X-ray beams, detectors see a mixture of high energy primary photons and low energy (e.g. Compton scattered and pair-production-annihilation) photons. Typically, for solid-state detectors, different cavity theories are required for the two energy groups. In addition, high-Z constituents in detectors lead to an enhanced photoelectric absorption, which in the case of pure silicon detectors is up to 8 times greater than the tissue equivalent response. Information from maps of the elemental composition in the detectors, obtained via XRF and PIXE, is used in the models. Monte Carlo models are also being developed for contributions to the response from electron transport, including the microdosimetric response of detectors. Current Monte Carlo codes are able to handle large variations in density that typify tissue equivalent gas

  7. Radiation tolerance of the FOXFET biasing scheme for AC-coupled Si microstrip detectors

    International Nuclear Information System (INIS)

    The radiation response of FOXFETs has been studied for proton, gamma and neutron exposures. The punch-through behavior, which represents the normal FET operating conditions in Si microstrip detectors, has been found to be much less sensitive to radiation damage than threshold voltage. The device performance has been elucidated by means of two-dimensional simulations. The main radiation effects have been also taken into account in the numerical analysis and separately examined

  8. Strip type radiation detector and method of making same

    International Nuclear Information System (INIS)

    An improved strip detector and a method for making such a detector are described. A high resistivity N conduction semiconductor body has electrode strips formed thereon by diffusion. The strips are formed so as to be covered by an oxide layer at the surface point of the PN junction and in which the opposite side of the semiconductor body then has a substantial amount of material etched away to form a thin semiconductor upon which strip electrodes which are perpendicular to the electrodes on the first side are then placed

  9. Strip type radiation detector and method of making same

    International Nuclear Information System (INIS)

    An improved strip detector and a method for making such a detector in which a high resistivity N conduction semiconductor body has electrode strips formed thereon by diffusion is described. The strips are formed so as to be covered by an oxide layer at the surface point of the PN junction and in which the opposite side of the semiconductor body then has a substantial amount of material etched away to form a thin semiconductor upon which strip electrodes which are perpendicular to the electrodes on the first side are then placed

  10. X-Ray and Gamma-Ray Radiation Detector

    DEFF Research Database (Denmark)

    2015-01-01

    (P) along a first axis, a plurality of drift electrodes, a readout circuitry being configured to read out signals from the plurality of detector electrodes and a processing unit connected to the readout circuitry and being configured to detect an event in the converter element. The readout circuitry...... is further configured to read out signals from the plurality of drift electrodes, and the processing unit is further configured to estimate a location of the event along the first axis by processing signals obtained from both the detector electrodes and the drift electrodes, the location of the event along...

  11. Study and realization of a far infrared radiation detector

    International Nuclear Information System (INIS)

    A F.I.R. dadiation detector (lambda = 337 μm) which makes use of the hot electron photoconductivity in InSb is described. The InSb crystal is cut in a special shape which allows high resistance (-7 KΩ) at liquid helium temperature without a magnetic field. In this way the detector can be used in the optimum point of the noise figure with a ultra-low noise pre-amplifier. A study is done to determine the sensitivity and the NEP (optical and electrical) which results respectively in 70 V/W and 10-10 WHz sup(-1/2) for optical parameters. (Author)

  12. Technical Note: Response measurement for select radiation detectors in magnetic fields

    International Nuclear Information System (INIS)

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies

  13. Radiation Tests for a Single-GEM Loaded Gaseous Detector

    CERN Document Server

    Lee, Kyong Sei; Kim, Sang Yeol; Park, Sung Keun

    2014-01-01

    We report on the systematic study of a single-gas-electron-multiplication (GEM) loaded gaseous detector developed for precision measurements of high-energy particle beams and dose-verification measurements. In the present study, a 256-channel prototype detector with an active area of 16$\\times$16 cm$^{2}$, operated in a continuous current-integration-mode signal-processing method, was manufactured and tested with x rays emitted from a 70-kV x-ray generator and 43-MeV protons provided by the MC50 proton cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS). The amplified detector response was measured for the x rays with an intensity of about 5$\\times$10$^{6}$ Hz cm$^{-2}$. The linearity of the detector response to the particle flux was examined and validated by using 43-MeV proton beams. The non-uniform development of the amplification for the gas electrons in space was corrected by applying proper calibration to the channel responses of the measured beam-profile data. We concluded fro...

  14. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  15. Gamma radiation detection limits of spectrometers fitted with semiconductor detectors

    International Nuclear Information System (INIS)

    Both in Health Physics and in the metrology of ionizing radiations the increasingly numerous analyses in the field of low activities compel the experimenters to resort to instrumentation that is as sensitive as possible. This need has led the Gamma Spectrometry Working Group to embark on a study covering the gamma radiation sensitivity of several detection systems

  16. Application of synchrotron radiation in chemical dynamics

    International Nuclear Information System (INIS)

    In October 1992, funding was approved to begin construction of a beamline and two end stations to support chemical dynamics experiments at LBL's Advanced Light Source (ALS). This workshop was organized to develop specifications and plans and to select a working team to design and supervise the construction project. Target date for starting the experiments is January 1995. Conclusions of the workshop and representative experiments proposed in earlier workshops to form the basis for beamline plans and end-station designs are summarized in this report. 6 figs

  17. Cd1-xMnxTe semiconductor radiation detectors for medical applications

    International Nuclear Information System (INIS)

    Full text : This work tells about semiconductor nuclear radiation detectors which had experienced a rather rapid development in the last few years. They are now used in a large variety of fields, including nuclear physics, X-ray and gamma-ray astronomy and nuclear medicine. In recent years a substantial international effort had been invested in developing a range of compound semiconductors with wide band gap and high atomic number for X- and gamma-ray detectors. Among the compound semiconductors, cadmium manganese telluride were the most promising materials for radiation detectors with good energy resolution, high detection efficiency and room temperature operation. Also these detectors were suitable for the development of portable systems for mammographic X-ray spectroscopy.

  18. Synchrotron radiation monitoring for LEP2 using the DELPHI-TPC silicon detector

    International Nuclear Information System (INIS)

    The Time Projection Chamber (TPC) of the DELPHI detector suffers contamination due to Synchrotron Radiation (small ionized cloud with slow drift velocity which causes a magnetic field perturbation), specially during the new phase of operation of the LEP. Therefore one needs to monitor this radiation by means of an independent detector. This detector, which has been developed during the last 20 months, uses the silicon technique and allows precise measurements of both the energy and time of flight of the photons, either direct, or back-scattered by the quadrupoles, masks or collimations in front of the TPC. Typical time delay and energy range are of the order of 50 ns and 100 to 400 KeV, respectively. The detector being independent of the DELPHI acquisition system, it allows a good monitoring task that can give some clue on the state of the beams and non-stop trace plot

  19. Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction.

    Science.gov (United States)

    Coquillat, Dominique; Marczewski, Jacek; Kopyt, Pawel; Dyakonova, Nina; Giffard, Benoit; Knap, Wojciech

    2016-01-11

    Phenomena of the radiation coupling to the field effect transistors based terahertz (THz) detectors are studied. We show that in the case of planar metal antennas a significant portion of incoming radiation, instead of being coupled to the transistors, is coupled to an antenna substrate leading to responsivity losses and/or cross-talk effects in the field effect based THz detector arrays. Experimental and theoretical investigations of the responsivity versus substrate thickness are performed. They clearly show how to minimize the losses by the detector/ array substrate thinning. In conclusion simple quantitative rules of losses minimization by choosing a proper substrate thickness of field effect transistor THz detectors are presented for common materials (Si, GaAs, InP, GaN) used in semiconductor technologies. PMID:26832258

  20. Role of fuel chemical properties on combustor radiative heat load

    Science.gov (United States)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, UTRC has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced highly-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  1. Detector Response and Beam Line Transmission Measurements with Far-Infrared Radiation

    CERN Document Server

    Grimm, O; Fröhlich, L

    2005-01-01

    Various activities at the TTF linear accelerator at DESY, Hamburg, that drives the VUV-FEL are geared towards measuring the longitudinal charge distribution of electron bunches with coherent far-infrared radiation. Examples are beam lines transporting synchrotron or transition radiation to interferometers mounted inside or outside the tunnel, and studies of single-shot grating spectrometers. All such approaches require a good understanding of the radiation generation and transport mechanism and of the detector characteristics to extract useful information on the charge distribution. Simulations and measurements of the expected transverse intensity distribution and polarization of synchrotron radiation emitted at the first bunch compressor of TTF have been performed. The transverse intensity scanning provided for the first time at DESY a visual image of the footprint of terahertz radiation. Detector response measurements have been performed at the FELIX facility, Netherlands, for wavelengths between 100-160 mi...

  2. Chemical and radiation carcinogenesis. Progress report

    International Nuclear Information System (INIS)

    Gamma radiation, as a quantitative perturbation reference, has been related to oxygen toxicity as the unavoidable background risk due to living in an oxygen atmosphere. The basic mechanisms shared by gamma irradiation and oxygen toxicity have been studied. The response to these two perturbations has been characterized at the molecular level through DNA chemistry and monoclonal antibodies, and by cellular biological responses. The investigation of cellular responses is being extended to the molecular level through a study of alteration of gene arrangement and gene expression. Concentration has been on the study of the involvement of the evolutionally conserved repetitive DNA sequences shared by hamster and man. Such sequences were found and some have been isolated in plasmids. Two cellular systems were chosen for investigation, the embryonic/adult mesenchymal system and the hematopoietic tissues system. Concentration has been on the isolation, properties, and response to perturbation of the progenitor cells and the stem cell populations

  3. Spectral Analysis Method of Plastic Scintillator-based Radiation Detector against Nuclear/Radiological Terrorism

    International Nuclear Information System (INIS)

    In these days, the threats relating to nuclear or radioactive materials have become a matter of internationally increased grave concern. A plastic scintillation detector in radiation portal monitoring (RPM) application has been used to detect radioactive sources in steel scrap entering reprocessing facilities, and to detect illicit transport of radioactive material across border ports-of-entry. The detection systems for RPM application usually are large and can not easily be moved to a different location. For some situations, an inconspicuous and mobile system for the radioactive or nuclear material during road transport is needed. The mobile radiation detection system has employed a NaI- based radiation detector to detect and identify the material hidden in vehicle. There are some operational constraints - short measuring time, weak activity due to heavy shield of illegal source, long distance - of inspection system in such nuclear security applications. Due to these constraints, large area sensor is required to maximize its sensitivity. Large NaI material, however, is extremely expensive. In designing a radiation detector for prevention of illicit trafficking of nuclear or radioactive materials, the trade-off should be carefully optimized between performance and cost in order to achieve cost-effective inspection system. For the cost-effective mobile radiation detection system, this paper describes new spectral analysis method to use the crude spectroscopic information available from a plastic detector to discriminate other man-made radiation source from NORM

  4. Chemical and physical knowledge about radiation exposure

    International Nuclear Information System (INIS)

    Easily explained is the title subject about the electromagnetic wave, photon, neutron, particle line, linear energy transfer and unit. The electromagnetic wave is a waving particle, photon, without mass and generally involves radio, infrared, visible, ultraviolet and gamma (and X) rays. The interaction between photon and material atom involves effects photoelectric, yielding electron pair, Compton scattering and nuclear in the order of photon energy: respectively important in low energy imaging like mammography vs high exposure dose; positron emit tomography (PET); cause of image fading or source of radiation therapy; and at >7 MeV photon (e.g., linac therapy), the nuclear reaction-generated neutron, hazardous to radiological staff. Neutron has no electric charge and should be shielded by light atoms like H and C as energy loss by collision is efficient. Alpha ray generated by the reaction 10B(n, alpha) 7Li can effectively kill cancer cells. Particle line involves alpha and beta rays. Alpha particle from Rn is sometimes problematic for human health because Ra contained in building materials produces Rn. Beta ray is one of causes of exposure and produces Bremsstrahlung X-ray at its stoppage, which is used for imaging of 89Sr and so on. Beta ray from 40K is important in the internal exposure as the atom in the body amounts to 55 Bq/kg body weight. Effects of radiation depend on its range and ionization in the body: the linear energy transfer (LET) describes the degree of the effects. Unit contains that of the exposure (dose of irradiation) and absorption, and of the radioactivity: the first is expressed by R (roentgen), measurable with the direct ionization effect; the second, Gy (gray), calculable from R; and the third, the decay rate of radionuclide, disintegration per sec (dps) =1 Bq (becquerel). The equivalent doses are expressed by Sv (sievert). (T.T.)

  5. Radiation-Hard Opto-Link for the Atlas Pixel Detector

    OpenAIRE

    Gan, K. K.

    2004-01-01

    The on-detector optical link of the ATLAS pixel detector contains radiation-hard receiver chips to decode bi-phase marked signals received on PIN arrays and data transmitter chips to drive VCSEL arrays. The components are mounted on hybrid boards (opto-boards). We present results from the opto-boards and from irradiation studies with 24 GeV protons up to 33 Mrad (1.2 x 10^15 p/cm^2).

  6. Method for the preparation of n-i-p type radiation detector from silicon

    International Nuclear Information System (INIS)

    The patent describes a procedure for the preparation of n-i-p type silicon radiation detectors. The aim was to provide an adaquate procedure for the production of α, β, γ-detectors from silicon available on the market, either p-type single crystal silicon characterised by its boron level. The procedure and the 9 claims are illustrated by two examples. (Sz.J.)

  7. Investigation of hybrid pixel detector arrays by synchrotron-radiation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Helfen, L. [Institut fuer Synchrotronstrahlung (ISS/ANKA), Forschungszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany)]. E-mail: helfen@esrf.fr; Myagotin, A. [Institut fuer Synchrotronstrahlung (ISS/ANKA), Forschungszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany); Pernot, P. [Institut fuer Synchrotronstrahlung (ISS/ANKA), Forschungszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany); European Synchrotron Radiation Facility, F-38043 Grenoble CEDEX 9 (France); DiMichiel, M. [European Synchrotron Radiation Facility, F-38043 Grenoble CEDEX 9 (France); Mikulik, P. [Institute of Condensed Matter Physics, Masaryk University, CZ-61137 Brno (Czech Republic); Berthold, A. [Fraunhofer Institut fuer Zerstoerungsfreie Pruefverfahren IZFP-D, D-01326 Dresden (Germany); Baumbach, T. [Institut fuer Synchrotronstrahlung (ISS/ANKA), Forschungszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany)

    2006-07-01

    Synchrotron-radiation imaging was applied to the non-destructive testing of detector devices during their development cycle. Transmission imaging known as computed laminography was used to examine the microstructure of the interconnections in order to investigate the perfection of technological steps necessary for hybrid detector production. A characterisation of the solder bump microstructure can reveal production flaws such as missing or misaligned bumps, voids in bumps or bridges and thus give valuable information about the bonding process.

  8. Investigation of hybrid pixel detector arrays by synchrotron-radiation imaging

    International Nuclear Information System (INIS)

    Synchrotron-radiation imaging was applied to the non-destructive testing of detector devices during their development cycle. Transmission imaging known as computed laminography was used to examine the microstructure of the interconnections in order to investigate the perfection of technological steps necessary for hybrid detector production. A characterisation of the solder bump microstructure can reveal production flaws such as missing or misaligned bumps, voids in bumps or bridges and thus give valuable information about the bonding process

  9. Measurement of the radiation field at the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    K. Kordas et al.

    2003-01-12

    We present direct measurements of the spatial distribution of both ionizing radiation and low energy neutrons (E{sub n} < 200 keV) inside the tracking volume of the Collider Detector at Fermilab (CDF). Using data from multiple exposures we are able to separate the contributions from beam losses and proton-antiproton collisions. Initial measurements of leakage currents in the CDF silicon detectors show patterns consistent with predictions based on our measurements.

  10. Analysis of Surface Chemistry and Detector Performance of Chemically Process CdZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    HOSSAIN, A.; Yang, G.; Sutton, J.; Zergaw, T.; Babalola, O. S.; Bolotnikov, A. E.; Camarda. ZG. S.; Gul, R.; Roy, U. N., and James, R. B.

    2015-10-05

    The goal is to produce non-conductive smooth surfaces for fabricating low-noise and high-efficiency CdZnTe devices for gamma spectroscopy. Sample preparation and results are discussed. The researachers demonstrated various bulk defects (e.g., dislocations and sub-grain boundaries) and surface defects, and examined their effects on the performance of detectors. A comparison study was made between two chemical etchants to produce non-conductive smooth surfaces. A mixture of bromine and hydrogen peroxide proved more effective than conventional bromine etchant. Both energy resolution and detection efficiency of CZT planar detectors were noticeably increased after processing the detector crystals using improved chemical etchant and processing methods.

  11. Results obtained with the passive radiation detectors in the ICCHIBAN-4 experiment

    International Nuclear Information System (INIS)

    In frame of the InterComparison of Cosmic rays with Heavy Ions Beams at NIRS (ICCHIBAN) organized at the HIMAC accelerator in Chiba several types of the thermoluminescent detectors (TLD), as well as CR-39 track detectors, were exposed. Four different types of TLDs were used: MTS-7 (7LiF:Mg,Ti), MTS-6 (6LiF:Mg,Ti), MCP-7 (7LiF:Mg,Cu,P) and MTT-7 (7LiF:Mg,Ti with changed activator composition. All TLDs were manufactured at the Institute of Nuclear Physics (INP) in Cracow. The detectors were irradiated with various doses of He, C, Ne and Fe ions. Part of exposures were done in unknown conditions, to test measuring capabilities of the detectors. For analyses of these results, the method of obtaining information on ionisation density of an unknown radiation field, which is based on ratios of responses of different LiF detectors, was successfully used. (author)

  12. High-resolution detectors for medical applications and synchrotron radiation research

    Science.gov (United States)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Groshev, V. R.; Leonov, V. V.; Papushev, P. A.; Porosev, V. V.; Savinov, G. A.; Shayakhmetov, V. R.; Shekhtman, L. I.; Tikhonov, Yu. A.; Ukraintsev, Yu. G.; Yurchenko, Yu. B.

    2011-02-01

    In the present report, we summarize our experience in the development of high-resolution position sensitive gas detectors for medicine and synchrotron radiation experiments at Budker Institute of Nuclear Physics for the last years. We have designed several versions of Multistrip Ionisation Chambers with a channel pitch varying from 0.4 down to 0.1 mm. The high quantum efficiency (>65%) of these detectors allow its application in high quality diagnostic imaging. The detector with 0.1 mm strip pitch and 20 atm pressure of Xe demonstrates the best possible DQE and spatial resolution for gaseous detectors in a wide range of X-ray energies. Additionally, the initial results of feasibility study of the detector for beam position monitoring for Heavy Ion Therapy System are presented too.

  13. Influence of field effect on the performance of InGaAs-based terahertz radiation detectors

    CERN Document Server

    Minkevičius, Linas; Kojelis, Martynas; Žąsinas, Ernestas; Bukauskas, Virginijus; Šetkus, Arūnas; Kašalynas, Irmantas; Valušis, Gintaras

    2016-01-01

    Detailed electric characterization of high-performance InGaAs-based terahertz radiation detectors and corresponding simulation results are presented. The local surface potential and tunneling current were scanned on the surface of detectors by Kelvin probe force microscope (KPFM) and scanning tunneling microscope (STM) and a position of the Fermi level was obtained from these experiments. Current-voltage curves were measured and modelled using Synopsys Sentaurus TCAD package to get a better insight of processes happening within the detector. In addition, finite-difference time-domain simulations were performed to reveal the peculiarities of electric field concentration by the metal contacts of the detectors. Results of our investigation confirm, that field-effect induced conductivity modulation is a possible contributing mechanism to high sensitivity of the detectors.

  14. Internal Electric Field Behavior of Cadmium Zinc Telluride Radiation Detectors Under High Carrier Injection

    International Nuclear Information System (INIS)

    The behavior of the internal electric-field of nuclear-radiation detectors substantially affects the detector's performance. We investigated the distribution of the internal field in cadmium zinc telluride (CZT) detectors under high carrier injection. We noted the build-up of a space charge region near the cathode that produces a built-in field opposing the applied field. Its presence entails the collapse of the electric field in the rest of detector, other than the portion near the cathode. Such a space-charge region originates from serious hole-trapping in CZT. The device's operating temperature greatly affects the width of the space-charge region. With increasing temperature from 5 C to 35 C, its width expanded from about 1/6 to 1/2 of the total depth of the detector.

  15. Observation of microwave radiation using low-cost detectors at the ANKA storage ring*

    CERN Document Server

    Judin, V; Hofmann, A; Huttel, E; Kehrer, B; Klein, M; Marsching, S; Müller, A S; Nasse, M; Smale, N; Caspers, F; Peier, P

    2011-01-01

    Synchrotron light sources emit Coherent Synchrotron Radiation (CSR) for wavelengths longer than or equal to the bunch length. At most storage rings CSR cannot be observed, because the vacuum chamber cuts off radiation with long wavelengths. There are different approaches for shifting the CSR to shorter wavelengths that can propagate through the beam pipe, e.g.: the accelerator optics can be optimized for a low momentum compaction factor, thus reducing the bunch length. Alternatively, laser slicing can modulate substructures on long bunches [1]. Both techniques extend the CSR spectrum to shorter wavelengths, so that CSR is emitted at wavelengths below the waveguide shielding cut off. Usually fast detectors, like superconducting bolometer detector systems or Schottky barrier diodes, are used for observation of dynamic processes in accelerator physics. In this paper, we present observations of microwave radiation at ANKA using an alternative detector, a LNB (Low Noise Block) system. These devices are usually use...

  16. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W. [Columbia Univ., New York, NY (United States); Cherniatin, V.; Dolgoshein, B. [Moscow Institute of Physics and Engineering, (Russian Federation); Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K. [Yale Univ., New Haven, CT (United States)

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  17. Human Genetic Marker for Resistance to Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    DR. Howard B. Lieberman

    2001-05-11

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage.

  18. Human Genetic Marker for Resistance to Radiation and Chemicals

    International Nuclear Information System (INIS)

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage

  19. The role of free radicals in radiation and chemical carcinogenesis

    International Nuclear Information System (INIS)

    Since sunlight, ionising radiation and toxic chemicals can serve as the initiators of free radical damage and as a means of enhancing the effectiveness of any existing potentially damaging free radical, they may act independently, additively or synergistically in a multi-step free radical process leading to biological damage. Having examined methods of studying the fast reactions involved, comparisons are made of the mechanism of chemical and radiation carcinogenesis and the role of synergism is considered. Different approaches to cancer protection are examined and the development of a redox model for carcinogenesis is discussed. 317 references. (U.K.)

  20. Development of a sealed source radiation detector system for gamma ray scanning of petroleum distillation columns

    International Nuclear Information System (INIS)

    Gamma Ray Scanning is an online technique to 'view' the hydraulic performance of an operating column, with no disruption to operating processes conditions (pressure and temperature), as a cost-effective solution. The principle of this methodology consists of a small suitably sealed gamma radiation source and a radiation detector experimentally positioned to the column, moving concurrently in small increments on opposite sides and the quantity of gamma transmitted. The source-detector system consists of: a sealed ''60Co radioactive source in a panoramic lead radiator, a scintillator detector coupled to a ratemeter / analyzer and a mobile system. In this work, a gamma scanning sealed source-detector system for distillation columns, was developed, comparing two scintillator detectors: NaI(Tl) (commercial) and CsI(Tl) (IPEN). In order to project the system, a simulated model of a tray-type distillation column was used. The equipment developed was tested in an industrial column for water treatment (6.5 m diameter and 40 m height). The required activities of 6''0Co, laboratory (11.1 MBq) and industrial works (1.48 TBq) were calculated by simulation software. Both, the NaI(Tl) and the CsI(Tl) detectors showed good proprieties for gamma scanning applications, determining the position and presence or absence of trays. (author)

  1. Fast response amplitude scintillation detector for X-ray synchrotron radiation

    International Nuclear Information System (INIS)

    The present paper describes a scintillation detector for X-ray synchrotron radiation. This detector has been created on the basis of a scintillator and a photoelectron multiplier (FEU-130) and its construction allows one to use the specific features of the time characteristics of synchrotron radiation from the electron storage ring. In a given range of amplitudes, the detector electronics makes a 64-channel amplitude analysis of the FEU-130 signal strobed by the revolution frequency of an electron bunch in the storage ring (f0 = 818 kHz). There is the possibility of operating the detector at high intensities of the monochromatic radiation incident on the scintillator. Such a possibility is directly provided by the time structure of SR and is not realizable with the use of other X-ray sources. The detector will find wide application in studies on X-ray structural analysis, transmission and fluorescent EXAFS- and XANES-spectroscopy, transmission scanning microscopy and microtomography, calibration of X-ray detectors and as a monitor on SR beams from the storage ring VEPP-4. (orig.)

  2. Use of Sub-bandgap Illumination to Improve Radiation Detector Resolution of CdZnTe

    Science.gov (United States)

    Duff, Martine C.; Washington, Aaron L.; Teague, Lucile C.; Wright, Jonathan S.; Burger, Arnold; Groza, Michael; Buliga, Vladimir

    2015-09-01

    The performance of Cd1- x Zn x Te (CZT) materials for room-temperature gamma/x-ray radiation detection continues to improve in terms of material quality and detector design. In our prior publications, we investigated the use of multiple wavelengths of light (in the visible and infrared) to target charge carriers at various trap energies and physical positions throughout crystals. Light exposure significantly alters the charge mobility and improves carrier collection at the anode contact. This study presents an investigation of material performance as a radiation detector during such illumination. The decrease in charge trapping and increase in charge collection due to a higher probability of free electron release from traps contributed to an increase in the resolution-based performance of the detector through controlled illumination. We investigated the performance improvement of CZT crystals with previously known levels of intrinsic defects and secondary phases, at various voltages, light-emitting diode (LED) light wavelengths, and shaping times. Although our setup was clearly not optimized for radiation detector performance, it demonstrated substantial resolution improvements (based on full-width at half-maximum using 662-keV gamma rays from 137Cs upon illumination with 950-nm light) of 16% to 38% in comparison with unilluminated CZT under similar conditions. This manuscript includes discussion of the electrooptic behavior and its effect on performance. Additional testing and fabrication of a detector that incorporates such LED light optimization could lead to improved performance with existing detector-grade materials.

  3. Development of passive radiation detectors of improved sensitivity

    Science.gov (United States)

    Chakrabarty, M. R.

    1986-01-01

    The future development of a solid track high energy particle detector is discussed. The goal is to improve the sensitivity and lower the threshold of the detector. One most widely used material for such purpose is a plastic commercially known as CR-39. A scheme is presented which involves changing the formula of the monomer, diethylene glycol-bis-allyl carbonate. This is to be accomplished by substituting some heteroatoms for H and substituting sulfur atoms for oxygen in the ether linkages. Use of a new plasticizer to make the etched surface clearer than what has been accomplished as of today is suggested. Possible improvement in acquiring better tracks and increasing the ratio of V sub T/V sub B was planned. This is to be accomplished by changing the composition of the etchants, etching time, and etching temperature.

  4. Thallium bromide chloride (TlBrxCl1-x) nuclear radiation detector

    International Nuclear Information System (INIS)

    Thallium bromide (TlBr) has been studied as an X- and gamma-ray detector material and relatively good spectrometric performances have been obtained from the detectors. However, the energy resolution of the TlBr detectors is limited by the relatively low resistivity of the crystals. Thallium bromide chloride (TlBrxCl1-x) is a mixed crystal of TlBr and thallium chloride (TlCl). TlBr0.8Cl0.2 crystals have been grown by the traveling molten zone method (TMZ) from purified materials. Nuclear radiation detectors have been fabricated from the grown TlBr0.8Cl0.2 crystals and the detector performance has been characterized. Optical transmittance was evaluated in order to characterize bandgap of the grown crystal. The results confirm that the bandgap of TlBr0.8Cl0.2 is wider than the bandgap of TlBr. Leakage currents of the detectors were measured as a function of the bias voltage at room temperature. The resistivity of the TlBr0.8Cl0.2 detector is approximately equal to the resistivity of typical TlBr detector. A TlBr0.8Cl0.2 detector operated at room temperature was irradiated with gamma-rays from 137Cs source. The detector exhibited a clear peak corresponding 662 keV gamma-rays. The resolution obtained by the TlBr0.8Cl0.2 detector, however, was presently not better than the resolution obtained by the typical TlBr detector. (M. Suetake)

  5. High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors

    Science.gov (United States)

    Hartmann, G.; Mueller, D.; Prince, T.

    1977-01-01

    A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.

  6. Chemical protection and sensitization to ionizing radiation:molecular investigations

    International Nuclear Information System (INIS)

    Chemical radioprotection and radiosensitization are induced by the presence of certain chemical compounds, which reduce or enhance the effect of ionizing radiation on living organisms. Such substances are either naturally present or may be artificially introduced in the living cells. Chemical radioprotectors are interesting for possible application in the health protection of both professionally exposed workers and patients treated by radiation for diagnostic and thereapeutic purposes. Interest in chemical radiosensitization has increased recently because of its potential application in the radiotherapy of tumours. Both radioprotection and radiosensitization occur by means of complicated mechanisms, which at first correspond to very fast reactions. The mechanism of the interaction between such substances and radiation-induced biological radicals has been investigated by means of pulse radiolysis and rapid mixing techniques. Examples of the application of these techniques are given to illustrate how information has been obtained on the molecular basis of radiation chemical modi-fication at the cellular level. In particular some interactions between model systems of biological interest (DNA, DNA components, enzymes, amino acids, etc.) and sulphur-containing radioprotectors (glutathione, cysteine, etc.) and/or electroaffinic radiosensitizers, are described. (H.K.)

  7. Time expansion chambers of the ALICE Transition Radiation Detector (TRD)

    CERN Multimedia

    2003-01-01

    The TRD is segmented into 18 sectors in the azimuthal angle. Each sector consists of 6 layers in the radial direction and is composed of 5 stacks in the longitudinal direction. This amounts to 540 individual detector modules with a total active area of roughly 750 m2 and 1.2 million readout channels. The largest module is 159 cm long and 120 cm wide.

  8. Palladium silicide - a new contact for semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Silicide layers can be used as low resistance contacts in semiconductor devices. The formation of a metal rich palladium silicide Pd2Si is discussed. A palladium film 100A thick is deposited at 3000C and the resulting silicide layer used as an ohmic contact in an n + p silicon detector. This rugged contact has electrical characteristics comparable with existing evaporated gold contacts and enables the use of more reproducible bonding techniques. (author)

  9. Characterization of a novel two dimensional diode array the ''magic plate'' as a radiation detector for radiation therapy treatment

    International Nuclear Information System (INIS)

    Purpose: Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the ''magic plate'' (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. Methods: The prototype MP is an 11 x 11 detector array based on thin (50 μm) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary ''drop-in'' technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Results: Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180 deg. Angular dependence was within 3.5% for the gantry angles ± 75 deg. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In the

  10. Radiation chemical production of resin-bonded paper laminates

    International Nuclear Information System (INIS)

    After referring to the economic importance of resin-bonded paper laminates and to the environmental and energy-related aspects of radiation chemical processes, the radiation polymerization of resins and monomers is discussed. Furthermore, a survey is given of the application of melamine resins to the production of laminates and of the modification of these melamines to obtain radiation polymerizable resins. According to the dose distribution within the laminate samples a detailed investigation has been made with regard to the radiation conditions at the electron processing unit used. Some relevant methods of preparing modified melamine resins were examined by analytical tests and efforts have been made in optimizing the resins obtained. To investigate the radiation curability of these resins, an analytical procedure has been developed based upon the precipitation of manganese dioxide from potassium permanganate, which enables to establish a quantitative relation between the decrease of the double bond content and the absorbed dose as well as to compare the reactivity of radiation curable systems. A description of common production processes of laminates is followed by some data concerning the radiation damage of cellulose, the basis of both conventionally and radiation chemically produced laminates. By thorough investigations a correlation could be found between the composition of the resin-monomer-systems and the properties of the corresponding laminates making the latter predictable. These investigations did not only lead to a preference of acrylic-modified melamine resins but also to a reduction among the available reactive diluents to non-volatile mono- and diacrylates. Finally, a description of a production line on a large scale is followed by a calculation of cost of the radiation chemical part of the process. (author)

  11. Application of MCP-N (Lif: Mg, Cu, P TL detectors in monitoring environmental radiation

    Directory of Open Access Journals (Sweden)

    Olko Pavel

    2004-01-01

    Full Text Available Thermoluminescent MCP-N detectors based on LiF:Mg,Cu,P are by about 2 orders of magnitude more sensitive than TLD-100 detectors based on conventional LiF:Mg,Ti, which makes it possible to use them in short-term monitoring of ionizing radiation in the environment (e. g., over a two-week period, rather than over 3-12 months. We describe the properties of MCP-N detectors and methods of their application in environmental monitoring. The system was tested in short and long-term exposure periods at 100 sites around Krakow region. MCP-N detectors were then applied to measure variation of radiation dose rate at four selected villages in Serbia, where depleted uranium ammunition was deployed in 1999. Together with short-term thermoluminescent dosimetry, in situ measurements using proportional counters were per formed in order to assess the range of variation of natural radiation background in these villages. The mean terrestrial kerma dose rate in these villages was found to vary between 85 and 116 nGyh–1 and the average ambient dose equivalent rate H*(10 determined by thermoluminescent detectors and by proportional counter measurements was 160 nSvh–1. These values of natural radiation back ground dose rates can be applied as reference levels for field measurements around other sites where depleted uranium ammunition was deployed.

  12. Radiation hardness of punch-through and FET biased silicon microstrip detectors

    International Nuclear Information System (INIS)

    Silicon microstrip detectors can be biased with polysilicon resistors or Field Effect Transistor (FET) biasing structures. Polysilicon resistors are radiation hard, but using the FET biasing principle reduces processing costs and can give better noise performance. A set of microstrip detectors has been manufactured with a standard radiation sensor process in order to assess the radiation hardness of punch-through and FET biasing. Eight different bias geometry designs were used in order to study the effects of bias gap lengths and strip end geometries on the detector characteristics. The test detectors were irradiated at several dose levels up to 75 kGy with a 60Co source. Initially the devices had very low oxide charge (3.1010 cm-2) and leakage current levels (60 pA per strip). The dynamic resistance was in the 1 GΩ range, which is higher than the values which can be achieved by conventional polysilicon resistors. Radiation exposure gave significant increases in the leakage current of the devices. This causes large reductions in the dynamic resistance, and detector performance will degrade. The degradation due to increased leakage current was present for all strip end geometries, and it could not be compensated by changing the gate voltage. (orig.)

  13. Performance Characteristics of an SSB Radiation Detector with a Guard Electrode for Radon Detection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Park, Se Hwan; Ha, Jang Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seung Yeon; Kim, Do Hyun; Chung, Eui Kwon; Kim, Sun Hong [Yonsei University, Wonju (Korea, Republic of)

    2007-10-15

    {sup 222}Rn, which emits alpha particles, is a cancer-causing natural radioactive gas. And it is recommended that radon level in public space may be fixed below 4 pCi/L. The 88% of {sup 218}Po, which is one of the progeny nuclei of {sup 222}Rn, tend to become positively charged. Two different types of Silicon Surface Barrier (SSB) radiation detector, which is generally used to detect charged particles such as alpha particles and fission fragments, were fabricated for {sup 22}'2Rn detection. One is a plain planar-type and the other is a guard electrode configured SSB radiation detector. A detection principle of radon detection is the electrostatic collection of the progeny nuclei of {sup 222}Rn, and the energy measurement of the alpha decay with an SSB detector. The leakage currents of the two-type SSB radiation detectors were measured with a semiconductor characterization system. And the energy spectra for an alpha particle form {sup 238}Pu were also measured in vacuum to compare the performance of the two-type SSB radiation detector.

  14. Simulation of active-edge pixelated CdTe radiation detectors

    OpenAIRE

    Duarte, DD; Lipp, JD; Schneider, A.; Seller, P; Veale, MC; Wilson, MD; Baker, MA; Sellin, PJ

    2016-01-01

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper sh...

  15. Evaluation of a Fabricated Charge Sensitive Amplifier for a Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    A CSA(Charge Sensitive Amplifier) was designed and fabricated for application in a radiation detection system based on a semiconductor detector such as Si, SiC, CdZnTe and etc.. A fabricated hybrid.type CSA was evaluated by comparison with a commercially available CSA. A comparison was performed by using calculation of ENC (Equivalent Noise Charge) and by using energy resolutions of fabricated radiation detectors based on Si. In energy resolution comparison, a fabricated CSA showed almost the same performance compared with a commercial one. In this study, feasibility of a fabricated CSA was discussed

  16. External exposure to natural radiation as measured with thermoluminescent and other detectors

    International Nuclear Information System (INIS)

    There are two principal sources of the external exposure to natural radiation: cosmic rays and the terrestrial radiation. Terrestrial external exposure sources are mostly emitting photons, a contribution of neutrons should be considered when external exposure to the radiation of cosmic origin is to be treated. Thermoluminescent detectors (TLD) are frequently used to estimate the external exposure to natural radiation, they characterize mostly the radiation with low linear energy transfer (LET). To estimate more correctly the contribution of the radiation with high LET (neutrons of cosmic origin) other detectors should be exploited. The contribution will present the results of studies of the external exposure level to natural radiation on the Earth's surface, including high-mountain areas, as well as onboard aircraft. TLD's developed in our laboratories have been mostly used. The results obtained are compared with the data acquired with some other equipment, like organic scintillators, those based on the gas ionization, bubble detectors, and semiconductor devices based on Si-diode. Data obtained at several areas in Bulgaria, Czech Republic, and onboard aircraft are presented, compared, analyzed and discussed

  17. Studying radiative B decays with the Atlas detector; Etude des desintegrations radiatives des mesons B dans le detecteur ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Viret, S

    2004-09-01

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b {yields} s{gamma}), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/{radical}B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  18. Investigation of polyethylene detector and adiabatic calorimeter in the radiation filds of proton accelerators

    International Nuclear Information System (INIS)

    The results on investigation of the absorbed energy detectors used at IHEP, i. e., polyethylene detector (PD)-based on hydrogen release from polymer under effect of ionizing radiation and adiabatic calorimeter (AC) are presented. The sensitivity function for these detectors for 6 MeV-3000 GeV hadrons have been calculated. The PD and AC readings have been measured and calculated for the radiation fields near the IHEP proton synchrotron vacuum chamber. The dependence of the calorimeter readings on the working medium has been studied. The PD has been calibrated with the AC. It is ahown that in the hadron spectra the calorimeter readings do not depend on the working medium in the limit of 8%. The PD calibration enchanced the accuracy of radiation dose measuring in the accelerator radiation mixed field. The sensitivity function calculations showed that detectors studied applied for measuring absorved dose have the energy threshold, so for PD it is equal 18 MEV for protons, 6 MeV for charged poins. Results of investigations showed the possibility of PD utilization for measuring absorbed dose in different structural materials operating in mixed radiation fields of accelerators

  19. Innovative uses for conventional radiation detectors via pulse shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beckedahl, D; Blair, J; Friensehner, A; Kammeraad, J E; Schmid, G

    1999-03-03

    In this report we have discussed two applications for digital pulse shape analysis in Ge detectors: Compton suppression and {gamma}-ray imaging. The Compton suppression aspect has been thoroughly studied during the past few years, and a real-time, laboratory-prototype system has been fielded. A summary of results from that set up have been discussed here. The {gamma}-ray imaging aspect, while not yet developed experimentally, looks very promising theoretically as the simulations presented here have shown. Experimental work currently underway at Berkeley (as discussed in section 4.3) should help further guide us towards the proper developmental path.

  20. Radiation-induced nucleation in superheated liquid droplet neutron detectors

    International Nuclear Information System (INIS)

    Superheated liquid droplet (''bubble'') dosimeters are relatively new devices which utilize the nucleation of liquid droplets to detect neutrons. A theoretical model was developed to predict the response of such detectors to both polyenergetic and monoenergetic thermal neutron fluxes. Experiments were conducted with spontaneous fission neutron sources as well as purely thermal neutrons at the National Institute of Standards and Technology, confirming the model. Additionally, an inhibition temperature was predicted, below which no response to thermal neutrons is expected. Data was obtained to verify this prediction. (orig.)

  1. A Cherenkov Radiation Detector with High Density Aerogels

    CERN Document Server

    Cremaldi, Lucien; Sonnek, Peter; Summers, Donald J; Reidy, Jim

    2009-01-01

    We have designed a threshold Cherenkov detector at the Rutherford-Appleton Laboratory to identify muons with momenta between 230 and 350 MeV/c. We investigated the properties of three aerogels for the design. The nominal indexes of refraction were n = 1.03, 1.07, 1.12, respectively. Two of the samples are of high density aerogel not commonly used for Cherenkov light detection. We present results of an examination of some optical properties of the aerogel samples and present basic test beam results.

  2. Information-Based Development of New Radiation Detectors

    International Nuclear Information System (INIS)

    With our present concern for a secure environment, the development of new radiation detection materials has focused on the capability of identifying potential radiation sources at increased sensitivity levels. As the initial framework for a materials-informatics approach to radiation detection materials, we have explored the use of both supervised (Support Vector Machines - SVM and Linear Discriminant Analysis - LDA) and unsupervised (Principal Component Analysis - PCA) learning methods for the development of structural signature models. Application of these methods yields complementary results, both of which are necessary to reduce parameter space and variable degeneracy. Using a crystal structure classification test, the use of the nonlinear SVM significantly increases predictive performance, suggesting trade-offs between smaller descriptor spaces and simpler linear models

  3. Growth, fabrication, and testing of bismuth tri-iodide semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Bismuth tri-iodide (BiI3) is an attractive material for high energy resolution radiation detectors. For the purpose of this research, detectors were fabricated using single crystals grown from ultra-pure BiI3 powder; synthesized by the Physical Vapor Transport (PVT) technique. This technique yielded powder with total impurity level of 7.9 ppm. Efforts were also made to purify commercial BiI3 powder using a custom-built Traveling Zone Refining (TZR) system. Initial trial runs were successful in reducing the total impurity level of the commercial powder from 200 ppm to less than 50 ppm. Using the modified vertical Bridgman technique and a customized sharp tip ampoule, a large BiI3 single crystal was grown. The crystal had a surface area of 2.2 cm2 and a thickness of 0.8 cm, which corresponds to a volume of 1.78 cm3. Radiation detectors were fabricated and then tested by measuring their electrical characteristics and radiation response. An alpha particle spectrum (using a 241Am α-source) was recorded at room temperature with a BiI3 detector 0.09 cm thick and with a surface area of 0.16 cm2. The electron mobility was estimated to be 433 ± 79 cm2/V. - Highlights: • Ultrapure BiI3 crystal was grown by the modified vertical Bridgman technique. • BiI3 radiation detectors were fabricated and tested. • The ultrapure detectors showed superior electrical characteristics. • Radiation response was measured by recording an α-spectrum at room temperature. • Electron mobility was estimated

  4. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  5. RADIATION HARDNESS / TOLERANCE OF SI SENSORS / DETECTORS FOR NUCLEAR AND HIGH ENERGY PHYSICS EXPERIMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    LI,Z.

    2002-09-09

    Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, and space charge concentration. The increase in space charge concentration is particularly damaging since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. Several strategies can be used to make Si detectors more radiation had tolerant to particle radiations. In this paper, the main radiation induced degradations in Si detectors will be reviewed. The details and specifics of the new engineering strategies: material/impurity/defect engineering (MIDE); device structure engineering (DSE); and device operational mode engineering (DOME) will be given.

  6. Determination of Potassium in Fertilizer via Gamma Radiation by HPGe detector

    International Nuclear Information System (INIS)

    Full text: The feasibility of determining the total potassium content in fertilizers by measuring gamma radiation from potassium-40 was evaluated. The radiation was measured by a high purity germanium (HPGe) detector. We measured six different fertilizer samples. Calibration curve against the standard was found to be linear. The measured values of potassium from the experiment were close to potassium content shown by the producers. The potassium content of four product samples (F3, F4, F5 and F6) measured from the experiment was less than the value specified on the product label. One of the six samples (F2) has the potassium content greater than that presented on the product label. One sample (F1) did not emit any gamma radiation, agreeing with the fertilizer formula (zero potassium content). The analysis of potassium in fertilizers via gamma radiation measuring by HPGe detector has proven to be a good way to estimate the potassium content in the samples

  7. Radiation by an Unruh-DeWitt Detector in Oscillatory Motion

    CERN Document Server

    Lin, Shih-Yuin

    2016-01-01

    Quantum radiated energy flux emitted by an Unruh-DeWitt (UD) detector, with the internal harmonic oscillator coupled to a massless scalar field, in linear oscillatory motion in (3+1) dimensional Minkowski space is studied by numerical methods. Our results show that quantum interference can indeed suppress the signal of the Unruh effect if the averaged proper acceleration is sufficiently low, but not in the regime with high averaged acceleration and short oscillatory cycle. While the averaged radiated energy flux over a cycle is always positive as guaranteed by the quantum inequalities, an observer at a fixed angle may see short periods of negative radiated energy flux in each cycle of motion, which indicates that the radiation is squeezed. This reveals another resemblance between the detector theory and the moving-mirror model.

  8. State and tendencies of chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Papers published in 1976 in the field of chemical protection against ionizing radiation are reviewed. Protection studies in vitro and in vivo, the biochemical, pharmacological and toxic effects, the mechanisms of protection of radioprotective agents and the trends in this field of research are described. (author)

  9. State and tendencies of chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Papers published in 1979 and 1980 in the field of chemical protection against ionizing radiation are reviewed. Protection studies in in-vivo and model systems, the biochemical, pharmacological and toxic effects, and modes of action of radioprotective agents are described and the trends in this field of research estimated. (author)

  10. State and tendencies of chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Papers published in 1975 in the field of chemical protection against ionizing radiation are reviewed. Protection studies in vitro and in vivo, the biochemical, pharmacological and toxic effects, the mechanisms of protection of radioprotective agents and the trends in this field of research are described. (author)

  11. State and tendencies of chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Papers published in 1978 in the field of chemical protection against ionizing radiation are reviewed. Protection studies in in-vivo and model systems, the biochemical, pharmacological and toxic effects, and modes of action of radioprotective agents are described and the trends in this field of research appreciated. (author)

  12. State and tendencies of chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Papers published in 1974 in the field of chemical protection against ionizing radiation are reviewed. Protection studies in vitro and in vivo, the biochemical, pharmacological and toxic effects, the mechanisms of protection of radioprotective agents and the trends in this field of research are described. (author)

  13. Radiation, chemical and biological protection. Mass destruction weapons

    International Nuclear Information System (INIS)

    In this text-book mass destruction weapons and radiation, chemical and biological protection are reviewed. The text-book contains the following chapter: (1) Mass destruction weapons; (2) Matter and material; (3) Radioactive materials; (4) Toxic materials; (5) Biological resources; (6) Nuclear energetic equipment; Appendices; References.

  14. Radiating chemical decomposition of oil hydrocarbons in water environment

    International Nuclear Information System (INIS)

    Full text: Water resources purification problems from natural oil and mineral oils has an important value as for extracting additional oil resources from oilcontained waste waters, so for safeguard of water resources from pollution. For the past 150 years there were 250 artificial lakes formed on the territory of Absheron peninsula of Azerbaijan as a result of oil deposits exploitation, concentration of which sometimes exceeds 25 mg/l. Every year enterprises of Azerbaijan oil industry reset more than 4-5 tons of waste waters to an environment during production of 1 ton of oil. Taking into account the fact that the larger danger for environment represents an oil slicks and emulsified mineral oils in it, the possibility of application of ionizing radiation for mineral oils of waste waters becomes the more important circumstance during solving of some ecological problems. The possibilities radiation-chemical technology application while purification of waste waters from oil pollutions had been studied and also it is studied some legitimacies of radiation-chemical molding of oil hydrogens in water sphere. In case of radiation purification of water from oil impurities it is possible the radiation-chemical molding of oil hydrogens during the process and removal of molding products from water. Data given in this article proves that there are happens an effective interaction between active particles of different origin.

  15. Optimized digital filtering techniques for radiation detection with HPGe detectors

    Science.gov (United States)

    Salathe, Marco; Kihm, Thomas

    2016-02-01

    This paper describes state-of-the-art digital filtering techniques that are part of GEANA, an automatic data analysis software used for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: a pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated with a 762 g Broad Energy Germanium (BEGe) detector, produced by Canberra, that measures γ-ray lines from radioactive sources in an energy range between 59.5 and 2614.5 keV. At 1332.5 keV, together with the ballistic deficit correction method, all filters produce a comparable energy resolution of ~1.61 keV FWHM. This value is superior to those measured by the manufacturer and those found in publications with detectors of a similar design and mass. At 59.5 keV, the modified cusp filter without a ballistic deficit correction produced the best result, with an energy resolution of 0.46 keV. It is observed that the loss in resolution by using a constant shaping time over the entire energy range is small when using the ballistic deficit correction method.

  16. Radiation-chemical hardening of phenol-formaldehyde oligomers

    International Nuclear Information System (INIS)

    Radiation-chemical hardening of phenol formaldehyde oligomers of the resol type has been studied in the presence of furfural and diallylphthalate diluents. The samples have been hardened on an electron accelerator at an electron energy of 1.0-1.1 MeV and a dose rate of 2-3 Mrad/s. The kinetics of hardening has been studied on the yield of gel fraction within the range of absorbed doses from 7 to 400 Mrad. Radiation-chemical hardening of the studied compositions is activated with sensitizers, namely, amines, metal chlorides, and heterocyclic derivatives of metals. Furfural and diallylphthalate compositions are suitable for forming glass-fibre plastic items by the wet method and coatings under the action of ionizing radiations

  17. Radiation-equivalent dose of chemical mutagens: problems and perspectives

    International Nuclear Information System (INIS)

    The radiation equivalent unit was intended as a means of comparing chemically-induced genetic effects with one another and with that of radiation. It was to be a unit of convenience with no absolute value. In this concept the fact that radiations and chemicals might act by different mechanisms is unimportant since only the effect is compared. Although dissimilarity of mechanism is of no consequence when comparing effects of different mutagens with the same end-point in the same species, it is important that the mechanism be similar when extrapolating to man from the effect of a given mutagen in another system. That is why mammalian systems are preferable to sub-mammalian systems for this purpose

  18. Calibration of modified Liulin detector for cosmic radiation measurements on-board aircraft

    Czech Academy of Sciences Publication Activity Database

    Kyselová, Dagmar; Ambrožová, Iva; Krist, Pavel; Kubančák, Ján; Uchihori, Y.; Kitamura, H.; Ploc, Ondřej

    Vol. 2015. Oxford: Oxford Journals, 2015, s. 1-4. ISSN 1742-3406. [8th International Conference on High Levels of Natural Radiation and Radon Areas (ICHLNRRA 2014). Prague (CZ), 01.09.2014-05.09.2014] R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Liulin detector * on-board aircraft * cosmic radiation measurement Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  19. Measurement of neutron radiation exposure of commercial airline pilots using bubble detectors

    International Nuclear Information System (INIS)

    The present work details the results of a one-year study to monitor the neutron-radiation fields for flights at the subsonic and supersonic (i.e., Concorde) altitudes, in which bubble detectors were routinely used by a total of 23 pilots from Air Canada and Air France. This large data base provides a better means to assess the radiation doses experienced by commercial air crew members in light of the new ICRP recommendations. 17 refs., 6 figs., 1 tab

  20. Thermoluminescent detector for mixed gamma and fast neutron radiations

    International Nuclear Information System (INIS)

    A thermoluminescent film badge suitable for military use is equally sensitive to gamma radiation and fast neutrons. It preferably contains calcium fluoride powder embedded in a matrix of cross-linked polyethylene, which has a hydrogen content of about 14 weight percent. Some details of the way in which the device is constructed are given. (N.D.H.)