WorldWideScience

Sample records for chemical properties

  1. Chemical properties of transactinides

    Science.gov (United States)

    Gäggeler, H. W.

    2005-09-01

    First investigations of chemical properties of bohrium (Z = 107) and hassium (Z = 108) showed an expected behaviour as ordinary members of groups 7 and 8 of the periodic table. Two attempts to study element 112 yielded some indication for a behaviour like a very volatile noble metal. However, a very recent experiment to confirm this preliminary observation failed. Two examples are described how chemical studies may help to support element discovery claims from purely physics experiments. The two examples are the discovery claims of the elements 112 and 115, respectively, where the progenies hassium and dubnium were chemically identified.

  2. Chemical properties of transactinides

    International Nuclear Information System (INIS)

    First investigations of chemical properties of bohrium (Z = 107) and hassium (Z = 108) showed an expected behaviour as ordinary members of groups 7 and 8 of the periodic table. Two attempts to study element 112 yielded some indication for a behaviour like a very volatile noble metal. However, a very recent experiment to confirm this preliminary observation failed. Two examples are described how chemical studies may help to support element discovery claims from purely physics experiments. The two examples are the discovery claims of the elements 112 and 115, respectively, where the progenies hassium and dubnium were chemically identified. (orig.)

  3. Chemical properties of transactinides

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H.W. [Paul Scherrer Institut, Villigen (Switzerland); University of Bern, Bern (Switzerland)

    2005-09-01

    First investigations of chemical properties of bohrium (Z = 107) and hassium (Z = 108) showed an expected behaviour as ordinary members of groups 7 and 8 of the periodic table. Two attempts to study element 112 yielded some indication for a behaviour like a very volatile noble metal. However, a very recent experiment to confirm this preliminary observation failed. Two examples are described how chemical studies may help to support element discovery claims from purely physics experiments. The two examples are the discovery claims of the elements 112 and 115, respectively, where the progenies hassium and dubnium were chemically identified. (orig.)

  4. Chemical properties of mendelevium

    International Nuclear Information System (INIS)

    Even with the most intense ion beams and the largest available quantities of target isotope, about 106 atoms at a time is all the Md that can be produced for chemical studies. This lack of sufficient sample size coupled with the very short lifetimes of the few atoms produced has severely restricted the gathering and the broadness of our knowledge concerning the properties of Md and the heavier elements. To illustrate, the literature contains a mere eleven references to the chemical studies of Md, and none of these deal with bulk properties associated with the element bound in solid phases. Some of these findings are: Md was found to be more volatile than other actinide metals which lead to the belief that it is divalent in the metallic state; separation of Md from the other actinides can be accomplished either by reduction of Md3+ to the divalent state or by chromatographic separations with Md remaining in the tripositive state; extraction of Md2+ with bis(2-ethylhexyl)phosphoric acid is much poorer than the extraction of the neighboring tripositive actinides; attempts to oxidize Md3+ with sodium bismuthate failed to show any evidence for Md4+; reduction potential of Md3+ was found to be close to -0.1 volt; Md3+ can be reduced to Md(Hg) by sodium amalgams and by electrolysis; the electrochemical behavior of Md is very similar to that of Fm and can be summarized in the equation, Md2+ + 2e- = Md(Hg) and E0 = -1.50 V.; and Md cannot be reduced to a monovalent ion with Sm2+

  5. Properties Characterization of Chemically Modified Hemp Hurds

    OpenAIRE

    Nadezda Stevulova; Julia Cigasova; Adriana Estokova; Eva Terpakova; Anton Geffert; Frantisek Kacik; Eva Singovszka; Marian Holub

    2014-01-01

    The effect of chemical treatment of hemp hurds slices in three solutions (EDTA (Ethylenediaminetetraacetic acid), NaOH and Ca(OH)2) on the properties of natural material was discussed in this paper. Changes in the morphology, chemical composition and structure as well as thermal stability of hemp hurds before and after their modification were investigated by using FTIR (Fourier transform infrared spectroscopy), XRD (X-ray powder diffraction analysis) and TG (thermogravimetry)/DSC (differentia...

  6. Properties and applications of chemically functionalized graphene

    International Nuclear Information System (INIS)

    The vast and yet largely unexplored family of graphene materials has great potential for future electronic devices with novel functionalities. The ability to engineer the electrical and optical properties in graphene by chemically functionalizing it with a molecule or adatom is widening considerably the potential applications targeted by graphene. Indeed, functionalized graphene has been found to be the best known transparent conductor or a wide gap semiconductor. At the same time, understanding the mechanisms driving the functionalization of graphene with hydrogen is proving to be of fundamental interest for energy storage devices. Here we discuss recent advances on the properties and applications of chemically functionalized graphene. (topical review)

  7. Chemical properties of element 106 (seaborgium)

    International Nuclear Information System (INIS)

    The synthesis, via nuclear fusion reactions, of elements heavier than the actinides, allows one to prove the limits of the periodic table as a means of classifying the elements. In particular, deviations in the periodicity of chemical properties for the heaviest elements are predicted as a consequence of increasingly strong relativistic effects on the electronic shell structure. The transactinide elements have now been extended up to element 112, but the chemical properties have been investigated only for the first two of the transactinide elements, 104 and 105. Those studies showed that relativistic effect render these two elements chemically different from their lighter homologues in the same columns of the periodic table. Here we report the chemical separation of element 106 (seaborgium, Sg) and investigations of its chemical behaviour in the gas phase and in aqueous solution. The methods that we use are able to probe the reactivity of individual atoms, and are based on the detection of just seven atoms of seaborgium we find that it exhibits properties characteristic of the group 6 homologues molybdenum and tungsten. Thus seaborgium appears to restore the trends of the periodic table disrupted by relativistic effects in elements 104 and 105. (Author)

  8. Aqueous phase chemical properties of transactinides

    International Nuclear Information System (INIS)

    65-s 261Rf and 34-s 262Ha have been produced at the Lawrence Berkeley Laboratory 88-Inch Cyclotron by the 248Cm(18O,5n) and 249Bk(18O,5n) reactions, respectively. These isotopes of element 104 and 105 are produced at a one atom per minute rate, and rapid chemical separations are performed on a one-minute time scale. They are identified by detecting the α- and SF radiations from their decay. First aqueous phase chemical separations of Rf and Ha determined their primary oxidation states in aqueous solution, placing them in the periodic table at the bottom of groups 4 and 5, respectively, and confirming Seaborg's actinide concept. More recently, experiments measuring the chemical properties in more detail have uncovered some interesting and unexpected trends in periodic table properties

  9. Mechanical and chemical properties of sewage pipes

    OpenAIRE

    Ł. Wierzbicki; M. Szymiczek

    2012-01-01

    Purpose: The purpose of this paper was to evaluate the compatibility of the physico-chemical properties of sewage pipes with the requirements of PN – EN ISO 1401-01: Plastics piping systems for non-pressure underground drainage and sewerage. This article is based on a research carried out for the water supply company. The article presents the results of mechanical and chemical testing of four pipes of unplasticized polyvinyl chloride and one pipe of polypropylene. All the test pipes were app...

  10. Some negative chemical properties of acid soils

    OpenAIRE

    SVETLANA ANTIC-MLADENOVIC; SRDJAN BLAGOJEVIC; MIRJANA KRESOVIC; MIODRAG JAKOVLJEVIC

    2005-01-01

    Some important chemical properties of various samples of two types of acid soil fromWestern Serbia (pseudogley and brown forest) are presented in this paper.Mobile Al was found in elevated and toxic quantities (10–30 mg/100 g) in the more acid samples of pseudogley soil. All samples of brown forest soil were very acid and the quantities ofmobile Al were in the range from 12.8 to 90.0mg/100 g. In a selected number of pseudogley soils, the influence of pH and other soil properties on the minera...

  11. Properties Characterization of Chemically Modified Hemp Hurds

    Directory of Open Access Journals (Sweden)

    Nadezda Stevulova

    2014-12-01

    Full Text Available The effect of chemical treatment of hemp hurds slices in three solutions (EDTA (Ethylenediaminetetraacetic acid, NaOH and Ca(OH2 on the properties of natural material was discussed in this paper. Changes in the morphology, chemical composition and structure as well as thermal stability of hemp hurds before and after their modification were investigated by using FTIR (Fourier transform infrared spectroscopy, XRD (X-ray powder diffraction analysis and TG (thermogravimetry/DSC (differential scanning calorimetry. Size exclusion chromatography (SEC measurements were used for determination of degree of cellulose polymerization of hemp hurd samples. Chemical modification is related to the partial removal of non-cellulosic components of lignin, hemicellulose and pectin as well as waxes from the surface of hemp hurd slices. Another effect of the chemical treatment applied is connected with increasing the crystallinity index of cellulose determined by FTIR and XRD methods. Decrease in degree of cellulose polymerization and polydispersity index in chemically modified hemp hurds compared to the original sample was observed. Increase in thermal stability of treated hemp hurd was found. The most significant changes were observed in alkaline treated hemp hurds by NaOH.

  12. Engineering electrical properties of graphene: chemical approaches

    Science.gov (United States)

    Kim, Yong-Jin; Kim, Yuna; Novoselov, Konstantin; Hong, Byung Hee

    2015-12-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed.

  13. Properties of chemically modified gelatin films

    Directory of Open Access Journals (Sweden)

    R. A. de Carvalho

    2006-03-01

    Full Text Available Edible and/or biodegradable films usually have limited water vapor barriers, making it difficult to use them. Thus, the objective of this work was to evaluate the effect of a chemical reticulation treatment with formaldehyde and glyoxal on the mechanical properties, water vapor permeability, solubility and color parameters of gelatin-based films. Formaldehyde and glyoxal were added to the filmogenic solution in concentrations ranging from 3.8 to 8.8 mmoles/100 mL of filmogenic solution and 6.3 to 26.3 mmoles/100 mL of filmogenic solution, respectively. The treatments caused a reduction in permeability to water vapor and in solubility. Only the treatment with formaldehyde caused a significant increase in rupture tension for concentrations above 6.3 mmoles/100 mL of filmogenic solution. Scanning electron microscopy indicated a loss of matrix orientation due to the chemical reticulation treatment.

  14. Arbutus unedo L.: chemical and biological properties.

    Science.gov (United States)

    Miguel, Maria G; Faleiro, Maria L; Guerreiro, Adriana C; Antunes, Maria D

    2014-01-01

    Arbutus unedo L. (strawberry tree) has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya) and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies), jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts of the plant, strawberry tree honey and strawberry tree brandy will be presented. The biological properties of the different parts of A. unedo and strawberry tree honey will be also overviewed. PMID:25271425

  15. Arbutus unedo L.: Chemical and Biological Properties

    Directory of Open Access Journals (Sweden)

    Maria G. Miguel

    2014-09-01

    Full Text Available Arbutus unedo L. (strawberry tree has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies, jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts of the plant, strawberry tree honey and strawberry tree brandy will be presented. The biological properties of the different parts of A. unedo and strawberry tree honey will be also overviewed.

  16. Octenidine dihydrochloride: chemical characteristics and antimicrobial properties.

    Science.gov (United States)

    Assadian, Ojan

    2016-03-01

    The empiric use of antibiotics is being restricted due to the spread of antimicrobial resistance. However, topical antiseptics are less likely to induce resistance, owing to their unspecific mode of action and the high concentrations in which they can be used. One such antiseptic, octenidine dihydrochloride (OCT), can be used either prophylactically or therapeutically on the skin, mucosa and wounds. Evidence to support its use comes from in-vitro, animal and clinical studies on its safety, tolerability and efficacy. This article summarises the physical, chemical and antimicrobial properties of OCT in the context of wound care. PMID:26949863

  17. Acid evaporation property in chemically amplified resists

    Science.gov (United States)

    Hashimoto, Shuichi; Itani, Toshiro; Yoshino, Hiroshi; Yamana, Mitsuharu; Samoto, Norihiko; Kasama, Kunihiko

    1997-07-01

    The lithographic performance of a chemically amplified resist system very much depends on the photo-generated acid structure. In a previous paper, we reported the molecular structure dependence of two typical photo-generated acids (aromatic sulfonic acid and alkyl sulfonic acid) from the viewpoints of lithographic performance and acid characteristics such as acid generation efficiency, acid diffusion behavior and acid evaporation property. In this paper, we evaluate the effect of the remaining solvent in a resist film on the acid evaporation property. Four types of two-component chemically amplified positive KrF resists were prepared consisting of tert-butoxycarbonyl (t-BOC) protected polyhydroxystyrene and sulfonic acid derivative photo-acid generator (PAG). Here, a different combination of two types of PAGs [2,4-dimethylbenzenesulfonic acid (aromatic sulfonic acid) derivative PAG and cyclohexanesulfonic acid (alkyl sulfonic acid) derivative PAG] and two types of solvents (propylene glycol monomethyl ether acetate; PGMEA and ethyl lactate; EL) were evaluated. The aromatic sulfonic acid was able to evaporate easily during post exposure bake (PEB) treatment, but the alkyl sulfonic acid was not. The higher evaporation property of aromatic sulfonic acid might be due to the higher vapor pressure and the longer acid diffusion length. Furthermore, the amount of aromatic sulfonic acid in the PGMEA resist was reduced by more than that in the EL resist. The amount of acid loss also became smaller at a higher prebake temperature. The concentration of the remaining solvent in the resist film decreased with the increasing prebake temperature. We think that the acid evaporation property was affected by the remaining solvent in the resist, film; the large amount of remaining solvent promoted the acid diffusion and eventually accelerated the acid evaporation from the resist film surface in the PGMEA resist. In summary, the acid evaporation property depends on both the acid

  18. Chemical properties of peat used in balneology

    Science.gov (United States)

    Szajdak, L.; Hładoń, T.

    2009-04-01

    The physiological activity of peats is observed in human peat-bath therapy and in the promotion of growth in some plants. Balneological peat as an ecologically clean and natural substance is perceived as being more 'human friendly' than synthetic compounds. Poland has a long tradition of using balneological peat for therapeutic purposes. Balneological peat reveals a physical effect by altering temperature and biochemical effects through biologically active substances. It is mainly used for the treatment of rheumatic diseases that are quite common in Poland. Peat represents natural product. Physico-chemical properties of peat in particular surface-active, sorption and ion exchanges, defining their biological function, depend mainly on the chemical composition and molecular structure of humic substances representing the major constituent of organic soil (peat). The carbon of organic matter of peats is composed of 10 to 20% carbohydrates, primarily of microbial origin; 20% nitrogen-containing constituents, such as amino acids and amino sugars; 10 to 20% aliphatic fatty acids, alkanes, etc.; with the rest of carbon being aromatic. For balneology peat should be highly decomposed (preferably H8), natural and clean. The content of humic acids should exceed 20% of dry weight, ash content will be less than 15 15% of dry weight, sulphur content less than 0.3% of dry weight and the amount of water more than 85%. It will not contain harmful bacteria and heavy metals. Humic substances (HS) of peat are known to be macromolecular polydisperse biphyllic systems including both hydrophobic domains (saturated hydrocarbon chains, aromatic structural units) and hydrophilic functional groups, i. e having amphiphilic character. Amphiphilic properties of FA are responsible for their solubility, viscosity, conformation, surfactant-like character and a variety of physicochemical properties of considerable biologically practical significance. The chemical composition of peats depends

  19. Chemical properties of antiepileptic drugs (AEDs).

    Science.gov (United States)

    Bialer, Meir

    2012-07-01

    Between 1990 and 2011 the following fifteen new antiepileptic drugs (AEDs) were approved: eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, pregabalin, retigabine, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin, and zonisamide. These AEDs (except felbamate) offer appreciable advantages in terms of their favorable pharmacokinetics, improved tolerability and lower potential for drug interactions. All AEDs introduced after 1990 that are not second generation drugs (with the exception of vigabatrin and tiagabine) were developed empirically (sometimes serendipitously) utilizing mechanism-unbiased anticonvulsant animal models. The empirical nature of the discovery of new AEDs in the last three decades coupled with their multiple mechanisms of action explains their diverse chemical structures. The availability of old and new AEDs with various activity spectra and different tolerability profiles enables clinicians to better tailor drug choice to the characteristics of individual patients. With fifteen new AEDs having entered the market in the past 20years the antiepileptic market is crowded. Consequently, epilepsy alone is not attractive in 2011 to the pharmaceutical industry even though the clinical need of refractory epilepsy remains unmet. Due to this situation, future design of new AEDs must also have a potential in non-epileptic CNS disorders such as neuropathic pain, migraine prophylaxis and bipolar disorder or fibromyalgia as demonstrated by the sales revenues of pregabalin, topiramate and valproic acid. This review analyzes the effect that the emerging knowledge on the chemical properties of the old AEDs starting from phenobarbital (1912) has had on the design of subsequent AEDs and new therapeutics as well as the current approach to AED discovery. PMID:22210279

  20. Chemical bond properties of rare earth ions in crystals

    International Nuclear Information System (INIS)

    By using the dielectric description theory of ionicity of solids, chemical bond properties of rare earth ions with various ligands are studied. Calculated results show that chemical bond properties of the same rare earth ion and the same ligand in different crystals depend on the crystal structures. In a series of compounds, chemical bond properties of crystals containing different rare earth ions are similar. The magnitude of covalency of chemical bonds of trivalent rare earth ions and various ligands has an order like F< Cl< Br< As< Sb. (orig.)

  1. Property Modelling for Applications in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    group parameter is missing, the atom connectivity based model is employed to predict the missing group interaction. In this way, a wide application range of the property modeling tool is ensured. Based on the property models, targeted computer-aided techniques have been developed for design and analysis...... of organic chemicals, polymers, mixtures as well as separation processes. The presentation will highlight the framework (ICAS software) for property modeling, the property models and issues such as prediction accuracy, flexibility, maintenance and updating of the database. Also, application issues......Physical-chemical properties of pure chemicals and their mixtures play an important role in the design of chemicals based products and the processes that manufacture them. Although, the use of experimental data in design and analysis of chemicals based products and their processes is desirable...

  2. Chemical Property in Heavy Ion Collisions

    Science.gov (United States)

    Kaneta, M.

    K-/K+ and bar{p}/p ratios measured in 158 A\\cdotGeV Pb + Pb collisions are shown as a function of centrality and transverse momentum (Pt). Little significant centrality dependence in neither K-/K+ nor bar{p}/p ratios are observed and they are almost constant as a function of Pt. The chemical freeze-out temperature Tch and the chemical potentials for both light and strange quarks (μq, μs) are extracted by comparing the present data with simple model predictions. The μq, μs and Tch from the NA44 are compared with those obtained from similar analysis of SPS S + A and AGS Si + A data. The chemical freeze-out temperature Tch in CERN energy is higher than thermal freeze-out temperature Tfo which is extracted from transverse momentum distribution of charged hadrons. In AGS energy Tch is close to Tfo.

  3. Coupled chemical oscillators and emergent system properties.

    Science.gov (United States)

    Epstein, Irving R

    2014-09-25

    We review recent work on a variety of systems, from the nanometre to the centimetre scale, including microemulsions, microfluidic droplet arrays, gels and flow reactors, in which chemical oscillators interact to generate novel spatiotemporal patterns and/or mechanical motion. PMID:24835430

  4. Physical and chemical properties of volatile ruthenium fluorides

    International Nuclear Information System (INIS)

    Available data are compiled published before 1977 on the preparation and the physical and chemical properties of ruthenium hexafluoride, ruthenium oxide tetrafluoride, ruthenium pentafluoride and ruthenium octa-fluoride. (author)

  5. Arbutus unedo L.: Chemical and Biological Properties

    OpenAIRE

    Maria G. Miguel; Maria L. Faleiro; Adriana C. Guerreiro; Maria D. Antunes

    2014-01-01

    Arbutus unedo L. (strawberry tree) has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya) and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies), jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts ...

  6. Microbiological and Chemical Properties of Raw Milk Consumed in Burdur

    OpenAIRE

    Fulya Tasci

    2011-01-01

    The aim of this study was to determine the microbiological and chemical properties of raw milk consumed in Burdur. A total of 100 samples obtained from different producers were analyzed for microbiological and chemical properties. For this purpose, counts of total aerobic mesophilic bacteria, Enterobacteriaceae, coliforms, E. coli, Enterococci, yeast, mold and Micrococcus-Staphylococcus, Coagulase Positive Staphylococcus microorganisms were made. In the raw milk samples, the mean level of tot...

  7. Chemical modification of pectin to improve its sorption properties

    International Nuclear Information System (INIS)

    The sorption properties of natural polysaccharide (apple pectin) with respect to heavy metals (M=Cd, Sr, Cu, Ni, Pb) in a Ringer salt solution were studied as influenced by the procedures and process parameters of its chemical modification. It is shown that chemical modification of pectin using hydrochloric and nitric acids and ammonium hydroxide permits improving (by 30-50%) its sorption properties as regards cadmium(II), lead(II), and copper(II) ions

  8. Sensory properties and chemical composition of Sharri cheese from Kosovo

    OpenAIRE

    Agim Rysha; Frane Delaš

    2014-01-01

    Food sensory properties, analyses and chemical composition are very important because they provide information about product quality and end-user acceptance or preferences. An assessment of sensory characteristics and chemical composition of mountain sheep and cow’s-milk cheese from shepherd’s huts and industrial manufacturers in Kosovo was carried out. Consumer-oriented tests using a 9 point hedonic scale were conducted in order to determine Sharri cheese acceptability. Chemical parameters (...

  9. A Chemical Properties Simulator to Support Integrated Environmental Modeling (proceeding)

    Science.gov (United States)

    Users of Integrated Environmental Modeling (IEM) systems are responsible for defining individual chemicals and their properties, a process that is time-consuming at best and overwhelming at worst, especially for new chemicals with new structures. A software tool is needed to allo...

  10. Study on scattering properties of tissues with hyperosmotic chemical agents

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Optical properties of biological tissue are variable due to the changes of micro-structures and scattering constituents after hyperosmotic chemical agents permeates into tissue. The changes of optical properties of biological tissue are due to the refractive indices matching between the scatterers with high refractive index and the ground substances, which reduce scattering of tissue. The main reasons are that permeated semipermeable chemical agents with higher refractive index than the ground substances of tissuemakes the refractive index of ground substances of tissue higher by the enhancement of the permeated concentration. We studied on the collimated transmittance changes of light penetrating biological tissue after the hyperosmotic chemical agents administrates with different concentration.

  11. Chemical and sensorial properties of beetroot jam

    OpenAIRE

    Guiné, Raquel; Ana Rita, Roque; Gonçalves, Fernando; Correia, Paula

    2015-01-01

    The objective of the present work was to develop an innovative food product with nutritional properties as well as appealing organoleptic qualities. For this a jam was prepared on a basis of pear or apple, to which was added the water from boiling beetroot, without the addition of any conservatives. Five different jams were produced: pear jam, pear with beetroot, apple, apple with beetroot and finally apple with beetroot and cinnamon. The preparation of the products involved several tr...

  12. Multi proxy chemical properties of freshwater sapropel

    Science.gov (United States)

    Stankevica, Karina; Rutina, Liga; Burlakovs, Juris; Klavins, Maris

    2014-05-01

    Freshwater sapropel is organic rich lake sediment firstly named "gyttja" by Hampus van Post in 1862. It is composed of organic remains such as shell detritus, plankton, chitin of insects, spores of higher plants and mineral part formed in eutrophic lake environments. The most appropriate environments for the formation of sapropel are in shallow, overgrown post-glacial lakes and valleys of big rivers in boreal zone, while thick deposits of such kind of organic sediments rarely can be found in lakes on permafrost, mountainous regions or areas with increased aridity. Organic lake sediments are divided in 3 classes according the content of organic matter and mineral part: biogenic, clastic and mixed. The value of sapropel as natural resource increases with the content of organic matter and main applications of sapropel are in agriculture, medicine, cosmetic and chemical industry. The research of sapropel in Latvia has shown that the total amount of this natural resource is close to 2 billion m3 or ~500 million tons. Sapropel has fine, dispersed structure and is plastic, but colour due to the high natural content of phosphorus usually is dark blue, later after drying it becomes light blue. Main research of the sapropel nowadays is turned to investigation of interactions among organic and mineral part of the sapropel with living organisms thus giving the inside look in processes and biological activity of the formation. From the chemical point of view sapropel contains lipids (bitumen), water-soluble substances that are readily hydrolyzed, including humic and fulvic acids, cellulose and the residual part, which does not hydrolyze. In this work we have analyzed the class of organic sapropel: peaty, cyanobacterial and green algal types, as well as siliceous sapropel, in order to determine the presence of biologically active substances, including humic substances, proteins and enzymes as well as to check free radical scavenging activity. Samples were collected from lakes

  13. Microbicidal properties and chemical composition of essential oils

    OpenAIRE

    Křůmal, K. (Kamil); Večeřa, Z. (Zbyněk)

    2014-01-01

    The microbicidal properties of 6 essential oils (EOs; Lavandula angustifolia, Cymbopogon nardus, Citrus aurantifolia, Juniperus communis, Myrtus communis and Cinnamomum zeylanicum ) for 17 microorganisms were determined using the vapour-agar contact method. The most effective EO (i.e. Lavandula angustifolia ) whose volatile components provided the sufficient microbicidal properties was chosen for detailed study of chemical composition.

  14. Structural and morphological properties of electroceramics for chemical sensors

    International Nuclear Information System (INIS)

    Ceramic materials possess a unique structure consisting of grains, grain boundaries, surfaces and pores, which makes them suitable for chemical sensors. The control of the chemical composition and microstructure of electrochemicals is fundamental for controlling their properties. Ceramics with a given composition and microstructure can be produced by controlling the different steps of their processing. The chemical processing of ceramics offer many advantages in terms of control and reproducibility, with respect to the conventional ceramics processing. Results are reported about the chemical processing of perovskite-type oxides for gas sensors and about the novel humidity-sensitive electrical properties of sol-gel processed alkali-doped titania films. The structural and morphological characterization of these materials permits the understanding of the sensitive electrical properties of the ceramics (71 refs.)

  15. Characterization of Chemical and Mechanical Properties of Polymer Based Nanocomposites

    OpenAIRE

    Wafy, Tamer

    2013-01-01

    Characterization of Chemical and Mechanical Properties of Polymer Based NanocompositesThe University of ManchesterTamer Wafy Doctor of Philosophy17 January, 2013One of the most significant issues in nanocomposite performance is improving the dispersion of carbon nanotubes (CNTs) in thermosetting or thermoplastic polymers in order to gain good mechanical properties. Several studies have investigated the fabrication of nanocomposites based on carbon nanotubes and analysed properties, but there ...

  16. Role of fuel chemical properties on combustor radiative heat load

    Science.gov (United States)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, UTRC has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced highly-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  17. Chemical identification and properties of element 112

    CERN Document Server

    Yakushev, A B; Zvára, I

    2002-01-01

    The second experiment on the chemical identification of element 112 performed at the FLNR (Dubna) is reported. Similar to the first test in 2000, the 2 mg/cm sup 2 sup n sup a sup t U target was bombarded with the 262-MeV sup 4 sup 8 Ca ions aiming at the production of sup 2 sup 8 sup 3 112, which as reported earlier decays by SF with a half-life of 3 min. The bombardment products recoiling from the target were thermalized in flowing helium and transported by the gas to detectors 25 m apart. Of all the heavy elements, the reaction products, only Hg, Rn and At were efficiently transported and thus selectively isolated. This time the beam dose was much higher (2.8 centre dot 10 sup 1 sup 8) and two different devices for detecting fission fragments and alpha particles were employed. The device used earlier was an assembly of sixteen PIPS detectors coated with Au to detect 'Hg-like' nuclides being adsorbed on Au at ambient temperature. The new one was a flow-through ionization chamber, 5000 cm sup 3 in volume, wh...

  18. Improving the electrical properties of graphene layers by chemical doping

    Science.gov (United States)

    Farooq Khan, Muhammad; Zahir Iqbal, Muhammad; Waqas Iqbal, Muhammad; Eom, Jonghwa

    2014-10-01

    Although the electronic properties of graphene layers can be modulated by various doping techniques, most of doping methods cost degradation of structural uniqueness or electrical mobility. It is matter of huge concern to develop a technique to improve the electrical properties of graphene while sustaining its superior properties. Here, we report the modification of electrical properties of single- bi- and trilayer graphene by chemical reaction with potassium nitrate (KNO3) solution. Raman spectroscopy and electrical transport measurements showed the n-doping effect of graphene by KNO3. The effect was most dominant in single layer graphene, and the mobility of single layer graphene was improved by the factor of more than 3. The chemical doping by using KNO3 provides a facile approach to improve the electrical properties of graphene layers sustaining their unique characteristics.

  19. Improving the electrical properties of graphene layers by chemical doping

    International Nuclear Information System (INIS)

    Although the electronic properties of graphene layers can be modulated by various doping techniques, most of doping methods cost degradation of structural uniqueness or electrical mobility. It is matter of huge concern to develop a technique to improve the electrical properties of graphene while sustaining its superior properties. Here, we report the modification of electrical properties of single- bi- and trilayer graphene by chemical reaction with potassium nitrate (KNO3) solution. Raman spectroscopy and electrical transport measurements showed the n-doping effect of graphene by KNO3. The effect was most dominant in single layer graphene, and the mobility of single layer graphene was improved by the factor of more than 3. The chemical doping by using KNO3 provides a facile approach to improve the electrical properties of graphene layers sustaining their unique characteristics. (paper)

  20. Sensory properties and chemical composition of Sharri cheese from Kosovo

    Directory of Open Access Journals (Sweden)

    Agim Rysha

    2014-11-01

    Full Text Available Food sensory properties, analyses and chemical composition are very important because they provide information about product quality and end-user acceptance or preferences. An assessment of sensory characteristics and chemical composition of mountain sheep and cow’s-milk cheese from shepherd’s huts and industrial manufacturers in Kosovo was carried out. Consumer-oriented tests using a 9 point hedonic scale were conducted in order to determine Sharri cheese acceptability. Chemical parameters (fat content, fat content of dry matter, acidity, protein, dry matter, mineral and water content and sodium chloride content of 45-day brine cheese samples were also analyzed. Chemical and sensory assessment demonstrated large property differences. A recommendation stems from the results showing that the standardization of both artisanal and industrial production of Sharri cheese is required.

  1. Electronic and Chemical Properties of Donor, Acceptor Centers in Graphene.

    Science.gov (United States)

    Telychko, Mykola; Mutombo, Pingo; Merino, Pablo; Hapala, Prokop; Ondráček, Martin; Bocquet, François C; Sforzini, Jessica; Stetsovych, Oleksandr; Vondráček, Martin; Jelínek, Pavel; Švec, Martin

    2015-09-22

    Chemical doping is one of the most suitable ways of tuning the electronic properties of graphene and a promising candidate for a band gap opening. In this work we report a reliable and tunable method for preparation of high-quality boron and nitrogen co-doped graphene on silicon carbide substrate. We combine experimental (dAFM, STM, XPS, NEXAFS) and theoretical (total energy DFT and simulated STM) studies to analyze the structural, chemical, and electronic properties of the single-atom substitutional dopants in graphene. We show that chemical identification of boron and nitrogen substitutional defects can be achieved in the STM channel due to the quantum interference effect, arising due to the specific electronic structure of nitrogen dopant sites. Chemical reactivity of single boron and nitrogen dopants is analyzed using force-distance spectroscopy by means of dAFM. PMID:26256407

  2. Branch structure of corona discharge: experimental simulation and chemical properties

    International Nuclear Information System (INIS)

    The branch structure of corona discharge has been investigated via C2H2 corona discharge. Carbon filament with excellent branch structure is formed in the discharge. This carbon filament offers a direct mimic of the branch structure of corona discharge. It provides a very useful way to study on the average energy, physical and chemical characteristics of corona discharge. On this basis, the chemical property of corona discharge for methane conversion is discussed. (authors)

  3. Nanodispersed Oxides-Plasma-Chemical Synthesis and Properties

    Institute of Scientific and Technical Information of China (English)

    Gheorghi VISSOKOV; Katerina ZAHARIEVA

    2007-01-01

    We discuss the plasma-chemical synthesis and the properties of transition metals oxides, Al2O3, SiO2, rare-earth oxides, oxides for ceramics and metal-ceramics, and oxides used as catalysts. Bearing in mind the indisputable advantages of using plasma-chemically synthesized nanodispersed oxides for the needs of various industrial fields, we set out to review the articles published in the past few years devoted to the problems of plasma-chemical synthesis and characterization of nanodispersed oxides.

  4. Evaluations of properties and review applications of some chemical dosimeters

    International Nuclear Information System (INIS)

    A chemical dosimeter is one of the most important methods used to measure radiation doses via a chemical reaction caused by the ionizing radiation. It is a system that measures the dose rate by chemical changes when it is exposed to ionizing radiation. This interaction produces changes in the chemical properties of the material that used as dosimeter as well as change in color. In all chemical dosimeters radiation induced chemical reaction produces new species, which its properties long lived enough to determine its quantity or the change in the initial system. This study discussed some different types of chemical dosimeters such as aqueous, gaseous and solid, the great consideration was given to aqueous systems because of their vital role in many applications. The dose rate of gamma cell was measured by using Fricke dosimeter found that dose rate about 0.909 Gy/sec while the theoretical dose rate was 0.910 Gy/sec, which confirms the suitability of Fricke dosimeter for this calibration. (Author)

  5. Biomedically relevant chemical and physical properties of coal combustion products.

    OpenAIRE

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of...

  6. Hydrophysical, chemical and microbial properties of imported green waste composts

    Directory of Open Access Journals (Sweden)

    SAIFELDIN A.F. EL-NAGERABI

    2014-05-01

    Full Text Available El-Nagerabi SAF, Elshafie AE, Alburashdi H. 2014. Hydrophysical, chemical and microbial properties of imported green waste composts. Nusantara Bioscience 6: 13-18.To study the hydrophysical, chemical and microbial properties of the imported green waste composts (GWCs and their suitability as an alternative to agrochemicals, four types of GWCs (Florabella, Mikskaar, Potgrond, and Shamrock were selected. All composts showed normal physical properties, except weed seeds in Shamrock. The germination indexes comparable to the standard (90% were 100% for Mikskaar followed by Florabella (97%, Potgrond (95%, and Shamrock (92%. Variations in physico-chemical properties were shown as acidic pH 5.1-6.5 (standard 5-8, electrical conductivity (EC 0.8-1.8 mScm-1 (standard 0.0-4.0 mScm-1, moisture content (MC 54-70.5% (standard 35-60% and water holding capacity (WHC% 400-800%. The chemical properties were expressed as ammonia concentrations 2871-6565 mg kg-1 (standard <500 mg kg-1, organic matter 53.3-66.2% (standard 35%. The concentrations of heavy metals (Zn, Ni, Pb, Hg, As, Cd, and Cr were lower than the recommended levels. The bacterial colony forming unit per gram compost ranged between 330-2870 cfu/g, the most probable number (MPN for coliform bacteria was 23-460 cfu/g, whereas the fungal cfu were 30-1800 cfu/g. Aspergillus niger was the predominant fungus recovered from all compost samples (100%, followed by A. fumigatus (75%, whereas A. sparsus, A. versicolor and yeasts (50%, and the remaining species of the genus Acremonium sp., A. flavus, A. restrictus, Cladosporium spp., and Penicillium spp. recovered from 25% of the samples. Generally, these composts revealed normal hydrophysical properties with obvious variation in moisture contents and elevated chemicals and microbial contamination. Therefore, there is an urgent need for quality control measurements and restrict abide to legislations and quarantine regulations.

  7. How forest fire affects the chemical properties of Andisols

    Science.gov (United States)

    Neris, Jonay; Hernández-Moreno, José Manuel; Tejedor, Marisa; Jiménez, Concepción

    2013-04-01

    Forest fires affect soil physical, chemical and mineralogical properties. However, the magnitude of these changes depends on both fire properties, such as the peak temperature reached and duration or depth achieved; and initial soil properties (soil type) as for example soil moisture, organic matter content or soil structure characteristics. Although many works have studied the effects of fire on the chemical properties of different soil types, its effects on Andisols properties have been omitted until now. Taking into account the high susceptibility to drying processes showed by the properties of Andisols affected by land use changes, it could be expected that the fire effects on their chemical properties may differ from those shown by other types of soil. In this study, the main chemical properties in addition to the specific andic properties of burned pine forest Andisols were compared to their unburned control. The chemical properties of ashes found after fire at the soil surface were also studied. The results show a slightly increase in EC and pH after the fire due mainly to the higher content of cations of the soil solution. Ashes derived from the vegetation and soil organic matter consumption by fire could be the main source of these elements in the soils after a fire, as they showed a high cation content. However, the rise in EC and pH is lower than the reported by most authors for other soil types. This behaviour could be related to the higher organic matter content of this soils, even after fire, and the buffering effect of organic compounds on the soil EC and pH changes after the fire. As other authors have shown, a decrease in both the total and active organic content after the fire was also observed as a result of the fire event. The specific andic properties of Andisols were also affected. The P retention of these soils slightly declines as a consequence of fire, while the content of short-range-order products was also modified, but no statistically

  8. Surface Chemical Properties of Colloids in Main Soils of China

    Institute of Scientific and Technical Information of China (English)

    MAYI-JIE; YUANCHAO-LIANG

    1991-01-01

    Surface chemical properties of soil colloids are the important factor affecting soil fertility and genesis.To provide scientific basis for soil genetic classification,promotion of soil fertility and reasonable fertilizqation,the specific surface area and electric charge of soil colloids in relation to clay minerals and organic matter are further discussed on the basis of the results obtained from the studies on surface chemical properties of soil colloids in five main soils of China.Results from the studies show that the effect of clay minerals and organic matter on the surface chemical properties of soil colloids is very complicated because the siloxane surface,hydrated oxide surface and organic matter surface do not exist separately,but they are always mixed together and influenced each other.The understanding of the relationship among clay minerals,organic matter and surface chemical properties of soil colloids depends upon further study of the relevant disciplines of soil science,especially the study on the mechanisms of organo-mineral complexes.

  9. Physical, chemical and electrochemical properties of pure and doped ceria

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Sammes, N.M.; Tompsett, G.A.

    2000-01-01

    This paper gives an extract of available data on the physical, chemical, electrochemical and mechanical properties of pure and doped ceria, predominantly in the temperature range from 200 to 1000 degrees C. Several areas are pointed out where further research is needed in order to make a better...

  10. EVALUATION OF CHEMICALS INCORPORATED WOOD FIBRE CEMENT MATRIX PROPERTIES

    Directory of Open Access Journals (Sweden)

    MST. SADIA MAHZABIN

    2013-08-01

    Full Text Available Wood fibre cement (WFC boards are well established commercially and widely used in many developed countries. The combination of the properties of two important materials, i.e., cement, and previously treated fibrous materials like wood or agricultural residues; which made up the board, contributed in the performance of the board as building material. In this work, the WFC matrix (WFCM samples are produced to determine the physical properties of WFCM such as the density and water absorption. The wood fibres are incorporated/treated with three different chemical additives; calcium formate (Ca(HCOO2, sodium silicate (Na2.SiO3 and magnesium chloride (MgCl2 prior to mixing with cement. The mechanical properties of the WFCM, with or without chemicals treatment of fibres, such as the compressive strength and flexural strength are evaluated. Three wood/cement ratios (50:50, 40:60, 30:70 are used and the percentages of water and accelerator were 80% and 3% based on the cement weight, respectively. Three moisture-conditioned samples; accelerated aging, dry and wet conditions are used for flexural test. The results reveal that the wood/cement ratio, chemical additives and moisture content had a marked influence on the physical and mechanical properties of the matrix. Finally, it has been shown that the 40:60 wood/cement ratio samples with prior chemicals treatment of the fibres that undergo accelerated aging conditioning achieve higher strength then dry and wet-conditioned boards.

  11. Effect of vegetation switch on soil chemical properties

    Czech Academy of Sciences Publication Activity Database

    Iwashima, N.; Masunaga, T.; Fujimaki, R.; Toyota, Ayu; Tayasu, I.; Hiura, T.; Kaneko, N.

    2012-01-01

    Roč. 58, č. 6 (2012), s. 783-792. ISSN 0038-0768 Institutional support: RVO:60077344 Keywords : earthworm * litter * nutrient cycling * soil chemical properties * vegetation switch Subject RIV: EH - Ecology, Behaviour Impact factor: 0.889, year: 2012

  12. Structure and physico-chemical properties of Kumkol petroleum deposit

    International Nuclear Information System (INIS)

    Results of study of physico-chemical properties and structure of Kumkol deposit petroleum in Southern Kazakhstan are presented. It is determined, that these petroleums are light, paraffinic, with low sulfur and ash contents, has insignificant concentration of vanadium and nickel, and has not porphyrin complexes. (author)

  13. Many Molecular Properties from One Kernel in Chemical Space

    CERN Document Server

    Ramakrishnan, Raghunathan

    2015-01-01

    We introduce property-independent kernels for machine learning modeling of arbitrarily many molecular properties. The kernels encode molecular structures for training sets of varying size, as well as similarity measures sufficiently diffuse in chemical space to sample over all training molecules. Corresponding molecular reference properties provided, they enable the instantaneous generation of ML models which can systematically be improved through the addition of more data. This idea is exemplified for single kernel based modeling of internal energy, enthalpy, free energy, heat capacity, polarizability, electronic spread, zero-point vibrational energy, energies of frontier orbitals, HOMO-LUMO gap, and the highest fundamental vibrational wavenumber. Models of these properties are trained and tested using 112 kilo organic molecules of similar size. Resulting models are discussed as well as the kernels' use for generating and using other property models.

  14. Chemical grouting – laboratory study of chemical grouts and geocomposites properties

    Czech Academy of Sciences Publication Activity Database

    Souček, Kamil; Staš, Lubomír; Ščučka, Jiří; Martinec, Petr

    Bombay : Indian Institute of Technology Bombay, 2008 - (Singh, D.), s. 3567-3574 [International Conference of IACMAG /12./. Goa - Panjim (IN), 01.10.2008-06.10.2008] R&D Projects: GA ČR(CZ) GA105/07/1533 Institutional research plan: CEZ:AV0Z30860518 Keywords : chemical grouts * grouting, geocomposite properties Subject RIV: DB - Geology ; Mineralogy

  15. The diverse biological properties of the chemically inert noble gases.

    Science.gov (United States)

    Winkler, David A; Thornton, Aaron; Farjot, Géraldine; Katz, Ira

    2016-04-01

    The noble gases represent an intriguing scientific paradox. They are extremely inert chemically but display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge of their mechanisms of action, some of the noble gases have been used successfully in the clinic. Studies with xenon have suggested that the noble gases as a class may exhibit valuable biological properties such as anaesthesia; amelioration of ischemic damage; tissue protection prior to transplantation; analgesic properties; and a potentially wide range of other clinically useful effects. Xenon has been shown to be safe in humans, and has useful pharmacokinetic properties such as rapid onset, fast wash out etc. The main limitations in wider use are that: many of the fundamental biochemical studies are still lacking; the lighter noble gases are likely to manifest their properties only under hyperbaric conditions, impractical in surgery; and administration of xenon using convectional gaseous anaesthesia equipment is inefficient, making its use very expensive. There is nonetheless a significant body of published literature on the biochemical, pharmacological, and clinical properties of noble gases but no comprehensive reviews exist that summarize their properties and the existing knowledge of their models of action at the molecular (atomic) level. This review provides such an up-to-date summary of the extensive, useful biological properties of noble gases as drugs and prospects for wider application of these atoms. PMID:26896563

  16. Structure and chemical properties of molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Molybdenum oxide (MoO3) exhibits interesting structural, chemical, electrical, and optical properties, which are dependent on the growth conditions and the fabrication technique. In the present work, MoO3 films were produced by pulsed-laser deposition and dc magnetron sputtering under varying conditions of growth temperature (Ts) and oxygen pressure (pO2). The effect of growth conditions on the structure and chemical properties of MoO3 films was examined using x-ray diffraction, reflection high-energy electron diffraction, x-ray photoelectron spectroscopy, and infrared spectroscopic measurements. The analyses indicate that the microstructure of Mo oxide films is sensitive to Ts and pO2. The growth conditions were optimized to produce stoichiometric and highly textured polycrystalline MoO3 films. A comparison of the microstructure of MoO3 films grown using pulsed-laser deposition and sputtering methods is also presented

  17. Blending ionic liquids: how physico-chemical properties change.

    Science.gov (United States)

    Castiglione, Franca; Raos, Guido; Appetecchi, Giovanni Battista; Montanino, Maria; Passerini, Stefano; Moreno, Margherita; Famulari, Antonino; Mele, Andrea

    2010-02-28

    Ionic liquids offer the opportunity of tailoring their properties by changing the chemical structure of the cation and anion. Blending of two or more liquids adds a further dimension to this "chemical space". Here we present the results of a study of three binary and one ternary mixture of the ionic liquids formed by the N-butyl-N-methylpyrrolidinium cation with bis(trifluoromethanesulfonyl) imide, bis(pentafluoroethanesulfonyl) imide and (trifluoromethanesulfonyl)(nonafluorobutanesulfonyl) imide. We have collected viscosity and NMR-based data on ionxion correlations (NOE) and diffusion (DOSY). We also attempt to establish a quantitative correlation between mixture and the corresponding pure liquid properties. We find that the binary mixture containing the two very different anions has an intriguing and somewhat anomalous behaviour. PMID:20145843

  18. Effects of chemical dispersants on oil physical properties and dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Khelifa, A.; Fingas, M.; Hollebone, B.P.; Brown, C.E. [Environment Canada, Ottawa, ON (Canada). ; Pjontek, D. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering

    2007-07-01

    Laboratory and field testing have shown that the dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). This study focused on new laboratory experiments that measured the effects on the physical properties and dispersion of oil, with particular reference to the effects of chemical dispersants on IFT and oil viscosity and the subsequent effects on oil droplet formation. Experiments were conducted at 15 degrees C using Arabian Medium, Alaska North Slope and South Louisiana crude and Corexit 9500 and Corexit 9527 chemical dispersants. The dispersants were denser than the 3 oils. The effect of IFT reduction on oil dispersion was measured and showed substantial reduction in the size and enhancement of the concentration of oil droplets in the water column. It was shown that the brine-oil IFT associated with the 3 crudes reduced to less than 3.6 mN/m with the application of the chemical dispersants, even at a low dispersant-to-oil ratio (DOR) value of 1:200. The use of chemical dispersants increased the viscosity of the dispersant-oil mixture up to 40 per cent over the neat crude oil. It was shown that for each mixing condition, an optimum value of DOR exists that provides for maximal dispersant effectiveness. The IFT reaches maximum reduction at optimum DOR. It was suggested that oil spill modelling can be improved with further study of IFT reduction with DOR and variations of critical micelle concentration with the type and solubility of chemical dispersant, oil type and oil to water ratio. 13 refs., 3 tabs., 7 figs.

  19. Chemical properties of the heavier actinides and transactinides

    International Nuclear Information System (INIS)

    The chemical properties of each of the elements 99 (Es) through 105 are reviewed and their properties correlated with the electronic structure expected for 5f and 6d elements. A major feature of the heavier actinides, which differentiates them from the comparable lanthanides, is the increasing stability of the divalent oxidation state with increasing atomic number. The divalent oxidation state first becomes observable in the anhydrous halides of californium and increases in stability through the series to nobelium, where this valency becomes predominant in aqueous solution. In comparison with the analogous 4f electrons, the 5f electrons in the latter part of the series are more tightly bound. Thus, there is a lowering of the 5f energy levels with respect to the Fermi level as the atomic number increases. The metallic state of the heavier actinides has not been investigated except from the viewpoint of the relative volatility among members of the series. In aqueous solutions, ions of these elements behave as a normal trivalent actinides and lanthanides (except for nobelium). Their ionic radii decrease with increasing nuclear charge which is moderated because of increased screening of the outer 6p electrons by the 5f electrons. The actinide series of elements is completed with the element lawrencium (Lr) in which the electronic configuration is 5f147s27p. From Mendeleev's periodicity and Dirac-Fock calculations, the next group of elements is expected to be a d-transition series corresponding to the elements Hf through Hg. The chemical properties of elements 104 and 105 only have been studied and they indeed appear to show the properties expected of eka-Hf and eka-Ta. However, their nuclear lifetimes are so short and so few atoms can be produced that a rich variety of chemical information is probably unobtainable

  20. Biochar physico-chemical properties as affected by environmental exposure.

    Science.gov (United States)

    Sorrenti, Giovambattista; Masiello, Caroline A; Dugan, Brandon; Toselli, Moreno

    2016-09-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30tha(-1). We combined two pycnometry techniques to measure skeletal (ρs) and envelope (ρe) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0-5nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75nm, while no significant changes were measured in the deepest layer, up to 110nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over short (~years) timescales. PMID

  1. Chemical properties of the heavier actinides and transactinides

    Energy Technology Data Exchange (ETDEWEB)

    Hulet, E.K.

    1981-01-01

    The chemical properties of each of the elements 99 (Es) through 105 are reviewed and their properties correlated with the electronic structure expected for 5f and 6d elements. A major feature of the heavier actinides, which differentiates them from the comparable lanthanides, is the increasing stability of the divalent oxidation state with increasing atomic number. The divalent oxidation state first becomes observable in the anhydrous halides of californium and increases in stability through the series to nobelium, where this valency becomes predominant in aqueous solution. In comparison with the analogous 4f electrons, the 5f electrons in the latter part of the series are more tightly bound. Thus, there is a lowering of the 5f energy levels with respect to the Fermi level as the atomic number increases. The metallic state of the heavier actinides has not been investigated except from the viewpoint of the relative volatility among members of the series. In aqueous solutions, ions of these elements behave as a normal trivalent actinides and lanthanides (except for nobelium). Their ionic radii decrease with increasing nuclear charge which is moderated because of increased screening of the outer 6p electrons by the 5f electrons. The actinide series of elements is completed with the element lawrencium (Lr) in which the electronic configuration is 5f/sup 14/7s/sup 2/7p. From Mendeleev's periodicity and Dirac-Fock calculations, the next group of elements is expected to be a d-transition series corresponding to the elements Hf through Hg. The chemical properties of elements 104 and 105 only have been studied and they indeed appear to show the properties expected of eka-Hf and eka-Ta. However, their nuclear lifetimes are so short and so few atoms can be produced that a rich variety of chemical information is probably unobtainable.

  2. BI-LAYER HYBRID BIOCOMPOSITES: CHEMICAL RESISTANT AND PHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Mohammad Jawaid,

    2012-02-01

    Full Text Available Bi-layer hybrid biocomposites were fabricated by hand lay-up technique by reinforcing oil palm empty fruit bunch (EFB and jute fibre mats with epoxy matrix. Hybrid composites were prepared by varying the relative weight fraction of the two fibres. The physical (void content, density, dimensional stability, and chemical resistant properties of hybrid composites were evaluated. When the jute fibre loading increased in hybrid composites, physical and chemical resistant properties of hybrid composites were enhanced. Void content of hybrid composites decreased with an increase in jute fibre loading because jute fibres showed better fibre/matrix interface bonding, which leads to a reduction in voids. The density of hybrid composite increased as the quantity of jute fibre loading increased. The hybridization of the jute fibres with EFB composite improved the dimensional stability of the hybrid composites. The performance of hybrid composites towards chemical reagents improved with an increase in jute fibre loading as compared to the EFB composite. The combination of oil palm EFB/jute fibres with epoxy matrix produced hybrid biocomposites material that is competitive to synthetic composites.

  3. Maltodextrins from chemically modified starches. Selected physicochemical properties.

    Science.gov (United States)

    Pycia, Karolina; Juszczak, Lesław; Gałkowska, Dorota; Witczak, Mariusz; Jaworska, Grażyna

    2016-08-01

    The aim of this work was to evaluate the effect of chemical modification of starch (cross-linking and/or stabilisation) on selected rheological and functional properties of maltodextrins of dextrose equivalent of 6, 11 and 16. It was found that values of glass transition temperatures were decreasing with dextrose equivalent of maltodextrin. The highest values of glass transition temperature (TG) were determined for maltodextrin of DE 6-obtained from distarch phosphate and acetylated distarch phosphate. Increase in DE value of maltodextrin was also accompanied by decrease and increase in values of intrinsic viscosity and the critical concentration, respectively; however, there was no significant effect of kind of chemical modification of starch on the values of these parameters. Maltodextrin solutions at concentrations of from 10 to 70 % exhibited Newtonian flow behaviour. In the case of 50% solutions of maltodextrins of DE 6 the highest viscosity was produced by maltodextrin from native potato starch, while the lowest one by maltodextrin from acetylated starch. On the other hand, among the maltodextrin of DE 11 this one produced from acetylated starch showed the highest viscosity. All the maltodextrins exhibited surfactant properties in a water-air system, with the strongest effect observed for maltodextrins produced from double chemically modified starches and from acetylated starch. The surface activity was increasing with increasing of the DE value of maltodextrin. Moreover, values of surface tension were decreasing with increasing in maltodextrin concentration in the system. PMID:27112878

  4. Influence of fuel chemical properties on gas turbine combustors

    Science.gov (United States)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence, UTRC (United Technologies Research Center) (under contract to NASA Lewis Research Center) has conducted an experimental program using 25 test fuels. The burner was a 12.7 cm dia cylindrical device consisting of six sheet metal louvers. A single pressure atomizing injector and air swirler were centrally mounted with the conical dome. Fuel physical properties were de-emphasized by using fuel injectors which produced highly atomized, and hence rapidly vaporizing sprays. A substantial fuel spray characterization effort was conducted to allow selection of nozzles which assured that such sprays were achieved for all fuels. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15 (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuel (e.g., Jet A, JP4), specialty products (e.g., decalin, xylene tower bottoms) and special fuel blends. Included in this latter group were six, 4-component blends prepared to achieve parametric variations in fuel hydrogen, total aromatics and naphthalene contents.

  5. Machine learning of molecular electronic properties in chemical compound space

    International Nuclear Information System (INIS)

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure–property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost. (paper)

  6. Nuclear and chemical properties of the transactinide elements

    International Nuclear Information System (INIS)

    Transactinide elements, whose atomic number larger than 104 and classified as 6d-transition elements in the periodic table, have seldom been studied of the chemical nature in spite of much interest in the possible relativistic effects of these superheavy nuclides. This report briefly reviews recent topics in the advancement for the superheavy (Z > 104) nuclide synthesis by means of cold fusion with varying combinations of incident and target atoms using ion accelerators, for example, at GSI, Darmstadt, and at JINR, Dubna. It also reviews recent progress in their nuclear and chemical properties studied by a world-wide cooperative research group working at GSI, Mainz University, Bern University, PSI, Uppsala University, Dubna and LBL groups into which JAERI group has joined since 1998. Moreover, expectation is stated for the successful synthesis of superheavy elements on employment of radioactive beams consisting of neutron-excess nuclides. (Ohno, S.)

  7. Physico-chemical and biological properties of Ambroxol under irradiation

    International Nuclear Information System (INIS)

    Physico-chemical properties of Ambroxol (AM), a potential antioxidant drug from the expectorant class, were investigated by radiation chemical and spectroscopic studies. The pulse radiolysis experiments showed that AM is a good scavenger of the primary water radical species, particularly eaq- and ·OH radicals. The ·OH attack, preferentially addressed to the ring positions activated by the -NH2 group and occupied by bromine atoms, leads to hydroxycyclohexadienyl radicals. The molecule stabilisation may be achieved by a dehalogenation reaction to give phenoxyl radicals. The ·OH attack to AM is not affected by Cu(II) ions, which interact only weakly with the drug as evidenced by IR and Raman spectroscopy. Survival experiments on E. coli B/r cells irradiated in the presence of AM showed a radiosensitising effect of AM in anoxia. Some possible mechanisms of radiosensitisation are outlined. (author)

  8. The study of thermodynamic properties and transport properties of multicomponent systems with chemical reactions

    Directory of Open Access Journals (Sweden)

    Samujlov E.

    2013-04-01

    Full Text Available In case of system with chemical reaction the most important properties are heat conductivity and heat capacity. In this work we have considered the equation for estimate the component of these properties caused by chemical reaction and ionization processes. We have evaluated the contribution of this part in heat conductivity and heat capacity too. At the high temperatures contribution in heat conductivity from ionization begins to play an important role. We have created a model, which describe partial and full ionization of gases and gas mixtures. In addition, in this work we present the comparison of our result with experimental data and data from numerical simulation. We was used the data about transport properties of middle composition of Russian coals and the data of thermophysical properties of natural gas for comparison.

  9. SELECTION AND MEASUREMENT OF PHYSICAL PROPERTIES FOR CHARACTERIZATION OF CHEMICAL PROTECTIVE CLOTHING MATERIALS

    Science.gov (United States)

    Chemical protective clothing (CPC) must possess certain physical properties if it is to function as an effective barrier to chemicals. he physical characteristics of CPC materials has gone largely unstudied; most attention has been focussecd on chemical resistance. hysical proper...

  10. Physico-chemical Properties of Marine Phospholipid Emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.;

    2012-01-01

    study was to investigate the emulsifying properties of various commercial marine PL and the feasibility of using them to prepare stable emulsions prepared with or without addition of fish oil. In addition, this study also investigated the relationship between chemical composition of marine PL and the...... stability of their emulsions. Physical stability was investigated through particle size distribution (PSD), zeta potential, microscopy inspection and emulsion separation (ES); while the oxidative and hydrolytic stability of emulsions were investigated through peroxide value (PV) and free fatty acids value...

  11. [Physico-chemical properties of microbial and plant polysaccharides structurants].

    Science.gov (United States)

    Votselko, S K; Dankevytch, L A; Lytvynchuk, O O

    2012-01-01

    The comparative investigation of physico-chemical properties of plant (guar gum, konjac-mannan) and microbial (xanthan gum) origin structurants have been carried out. Among them, xanthan sigma (1544 mPa) and konjac-mannan (5000 mPa) have the best initial viscosity. It has been shown that due to molecular-mass characteristics xanthan (74.3%) gum, ksampan (39%) and konjac-mannan (42.1%) have the highest percentage of high-weight fractions. It has been established that mannose, glucose and galactose as well as unidentified substances are presented in different concentrations in the structure of structurants. PMID:22686017

  12. Predicting Radiocaesium Sorption with Soil Chemical Properties in Japanese Soils

    International Nuclear Information System (INIS)

    The soil-to-plant transfer mechanism of radiocaesium (137Cs) in the Fukushima accident affected area is not fully understood. The sorption of 137Cs in soils holds a key to evaluating the variation of transfer of 137Cs to plant among different soil types. This study aims to investigate how differences in 137Cs adsorption in different soils can be explained by soil chemical and mineralogical properties. The Radiocaesium Interception Potential (RIP), a parameter for quantifying immediate 137Cs adsorption, and the soil texture were determined for 52 surface soils covering a wide range of texture classes collected from the area contaminated by the Fukushima accident. These soils include Andosols, Fluvisols, Gleysols, and Cambisols. In addition, we are currently performing analyses for other soil chemical properties (i.e. exchangeable cation, CEC, pH, organic matter content, etc) and for the properties affecting 137Cs sorption in soils (i.e. Frayed Edge Site capacity, K+ and NH4+ selectivity, effect of wet-dry cycles, etc). The average RIP varied from 80 to 4300 mmol kg-1 between soils. Contrary to what was found for temperate region soils by Absalom et al., the RIP (log(RIP)) and soil clay content were not significantly correlated (R2= 0.066). These initial results seem to indicate that the 137Cs sorption is affected by the clay mineralogy in soils. We postulate that by considering also the differences in clay K content, the relationship will improve since the frayed edges are formed at high K content in the clay. This knowledge could improve the prediction of RIP for different Japanese soil groups. Further analysis of the data will explore the relationship between RIP and other soil chemical properties. In our study, we will take specific note of Andosols (range of average RIP from 80 to 2400 mmol kg-1), typical soils in Japan originated from volcanic ash. It is expected that soil properties ruling the 137Cs sorption for Japanese Andosols will differ compared to other

  13. Predicting Radiocaesium Sorption with Soil Chemical Properties in Japanese Soils

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Shinichiro [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven (Belgium); Van Hees, May; Wannijn, Jean; Sweeck, Lieve; Vandenhove, Hildegarde [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Smolders, Erik [Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven (Belgium)

    2014-07-01

    The soil-to-plant transfer mechanism of radiocaesium ({sup 137}Cs) in the Fukushima accident affected area is not fully understood. The sorption of {sup 137}Cs in soils holds a key to evaluating the variation of transfer of {sup 137}Cs to plant among different soil types. This study aims to investigate how differences in {sup 137}Cs adsorption in different soils can be explained by soil chemical and mineralogical properties. The Radiocaesium Interception Potential (RIP), a parameter for quantifying immediate {sup 137}Cs adsorption, and the soil texture were determined for 52 surface soils covering a wide range of texture classes collected from the area contaminated by the Fukushima accident. These soils include Andosols, Fluvisols, Gleysols, and Cambisols. In addition, we are currently performing analyses for other soil chemical properties (i.e. exchangeable cation, CEC, pH, organic matter content, etc) and for the properties affecting {sup 137}Cs sorption in soils (i.e. Frayed Edge Site capacity, K{sup +} and NH{sub 4}{sup +} selectivity, effect of wet-dry cycles, etc). The average RIP varied from 80 to 4300 mmol kg{sup -1} between soils. Contrary to what was found for temperate region soils by Absalom et al., the RIP (log(RIP)) and soil clay content were not significantly correlated (R2= 0.066). These initial results seem to indicate that the {sup 137}Cs sorption is affected by the clay mineralogy in soils. We postulate that by considering also the differences in clay K content, the relationship will improve since the frayed edges are formed at high K content in the clay. This knowledge could improve the prediction of RIP for different Japanese soil groups. Further analysis of the data will explore the relationship between RIP and other soil chemical properties. In our study, we will take specific note of Andosols (range of average RIP from 80 to 2400 mmol kg{sup -1}), typical soils in Japan originated from volcanic ash. It is expected that soil properties ruling

  14. Rheological properties of kaolin and chemically simulated waste

    International Nuclear Information System (INIS)

    The Savannah River Laboratory is conducting tests to determine the best operating conditions of pumps used to transfer insoluble radioactive sludges from old to new waste tanks. Because it is not feasible to conduct these tests with real or chemically simulated sludges, kaolin clay is being used as a stand-in for the solid waste. The rheology tests described herein were conducted to determine whether the properties of kaolin were sufficiently similar to those of real sludge to permit meaningful pump tests. The rheology study showed that kaolin can be substituted for real waste to accurately determine pump performance. Once adequately sheared, kaolin properties were found to remain constant. Test results determined that kaolin should not be allowed to settle more than two weeks between pump tests. Water or supernate from the waste tanks can be used to dilute sludge on an equal volume basis because they identically affect the rheological properties of sludge. It was further found that the fluid properties of kaolin and waste are insensitive to temperature

  15. SIFAT FISIK, KIMIA, DAN FUNGSIONAL DAMAR [Brief Review on: Physical, Chemical and Functional Properties of Dammar

    OpenAIRE

    Noryawati Mulyono; Anton Apriyantono1)

    2004-01-01

    Dammar is one of Indonesian forestry products which is abundant. It has unique physical, chemical and functional properties. The important physical properties of dammar include its solubility in some organic solvents, softening temperature, viscosity and its absorbance. The important chemical properties reviewed here include its properties as resin, composition of terpenoid compounds present in dammar, and essential oil yielded from distillation of fresh dammar. Physical and chemical properti...

  16. Chemical Properties of Juvenile Latex Timber Clone Rubber wood Trees

    International Nuclear Information System (INIS)

    Latex timber clone (LTC) rubber wood trees were introduced by Lembaga Getah Malaysia (LGM) for obtaining good yield of latex as well as the quality timber. Two juvenile clones namely RRIM2009 and RRIM2024 were selected for measuring the chemical properties based on TAPPI standards and were assessed at different height levels (top, middle and bottom). These chemical properties of wood can serve as an indicator for predicting the wood behavior for specific end usage. The findings revealed that there were significant variation between the clones and the highest value was obtained at the bottom portion except for lignin content. Clone RRIM2009 exhibited higher percentage of ash content (0.80 %) and lignin content (17.30 %). While Clone RRIM2024 has greater value of holocellulose content (58.58 %) and alpha-cellulose content (41.41 %). According to the different height levels, top portion exhibited highest lignin content (17.64 % for RRIM2009 and 16.75 % for RRIM2024). While bottom portion exhibited highest holocellulose (58.93 % for RRIM2009 and 60.56 % for RRIM2024), highest alpha-cellulose (39.75 % for RRIM2009 and 43.02 % for RRIM2024) and highest ash content (0.85 % for RRIM2009 and 0.71 % for RRIM2024). As a whole, clone RRIM2024 gave higher value except for lignin and ash content compared to RRIM2009. Thus, the potential of using such LTC rubber wood trees for specific purposes is promising. (author)

  17. Quantum Chemical Study of the Thermochemical Properties of Organophosphorous Compounds.

    Science.gov (United States)

    Khalfa, A; Ferrari, M; Fournet, R; Sirjean, B; Verdier, L; Glaude, P A

    2015-10-22

    Organophosphorous compounds are involved in many toxic compounds such as fungicides, pesticides, or chemical warfare nerve agents. The understanding of the decomposition chemistry of these compounds in the environment is largely limited by the scarcity of thermochemical data. Because of the high toxicity of many of these molecules, experimental determination of their thermochemical properties is very difficult. In this work, standard gas-phase thermodynamic data, i.e., enthalpies of formation (ΔfH298°), standard entropies (S298°), and heat capacities (Cp°(T)), were determined using quantum chemical calculations and more specifically the CBS-QB3 composite method, which was found to be the best compromise between precision and calculation time among high accuracy composite methods. A large number of molecules was theoretically investigated, involving trivalent and pentavalent phosphorus atoms, and C, H, O, N, S, and F atoms. These data were used to propose 83 original groups, used in the semiempirical group contribution method proposed by Benson. Thanks to these latter group values, thermochemical properties of several nerve agents, common pesticides and herbicides have been evaluated. Bond dissociations energies (BDE), useful for the analysis the thermal stability of the compounds, were also determined in several molecules of interest. PMID:26434606

  18. Chemical composition and surface charge properties of montmorillonite

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-wen; HU Min; HU Yue-hua

    2008-01-01

    The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP) of the montmorillonite shows positive correlation with the mass fractions of Fe2O3 and K20, but it has little relation to the mass fractions of other chemical compositions. At around pH=6.8, the surface zeta potential of the montmorillonite shows the negative relationship with the mass fractions of Fe2O3 and MgO, but it does not linearly correlate to the mass fractions of other chemical compositions. Cell parameter(b0) of the montmofillonite expresses negative linear relationship with mass fractions of K2O and Na2O, so does c0sinβ with mass fractions of SiO2 and Fe2O3. And there is no specific relationship between bo and IEP of different montmori Uonites, but there is positive correlation between c0sinβ and IEP of different montmorillonite samples.

  19. Theoretical investigation of chemical and physical properties of gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Fredrik

    1999-12-01

    This thesis is discussing the chemical and physical properties of different gaseous fuels. A mapping of about seventy gaseous fuels resulted in eleven type gases, these gases have mainly five components (inerts, H{sub 2}, CO, CH{sub 4} and higher order of hydrocarbons) of different quantities. Calculations of heating value and Wobbe number have been done. Dew point temperatures have been estimated by using three different programs. Flammability limits, laminar flame speed and auto ignition temperatures have been calculated by using a kinetic and chemical program developed by Mauss. Flammability limits have been compared with Le Chatelier's law and measurements. Problems related to combustion such as flash back, lift off and instability are closely connected with flame speed and flow patterns. These problems are discussed in terms of laminar flame speed and Reynolds' number. The main results of this study were: Auto ignition temperature for gas mixtures behavior is very complex and unpredictable. In general small quantities of hydrogen decrease the temperature of auto ignition. The calculations of flammability limits by the kinetic and chemical software showed good agreement to measurements. Low Btu gases requires large flow area in order to avoid large pressure drop.

  20. Effects of scalp dermatitis on chemical property of hair keratin

    Science.gov (United States)

    Kim, Kyung Sook; Shin, Min Kyung; Park, Hun-Kuk

    2013-05-01

    The effects of scalp dermatitis (seborrheic dermatitis (SD), psoriasis, and atopic dermatitis (AD)) on chemical properties of hair keratin were investigated by Fourier transform infrared (FT-IR) spectroscopy. Hairs were collected from lesional regions affected by SD, psoriasis, and AD and non-lesional regions separately. The hairs with SD were taken from patients with ages of 16-80 years. The ages of patients with psoriasis ranged from 8 to 67 years, and all patients exhibited moderate disease. Hairs with AD were taken from the patients with ages of 24-45 years and the average SCORing atopic dermatitis (SCORAD) was 48.75. Hairs from 20 normal adults were collected as a control. The FT-IR absorbance bands were analyzed by the Gaussian model to obtain the center frequency, half width, height, and area of each band. The height and area of all bands in the spectra were normalized to the amide I centered at 1652 cm-1 to quantitatively analyze the chemical composition of keratin. The spectra of hair with scalp dermatitis were different with that of control, the amide A components centered at 3278 cm-1 were smaller than those of the control. The psoriasis hair showed a large difference in the IR absorbance band between lesional and non-lesional hairs indicating good agreement with the morphological changes. The hairs with diseases did not show differences in the content of cystine, which was centered at 1054 cm-1, from the control. The chemical properties of keratin were not significantly different between the hairs affected by SD, psoriasis, and AD. However, the changes induced by scalp dermatitis were different with weathering. Therefore, FT-IR analysis could be used to screen differences between the physiological and pathological conditions of scalp hair.

  1. Cover Crops Effects on Soil Chemical Properties and Onion Yield

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Cover crops contribute to nutrient cycling and may improve soil chemical properties and, consequently, increase crop yield. The aim of this study was to evaluate cover crop residue decomposition and nutrient release, and the effects of these plants on soil chemical properties and on onion (Allium cepa L. yield in a no-tillage system. The experiment was carried out in an Inceptisol in southern Brazil, where cover crops were sown in April 2012 and 2013. In July 2013, shoots of weeds (WD, black oats (BO, rye (RY, oilseed radish (RD, oilseed radish + black oats (RD + BO, and oilseed radish + rye (RD + RY were cut at ground level and part of these material from each treatment was placed in litter bags. The litter bags were distributed on the soil surface and were collected at 0, 30, 45, 60, 75, and 90 days after distribution (DAD. The residues in the litter bags were dried, weighed, and ground, and then analyzed to quantify lignin, cellulose, non-structural biomass, total organic carbon (TOC, N, P, K, Ca, and Mg. In November 2012 and 2013, onion crops were harvested to quantify yield, and bulbs were classified according to diameter, and the number of rotted and flowering bulbs was determined. Soil in the 0.00-0.10 m layer was collected for chemical analysis before transplanting and after harvesting onion in December 2012 and 2013. The rye plant residues presented the highest half-life and they released less nutrients until 90 DAD. The great permanence of rye residue was considered a protection to soil surface, the opposite was observed with spontaneous vegetation. The cultivation and addition of dry residue of cover crops increased the onion yield at 2.5 Mg ha-1.

  2. EFFECT OF ALTERNATIVE MULTINUTRIENT SOURCES ON SOIL CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Vanessa Martins

    2015-02-01

    Full Text Available The current high price of potassium chloride and the dependence of Brazil on imported materials to supply the domestic demand call for studies evaluating the efficiency of alternative sources of nutrients. The aim of this work was to evaluate the effect of silicate rock powder and a manganese mining by-product, and secondary materials originated from these two materials, on soil chemical properties and on brachiaria production. This greenhouse experiment was conducted in pots with 5 kg of soil (Latossolo Vermelho-Amarelo distrófico - Oxisol. The alternative nutrient sources were: verdete, verdete treated with NH4OH, phonolite, ultramafic rock, mining waste and the proportion of 75 % of these K fertilizers and 25 % lime. Mixtures containing 25 % of lime were heated at 800 ºC for 1 h. These sources were applied at rates of 0, 150, 300, 450 and 600 kg ha-1 K2O, and incubated for 45 days. The mixtures of heated silicate rocks with lime promoted higher increases in soil pH in decreasing order: ultramafic rock>verdete>phonolite>mining waste. Applying the mining waste-lime mixture increased soil exchangeable K, and available P when ultramafic rock was incorporated. When ultramafic rock was applied, the release of Ca2+ increased significantly. Mining subproduct released the highest amount of Zn2+ and Mn2+ to the soil. The application of alternative sources of K, with variable chemical composition, altered the nutrient availability and soil chemical properties, improving mainly plant development and K plant uptake, and are important nutrient sources.

  3. CONCRETE PROPERTIES IMPROVEMENT OF SLAB TRACKS USING CHEMICAL ADDITIVES

    Directory of Open Access Journals (Sweden)

    V. V. Pristinskaya

    2015-11-01

    Full Text Available Purpose. On the Railways of Ukraine a very large number of slab tracks are operated with cracks. Many scientific works of previous years are dedicated to improving the design of slab tracks. The main causes of defects are: poor exploitation of the track; insufficient physic-mechanical characteristics of concrete; poor quality of initial materials. It is therefore necessary to develop an optimum concrete mix for the manufacture of these concrete products. Methodology. To assess the impact of individual factors and effects of their interactions on properties of concrete mix and concrete method of experimental and statistical modeling was used. At this, methodological fundamentals of mathematical experiment planning in concrete technology and modern methods of optimization of composite materials were taking into account. Based on the obtained data during the planned experiment conducting, including15 studies and using the computer program MathCad, were obtained the regression equations, which describe the relevant physical and mechanical properties of concrete. On the basis of the equations with the help of computer program MATLAB R2012b the graphs were drawn, illustrating the dependences of system response from the changes of two factors at a fixed value of the third factor. Findings. Firstly was the analysis of cracks that occur in the process of operation in the constructions of slab tracks. Further reasons of possible occurrence of these cracks were presented. In the process of the conducted research the author has concluded that for rational concrete mix development it is necessary to conduct the planned experiment with the use of quality materials. It was established that to increase the strength, chemical additives should be added in to concrete mix, it will let reduce cement amount. Originality. Experiments proved the usage of modern chemical additives in order to improve the properties of concrete. Models were developed, reflecting

  4. Chemical and electrical properties of LSM cathodes prepared by mechanosynthesis

    Science.gov (United States)

    Moriche, R.; Marrero-López, D.; Gotor, F. J.; Sayagués, M. J.

    2014-04-01

    Mechanosynthesis of La1-xSrxMnO3 (x = 0, 0.25, 0.5, 0.75 and 1) was carried out at room temperature from stoichiometric mixtures of La2O3, Mn2O3 and SrO, obtaining monophasic powders with the perovskite structure. Physical properties of these materials and their chemical compatibility with the electrolyte yttria stabilized zirconia (YSZ), which depend strongly on the La/Sr ratio, were evaluated to corroborate availability to be implemented as cathode material in solid oxide fuel cells (SOFCs). Electrical conductivity values in air ranged between 100 and 400 S cm-1 in the temperature range of 25-850 °C. Samples presented low reactivity with YSZ in the working temperature range (600-1000 °C) maintaining the grain size small enough to preserve the catalytic activity for oxygen reduction.

  5. Field emission properties of chemical vapor deposited individual graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zamri Yusop, Mohd [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Department of Materials, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan)

    2014-03-03

    Here, we report field emission (FE) properties of a chemical vapor deposited individual graphene investigated by in-situ transmission electron microscopy. Free-standing bilayer graphene is mounted on a cathode microprobe and FE processes are investigated varying the vacuum gap of cathode and anode. The threshold field for 10 nA current were found to be 515, 610, and 870 V/μm for vacuum gap of 400, 300, and 200 nm, respectively. It is observed that the structural stability of a high quality bilayer graphene is considerably stable during emission process. By contacting the nanoprobe with graphene and applying a bias voltage, structural deformation and buckling are observed with significant rise in temperature owing to Joule heating effect. The finding can be significant for practical application of graphene related materials in emitter based devices as well as understanding the contact resistance influence and heating effect.

  6. Quantum-chemical approach to cohesive properties of metallic beryllium

    International Nuclear Information System (INIS)

    Calculations based upon the incremental approach, i.e. an expansion of the correlation energy in terms of one-body, two-body, and higher-order contributions from localized orbital groups, have been performed for metallic beryllium. We apply an embedding scheme which has been successfully applied recently to ground-state properties of magnesium and group 12 elements. This scheme forces localization in metallic-like model systems and allows for a gradual delocalization within the incremental approach. Quantum-chemical methods of the coupled-cluster and multi-reference configuration interaction type are used for evaluating individual increments. Results are given for the cohesive energy and lattice constants of beryllium, and it is shown that further development of the approach is needed for this difficult case

  7. Influence of Biomass Chemical Properties on Torrefaction Characteristics

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti; Hansen, Brian Brun; Jensen, Peter Arendt;

    2013-01-01

    Different biomass types may differ with respect to torrefaction characteristics, and an improved understanding and ability to predict the torrefaction performance is, therefore, desired. In this study, the influence of the chemical properties (lignocellulose composition and alkali content) on the...... torrefaction behavior with respect to mass loss and grindability is investigated by simultaneous thermal analysis (STA) and by using a combined torrefaction and grinding reactor. The torrefaction behavior of six raw biomass samples and selected pretreated samples (washed and impregnated with KCl and K2CO3) has...... been studied. The investigated biomasses have reasonably similar carbohydrate compositions (hemicelluloses 18–25 wt % db; cellulose 38–48 wt % db; lignin 17–29 wt % db) with the exception of spruce bark, which is lower in hemicellulose content (12.9 wt % db) and cellulose content (24 wt % db), and...

  8. Physical properties of chemical vapour deposited nanostructured carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, Maharashtra 416004 (India); Rajpure, K.Y., E-mail: rajpure@yahoo.com [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, Maharashtra 416004 (India)

    2011-02-03

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C{sub 10}H{sub 16})' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp{sup 3} bonds with diamond phase and less for SS shows graphitization effect with dominant sp{sup 2} bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  9. Physical properties and chemical composition of Segamat Kaolin, Johor, Malaysia

    International Nuclear Information System (INIS)

    Kaolin is a source of secondary mineral as a product of a weathering process of primary minerals. Its main component is fine grain kaolinite (< 2 μm) and it also contains other elements such as aluminium and iron phyllosilicate as the pigment. Aluminium rich kaolin is light in colour with high plasticity and is normally used in the ceramic, plastic, paint, paper, pesticide, pharmacology and cosmetic industries. The physical and chemical characteristics of kaolins are important for its potential application. In this study, about 25 kaolin samples were hand-augered from depths of 1-2 m at Buloh Kasap Segamat, Johor, Malaysia. Chemical analysis carried out included determination of oxides and types of minerals by X-ray diffraction and X-ray fluorescence. Shrinkage rate, rupture modulus and water absorption rate tests were carried out in the physical properties analysis. Plastic and liquid limits of the kaolin were also measured for plastic index. The Segamat kaolin was light in colour due to its high silicate composition. The highest mineral content in the kaolin was kaolinite and quartz occurred as impurities. The low shrinkage rate showed that the kaolin was dense with little voids, hence very suitable for use in the ceramic industry. This kaolin has low water absorption, plasticity and durable according to the rupture modulus test. (author)

  10. Effect of surface properties of fibres on some paper properties of mechanical and chemical pulp

    OpenAIRE

    Koljonen, Krista

    2004-01-01

    The overall goal of the thesis was to find correlations between the surface precipitates of pulps and selected strength properties of paper sheets. Special attention was paid to the surface lignin and extractives of fibres. The main surface-characterising techniques employed were electron spectroscopy for chemical analysis (ESCA), atomic force microscopy (AFM) and the polyelectrolyte titration method. In addition, a Wilhelmy balance for single fibres, time-of-flight secondary ion mass spectro...

  11. Robinia pseudoacacia leaves improve soil physical and chemical properties

    Institute of Scientific and Technical Information of China (English)

    Babar; KHAN; Abdukadir; Ablimit; Rashed; MAHMOOD; Muhammad; QASIM

    2010-01-01

    The role of the leaves of Robinia pseudoacacia L., which is widely distributed in the arid lands, on improving soil physical and chemical properties was analyzed at various incubation periods. The incubated soils added with 0, 25, 50 and 75 g Robinia pseudoacacia leaves were tested after consecutive incubation intervals of 6, 8 and 10 months and the different soil parameters were measured. The results showed the increases in organic matter (OM), extractable K, cation exchange capacity (CEC), aggregate stability and water holding capacity, but the decreases in pH value and bulk density after 6 months’ incubation. The gradual decrease in change rates of soil properties indicated less microbial population and organic residual mineralization under acidic conditions, which were resulted from fast decomposition of leaves after the first 6 months incubation. The increases in soil organic matter content, extractable K, CEC, aggregate stability and water holding capacity and the decreases in soil pH and bulk density provide favorable conditions for crop’s growth.

  12. THE CHEMICAL PROPERTIES OF LOW-REDSHIFT QSOs

    International Nuclear Information System (INIS)

    We investigate the chemical properties of low-z QSOs, using archival UV spectra obtained with the Hubble Space Telescope and International Ultraviolet Explorer for a sample of 70 Palomar-Green QSOs at z < 0.5. By utilizing the flux ratios of UV emission lines (i.e., N V/C IV, (Si IV+O IV])/C IV, and N V/He II) as metallicity indicators, we compare broad-line region (BLR) gas metallicity with active galactic nucleus (AGN) properties, i.e., black hole (BH) mass, luminosity, and Eddington ratio. We find that BLR metallicity correlates with Eddington ratio while the dependency on BH mass is much weaker. Although these trends of low-z AGNs appear to be different from those of high-z QSOs, the difference between low-z and high-z samples is partly caused by the limited dynamical range of the samples. We find that metal enrichment at the center of galaxies is closely connected to the accretion activity of BHs and that the scatter of metallicity correlations with BH mass increases over cosmic time.

  13. Robinia pseudoacacia leaves improve soil physical and chemical properties

    Institute of Scientific and Technical Information of China (English)

    Babar KHAN; Abdukadir Ablimit; Rashed MAHMOOD; Muhammad QASIM

    2010-01-01

    The role of the leaves of Robinia pseudoacacia L.,which is widely distributed in the arid lands,on improving soil physical and chemical properties was analyzed at various incubation periods.The incubated soils added with 0,25,50 and 75 g Robinia pseudoacacia leaves were tested after consecutive incubation intervals of 6,8 and 10 months and the different soil parameters were measured.The results showed the increases in organic matter (OM),extractable K,cation exchange capacity (CEC),aggregate stability and water holding capacity,but the decreases in pH value and bulk density after 6 months' incubation.The gradual decrease in change rates of soil properties indicated less microbial population and organic residual mineralization under acidic conditions,which were resulted from fast decomposition of leaves after the first 6 months incubation.The increases in soil organic matter content,extractable K,CEC,aggregate stability and water holding capacity and the decreases in soil pH and bulk density provide favorable conditions for crop's growth.

  14. Mechanical and chemical properties of tantalum-implanted steels

    International Nuclear Information System (INIS)

    The surface mechanical and chemical properties of tantalum-implanted AISI 52100, AISI M50 and AISI 9310 steels and pure iron were investigated. Sputter Auger profiles of pure iron indicate significant carbon incorporation during implantation. For AISI 52100 steel the unlubricated kinetic coefficient of friction is reduced from 0.6 to 0.38, the load-carrying capacity is increased and the pitting potential in a 0.01 M NaCl solution is increased by 510 mV. The corrosion resistance of tantalum-implanted AISI M50 steel in 0.5 M H2SO4 is equal to that of high dose chromium implantation. The rolling contact fatigue life is significantly improved for tantalum-implanted AISI M50 steel and a 24% increase in load-carrying capacity is measured for Ryder gear scuffing tests on tantalum-implanted AISI 9310 steel. The mechanism producing the improvements in corrosion resistance is thought to be selective dissolution of iron with the formation of a tantalum-rich passive oxide film on the surface, while friction reduction is at least partly responsible for improving the wear properties. (Auth.)

  15. Quantitative structure-property relationships for chemical functional use and weight fractions in consumer articles

    Science.gov (United States)

    Chemical functional use -- the functional role a chemical plays in processes or products -- may be a useful heuristic for predicting human exposure potential in that it comprises information about the compound's likely physical properties and the product formulations or articles ...

  16. The impact of chemical evolution on the observable properties of stellar populations

    OpenAIRE

    Tosi., M

    2000-01-01

    The major effects of the chemical evolution of galaxies on the characteristics of their stellar populations are reviewed. A few examples of how the observed stellar properties derived from colour--magnitude diagrams can constrain chemical evolution models are given.

  17. Physical and chemical and physico technical properties of stalks of thecotton

    International Nuclear Information System (INIS)

    In this article authors investigated physical and chemical and physicotechnical properties of stalks of the cotton. These investigations letdetermine physical and chemical bases of structure forming of materials,articles and constructions with its application

  18. Chemical and nuclear properties of Rutherfordium (Element 104)

    International Nuclear Information System (INIS)

    The chemical-properties of rutherfordium (Rf) and its group 4 homologs were studied by sorption on glass support surfaces coated with cobalt(II)ferrocyanide and by solvent extraction with tributylphosphate (TBP) and triisooctylamine (TIOA). The surface studies showed that the hydrolysis trend in the group 4 elements and the pseudogroup 4 element, lb, decreases in the order Rf>Zr∼Hf>Th. This trend was attributed to relativistic effects which predicted that Rf would be more prone to having a coordination number of 6 than 8 in most aqueous solutions due to a destabilization of the 6d5/2 shell and a stabilization of the 7pl/2 shell. This hydrolysis trend was confirmed in the TBP/HBr solvent extraction studies which showed that the extraction trend decreased in the order Zr>Hf>Rf?Ti for HBr, showing that Rf and Ti did not extract as well because they hydrolyzed more easily than Zr and Hf. The TIOA/HF solvent extraction studies showed that the extraction trend for the group 4 elements decreased in the order Ti>Zr∼Hf>Rf, in inverse order from the trend of ionic radii Rf>Zr∼Hf>Ti. An attempt was made to produce 263Rf (a) via the 248Cm(22Ne, α3n) reaction employing thenoyltrifluoroacetone (TTA) solvent extraction chemistry and (b) via the 249Bk(18O,4n) reaction employing the Automated Rapid Chemistry Apparatus (ARCA). In the TTA studies, 16 fissions were observed but were all attributed to 256Fm. No alpha events were observed in the Rf chemical fraction. A 0.2 nb upper limit production cross section for the 248Cm(22Ne, α3n)263Rf reaction was calculated assuming the 500-sec half-life reported previously by Czerwinski et al. [CZE92A

  19. Hygroscopic, Morphological, and Chemical Properties of Agricultural Aerosols

    Science.gov (United States)

    Hiranuma, N.; Brooks, S. D.; Cheek, L.; Thornton, D. C.; Auvermann, B. W.; Littleton, R.

    2007-12-01

    Agricultural fugitive dust is a significant source of localized air pollution in the semi-arid southern Great Plains. In the Texas Panhandle, daily episodes of ground-level fugitive dust emissions from the cattle feedlots are routinely observed in conjunction with increased cattle activity in the late afternoons and early evenings. We conducted a field study to characterize size-selected agricultural aerosols with respect to hygroscopic, morphological, and chemical properties and to attempt to identify any correlations between these properties. To explore the hygroscopic nature of agricultural particles, we have collected size-resolved aerosol samples using a cascade impactor system at a cattle feedlot in the Texas Panhandle and have used the Environmental Scanning Electron Microscope (ESEM) to determine the water uptake by individual particles in those samples as a function of relative humidity. To characterize the size distribution of agricultural aerosols as a function of time, A GRIMM aerosol spectrometer and Sequential Mobility Particle Sizer and Counter (SMPS) measurements were simultaneously performed in an overall size range of 11 nm to 20 µm diameters at a cattle feedlot. Complementary determination of the elemental composition of individual particles was performed using Energy Dispersive X-ray Spectroscopy (EDS). In addition to the EDS analysis, an ammonia scrubber was used to collect ammonia and ammonium in the gas and particulate phases, respectively. The concentration of these species was quantified offline via UV spectrophotometry at 640 nanometers. The results of this study will provide important particulate emission data from a feedyard, needed to improve our understanding of the role of agricultural particulates in local and regional air quality.

  20. Essential oils from neotropical Myrtaceae: chemical diversity and biological properties.

    Science.gov (United States)

    Stefanello, Maria Élida Alves; Pascoal, Aislan C R F; Salvador, Marcos J

    2011-01-01

    Myrtaceae family (121 genera, 3800-5800 spp.) is one of the most important families in tropical forests. They are aromatic trees or shrubs, which frequently produce edible fruits. In the neotropics, ca. 1000 species were found. Several members of this family are used in folk medicine, mainly as an antidiarrheal, antimicrobial, antioxidant, cleanser, antirheumatic, and anti-inflammatory agent and to decrease the blood cholesterol. In addition, some fruits are eaten fresh or used to make juices, liqueurs, and sweets very much appreciated by people. The flavor composition of some fruits belonging to the Myrtaceae family has been extensively studied due to their pleasant and intense aromas. Most of the essential oils of neotropical Myrtaceae analyzed so far are characterized by predominance of sesquiterpenes, some with important biological properties. In the present work, chemical and pharmacological studies carried out on neotropical Myrtaceae species are reviewed, based on original articles published since 1980. The uses in folk medicine and chemotaxonomic importance of secondary metabolites are also briefly discussed. PMID:21259421

  1. Dynamical and chemical properties of the "starless" core L1014

    CERN Document Server

    Crapsi, A; De Vries, C H; Huard, T L; Jørgensen, J K; Kauffmann, J; Lee, C W; Lee, J E; Myers, P C; Ridge, N A; Shirley, Y L; Young, C H

    2005-01-01

    Spitzer Space Telescope observations of a point-like source, L1014-IRS, close to the dust peak of the low-mass dense core L1014 have questioned its starless nature. The presence of an object with colors expected for an embedded protostar makes L1014-IRS the lowest luminosity isolated protostar known, and an ideal target with which to test star formation theories at the low mass end. In order to study its molecular content and to search for the presence of a molecular outflow, we mapped L1014 in at least one transition of 12CO, N2H+, HCO+, CS and of their isotopologues 13CO, C18O, C17O, N2D+ and H13CO+, using the FCRAO, the IRAM 30 meter and the CSO. The data show physical and chemical properties in L1014 typical of the less evolved starless cores: i.e. H2 central density of a few 10^5 molecules cm^-3, estimated mass of ~2M_sun, CO integrated depletion factor less than 10, N(N2H+)~6*10^12 cm^-2, N(N2D+)/N(N2H+) equal to 10% and relatively broad N2H+(1--0) lines (0.35 km/s). Infall signatures and significant ve...

  2. Characterisation of gaharu hydrosol: Physical, chemical and microbiological properties

    International Nuclear Information System (INIS)

    Gaharu hydrosol is produced during the hydro distillation of resinous wood part of Aquilaria sp. This aromatic water is being considered as a by-product in the industry. There is interest to turn this aromatic by-product into aroma therapy products. The present study is carried out in order to understand the properties of gaharu hydrosol, physically, chemically and microbiologically. Gaharu hydrosol from two different extraction facilities for example at Kedaik Agar wood Sdn. Bhd. and Malaysian Nuclear Agency were characterised in this study. All the gaharu hydrosol samples displayed acidic nature, with pH in the range of 3.62 - 4.53. Four antioxidant assays were carried out to ascertain the antioxidant capabilities of two gaharu hydrosol samples through the total phenolic content assay, ABTS+ radical scavenging activity, DPPH· radical scavenging activity and ferric reducing activity (FRAP). The results revealed that the samples exhibited lower antioxidant capabilities as compared to the positive control. For microbial population study, fungi was not present in the samples as there was no growth observed on the Plate Sabouraud Dextrose Agar (SDA) using membrane filtration technique. The antibacterial activity of the gaharu hydrosol against Staphylococcus aureus and Pseudomonas aeruginosa was determined using agar dilution method and disk diffusion method. The results showed that the gaharu hydrosol did not inhibit the growth of both the bacteria. The results obtained from this study will be further evaluated for the development of new products using this aromatic gaharu by-product. (author)

  3. Experimental study on the physical and chemical properties of the deep hard brittle shale

    OpenAIRE

    Jian Xiong; Xiangjun Liu; Lixi Liang; Yi Ding; Meng Lei

    2016-01-01

    In the hard brittle shale formation, rock composition, physical and chemical properties, mechanics property before and after interacting with fluid have direct relation with borehole problems, such as borehole wall collapse, mud loss, hole shrinkage. To achieve hard brittle shale micro-structure, physical–chemical properties and mechanics property, energy-dispersive X-ray diffraction (XRD), cation exchange capacity experiment and hardness test are conducted. The result of laboratory experimen...

  4. Study of chemical and physical properties of irradiated Guar Gum

    International Nuclear Information System (INIS)

    This study was carried out to evaluate the effect of different gamma radiation doses to decontamination of micro-organisms present in Guar Gum powder. As well as to study the effect of radiation on the chemical and physical properties of the carbohydrate components of the Gum's material. Two types of samples were used in this study (powder and liquid). All samples were collected from commercially available Guar Gum (G G), which were obtained from the company (Sudanese Guar Gum ltd). Samples putted in polyethylene tightly closed container, then irradiated by applying different doses (2.5, 5, 7.5, 10, 20,30,40,and 50 kGy) from Co-60 source at room temperature in air. And take zero kGy as control. Irradiated powder samples of (2.5, 5, 7.5, 10 kGy) were investigated for contamination by using growth media agar and the result showed that 2.5 kGy is appropriate dose to remove the contamination of the samples. And then analyzed using fourier transform infrared (FTTR) x-ray fluorescence (X RF) and spectroscopy. The FTIR spectroscopy results suggested that there were no major chemical functional group transformation during irradiation. No change occurs by using low dose as 2.5 kGy. Also evaluation impact of radiation on liquid Samples (Aqueous solutions prepared in tow concentration of 1% and 5% wv that is by exposing the samples to the same dose of gamma rays) the effect of irradiation on it were investigated by using ultra violet spectroscopy ( UV.Vis), results showed that low dose has steeply effect in solutions specially in low concentration, it was more pronoun than that in high concentration, high dose has made change similar to that it made in powder. Also for both concentrations of liquid samples and for solutions made of irradiated powder pH measured and viscosity which used in investigations of molecular weight of liquid and powder, comparing the results of impact in the form of powder with the results of effects in the solutions found that the effects of

  5. Electronic polarizability, optical properties and chemical bonding of oxide glasses

    International Nuclear Information System (INIS)

    Full text: The current status of the polarizability approach to glass science has been considered. Four groups of oxide glasses have been established: glasses formed by two glass-forming acidic oxides; glasses formed by glass-forming acidic oxide and modifier's basic oxide; glasses formed by glass-forming acidic and conditional glass-forming basic oxide; glasses formed by two basic oxides. The role of the electronic ion polarizability, αo2.(n0) as well as of the average single bond strength, BMo, as basic parameters of linear and nonlinear optical properties of oxide glasses has been emphasized. More acidic glasses possess large BMo (450-350 kJ/mol) which means participation of an average oxide ion in more covalent M-BO (bridging oxygen) bonds such as P-O, Si-O, and Ge-O. The decrease of BM0 could be attributed to formation of M-NBO (non-bridging oxygen) or other bonds with increased ionicity such as La-O, Pb-O, etc. The smallest values of BM0 at about 250 kJ/mol have been obtained for basic tellurite and bismuthate glasses. It has been assumed that these values could be associated with the presence of Te-NBO, Te-BO, and Bi-BO chemical bonds with large ionic contribution. The results obtained probably provide a good basis for prediction of the type of bonding in oxide glasses based on refractive index as well as for prediction of new nonlinear optical materials

  6. Study on Physical Properties and Chemical Composition of Some Myanmar Gems

    International Nuclear Information System (INIS)

    Physical properties of some Myanmar gems were studied by using refractometer, dichroscope, polariscope, SG test, UV test and microscope. Then, chemical composition were investigated by XRF-technique. After that, gem identification, evaluation, colour improvement were studied according to these physical properties and chemical composition

  7. [Assessment of the relationship of properties of chemical compounds and their toxicity to a unified hygienic standardization for chemicals].

    Science.gov (United States)

    Trushkov, V F; Perminov, K A; Sapozhnikova, V V; Ignatova, O L

    2013-01-01

    The connection of thermodynamic properties and parameters of toxicity of chemical substances was determined. Obtained data are used for the evaluation of toxicity and hygienic rate setting of chemical compounds. The relationship between enthalpy and toxicity of chemical compounds has been established. Orthogonal planning of the experiment was carried out in the course of the investigations. Equation of unified hygienic rate setting in combined, complex, conjunct influence on the organism is presented. Prospects of determination of toxicity and methodology of unified hygienic rate setting in combined, complex, conjunct influence on the organism are presented PMID:24003710

  8. Chemical properties of surface peat on forest land in Estonia

    Directory of Open Access Journals (Sweden)

    R. Kõlli

    2010-10-01

    Full Text Available The chemical properties of surface peat cover (SPC were studied in the context of Estonian pedoecological conditions. SPC comprises the superficial layers of fens (Group 1 and transitional bogs (Group 2, together with slightly acid peaty mull / strongly acid peaty moder (Group 3 and very strongly acid peaty mor (Group 4 layers overlying mineral soils. Thus, it spans organic soils, namely Histosols (Groups 1 and 2; together with Histic Gleysols (Group 3 and Histic Podzols (Group 4, which are developmentally intermediate between organic and mineral soils. Moderately acid eutrophic (Group 1 and very strongly acid mesotrophic (Group 2 peats (forest litter layers excluded were uniformly characterised up to 40 cm depth; whereas for Groups 3 and 4 we examined the full thickness of available peat layers, which ranged from 10 to 30 cm. The results show that Al, K and heavy metal contents are significantly higher and organic carbon content is lower in Histic Soils (3, 4 than in Histosols (1, 2. The amounts of Ca, Mg, Mn and Fe are significantly higher and C:N ratio, exchangeable acidity and content of free H+ lower in less acidic (1, 3 than in more acidic (2, 4 soil types. The total concentration of elements (excluding heavy metals extracted by nitro-hydrochloric acid (aqua regia is considerably higher in less acidic soils, at 28–45 g kg-1 (1, 3 versus 10–12 g kg-1 (2, 4; and mean contents of individual elements decrease in the order Ca(51% > Fe(20% > S(10% ≥ Al(10% > Mg(3% ≥ P(3% > K(2% > Mn(1% > Na(<1%. The most abundant heavy metals are Pb (12–33 mg kg-1, Zn (7–41 mg kg-1, Cu (3–12 mg kg-1, Cr (2–23 mg kg-1 and Ni (2–8 mg kg-1; Cd and Hg contents are very low, ranging from 0.2 to 0.5 mg kg-1. The dominant exchangeable basic cations are Ca2+ (78–93% and Mg2+ (7–15%, and the peat contains much smaller amounts of K+ (1–6% and Na+ (<2%. The total exchangeable acidic cations (1–14 cmol kg-1 are dominated by H+ (51–83% and Al3

  9. Hydrogrossular (Katoite): Vibrational, Crystal-Chemical and Thermodynamic Properties

    Science.gov (United States)

    Dachs, E.; Geiger, C. A.

    2011-12-01

    There is great current interest in understanding interactions between H2O and its components and various Earth materials. Here, questions such as the bulk water content of the mantle, and what phases can incorporate OH- and in what concentrations come immediately to mind. In this regard, the hydrogarnet substitution (i.e., O4H4↔SiO4) has received special attention, because it is a verified mechanism for allowing the incorporation of OH- in garnet and possibly in other silicates as well. At relatively low temperatures there is complete solid solution between Ca3Al2Si3O12 and Ca3Al2O12H12. The latter, pure OH-containing end-member is termed katoite/hydrogrossular. Its crystal structure has been investigated by various workers using X-ray and neutron diffraction, including at high pressures. Little is known about its vibrational properties and its thermodynamic behavior is not fully understood. Thus, we studied the low temperature IR spectra and measured the heat capacity of katoite in order to investigate its vibrational, crystal-chemical and thermophysical properties. Katoite was synthesized hydrothermally in Au capsules at 250 °C and 3 kb water pressure. X-ray powder measurements show that about 98-99% katoite was obtained. Powder IR spectra were recorded between 298 K and 10 K. The spectra are considerably different in the high wavenumber region, where O-H stretching modes occur. At room temperature the IR-active O-H band located around 3662 cm-1 is broad and it narrows and shifts to higher wavenumbers and also develops structure below about 80 K. Concomitantly, additional weak intensity O-H bands located around 3600 cm-1 begin to appear and they become sharper and increase in intensity with further decreases in temperature. The spectra indicate that the vibrational behavior of individual OH groups and their collective interactions measurably affect the lattice dynamic (i.e. thermodynamic) behavior. The low temperature heat capacity behavior was investigated

  10. Surface chemical and morphological properties of mechanical pulps, fibers and fines

    OpenAIRE

    Kangas, Heli

    2007-01-01

    The aim of this work was to study the surface chemical and morphological properties of different mechanical pulps with special focus on the effects of refining, bleaching and enzymatic modification on the surface properties of the isolated pulp fractions, namely fibers, fibrillar fines and flake-like fines. Special emphasis was placed on evaluating the suitability of time-of-flight secondary ion mass spectroscopy (ToF-SIMS) for studying the surface chemical properties of pulps and pulp fracti...

  11. Transport properties of chemically synthesized polypyrrole thin films

    OpenAIRE

    Bufon, C. C. Bof; Heinzel, T.

    2007-01-01

    The electronic transport in polypyrrole thin films synthesized chemically from the vapor phase is studied as a function of temperature as well as of electric and magnetic fields. We find distinct differences in comparison to the behavior of both polypyrrole films prepared by electrochemical growth as well as of the bulk films obtained from conventional chemical synthesis. For small electric fields F, a transition from Efros-Shklovskii variable range hopping to Arrhenius activated transport is...

  12. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    Science.gov (United States)

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  13. Physico-chemical properties of perturbed water: facts and enigmas

    Directory of Open Access Journals (Sweden)

    Vittorio Elia

    2012-09-01

    Full Text Available Background The study of extremely diluted and agitated substances and solutions is strictly linked with the analysis of properties of water perturbed using different systems. This study is about the determination of the physical-chemical parameters of water, after the perturbations described. Methods The perturbed water was obtained using the three different protocols: · EDS (Extremely Diluted Solutions. Obtained through an iterative process of successive dilutions and agitations. · IFW (Iteratively Filtered Water. Obtained through an iterative process of successive filtrations through sintered glass filters. · INW (Iteratively Nafionized Water. Obtained through an iterative process of successive drying and wetting of the Nafion polymer. The parameters under study are: electrical conductivity, χ / μS cm-1; heat of mixing with acid (HCl, ΔQmixHCl / J Kg-1 or basic (NaOH solutions, ΔQmixNaOH / J Kg-1 and pH. χ increases of up to two orders of magnitude, ΔQmixNaOH / J Kg-1 is exothermic and increases as the electrical conductivity increases, with a roughly linear trend, up to one order of magnitude. The analogous ΔQmixHCl / J Kg-1, on the contrary, is found to be exothermic or null depending on the protocol used. For the two protocol (EDS or IFW the pH is alkaline while for the third one (INW is quite acid and shows a very good linear correlation with logχ. The linear correlations hint at a single cause for the variation of the three very different physical- chemical parameters. Results and discussion Each protocol produces water exhibiting its own peculiarities, to the point that they can be considered different, albeit with the common element of a variation of the super-molecular structure of the water solvent. These three procedures capable of affecting water can be grouped together by means of a common work

  14. Effects of different chemical additives on biodiesel fuel properties and engine performance. A comparison review

    Directory of Open Access Journals (Sweden)

    Ali Obed Majeed

    2016-01-01

    Full Text Available Biodiesel fuel can be used as an alternative to mineral diesel, its blend up to 20% used as a commercial fuel for the existing diesel engine in many countries. However, at high blending ratio, the fuel properties are worsening. The feasibility of pure biodiesel and blended fuel at high blending ratio using different chemical additives has been reviewed in this study. The results obtained by different researchers were analysed to evaluate the fuel properties trend and engine performance and emissions with different chemical additives. It found that, variety of chemical additives can be utilised with biodiesel fuel to improve the fuel properties. Furthermore, the chemical additives usage in biodiesel is inseparable both for improving the cold flow properties and for better engine performance and emission control. Therefore, research is needed to develop biodiesel specific additives that can be adopted to improve the fuel properties and achieve best engine performance at lower exhaust emission effects.

  15. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    Science.gov (United States)

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents. PMID:24080293

  16. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach.

    Science.gov (United States)

    Gabriel, Matthias; Niederer, Kerstin; Becker, Marc; Raynaud, Christophe Michel; Vahl, Christian-Friedrich; Frey, Holger

    2016-05-18

    Many biomaterials used for tissue engineering applications lack cell-adhesiveness and, in addition, are prone to nonspecific adsorption of proteins. This is especially important for blood-contacting devices such as vascular grafts and valves where appropriate surface properties should inhibit the initial attachment of platelets and promote endothelial cell colonization. As a consequence, the long-term outcome of the implants would be improved and the need for anticoagulation therapy could be reduced or even abolished. Polytetrafluoroethylene (PTFE), a frequently used polymer for various medical applications, was wet-chemically activated and subsequently modified by grafting the endothelial cell (EC) specific peptide arginine-glutamic acid-aspartic acid-valine (REDV) using a bifunctional polyethylene glycol (PEG)-spacer (known to reduce platelet and nonspecific protein adhesion). Modified and control surfaces were both evaluated in terms of EC adhesion, colonization, and the attachment of platelets. In addition, samples underwent bacterial challenges. The results strongly suggested that PEG-mediated peptide immobilization renders PTFE an excellent substrate for cellular growth while simultaneously endowing the material with antifouling properties. PMID:27041509

  17. First principles view on chemical compound space: Towards atomistic control of molecular properties

    CERN Document Server

    von Lilienfeld, O A

    2012-01-01

    A well-defined notion of chemical space is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we revisit the atomistic first principles perspective on chemical compound space. First, we review chemical space in terms of conceptual density functional and molecular grand-canonical ensemble theory. Subsequently, compound-pairs, "alchemical" interpolation and reference compounds, and the relevance of property non-linearity are discussed. Thereafter, we will focus on recent contributions for accelerating atomistic simulations based on modern statistical data analysis methods (artificial intelligence). The crucial role of good descriptors for chemical compounds will be addressed.

  18. SIFAT FISIK, KIMIA, DAN FUNGSIONAL DAMAR [Brief Review on: Physical, Chemical and Functional Properties of Dammar

    Directory of Open Access Journals (Sweden)

    Noryawati Mulyono1

    2004-12-01

    Full Text Available Dammar is one of Indonesian forestry products which is abundant. It has unique physical, chemical and functional properties. The important physical properties of dammar include its solubility in some organic solvents, softening temperature, viscosity and its absorbance. The important chemical properties reviewed here include its properties as resin, composition of terpenoid compounds present in dammar, and essential oil yielded from distillation of fresh dammar. Physical and chemical properties of dammar need to be studied further in order to optimize its functional properties. So far, dammar is widely used as weighting agent and source of essential oil. However, now, some species of dammar are being explored and developed for sal flour, fat source, triacylglycerol substituent for cocoa butter and wood preservatives.

  19. Medicinal chemical properties of successful central nervous system drugs.

    Science.gov (United States)

    Pajouhesh, Hassan; Lenz, George R

    2005-10-01

    Fundamental physiochemical features of CNS drugs are related to their ability to penetrate the blood-brain barrier affinity and exhibit CNS activity. Factors relevant to the success of CNS drugs are reviewed. CNS drugs show values of molecular weight, lipophilicity, and hydrogen bond donor and acceptor that in general have a smaller range than general therapeutics. Pharmacokinetic properties can be manipulated by the medicinal chemist to a significant extent. The solubility, permeability, metabolic stability, protein binding, and human ether-ago-go-related gene inhibition of CNS compounds need to be optimized simultaneously with potency, selectivity, and other biological parameters. The balance between optimizing the physiochemical and pharmacokinetic properties to make the best compromises in properties is critical for designing new drugs likely to penetrate the blood brain barrier and affect relevant biological systems. This review is intended as a guide to designing CNS therapeutic agents with better drug-like properties. PMID:16489364

  20. Physical and chemical properties of San Francisco Bay waters, 1969-1976 (NODC Accession 8400194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — One magnetic tape containing the physical and chemical properties of San Francisco Bay waters was forwarded to NODC by Mr. Richard Smith of the U.S Geological...

  1. Stevia rebaudiana Bertoni – chemical composition and functional properties

    OpenAIRE

    Katarzyna Marcinek; Zbigniew Krejpcio

    2015-01-01

    Sweetleaf (Stevia rebaudiana Bertoni), currently investigated by many researchers, has been known and used for more than a thousand years indigenous tribes of South America, who called it “kaa-hee” (“sweet herb”). Thanks to its chemical composition and processability sweetleaf may be an alternative for synthetic sweeteners. Nutritional and health-promoting aspects of Stevia rebaudiana are presently being studied in many research centres. The aim of this study is to pre...

  2. Soil chemical properties related to acidity under successive pig slurry application

    OpenAIRE

    Cledimar Rogério Lourenzi; Carlos Alberto Ceretta; Leandro Souza da Silva; Gustavo Trentin; Eduardo Girotto; Felipe Lorensini; Tadeu Luis Tiecher; Gustavo Brunetto

    2011-01-01

    Pig slurry application as soil manure can alter the chemical properties of the soil and affect its acidity, modifying the environment for crop growth and development. The objective of this study was to evaluate the chemical properties related to soil acidity subjected to successive applications of pig slurry. The experiment was conducted in May 2000, in an experimental area of the Federal University of Santa Maria (UFSM) under no-tillage and lasted until January 2008. Nineteen surface applica...

  3. Multivariate analysis of chemical properties in oxisols with different levels of intervention agricultural

    OpenAIRE

    Camacho-Tamayo, Jesús H.; Luengas-Gómez, Carlos; Fabio R Leiva

    2010-01-01

    Human intervention in agricultural production affects directly soil quality by promoting changes in physical and chemical properties through the use of fertilizers, correctives and tillage practices (Brachiria and corn- soybean). The aim of this study was to evaluate changes in the chemical properties of two Oxisols (Typic Hapludox y Typic Haplustox) with different intervention levels, in the municipality of Puerto Lopez (Meta-Colombia). Samples were taken at 42 points, spaced 25 m perpendicu...

  4. Effect of Chemicals on Geotechnical Properties of Clay Liners: A Review

    OpenAIRE

    Seracettin Arasan

    2010-01-01

    This study presents a review of recent research on the geotechnical properties (consistency limits, hydraulic conductivity, shear strength, swelling, and compressibility) of clay liners conducted with organic and inorganic chemicals. Due to its low permeability, a clay liner is the main material used in solid waste disposal landfills. It is exposed there to various chemical, biological and physical events, and the clay liner is affected by the resulting leachate. The geotechnical properties o...

  5. Does ultrafiltration have a lasting effect on the physico-chemical properties of the casein micelles?

    OpenAIRE

    Ferrer, Mary Ann; Alexander, Marcela; Corredig, Milena

    2011-01-01

    The objective of this work was to determine if concentration of milk using ultrafiltration (in the absence of diafiltration) affects the physico-chemical properties of the casein micelles. The milk, once concentrated, was brought back to its original concentration and the physico-chemical properties as well as its susceptibility to rennet induced gelation were assessed. Although much is understood on the renneting behavior of concentrated milk, no information is available on how (or if) ultra...

  6. Changes in Chemical and Sensory Properties of Migaki-Nishin (Dried Herring Fillet) during Drying

    OpenAIRE

    Shah, A.K.M. Azad; Tokunaga, C; M Ogasawara; Kurihara, H.; Takahashi, Koretaro

    2009-01-01

    Migaki-nishin is a Japanese term that refers to dried herring fillets. It is widely consumed in Japan due to its characteristic flavor enhancing properties. This study was conducted to investigate the changes in chemical and sensory properties of migaki-nishin during drying. Chemical analyses showed that extractive nitrogen and amount of peptides increased significantly (P < 0.05) up to the eighth day of drying and then slightly decreased by the tenth day. Glutamic acid, alanine, glycine, and...

  7. Properties of Random Complex Chemical Reaction Networks and Their Relevance to Biological Toy Models

    OpenAIRE

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2013-01-01

    We investigate the properties of large random conservative chemical reaction networks composed of elementary reactions endowed with either mass-action or saturating kinetics, assigning kinetic parameters in a thermodynamically-consistent manner. We find that such complex networks exhibit qualitatively similar behavior when fed with external nutrient flux. The nutrient is preferentially transformed into one specific chemical that is an intrinsic property of the network. We propose a self-consi...

  8. Physical-chemical properties and sorption characteristics of peat

    OpenAIRE

    Delicato, Domenico M. S

    1996-01-01

    The physicochemical properties of peat fibre, peat moss and two processed forms of peat moss were studied. The properties examined included thermal analysis (by T G A and DSC), IR spectroscopy and the zero point o f charge From D S C analysis it was found that the ignition point for the peat materials occurred at about 200°C. Above this temperature there were three exothermic peaks recorded, the first at c 333°C corresponded to the decomposition of cellulose, the second at c 438°C to the deco...

  9. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-02-01

    Full Text Available Calcium carbide residue (CCR is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP. The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement pastes was also examined through SEM (scanning electron microscope. Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  10. Physical and chemical properties of freeze-dried amnio-chorion membranes sterilized by γ irradiation

    International Nuclear Information System (INIS)

    Physical and chemical properties of freeze-dried amnio-chorion membranes sterilized by γ-irradiation. Investigation on physical and chemical properties of freeze-dried amnio-chorion membrane as well as the total number of bacteria contained were done on irradiated and unirradiated membranes. Parameters observed to evaluate the membranes were tensile strength, water vapour transmission rate, Aw, infrared spectra and total bacterial count before irradiation. These membranes will be used as biological burn dressing. The effects of storage time up to 1 month at room temperatures, i.e. 29 +- 20C on mechanical properties of freeze-dried membranes were also done. No significant change could be observed on physical and chemical properties of radiation sterilized membranes compared to unirradiated ones (p. 0.1). To protect the physical properties of freeze-dried membranes it is suggested that the membranes be processed as quickly as possible after delivery. (author). 10 figs, 7 refs

  11. Development and Analysis of Group Contribution Plus Models for Property Prediction of Organic Chemical Systems

    DEFF Research Database (Denmark)

    Mustaffa, Azizul Azri

    and further development of the GCPlus approach for predicting mixture properties to be called the UNIFAC-CI model. The contributions of this work include an analysis of the developed Original UNIFAC-CI model in order to investigate why the model does not perform as well as the reference UNIFAC model......Prediction of properties is important in chemical process-product design. Reliable property models are needed for increasingly complex and wider range of chemicals. Group-contribution methods provide useful tool but there is a need to validate them and improve their accuracy when complex chemicals...... are present in the mixtures. In accordance with that, a combined group-contribution and atom connectivity approach that is able to extend the application range of property models has been developed for mixture properties. This so-called Group-ContributionPlus (GCPlus) approach is a hybrid model which...

  12. β-Amyloid pathogenesis: Chemical properties versus cellular levels

    DEFF Research Database (Denmark)

    Tiwari, Manish Kumar; Kepp, Kasper Planeta

    2016-01-01

    Although genetic Aβ variants cause early-onset Alzheimer's disease, literature reports on Aβ properties are heterogeneous, obscuring molecular mechanisms, as illustrated by recent failures of Aβ-level targeting trials. Thus, we combined available data on Aβ levels and ratios, aggregation propensi...

  13. Chemical composition and temperature influence on honey texture properties.

    Science.gov (United States)

    Oroian, Mircea; Paduret, Sergiu; Amariei, Sonia; Gutt, Gheorghe

    2016-01-01

    The aim of this study is to evaluate the chemical composition and temperatures (20, 30, 40, 50 and 60 °C) influence on the honey texture parameters (hardness, viscosity, adhesion, cohesiveness, springiness, gumminess and chewiness). The honeys analyzed respect the European regulation in terms of moisture content and inverted sugar concentration. The texture parameters are influenced negatively by the moisture content, and positively by the °Brix concentration. The texture parameters modelling have been made using the artificial neural network and the polynomial model. The polynomial model predicted better the texture parameters than the artificial neural network. PMID:26787962

  14. Chemical structures and thermochemical properties of bagasse lignin

    Institute of Scientific and Technical Information of China (English)

    Wu Shu-bin; Guo Yi-li; Wang Shao-guang; Li Meng-shi

    2006-01-01

    The chemical structures of bagasse EMAL (enzymatic hydrolysis/mild acidolysis lignin) were revealed quantitatively with 31P-NMR, DFRC (derivatization followed by reductive cleavage). The thermochemical characteristics of bagasse and bagasse EMAL were evaluated with thermogravimetry. The results show that bagasse EMAL is mainly formed by the phenolic hydroxyl group of guaiacyl and syringyl units. The DBDO content in bagasse EMAL was found to be 0.180 mmol·g-1. The decomposition characteristics of bagasse EMAL under elevated temperature were much different from that of bagasse.

  15. USE OF SCALED SEMIVARIOGRAMS IN THE PLANNING SAMPLE OF SOIL CHEMICAL PROPERTIES IN SOUTHERN AMAZONAS, BRAZIL

    Directory of Open Access Journals (Sweden)

    Ivanildo Amorim de Oliveira

    2015-02-01

    Full Text Available The lack of information concerning the variability of soil properties has been a major concern of researchers in the Amazon region. Thus, the aim of this study was to evaluate the spatial variability of soil chemical properties and determine minimal sampling density to characterize the variability of these properties in five environments located in the south of the State of Amazonas, Brazil. The five environments were archaeological dark earth (ADE, forest, pasture land, agroforestry operation, and sugarcane crop. Regular 70 × 70 m mesh grids were set up in these areas, with 64 sample points spaced at 10 m distance. Soil samples were collected at the 0.0-0.1 m depth. The chemical properties of pH in water, OM, P, K, Ca, Mg, H+Al, SB, CEC, and V were determined at these points. Data were analyzed by descriptive and geostatistical analyses. A large part of the data analyzed showed spatial dependence. Chemical properties were best fitted to the spherical model in almost all the environments evaluated, except for the sugarcane field with a better fit to the exponential model. ADE and sugarcane areas had greater heterogeneity of soil chemical properties, showing a greater range and higher sampling density; however, forest and agroforestry areas had less variability of chemical properties.

  16. Chemical and physical properties of bone cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    Po-Liang Lai

    2013-08-01

    Full Text Available Vertebral compression fracture is the most common complication of osteoporosis. It may result in persistent severe pain and limited mobility, and significantly impacts the quality of life. Vertebroplasty involves a percutaneous injection of bone cement into the collapsed vertebrae by fluorescent guide. The most commonly used bone cement in percutaneous vertebroplasty is based on the polymerization of methylmethacrylate monomers to polymethylmethacrylate (PMMA polymers. However, information on the properties of bone cement is mostly published in the biomaterial sciences literature, a source with which the clinical community is generally unfamiliar. This review focuses on the chemistry of bone cement polymerization and the physical properties of PMMA. The effects of altering the portions and contents of monomer liquid and polymer powders on the setting time, polymerization temperature, and compressive strength of the cement are also discussed. This information will allow spine surgeons to manipulate bone cement characteristics for specific clinical applications and improve safety.

  17. Physico-chemical properties of Brazilian cocoa butter and industrial blends. Part I Chemical composition, solid fat content and consistency

    OpenAIRE

    Ribeiro, A. P. B.; Claro da Silva, R.; Gioielli, L. A.; de Almeida Gonçalves, M. I.; Grimaldi, R.; Gonçalves, L. A.G.; Guenter Kieckbusch, T.

    2012-01-01

    A comparative study of the primary properties of six cocoa butter samples, representative of industrial blends and cocoa butter extracted from fruits cultivated in different geographical areas in Brazil is presented. The samples were evaluated according to fatty acid composition, triacylglycerol composition, regiospecific distribution, melting point, solid fat content and consistency. The results allowed for differentiating the samples according to their chemical compositions, thermal resista...

  18. Medicinal Chemical Properties of Successful Central Nervous System Drugs

    OpenAIRE

    Pajouhesh, Hassan; Lenz, George R.

    2005-01-01

    Summary: Fundamental physiochemical features of CNS drugs are related to their ability to penetrate the blood-brain barrier affinity and exhibit CNS activity. Factors relevant to the success of CNS drugs are reviewed. CNS drugs show values of molecular weight, lipophilicity, and hydrogen bond donor and acceptor that in general have a smaller range than general therapeutics. Pharmacokinetic properties can be manipulated by the medicinal chemist to a significant extent. The solubility, permeabi...

  19. Review of Pharmacological Properties and Chemical Constituents of Pimpinella anisum

    OpenAIRE

    Asie Shojaii; Mehri Abdollahi Fard

    2012-01-01

    Pimpinella anisum (anise), belonging to Umbelliferae family, is an aromatic plant which has been used In Iranian traditional medicine (especially its fruits) as carminative, aromatic, disinfectant, and galactagogue. Because the wide traditional usage of Pimpinella anisum for treatment of diseases, in this review published scientific reports about the composition and pharmacological properties of this plant were collected with electronic literature search of GoogleScholar, PubMed, Sciencedirec...

  20. Structural, chemical and magnetic properties of secondary phases in Co-doped ZnO

    DEFF Research Database (Denmark)

    Ney, A; Kovács, András; Ney, V; Ye, S; Ollefs, K; Kammermeier, T; Wilhelm, F; Rogalev, A; Dunin-Borkowski, Rafal E.

    2011-01-01

    , chemical and magnetic properties of Co-doped ZnO samples. It can be established on a quantitative basis that the superparamagnetic (SPM) behavior observed by integral superconducting quantum interference device magnetometry is not an intrinsic property of the material but stems from precipitations of...

  1. Chemical properties of Pu, Am, Np, I, and Tc and their influence on migration

    International Nuclear Information System (INIS)

    The migrational behavior of waste materials from a repository will depend upon the chemical characteristics of the various species and upon the chemical environment in which they are found. Therefore, it is important to understand the properties of these various species and it is also important to understand how these properties influence their behavior. The results of our empirical study of the migration of Pu, Am, Np, I, and Tc can be related to the chemical properties of these elements and show that the higher oxidation states are anionic and rapidly migrating. These results indicate that the chemical form and milieu are of primary importance. It has been found that the cationic species migrate much more slowly and it was seen that several minerals act to bind even the anionic or oxidized forms

  2. Thermodynamic properties of Cu–Zr melts: The role of chemical interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kulikova, T.V.; Majorova, A.V.; Shunyaev, K.Yu. [Institute of Metallurgy, Ural Division of Russian Academy of Sciences, Amudsena str. 101, 620016 Ekaterinburg (Russian Federation); Ryltsev, R.E., E-mail: rrylcev@mail.ru [Institute of Metallurgy, Ural Division of Russian Academy of Sciences, Amudsena str. 101, 620016 Ekaterinburg (Russian Federation); Ural Federal University, Mira str. 19, 620002 Ekaterinburg (Russian Federation)

    2015-06-15

    General statistical model is applied to analyze the role of chemical interaction in associated systems. We show that, at certain conditions, chemical interaction between associates may be not essential above a distectic point and so the model of ideal associated solutions is a good approximation for describing high temperature properties of associated system with chemical interaction. Within the frames of such conception, we calculate thermodynamic properties of Cu–Zr system in liquid state. The enthalpies of formation of Cu–Zr intermetallic compounds were redefined by using matching procedure taking into account the additive manifestation of chemical interaction. We conclude that simple model which is free of adjusting parameters allows us to calculate thermodynamic properties of Cu–Zr melts with quite good accuracy.

  3. Dielectric Properties of CDS Nanoparticles Synthesized by Soft Chemical Route

    Indian Academy of Sciences (India)

    R Tripathi; A Kumar; T P Sinha

    2009-06-01

    CdS nanoparticles have been synthesized by a chemical reaction route using thiophenol as a capping agent. The frequency-dependent dielectric dispersion of cadmium sulphide (CdS) is investigated in the temperature range of 303–413 K and in a frequency range of 50 Hz–1 MHz by impedance spectroscopy. An analysis of the complex per-mittivity ( and ) and loss tangent (tan ) with frequency is performed by assuming a distribution of relaxation times. The scaling behaviour of dielectric loss spectra sug- gests that the relaxation describes the same mechanism at various temperatures. The frequency-dependent electrical data are analysed in the framework of conductivity and modulus formalisms. The frequency-dependent conductivity spectra obey the power law.

  4. Effect of prolonged chemical challenges on selected properties of silorane

    DEFF Research Database (Denmark)

    de Jesus, Vivian CBR; Martinelli, Natan Luiz; Pascotto, Renata Corrêa;

    Objectives: The purpose of this study was to investigate the effect of prolonged chemical challenges on water sorption, solubility, and roughness of a silorane-based material when compared to methacrylate-based composites. Methods: Initial roughness and mass were registered for specimens (n=24...... phosphoric acid, 75% ethanol or distilled water for 7, 14, 21, and 180 days, when new measurements were performed. Subsequently, specimens were dehydrated until a constant mass was obtained. Water sorption and solubility were calculated after 180 days of immersion in the different solutions. Data were...... differences in water sorption and solubility were detected amongst the investigated composites (p<0.001). The silorane-based composite demonstrated low water sorption (with similar values to Filtek Z250 and Filtek Z350XT) and low solubility (with similar values to Filtek Z250) after prolonged immersion in the...

  5. Chemical and molecular properties of irradiated starch extrudates

    International Nuclear Information System (INIS)

    Corn starch samples containing 0, 25, 50, and 70% amylose were gamma-irradiated at 0 (native), 5, 10, 20, and 30 kGy. All starch samples were extrusion cooked at 140 degrees C barrel temperature, 140 rpm screw speed, and 18% moisture content (db) using a C. W. Brabender single-screw extruder. Starches irradiated at a 20-kGy dosage were extrusion cooked with and without hydrogen peroxide, potassium persulfate, or ceric ammonium nitrate. The quantity of free radicals produced on the starch increased with increasing irradiation dosages (0-30 kGy). Stability of the free radicals was greater for high-amylose starches than for those with low amylose. Extrusion-cooked starches had traces of free radical activity. Acidity of the irradiated starches increased (pH decreased) with increasing irradiation dosages. Gel permeation chromatographic separation of variously treated starches gave three fractions. Fraction I, mostly amylopectin, eluted at the void volume, whereas fraction II, mostly amylose, eluted at the latter part of the gel. Fraction 0, degraded products of amylopectin and amylose, mostly eluted closer to the total volume of the gel. Fraction I quantities of irradiated starches decreased with increasing irradiation dosages, whereas fraction II and III quantities correspondingly increased. Native starches with 0% amylose exhibited more than a fourfold decrease in fraction I content, whereas 70% amylose native starches showed less than a twofold decrease due to increasing irradiation dosages from 0 to 30 kGy. Extrusion cooking accelerated the degradation of fraction I for 0% amylose starches more than for 70% amylose starches. Both 2.5 and 5% concentrations of chemical additives caused excessive degradation of fraction I of starches irradiated at 20 kGy, consequently increasing reducing powers. Ceric ammonium nitrate caused the highest decrease in the iodine binding capacity of the starches. Fraction I clearly suffered more degradation due to irradiation, extrusion

  6. Effects of Hygrothermal Cycling on the Chemical, Thermal, and Mechanical Properties of 862/W Epoxy Resin

    Science.gov (United States)

    Miller, Sandi G.; Roberts, Gary D.; Copa, Christine C.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2011-01-01

    The hygrothermal aging characteristics of an epoxy resin were characterized over 1 year, which included 908 temperature and humidity cycles. The epoxy resin quickly showed evidence of aging through color change and increased brittleness. The influence of aging on the material s glass transition temperature (Tg) was evaluated by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The Tg remained relatively constant throughout the year long cyclic aging profile. The chemical composition was monitored by Fourier Transform Infrared Spectroscopy (FTIR) where evidence of chemical aging and advancement of cure was noted. The tensile strength of the resin was tested as it aged. This property was severely affected by the aging process in the form of reduced ductility and embrittlement. Detailed chemical evaluation suggests many aging mechanisms are taking place during exposure to hygrothermal conditions. This paper details the influence of processes such as: advancement of cure, chemical degradation, and physical aging on the chemical and physical properties of the epoxy resin.

  7. Microbicidal properties and chemical composition of essential oils

    Czech Academy of Sciences Publication Activity Database

    Křůmal, Kamil; Večeřa, Zbyněk

    Brno: Institute of Analytical Chemistry AS CR, 2014 - (Foret, F.; Křenková, J.; Drobníková, I.; Guttman, A.; Klepárník, K.), s. 300-303 ISBN 978-80-904959-2-0. [CECE 2014 /11./. Brno (CZ), 20.10.2014-22.10.2014] R&D Projects: GA MK DF11P01OVV028 Institutional support: RVO:68081715 Keywords : essential oil * microbicidal properties * denuder Subject RIV: CB - Analytical Chemistry, Separation http://www.ce-ce.org/CECE2014/CECE%202014%20proceedings_full.pdf

  8. Chemical and nuclear properties of lawrencium (element 103) and hahnium (element 105)

    International Nuclear Information System (INIS)

    The chemical and nuclear properties of Lr and Ha have been studied, using 3-minute 260Lr and 35-second 262Ha. The crystal ionic radius of Lr3+ was determined by comparing its elution position from a cation-exchange resin column with those of lanthanide elements having known ionic radii. Comparisons are made to the ionic radii of the heavy actinides, Am3+ through Es3+, obtained by x-ray diffraction methods, and to Md3+ and Fm3+ which were determined in the same manner as Lr3+. The hydration enthalpy of -3622 kJ/mol was calculated from the crystal ionic radius using an empirical form of the Born equation. Comparisons to the spacings between the ionic radii of the heaviest members of the lanthanide series show that the 2Z spacing between Lr3+ and Md3+ is anomalously small, as the ionic radius of Lr3+ of 0.0886 nm is significantly smaller than had been expected. The chemical properties of Ha were determined relative to the lighter homologs in group 5, Nb and Ta. Group 4 and group 5 tracer activities, as well as Ha, were absorbed onto glass surfaces as a first step toward the determination of the chemical properties of Ha. Ha was found to adsorb on surfaces, a chemical property unique to the group 5 elements, and as such demonstrates that Ha has the chemical properties of a group 5 element. A solvent extraction procedure was adapted for use as a micro-scale chemical procedure to examine whether or not Ha displays eka-Ta-like chemical under conditions where Ta will be extracted into the organic phase and Nb will not. Under the conditions of this experiment Ha did not extract, and does not show eka-Ta-like chemical properties

  9. Mechanical and Chemical Properties of Bamboo/Glass Fibers Reinforced Polyester Composites

    OpenAIRE

    K.Sudha Madhuri,; H.Raghavendra Rao

    2016-01-01

    The chemical resistance of Bamboo/Glass reinforced Polyester hybrid composites to acetic acid, Nitric acid, Hydrochloric acid, Sodium hydroxide, Sodium carbonate, Benzene, Toluene, Carbon tetrachloride and Water was studied. The tensile and impact properties of these composites were also studied. The effect of alkali treatment of bamboo fibers on these properties was studied. It was observed that the tensile and impact properties of the hybrid composites increase with glass fiber ...

  10. Nanoscale chemical interaction enhances the physical properties of bioglass composites.

    Science.gov (United States)

    Ravarian, Roya; Zhong, Xia; Barbeck, Mike; Ghanaati, Shahram; Kirkpatrick, Charles James; Murphy, Ciara M; Schindeler, Aaron; Chrzanowski, Wojciech; Dehghani, Fariba

    2013-10-22

    Bioglasses are favorable biomaterials for bone tissue engineering; however, their applications are limited due to their brittleness. In addition, the early failure in the interface is a common problem of composites of bioglass and a polymer with high mechanical strength. This effect is due to the phase separation, nonhomogeneous mixture, nonuniform mechanical strength, and different degradation properties of two compounds. To address these issues, in this study a nanoscale interaction between poly(methyl methacrylate) (PMMA) and bioactive glass was formed via silane coupling agent (3-trimethoxysilyl)propyl methacrylate (MPMA). A monolith was produced at optimum composition from this hybrid by the sol-gel method at 50 °C with a rapid gelation time (hybrid. The in vivo studies in mice demonstrated that the integrity of the hybrids was maintained in subcutaneous implantation. They induced mainly a mononuclear phagocytic tissue reaction with a low level of inflammation, while bioglass provoked a tissue reaction with TRAP-positive multinucleated giant cells. These results demonstrated that the presence of a nanoscale interaction between bioglass and PMMA affects the properties of bioglass and broadens its potential applications for bone replacement. PMID:24001050

  11. Review of Pharmacological Properties and Chemical Constituents of Pimpinella anisum.

    Science.gov (United States)

    Shojaii, Asie; Abdollahi Fard, Mehri

    2012-01-01

    Pimpinella anisum (anise), belonging to Umbelliferae family, is an aromatic plant which has been used In Iranian traditional medicine (especially its fruits) as carminative, aromatic, disinfectant, and galactagogue. Because the wide traditional usage of Pimpinella anisum for treatment of diseases, in this review published scientific reports about the composition and pharmacological properties of this plant were collected with electronic literature search of GoogleScholar, PubMed, Sciencedirect, Scopus, and SID from 1970 to 2011. So far, different studies were performed on aniseeds and various properties such as antimicrobial, antifungal, antiviral, antioxidant, muscle relaxant, analgesic and anticonvulsant activity as well as different effects on gastrointestinal system have been reported of aniseeds. It can also reduce morphine dependence and has beneficial effects on dysmenorrhea and menopausal hot flashes in women. In diabetic patients, aniseeds showed hypoglycemic and hypolipidemic effect and reduce lipid peroxidation. The most important compounds of aniseeds essential oil were trans-anetole, estragole, γ-hymachalen, para-anisaldehyde and methyl cavicol. Due to broad spectrum of pharmacological effects, and very few clinical studies of Pimpinella anisum, more clinical trials are recommended to evaluate the beneficial effects of this plant in human models and synthesis of new drugs from the active ingredients of this plant in future. PMID:22848853

  12. Chemical, Mineralogical, and Morphological Properties of Steel Slag

    Directory of Open Access Journals (Sweden)

    Irem Zeynep Yildirim

    2011-01-01

    Full Text Available Steel slag is a byproduct of the steelmaking and steel refining processes. This paper provides an overview of the different types of steel slag that are generated from basic-oxygen-furnace (BOF steelmaking, electric-arc-furnace (EAF steelmaking, and ladle-furnace steel refining processes. The mineralogical and morphological properties of BOF and electric-arc-furnace-ladle [EAF(L] slag samples generated from two steel plants in Indiana were determined through X-Ray Diffraction (XRD analyses and Scanning Electron Microscopy (SEM studies. The XRD patterns of both BOF and EAF(L slag samples were very complex, with several overlapping peaks resulting from the many minerals present in these samples. The XRD analyses indicated the presence of free MgO and CaO in both the BOF and EAF(L slag samples. SEM micrographs showed that the majority of the sand-size steel slag particles had subangular to angular shapes. Very rough surface textures with distinct crystal structures were observed on the sand-size particles of BOF and EAF(L slag samples under SEM. The characteristics of the steel slag samples considered in this study are discussed in the context of a detailed review of steel slag properties.

  13. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    Science.gov (United States)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal

  14. Prediction of Wine Sensorial Quality by Routinely Measured Chemical Properties

    Directory of Open Access Journals (Sweden)

    Bednárová Adriána

    2014-12-01

    Full Text Available The determination of the sensorial quality of wines is of great interest for wine consumers and producers since it declares the quality in most of the cases. The sensorial assays carried out by a group of experts are time-consuming and expensive especially when dealing with large batches of wines. Therefore, an attempt was made to assess the possibility of estimating the wine sensorial quality with using routinely measured chemical descriptors as predictors. For this purpose, 131 Slovenian red wine samples of different varieties and years of production were analysed and correlation and principal component analysis were applied to find inter-relations between the studied oenological descriptors. The method of artificial neural networks (ANNs was utilised as the prediction tool for estimating overall sensorial quality of red wines. Each model was rigorously validated and sensitivity analysis was applied as a method for selecting the most important predictors. Consequently, acceptable results were obtained, when data representing only one year of production were included in the analysis. In this case, the coefficient of determination (R2 associated with training data was 0.95 and that for validation data was 0.90. When estimating sensorial quality in categorical form, 94 % and 85 % of correctly classified samples were achieved for training and validation subset, respectively.

  15. Physical and chemical properties of γ-irradiated EVOH film

    International Nuclear Information System (INIS)

    The effects of γ-irradiation on ethylene vinyl alcohol copolymer (EVOH) were investigated. Oxygen permeability decreased as irradiation dose increased in non-oriented (EF-CR), biaxially oriented (EF-XL) EVOH, and nylon/EVOH/PP. Irradiation increased tensile strength (TS) and elongation at break (%E) of EF-CR; whereas, TS of EF-XL was not significantly changed and %E of EF-XL decreased. Irradiation had no effect on TS and %E of nylon/EVOH/PP. Four volatile compounds, ε-caprolactam, 2-propyldecanol, 2-butyloctanol, and 2,3-diethyl-2,3-dimethyl-1,4-butanediol, were detected after irradiation. Optical properties were not changed

  16. The uptake of polluting chemicals into the plant and its relationship to physical-chemical substance properties

    International Nuclear Information System (INIS)

    The accumulation behaviour of 14C-labelled organic pollutants under laboratory and field conditions was investigated in spring barley and garden cress and evaluated in the light of a number of previously selected substance properties. The studies in the laboratory were restricted to one week, while those in the field were carried out over the entire growing season. They had the purpose of determining the accumulation of certain pollutants in the test plants with reference to the residues detected for those substances in the soil. The laboratory studies were focused on benzene and five chlorated derivatives as well as a further few chemicals from other groups of substances. The substances investigated in the field were benzene and an additional three chlorated benzenes. The accumulation of organic pollutants in the above-ground parts and roots of barley can rather easily be forecasted on the basis of the compounds' structural properties like molecular weight, molecule volume and connectivity indices. This applies to the majority of cases, providing the mineralisation of the substances in the soil is only minor and no unduly large amounts of metabolites are formed, the physical-chemical properties of which deviate greatly from those of the mother substances. Any such forecasts for cress should preferably be made on the basis of distribution parameters of the individual compounds. It was found that the results from laboratory and field studies were in reasonable agreement, thus permitting the same conclusions to be drawn as to the biotransfer of the test substances from the soil and the probable links between these observations and physical-chemical substance properties. (orig./MG)

  17. Chemical Properties And Toxicity of Chromium(III) Nutritional Supplements

    Energy Technology Data Exchange (ETDEWEB)

    Levina, A.; Lay, P.A.

    2009-05-19

    The status of Cr(III) as an essential micronutrient for humans is currently under question. No functional Cr(III)-containing biomolecules have been definitively described as yet, and accumulated experience in the use of Cr(III) nutritional supplements (such as [Cr(pic){sub 3}], where pic = 2-pyridinecarboxylato) has shown no measurable benefits for nondiabetic people. Although the use of large doses of Cr(III) supplements may lead to improvements in glucose metabolism for type 2 diabetics, there is a growing concern over the possible genotoxicity of these compounds, particularly of [Cr(pic){sub 3}]. The current perspective discusses chemical transformations of Cr(III) nutritional supplements in biological media, with implications for both beneficial and toxic actions of Cr(III) complexes, which are likely to arise from the same biochemical mechanisms, dependent on concentrations of the reactive species. These species include: (1) partial hydrolysis products of Cr(III) nutritional supplements, which are capable of binding to biological macromolecules and altering their functions; and (2) highly reactive Cr(VI/V/IV) species and organic radicals, formed in reactions of Cr(III) with biological oxidants. Low concentrations of these species are likely to cause alterations in cell signaling (including enhancement of insulin signaling) through interactions with the active centers of regulatory enzymes in the cell membrane or in the cytoplasm, while higher concentrations are likely to produce genotoxic DNA lesions in the cell nucleus. These data suggest that the potential for genotoxic side-effects of Cr(III) complexes may outweigh their possible benefits as insulin enhancers, and that recommendations for their use as either nutritional supplements or antidiabetic drugs need to be reconsidered in light of these recent findings.

  18. Physical and chemical properties of substrates produced using macrophytes aquatics

    Directory of Open Access Journals (Sweden)

    Walda Monteiro Farias

    2013-12-01

    Full Text Available Aquatic macrophytes are widely used as bioindicators of water quality because their proliferation usually occurs in eutrophic water sources and has hit several parts of Brazil and the world, restricted the multiple uses of aquatic ecosystems. However, this group of plants is able to retain considerable amounts of nutrients, presenting high productivity and high growth rate, thus, a good source of biomass for use in the production of substrates. In order to evaluate the potential of aquatic macrophytes water hyacinth (Eichhornia crassipes Solms., water lettuce (Pistia stratiotes L. and cattail (Typha domingensis Pers. in the production of substrates was performed in this work, the physical and chemical characterization and evaluation of the degree of humification. The treatments were arranged in a 3 × 4 factorial, completely randomized design with three replications. All substrates produced with 100% macrophyte density present within the limits of 400 kg m-3, considered ideal. The composite substrates with water hyacinth and water lettuce are with the electrical conductivity of 0,79 a 2,49 dS m-1 within recommended. organic compounds produced are considered mature and have high levels of nitrogen phosphorus and potassium; The substrate produced with 70% water lettuce +30 % dung and 70% composed of cattail manure +20% +10% topsoil and 70 +30% cattail manure have C/N ratio within the considered ideal; the humification ratio and humification index, except for the four treatments (70 % water lettuce manure +30%, 5 (100% water hyacinth and 8 (70% water hyacinth manure +30% are within the considered ideal, the percentage of humic acids and polymerization rate, except for treatments 1 (100% water lettuce and 12 (100% cattail, are shown below the ideal.

  19. Biomechanical properties of acellular sciatic nerves treated with a modified chemical method

    Institute of Scientific and Technical Information of China (English)

    Xinlong Ma; Zhao Yang; Xiaolei Sun; Jianxiong Ma; Xiulan Li; Zhenzhen Yuan; Yang Zhang; Honggang Guo

    2011-01-01

    Nerve grafts are able to adapt to surrounding biomechanical environments if the nerve graft itself exhibits appropriate biomechanical properties (load, elastic modulus, etc.). The present study was designed to determine the differences in biomechanical properties between fresh and chemically acellularized sciatic nerve grafts. Two different chemical methods were used to establish acellular nerve grafts. The nerve was chemically extracted in the Sondell method with a combination of Triton X-100 (nonionic detergent) and sodium deoxycholate (anionic detergent), and in the modified method with a combination of Triton X-200 (anionic detergent), sulfobetaine-10 (SB-10, amphoteric detergents), and sulfobetaine-16 (SB-16, amphoteric detergents). Following acellularization, hematoxylin-eosin staining and scanning electron microscopy demonstrated that the effect of acellularization via the modified method was similar to the traditional Sondell method. However, effects of demyelination and nerve fiber tube integrity were superior to the traditional Sondell method. Biomechanical testing showed that peripheral nerve graft treated using the chemical method resulted in decreased biomechanical properties (ultimate load, ultimate stress, ultimate strain, and mechanical work to fracture) compared with fresh nerves, but the differences had no statistical significance (P > 0.05). These results demonstrated no significant effect on biomechanical properties of nerves treated using the chemical method. In conclusion, nerve grafts treated via the modified method removed Schwann cells, preserved neural structures, and ensured biomechanical properties of the nerve graft, which could be more appropriate for implantation studies.

  20. Microscopic physical and chemical properties of graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, P.C.

    1992-08-24

    Optical spectroscopy (Raman, FTIR and Reflection ) was used to study a variety of acceptor- and donor-type compounds synthesized to determine the microscopic models consistent with the spectrocsopic results. General finding is that the electrical conduction properties of these compounds can be understood on the basis that the intercalation of atomic and/or molecular species between the host graphite layers either raises or lowers the Fermi level (E{sub F)} in a graphitic band structure. This movement of E{sub F} is accomplished via a charge transfer of electrons from the intercalate layers to the graphitic layers (donor compounds), or vice versa (acceptor compounds). Furthermore, the band structure must be modified to take into account the layers of charge that occur as a result of the charge transfer. This charge layering introduces additional bands of states near E{sub F}, which are discussed. Charge-transfer also induces a perturbation of the graphitic normal mode frequencies which can be understood as the result of a contraction (acceptor compounds) or expansion (donor compounds) of the intralayer C-C bonds. Ab-initio calculations support this view and are in reasonable agreement with experimental data.

  1. Some chemical properties of nisin produced by lactococcus lactis

    International Nuclear Information System (INIS)

    The present study was carried out to study the properties of nisin produced by lactococcus lactis FG2 isolated from local un fated cheese. The maximum anti-microbial effect of pure nisin was occurred at ph 6 and 7. Nisin was heat stable from 40 to 90 degree C for 30 min. Molecular weight of nisin was determined by SDS-PAGE, it was 3.0 kDa and after irradiated the microbial cells to 1.5 kGy dose level the molecular weight increased to 3.5 t kDa then decreased at 2 kGy . Storage for two weeks it appeared in dimmer means and had a molecular weight 7 kDa . Using amino acid analyzer reveled that nisin contained a majority of nonpolar amino acids and exhibited cystine in composition . Nisin produced in whey have higher activity than nisin produced in MRS medium but both had the same structure. The results proved that nisin gene is in coded in chromosome and not with plasmid.

  2. Optimization of the sampling scheme for maps of physical and chemical properties estimated by kriging

    Directory of Open Access Journals (Sweden)

    Gener Tadeu Pereira

    2013-10-01

    Full Text Available The sampling scheme is essential in the investigation of the spatial variability of soil properties in Soil Science studies. The high costs of sampling schemes optimized with additional sampling points for each physical and chemical soil property, prevent their use in precision agriculture. The purpose of this study was to obtain an optimal sampling scheme for physical and chemical property sets and investigate its effect on the quality of soil sampling. Soil was sampled on a 42-ha area, with 206 geo-referenced points arranged in a regular grid spaced 50 m from each other, in a depth range of 0.00-0.20 m. In order to obtain an optimal sampling scheme for every physical and chemical property, a sample grid, a medium-scale variogram and the extended Spatial Simulated Annealing (SSA method were used to minimize kriging variance. The optimization procedure was validated by constructing maps of relative improvement comparing the sample configuration before and after the process. A greater concentration of recommended points in specific areas (NW-SE direction was observed, which also reflects a greater estimate variance at these locations. The addition of optimal samples, for specific regions, increased the accuracy up to 2 % for chemical and 1 % for physical properties. The use of a sample grid and medium-scale variogram, as previous information for the conception of additional sampling schemes, was very promising to determine the locations of these additional points for all physical and chemical soil properties, enhancing the accuracy of kriging estimates of the physical-chemical properties.

  3. Leaching properties and chemical compositions of calcines produced at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    No significant chemical differences were determined between retrieved and fresh calcine based on chemical and spectrochemical analyses. Little can be derived from the amounts of the radioisotopes present in the retrieved calcine samples other than the ratios of strontium-90 to cesium-137 are typical of aged fission product. The variations in concentrations of radionuclides within the composite samples of each bin also reflect the differences in compositions of waste solutions calcined. In general the leaching characteristics of both calcines by distilled water are similar. In both materials the radionuclides of cesium and strontium were selectively leached at significant rates, although cesium leached much more completely from the alumina calcine than from the zirconia calcine. Cesium and strontium are probably contained in both calcines as nitrate salts and also as fluoride salts in zirconia calcine, all of which are at least slightly soluble in water. Radionuclides of cerium, ruthenium, and plutonium in both calcines were highly resistant to leaching and leached at rates similar to or less than those of the matrix elements. These elements exist as polyvalent metal ions in the waste solutions before calcination and they probably form insoluble oxides and fluorides in the calcine. The relatively slow leaching of nitrate ion from zirconia calcine and radiocesium from both calcines suggests that the calcine matrix in some manner prevents complete or immediate contact of the soluble ions with water. Whether radiostrontium forms slightly fluoride salts or forms nitrate salts which are protected in the same manner as radiocesium is unknown. Nevertheless, selective leaching of cesium and strontim is retarded in some manner by the calcine matrix

  4. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  5. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    International Nuclear Information System (INIS)

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  6. Research and Discussion on Physical and Chemical Properties of Cultivating Substrate with Facilities

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This article, by comparing the basic concepts of substrate and soil, their composition of substance and methods of measuring the indexes of physical and chemical properties, analyzes and researches ways of choosing substrate for cultivation with facilities. It indicates that the normal physical and chemical indexes of evaluating a substrate are bulk density, total porosity, non-capillary porosity, ratio of big porosity to small porosity, the pH and the electrical conductivity (EC) value of the substrate. By...

  7. Effect of size and surrounding forest vegetation on chemical properties of soil in forest gaps

    OpenAIRE

    Özcan M; Gökbulak F

    2015-01-01

    Forest gaps have different microclimatic conditions as compared to the surrounding areas, depending on gap size and surrounding forest types and affec­ting the biological, chemical, physical, and hydrological processes in the forest openings. The objective of this study was to determine the effect of forest gap size and surrounding forest cover type (beech or mixed stands) on the soil of forest opening by analyzing several soil chemical soil properties (pH, electrical conductivity - EC, organ...

  8. Growth and properties of few-layer graphene prepared by chemical vapor deposition

    OpenAIRE

    Park, Hye Jin; Meyer, Jannik; Roth, Siegmar; Skakalova, Viera

    2009-01-01

    The structure, and electrical, mechanical and optical properties of few-layer graphene (FLG) synthesized by chemical vapor deposition (CVD) on a Ni coated substrate were studied. Atomic resolution transmission electron microscope (TEM) images show highly crystalline single layer parts of the sample changing to multilayer domains where crystal boundaries are connected by chemical bonds. This suggests two different growth mechanisms. CVD and carbon segregation participate in the growth process ...

  9. Physico-chemical property prediction and environmental fate modelling of N-acylchalcogenourea derivatives

    OpenAIRE

    B Schröder; Martins, M.A.R.; Pinho, Simão; Coutinho, J. A. P.

    2013-01-01

    (Subcooled) vapour pressures, aqueous solubilities, Henry constants, log KOW and log KOC partition constants have been estimated for a set of N-acyl-chalcogenourea derivatives using several prediction methods (COSMO-RS in its COSMOtherm implementation, SPARC as well as EPA’s EPIsuite). The data are discussed in terms of substituent effects: how do subtle changes in the chemical composition influence basic physico-chemical properties and hence, the environmental fate of...

  10. The structure and local chemical properties of boron-terminated tetravacancies in hexagonal boron-nitride

    OpenAIRE

    Cretu, Ovidiu; Lin, Yung-Chang; Koshino, Masanori; Tizei, Luiz H. G.; Liu, Zheng; Suenaga, Kazutomo

    2014-01-01

    Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope (LV-STEM) are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride (h-BN). We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra (EELS) of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sampl...

  11. A fundamental research on combustion chemical kinetic model’s precision property

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Uncertainty analysis was used to investigate the precision property of detailed chemical kinetic models.A general-purpose algorithm for assessing and evaluating the impact of uncertainties in chemical kinetic models is presented.The method was also validated through analysis of different kinetic mechanisms applied in the process of modeling NOx emission in methane flame. The algorithm,which provided a basis for further studies,was more efficient and general compared with other methods.

  12. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    OpenAIRE

    Park, Won Ho

    2016-01-01

    Min Hee Kim, Won Ho Park Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon, Korea Abstract: In this study, the synthesis of silk fibroin (SF) hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray) irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel i...

  13. Branch Structure of Corona Discharge:Experimental Simulation and Chemical Properties

    Institute of Scientific and Technical Information of China (English)

    邹吉军; 刘昌俊

    2004-01-01

    The branch structure of corona discharge has been investigated via C2H2 corona discharge. Carbon filament with excellent branch structure is formed in the discharge. This carbon filament offers a direct mimic of the branch structure of corona discharge. It providesa very useful way to study on the average energy, physical and chemical characteristics of coronadischarge. On this basis, the chemical property of corona discharge for methane conversion is discussed.

  14. Effects of pig slurry application on soil physical and chemical properties and glyphosate mobility

    OpenAIRE

    2014-01-01

    Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control), 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Ver...

  15. Distribution of Fish in the Upper Citarum River: an Adaptive Response to Physico-Chemical Properties

    OpenAIRE

    SUNARDI; KEUKEU KANIAWATI; TEGUH HUSODO; DESAK MADE MALINI; ANNISA JOVIANI ASTARI

    2012-01-01

    Distribution of fish in river is controlled by physico-chemical properties of the water which is affected by land-use complexity and intensity of human intervention. A study on fish distribution was carried out in the upper Citarum River to map the effects of physio-chemical properties on habitat use. A survey was conducted to collect fish and to measure the water quality both on dry and rainy season. The result showed that distribution of the fish, in general, represented their adaptive resp...

  16. Influence of radiation on some physico-chemical properties of gum acacia

    International Nuclear Information System (INIS)

    Controlling of degradation in polysaccharide is also gaining impetus from commercial point of view. Comprehensive studies on the influence of ionizing radiation on the physico-chemical properties of polysaccharides are very important for their applications in different industries. The effect of gamma radiation on gum acacia has been studied and its effect on some physico-chemical properties, as measured by UV spectroscopy and viscometry has been discussed. The gum samples are irradiated in the range of 5 kGy to 25 kGy both in air and vacuum. Samples irradiated under vacuum shows colour stability while viscosity remain unaffected. (author)

  17. Changes in chemical and sensory properties of migaki-nishin (dried herring fillet) during drying.

    Science.gov (United States)

    Shah, A K M A; Tokunaga, C; Ogasawara, M; Kurihara, H; Takahashi, K

    2009-09-01

    Migaki-nishin is a Japanese term that refers to dried herring fillets. It is widely consumed in Japan due to its characteristic flavor enhancing properties. This study was conducted to investigate the changes in chemical and sensory properties of migaki-nishin during drying. Chemical analyses showed that extractive nitrogen and amount of peptides increased significantly (P noodle soup (mentsuyu) linearly enhanced the flavor characteristics such as thickness, mouthfulness, and continuity with the increased length of drying time. These results suggest that during the drying period, proteolysis as well as Maillard reaction products increased markedly, which might contribute to the characteristic taste and flavor of migaki-nishin. PMID:19895496

  18. Mechanical and Chemical Properties of Bamboo/Glass Fibers Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    K.Sudha Madhuri,

    2016-01-01

    Full Text Available The chemical resistance of Bamboo/Glass reinforced Polyester hybrid composites to acetic acid, Nitric acid, Hydrochloric acid, Sodium hydroxide, Sodium carbonate, Benzene, Toluene, Carbon tetrachloride and Water was studied. The tensile and impact properties of these composites were also studied. The effect of alkali treatment of bamboo fibers on these properties was studied. It was observed that the tensile and impact properties of the hybrid composites increase with glass fiber content. The author investigated the interfacial bonding between Glsss/Bamboo fiber composites by SEM. These properties found to be higher when alkali treated bamboo fibers were used in hybrid composites. The hybrid fiber composites showed better resistance to the chemicals mentioned above. The elimination of amorphous hemi-cellulose with alkali treatment leading to higher crystallinity of the bamboo fibers with alkali treatment may be responsible for these observations.

  19. Storage stability of margarines produced from enzymatically interesterified fats compared to those prepared by conventional methods - Chemical properties

    DEFF Research Database (Denmark)

    Zhang, Hong; Jacobsen, Charlotte; Pedersen, Lars Saaby; Christensen, Morten Wurtz; Adler-Nissen, Jens

    2006-01-01

    selected commercial margarines. The changes in the chemical properties of the products, including peroxide values (PV), tocopherols, free fatty acids, volatile oxidation products, and sensory evaluation, were examined during storage. It was observed that the margarine produced from the chemically...

  20. Green solvents from glycerol. Synthesis and physico-chemical properties of alkyl glycerol ethers

    OpenAIRE

    García, José I.; García-Marín, Héctor; Mayoral, José A.; Pérez, Pascual

    2010-01-01

    A family of glycerol derivatives, consisting of over sixty 1,3-dialkoxy-2-propanols and 1,2,3-trialkoxypropanes, both symmetrically and unsymmetrically substituted at terminal positions, have been synthesized and the possible role of these glycerol derivatives as substitutive solvents has been evaluated through measurements of their physico-chemical properties. The molecular diversity of the derivatives prepared results in significant variations of polarity properties, facilitating the identi...

  1. The influence of chemical composition on structure and mechanical properties of austenitic Cr-Ni steels

    OpenAIRE

    A. Kurc-Lisiecka; M. Kciuk

    2013-01-01

    Purpose: The aim of the paper is to investigated the influence of the chemical composition on the structure and mechanical properties of austenitic Cr-Ni steels. Special attention was put on the effect of solution heat treatment on mechanical properties of examined steels. Design/methodology/approach: The examinations of static tensile tests were conducted on ZWICK 100N5A. Hardness measurements were made by Vickers method. The X-ray analyzes were realized with the use of Dron ...

  2. Impact of Biofield Treatment on Chemical and Thermal Properties of Cellulose and Cellulose Acetate

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Cellulose being an excellent biopolymer has cemented its place firmly in many industries as a coating material, textile, composites, and biomaterial applications. In the present study, we have investigated the effect of biofield treatment on physicochemical properties of cellulose and cellulose acetate. The cellulose and cellulose acetate were exposed to biofield and further the chemical and thermal properties were investigated. X-ray diffraction study asserted that the biofield treatment did...

  3. Antimicrobial properties and chemical composition of liquid and gaseous phases of essential oils

    OpenAIRE

    Křůmal, K. (Kamil); Kubátková, N. (Nela); Večeřa, Z. (Zbyněk); Mikuška, P. (Pavel)

    2015-01-01

    The antimicrobial properties of fifteen essential oils (EOs) tested on seventeen microorganisms were determined using the vapour–agar contact method. The most effective EOs (i.e. Lavandula angustifolia, Cymbopogon nardus, Citrus aurantifolia, Juniperus communis, Myrtus communis and Cinnamomum zeylanicum), whose volatile components afforded the best antimicrobial properties, were selected for a detailed study of chemical composition. All these six EOs contained one to three main component...

  4. Differences in Soil Physical and Chemical Properties of Rehabilitated and Secondary Forests

    OpenAIRE

    M. H. Akbar; Ahmed, O.H.; A. S. Jamaluddin; N. M.N.A. Majid; H. Abdul-Hamid; S. Jusop; A Hassan; K. H. Yusof; Arifin Abdu

    2010-01-01

    Problem statement: The soil properties of tropical rain forest in Southeast Asia have been characterized by several researchers; however empirical data on soil characteristics under rehabilitation program are still limited or even lacking. This research is important to determine the soil physical and chemical properties of a rehabilitated degraded forest land 19 years after planting with various indigenous species in comparison with adjacent secondary forests and to elucidate the soil fertili...

  5. International Research Project on the Effects of Chemical Ageing of Polymers on Performance Properties: Chemical and Thermal Analysis

    Science.gov (United States)

    Bulluck, J. W.; Rushing, R. A.

    1996-01-01

    Work during the past six months has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted small changes in the molecular weight distribution. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Ultra- Violet Scanning Analysis, GC/Mass Spectrometry, Differential Scanning Calorimetry and Thermomechanical Analysis. In the ultra-violet analysis we noted the presence of an absorption band indicative of triene formation. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We also cast films at SWT and subjected these films to a refluxing methanol 1% ethylene diamine solution. An updated literature search was conducted using Dialog and DROLLS to identify any new papers that may have been published in the open literature since the start of this project. The updated literature search and abstracts are contained in the Appendix section of this report.

  6. Effect of physical, chemical and electro-kinetic properties of pumice samples on radiation shielding properties of pumice material

    International Nuclear Information System (INIS)

    Highlights: • Radiation shielding properties of pumice materials are studied. • The relationship between physical, chemical and electro-kinetic properties pumice samples is identified. • The photon atomic parameters are important for the absorber peculiarity of the pumices. - Abstract: Pumice has been used in cement, concrete, brick, and ceramic industries as an additive and aggregate material. In this study, some gamma-ray photon absorption parameters such as the total mass attenuation coefficients, effective atomic number and electronic density have been investigated for six different pumice samples. Numerous values of energy related parameters from low energy (1 keV) to high energy (100 MeV) were calculated using WinXCom programme. The relationship between radiation shielding properties of the pumice samples and their physical, chemical and electro-kinetic properties was evaluated using simple regression analysis. Simple regression analysis indicated a strong correlation between photon energy absorption parameters and density and SiO2, Fe2O3, CaO, MgO, TiO2 content of pumice samples in this study. It is found that photon energy absorption parameters are not related to electro-kinetic properties of pumice samples

  7. Effect of chemical treatment on the thermoelectric properties of single walled carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Mingxing; Alam, Mina Rastegar; Kim, Gyutae; Dettlaff-Weglikowska, Urszula; Roth, Siegmar [School of Electrical Engineering, WCU Flexible Nano-Systems, Korea University, Seoul (Korea, Republic of)

    2012-12-15

    Carbon nanotube networks showing superior electric properties, high chemical stability, strong mechanical properties, and flexibility are also known to exhibit thermoelectric effects. However, the experimental thermoelectric figure of merit, ZT, of pristine carbon nanotubes is typically in the range of 10{sup -3}-10{sup -2}, which is still not attractive for thermal energy conversion applications. In this work, we show possible ways to improve the thermoelectric properties of single walled carbon nanotubes (SWCNTs) by means of chemical treatments. In this study, we primarily investigated the effect of chemical treatment on the electrical conductivity and thermoelectric power (TEP) of the entangled network of nanotubes, also, known as ''buckypaper''. This chemical treatment increased the electrical conductivity due to p-type doping, thereby, showing a decrease in the TEP given by the Seebeck coefficient, whereas the n-type dopants changed the sign and value of the TEP from about 40 to -40 {mu}V K{sup -1}. Neutral polymers, in terms of doping, such as PVDF, PMMA, PVA, PS, and PC, were expected to hinder phonon transport through the nanotube network, increasing the Seebeck coefficient up to ca. 50 {mu}V K{sup -1}. Our results reveal the importance of chemical doping determining the sign and the magnitude of the TEP, and role of the polymer matrix in the development of more effective thermoelectric composites based on carbon nanotubes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Effect of chemical treatment on the thermoelectric properties of single walled carbon nanotube networks

    International Nuclear Information System (INIS)

    Carbon nanotube networks showing superior electric properties, high chemical stability, strong mechanical properties, and flexibility are also known to exhibit thermoelectric effects. However, the experimental thermoelectric figure of merit, ZT, of pristine carbon nanotubes is typically in the range of 10-3-10-2, which is still not attractive for thermal energy conversion applications. In this work, we show possible ways to improve the thermoelectric properties of single walled carbon nanotubes (SWCNTs) by means of chemical treatments. In this study, we primarily investigated the effect of chemical treatment on the electrical conductivity and thermoelectric power (TEP) of the entangled network of nanotubes, also, known as ''buckypaper''. This chemical treatment increased the electrical conductivity due to p-type doping, thereby, showing a decrease in the TEP given by the Seebeck coefficient, whereas the n-type dopants changed the sign and value of the TEP from about 40 to -40 μV K-1. Neutral polymers, in terms of doping, such as PVDF, PMMA, PVA, PS, and PC, were expected to hinder phonon transport through the nanotube network, increasing the Seebeck coefficient up to ca. 50 μV K-1. Our results reveal the importance of chemical doping determining the sign and the magnitude of the TEP, and role of the polymer matrix in the development of more effective thermoelectric composites based on carbon nanotubes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins

    NARCIS (Netherlands)

    Stojkovic, D.S.; Barros, L.; Calhelha, R.C.; Glamoclija, J.; Ciric, A.; Griensven, van L.J.L.D.; Sokovic, M.; Ferreira, I.C.F.R.

    2014-01-01

    A detailed comparative study on chemical and bioactive properties of wild and cultivated Ganoderma lucidum from Serbia (GS) and China (GCN) was performed. This species was chosen because of its worldwide use as medicinal mushroom. Higher amounts of sugars were found in GS, while higher amounts of or

  10. Surface of Lactic Acid Bacteria: Relationships between Chemical Composition and Physicochemical Properties

    OpenAIRE

    Boonaert, C J; Rouxhet, Paul

    2000-01-01

    The surface chemical composition and physicochemical properties (hydrophobicity and zeta potential) of two lactic acid bacteria, Lactococcus lactis subsp. lactis bv. diacetilactis and Lactobacillus helveticus, have been investigated using cells harvested in exponential or stationary growth phase. The surface composition determined by X-ray photoelectron spectroscopy (XPS) was converted into a molecular composition in terms of proteins, polysaccharides, and hydrocarbonlike compounds. The conce...

  11. Model Experiments on Chemical Properties of Superheavy Elements in Aqueous Solutions

    CERN Document Server

    Szeglowski, Z

    2003-01-01

    This paper presents a brief review of model experiments on investigation of chemical properties of transactinide elements, ranging from 104 to 116. The possibilities of isolation of the nuclei of these elements from nuclear reaction products, using the ion-exchange method, are also considered.

  12. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying substrat

  13. Physico-Chemical and Structural Properties of DeNOx and SO2 Oxidation Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen Grenville; Oehlers, Cord; Nielsen, Kurt;

    1996-01-01

    Commercial catalysts for NOx removal and SO2 oxidation and their model systems have been investigated by spectroscopic, thermal, electrochemical and X-ray methods. Structural information on the vanadium complexes and compounds as well as physico-chemical properties for catalyst model systems have...... been obtained. The results are discussed in relation to proposed reaction mechanisms....

  14. Effects of extrusion cooking on the chemical composition and functional properties of dry bean powders

    Science.gov (United States)

    This study aimed to investigate the impacts of extrusion cooking on the chemical composition and functional properties of bean powders from four bean varieties. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size = 0.5 mm)...

  15. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    International Nuclear Information System (INIS)

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  16. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    Science.gov (United States)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  17. Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Awada, Houssein, E-mail: houssein.awada@uqtr.c [Centre Integre en Pates et Papiers, Universite du Quebec a Trois-Rivieres (UQTR), 3351, boul. des Forges Trois-Rivieres, G9A 5H7, Quebec (Canada); Noel, Olivier [Universite du Maine, Molecular landscapes and biophotonics, CNRS-UMR 6087, Le Mans (France); Hamieh, Tayssir [Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA, CHAMSI) Faculty of Sciences, Lebanese University, Beirut (Lebanon); Kazzi, Yolla [Faculty of Sciences, Lebanese University, Beirut (Lebanon); Brogly, Maurice [Laboratoire LECOB, Universite de Haute-Alsace, 68057 Mulhouse Cedex (France)

    2011-03-31

    The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.

  18. Electronic and Chemical Properties of a Surface-Terminated Screw Dislocation in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Mckenna, Keith P.

    2013-12-18

    Dislocations represent an important and ubiquitous class of topological defect found at the surfaces of metal oxide materials. They are thought to influence processes as diverse as crystal growth, corrosion, charge trapping, luminescence, molecular adsorption and catalytic activity, however, their electronic and chemical properties remain poorly understood. Here, through a detailed first principles investigation into the properties of a surface terminated screw dislocation in MgO we provide atomistic insight into these issues. We show that surface dislocations can exhibit intriguing electron trapping properties which are important for understanding the chemical and electronic characteristics of oxide surfaces. The results presented in this article taken together with recent experimental reports show that surface dislocations can be equally as important as more commonly considered surface defects, such as steps, kinks and vacanies, but are now just beginning to be understood.

  19. The impact of the chemical synthesis on the magnetic properties of intermetallic PdFe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos-Rubio, I.; Insausti, M.; Muro, I. Gil de [Universidad del País Vasco, UPV/EHU, Dpto. de Química Inorgánica (Spain); Arias-Duque, D. Carolina; Hernández-Garrido, Juan Carlos [Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias (Spain); Rojo, T.; Lezama, L., E-mail: luis.lezama@ehu.es [Universidad del País Vasco, UPV/EHU, Dpto. de Química Inorgánica (Spain)

    2015-05-15

    Palladium-rich Iron nanoparticles in the 4–8 nm range have been produced by a combination of two methods: the thermal decomposition of organometallic precursors and the reduction of metallic salts by a polyol. Herein, it is shown how the details of the synthesis have a striking impact on the magnetic and morphological properties of the final products. In the synthesis of these bimetallic nanoparticles, the use of high reaction temperatures plays an essential role in attaining good chemical homogeneity, which has proved to have a key influence on the magnetic properties. Magnetic characterization has been performed by electron magnetic resonance and magnetization measurements, which have confirmed the superparamagnetic-like behavior at room temperature. No clear traces of magnetic polarization in palladium atoms have been detected. The combination of long-term stability and homogeneous chemical and magnetic properties makes these particles very suitable for a wide range of applications in nanotechnology.

  20. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    OpenAIRE

    Hongfang Sun; Zishanshan Li; Jing Bai; Shazim Ali Memon; Biqin Dong; Yuan Fang; Weiting Xu; Feng Xing

    2015-01-01

    Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (...

  1. Development of pure component property models for chemical product-process design and analysis

    DEFF Research Database (Denmark)

    Hukkerikar, Amol Shivajirao

    viscosity, fathead minnow 96-h LC50, oral rat LD50, global warming potential, emission to urban air (carcinogenic and noncarcinogenic) among others are modeled and analyzed. For all the estimated pure component properties, the corresponding 95% confidence intervals are also reported thereby providing...... CAPEC database, the US Environmental Protection Agency (EPA) database, and the USEtox database are used. In total, 21 thermo-physical properties and 22 environmental-related properties of pure components which include normal boiling point, critical constants, standard enthalpy of formation, liquid...... properties listed above, it has been possible to achieve significant improvements in the performance of their models. The improved GC model for enthalpy of formation yields an average absolute deviation of 1.75 kJ/mol, which is well within the required chemical accuracy. Important issues related to property...

  2. Spatial Variability of Soil Chemical Properties in the Reclaiming Marine Foreland to Yellow Sea of China

    Institute of Scientific and Technical Information of China (English)

    WEI Yi-chang; BAI You-lu; JIN Ji-yun; ZHANG Fang; ZHANG Li-ping; LIU Xiao-qiang

    2009-01-01

    Precise information about the spatial variability of soil properties is essential in developing site-specific soil management,such as variable rate application of fertilizers.In this study the sampling grid of 100 m×100 m was established to collect 1703 soil samples at the depth of 0-20 cm,and examine spatial patterns including 13 soil chemical properties (pH,OM,NH4+,PK,Ca,Mg,S,B,Cu,Fe,Mn,and Zn) in a 1760 ha rice field in Haifeng farm,China,from 6th to 22nd of April,2006,before fertilizer application and planting.Soil analysis was performed by ASI (Agro Services International) and data were analyzed both statistically and geostatistically.Results showed that the contents of soil OM,NH4+,and Zn in Haifeng farm were very low for rice production and those of others were enough to meet the need for rice cultivation.The spatial distribution model and spatial dependence level for 13 soil chemical properties varied in the field.Soil Mg and B showed strong spatial variability on both descriptive statistics and geostatistics,and other properties showed moderate spatial variability.Themaximum ranges for K,Ca,Mg,S,Cu and Mn were all~3990.6m and the minimum ranges for soil pH,OM,NH4+,P,Fe,and Zn ranged from 516.7 to 1166.2 m.Clearpatchy distribution of N,P,K,Mg,S,B,Mn,and Zn were found from their spatial distribution maps.This proved that sampling strategy for estimating variability should be adapted to the different soil chemical properties and field management.Therefore,the spatial variability of soil chemical properties with strong spatial dependence could be readily managed and a site-specific fertilization scheme for precision farming could be easily developed.

  3. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations.

    Science.gov (United States)

    Lu, Biao; Vayssade, Muriel; Miao, Yong; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Drelich, Audrey; Egles, Christophe; Pezron, Isabelle

    2016-09-01

    Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels. PMID:27137806

  4. Effects of reprocessing on chemical and morphological properties of guide wires used in angioplasty

    Directory of Open Access Journals (Sweden)

    Rogério Valentim Gelamo

    2013-09-01

    Full Text Available OBJECTIVE: To investigate the influence of the reprocessing technique of enzymatic bath with ultrasonic cleaning and ethylene oxide sterilization on the chemical properties and morphological structure of polymeric coatings of guide wire for regular guiding catheter. METHODS: These techniques simulated the routine of guide wire reprocessing in many hemodynamic services in Brazil and other countries. Samples from three different manufacturers were verified by scanning electron microscopy and X-ray photoelectron spectroscopy. RESULTS: A single or double sterilization of the catheters with ethylene oxide was not associated with morphological or chemical changes. However, scanning electron microscopy images showed that the washing method was associated with rough morphological changes, including superficial holes and bubbles, in addition to chemical changes of external atomic layers of polymeric coating surfaces, as detected by the X-ray photoelectron spectroscopy method, which is compatible with extended chemical changes on catheter surfaces. CONCLUSION: The reprocessing of the catheters with ethylene oxide was not associated with morphological or chemical changes, and it seemed appropriate to maintain guide wire coating integrity. However, the method combining chemical cleaning with mechanical vibration resulted in rough anatomical and chemical surface deterioration, suggesting that this reprocessing method should be discouraged.

  5. Estimation and Uncertainty Analysis of Flammability Properties of Chemicals using Group-Contribution Property Models

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    time constraints, property prediction models like group contribution (GC) models can estimate flammability data. The estimation needs to be accurate, reliable and as less time consuming as possible. However, GC property prediction methods frequently lack rigorous uncertainty analysis. Hence, there is...... no information about the reliability of the data. Furthermore, the global optimality of the GC parameters estimation is often not ensured. In this research project flammability-related property data, like LFL and UFL, are estimated using the Marrero and Gani group contribution method (MG method). In...... addition to the parameter estimation an uncertainty analysis of the estimated data and a comparison to other methods is performed. A thorough uncertainty analysis provides information about the prediction error, which is important for the use of the data in process safety studies and assessments. The...

  6. Chemical properties of some elements in a molten lithium chloride, potassium chloride eutectic (1962)

    International Nuclear Information System (INIS)

    The increasing use of molten media especially in chemical preparations and for certain technological applications, has made it more necessary to have a knowledge of the chemical properties of elements in these solvents. Structural studies on molten solutions show the existence of certain species such as ions and complexes known to exist in aqueous solutions. This fact, together with certain experiments on chemical reactions in molten media has led us to establish a comparison between these media and aqueous solutions. We wish to show that the same fundamental phenomena occur in these media as are found in the chemistry of aqueous solutions and that this makes it possible to predict certain reactions. We have taken as examples the chemical properties of vanadium, uranium and sulphur in a LiCl-KCl eutectic melted at 480 deg. C. The first problem is to identify the various degrees of oxidation of these elements existing in the solvent chosen. We have tried to resolve it by comparing the absorption spectra obtained in aqueous solution and in the molten eutectic. We consider the possibilities of this method in a chapter on absorption spectrophotometry in the LiCl-KCl eutectic. During the study of the chemical properties we stress the various methods of displacing the equilibria: complex formation, variation of the oxidation-reduction properties with complex formation. The complexes of the O2- ion are considered in particular. The study of the exchange of this particle is facilitated by the use of a classification of some of its complexes which we call the pO2- scale by analogy with the pH scale; the value pO2- is defined by the relationship: pO2- = log O2- Similarly, the use of apparent potential diagrams pO2- makes it possible to predict and to interpret reactions involving the simultaneous exchange of electrons and O2- ions between the various degrees of oxidation of the same element. It is possible, by studying some reactions of this type between two elements. We

  7. Spatial distribution of the chemical properties of the soil and of soybean yield in the field

    Directory of Open Access Journals (Sweden)

    Alexandre Gazolla-Neto

    2016-06-01

    Full Text Available ABSTRACT The aim of this study was to evaluate the spatial dependence between chemical properties of the soil and yield components in the soybean using precision farming techniques. Samples of the soil and plants were taken from georeferenced points to determine the chemical properties of the soil and the yield components. The results were submitted to Pearson correlation analysis, descriptive statistics and geostatistics. The coefficient of variation showed a wide range of distribution for the chemical attributes of the soil, with the highest indices being found for the levels of available phosphorus (102% and potassium (72.65%. Soil pH and organic matter showed a coefficient of variation of 5.96 and 15.93% respectively. Semivariogram analysis of the yield components (productivity, 1,000-seed weight and number of seeds and the chemical properties of the soil (organic matter, pH, phosphorus, potassium, calcium, magnesium, boron, manganese and zinc fitted the spherical model with moderate spatial dependence, with values ranging from 200 to 700 m. Spatial distribution by means of map interpolation was efficient in evaluating spatial variability, allowing the identification and quantification of regions of low and high productivity in the production area, together with the distribution of soil attributes and their respective levels of availability to the soybean plants.

  8. EFFECT OF THERMAL TREATMENT ON THE CHEMICAL COMPOSITION AND MECHANICAL PROPERTIES OF BIRCH AND ASPEN

    Directory of Open Access Journals (Sweden)

    Duygu Kocaefe

    2008-05-01

    Full Text Available The high temperature treatment of wood is one of the alternatives to chemical treatment. During this process, the wood is heated to higher temperatures than those of conventional drying. The wood structure changes due to decomposition of hemicelluloses, ramification of lignin, and crystallization of cellulose. The wood becomes less hygroscopic. These changes improve the dimensional stability of wood, increase its resistance to micro-organisms, darken its color, and modify its hardness. However, wood also might loose some of its elasticity. Consequently, the heat treatment conditions have to be optimized. Therefore, it is important to understand the transformation of the chemical structure of wood caused by the treatment. In this study, the modification of the surface composition of the wood was followed with Fourier transform infrared spectroscopy (FTIR and inverse gas chromatography (IGC under different experimental conditions. The effect of maximum treatment temperatures on the chemical composition of Canadian birch and aspen as well as the correlations between their chemical transformation and different mechanical properties are presented. FTIR analysis results showed that the heat treatment affected the chemical composition of birch more compared to that of aspen. The results of IGC tests illustrated that the surfaces of the aspen and birch became more basic with heat treatment. The mechanical properties were affected by degradation of hemicellulose, ramification of lignin and cellulose crystallization.

  9. Chemical characterization and physico-chemical properties of aerosols at Villum Research Station, Greenland during spring 2015

    Science.gov (United States)

    Glasius, M.; Iversen, L. S.; Svendsen, S. B.; Hansen, A. M. K.; Nielsen, I. E.; Nøjgaard, J. K.; Zhang, H.; Goldstein, A. H.; Skov, H.; Massling, A.; Bilde, M.

    2015-12-01

    The effects of aerosols on the radiation balance and climate are of special concern in Arctic areas, which have experienced warming at twice the rate of the global average. As future scenarios include increased emissions of air pollution, including sulfate aerosols, from ship traffic and oil exploration in the Arctic, there is an urgent need to obtain the fundamental scientific knowledge to accurately assess the consequences of pollutants to environment and climate. In this work, we studied the chemistry of aerosols at the new Villum Research Station (81°36' N, 16°40' W) in north-east Greenland during the "inauguration campaign" in spring 2015. The chemical composition of sub-micrometer Arctic aerosols was investigated using a Soot Particle Time-of-Flight Aerosol Mass Spectrometer (SP-ToF-AMS). Aerosol samples were also collected on filters using both a high-volume sampler and a low-volume sampler equipped with a denuder for organic gases. Chemical analyses of filter samples include determination of inorganic anions and cations using ion-chromatography, and analysis of carboxylic acids and organosulfates of anthropogenic and biogenic origin using ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Previous studies found that organosulfates constitute a surprisingly high fraction of organic aerosols during the Arctic Haze period in winter and spring. Investigation of organic molecular tracers provides useful information on aerosol sources and atmospheric processes. The physico-chemical properties of Arctic aerosols are also under investigation. These measurements include particle number size distribution, water activity and surface tension of aerosol samples in order to deduct information on their hygroscopicity and cloud-forming potential. The results of this study are relevant to understanding aerosol sources and processes as well as climate effects in the Arctic, especially during the Arctic haze

  10. [Physico-chemical profiling of centrally acting molecules for prediction of pharmacokinetic properties].

    Science.gov (United States)

    Deák, Katalin

    2008-01-01

    Physico-chemical profiling is a fundamental tool at the early stage of drug discovery in screening drug-like candidates. Complex physico-chemical profiling, including molecular properties such as solubility, ionization, lipophilicity and permeability, has been found to be of predictive power in ADME (absorption, distribution, metabolism, elimination). In the present thesis work, the physico-chemical properties of centrally acting compounds were investigated. We determined the protonation constants (K), the partition coeffitient in octanol/water (Poct) and cyclohexane/water (Pch) systems of antidepressive sertraline and 15 antipsychotic piperidine and piperazine derivatives and calculated the delta logP (logPoct-logPch) values of the molecules. Due to the poor water solubility of the compounds potentiometry using the "co-solvent" technique was applied for the determination of the protonation constants. The logP values were measured by the dual-phase potentiometric titration in octanol/water system and the traditional shake-flask method was used in cyclohexane/water system. Highly precise physico-chemical data were obtained by these validated methods. The relationship between the structure of the molecules and the physico-chemical data was investigated. The pharmacokinetic properties of the compounds were predicted by the physico-chemical parameters. Linear relationship has been found between the brain penetration characterized by the logBB values and the delta logP values. The validity of the equation was controlled by the delta logP and the logBB values of sertraline. PMID:18986088

  11. Effects of growth altitude on chemical constituents and delayed luminescence properties in medicinal rhubarb.

    Science.gov (United States)

    Sun, Mengmeng; Li, Li; Wang, Mei; van Wijk, Eduard; He, Min; van Wijk, Roeland; Koval, Slavik; Hankemeier, Thomas; van der Greef, Jan; Wei, Shengli

    2016-09-01

    To improve the quality control of herbal drugs, there has been a major shift from evaluating individual chemicals to evaluating multiple-constituent chemicals, given the multi-pharmacology nature of herbal drugs. Therefore, rapid, systematic assays are needed in order to assess the quality of medicinal herbs using a comprehensive, integrated approach. Light-induced delayed luminescence (DL) is used to measure decaying long-term ultra-weak photon emissions following excitation with light. DL is considered to be a sensitive indicator for characterizing the properties of biological systems and herbal medicines with various therapeutic properties. The aim of this study was to examine the feasibility of using DL as a novel quality-assessment tool using rhubarb material as a model system, and to establish the correlation between DL parameters and the chemical constituents of rhubarb. Raw roots and rhizomes were collected from rhubarb (Rheum palmatum L.) at various elevations in western China. HPLC analysis was used to identify fourteen bioactive constituents. Five DL parameters were calculated from the DL decay curves of the rhubarb samples. Statistical tools, including principal component analysis, were used to classify the rhubarb samples using data obtained using two different assays. Finally, Spearman's correlation coefficient was calculated to quantify the correlation between the bioactive compounds and corresponding DL parameters. We found that both the chemical analysis and DL measurements reflect variations in the quality of rhubarb due to environment factor. The DL parameters were correlated significantly with the bioactive chemical constituents. Our results indicate that DL is a promising tool for evaluating multiple constituents and for assessing the therapeutic properties of herbal medicines. Thus, DL may be used as part of a comprehensive system for assessing the quality and/or therapeutic properties of herbal medicines. PMID:27327125

  12. The relations between Cs-137, unsupported Pb-210 and chemical properties in forest soil

    International Nuclear Information System (INIS)

    In order to research the relations between the activities of radionuclides and soil chemical properties, we measured Cs-137, unsupported Pb-210 activities and some soil chemical properties, and compared. The study site, Otyouzu basin, is mainly covered with Hinoki (Japanese cypress) stands. The 16 samples was sampled at 10m intervals with a core sampler. The concentration of Cs-137, unsupported Pb-210 in soils, and other chemical properties of soil are measured and compared each other. As chemical properties of soil, ECEC, Carbon contents (C), Fed, Feo, Fet, clay contents (clay), pH(H2O), P-t, P-org, P-ava were measured. And, from these datum, Feo/Fed, (Fed-Feo)/Fet, P-ava/P-t, C/P-org were calculated. The Correlation Coefficients (C.C.) between both radionuclide and carbon contents is relatively high. Although there were no correlations between contents of each from of phosphorus, C.C. between both radionuclide activities and C/P-org, P-ava/P-t were relatively high. It may be dew to the uneven distributions of some elements or nutrients in forest soil. So it may suggest that the concentration of Cs-137 and unsupported Pb-210 cannot be used as the indices that directly indicate the contents of some elements or nutrients except carbon contents. However, the concentration of two radionuclides may be used as indirect indices such as P-ava/P-t, C/P-org, (Fed-Feo)/Fet. These indices can give the information about chemical reactions occur in soils. (author)

  13. Development of a physical and chemical property database for ten US EPA-selected oils

    International Nuclear Information System (INIS)

    In the event of an oil spill, data on the physical properties and chemical composition of crude oils and hydrocarbons must be known to allow experts to use environmental fate simulations. The complexity and expense of making the required measurements had rendered this data largely unavailable. A database of several physical and chemical properties of crude oils and petroleum products was developed by Environment Canada. A project called Development of a Composition Database for Selected Multicomponent Oils was initiated in 2002 with funding from the United States Environmental Protection Agency (US EPA) and Environment Canada. In this cooperative project, the research laboratory of the Emergencies Science and Technology Division of Environment Canada characterized ten typical crude oils and refined products identified by the US EPA. Measurements of physical properties included API gravity, density, sulphur content, water content, flash point, pour point, viscosity, surface and interfacial tension, adhesion, the equation for predicting evaporation, emulsion formation, and simulated boiling point distribution. The chemical composition of the oils selected included hydrocarbon groups, volatile organic compounds (including BTEX and other alkyl-benzene compounds), n-alkane distribution, distribution of alkylated polyaromatic hydrocarbon (PAH) homologues and other EPA priority PAHs, and biomarkers. The results obtained were integrated into the existing Environment Canada oil properties database and are made available to the public. This data will be used to support oil spill modelling for application to environmental problems caused by oil spills. 38 refs., 18 tabs., 2 figs

  14. SPATIAL DEPENDENCE OF ELECTRICAL CONDUCTIVITY AND CHEMICAL PROPERTIES OF THE SOIL BY ELECTROMAGNETIC INDUCTION

    Directory of Open Access Journals (Sweden)

    Flavia Cristina Machado

    2015-08-01

    Full Text Available Brazilian soils have natural high chemical variability; thus, apparent electrical conductivity (ECa can assist interpretation of crop yield variations. We aimed to select soil chemical properties with the best linear and spatial correlations to explain ECa variation in the soil using a Profiler sensor (EMP-400. The study was carried out in Sidrolândia, MS, Brazil. We analyzed the following variables: electrical conductivity - EC (2, 7, and 15 kHz, organic matter, available K, base saturation, and cation exchange capacity (CEC. Soil ECa was measured with the aid of an all-terrain vehicle, which crossed the entire area in strips spaced at 0.45 m. Soil samples were collected at the 0-20 cm depth with a total of 36 samples within about 70 ha. Classical descriptive analysis was applied to each property via SAS software, and GS+ for spatial dependence analysis. The equipment was able to simultaneously detect ECa at the different frequencies. It was also possible to establish site-specific management zones through analysis of correlation with chemical properties. We observed that CEC was the property that had the best correlation with ECa at 15 kHz.

  15. Effect of chemical treatment on thermal properties of fibers from pineapple

    International Nuclear Information System (INIS)

    In this work the effect of the chemical modification of natural fibres from of pineapple fibres with alkaline solution was studied. After modification the in nature and modified fibres were analyzed by XRD diffractometry and thermogravimetry with objective to evaluate influence chemical treatment in surface and in the thermal properties fibres. With the obtained results it was possible to verify an increase of 10.4 % in the crystallinity index of fibres beyond the increase around 4.5% in the degradation temperature, what it indicates an increase in the stability thermal of the fibres. (author)

  16. PRELIMINARY STUDY ON ENHANCED PROPERTIES AND BIOLOGICAL RESISTANCE OF CHEMICALLY MODIFIED ACACIA SPP.

    Directory of Open Access Journals (Sweden)

    H. P. S. Abdul Khalil

    2010-11-01

    Full Text Available A preliminary experimental study was carried out to examine the ability of a chemically modified Acacia spp. to resist biodegradation. The modifications of Acacia mangium and Acacia hybrid were carried out by propionic anhydride and succinic anhydride in the presence of sodium formate as a catalyst. The treated samples were found resistant to microbial attack, while the untreated ones were damaged on 12 months exposure to a soil burial. The appearance grading, mass loss, mechanical properties, and scanning electron microscopy results revealed that chemical modification enhances the resistance of Acacia mangium and Acacia hybrid wood species to biodegradation.

  17. Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells

    International Nuclear Information System (INIS)

    In this paper, we report silicon oxide coatings deposited by plasma enhanced chemical vapor deposition technology (PECVD) on 125 μm polyethyleneterephthalate (PET) surfaces for the purpose of the shelf lifetime extension of sealed polymer solar cells. After optimization of the processing parameters, we achieved a water vapor transmission rate (WVTR) of ca. 10−3 g/m2/day with the oxygen transmission rate (OTR) less than 0.05 cc/m2/day, and succeeded in extending the shelf lifetime to about 400 h in encapsulated solar cells. And then the chemical structure of coatings related to the properties of encapsulated cell was investigated in detail. (plasma technology)

  18. IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers

    Institute of Scientific and Technical Information of China (English)

    Li-hua TENG; Tian-di TANG

    2008-01-01

    In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission Infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls.

  19. The preparation of low electroendosmosis agarose and its physico-chemical property

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Studies on Gelidium amansii agar fractionations were carried out in this paper. Gelidium amansii agar was fractionated on DEAE-Cellulose, and four fractions were obtained sequentially. The fractions were analyzed on physical and chemical properties, and IR and 13C-NMR spectroscopy applied for elucidating the chemical structure. Among the four fractions obtained, water fraction measured up to the standard of low EEO agarose. The sulfate content, ash content, electroendosmosis and gel strength(1%) of water fraction were 0.16%, 0.34%, 0.12 and 1 130g/cm2 respectively, similar to those of the Sigma products.

  20. The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L. Water

    Directory of Open Access Journals (Sweden)

    Yan Fei Ng

    2009-12-01

    Full Text Available Coconut water (coconut liquid endosperm, with its many applications, is one of the world’s most versatile natural product. This refreshing beverage is consumed worldwide as it is nutritious and beneficial for health. There is increasing scientific evidence that supports the role of coconut water in health and medicinal applications. Coconut water is traditionally used as a growth supplement in plant tissue culture/micropropagation. The wide applications of coconut water can be justified by its unique chemical composition of sugars, vitamins, minerals, amino acids and phytohormones. This review attempts to summarise and evaluate the chemical composition and biological properties of coconut water.

  1. Structure and local chemical properties of boron-terminated tetravacancies in hexagonal boron nitride.

    Science.gov (United States)

    Cretu, Ovidiu; Lin, Yung-Chang; Koshino, Masanori; Tizei, Luiz H G; Liu, Zheng; Suenaga, Kazutomo

    2015-02-20

    Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride. We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sample regions. We correlate our experimental data with calculations which help explain our observations. PMID:25763963

  2. Proposal for a new tomographic device providing information on the chemical properties of a body section

    International Nuclear Information System (INIS)

    A system to analyze the chemical properties of a region of tissue located deep inside the human body without having to access it is proposed. The method is based on a high precision detection of x-rays or γ-rays (photons) from an external source Compton scattered from the tissue under inspection. The method provides chemical information of plane regions lying not too deep inside the body (<6 cm). The amount of radiation absorbed by the body is about the same as needed for a standard x-ray tomography. The exposure time is estimated to be shorter than 10 minutes. 37 refs., 13 figs

  3. Effects of pig slurry application on soil physical and chemical properties and glyphosate mobility

    Directory of Open Access Journals (Sweden)

    Daniela Aparecida de Oliveira

    2014-10-01

    Full Text Available Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control, 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Vermelho distrófico (Hapludox soil. In the control, the quantities of P and K removed by harvested grains were replaced in the next crop cycle. Soil physical properties (bulk density, porosity, texture, and saturated hydraulic conductivity and chemical properties (organic matter, pH, extractable P, and exchangeable K were measured. Soil solution samples were collected at depths of 20, 40 and 80 cm using suction lysimeters, and glyphosate concentrations were measured over a 60-day period after slurry application. Soil physical and chemical properties were little affected by the pig slurry applications, but soil pH was reduced and P levels increased in the surface layers. In turn, K levels were increased in sub-surface layers. Glyphosate concentrations tended to decrease over time but were not affected by pig slurry application. The concentrations of glyphosate found in different depths show that the pratice of this application in agricultural soils has the potential for contamination of groundwater, especially when the water table is the surface and heavy rains occur immediately after application.

  4. Influence of copper nanoparticles on the physical-chemical properties of activated sludge.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS, play vital roles in the normal operation of wastewater treatment plants (WWTPs. The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm, but different observation were made at higher CuNPs concentrations (30 and 50 ppm. At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity.

  5. Physico-chemical properties of Brazilian cocoa butter and industrial blends. Part I Chemical composition, solid fat content and consistency

    Directory of Open Access Journals (Sweden)

    Ribeiro, A. P. B.

    2012-03-01

    Full Text Available A comparative study of the primary properties of six cocoa butter samples, representative of industrial blends and cocoa butter extracted from fruits cultivated in different geographical areas in Brazil is presented. The samples were evaluated according to fatty acid composition, triacylglycerol composition, regiospecific distribution, melting point, solid fat content and consistency. The results allowed for differentiating the samples according to their chemical compositions, thermal resistance properties, hardness characteristics, as well as technological adequacies and potential use in regions with tropical climates.

    En este trabajo se presenta un estudio comparativo de las propiedades primarias de mantecas de cacao, representativas de las mezclas industriales, y de la manteca de cacao original de diferentes zonas geográficas de Brasil. Las muestras fueron evaluadas de acuerdo a la composición de ácidos grasos, composición de triglicéridos, distribución de los ácidos grasos en las moléculas de triglicéridos, punto de fusión, contenido de grasa sólida y consistencia. Los resultados permitieron diferenciar las muestras por su composición química, propiedades de resistencia térmica, características de dureza, así como en materia de adecuaciones tecnológicas y los usos potenciales en las regiones de clima tropical.

  6. Optical and Structural Properties of Nanocrystalline CdS Thin Films Grown by Chemical Bath Deposition

    International Nuclear Information System (INIS)

    Nanocrystalline cadmium sulfide thin films are prepared using chemical bath deposition (CBD) technique in aqueous alkaline bath at 60 degree Celsius and their subsequent condensation on glass substrates. Effects of annealing on structural, morphological and optical properties are presented and discussed. The best annealing temperature for CBD grown CdS films is found to be 350 degree Celsius from optical properties. The optical and structural properties of CdS films are found to be sensitive to annealing temperature and are described in terms of XRD, SEM, transmission spectra and optical studies. The structural parameters such as crystallite size have been evaluated through XRD while SEM micrographs exhibit ordering of grains after annealing. The transmission spectra shift towards higher wavelength upon annealing indicating increase in crystallinity. Annealing over 350 degree Celsius is found to degrade the external structure and optical properties of the film. (author)

  7. Predicting physico-chemical properties of polychlorinated diphenyl ethers (PCDEs):potential persistent organic pollutants (POPs)

    Institute of Scientific and Technical Information of China (English)

    HUANG Jun; YU Gang; YANG Xi; ZHANG Zu-lin

    2004-01-01

    Polychlorinated diphenyl ethers(PCDEs) have received more and more concerns as a category of potentialpersistent organic pollutants( POPs). Modeling its environmental fate and exposure assessment require a number offundamental physico-chemical properties. However, the experimental data are currently limited due to the difficulty inanalysis caused by the complexity of PCDE congeners. As an alternative, the quantitative structure propertyrelationship(QSPR) approach could be used. In this paper, twelve kinds of molecular connectivity indices(MCIs) ofall 209 possible molecular structure patterns of PCDEs were calculated. Based on 106 PCDEs with three observedphysico-chemical properties-vapour pressure(PoL), aqueous solubility(Sw) and n-octanol/water(Kow) and theirMCIs data, a series of QSPR equations were established using multiple linear regression(MLR) method. As aresult, three equations with best performance were selected mainly from the view of high regression coefficient(R)and low standard error( SE). All of them showed significant relationship and high accuracy. With these equationsthe properties of other 103 patterns of PCDEs without the reported observed values were predicted. Furthermore,three partition properties for PCDE congeners-Henry' s Law constants(H), partition coefficients between gas/water(Kgw) and gas/n-octanol ( Kgo ) were calculated according to the internal relationship among these six properties.These observed and predicted values, in contrast with the criteria listed in the Stockholm treaty about POPs whichhas been signed by more than ninety countries in May 2001, illustrated that most of PCDEs congeners are potentialpersistent organic pollutants. As all descriptors/predictors are derived just from the molecular structure itself andwithout the import of any empirical parameters, this method is impersonal and promising for the estimation ofphysico-chemical properties of PCDEs.

  8. Assessment of the physico-chemical properties of phases in the Na-U-Pu-O system

    International Nuclear Information System (INIS)

    A critical review is given on the physico-chemical properties of phases in the Na-O, Na-U-O, Na-Pu-O and Na-U-Pu-O systems. This includes the phase diagrams as well as the crystallographic, mechanical, thermal, thermodynamic, transport, optical and chemical properties. This data is to be used for the modelling of the thermal, mechanical and chemical behaviour of defective LMFBR mixed oxide pins during and after reactor operation. (orig.)

  9. The influence of chemical composition on structure and mechanical properties of austenitic Cr-Ni steels

    Directory of Open Access Journals (Sweden)

    A. Kurc-Lisiecka

    2013-12-01

    Full Text Available Purpose: The aim of the paper is to investigated the influence of the chemical composition on the structure and mechanical properties of austenitic Cr-Ni steels. Special attention was put on the effect of solution heat treatment on mechanical properties of examined steels. Design/methodology/approach: The examinations of static tensile tests were conducted on ZWICK 100N5A. Hardness measurements were made by Vickers method. The X-ray analyzes were realized with the use of Dron 2.0 diffractometer equipped with the lamp of the cobalt anode. The metallographic observations were carried out on LEICA MEF 4A light microscope. Findings: Results shown that after solution heat treatment the values of strength properties (UTS, YS0.2 and hardness (HV of both investigated steels decrease and their elongation (EL increases. The X5CrNi18-8 steel in delivery state shown austenitic microstructure with twins and numerous non-metallic inclusions, while in steel X10CrNi18-8 revealed a austenitic microstructure with numerous slip bands in areas with deformation martensite α’. The examined steels after solution heat treatment followed by water-cooling has the structure of austenite. Research limitations/implications: To investigate in more detail the influence of chemical composition on structure and mechanical properties the examinations of substructure by TEM should be conducted. Originality/value: The relationship between the solution heat treatment, structure and mechanical properties of investigated steels was specified.

  10. The influence of chemical composition on the properties and structure Al-Si-Cu(Mg alloys

    Directory of Open Access Journals (Sweden)

    M. Kaczorowski

    2007-04-01

    Full Text Available The mechanical properties of different chemical composition AlSiCuMg type cast alloys after precipitation hardening are presented. The aim of the study was to find out how much the changes in chemistry of aluminum cast alloys permissible by EN-PN standards may influence the mechanical properties of these alloys. Eight AlSi5Cu3(Mg type cast alloys of different content alloying elements were selected for the study. The specimens cut form test castings were subjected to precipitation hardening heat treatment. The age hardened specimens were evaluated using tensile test, hardness measurements and impact test. Moreover, the structure investigation were carried out using either conventional light Metallography and scanning (SEM and transmission (TEM electron microscopy. The two last methods were used for fractography observations and precipitation process observations respectively. It was concluded that the changes in chemical composition which can reach even 2,5wt.% cause essential differences of the structure and mechanical properties of the alloys. As followed from quantitative evaluation and as could be predicted theoretically, copper and silicon mostly influenced the mechanical properties of AlSi5Cu3(Mg type cast alloys. Moreover it was showed that the total concentration of alloying elements accelerated and intensifies the process of decomposition of supersaturated solid solution. The increase of Cu and Mg concentration increased the density of precipitates. It increases of strength properties of the alloys which are accompanied with decreasing in ductility.

  11. Trends in recovery of mediterranean soil chemical properties and microbial activities after infrequent and frequent wildfires

    OpenAIRE

    Guénon, R.; Vennetier, M.; Dupuy, N.; Roussos, S.; Pailler, N.; Gros, R.

    2011-01-01

    Since the 1970s, increase in fire frequency has been observed in all European Mediterranean regions. The objectives of this study were (1) to determine the effects of wildfire frequency on the recovery at short- and long-term of soil chemical and microbial properties and (2) to identify the mechanisms underlying the recovery of these sites properties. Soils from 17 plots (Maures mountains range, Var, France) were classified into 5 wildfire regimes (i.e. not burned since at least 57 years a...

  12. The Viscoelastic Properties of Chemically Modified alpha-Keratins in Human Hair

    OpenAIRE

    Jinks, Ian Robert

    2014-01-01

    The University of ManchesterIan Robert JinksPh. D. MaterialsThe Viscoelastic Properties of Chemically Modified α-Keratins in Human HairMarch 2014Human hair, like other α-keratinous fibres, is a highly complex biomaterial. For the analysis of its mechanical and thermal properties it is, however, well described by a two-phase structure, which contains as morphological components the highly-ordered, crystalline intermediate filaments (IFs) and the less-ordered, amorphous matrix. The presence of ...

  13. Effect of different locations on the morphological, chemical, pulping and papermaking properties of Trema orientalis (Nalita).

    Science.gov (United States)

    Jahan, M Sarwar; Chowdhury, Nasima; Ni, Yonghao

    2010-03-01

    The chemical compositions and fiber morphology of stem and branch samples from Trema orientalis at three different sites planted in Bangladesh were determined and their pulping, bleaching and the resulting pulp properties were investigated. A large difference between the stem and branch samples was observed. The stem samples have consistently higher alpha-cellulose and lower lignin content, and longer fibers than the branch samples in all sites. T. orientalis from the Dhaka and Rajbari region had higher alpha-cellulose content and longer fiber length, resulting in higher pulp yield and better papermaking properties. The T. orientalis pulp from Rajbari region also showed the best bleachability. PMID:19914825

  14. Molecular design chemical structure generation from the properties of pure organic compounds

    CERN Document Server

    Horvath, AL

    1992-01-01

    This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling

  15. The influence of chemical composition on the properties and structure Al-Si-Cu(Mg) alloys

    OpenAIRE

    M. Kaczorowski; A. Krzyńska

    2007-01-01

    The mechanical properties of different chemical composition AlSiCuMg type cast alloys after precipitation hardening are presented. The aim of the study was to find out how much the changes in chemistry of aluminum cast alloys permissible by EN-PN standards may influence the mechanical properties of these alloys. Eight AlSi5Cu3(Mg) type cast alloys of different content alloying elements were selected for the study. The specimens cut form test castings were subjected to precipitation hardening ...

  16. Electronic absorption spectra and nonlinear optical properties of CO2 molecular aggregates: A quantum chemical study

    Indian Academy of Sciences (India)

    Tarun K Mandal; Sudipta Dutta; Swapan K Pati

    2009-09-01

    We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in oligomers because of the intermolecular interactions. The resulting dipole moments reflect in the electronic excitation spectra of the molecular assemblies. The observation of significant nonlinear optical properties suggests the potential application of the dense carbon dioxide phases in opto-electronic devices.

  17. Chemical and texture characteristics and sensory properties of “mozzarella” cheese from different feeding systems

    Directory of Open Access Journals (Sweden)

    R. Rubino

    2010-02-01

    Full Text Available The aim of this study was describing the chemical composition, the rheological characteristics and the sensory properties of “mozzarella” cheese produced with milk from buffalos fed with different diets. The study involved two farms and four feeding systems. In farm C, one group was mostly fed with Ryegrass Hay (RH and the other group with Ryegrass Silage (RS. In farm T, instead, one group was mostly fed with Corn Silage (CS and the other one with a Sorghum Silage (SS. In summer, three cheesemakings, for each farm and for each feeding system, were carried out at C.R.A. of Bella. In each farm, data were processed by the analysis of variance in order to compare the effects of two feeding systems. Some parameters of chemical and texture characteristics and sensory properties were influenced by the feeding system. Results were remarkable for the DOP products.

  18. Effect of crosslinking on the physico-chemical properties of radiation grafted PEM fuel cell membranes

    International Nuclear Information System (INIS)

    The effect of crosslinking on the physico-chemical properties of radiation grafted proton conducting membranes (PFA-g-PSSA) was investigated. The membranes were prepared by radiation induced grafting of styrene/divinylbenzene (DVB) mixtures onto poly (tetrafluoroethylene-co-perfluorovinyl either) (PFA) films followed by sulfonation reactions. The variation of DVB content in the grafting mixture was in the range of 1-4 vol %. The equivalent weight, swelling, behavior and the proton conductivity of crosslinked membranes having equal degrees of grafting prepared found to be dependent predominantly on the level of crosslinking. The obtained membranes were found to posses a good combination of physico-chemical properties that is matching the commercial Nation 117 membranes

  19. Thermoelectric properties of chemically substituted skutterudites YbyCo4SnxSb12-x

    International Nuclear Information System (INIS)

    We report the results of a study of thermoelectric properties of chemically substituted quasiternary materials related to the recently discovered filled skutterudite compound YbFe4Sb12. The study explored partial filling at the Yb site as well as chemical doping with Sn at the Sb site in an attempt to optimize the thermoelectric figure of merit ZT in the system YbyCo4SnxSb12-x. Our measurements of these physical quantities from room temperature down to T=10 K indicate that, in our study, only the alloy Yb0.44Co4Sb12 possessed thermoelectric properties that are improved over the parent compound YbFe4Sb12, attaining a value of ZT=0.1 at T=300 K. (c) 2000 American Institute of Physics

  20. Structural, Mechanical and Optical Properties of Plasma-chemical Si-C-N Films

    Directory of Open Access Journals (Sweden)

    A.O. Kozak

    2014-11-01

    Full Text Available An influence of the substrate temperature in the range of 40-400 °C on the properties of the Si-C-N films deposited by plasma enhanced chemical vapor deposition (PECVD technique using hexamethyldisilazane is analyzed. Study of the structure, chemical bonding, surface morphology, mechanical properties and energy gap of the obtained films was carried out using X-ray diffraction, infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, optical measurements and nanoindentation. It was established that all the films were X-ray amorphous and had low surface roughness. Intensive hydrogen effusion from the films takes place, when substrate temperature increases up to 400 °C, which promotes a decrease of roughness and an increase in hardness and Young modules more than twice.

  1. Effect of Chemicals on Geotechnical Properties of Clay Liners: A Review

    Directory of Open Access Journals (Sweden)

    Seracettin Arasan

    2010-12-01

    Full Text Available This study presents a review of recent research on the geotechnical properties (consistency limits, hydraulic conductivity, shear strength, swelling, and compressibility of clay liners conducted with organic and inorganic chemicals. Due to its low permeability, a clay liner is the main material used in solid waste disposal landfills. It is exposed there to various chemical, biological and physical events, and the clay liner is affected by the resulting leachate. The geotechnical properties of clay liners are closely related to the chemistry of the leachate. Therefore, when attempting to define the geotechnical characteristics of clay liners, the use of distilled water or tap water is far from being representative of the in-situ conditions.

  2. Chemical resistance/thermal and mechanical properties of unsaturated polyester-based nanocomposites

    Science.gov (United States)

    Jaya Vinse Ruban, Y.; Ginil Mon, S.; Vetha Roy, D.

    2013-01-01

    Nanocomposites were synthesized using unsaturated polyester as the matrix and organically modified montmorillonite (CA-MMT) as the reinforcing agent. XRD pattern of the modified montmorillonite showed that the interlayer spacing expanded from 1.21 to 1.9 nm, indicating intercalation. TGA and DTA show loss of organic surfactant from interlayer galleries. Glass transition temperature (T g) of these composites increased from 71 °C in the unfilled unsaturated polyester to 79 °C in the composites with 5 % organically modified montmorillonite. Chemical resistance and mechanical properties of the UP/organo-clay nanocomposites were studied. Chemical resistance was studied under aqueous conditions in acetic acid, nitric acid, hydrochloric acid, sodium hydroxide, aqueous ammonia and sodium carbonate. Chemical resistance studies reveal maximum weight gain/loss with increasing clay content. Mechanical studies show maximum characteristics for the composites-clay filled 5 % (w/w).

  3. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    International Nuclear Information System (INIS)

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  4. Physico-chemical properties of blends of palm olein with other vegetable oils

    OpenAIRE

    Mobin Siddique, Bazlul; Ahmad, Anees; Hakimi Ibrahim, Mohamad; Hena, Sufia; Rafatullah, Mohd; Omar A. K, Mohd

    2010-01-01

    Palm oil (olein) was blended with other edible oils for the enhancement of its market acceptability in terms of melting point depression and shelf life. The physico-chemical properties like viscosity, density, melting behavior, peroxide value (PV), saponification value (SV) and iodine value (IV) of four different binary blends with four vegetable oils were evaluated. Palm olein was found to be more stable against rancidity than the other oils. For the stability against oxidation and melting p...

  5. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review

    OpenAIRE

    Glaser, B.; Lehmann, J.; Zech, W.

    2002-01-01

    Metadata only record Rapid turnover of organic matter leads to a low efficiency of organic fertilizers applied to increase and sequester C in soils of the humid tropics. Charcoal was reported to be responsible for high soil organic matter contents and soil fertility of anthropogenic soils (Terra Preta) found in central Amazonia. Therefore, we reviewed the available information about the physical and chemical properties of charcoal as affected by different combustion procedures, and the eff...

  6. Effect of organic mulching on physico-chemical properties of soil

    International Nuclear Information System (INIS)

    Rice straw is used as organic mulch to regulate the hydrothermal regime of the soil. It is also used for moisture conservation, soil temperature moderation and weed suppression. Attempts were made to study the physico-chemical properties of soil through a series of experiments at four different locations of lateritic sandy loam soil of India under straw mulch. It was concluded that rice straw might be used as a nutrient source in crop production and act as mulch-cum manure. (author)

  7. Postharvest Chemical, Sensorial and Physical-Mechanical Properties of Wild Apricot (Prunus armeniaca L.)

    OpenAIRE

    Evica MRATINIĆ; Bojan POPOVSKI; Tomo MILOŠEVIĆ; Melpomena POPOVSKA

    2011-01-01

    Some chemical, sensorial and physical-mechanical properties of 19 apricot genotypes and Hungarian Best (control) such as moisture content, soluble solids content, titratable acidity ratio and their ratio, fruit and stone mass, flesh/stone ratio, fruit dimensions (length, width, thickness), arithmetic and geometric mean diameter, sphericity, surface area and aspect ratio were determined. Their application is also discussed. The highest moisture content and stone mass observed in X-1/1/04 and X...

  8. Triboelectric Charge, Electrophysical Properties and Electrical Beneficiation Potential of Chemically Treated Feldspar, Quartz and Wollastonite

    OpenAIRE

    Manouchehri, H. R.; K. Hanumantha Rao; Forssberg, K. S. E.

    2002-01-01

    The triboelectric charge attributes of the pure feldspar, quartz and wollastonite mineral samples, after contact with plate and cyclone type tribochargers made up of different materials were investigated. The main electrical properties of the minerals, i.e., electrical conductivity and dielectric constant, were measured and their energetic work functions were estimated. In addition, the behaviour of mineral samples in the electric field of a free-fall separator before and after chemical treat...

  9. Elaboration of colloidal silica sols in aqueous medium: functionalities, optical properties and chemical detection of coating

    International Nuclear Information System (INIS)

    The aim of this work was to study surface reactivity of silica nanoparticles through physical and chemical properties of sols and coatings. Applications are numerous and they are illustrated in this work by optical coating preparation for laser components and chemical gas sensor development for nitroaromatics detection. On one hand, protocol synthesis of colloidal silica sols has been developed in water medium using sol-gel process (0 to 100 w%). These sols, so-called BLUESIL, are time-stable during at least one year. Homogeneous coatings having thickness fixed to 200 nm, have been prepared on silica substrate and show high porosity and high transparence. Original films have been developed using catalytic curing in gas atmosphere (ammonia curing) conferring good abrasive resistance to the coating without significant properties modification. In order to reduce film sensitivity to molecular adsorption (water, polluting agents... ), specific BLUESIL coatings have been prepared showing hydrophobic property due to apolar species grafting onto silica nanoparticles. Using this route, coatings having several functional properties such as transparence, hydrophobicity, high porosity and good abrasive resistance have been elaborated. On the other hand, we show that colloidal silica is a material specifically adapted to the detection of nitro aromatic vapors (NAC). Indeed, the use of colloidal silica as chemical gas sensor reveals very high sensitivity, selectivity to NAC compared to Volatile Organic Compound (V.O.C) and good detection performances during one year. Moreover, chemical sensors using functionalized colloidal silica have exhibited good results of detection, even in high humidity medium (≥70 %RH). (author)

  10. Colloidal and Chemical Properties of Polyesters Based on Glutamic acid and Diols of Different Nature

    OpenAIRE

    Puzko N.V.; Varvarenko S.S.; Voronov A.S.; Dron I.A.; Tarnavchyk I.T.; Nosova N.G.; Samaryk V.J.; Voronov S.A.

    2012-01-01

    The paper describes synthesis method and colloid-chemical properties of novel α-amino acid based polyesters with controllable hydrophilic-lipophillic balance. Glutamic acid and diols of different nature based polyesters were obtained via low-temperature activated polyesterefication. Such polymers are able to form micellar structures in self-stabilized water dispersion. Solubilization of water insoluble dyes Sudan and toluene in polymer water solution was studied. Due to micelle forming abilit...

  11. Morphological and physico-chemical properties of British aquatic habitats potentially exposed to pesticides.

    OpenAIRE

    Brown, Colin D.; Turner, Nigel; Hollis, John; Bellamy, Patricia H.; Biggs, Jeremy; Williams, Penny; Arnold, Dave; Pepper, Tim; Maund, Steve

    2006-01-01

    Approaches to describe the exposure of non-target aquatic organisms to agricultural pesticides can be limited by insufficient knowledge of the environmental conditions where the compounds are used. This study analysed information from national and regional datasets gathered in the UK describing the morphological and physico-chemical properties of rivers, streams, ponds and ditches. An aggregation approach was adopted, whereby the landscape was divided into 12 hydrogeological classes for agric...

  12. A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins

    OpenAIRE

    Stojković, Dejan; Barros, Lillian; Ricardo C. Calhelha; Glamočlija, Jasmina; Ćirić, Ana; Van Griensven, Leo J. L. D.; Soković, Marina; Ferreira, Isabel C. F. R.

    2014-01-01

    A detailed comparative study on chemical and bioactive properties of wild and cultivated Ganoderma lucidum from Serbia (GS) and China (GCN) was performed. This species was chosen because of their worldwide use as medicinal mushroom. Higher amounts of sugars were found in GS, while higher amounts of organic acids were recorded in GCN. Unsaturated fatty acids predominated over saturated fatty acids. GCN revealed higher antioxidant activity, while GS exhibited inhibitory potential...

  13. Characterization of Anticancer, Antimicrobial, Antioxidant Properties and Chemical Compositions of Peperomia Pellucida Leaf Extract

    OpenAIRE

    Desy Fitrya Syamsumir; Julius Yong Fu Siong; Wendy Wee; Lee Seong Wei

    2011-01-01

    Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then char...

  14. The impact of cold deformation, annealing temperatures and chemical assays on the mechanical properties of platinum

    OpenAIRE

    Trumić B.; Stanković D.; Ivanović A.

    2010-01-01

    In order to form the necessary data base on platinum and platinum metals, certain tests were carried out on platinum samples of different purity of 99.5%, 99.9% and 99.99%. The degree of cold deformation, annealing temperature and chemical assays were tested as well as their impact on the mechanical properties of platinum. The Vickers hardness (HV) values were determined with different deformation degree, starting from annealing temperatures for platinum of different purity and tensile streng...

  15. Soil chemical properties and maize yield under application of pig slurry biofertilizer

    OpenAIRE

    Marcelo E. Bócoli; José R. Mantovani; José M. Miranda; Douglas J. Marques; Adriano B. da Silva

    2016-01-01

    ABSTRACT Organic materials subjected to a process of anaerobic digestion in a digester produce biofertilizer that can be used in agriculture as nutrient source. The objective of this study was to evaluate the effect of pig slurry biofertilizer on soil chemical properties and on corn yield and nutrient concentrations in leaves and kernels. The experiment was conducted in the field from November 2012 to April 2013, and was arranged in a randomized block design with seven treatments and four rep...

  16. Chemical and physical properties of poly (vinyl alcohol) hydrogel films formed by irradiation

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Chemical and physical properties of poly(vinyl alcohol)(PVA) hydrogel films were investigated as a function of production factors.The experimental results show that the gel fraction dependsstrongly on the radiation dose, the degree of swelling is inverselydependent on the concentration of PVA solution, the tensile strengthdepends mainly on the PVA blending ratio and the elongation at breakis inversely dependent on the radiation dose.

  17. Electro-Optical Properties of Carbon Nanotubes Obtained by High Density Plasma Chemical Vapor Deposition

    OpenAIRE

    Ana Paula Mousinho; Ronaldo D. Mansano

    2011-01-01

    In this work, we studied the electro-optical properties of high-aligned carbon nanotubes deposited at room temperature. For this, we used the High Density Plasma Chemical Vapor Deposition system. This system uses a new concept of plasma generation: a planar coil is coupled to an RF system for plasma generation. This was used together with an electrostatic shield, for plasma densification, thereby obtaining high-density plasmas. The carbon nanotubes were deposited using pure methane plasmas. T...

  18. Non-covalent interactions and physico-chemical properties of small biological systems : theoretical approaches

    OpenAIRE

    Riffet, Vanessa

    2014-01-01

    The three-dimensional structure and physico-chemical properties of biomolecules such as peptides are not only governed by their elementary composition but also various non-covalent intra-and inter-molecular interactions. The characterization, measurement and effects of these interactions are currently at the center of many researches at the interface between biology and physical chemistry. In this context, the aim of our thesis is a better understanding of these interactions in biomolecules a...

  19. Effect of Organic Matter on Soil Chemical Properties and Corn Yield and Elemental Uptake

    OpenAIRE

    M. Afyuni; Y. Rezaenejad

    2001-01-01

    Due to high production of organic residues such as sewage sludge and compost, land application is probably the best way to prevent accumulated residues in the environment. However, the risk involved in the land application of organic residues should be evaluated prior to the assessment of their economic and fertilizer values. The objective of this study was to evaluate the effect of organic residues on soil chemical properties, yield and uptake of heavy metals and nutrients by corn (Zea mays ...

  20. Studies on Physico-Chemical Properties of Rice Bran Wax and its Comparison with Carnauba Wax

    OpenAIRE

    Avish D. Maru; Rajendra K. Surawase; Prashant V. Bodhe

    2012-01-01

    Rice bran wax is a natural vegetable wax and is a value added by product of Rice bran oil refineries. It is hard nontacky wax and contains higher fatty alcohols and esters which make it comparable to Carnauba wax. In the present work, studies are carried out on Rice bran wax for various physico-chemical properties like solubility, melting point, specific gravity, moisture content, saponification value, acid value, ester value, hydroxyl value, unsaponifiable matter, Iodine number etc. The obse...

  1. Effects of Sorghum Flour Addition on Chemical and Rheological Properties of Hard White Winter Wheat

    OpenAIRE

    Ranya F. Abdelghafor; Abdelmoneim I. Mustafa; Amir M.H. brahim; Yuanhong R. Chen; Padmanaban G. Krishnan

    2013-01-01

    This study was carried out to investigate the chemical and rheological properties of different blends prepared using hard white winter wheat (HWWW; Triticum aestivum Desf.) and whole or decorticated sorghum (Sorghum bicolor). Whole and decorticated sorghum were used to replace 5, 10, 15 and 20% of wheat flour. Wheat samples had higher protein, moisture and calcium values and lower fat, ash, carbohydrates, iron and phosphorous values compared to whole and decorticated sorghum flours. Decortica...

  2. Chemical properties of neptunium applied to neptunium management in extraction cycles of Purex process

    International Nuclear Information System (INIS)

    Alternative ways of managing neptunium in the Purex process are discussed. Main coordination and redox properties of neptunium in nitric medium are reviewed. Kinetics results with reagents consistent with ''salt free process'' are presented with emphasis on the influence of uranium and plutonium ions, including results about some peculiar behaviour of neptunium in TBP (the so-called cation-cation complexes). Attempts to fit chemical engineering models to neptunium metabolism in extraction equipment (mixer-settlers and pulsed columns) are described

  3. Computational Nutraceutics: Chemical Reactivity Properties of the Flavonoid Naringin by Means of Conceptual DFT

    OpenAIRE

    Jorge Ignacio Martínez-Araya; Guillermo Salgado-Morán; Daniel Glossman-Mitnik

    2013-01-01

    The M06 family of density functionals has been assessed for the calculation of the molecular structure and properties of the Naringin molecule. The chemical reactivity descriptors have been calculated through Conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices and the dual descriptor f(2)(r). A comparison between the descriptors calculated through vertical energy values and those arising from the Koopmans'...

  4. Effects of reprocessing on chemical and morphological properties of guide wires used in angioplasty

    OpenAIRE

    Rogério Valentim Gelamo; Eva Cláudia Venâncio de Sene; Luciana Paiva; Cristina da Cunha Hueb Barata de Oliveira; André Luiz Maltos; Schreiner, Wido H.; Mário Bica de Moraes; Vaz, Alfredo R.; Moshkalev, Stanislav A.; Daniel Ferreira da Cunha

    2013-01-01

    OBJECTIVE: To investigate the influence of the reprocessing technique of enzymatic bath with ultrasonic cleaning and ethylene oxide sterilization on the chemical properties and morphological structure of polymeric coatings of guide wire for regular guiding catheter. METHODS: These techniques simulated the routine of guide wire reprocessing in many hemodynamic services in Brazil and other countries. Samples from three different manufacturers were verified by scanning electron microscopy and X-...

  5. Chemical properties population of nitrites oxidizers, urease and phosphatase activities in sewage sludge-amended soils

    OpenAIRE

    Bonmati Pont, Manuel; Pujolà Cunill, Montserrat; Saña Vilaseca, Josep; Soliva Torrentó, Montserrat; Felipó, Ma. Teresa (María Teresa); Garau, M; B. Ceccanti; P. Nannipieri

    1985-01-01

    The aim of this work has been to determine the effect of sterilized and non-sterilized, aerobically or anaerobically digested sewage sludges on urease and phosphatase aetivities, on populations of nitrite oxidizers and on some chemical properties in laboratory conditions and for long incubation periods. Both urease an phosphatase activities were affected when anaerobic sludges were added to the soil. The inhibitory effects on both enzyme activities attributed to the presence of...

  6. PRELIMINARY STUDY ON ENHANCED PROPERTIES AND BIOLOGICAL RESISTANCE OF CHEMICALLY MODIFIED ACACIA SPP.

    OpenAIRE

    H. P. S. Abdul Khalil; Irshad ul Haq Bhat,; Khairul B. Awang

    2010-01-01

    A preliminary experimental study was carried out to examine the ability of a chemically modified Acacia spp. to resist biodegradation. The modifications of Acacia mangium and Acacia hybrid were carried out by propionic anhydride and succinic anhydride in the presence of sodium formate as a catalyst. The treated samples were found resistant to microbial attack, while the untreated ones were damaged on 12 months exposure to a soil burial. The appearance grading, mass loss, mechanical properties...

  7. Differences in some physical and chemical properties of wheat grains from different parts within the spike

    OpenAIRE

    BOZ, Hüseyin; GERÇEKASLAN, Kamil Emre; KARAOĞLU, Mehmet Murat

    2012-01-01

    There is not enough information on the distribution of grain components from different areas within a spike of wheat. The aim of this study was to determine how grain position affects some physical and chemical properties of grains. Grain size, thousand-grain and hectoliter weight, Zeleny sedimentation, falling number, wheat color, grain hardness, wet and dry gluten contents, and protein and ash contents were determined in grains from different parts of the spike (bottom, middle, and top) in ...

  8. Structure and physico-chemical properties in mixed aqueoussolution of sodium alkylcarboxylate-alkyltrimethylammoniumbromide

    Institute of Scientific and Technical Information of China (English)

    HUANG, Jian-Bin(黄建滨); ZHAO, Guo-Xi(赵国玺); HE, Xu(何煦); ZHU, Bu-Yao(朱步瑶); FU, Hong-Lan(付宏兰)

    2000-01-01

    The physico-chemical properties of organized assemblies (micelle or vesicle) from sodium alkylcarboxylate-alkyltrimethyl-ammonium bromide mixture have been investigated systematically. In different mixed cationic-anionic surfactant systems, micelles and vesicles can coexist or be transformed into each other on different conditions. The experimental results are explained prelimilarily from the viewpoint of molecular packing geometry. The solubilization of organic compound in the mixed surfactant system was also studied in detail.

  9. The physico-chemical properties of spiramycin and clarithromycin / Rodé van Eeden

    OpenAIRE

    Van Eeden, Rodé

    2012-01-01

    In most cases, organic materials exist in the solid phase as polymorphs, solvatomorphs or amorphous forms. Physico-chemical properties in the solid-state are all affected primarily in terms of dissolution, solubility, bioavailability, stability and processability. Therefore investigation into the polymorphic behaviour of APIs has become a mandatory part of drug characterisation studies by pharmaceutical companies (Giron, 2001). The influence polymorphism has on bioavailability ...

  10. The Importance of Determination of some Physical – Chemical Properties of Wheat and Flour

    Directory of Open Access Journals (Sweden)

    Husejin Keran

    2009-12-01

    In this work, some physical – chemical properties are determined and some comparations of characteristics were performed in both wheat and flour. Characteristics that were observed in this work are moisture content, ash content, protein content, Zeleny sedimentation value, gluten content and water adsorption values. On the base of results obtained in this work, some conclusions are made that could be useful for milling industry.

  11. Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition

    OpenAIRE

    K. A. Kamilli; L. Poulain; Held, A.; Nowak, A.; Birmili, W.; A. Wiedensohler

    2013-01-01

    Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site LHVP in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously w...

  12. Effects of chemical dispersants on oil physical properties and dispersion. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Khelifa, A.; Fingas, M.; Hollebone, B.P.; Brown, C.E. [Environment Canada, Ottawa, ON (Canada). ; Pjontek, D. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering

    2007-07-01

    Laboratory and field testing have shown that the dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). This study focused on new laboratory experiments that measured the effects on the physical properties and dispersion of oil, with particular reference to the effects of chemical dispersants on IFT and oil viscosity and the subsequent effects on oil droplet formation. Experiments were conducted at 15 degrees C using Arabian Medium, Alaska North Slope and South Louisiana crude and Corexit 9500 and Corexit 9527 chemical dispersants. The dispersants were denser than the 3 oils. The effect of IFT reduction on oil dispersion was measured and showed substantial reduction in the size and enhancement of the concentration of oil droplets in the water column. It was shown that the brine-oil IFT associated with the 3 crudes reduced to less than 3.6 mN/m with the application of the chemical dispersants, even at a low dispersant-to-oil ratio (DOR) value of 1:200. The use of chemical dispersants increased the viscosity of the dispersant-oil mixture up to 40 per cent over the neat crude oil. It was shown that for each mixing condition, an optimum value of DOR exists that provides for maximal dispersant effectiveness. The IFT reaches maximum reduction at optimum DOR. It was suggested that oil spill modelling can be improved with further study of IFT reduction with DOR and variations of critical micelle concentration with the type and solubility of chemical dispersant, oil type and oil to water ratio. 13 refs., 3 tabs., 7 figs.

  13. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    International Nuclear Information System (INIS)

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the 'holy grail' of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies

  14. Effect of milk preacidification on low fat mozzarella cheese: II. Chemical and functional properties during storage.

    Science.gov (United States)

    Metzger, L E; Barbano, D M; Kindstedt, P S; Guo, M R

    2001-06-01

    The effect of milk preacidification on cheese manufacturing, chemical properties, and functional properties of low fat Mozzarella cheese was determined. Four vats of cheese were made in 1 d using no preacidification (control), preacidification to pH 6.0 and pH 5.8 with acetic acid, and preacidification to pH 5.8 with citric acid. This process was replicated four times. Modifications in the typical Mozzarella manufacturing procedures were necessary to accommodate milk preacidification. The chemical composition of the cheeses was similar among the treatments, except the calcium content and calcium as a percentage of protein were lower in the preacidified treatments. During refrigerated storage, the chemical and functional properties of low fat Mozzarella were affected the most by milk preacidification to pH 5.8 with citric acid. The amount of expressible serum, unmelted cheese whiteness, initial unmelted hardness, and initial apparent viscosity were lower with preacidification. The reduction in initial unmelted cheese hardness and initial apparent viscosity in the pH 5.8 citric treatments represents an improvement in the quality of low fat Mozzarella cheese that allows the cheese to have better pizza bake characteristics with shorter time of refrigerated storage. PMID:11417692

  15. Heterogeneity of Physico-Chemical Properties in Structured Soils and Its Consequences

    Institute of Scientific and Technical Information of China (English)

    E. JASINSKA; H. WETZEL; T. BAUMGARTL; R. HORN

    2006-01-01

    Structured soils are characterized by the presence of inter- and intra-aggregate pore systems and aggregates, which show varying chemical, physical, and biological properties depending on the aggregate type and land use system. How far these aspects also affect the ion exchange processes and to what extent the interaction between the carbon distribution and kind of organic substances affect the internal soil strength as well as hydraulic properties like wettability are still under discussion. Thus, the objective of this research was to clarify the effect of soil aggregation on physical and chemical properties of structured soils at two scales: homogenized material and single aggregates. Data obtained by sequentially peeling off soil aggregates layers revealed gradients in the chemical composition from the aggregate surface to the aggregatecore. In aggregates from long term untreated forest soils we found lower amounts of carbon in the external layer, while in arable soils the differentiation was not pronounced. However, soil aggregates originating from these sites exhibited a higher concentration of microbial activity in the outer aggregate layer and declined towards the interior. Furthermore,soil depth and the vegetation type affected the wettability. Aggregate strength depended on water suction and differences in tillage treatments.

  16. Effect of Chemical Admixtures on the Engineering Properties of Tropical Peat Soils

    Directory of Open Access Journals (Sweden)

    Bujang B.K. Huat

    2005-01-01

    Full Text Available This research describes a study on the effect of chemical (cement and lime admixtures on the index and engineering properties (compaction and unconfined strength of tropical peat soils. The ordinary Portland cement and hydrated lime were used. The amounts cement and lime added to the peat soil sample, as a percentage of the dry soil mass was in the range of 5-15% and 5-25%, respectively. The results of the study show that the addition of the chemical admixture, cement and lime, can improve the engineering properties of tropical peat soils. The soil liquid limit is found to decrease with an increase in the cement and lime content. The soil maximum dry density is found to increase while the optimum water content is found to decrease with an increase in the cement and lime content. The unconfined compressive strength of the soil is found to increase significantly with increase in cement and lime content, especially after a long curing period. However it is also found that higher organic content of the soil negate the positive effect of the cement and lime in altering (improving the mechanical properties of the soil. When comparing the performance of the cement and lime as a chemical admixture for the tropical peat soil, the ordinary Portland cement appears to perform better than the hydrated lime.

  17. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  18. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  19. Chemical precursor impact on the properties of Cu2ZnSnS4 absorber layer

    Science.gov (United States)

    Vashistha, Indu B.; Sharma, Mahesh C.; Sharma, S. K.

    2016-04-01

    In present work impact of different chemical precursor on the deposition of solar absorber layer Cu2ZnSnS4 (CZTS) were studied by Chemical Bath Deposition (CBD) method without using expensive vacuum facilities and followed by annealing. As compared to the other deposition methods, CBD method is interesting one because it is simple, reproducible, non-hazardous, cost effective and well suited for producing large-area thin films at low temperatures, although effect of precursors and concentration plays a vital role in the deposition. So, the central theme of this work is optimizing and controlling of chemical reactions for different chemical precursors. Further Effect of different chemical precursors i.e. sulphate and chloride is analyzed by structural, morphological, optical and electrical properties. The X-ray diffraction (XRD) of annealed CZTS thin film revealed that films were polycrystalline in nature with kestarite tetragonal crystal structure. The Atomic Force micrographs (AFM) images indicated total coverage compact film and as well as growth of crystals. The band gap of annealed CZTS films was found in the range of optimal band gap by absorption spectroscopy.

  20. Experimental study on the physical and chemical properties of the deep hard brittle shale

    Directory of Open Access Journals (Sweden)

    Jian Xiong

    2016-03-01

    Full Text Available In the hard brittle shale formation, rock composition, physical and chemical properties, mechanics property before and after interacting with fluid have direct relation with borehole problems, such as borehole wall collapse, mud loss, hole shrinkage. To achieve hard brittle shale micro-structure, physical–chemical properties and mechanics property, energy-dispersive X-ray diffraction (XRD, cation exchange capacity experiment and hardness test are conducted. The result of laboratory experiments indicates that, clay mineral and quartz is dominated in mineral composition. In clay mineral, illite and illite/semectite mixed layers are abundant and there is no sign of montmorillonite. Value of cation exchange capacity (CEC ranges from 102.5–330 mmol/kg and average value is 199.56 mmol/kg. High value of CEC and content of clay mineral means hard brittle shale has strong ability of hydration. The image of XRD shows well developed micro-cracks and pores, which make rock failure easily, especially when fluid invades rock inside. Shale sample soaked with anti-high temperature KCL drilling fluid on shorter immersing time has stronger strength, whereas shale sample soaked with plugging and film forming KCL drilling fluid on longer immersing time has stronger strength.

  1. Postharvest Chemical, Sensorial and Physical-Mechanical Properties of Wild Apricot (Prunus armeniaca L.

    Directory of Open Access Journals (Sweden)

    Evica MRATINIĆ

    2011-11-01

    Full Text Available Some chemical, sensorial and physical-mechanical properties of 19 apricot genotypes and Hungarian Best (control such as moisture content, soluble solids content, titratable acidity ratio and their ratio, fruit and stone mass, flesh/stone ratio, fruit dimensions (length, width, thickness, arithmetic and geometric mean diameter, sphericity, surface area and aspect ratio were determined. Their application is also discussed. The highest moisture content and stone mass observed in X-1/1/04 and X-1/2/04, soluble solids content in ZO-1/03, titratable acidity in ZL-2/03, SS/TA ratio in ZL-1/03, and fruit mass and flesh/stone ratio in DL-1/1/04 genotype. The most number of genotypes have orange and deep orange skin and flesh colour, respectively, whereas sweet kernel taste was predominant in most genotypes. Regarding physical-mechanical properties, the superior fruit dimensions (length, width, thickness, arithmetic and geometric mean diameter and surface area observed in DL-1/1/04 genotype, whereas the highest sphericity and surface area observed in X-1/1/04 and X-1/2/04 genotypes. Also, the series of genotypes evaluated have better chemical, sensorial and physical-mechanical properties than Hungarian Best (control. Finally, information about these properties is very important for understanding the behaviour of the product during the postharvest operations.

  2. Superconducting properties and chemical composition of NbTiN thin films with different thickness

    International Nuclear Information System (INIS)

    In this research, we systematically investigated the superconducting properties and chemical composition of NbTiN thin films prepared on single-crystal MgO substrates. The NbTiN thin films with different thicknesses (4–100 nm) were deposited by reactive DC magnetron sputtering at ambient temperature. We measured and analyzed the crystal structure and thickness dependence of the chemical composition using X-ray diffraction and X-ray photoelectron spectroscopy depth profiles. The films exhibited excellent superconducting properties, with a high superconducting critical temperature of 10.1 K, low resistivity (ρ20 = 93 μΩ cm), and residual resistivity ratio of 1.12 achieved for 4-nm-thick ultrathin NbTiN films prepared at the deposition current of 2.4 A. The stoichiometry and electrical properties of the films varied gradually between the initial and upper layers. A minimum ρ20 of 78 μΩ cm and a maximum residual resistivity ratio of 1.15 were observed for 12-nm-thick films, which significantly differ from the properties of NbN films with the same NaCl structure

  3. Evaluation of Soil Physical and Chemical Properties in Poplar Plantations in North of Iran

    Directory of Open Access Journals (Sweden)

    Ali Salehi

    2012-12-01

    Full Text Available Soil physical and chemical properties and some quantitative characteristics of Populus deltoides Marsh (clone 79.51 plantations and relationships between them were evaluated in Guilan plain of north of Iran. Two same aged poplar plantations with low and high qualities were selected. In each poplar plantation, fifteen sample plots with systematic sampling method were selected. In each sample plot diameter at breast height (DBH as well as height of all trees within them was determined. Soil samples were taken from 0-20cm in each plot and soil texture, water holding capacity (WHC, bulk density (B.D and particle density (P.D as well as soil porosity, O.C, N, available P and exchangeable K were determined for each soil sample in laboratory. Tree data and soil properties between two plantations were analysed using independent samples t-test (Student’s t test at p < 0.05. The results showed that among soil physical properties, percentage of clay, sand, B.D and WHC and amongst soil chemical properties O.C, N, available P and exchangeable K were significantly different between two plantations. Heavy textured soils with high B.D are undesirable for growing of populus deltoides in study area. The results also indicated that poor quality plantations has negative effect on soil nutrient and reduces its fertility. Reduction of nutrient availability had negative effects on quantity and quality of poplar trees.

  4. Effect of Chemical Reactions on the Hydrologic Properties of Fractured and Rubbelized Glass Media

    International Nuclear Information System (INIS)

    Understanding the effect of chemical reactions on the hydrologic properties of geological media, such as porosity, permeability and dispersivity, is critical to many natural and engineered sub-surface systems. Influence of glass corrosion (precipitation and dissolution) reactions on fractured and rubbelized (crushed) forms HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted using fractured and rubbelized forms, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig pressure, causing the precipitation of alteration products. Data were analyzed using analytical expressions and CXTFIT, a transport parameter optimization code, for the estimation of the hydrologic characteristics before and after VHT. It was found that glass reactions significantly influence the hydrologic properties of ILAW glass media. Hydrologic properties of rubbelized glass decreased due to precipitation reactions, whereas those of fractured glass media increased due to reaction which led to unconfined expansion of fracture aperture. The results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured and rubbelized stony media in general and glass media in particular

  5. Superconducting properties and chemical composition of NbTiN thin films with different thickness

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Peng, W.; You, L. X.; Wang, Z., E-mail: zwang@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China)

    2015-09-21

    In this research, we systematically investigated the superconducting properties and chemical composition of NbTiN thin films prepared on single-crystal MgO substrates. The NbTiN thin films with different thicknesses (4–100 nm) were deposited by reactive DC magnetron sputtering at ambient temperature. We measured and analyzed the crystal structure and thickness dependence of the chemical composition using X-ray diffraction and X-ray photoelectron spectroscopy depth profiles. The films exhibited excellent superconducting properties, with a high superconducting critical temperature of 10.1 K, low resistivity (ρ{sub 20} = 93 μΩ cm), and residual resistivity ratio of 1.12 achieved for 4-nm-thick ultrathin NbTiN films prepared at the deposition current of 2.4 A. The stoichiometry and electrical properties of the films varied gradually between the initial and upper layers. A minimum ρ{sub 20} of 78 μΩ cm and a maximum residual resistivity ratio of 1.15 were observed for 12-nm-thick films, which significantly differ from the properties of NbN films with the same NaCl structure.

  6. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson, E-mail: hudsonzanin@gmail.com [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Peterlevitz, Alfredo Carlos; Ceragioli, Helder Jose [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Rodrigues, Ana Amelia; Belangero, William Dias [Laboratorio de Biomateriais em Ortopedia, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Rua Cinco de Junho 350 CEP 13083970, Campinas, Sao Paulo (Brazil); Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil)

    2012-12-01

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: Black-Right-Pointing-Pointer Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. Black-Right-Pointing-Pointer CVD diamonds have been prepared with magnetic and semiconductor properties. Black-Right-Pointing-Pointer Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  7. Effects of extrusion cooking on the chemical composition and functional properties of dry common bean powders.

    Science.gov (United States)

    Ai, Yongfeng; Cichy, Karen A; Harte, Janice B; Kelly, James D; Ng, Perry K W

    2016-11-15

    The impact of extrusion cooking on the chemical composition and functional properties of bean powders from four common bean varieties was investigated. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size⩽0.5mm). Compared with corresponding non-extruded (raw) bean powders (particle size⩽0.5mm), the extrusion treatments did not substantially change the protein and starch contents of the bean powders and showed inconsistent effects on the sucrose, raffinose and stachyose contents. The extrusion cooking did cause complete starch gelatinization and protein denaturation of the bean powders and thus changed their pasting properties and solvent-retention capacities. The starch digestibilities of the cooked non-extruded and cooked extruded bean powders were comparable. The extruded bean powders displayed functional properties similar to those of two commercial bean powders. PMID:27283664

  8. Mechanical properties of chemical vapor deposited coatings for fusion reactor application

    International Nuclear Information System (INIS)

    Chemical vapor deposited coatings of TiB2, TiC and boron on graphite substrates are being developed for application as limiter materials in magnetic confinement fusion reactors. In this application severe thermal shock conditions exist and to do effective thermo-mechanical modelling of the material response it is necessary to acquire elastic moduli, fracture strength and strain to fracture data for the coatings. Four point flexure tests have been conducted from room temperature to 20000C on TiB2 and boron coated graphite with coatings in tension and compression and the mechanical properties extracted from the load-deflection data. In addition, stress relaxation tests from 500 to 11500C were performed on TiB2 and TiC coated graphite beams to assess the low levels of plastic deformation which occur in these coatings. Significant differences have been observed between the effective mechanical properties of the coatings and literature values of the bulk properties

  9. Chemical Characteristics and Antioxidant Properties of Crude Water Soluble Polysaccharides from Four Common Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Pei-Long Sun

    2012-04-01

    Full Text Available Four crude water soluble polysaccharides, CABP, CAAP, CFVP and CLDP, were isolated from common edible mushrooms, including Agaricus bisporus, Auricularia auricula, Flammulina velutipes and Lentinus edodes, and their chemical characteristics and antioxidant properties were determined. Fourier Transform-infrared analysis showed that the four crude polysaccharides were all composed of β-glycoside linkages. The major monosaccharide compositions were D-galactose, D-glucose and D-mannose for CABP, CAAP and CLDP, while CFVP was found to consist of L-arabinose, D-galactose, D-glucose and D-mannose. The main molecular weight distributions of CABP and the other three polysaccharides were 66.0 × 104 Da, respectively. Antioxidant properties of the four polysaccharides were evaluated in in vitro systems and CABP showed the best antioxidant properties. The studied mushroom species could potentially be used in part of well-balanced diets and as a source of antioxidant compounds.

  10. Temperature dependent thermoelectric properties of chemically derived gallium zinc oxide thin films

    KAUST Repository

    Barasheed, Abeer Z.

    2013-01-01

    In this study, the temperature dependent thermoelectric properties of sol-gel prepared ZnO and 3% Ga-doped ZnO (GZO) thin films have been explored. The power factor of GZO films, as compared to ZnO, is improved by nearly 17% at high temperature. A stabilization anneal, prior to thermoelectric measurements, in a strongly reducing Ar/H2 (95/5) atmosphere at 500°C was found to effectively stabilize the chemically derived films, practically eliminating hysteresis during thermoelectric measurements. Subtle changes in the thermoelectric properties of stabilized films have been correlated to oxygen vacancies and excitonic levels that are known to exist in ZnO-based thin films. The role of Ga dopants and defects, formed upon annealing, in driving the observed complex temperature dependence of the thermoelectric properties is discussed. © The Royal Society of Chemistry 2013.

  11. Effects of gel properties produced by chemical reactions on viscous fingering

    Science.gov (United States)

    Ujiie, Tomohiro; Nagatsu, Yuichiro; Ban, Mitsumasa; Iwata, Shuichi; Kato, Yoshihito; Tada, Yutaka

    2011-11-01

    We have experimentally investigated viscous fingering with chemical reaction producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. For high concentration of ferric ion, viscous fingering pattern was changed into spiral pattern in the former system, whereas into fracture pattern in the latter system. We consider that the difference in the change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We have found that the gel in the former case is more elastic. Furthermore, we have discussed the relationship between the measured rheological properties and the observed spiral or fracturing patterns.

  12. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    International Nuclear Information System (INIS)

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: ► Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. ► CVD diamonds have been prepared with magnetic and semiconductor properties. ► Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  13. Effect of electromagnetic radiation on the physico-chemical properties of minerals

    International Nuclear Information System (INIS)

    The electromagnetic radiation effect represented by gamma rays was investigated through; chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (Sem) and magnetization when applied at a dose of 0.5704 Gy (0.5704 J/ kg) at a feed relation of 18.40 ± 1.13 mGy/ h., in different minerals; in order to characterize the impact of the same from 137Cs in the physicochemical properties of these minerals. All the irradiated samples showed chemical stability at this stage undetectable other both in the XRD study and in the images analysis obtained by Sem; and at present almost the same chemical composition as the non-irradiated samples. So the same patterns of X-ray diffraction thereof, show a tendency to slightly lower the intensity of the most representative peaks of each mineral phase, which may be due to a decrease in crystallinity or preferential crystallographic orientation in crystals. In the micrographs analysis obtained by Sem on the irradiated samples, some holes (open pores) present in the particles were observed, mainly chalcopyrite and sphalerite lesser extent, seen this fact may be due to Compton Effect, in the radiation process. In relation to the magnetization property, a variation is obtained in the saturation magnetization (Ms) for the irradiated samples containing iron and more significantly in the chalcopyrite case. Therefore, with the radiation level used; slight changes occurring in the physical properties of minerals, whereas they remained stable chemically. These small changes may represent a signal that electromagnetic radiation applied at higher doses, is a viable option for improving the mineral processing. (author)

  14. Chemical and physical properties of Amazon forest soils in relation to their genesis

    Directory of Open Access Journals (Sweden)

    C. A. Quesada

    2009-04-01

    Full Text Available Soil samples were collected in six South American countries in a total of 71 different 1 ha forest plots across the Amazon Basin as part of the RAINFOR project. They were analysed for total and exchangeable cations, C, N, pH with various P fractions also determined. Physical properties were also examined and an index of soil physical quality proposed. A diverse range of soils was found. For the western areas near the Andean cordillera and the southern and northern fringes, soils tend to be distributed among the lower pedogenetic levels, while the central and eastern areas of Amazonia have more intensely weathered soils. This gives rise to a large variation of soil chemical and physical properties across the Basin, with soil properties varying predictably along a gradient of pedogenic development. Nutrient pools generally increased slightly in concentration from the youngest to the intermediate aged soils after which a gradual decline was observed with the lowest values found in the most weathered soils. Soil physical properties were strongly correlated with soil fertility, with favourable physical properties occurring in highly weathered and nutrient depleted soils and with the least weathered, more fertile soils having higher incidence of limiting physical properties. Soil phosphorus concentrations varied markedly in accordance with weathering extent and appear to exert an important influence on the nitrogen cycle of Amazon forest soils.

  15. Microstructures and Mechanical Properties of Laser Welding Joint of a CLAM Steel with Revised Chemical Compositions

    Science.gov (United States)

    Chen, Shuhai; Huang, Jihua; Lu, Qi; Zhao, Xingke

    2016-05-01

    To suppress the tendency to form delta ferrite in weld metal (WM) of China low activation martensitic (CLAM) steel joint, a CLAM steel with revised chemical compositions was designed. Laser welding of the CLAM steel was investigated. The microstructures of the WM and heat-affected zone were analyzed. The impact toughness of the WM was evaluated by a Charpy impact test method with three V notches. The influence of temper temperature on mechanical properties was analyzed. It was found that the delta ferrite was eliminated almost completely in laser WM of CLAM steel with revised chemical compositions which has lower tendency to form delta ferrite than original chemical compositions. The joint has higher tensile strength than the parent metal. With increasing the heat input, the impact toughness of the joint is approximatively equal with that of parent metal first and then decreases obviously. Temper treatment could effectively improve mechanical property of the joint. When the temper temperature exceeds 600 °C, the impact toughness of the joint is higher than that of the parent metal.

  16. Chemical properties and biodegradability of waste paper mill sludges to be used for landfill covering.

    Science.gov (United States)

    Zule, Janja; Cernec, Franc; Likon, Marko

    2007-12-01

    Waste paper mill sludges originating from different effluent treatment and de-inking installations are complex mixtures of inorganic and organic particles. Due to their favourable physico-chemical, and microbiological characteristics, they may be conveniently reused for different purposes as such or after appropriate pretreatment. Sludges from the Slovenian paper industry were extensively tested for their chemical, stability and sealing properties. During the biodegradability tests, evolutions of greenhouse gases CO2, CH4 and H2S as well as the concentrations of released volatile organic acids, such as acetic, propionic, butyric, lactic and glycollic acids as the typical degradation products of organic materials, were measured. Some other important parameters of water leachates such as pH, redox potential, content of starch and leachable ions were also evaluated. The results indicate that most of them can be efficiently applied as alternative hydraulic barrier layers for landfill construction and covering instead of the more expensive clay due to their good geomechanical properties, chemical inertness and microbiological stability. Such replacement brings about considerable economical and ecological benefits as the waste is reprocessed as secondary raw material. PMID:18229748

  17. Microstructures and Mechanical Properties of Laser Welding Joint of a CLAM Steel with Revised Chemical Compositions

    Science.gov (United States)

    Chen, Shuhai; Huang, Jihua; Lu, Qi; Zhao, Xingke

    2016-03-01

    To suppress the tendency to form delta ferrite in weld metal (WM) of China low activation martensitic (CLAM) steel joint, a CLAM steel with revised chemical compositions was designed. Laser welding of the CLAM steel was investigated. The microstructures of the WM and heat-affected zone were analyzed. The impact toughness of the WM was evaluated by a Charpy impact test method with three V notches. The influence of temper temperature on mechanical properties was analyzed. It was found that the delta ferrite was eliminated almost completely in laser WM of CLAM steel with revised chemical compositions which has lower tendency to form delta ferrite than original chemical compositions. The joint has higher tensile strength than the parent metal. With increasing the heat input, the impact toughness of the joint is approximatively equal with that of parent metal first and then decreases obviously. Temper treatment could effectively improve mechanical property of the joint. When the temper temperature exceeds 600 °C, the impact toughness of the joint is higher than that of the parent metal.

  18. Microwave absorbing properties and enhanced infrared reflectance of Fe/Cu composites prepared by chemical plating

    International Nuclear Information System (INIS)

    Fe/Cu composite samples with Cu particles depositing on carbonyl iron sheets were prepared by chemical plating. Cu additions were uniformly distributed on the grain boundaries of the flaky carbonyl iron while keeping the internal structure of iron. Meanwhile, we found that the chemical plating time made a key point on both the microwave absorbing properties and infrared emissivity. With the growth of chemical plating time, the value of reflection loss gives a linear decrease and the infrared emissivity is reduced with a tendency of index reduction. When the plating time is less than 30 min, the reflection loss of the samples maintains above −20 GHz, moreover, prolonging the plating time more than 30 min, the infrared emissivity of the samples is reduced to 0.50 or less. It can be concluded that both the microwave absorbing and infrared properties are excellent at the optimal plating time of 30 min. - Highlights: • The Fe/Cu composites have been prepared by flake carbonyl iron as substrate. • The Fe/Cu composites exhibit enhanced Infrared characteristics. • The samples hold the most of the absorbing capacity and possess low infrared emissivity by controlling plating time

  19. Shelf life of anchovy products (Engraulis encrasicolus: evaluation of sensory, microbiological and chemical properties

    Directory of Open Access Journals (Sweden)

    Andrea Ariano

    2014-02-01

    Full Text Available Fishery products have always been an important food in Italy. In the past, increased consumption was mainly due to the good quality of the products, easiness of use and their beneficial effects on health. Recently, owing to the national financial crisis, there has been a decline in the consumption of fish. In fact, in 2013, according to data from ISMEA, the consumption of fresh fish suffered a sharp contraction (-5%. This decline also concerns anchovy (Engraulis encrasicolus. This species, partly because of its low price, is a mainstay of traditional Italian food. The aim of this study was to evaluate sensorial, chemical and microbiological properties of anchovy-based (Engraulis encrasicolus products during storage at 4 and -20°C. Fresh anchovies, obtained from the wholesale fish market of Pozzuoli (Southern Italy were cut into small pieces and hand-prepared using bread, eggs, cheese and lemon juice. Samples were analysed after 0, 2, 4, 6 and 8 days of storage at 4°C. An aliquot was quickly frozen and analysed after 34 days at -20°C. Sensory assessment, microbiological (specific spoilage organisms, Listeria spp. and Salmonella spp. and chemical (histamine, total volatile basic nitrogen, trimethylamine, thiobarbituric acid, pH and aw analyses were performed. Results showed that the shelf life of anchovy products was less than 5 days for the samples stored at 4°C. At -20°C, all anchovies preparations showed good sensory, microbiological and chemical properties for 34 days.

  20. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system. PMID:16290785

  1. Antioxidant and chemical properties of essential oil extracted from blend of selected spices

    Institute of Scientific and Technical Information of China (English)

    Ochuko Lucky Erukainure; Funmi Olabisi Kayode; Olubanke Adetutu Adeyoju; Sunday Oluwaseun Adenekan; Godfrey Asieba; Atinuke Ajayi; Mosebolatan Victoria Adegbola; Bolanle Basirat Sarumi

    2015-01-01

    Objective:To investigate the chemical properties of essential oil extracted from blends of selected Nigerian spices as well as its antioxidant protective potentials against free radicalin vitro. Methods: Essential oil was extracted from selected spices blend consisting ofMonodora myristica, Myristica fragrans, Tetrapleura tetraptera, andAframomum sceptrum using a Clevenger type apparatus. Oil obtained was subjected to phytochemical and gas chromatography-mass spectrometer analysis as well as analyzed for antioxidant activity which covers for 1,1-diphenyl-2 picrylhydrazyl, nitric oxide scavenging activities and reducing property. Results: Gas chromatography-mass spectrometer analysis revealed over 50 compoundfs withα-phellandrene being the most predominant compound (27.32%), which was followed by (-)-β-bourbonene (15.78%) and 5-(1-methylethyl)-α-phellandrene (11.80%). Phytochemical analysis showed high flavonoid content and a lower phenolic content. The oil showed a dose like dependent effect on the1-diphenyl-2 picrylhydrazyl and nitric oxide scavenging activities, these activities increased with increasing concentration. The same was also observed for the reducing power properties of the oil. Conclusions: The antioxidant activities exhibited by the essential oilin vitro signify its protective potential against free radicals. The chemical constituents,α-phellandrene in particular and the studied phytochemicals may be responsible for these effects. However,in vivo study is needed to further authenticate this potency.

  2. Research Update: Mechanical properties of metal-organic frameworks – Influence of structure and chemical bonding

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-12-01

    Full Text Available Metal-organic frameworks (MOFs, a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  3. The impact of the properties of the heaviest elements on the chemical and physical sciences

    International Nuclear Information System (INIS)

    The unique role of the heaviest elements in chemical and physical sciences is discussed. With the actinide series (Z = 90-103) and the superactinide series (Z = 122-155), the heaviest elements have significantly shaped the architecture of the Periodic Table of the elements. Relativistic effects in the electron shells of the heaviest elements change the chemical properties in a given group in a non-linear fashion. Relativistically stabilized sub-shell closures give rise to a new category of elements in the Periodic Table: volatile metals. The prototype for this property is element 114 which, due to the relativistic stabilization of its 7s27p1/22 electron configuration, is volatile in its elementary state, but, in contrast to a noble gas, exhibits a marked metal-metal interaction with a gold surface at room temperature. Nuclear shell effects dominate the physical properties of the transuranium elements. These give rise to superdeformed shape isomers (fission isomers) in the actinides (U-Bk). Superheavy elements (Z ≥ 104) owe their existence solely to nuclear shell effects at N = 152, 162, and 184. At this time, a building lot is the location of the next spherical proton shell closure as there is evidence that the center of the 'island of stability' is not at Z = 114. This needs urgently further theoretical and experimental efforts. The cross sections for the syntheses of elements 119 and 120 will give us important information on the 'upper end of the Periodic Table of the elements'. (orig.)

  4. Physico-chemical properties and toxicity of alkylated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Kang, Hyun-Joong; Lee, So-Young; Kwon, Jung-Hwan

    2016-07-15

    Crude oil and refined petroleum products contain many polycyclic and heterocyclic aromatic hydrocarbons, in particular, alkylated PAHs. Although alkylated PAHs are found in significantly higher quantities than their corresponding unsubstituted PAHs, the most studies on the physico-chemical properties and toxicities of these compounds have been conducted on unsubstituted PAHs. In this study, we measured crucial physico-chemical properties (i.e., water solubility, partition coefficients between polydimethylsiloxane and water (KPDMSw), and partition coefficient between liposomes and water (Klipw)) of selected alkylated PAHs, and evaluated their toxicity using the luminescence inhibition of Aliivibrio fischeri and growth inhibition of Raphidocelis subcapitata. In general, the logarithms of these properties for alkylated PAHs showed good linear correlations with log Kow, as did those for unsubstituted PAHs. Changes in molecular symmetry on the introduction of alkyl groups on aromatic ring structure significantly altered water solubility. The inhibition of bacterial luminescence and algal growth by alkylated PAHs can be explained well by the baseline toxicity hypothesis, and good linear relationships between log Kow or log Klipw and log (1/EC50) were found. PMID:27037474

  5. Evolution of mechanical properties of silicate glasses: Impact of the chemical composition and effects of irradiation

    International Nuclear Information System (INIS)

    This thesis examines: (1) how the chemical composition changes the hardness, toughness, and stress corrosion cracking behavior in model pristine and (2) how external irradiation impact these properties. It is to be incorporated in the context of the storage of nuclear waste in borosilicate glass matrix, the structural integrity of which should be assessed. Eight simplified borosilicate glasses made of 3 oxides with modulated proportions (SiO2-B2O3-Na2O (SBN) have been selected and their hardness, toughness, and stress corrosion cracking behavior have been characterized prior and after irradiation. The comparative study of the non-irradiated SBN glasses provides the role played by the chemical composition. The sodium content is found to be the key parameter: As it increases, the glass plasticity increases, leading to changes in the mechanical response to strain. Hardness (Hv) and toughness (Kc) decrease since the flow under indenter increases. The analysis of the stress corrosion behavior evidences a clear shift of the SCC curves linked also to the glass plasticity. Four of the 8 simplified SBN glass systems highlight the influence of electron, light and heavy ions irradiations on the mechanical properties. Once again, the sodium content is a key parameter. It is found to inhibit the glass modification: Glasses with high sodium content are more stable. Ions irradiations highlight the predominant role of nuclear interaction in changing the glass properties. Finally, electronic interaction induced by helium and electron irradiation does not lead to the same structural/mechanical glasses variations. (author)

  6. The Effect of Sterilization Methods on the Structural and Chemical Properties of Fibrin Microthread Scaffolds.

    Science.gov (United States)

    Grasman, Jonathan M; O'Brien, Megan P; Ackerman, Kevin; Gagnon, Keith A; Wong, Gregory M; Pins, George D

    2016-06-01

    A challenge for the design of scaffolds in tissue engineering is to determine a terminal sterilization method that will retain the structural and biochemical properties of the materials. Since commonly used heat and ionizing energy-based sterilization methods have been shown to alter the material properties of protein-based scaffolds, the effects of ethanol and ethylene oxide (EtO) sterilization on the cellular compatibility and the structural, chemical, and mechanical properties of uncrosslinked, UV crosslinked, or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) crosslinked fibrin microthreads in neutral (EDCn) or acidic (EDCa) buffers are evaluated. EtO sterilization significantly reduces the tensile strength of uncrosslinked microthreads. Surface chemistry analyses show that EtO sterilization induces alkylation of EDCa microthreads leading to a significant reduction in myoblast attachment. The material properties of EDCn microthreads do not appear to be affected by the sterilization method. These results significantly enhance the understanding of how sterilization or crosslinking techniques affect the material properties of protein scaffolds. PMID:26847494

  7. Evaluation of chemical composition effect on materials properties using AI methods

    Directory of Open Access Journals (Sweden)

    W. Sitek

    2007-01-01

    Full Text Available Purpose: The paper presents the application of artificial neural network for evaluation of alloying elementseffect on selected materials properties and austenite transformations during continuous cooling.Design/methodology/approach: Multi-layer feedforward neural networks with learning rule based on theerror backpropagation algorithm were employed for modelling the steels properties. Then the neural networksworked out were employed for the computer simulation of the effect of particular alloying elements on thesteels’ properties.Findings: Obtained results show that neural network are useful in evaluation of synergic effect of alloyingelements on selected materials properties when classical investigations’ results do not provide evaluation of theeffect of two or more alloying elements.Research limitations/implications: The results presented are valid in the ranges of mass concentrations ofalloying elements presented in the paper.Practical implications: The worked out relationships may be used in computer systems of steels’ designing forthe heat-treated machine parts.Originality/value: The use of the neural networks as an tool for evaluation of the chemical composition effecton steels’ properties.

  8. Effects of the manufacturing parameter and chemical composition on properties of HANA-4 cladding tube

    International Nuclear Information System (INIS)

    KEPCO NF conducted some researches to improve workability of HANA-4 cladding tube. It was changed to TREX outer diameter for increase Q-factor in first pilgering process related to the workability of cladding tube. In general, a increasing Q-factor leads to improvement yield of tubing manufacture in zirconium alloys. And decreasing of amount of alloying element changed cladding properties. The secondary phase particle analysis, the corrosion behavior and the texture were examined for HANA-4 alloys with adjustments of chemical compositions and TREX outer diameter for the purpose of enhancement formability. The precipitate type, size, and distribution of HANA-4 alloy were not changed as the chemical composition and the manufacturing parameters. The corrosion weight gain was decreased with reducing alloying elements, which considered the beneficial effect of reduced tin

  9. Investigation of Chemical Bond Properties and Mssbauer Spectroscopy in YBa2Cu3O7

    Institute of Scientific and Technical Information of China (English)

    高发明; 李东春; 张思远

    2003-01-01

    Chemical bond properties of YBa2Cu3O7 were studied by using the average band-gap model. The calculated results show that the covalency of Cu(1)-O bond is 0.406, and one of Cu(2)-O is 0.276. Mssbauer isomer shifts of 57Fe in Y-123 were calculated by the chemical surrounding factor hv defined by covalency and electronic polarizability. The charge-state and site of Fe were determined. The relation between the coupling constant of electron-phonon interaction and covalency is employed to explain that the Cu(2)-O plane is more important than the Cu(1)-O chain on the superconductivity in the Y-123 compounds.

  10. A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins.

    Science.gov (United States)

    Stojković, Dejan S; Barros, Lillian; Calhelha, Ricardo C; Glamočlija, Jasmina; Ćirić, Ana; van Griensven, Leo J L D; Soković, Marina; Ferreira, Isabel C F R

    2014-02-01

    A detailed comparative study on chemical and bioactive properties of wild and cultivated Ganoderma lucidum from Serbia (GS) and China (GCN) was performed. This species was chosen because of its worldwide use as medicinal mushroom. Higher amounts of sugars were found in GS, while higher amounts of organic acids were recorded in GCN. Unsaturated fatty acids predominated over saturated fatty acids. GCN revealed higher antioxidant activity, while GS exhibited inhibitory potential against human breast and cervical carcinoma cell lines. No cytotoxicity in non-tumour liver primary cell culture was observed for the different samples. Both samples possessed antibacterial and antifungal activities, in some cases even better than the standard antimicrobial drugs. This is the first study reporting a comparison of chemical compounds and bioactivity of G. lucidum samples from different origins. PMID:24020451

  11. Magnetic properties of a chemically synthesized Bi(Pb)SrCaCuO superconductor

    International Nuclear Information System (INIS)

    It has been reported that the presence of lead serves to increase the fraction of high temperature phase in the Bi-Sr-Ca-Cu-O system prepared by a solid state reaction. To test if this is also the case for material prepared by a chemical method, a lead containing bismuth superconductor (Bi1.5Pb0.5Sr1.5Ca1.75Cu2Ox) was chemically synthesized and its magnetic properties measured. The material obtained contained a large fraction (≅ 50%) of a phase with a superconducting onset temperature near 110 K. Inspection of the AC susceptibility with a small applied transverse magnetic field indicated the presence of additional superconducting phases with lower onset temperatures. Flux depinning was found to occur at relatively low fields

  12. Diffusion, Thermal Properties and Chemical Compatibilities of Select MAX Phases with Materials For Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel [Drexel Univ., Philadelphia, PA (United States); Bentzel, Grady [Drexel Univ., Philadelphia, PA (United States); Tallman, Darin J. [Drexel Univ., Philadelphia, PA (United States); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-04

    The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosen for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na, the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.

  13. The Surface Chemical Composition of Lunar Samples and Its Significance for Optical Properties

    Science.gov (United States)

    Gold, T.; Bilson, E.; Baron, R. L.

    1976-01-01

    The surface iron, titanium, calcium, and silicon concentration in numerous lunar soil and rock samples was determined by Auger electron spectroscopy. All soil samples show a large increase in the iron to oxygen ratio compared with samples of pulverized rock or with results of the bulk chemical analysis. A solar wind simulation experiment using 2 keV energy alpha -particles showed that an ion dose corresponding to approximately 30,000 years of solar wind increased the iron concentration on the surface of the pulverized Apollo 14 rock sample 14310 to the concentration measured in the Apollo 14 soil sample 14163, and the albedo of the pulverized rock decreased from 0.36 to 0.07. The low albedo of the lunar soil is related to the iron + titanium concentration on its surface. A solar wind sputter reduction mechanism is discussed as a possible cause for both the surface chemical and optical properties of the soil.

  14. Physical and chemical properties and compositions of liquid effluents of a nuclear power reactor

    International Nuclear Information System (INIS)

    Behaviours of the released radioactive materials from a nuclear power plant to the marine environment depend largely on their physical and chemical properties. It is therefore important to grasp the compositions of the liquid effluents. From this point of view, some kinds of drainwater of a BWR plant were sampled. These samples are the laundry drain water at charcoal bed inlet and outlet, and the floor drain water. Suspended solids were separated from these samples physically with the step filtration method and ions chemically with the ion exchange resin. Radioactivity of Co-60, Mn-54 and Cs-137 was measured with γ spectrometer. Suspended solids of the laundry drain samples were also analysed with the instrumental methods (differential thermal analysis, x-ray diffraction analysis and x-ray fluorescence analysis)

  15. Customizing Properties of β-Chitin in Squid Pen (Gladius by Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Alessandro Ianiro

    2014-12-01

    Full Text Available The squid pen (gladius from the Loligo vulgaris was used for preparation of β-chitin materials characterized by different chemical, micro- and nano-structural properties that preserved, almost completely the macrostructural and the mechanical ones. The β-chitin materials obtained by alkaline treatment showed porosity, wettability and swelling that are a function of the duration of the treatment. Microscopic, spectroscopic and synchrotron X-ray diffraction techniques showed that the chemical environment of the N-acetyl groups of the β-chitin chains changes after the thermal alkaline treatment. As a consequence, the crystalline packing of the β-chitin is modified, due to the intercalation of water molecules between β-chitin sheets. Potential applications of these β-chitin materials range from the nanotechnology to the regenerative medicine. The use of gladii, which are waste products of the fishing industry, has also important environmental implications.

  16. Localized Quantitative Characterization of Chemical Functionalization Effects on Adhesion Properties of SWNT

    International Nuclear Information System (INIS)

    Chemical modification of single-walled carbon nano tubes (SWNT) has been found to be an excellent method to promote SWNT dispersion, and possibly to improve interaction with matrices via covalent bonding. It is thus a quite promising technique to enhance the mechanical properties of SWNT-reinforced nano composites. However, the underlying mechanism of SWNT chemical functionalization effects on interfacial strength is not quantitatively understood, limiting their usefulness in the design of nano composites. In this work, an atomic force microscopy (AFM-) based adhesive force mapping technique combined with a statistical analysis method were developed and implemented to study adhesive interactions of small SWNT bundles functionalized by amino, epoxide, and hydroperoxide groups as compared to SDS-treated SWNT in controlled environment. Finally, the importance of such localized quantitative measurements in SWNT-reinforced nano composites design and fabrication was also discussed.

  17. Chemical composition and functional properties of starch extracted from the pejibaye fruit (Bactris gasepaes Kunth.

    Directory of Open Access Journals (Sweden)

    Biano Alves de Melo Neto

    2015-01-01

    Full Text Available This study aimed to establish the chemical composition and functional properties of the starch extracted from the pejibaye fruit (Bactris gasepaes Kunth.. The chemical characterization was evaluated from the determination of starch, amylose, amylopectin, total lipid, protein, ash, moisture and water activity. The water absorption index and the water solubility index were calculated for temperatures between 25 and 90ºC. Low contents of ash and protein were found. The studied starch has 14% moisture, according to the established by law. The water activity value was 0.55, which ensures its microbiological stability. A range of gelatinization between 65 to 70ºC was observed, close to the one of commercial starches. The solubility rate in water was 0.6119% and the absorption rate in water was 1.8252%. These results demonstrated that the starch from the pejibaye fruit has important characteristics for use in the food industry.

  18. Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish

    Directory of Open Access Journals (Sweden)

    Zitao Zhou

    2015-07-01

    Full Text Available Zinc oxide nanoparticles (ZnO NPs are widely used in a variety of products, thus understanding their health and environmental impacts is necessary to appropriately manage their risks. To keep pace with the rapid increase in products utilizing engineered ZnO NPs, rapid in silico toxicity test methods based on knowledge of comprehensive in vivo and in vitro toxic responses are beneficial in determining potential nanoparticle impacts. To achieve or enhance their desired function, chemical modifications are often performed on the NPs surface; however, the roles of these alterations play in determining the toxicity of ZnO NPs are still not well understood. As such, we investigated the toxicity of 17 diverse ZnO NPs varying in both size and surface chemistry to developing zebrafish (exposure concentrations ranging from 0.016 to 250 mg/L. Despite assessing a suite of 19 different developmental, behavioural and morphological endpoints in addition to mortality in this study, mortality was the most common endpoint observed for all of the ZnO NP types tested. ZnO NPs with surface chemical modification, regardless of the type, resulted in mortality at 24 hours post-fertilization (hpf while uncoated particles did not induce significant mortality until 120 hpf. Using eight intrinsic chemical properties that relate to the outermost surface chemistry of the engineered ZnO nanoparticles, the highly dimensional toxicity data were converted to a 2-dimensional data set through principal component analysis (PCA. Euclidean distance was used to partition different NPs into several groups based on converted data (score which were directly related to changes in the outermost surface chemistry. Kriging estimations were then used to develop a contour map based on mortality data as a response. This study illustrates how the intrinsic properties of NPs, including surface chemical modifications and capping agents, are useful to separate and identify ZnO NP toxicity to

  19. Chemical and mechanical performance properties for various final waste forms -- PSPI scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Farnsworth, R.K.; Larsen, E.D.; Sears, J.W.; Eddy, T.L.; Anderson, G.L.

    1996-09-01

    The US DOE is obtaining data on the performance properties of the various final waste forms that may be chosen as primary treatment products for the alpha-contaminated low-level and transuranic waste at the INEL`s Transuranic Storage Area. This report collects and compares selected properties that are key indicators of mechanical and chemical durability for Portland cement concrete, concrete formed under elevated temperature and pressure, sulfur polymer cement, borosilicate glass, and various forms of alumino-silicate glass, including in situ vitrification glass and various compositions of iron-enriched basalt (IEB) and iron-enriched basalt IV (IEB4). Compressive strength and impact resistance properties were used as performance indicators in comparative evaluation of the mechanical durability of each waste form, while various leachability data were used in comparative evaluation of each waste form`s chemical durability. The vitrified waste forms were generally more durable than the non-vitrified waste forms, with the iron-enriched alumino-silicate glasses and glass/ceramics exhibiting the most favorable chemical and mechanical durabilities. It appears that the addition of zirconia and titania to IEB (forming IEB4) increases the leach resistance of the lanthanides. The large compositional ranges for IEB and IEB4 more easily accommodate the compositions of the waste stored at the INEL than does the composition of borosilicate glass. It appears, however, that the large potential variation in IEB and IEB4 compositions resulting from differing waste feed compositions can impact waste form durability. Further work is needed to determine the range of waste stream feed compositions and rates of waste form cooling that will result in acceptable and optimized IEB or IEB4 waste form performance. 43 refs.

  20. Trends in the chemical properties in early transition metal carbide surfaces: A density functional study

    DEFF Research Database (Denmark)

    Kitchin, J.R.; Nørskov, Jens Kehlet; Barteau, M.A.;

    2005-01-01

    In this paper we present density functional theory (DFT) investigations of the physical, chemical and electronic structure properties of several close-packed surfaces of early transition metal carbides, including beta-Mo2C(0 0 0 1), and the (1 1 1) surfaces of TiC, VC, NbC, and TaC. The results are...... closest-packed pure metal surfaces, due to the tensile strain induced in the carbide surfaces upon incorporation of carbon into the lattice. Hydrogen atoms were found to adsorb more weakly on carbide surfaces than on the corresponding closest-packed pure metal surfaces only when there were surface carbon...

  1. Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition

    OpenAIRE

    K. A. Kamilli; L. Poulain; A. Held; Nowak, A.; Birmili, W.; Wiedensohler, A.

    2014-01-01

    Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site Laboratoire d'Hygiène de la Ville de Paris (LHVP) in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and ...

  2. Potassium fertilization for pineapple: effects on soil chemical properties and plant nutrition

    OpenAIRE

    Luiz Antonio Junqueira Teixeira; José Antonio Quaggio; Heitor Cantarella; Estêvão Vicari Mellis

    2011-01-01

    A field experiment was carried out on an Ultisol located at the city of Agudos (22º30'S; 49º03'W), in the state of São Paulo, Brazil, in order to determine the effects of rates and sources of potassium fertilizer on nutritional status of 'Smooth Cayenne' pineapple and on some soil chemical properties. The experiment was a complete factorial design with four rates (0, 175, 350, and 700 kg ha-1 of K2O) and three combinations of K sources (100% KCl, 100% K2SO4 and 40% K2SO4 + 60% KCl). Soil samp...

  3. SOME PHYSICAL AND CHEMICAL PROPERTIES OF THE RICE GROWN SOILS OF CENTRAL ANATOLIA REGION

    OpenAIRE

    TABAN, SÜleyman; Alpaslan, Mehmet; HASHEMI, Aioub G.; EKEN, Dürdane

    1997-01-01

    The aim of this study was to determine the fertility status of the rice grown soils of Central Anatolia region. For this purpose, 40 soil samples were taken and analyzed for some physical and chemical properties. In general, the experimental soils were clay and loamy clay in texture, medium alkaline in reaction (pH) and moderately calcareous. 60, 25, 30 and 95 % of the soils studied were found to be deficient in total-N, plant available phosphorus, zinc and manganese, respectively. On the ot...

  4. Colloidal and Chemical Properties of Polyesters Based on Glutamic acid and Diols of Different Nature

    Directory of Open Access Journals (Sweden)

    Puzko N.V.

    2012-08-01

    Full Text Available The paper describes synthesis method and colloid-chemical properties of novel α-amino acid based polyesters with controllable hydrophilic-lipophillic balance. Glutamic acid and diols of different nature based polyesters were obtained via low-temperature activated polyesterefication. Such polymers are able to form micellar structures in self-stabilized water dispersion. Solubilization of water insoluble dyes Sudan and toluene in polymer water solution was studied. Due to micelle forming ability and prognosticated biodegradability to non-toxic products, obtained polymers are promising materials for formation of novel dispersed drug delivery systems.

  5. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  6. Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells

    International Nuclear Information System (INIS)

    The effects of activation temperature on the textural and chemical properties of the activated carbons prepared from pistachio-nut shells using zinc chloride activation under both inert nitrogen gas atmosphere and vacuum condition were studied. Relatively low temperature of 400 deg. C was beneficial for the development of pore structures. Too high an activation temperature would lead to sintering of volatiles and shrinkage of the carbon structure. The microstructures and microcrystallinity of the activated carbons prepared were examined by scanning electron microscope and powder X-ray diffraction techniques, respectively, while Fourier transform infrared spectra determined the changes in the surface functional groups at the various stages of preparation

  7. Modification of fiber properties through grafting of acrylonitrile to rayon by chemical and radiation methods

    OpenAIRE

    Inderjeet Kaur; Neelam Sharma; Vandna Kumari

    2013-01-01

    Fibrous properties of rayon has been modified through synthesis of graft copolymers of rayon with acrylonitrile (AN) by chemical method using ceric ammonium nitrate (CAN/HNO3) as a redox initiator and gamma radiation mutual method. Percentage of grafting (Pg) was determined as a function of initiator concentration, monomer concentration, irradiation dose, temperature, time of reaction and the amount of water. Maximum percentage of grafting (160.01%) using CAN/HNO3 was obtained at [CAN] = 22.8...

  8. Processing–structure–property relations of chemically bonded phosphate ceramic composites

    Indian Academy of Sciences (India)

    H A Colorado; C Hiel; H T Hahn

    2011-07-01

    Mechanical properties and microstructures of a chemically bonded phosphate ceramic (CBPC) and its composite with 1.0 wt% graphite nanoplatelets (GNPs) reinforcement have been investigated. Microstructure was identified by using optical and scanning electron microscopes, X-ray tomography, and X-ray diffraction. In addition, weight loss of the resin at room temperature was studied. The microstructure characterization shows that CBPC is itself a composite with several crystalline (wollastonite and brushite) and amorphous phases. SEM and micro tomography show a homogeneous distribution of crystalline phases. Bending and compression strength of the CBPC was improved by reducing bubbles via preparation in vacuum.

  9. Cassava Peels for Alternative Fibre in Pulp and Paper Industry: Chemical Properties and Morphology Characterization

    OpenAIRE

    Ashuvila Mohd Aripin; Angzzas Sari Mohd Kassim; Zawawi Daud; Mohd Zainuri Mohd Hatta

    2013-01-01

    Without a proper waste management, the organic wastes such as cassava peels could result in increased amount of solid waste dump into landfill. This study aims to use non-wood organic wastes as pulp for paper making industries; promoting the concept of ‘from waste to wealth and recyclable material’. The objective  of this study is to determine the potential of casssava peel as alternative fibre in pulp and paper based on its chemical properties and surface morphology characteristic. Quantifie...

  10. Crevice corrosion properties and chemical thermodynamic evaluation of the corrosion system

    International Nuclear Information System (INIS)

    Crevice corrosion properties of 304 Stainless Steel (304SS) and Alloy 600 in aqueous oxalic acid solution were evaluated and the results were analyzed by chemical thermodynamic calculation. The corrosion rate of 304SS in the low pH region was highly accelerated, however that of Alloy 600 was not. Crevice corrosion resistance of those alloys critically relies on the formation of protective layer (NiC2O4) which was formed on the surface of Alloy 600 only. FeC2O4 did not contribute to corrosion resistance which was formed on the surface of 304SS at the low pH region. (author)

  11. Influence of chemical heat treatment on the mechanical properties of paper knife-edge die

    OpenAIRE

    K. Dybowski; Kaczmarek, Ł.; R. Pietrasik; J. Smolik; Ł. Kołodziejczyk; Batory, D.; Gzik, M; M. Stegliński

    2009-01-01

    Purpose: In this article mechanical properties together with wear mechanism of paper knife-edge die made of A 681 steel with TiN, TiCN and DLC coating were analyzed. A Paper knife-edge die using in stamping machine, serves a map of complicated graphical projects. However wear resistance is strongly dependent on chemical composition of a paper mainly on the TiO2 content.Design/methodology/approach: In order to optimize the wear resistance of analyzed paper knife-edge die, influence of HS6-5-2 ...

  12. Structural, optical and electrical properties of chemically deposited copper selenide films

    Indian Academy of Sciences (India)

    R H Bari; V Ganesan; S Potadar; L A Patil

    2009-02-01

    Stoichiometric and nonstoichiometric thin films of copper selenide have been prepared by chemical bath deposition technique at temperature below 60°C on glass substrate. The effect of nonstoichiometry on the optical, electrical and structural properties of the film was studied. The bandgap energy was observed to increase with the increase in at % of copper in composition. The grain size was also observed to increase with the decrease of at % of copper in composition. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), absorption spectroscopy, and AFM. The results are discussed and interpreted.

  13. Biosolids Application on Banana Production: Soil Chemical Properties and Plant Nutrition

    OpenAIRE

    Luis Alberto Saes; Aline Reneé Coscione; Ronaldo Severiano Berton; Luiz Antonio Junqueira Teixeira

    2011-01-01

    Biosolids are relatively rich in N, P, and S and could be used to substitute mineral fertilization for banana crop. A field experiment was carried out in a Yellow Oxisol to investigate the effects of biosolids application on soil chemical properties and on banana leaf's nutrient concentration during the first cropping cycle. Soil analysis (pH, organic matter, resin P, exchangeable Ca and K, available B, DTPA-extracted micronutrients, and heavy metals) and index-leaf analysis (B, Cu, Fe, Mn, Z...

  14. The evolution of chemical and microbiological properties of fresh goat milk cheese during its shelf life.

    Science.gov (United States)

    Masotti, F; Battelli, G; De Noni, I

    2012-09-01

    This study investigated the changes in chemical and microbiological properties of fresh goat milk cheese stored in an open deck refrigerated display cabinet (6 ± 2°C) or in a dark cold room (4 ± 1°C). The effects of partial-vacuum packaging and fluorescent lighting were studied during the cheese shelf life (45 d) and 15 d after. Storage conditions did not affect the pH values (4.3), whereas a slight decrease in moisture (ca. 1%) and in water activity (goat milk cheese would be extended from 45 to 60 d. Such conclusion was supported also by the sensory quality evaluation. PMID:22916879

  15. Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol

    Indian Academy of Sciences (India)

    C V Mythili; A Malar Retna; S Gopalakrishnan

    2004-06-01

    Cardanol, an excellent monomer for polymer production, has been isolated from CNSL and allowed to react with formaldehyde in a particular mole ratio in the presence of glutaric acid catalyst to give high-ortho novolac resin. Such characterized polyol has been condensed with diphenylmethane diisocyanate to produce rigid polyurethane. A commercially available polyol, polypropylene glycol-2000 (PPG-2000), has also been condensed with diphenylmethane diisocyanate and polyol to produce tough polyurethane. These polyurethanes were characterized with respect to their resistance to chemical reagents and mechanical properties such as tensile strength, percentage elongation, tear strength and hardness. Differential thermal analysis (DTA) and thermo-gravimetric analysis (TGA) were undertaken for thermal characterization.

  16. Modelling of Physical, Chemical, and Material Properties of Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jakub Kupecki

    2015-01-01

    Full Text Available This paper provides a review of modelling techniques applicable for system-level studies to account for physical, chemical, and material properties of solid oxide fuel cells. Functionality of 0D to 3D models is discussed and selected examples are given. Author provides information on typical length scales in evaluation of power systems with solid oxide fuel cells. In each section, proper examples of previous studies done in the field of 0D–3D modelling are recalled and discussed.

  17. Computational Nutraceutics: Chemical Reactivity Properties of the Flavonoid Naringin by Means of Conceptual DFT

    Directory of Open Access Journals (Sweden)

    Jorge Ignacio Martínez-Araya

    2013-01-01

    Full Text Available The M06 family of density functionals has been assessed for the calculation of the molecular structure and properties of the Naringin molecule. The chemical reactivity descriptors have been calculated through Conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices and the dual descriptor f(2(r. A comparison between the descriptors calculated through vertical energy values and those arising from the Koopmans' theorem approximation has been performed in order to check for the validity of the last procedure.

  18. STRUCTURAL PROPERTIES OF MGFE2-XCRXO4 SYNTHESIZED BYWET-CHEMICAL CO-PRECIPITATION METHOD

    OpenAIRE

    C. T. BIRAJDAR; S. T. ALONE; Kadam, R. H.; Jadhav, K. M.

    2012-01-01

    The structural properties of Cr substituted Magnesium ferrites having general formula MgFe Cr O (where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were synthesized by 2-x x 4the wet chemical co-precipitation method were investigated. The samples were annealed at 8000C for 12 h and were studied by means of X-ray diffraction, Scanning electron microscope (SEM), particle size, cation were also studied. The X-ray analysis showed that all the samples had single-phase cubic spinel structure. The nano s...

  19. Changes in physico-chemical properties of soil by adding organic amendments in a tomato crop

    International Nuclear Information System (INIS)

    This study possible changes in the physico-chemical properties of soil under intensive cultivation of tomatoes after the addition of two different types of organic amendments: a natural as sheep manure and synthetic made. Trial plots that were designed are located in the NE of the province of Granada, in Puebla de Trial plots that were designed are located in the NE of the province of Granada, in Puebla de Don Fadrique, in the are that in recent years, change are very important in agriculture, from traditional farms extensive cultivation of rain-fed cereal crops such as intensive vegetale broccoli or tomatoes. (Author) 16 refs.

  20. Electrical, structural, and chemical properties of HfO₂ films formed by electron beam evaporation

    OpenAIRE

    Cherkaoui, K.; Monaghan, S.; Negara, M. A.; Modreanu, M.; Hurley, P. K.; O’Connell, D.; McDonnell, Stephen; Hughes, Greg; Wright, S.; Barklie, R.C.; Bailey, P; Noakes, T. C. Q.

    2008-01-01

    High dielectric constant hafnium oxide films were formed by electron beam (e-beam) evaporation on HF last terminated silicon (100) wafers. We report on the influence of low energy argon plasma ( ∼ 70 eV) and oxygen flow rate on the electrical, chemical, and structural properties of metal-insulator-silicon structures incorporating these e-beam deposited HfO2 films. The use of the film-densifying low energy argon plasma during the deposition results in an increase in the equivalent oxide thickn...

  1. Physico-Chemical Properties, Composition and Oxidative Stability of Camelina sativa Oil

    OpenAIRE

    Abramovič, Helena; Abram, Veronika

    2005-01-01

    Camelina sativa is a cruciferous oilseed plant. With the aim of describing the general characteristics of the oil obtained from the seeds of plants grown in Slovenia and of comparing it to camelina oil from other countries we determined some physico-chemical properties, fatty acid composition, iodine and saponification value and followed its oxidative stability under different storage conditions. The density at 20 °C was (0.927 0.0001) g/cm3 and the refractive index reached 1.4756 0.0001 at...

  2. Load transfer and mechanical properties of chemically reduced graphene reinforcements in polymer composites

    International Nuclear Information System (INIS)

    We report load transfer and mechanical properties of chemically derived single layer graphene (SLG) as reinforcements in poly (dimethyl) siloxane (PDMS) composites. Shear mixing reduced graphene sheets in polymers resulted in a marked decrease of the 2D band intensity due to doping and functionalization. Raman G mode shifts of 11.2 cm−1/% strain in compression and 4.2 cm−1/% strain in tension are reported. Increases in elastic modulus of PDMS by ∼42%, toughness by ∼39%, damping capability by ∼673%, and strain energy density of ∼43% by the addition of 1 wt% SLG in PDMS are reported. (paper)

  3. Analysis of the Engineering Restoration Effect of Abandoned Yongledian Quarry in Beijing City Based on Soil Physical and Chemical Properties

    Institute of Scientific and Technical Information of China (English)

    Liwei; CAI

    2014-01-01

    The improvement of the soil physical and chemical properties is the most important foundation for mine ecological restoration.The experiment is aimed at undisturbed area,restored area,and damaged area of abandoned Yongledian Quarry in Beijing.Through determination and analysis of soil physical and chemical properties,it shows that there are significant differences in the composite effects of soil physical and chemical properties between restored area,and undisturbed area,damaged area,and engineering restoration effectively improves the composite effects of soil physical and chemical properties in the restored area.The single factor hypothesis test shows that soil pH value,organic matter,alkali-hydrolyzable nitrogen,and total nitrogen traits are the key targets to be restored in this mining area.

  4. Impact of chemically amended pig slurry on greenhouse gas emissions, soil properties and leachate.

    Science.gov (United States)

    O' Flynn, Cornelius J; Healy, Mark G; Lanigan, Gary J; Troy, Shane M; Somers, Cathal; Fenton, Owen

    2013-10-15

    The effectiveness of chemical amendment of pig slurry to ameliorate phosphorus (P) losses in runoff is well studied, but research mainly has concentrated only on the runoff pathway. The aims of this study were to investigate changes to leachate nutrient losses, soil properties and greenhouse gas (GHG) emissions due to the chemical amendment of pig slurry spread at 19 kg total phosphorus (TP), 90 kg total nitrogen (TN), and 180 kg total carbon (TC) ha(-1). The amendments examined were: (1) commercial grade liquid alum (8% Al2O3) applied at a rate of 0.88:1 [Al:TP], (2) commercial-grade liquid ferric chloride (38% FeCl3) applied at a rate of 0.89:1 [Fe:TP] and (3) commercial-grade liquid poly-aluminium chloride (PAC) (10% Al2O3) applied at a rate of 0.72:1 [Al:TP]. Columns filled with sieved soil were incubated for 8 mo at 10 °C and were leached with 160 mL (19 mm) distilled water wk(-1). All amendments reduced the Morgan's phosphorus and water extractable P content of the soil to that of the soil-only treatment, indicating that they have the ability to reduce P loss in leachate following slurry application. There were no significant differences between treatments for nitrogen (N) or carbon (C) in leachate or soil, indicating no deleterious impact on reactive N emissions or soil C cycling. Chemical amendment posed no significant change to GHG emissions from pig slurry, and in the cases of alum and PAC, reduced cumulative N2O and CO2 losses. Chemical amendment of land applied pig slurry can reduce P in runoff without any negative impact on nutrient leaching and GHG emissions. Future work must be conducted to ascertain if more significant reductions in GHG emissions are possible with chemical amendments. PMID:23850764

  5. Evaluating changes of transport properties of chemically degrading concrete using a coupled reactive transport model

    International Nuclear Information System (INIS)

    This paper presents a model to simulate chemical degradation of concrete due to leaching. The model considers simultaneously the multi-scale nature of concrete, a thermodynamic description of cement phases, and time-variable transport properties. It is implemented in the generic simulator HP1, which simulates the reactive transport in variably-saturated porous media. To illustrate the capabilities of the program, we simulate diffusive transport through concrete in contact with waters of different solution compositions (i.e., concentrations of major cations and anions and inorganic carbon contents) and use a homogenization scheme for up-scaling tortuosity. The simulations show the coupled effects between geochemical state variables, transport properties, and durability criteria for cementitious materials used in near-surface radioactive waste disposal facilities. (authors)

  6. Property and quantum chemical investigation of poly(ethyl α-cyanoacrylate)

    Science.gov (United States)

    Zhou, Yahong; Bei, Fengli; Ji, Haiyan; Yang, Xujie; Lu, Lude; Wang, Xin

    2005-03-01

    The poly(ethyl α-cyanoacrylate) (PEtCNA) was synthesized by anionic polymerization. With the composed PEtCNA, its IR spectrum, 1HNMR spectrum and configuration are measured. Meanwhile, molecular geometry, electronic structure, IR spectrum and thermodynamic property of reactant and transition state on the reaction potential energy level of ethyl α-cyanoacrylate with hydroxyl have been completely optimized and calculated for the first time by the density functional theory DFT-B3LYP method and on the level of 6-31+G* group. The order of 10 10 s -1 of initiating rate constant in gas phase was obtained for the reaction. These were reported the quantum chemical calculation results so as to deepen researches on the relationship between structure and properties.

  7. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Khandakar Showkat Osman; M. Jashimuddin; S. M. Sirajul Haque; Sohag Miah

    2013-01-01

    This study reports the effects of shifting cultivation at slashing stage on soil physicochemical properties at Bandarban Sadar Upazila in Chittagong Hill Tracts of Bangladesh. At this initial stage of shifting cultivation no general trend was found for moisture content, maximum water holding capacity, field capacity, dry and moist bulk density, parti-cle density for some chemical properties between shifting cultivated land and forest having similar soil texture. Organic matter was significantly (p≤0.05) lower in 1-year and 3-year shifting cultivated lands and higher in 2-year shifting cultivation than in adjacent natural forest. Significant differences were also found for total N, exchangeable Ca, Mg and K and in CEC as well as for available P. Slashed area showed higher soil pH. Deterioration in land quality starts from burning of slashing materials and continues through subsequent stages of shifting cultivation.

  8. Effects of bioleaching on the mechanical and chemical properties of waste rocks

    Science.gov (United States)

    Yin, Sheng-Hua; Wu, Ai-Xiang; Wang, Shao-Yong; Ai, Chun-Ming

    2012-01-01

    Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of experiments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The mineralogical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.

  9. The Influence of gamma radiations on physico-chemical properties of some polymer membranes

    International Nuclear Information System (INIS)

    In this paper we studied the way in which the surface morphology and the bulk properties are modified when some porous polymer membranes, obtained from poly (hydroxy-urethane) (PHU) and poly (vinyl alcohol) (PVA) were treated with gamma radiation. When different quantities of these two polymers were alloyed, we obtained membranes with various hydrophilic character, surface energy, resilience and initial elastic module. They are able to form hydro-gels viable for biomaterials. The gamma treatments of these membranes permit to obtain a stable surface in relation to the environmental conditions for low doses, but when the dose increases the gamma radiations induce changes in the chemical structure followed by degradation. Gamma radiations are usually used in biomedical field for sterilization. Therefore, in this study we intend to establish the properties modification induced by gamma radiations. (authors)

  10. Influence of deposition time on the properties of chemical bath deposited manganese sulfide thin films

    Directory of Open Access Journals (Sweden)

    Anuar Kassim

    2010-12-01

    Full Text Available Manganese sulfide thin films were chemically deposited from an aqueous solution containing manganese sulfate, sodium thiosulfate and sodium tartrate. The influence of deposition time (2, 3, 6 and 8 days on the properties of thin films was investigated. The structure and surface morphology of the thin films were studied by X-ray diffraction and atomic force microscopy, respectively. In addition, in order to investigate the optical properties of the thin films, the UV-visible spectrophotometry was used. The XRD results indicated that the deposited MnS2 thin films exhibited a polycrystalline cubic structure. The number of MnS2 peaks on the XRD patterns initially increased from three to six peaks and then decreased to five peaks, as the deposition time was increased from 2 to 8 days. From the AFM measurements, the film thickness and surface roughness were found to be dependent on the deposition time.

  11. On the relation between chemical composition and optical properties of detonation nanodiamonds

    KAUST Repository

    Kirmani, Ahmad R.

    2015-06-23

    The morphology and presence of impurities strongly influence mechanical, optical, electrical, and thermal properties of detonation nanodiamonds (DNDs). Here we report insights on the chemical composition and its effect on the optical properties of the DNDs obtained by rate-zonal density gradient ultracentrifugation. Herein, for the first time, a detailed valence band structure of as-prepared and oxidized DNDs is reported. Photoemission spectroscopy (PES) measurements demonstrate that the defects, originating from fullerene-like C bonding in the sp2 shells of the DNDs, are governing the literature-reported loss of the emission spectral features arising from the nitrogen-vacancy (NV) center excitations. X-ray photoelectron spectroscopy (XPS) measurements reveal that nitrogen is present in the DNDs in the form of N–O bonded species located at the surface region/sp2 shells, while in core of the DND it is in the form of N–C/N=C species.

  12. Chemical composition and the acid-base properties of the InSb-ZnSe surface

    International Nuclear Information System (INIS)

    Acid-base properties and chemical composition of the surface of solid solutions and binary compounds of the system InSb-ZnSe powders and films 0.25-0.35 μm thick were studied using a complex of physicochemical methods. It was ascertained that the initial surface features largely acid properties with transition to low-basic ones in the series InSb → (InSb)x(ZnSe)1-x → ZnSe. There are two types of acid centers on the surface: the Lewis (electron-accepted) and Broensted ones (adsorbed water molecules and OH- groups). After thermal vacuum treatment the surface composition was similar to stoichiometric one

  13. Structural and optical properties of tellurium films obtained by chemical vapor deposition(CVD)

    Institute of Scientific and Technical Information of China (English)

    MA Yu-tian; GONG Zhu-Qing; XU Wei-Hong; HUANG Jian

    2006-01-01

    Tellurium thin films were prepared by the chemical vapor deposition method. The structure, surface morphology and optical properties of the Te thin films were analyzed by powder X-ray diffraction, scanning electron microscopy, FTIR transmission,UV/VIS/NIR transmission and reflectance. The results show that the films structural and optical properties are influenced by many factors such as film thickness, crystallite size and substrate temperature. The films as thick as 111-133 nm have high IR transmission across the full 8-13 μm band and highly blocking in the solar spectral region elsewhere, which indicates that Te films thickness in this region can be used as good solar radiation shields in radiative cooling devices.

  14. Chemical vapor deposition polymerization the growth and properties of parylene thin films

    CERN Document Server

    Fortin, Jeffrey B

    2004-01-01

    Chemical Vapor Deposition Polymerization - The Growth and Properties of Parylene Thin Films is intended to be valuable to both users and researchers of parylene thin films. It should be particularly useful for those setting up and characterizing their first research deposition system. It provides a good picture of the deposition process and equipment, as well as information on system-to-system variations that is important to consider when designing a deposition system or making modifications to an existing one. Also included are methods to characterizae a deposition system's pumping properties as well as monitor the deposition process via mass spectrometry. There are many references that will lead the reader to further information on the topic being discussed. This text should serve as a useful reference source and handbook for scientists and engineers interested in depositing high quality parylene thin films.

  15. Chemical properties of tannic extracts from bark of Pinus oocarpa and their use as adhesive

    Directory of Open Access Journals (Sweden)

    Michel Cardoso Vieira

    2014-03-01

    Full Text Available This work evaluated the properties of aqueous extracts obtained from the bark of Pinus oocarpa under addition of sodium sulfite and sodium bisulfite and the possibility of employment of tannins from the bark as an adhesive for bonding wood. After evaluation of the chemical properties of tannic extracts it was decided to employ the extraction with distilled water under addition of / 5% sodium sulfite to prepare for the tannin-formaldehyde adhesive. Adhesive phenol formaldehyde and urea-formaldehyde were modified with 10% tannin Pinus oocarpa and the effect of this addition on the quality of the adhesive was evaluated. The addition from the bark of Pinus oocarpa showed that it is possible to use pure tannin as an adhesive because of its good gluing characteristics. The addition of tannic extract to synthetic adhesives contributed to increase viscosity values. Thus the substitution of synthetic adhesives by tannins is possible only up to 10%.

  16. Soil uses during the sugarcane fallow period: influence on soil chemical and physical properties and on sugarcane productivity

    OpenAIRE

    Roniram Pereira da Silva; Carolina Fernandes

    2014-01-01

    The planting of diversified crops during the sugarcane fallow period can improve the chemical and physical properties and increase the production potential of the soil for the next sugarcane cycle. The primary purpose of this study was to assess the influence of various soil uses during the sugarcane fallow period on soil chemical and physical properties and productivity after the first sugarcane harvest. The experiment was conducted in two areas located in Jaboticabal, São Paulo State, Brazi...

  17. Critically Evaluated Database of Environmental Properties: The Importance of Thermodynamic Relationships, Chemical Family Trends, and Prediction Methods

    Science.gov (United States)

    Brockbank, Sarah A.; Russon, Jenna L.; Giles, Neil F.; Rowley, Richard L.; Wilding, W. Vincent

    2013-11-01

    A database containing Henry's law constants, infinite dilution activity coefficients, and solubility data of industrially important chemicals has been compiled for aqueous systems. These properties are important in predicting the fate and transport of chemicals in the environment. The structure of this database is compatible with the existing 801 database and DIADEM interface, and data are included for a subset of compounds found in the 801 database. Thermodynamic relationships, chemical family trends, and predicted values were carefully considered when designating recommended values.

  18. Optical, physical and chemical properties of transported African mineral dust aerosols in the Mediterranean region

    Science.gov (United States)

    Denjean, Cyrielle; Di Biagio, Claudia; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Loisil, Rodrigue; Triquet, Sylvain; Zapf, Pascal; Roberts, Greg; Bourrianne, Thierry; Torres, Benjamin; Blarel, Luc; Sellegri, Karine; Freney, Evelyn; Schwarzenbock, Alfons; Ravetta, François; Laurent, Benoit; Mallet, Marc; Formenti, Paola

    2014-05-01

    The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), two intensive airborne campaigns (TRAQA, TRansport and Air QuAlity, 18 June - 11 July 2012, and ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) have been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to

  19. Properties of baryonic, electric and strangeness chemical potentials and some of their consequences in relativistic heavy ion collisions

    CERN Document Server

    Mekjian, Aram Z

    2007-01-01

    Analytic expressions are given for the baryonic, electric and strangeness chemical potentials which explicitly show the importance of various terms. Simple scaling relations connecting these chemical potentials are found. Applications to particle ratios and to fluctuations and related thermal properties such as the isothermal compressibility kappaT are illustrated. A possible divergence of kappaT is discussed.

  20. Estimation of Environment-Related Properties of Chemicals for Design of Sustainable Processes: Development of Group-Contribution+ (GC+) Property Models and Uncertainty Analysis

    Science.gov (United States)

    The aim of this work is to develop group-contribution+ (GC+) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncert...

  1. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    Science.gov (United States)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  2. Impact of the post fire management in some soil chemical properties. First results.

    Science.gov (United States)

    Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Úbeda, Xavi

    2016-04-01

    Post-fire management after severe wildfires has impact on soil properties. In Mediterranean environments management of fire affected areas is a common practice. This intervention may change soil chemical properties of the soil such as major cations. The aim of this work is to study the impact of different types of forest management in soil extractable calcium, magnesium, sodium and potassium after a severe wildfire. The study area is located in Ódena (Catalonia, Spain). The wildfire occurred at July 27th of 2015 and burned 1235 ha. After the fire an experimental plot was designed 9 plots with 2x2 meters (4 square meters). The different managements were: a) clear-cuted area and wood removed, b) no treatment); and c) clear-cutted. The results of the first sampling showed significant differences among all treatments in extractable calcium, sodium and potassium. The amount of these extractable elements was high in clear-cutted treatment in comparison to the others. No differences were identified in extractable magnesium. Overall, in the immediate period after the fire, burned area management, changed the studied soil properties. We are currently studying the evolution of this soil properties in these plots with the time

  3. The physical and chemical properties of polymerization reaction for contact lens irradiated by electron beam

    International Nuclear Information System (INIS)

    Can EB irradiation be possible the polymerization of HEMA without the cross-linker and initiator? The physical and chemical properties of the polymers are compared between the two polymerization methods Discuss the effects of the EB irradiation on the polymerization for having a good physical properties for the both hard and soft contact lens. EB irradiation can be used to the polymerization reaction and the EB polymerization take place at a very short period of time without any cross-linker and initiator and initiator above 100 kGy of EB dose. The polymer synthesized by EB irradiation can improve the physical properties of contact lens → increase of the OH group on the surface by EB irradiation, resulting in increase o the water content and oxygen permeability of the contact lens The contact lens synthesized by EB irradiation could improve the physical properties of the contact lens, and specially can apply to a disposable soft contact lens with high water content and oxygen permeability

  4. The physical and chemical properties of polymerization reaction for contact lens irradiated by electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Sin, Junghyeok; Jun, Jin [Dongshin Univ., Naju (Korea, Republic of)

    2010-07-01

    Can EB irradiation be possible the polymerization of HEMA without the cross-linker and initiator? The physical and chemical properties of the polymers are compared between the two polymerization methods Discuss the effects of the EB irradiation on the polymerization for having a good physical properties for the both hard and soft contact lens. EB irradiation can be used to the polymerization reaction and the EB polymerization take place at a very short period of time without any cross-linker and initiator and initiator above 100 kGy of EB dose. The polymer synthesized by EB irradiation can improve the physical properties of contact lens {yields} increase of the OH group on the surface by EB irradiation, resulting in increase o the water content and oxygen permeability of the contact lens The contact lens synthesized by EB irradiation could improve the physical properties of the contact lens, and specially can apply to a disposable soft contact lens with high water content and oxygen permeability.

  5. Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia.

    Science.gov (United States)

    Moretto, Cristiane; Castellane, Tereza Cristina Luque; Lopes, Erica Mendes; Omori, Wellington Pine; Sacco, Laís Postai; Lemos, Eliana Gertrudes de Macedo

    2015-11-01

    The rheological, physicochemical properties, emulsification and stability of exopolysaccharides (EPSs) from four rhizobia isolates (LBMP-C01, LBMP-C02, LBMP-C03 and LBMP-C04) were studied. The EPS yields of isolates under these experimental conditions were in the range of 1.5-6.63gL(-1). The LBMP-C04 isolate, which presented the highest EPS production (6.63gL(-1)), was isolated from Arachis pintoi and was identified as a Rhizobium sp. strain that could be explored as a possible potential source for the production of extracellular heteropolysaccharides. All polymers showed a pseudoplastic non-Newtonian fluid behavior or shear thinning property in aqueous solutions. Among the four EPS tested against hydrocarbons, EPS LBMP-C01 was found to be more effective against hexane, olive and soybean oils (89.94%, 82.75% and 81.15%, respectively). Importantly, we found that changes in pH (2-11) and salinity (0-30%) influenced the emulsification of diesel oil by the EPSs. EPSLBMP-C04 presented optimal emulsification capacity at pH 10 (E24=53%) and 30% salinity (E24=27%). These findings contribute to the understanding of the influence of the chemical composition, physical properties and biotechnology applications of rhizobial EPS solutions their bioemulsifying properties. PMID:26234581

  6. Nutritive Composition and Properties Physico-chemical of gumbo (Abelmoschus esculentus L. Seed and Oil

    Directory of Open Access Journals (Sweden)

    J.M. Nzikou

    2010-01-01

    Full Text Available Chemical and physical properties of mature gumbo (Abelmoschus esculentus L. seeds fromImpfondo, in North Congo-Brazzaville were evaluated. The chemical properties evaluated were moisture, crudeprotein, crude oil, crude ash, crude fiber, and crude energy. The oil from A.esculentus seeds was extracted usingtwo oils extraction methods with petroleum ether (Soxlhet and extraction with a mixture ofchloroform:methanol (1:1 (Blye and Dyer.The oil concentration ranged from 24.90% (Soxlhet to 21.98%(Blye & Dyer. The minerals, viscosity, acidity, saponification value, iodine value, fatty acid methyl esters,unsaponifiable matter content, peroxide value, activation energy and differential scanning calorimetry w eredetermined. Abelmoschus esculentus L. seeds have ash content of 5.68% (with the presence of followingminerals: Ca, M g, K and N a. The oil was found to contain high levels of unsaturated fatty acids, especiallyoleic (up to 24.89% and linoleic (up to 42.78%. Abelmoschus esculentus L. oil can be classified in theoleic-linoleic acid group. The dominant saturated acid w as palmitic (up to 25.79%. Abelmoschus esculentusL. seeds were also founded to contain high levels of crude protein (24.85%. The content of insaponifiables is1.53%. Taking into account these results, the gumbo (Abelmoschus esculentus L. finds its applications in thefood and cosmetic industry.

  7. Comparison of Selected Soil Chemical Properties of Two Different Mangrove Forests in Sarawak

    Directory of Open Access Journals (Sweden)

    Empi Rambok

    2010-01-01

    Full Text Available Problem statement: Despite few studies of forest health and environmental conditions of mangrove forest in Sarawak, the data was not sufficient to facilitate baseline data and direct comparison of mangrove forest health obtained for different location of mangrove forest in Sarawak. On this regard, determination of contemporary mangrove soil condition was essential to addressing mangrove forest for forest health, carbon storage and environmental balance. The study attempts to obtained preliminary database of mangrove forest soil chemical properties and to compare the forest health from two different mangrove forest locations. Approach: Mangrove soil samples were taken from Miri and Limbang Division of Sarawak at 0-30 cm depth. Selected soil chemical properties were determined and data obtained were analyzed using Statistical Analysis System (SAS Version 9.2. Results: The soil acidity, total N, total P, CEC and humic acid of both locations were significantly different while in terms of total carbon and organic matter were similar. Conclusion: Regional diversity has significant effects the soil acidity, total N, total P, CEC and yield of the study areas. Data obtained can be useful for further study of carbon stock and nutrient content.

  8. Temperature effect on physical and chemical properties of secondary organic aerosol from m-xylene photooxidation

    Directory of Open Access Journals (Sweden)

    D. R. Cocker III

    2010-01-01

    Full Text Available The chemical and physical differences of secondary organic aerosol (SOA formed at select isothermal temperatures (278 K, 300 K, and 313 K are explored with respect to density, particle volatility, particle hygroscopicity, and elemental chemical composition. A transition point in SOA density, volatility, hygroscopicity and elemental composition is observed near 290–292 K as SOA within an environmental chamber is heated from 278 K to 313 K, indicating the presence of a thermally labile compound. No such transition points are observed for SOA produced at 313 K or 300 K and subsequently cooled to 278 K. The SOA formed at the lowest temperatures (278 K is more than double the SOA formed at 313 K. SOA formed at 278 K is less hydrophilic and oxygenated while more volatile and dense than SOA formed at 300 K or 313 K. The properties of SOA formed at 300 K and 313 K when reduced to 278 K did not match the properties of SOA initially formed at 278 K. This study demonstrates that it is insufficient to utilize the enthalpy of vaporization when predicting SOA temperature dependence.

  9. Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties

    Directory of Open Access Journals (Sweden)

    Gonos Efstathios

    2011-06-01

    Full Text Available Abstract Background Pollen is a bee-product known for its medical properties from ancient times. In our days is increasingly used as health food supplement and especially as a tonic primarily with appeal to the elderly to ameliorate the effects of ageing. In order to evaluate the chemical composition and the biological activity of Greek pollen which has never been studied before, one sample with identified botanical origin from sixteen different common plant taxa of Greece has been evaluated. Results Three different extracts of the studied sample of Greek pollen, have been tested, in whether could induce proteasome activities in human fibroblasts. The water extract was found to induce a highly proteasome activity, showing interesting antioxidant properties. Due to this activity the aqueous extract was further subjected to chemical analysis and seven flavonoids have been isolated and identified by modern spectral means. From the methanolic extract, sugars, lipid acids, phenolic acids and their esters have been also identified, which mainly participate to the biosynthetic pathway of pollen phenolics. The total phenolics were estimated with the Folin-Ciocalteau reagent and the total antioxidant activity was determined by the DPPH method while the extracts and the isolated compounds were also tested for their antimicrobial activity by the dilution technique. Conclusions The Greek pollen is rich in flavonoids and phenolic acids which indicate the observed free radical scavenging activity, the effects of pollen on human fibroblasts and the interesting antimicrobial profile.

  10. Optical and structural properties of PbI2 thin film produced via chemical dipping method

    Science.gov (United States)

    Kariper, İ. A.

    2016-06-01

    PbI2 thin films were deposited on glass substrates via chemical bath deposition. The characteristics of PbI2 thin films were examined through their structural and optical properties. X-ray diffraction spectra showed the presence of rhombohedral structure and atom planes were subject to change with the pH of the bath. Scanning electron microscope indicated uniform distribution of grains. Optical properties were examined via UV-VIS; optical spectrum of the thin films was measured at the range of 200-1100 nm wavelength. Optimum pH levels for producing thin films were found to be pH 4-5. It has been observed that transmission and optical band gap ( E g) increased with the pH of the bath, which varied between 66-95 and 2.24-2.50 %, respectively; on the other hand film thickness of PbI2 thin films was decreased with the pH of the bath. Energy-dispersive X-ray spectroscopy analysis were in accordance with theoretical value of PbI2 at pH = 4 and 5. Refractive index was negatively correlated with pH of the chemical bath; it has been calculated as 1.97, 1.40, 1.29 and 1.24 for the films produced at pH 2, 3, 4 and 5. The results of the study were compared with similar studies in the literature.

  11. Improving N(6)-methyladenosine site prediction with heuristic selection of nucleotide physical-chemical properties.

    Science.gov (United States)

    Zhang, Ming; Sun, Jia-Wei; Liu, Zi; Ren, Ming-Wu; Shen, Hong-Bin; Yu, Dong-Jun

    2016-09-01

    N(6)-methyladenosine (m(6)A) is one of the most common and abundant post-transcriptional RNA modifications found in viruses and most eukaryotes. m(6)A plays an essential role in many vital biological processes to regulate gene expression. Because of its widespread distribution across the genomes, the identification of m(6)A sites from RNA sequences is of significant importance for better understanding the regulatory mechanism of m(6)A. Although progress has been achieved in m(6)A site prediction, challenges remain. This article aims to further improve the performance of m(6)A site prediction by introducing a new heuristic nucleotide physical-chemical property selection (HPCS) algorithm. The proposed HPCS algorithm can effectively extract an optimized subset of nucleotide physical-chemical properties under the prescribed feature representation for encoding an RNA sequence into a feature vector. We demonstrate the efficacy of the proposed HPCS algorithm under different feature representations, including pseudo dinucleotide composition (PseDNC), auto-covariance (AC), and cross-covariance (CC). Based on the proposed HPCS algorithm, we implemented an m(6)A site predictor, called M6A-HPCS, which is freely available at http://csbio.njust.edu.cn/bioinf/M6A-HPCS. Experimental results over rigorous jackknife tests on benchmark datasets demonstrated that the proposed M6A-HPCS achieves higher success rates and outperforms existing state-of-the-art sequence-based m(6)A site predictors. PMID:27293216

  12. Changes of Chemical Soil Properties through Application of Different Tillage Methods

    Directory of Open Access Journals (Sweden)

    Ivka Kvaternjak

    2014-10-01

    Full Text Available In the period from 2005 to 2009 the influence of different tillage methods and timelines on chemical properties of soil during cultivation of maize (Zea mays L. and soybean (Glycine max in crop rotation was researched at testing grounds of Križevci College of Agriculture (N: 460 01’ 12’’; E: 160 34’ 28’’. Almost all researched chemical properties of soil indicated more favourable results with the application of spring and autumn primary tillage with reduced number of secondary tillage interventions. The smallest content of total nitrogen and to plant available potassium in soil was in control method of the most intensive tillage and it was determined at the end of the research. The worst results regarding humus quantity were observed in control tillage method. The applied spring primary soil tillage had unfavourable influence on soil reaction. All tillage methods, except the autumn method of primary tillage and secondary tillage with multi-tiller after a four year period indicated less plant available phosphorus. From the perspective of sustainable management, the application of tillage methods with reduced number of secondary tillage interventions, achieved more favourable results.

  13. Impact of no-till and conventional tillage practices on soil chemical properties

    International Nuclear Information System (INIS)

    There is a global concern about progressive increase in the emission of greenhouse gases especially atmosphere CO/sub 2/. An increasing awareness about environmental pollution by CO/sub 2/ emission has led to recognition of the need to enhance soil C sequestration through sustainable agricultural management practices. Conservation management systems such as no-till (NT) with appropriate crop rotation have been reported to increase soil organic C content by creating less disturbed environment. The present study was conducted on Vanmeter farm of The Ohio State University South Centers at Piketon Ohio, USA to estimate the effect of different tillage practices with different cropping system on soil chemical properties. Tillage treatments were comprised of conventional tillage (CT) and No-till (NT).These treatments were applied under continuous corn (CC), corn-soybean (CS) and corn soybean-wheat-cowpea (CSW) cropping system following randomized complete block design. No-till treatment showed significant increase in total C (30%), active C (10%), and passive salt extractable (18%) and microwave extractable C (8%) and total nitrogen (15%) compared to conventional tillage practices. Total nitrogen increased significantly 23 % in NT over time. Maximum effect of no-till was observed under corn-soybean-wheat-cowpea crop rotation. These findings illustrated that no-till practice could be useful for improving soil chemical properties. (author)

  14. Baryon chemical potential and in-medium properties of BPS skyrmions

    CERN Document Server

    Adam, C; Naya, C; Sanchez-Guillen, J; Vazquez, R; Wereszczynski, A

    2015-01-01

    We continue the investigation of thermodynamical properties of the BPS Skyrme model. In particular, we analytically compute the baryon chemical potential both in the full field theory and in a mean-field approximation. In the full field theory case, we find that the baryon chemical potential is always exactly proportional to the baryon density, for arbitrary solutions. We further find that, in the mean-field approximation, the BPS Skyrme model approaches the Walecka model in the limit of high density - their thermodynamical functions as well as the equation of state agree in this limit. This fact allows to read off some properties of the $\\omega$-meson from the BPS Skyrme action, even though the latter model is entirely based on the (pionic) $SU(2)$ Skyrme field. On the other hand, at low densities, at the order of the usual nuclear matter density, the equations of state of the two models are no longer universal, such that a comparison depends on some model details. Still, also the BPS Skyrme model gives rise...

  15. Chemical linkage to injected tissues is a distinctive property of oxidized avidin.

    Directory of Open Access Journals (Sweden)

    Rita De Santis

    Full Text Available We recently reported that the oxidized avidin, named AvidinOX®, resides for weeks within injected tissues as a consequence of the formation of Schiff's bases between its aldehyde groups and tissue protein amino groups. We also showed, in a mouse pre-clinical model, the usefulness of AvidinOX for the delivery of radiolabeled biotin to inoperable tumors. Taking into account that AvidinOX is the first oxidized glycoprotein known to chemically link to injected tissues, we tested in the mouse a panel of additional oxidized glycoproteins, with the aim of investigating the phenomenon. We produced oxidized ovalbumin and mannosylated streptavidin which share with avidin glycosylation pattern and tetrameric structure, respectively and found that neither of them linked significantly to cells in vitro nor to injected tissues in vivo, despite the presence of functional aldehyde groups. The study, extended to additional oxidized glycoproteins, showed that the in vivo chemical conjugation is a distinctive property of the oxidized avidin. Relevance of the high cationic charge of avidin into the stable linkage of AvidinOX to tissues is demonstrated as the oxidized acetylated avidin lost the property. Plasmon resonance on matrix proteins and cellular impedance analyses showed in vitro that avidin exhibits a peculiar interaction with proteins and cells that allows the formation of highly stable Schiff's bases, after oxidation.

  16. Physical and chemical properties of Red MSX Sources in the southern sky: HII regions

    CERN Document Server

    Yu, Naiping; Li, Nan

    2016-01-01

    We have studied the physical and chemical properties of 18 southern Red Midcourse Space Experiment Sources (RMSs), using archival data taken from the Atacama Pathfinder Experiment (APEX) Telescope Large Area Survey of the Galaxy, the Australia Telescope Compact Array, and the Millimeter Astronomy Legacy Team Survey at 90 GHz. Most of our sources have simple cometary/unresolved radio emissions at 4.8 and/or 8.6GHz. The large number of Lyman continuum fluxes (NL) indicates they are probably massive O- or early B-type star formation regions. Archival IRAS infrared data are used to estimate the dust temperature, which is about 30 K of our sources. Then, the H2 column densities and the volume-averaged H2 number densities are estimated using the 0.87 mm dust emissions. Large-scale infall and ionized accretions may be occurring in G345.4881+00.3148. We also attempt to characterize the chemical properties of these RMSs through molecular line (N2H+ (1-0) and HCO+ (1-0)) observations. Most of the detected N2H+ and HCO+...

  17. Optical and structural properties of PbI2 thin film produced via chemical dipping method

    Science.gov (United States)

    Kariper, İ. A.

    2016-05-01

    PbI2 thin films were deposited on glass substrates via chemical bath deposition. The characteristics of PbI2 thin films were examined through their structural and optical properties. X-ray diffraction spectra showed the presence of rhombohedral structure and atom planes were subject to change with the pH of the bath. Scanning electron microscope indicated uniform distribution of grains. Optical properties were examined via UV-VIS; optical spectrum of the thin films was measured at the range of 200-1100 nm wavelength. Optimum pH levels for producing thin films were found to be pH 4-5. It has been observed that transmission and optical band gap (E g) increased with the pH of the bath, which varied between 66-95 and 2.24-2.50 %, respectively; on the other hand film thickness of PbI2 thin films was decreased with the pH of the bath. Energy-dispersive X-ray spectroscopy analysis were in accordance with theoretical value of PbI2 at pH = 4 and 5. Refractive index was negatively correlated with pH of the chemical bath; it has been calculated as 1.97, 1.40, 1.29 and 1.24 for the films produced at pH 2, 3, 4 and 5. The results of the study were compared with similar studies in the literature.

  18. An assessment of chemical properties and hardgrove grindability index of punjab coal

    International Nuclear Information System (INIS)

    This paper deals with the delamination of chemical properties and hardgrove grindability index (HGI) of coal samples collected from three different coal fields of Punjab; Eastern Salt Range, Central Salt Range and Makerwal coal fields. The chemical properties of Punjab coal reveal that most of the Punjab coal belongs to sub-bituminous category except coal of Tunnel C section of Makerwal Collieries and Iqbal Mineral coal mine of Dalwal, which are high volatile bituminous and lignite, respectively. The results of the research show that the HGI values of Punjab coal vary from 57 to 92. The eastern salt range coals are found to be the softest coals among that of three coal fields. It was further observed that the HGI values of the Punjab coal decrease with increasing moisture content, fixed carbon and sulphur contents, while it has a positive relation with volatile matter, ash content and gross calorific value. It was concluded that moisture content at its lower range has negligible effect on HGI of the Punjab coal. (author)

  19. Hybrid density functional study on lattice vibration, thermodynamic properties, and chemical bonding of plutonium monocarbide

    Science.gov (United States)

    Rong, Yang; Bin, Tang; Tao, Gao; BingYun, Ao

    2016-06-01

    Hybrid density functional theory is employed to systematically investigate the structural, magnetic, vibrational, thermodynamic properties of plutonium monocarbide (PuC and PuC0.75). For comparison, the results obtained by DFT, DFT + U are also given. For PuC and PuC0.75, Fock-0.25 hybrid functional gives the best lattice constants and predicts the correct ground states of antiferromagnetic (AFM) structure. The calculated phonon spectra suggest that PuC and PuC0.75 are dynamically stable. Values of the Helmholtz free energy ΔF, internal energy ΔE, entropy S, and constant-volume specific heat C v of PuC and PuC0.75 are given. The results are in good agreement with available experimental or theoretical data. As for the chemical bonding nature, the difference charge densities, the partial densities of states and the Bader charge analysis suggest that the Pu–C bonds of PuC and PuC0.75 have a mixture of covalent character and ionic character. The effect of carbon vacancy on the chemical bonding is also discussed in detail. We expect that our study can provide some useful reference for further experimental research on the phonon density of states, thermodynamic properties of the plutonium monocarbide. Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160 and 21401173).

  20. MINERAL CONTENTS AND PHYSICAL, CHEMICAL, SENSORY PROPERTIES OF ICE CREAM ENRICHED WITH DATE FIBRE

    Directory of Open Access Journals (Sweden)

    Filiz Yangılar

    2015-09-01

    Full Text Available Date samples of Amber cultivar straining from Medina region (Saudi Arabia were analysed for their chemical compositions and physicochemical properties of date fibre in the present study. Fibre rich date pieces were found to contain 80.2 g/100 g total dietary fibre, 16.32 g water/g sample water-holding capacity while 9.50 g oil/g sample oil-holding capacity. It can be stated from these results that fibre content of date is a valuable dietary fibre source and used in food production as an ingredient. Effects of the addition of date fibres at different concentrations (1, 2, 3 and 4% were investigated on the physical, chemical, sensory properties and mineral content of ice cream in the present study. It was found that elemental composition of ice cream samples was affected significantly by the addition of date fibre concentrations (p<0.05 and the rates of K, Mg and Zn especially increased in the samples depending on the content of date fibre while the content of Ca and P decreased. It was determined from the sensory results that ice cream sample containing date fibre in the rate of 1 and 2% received the highest score from panellists.

  1. Chemical interactions and gel properties of black carp actomyosin affected by MTGase and their relationships.

    Science.gov (United States)

    Jia, Dan; Huang, Qilin; Xiong, Shanbai

    2016-04-01

    Partial least squares regression (PLSR) was applied to evaluate and correlate chemical interactions (-NH2 content, S-S bonds, four non-covalent interactions) with gel properties (dynamic rheological properties and cooking loss (CL)) of black carp actomyosin affected by microbial transglutaminase (MTGase) at suwari and kamaboko stages. The G' and CL were significantly enhanced by MTGase and their values in kamaboko gels were higher than those in suwari gels at the same MTGase concentration. The γ-carboxyamide and amino cross-links, catalyzed by MTGase, were constructed at suwari stage and contributed to the network formation, while disulfide bonds were formed not only in suwari gels but also in kamaboko gels, further enhancing the gel network. PLSR analysis revealed that 86.6-90.3% of the variation of G' and 91.8-94.4% of the variation of CL were best explained by chemical interactions. G' mainly depended on covalent cross-links and gave positive correlation. CL was positively correlated with covalent cross-links, but negatively related to non-covalent bonds, indicating that covalent bonds promoted water extrusion, whereas non-covalent bonds were beneficial for water-holding. PMID:26593605

  2. Chemically deposited TiO2/CdS bilayer system for photoelectrochemical properties

    Indian Academy of Sciences (India)

    P R Deshmukh; U M Patil; K V Gurav; S B Kulkarni; C D Lokhande

    2012-12-01

    In the present investigation, TiO2, CdS and TiO2/CdS bilayer system have been deposited on the fluorine doped tin oxide (FTO) coated glass substrate by chemical methods. Nanograined TiO2 was deposited on FTO coated glass substrates by successive ionic layers adsorption and reaction (SILAR) method. Chemical bath deposition (CBD)method was employed to deposit CdS thin film on pre-deposited TiO2 film. A further study has beenmade for structural, surface morphological, optical and photoelectrochemical (PEC) properties of FTO/TiO2, FTO/CdS and FTO/TiO2/CdS bilayers system. PEC behaviour of FTO/TiO2/CdS bilayers was studied and compared with FTO/CdS single system. FTO/TiO2/CdS bilayers system showed improved performance of PEC properties over individual FTO/CdS thin films.

  3. Effective reactive surface area: An anisotropic property of physically and chemically heterogeneous porous media

    International Nuclear Information System (INIS)

    Although transport calculations are often formulated in terms of mass-based isotropic distribution coefficients, it is the abundance of reactive surface areas of subsurface materials that controls contaminant adsorption. In water-saturated homogeneous systems devoid of advective fluxes (e.g., batch experiments), the available reactive surface area is similar to the total surface area (as measured by conventional methods such as BET gas adsorption). However, in physically and chemically heterogeneous systems with advective fluxes, the effective reactive surface area (i.e., the surface area that a packet of advecting water interacts with) is smaller than the laboratory measured surface area and is a complex function of advective velocity and the correlation structures of the physical and chemical heterogeneities. Theoretical derivations for an important but simple type of heterogeneity (fine-scale horizontal layering) suggest that the effective reactive surface area is an anisotropic property of the medium and is inversely correlated with the anisotropy in hydraulic conductivity. The implications of reactive transport anisotropy include the concept that the retardation factor should be treated as a directional property rather than being treated as a constant. Furthermore, because of the inverse relationship between effective reactive surface area and hydraulic conductivity, batch adsorption experiments tend to overestimate the retention of contaminants relative to intact natural materials

  4. Chemical properties of Aspergillus flavus-infected soybean seeds exposed to gamma-irradiation during storage

    International Nuclear Information System (INIS)

    The aim of the present study was to examine the chemical properties of Aspergillus flavus-infected soybean seeds exposed to different levels of gamma-irradiation; 0 1, 3 and 5 kGy, during storage. The results revealed that there was no effect of irradiation at different dose levels on moisture, protein, total lipids and amino acids content of the seeds for overall 60 days of storage under ambient temperature. At zero time, irradiation of A. flavus- infected-soybean seeds at 5.0 kGy caused a slight increase in peroxide value, no change in acid value, a slight decrease in saponification and iodine values in the crude oil extracted from the seeds. An increase in saturated fatty acids associated with a decrease in un-saturated fatty acids was also observed in the oil extracted from the seeds. Furthermore, at dose level 5 kGy the fungus growth was completely inhibited and there was no detection of aflatoxin B1 after 60 days of storage. It is concluded that gamma-irradiation of A. flavus-infected soybean seeds at dose level 5 kGY is sufficient to inhibit fungus growth and aflatoxin production over a storage period of 60 days without changes in major chemical properties of the seeds and the oil extracted from seeds

  5. Evaluation of the Chemical and Antioxidant Properties of Wild and Cultivated Mushrooms of Ghana

    Directory of Open Access Journals (Sweden)

    Mary Obodai

    2014-11-01

    Full Text Available Knowledge of the chemical composition of both wild and cultivated edible mushrooms in Ghana is limited. This study reports their nutritional value, composition in lipophilic and hydrophilic molecules, minerals and antioxidant properties. The samples were found to be nutritionally rich in carbohydrates, ranging from 64.14 ± 0.93 g in Pleurotus ostreatus strain EM-1 to 80.17 ± 0.34 g in Lentinus squarrosulus strain LSF. The highest level of proteins (28.40 ± 0.86 g was recorded in the mentioned P. ostreatus strain. Low fat contents were registered in the samples, with Auricularia auricula recording the lowest value. High levels of potassium were also observed with the following decreasing order of elements: K > P ~ Na > Mg > Ca. High levels of antioxidants were also observed, thus making mushrooms suitable to be used as functional foods or nutraceutical sources. Furthermore, this study provides new information regarding chemical properties of mushrooms from Ghana, which is very important for the biodiversity characterization of this country.

  6. Chemical Composition and Sensory and Pasting Properties of Blends of Maize-African Yam Bean Seed

    Directory of Open Access Journals (Sweden)

    Idowu Atinuke

    2015-07-01

    Full Text Available This study was designed to improve the nutritional content of maize flour by incorporating African yam bean (an underutilized crop with high nutritional value and to evaluate its effect on the chemical, sensory and pasting properties of the flour blends. Maize and African yam bean seed were processed into flours at ratios 100:0; 80:20; 70:30; 60:40 and 0:100 and used to produce tuwo, a maize-based meal, its sensory attributes being evaluated. Chemical and pasting properties of the flour blends were determined. Crude protein (9.61- 14.71%, crude fibre (1.34-5.81%, total ash (1.39-2.09% and sugar (4.11-6.01% contents increased while fat (4.53-3.94%, amylase (24.18-11.40%, starch (66.66-51.15% contents and some of the sensory qualities decreased significantly (p0.05 from control sample. Among the pasting parameters, final viscosity and break down viscosity reduced while peak viscosity and trough viscosity increased with increasing quantity of AYBF.

  7. Physico-chemical and Antioxidant Properties of Different Pumpkin Cultivars Grown in China

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-08-01

    Full Text Available To obtain more detailed knowledge of the differences among major pumpkin species grown in China, physico-chemical and antioxidant properties of four pumpkin cultivars (Miben, Hongli, Lvli, Xihulu were characterized and compared. Dry matter, total soluble solids, titratable acidity, fruit color, protein, fat, sugars, minerals, amino acids, &beta -carotene, L-ascorbic acid, total phenols and antioxidant activities (DPPH and FRAP were measured in the studied cultivars. The results showed great differences in the composition and characteristics of the pumpkin cultivars. Miben exhibited the highest concentration of dry matter, fat, Total Soluble Solid (TSS, Titratable Acidity (TA, sucrose, &beta-carotene, K, P, Fe, Zn and aspartic acid. Hongli had the highest concentration protein, L-ascorbic acid, Na, Ca, Mg and all individual amino acids except for asparitic acid. Lvli exhibited significantly (p<0.05 higher antioxidant activities (DPPH and FRAP, which are highly related to total phenols content in pumpkin fruits (r = 0.94 and r = 0.98, respectively. Principal Component Analysis (PCA allowed the four pumpkin cultivars to be differentiated clearly based on all these physico-chemical and antioxidant properties determined in the study.

  8. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    Directory of Open Access Journals (Sweden)

    Kim MH

    2016-06-01

    Full Text Available Min Hee Kim, Won Ho Park Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon, Korea Abstract: In this study, the synthesis of silk fibroin (SF hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel irradiated at different doses of γ-rays. The effects of the irradiation dose and SF concentration on the hydrogelation of SF were examined. The chemically cross-linked SF hydrogel was compared with the physically cross-linked one with regard to secondary structure and gel strength. Furthermore, the swelling behavior, crystallinity, and biodegradation of the SF hydrogels were characterized. To assay cell proliferation, the cell viability of human mesenchymal stem cells on the lyophilized SF hydrogel scaffolds was evaluated, and no significant cytotoxicity against human mesenchymal stem cells was observed. Keywords: silk fibroin, hydrogels, biodegradation rate, gamma irradiation, cross-linking

  9. Composition and Physico-Chemical Properties of Meat from Capons Fed Cereals

    Institute of Scientific and Technical Information of China (English)

    Olga Díaz; Luisana Rodríguez; Alexandr Torres; Ángel Cobos

    2013-01-01

    Chemical composition, physico-chemical properties and fatty acid composition of breast and drumstick meat from capons (castrated male cockerels) fed cereals were studied. Three groups of capons were reared. One group was fed ad libitum the same commercial diet until the 4th mon of life. The last month of its life, the capons of this group were fed corn. The second and third group of capons were fed the same diet from caponization. The second group was fed mixture of corn (50%) and wheat (50%). The third group of capons was fed 2/3 corn and 1/3 mixture of corn (50%) and barley (50%). Capons were reared under free-range conditions and slaughtered at 150 d of age. Caponization was performed at 48 d. No signiifcant effects of feeding in chemical composition, pH, water holding capacity, drip and cooking losses and texture of the meat were observed. The meat of the third group (capons fed 83%corn) was more yellow and showed higher content of C18:2 than that of the other capons.

  10. The effect of wash cleaning and demagnetization process on the fly ash physico-chemical properties

    Directory of Open Access Journals (Sweden)

    A. Baliński

    2007-04-01

    Full Text Available Problems related in this study concern the possibility of improving the physico-chemical properties of fly ash used as a base granular material in moulding mixtures. The investigations were carried out mainly to evaluate the process of the fly ash modification performed in order to stabilize its mineralogical and chemical composition. Changes in chemical composition, specific surface and helium density of fly ash after the process of its wash cleaning and demagnetization were examined. The analysis of the data has proved that the process of wash cleaning considerably reduces the content of sodium and potassium. Calcium and magnesium are washed out, too. The wash cleaning process of fly ash reduces also its true density. This fact can be due to the washing out of illite as well as some fractions of haematite (the grains weakly bonded to the glassy phase. The process of demagnetization allows removing about 25.7% of the magnetic phase calculated in terms of Fe2O3. The process of demagnetization is accompanied by a decrease in the content of aluminium, sodium, potassium and calcium, and a reduction in the size of the specific surface by over one half. The possible processes of transformation have also been discussed.

  11. Tuning photoluminescence and surface properties of carbon nanodots for chemical sensing

    Science.gov (United States)

    Zhang, Zhaomin; Pan, Yi; Fang, Yaning; Zhang, Lulu; Chen, Junying; Yi, Changqing

    2015-12-01

    Obtaining tunable photoluminescence (PL) with improved emission properties is crucial for successfully implementing fluorescent carbon nanodots (fCDs) in all practical applications such as multicolour imaging and multiplexed detection by a single excitation wavelength. In this study, we report a facile hydrothermal approach to adjust the PL peaks of fCDs from blue, green to orange by controlling the surface passivation reaction during the synthesis. This is achieved by tuning the passivating reagents in a step-by-step manner. The as-prepared fCDs with narrow size distribution show improved PL properties with different emission wavelengths. Detailed characterization of fCDs using elemental analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy suggested that the surface chemical composition results in this tunable PL emission. Surface passivation significantly alters the surface status, resulting in fCDs with either stronger surface oxidation or N element doping that ultimately determine their PL properties. Further experiments suggested that the as-prepared orange luminescent fCDs (O-fCDs) were sensitive and specific nanosensing platforms towards Fe3+ determination in a complex biological environment, emphasizing their potential practical applications in clinical and biological fields.Obtaining tunable photoluminescence (PL) with improved emission properties is crucial for successfully implementing fluorescent carbon nanodots (fCDs) in all practical applications such as multicolour imaging and multiplexed detection by a single excitation wavelength. In this study, we report a facile hydrothermal approach to adjust the PL peaks of fCDs from blue, green to orange by controlling the surface passivation reaction during the synthesis. This is achieved by tuning the passivating reagents in a step-by-step manner. The as-prepared fCDs with narrow size distribution show improved PL properties with different emission wavelengths. Detailed

  12. Effect of Organic Fertilizers on Soil Chemical Properties on Vineyard Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Tomislav Karažija

    2015-12-01

    Full Text Available Organic fertilizers are an important contribution of organic matter that modify the physical, chemical and microbiological characteristics of the soil. The aim of investigation was to determine the effect of different organic fertilization on soil chemical properties on vineyard calcareous soil. Two-year fertilization trial was carried out in the Plešivica wine-growing region, in a 10-year old vineyard, cv. Sauvignon White grafted on Kobber 5BB rootstock, planted on soil with quite high pH for grapevine growing. The trial was performed according to randomize complete block design with 6 treatments (unfertilized, farmyard manure 20 t ha-1 and 40 t ha-1, peat 20 000 L ha-1 and 40 000 L ha-1, NPK 5-20-30 500 kg ha-1+200 kg UREA ha-1 in 4 repetitions. Statistically significant differences in soil reaction (pH in plowing layer (0-30 cm were found among fertilization treatments in the second year of studies. In the plowing layer (0-30 cm in both years of the study significant differences between the values of average total nitrogen content and available phosphorus as well were found, while there were no significant differences in the subplowing layer (30-60cm. Regarding to average value of fertilization treatment, statistically significant difference in the content of available potassium in plowing layer were found in the both investigated years, while in subplowing layer statistical differences were found in the first year of investigation only. Therefore, fertilization with different organic fertilizers significantly influenced the most of studied chemical properties of the soil, especially in plowing layer (0-30 cm.

  13. Cassava Peels for Alternative Fibre in Pulp and Paper Industry: Chemical Properties and Morphology Characterization

    Directory of Open Access Journals (Sweden)

    Ashuvila Mohd Aripin

    2013-11-01

    Full Text Available Without a proper waste management, the organic wastes such as cassava peels could result in increased amount of solid waste dump into landfill. This study aims to use non-wood organic wastes as pulp for paper making industries; promoting the concept of ‘from waste to wealth and recyclable material’. The objective  of this study is to determine the potential of casssava peel as alternative fibre in pulp and paper based on its chemical properties and surface morphology characteristic. Quantified parameters involved are holocellulose, cellulose, hemicellulose, lignin, one percent of sodium hydroxide, hot water solubility and ash content. The chemical characterization was in accordance with relevant TAPPI Test, Kurscher-Hoffner and Chlorite methods. Scanning electron microscopy (SEM was used to observe and determine the morphological characteristic of untreated cassava peels fibre. In order to propose the suitability of the studied plant as an alternative fibre resource in pulp and paper making, the obtained results are compared to other published literatures especially from wood sources. Results indicated that the amount of holocellulose contents in cassava peels (66% is the lowest than of wood (70 - 80.5% and canola straw (77.5%; however this value is still within the limit suitability to produce paper. The lignin content (7.52% is the lowest than those of all wood species (19.9-26.22%. Finally, the SEM images showed that untreated cassava peel contains abundance fibre such as hemicellulose and cellulose that is hold by the lignin in it. In conclusion, chemical properties and morphological characteristics of cassava peel indicated that it is suitable to be used as an alternative fibre sources for pulp and paper making industry, especially in countries with limited wood resources

  14. Impact of Sulfuric Acid Treatment of Halloysite on Physico-Chemic Property Modification

    Directory of Open Access Journals (Sweden)

    Tayser Sumer Gaaz

    2016-07-01

    Full Text Available Halloysite (HNT is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1, 3 h (H3, 8 h (H8, and 21 h (H21. The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR. The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO6 octahedral layers and induces the disintegration of SiO4 tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO6 octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO4. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites.

  15. Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC+) property models and uncertainty analysis.

    Science.gov (United States)

    Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul

    2012-11-26

    The aim of this work is to develop group-contribution(+) (GC(+)) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For parameter estimation, large data sets of experimentally measured property values of a wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22 environment-related properties, which include the fathead minnow 96-h LC(50), Daphnia magna 48-h LC(50), oral rat LD(50), aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and noncarcinogenic), emission to continental rural air (carcinogenic and noncarcinogenic), emission to continental fresh water (carcinogenic and noncarcinogenic), emission to continental seawater (carcinogenic and noncarcinogenic), emission to continental natural soil (carcinogenic and noncarcinogenic), and emission to continental agricultural soil (carcinogenic and noncarcinogenic) have been modeled and analyzed. The application

  16. Modelling the optical properties of aerosols in a chemical transport model

    Science.gov (United States)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  17. Structure and physical–chemical properties of humic aсids of oligotrophic peat bog of arkhangelsk region

    Directory of Open Access Journals (Sweden)

    Kuznetsova Irina

    2014-03-01

    Full Text Available The article presents data on the elemental and functional composition of humic acids, their molecular weight characteristics, physical, chemical and acid-base properties. The sorption properties of humic acids towards Cd2+ and Pb2+ are studied. The relationship between the polyelectrolyte nature of humic acids and their sorption capacity is revealed.

  18. Resolving Changing Chemical and Physical Properties of SSA Particle Types during Laboratory Phytoplankton Blooms using Online Single Particle Analysis

    Science.gov (United States)

    Sultana, C. M.; Prather, K. A.; Richardson, R.; Wang, X.

    2015-12-01

    Changes in the chemical composition of sea spray aerosols (SSA) can modify their climate-relevant properties. Recent studies have shown a diverse set of distinct SSA particle types, however there are conflicting reports on how and whether biological activity controls the organic fraction and mixing state of SSA. This study leverages an aerosol time-of-flight mass spectrometer to give an accounting of the temporally resolved mixing state of primary SSA (0.4 - 3 µm vacuum aerodynamic diameter), encompassing 97% of particles detected over the course of laboratory phytoplankton blooms. The influence of biological activity on the climate relevant properties of defined particle types is also investigated. Spatial chemical particle heterogeneity and particularly the surface chemical composition of particles are described along with particle type specific water-particle interactions. These online measurements in tandem with chemical composition could give new insight on the link between seawater chemistry, marine aerosols, and climate properties.

  19. Impacts of land use changes on physical and chemical soil properties in the Central Pyrenees

    Science.gov (United States)

    Nadal Romero, Estela; Hoitinga, Leo; Valdivielso, Sergio; Pérez Cardiel, Estela; Serrano Muela, Pili; Lasanta, Teodoro; Cammeraat, Erik

    2015-04-01

    Soils and vegetation tend to evolve jointly in relation to climate evolution and the impacts of human activity. Afforestation has been one of the main policies for environmental management of forest landscapes in Mediterranean areas. Afforestation has been based mainly on conifers because they are fast-growing species, and also because it was believed that this would lead to rapid restoration of soil properties and hydrological processes, and the formation of protective vegetation cover. This study analyses the effects of afforestation on physical and chemical soil properties. Specifically, we addressed this research question: (i) How do soil properties change after land abandonment? The 11 microsites considered were: Afforestation Pinus sylvestris (escarpment, terrace and close to the stem), Afforestation Pinus nigra (escarpment, terrace and close to the stem), natural shrubland, grasslands, bare lands, and undisturbed forest site (pine cover and close to the stem). An extensive single sampling was carried out in September 2014. We systematically collected 5 top soil samples (0-10 cm) and 3 deep soil samples (10-20 cm) per microsite (88 composite samples in total). These properties were analysed: (i) soil texture, (ii) bulk density, (iii) pH and electrical conductivity, (iv) total SOC, (v) Total Nitrogen, (vi) organic matter, (vii) CaCO3 and (viii) aggregate stability. Statistical tests have been applied to determine relationships between the different soil properties and are used to assess differences between different soil samples, land use areas and soil depths. Implications of reafforestation for soil development and environmental response are discussed. Acknowledgments This research was supported by a Marie Curie Intra-European Fellowship in the project "MED-AFFOREST" (PIEF-GA-2013-624974).

  20. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  1. Physical and chemical properties of tropical peat under stabilised land uses

    Directory of Open Access Journals (Sweden)

    M. Könönen

    2015-10-01

    Full Text Available Land-use change has transformed large areas of tropical peatland into globally significant carbon sources. Associated changes in the properties of peat are important for soil processes including decomposition and nutrient cycling. To characterise the changes induced by stabilised land uses, we studied the physical and chemical properties of peat from four land management conditions (undrained and drained forest, degraded land, and managed agricultural land. Peat was sampled from depths of 10–15 cm, 40–45 cm, 80–85 cm and 110–115 cm then partitioned into woody (Ø >1.5 mm, fibric (Ø 0.15–1.5 mm and amorphic (Ø < 0.15 mm fractions. Bulk density and total concentrations of ash, C, N, P, K, Ca, Mg, Mn, Zn, Na, Al, Fe, S and Si were determined. There were clear differences between land uses in the characteristics of surface peat down to the 40–45 cm layer, the primary differences being between forested and open sites. Due to smaller particle sizes, the bulk density of peat was higher at the open sites, where Ca and Mg concentrations were also higher but N and P concentrations were lower. Changes in drainage and vegetation cover had resulted in differing outcomes from decomposition processes, and the properties of fire-impacted peats on the open sites had undergone extreme changes.

  2. Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages.

    Science.gov (United States)

    Basanta, María F; de Escalada Plá, Marina F; Stortz, Carlos A; Rojas, Ana M

    2013-01-30

    The cell wall polysaccharides of Regina and Sunburst cherry varieties at two developmental stages were extracted sequentially, and their changes in monosaccharide composition and functional properties were studied. The loosely-attached pectins presented a lower d-galacturonic acid/rhamnose ratio than ionically-bound pectins, as well as lower thickening effects of their respective 2% aqueous solution: the lowest Newtonian viscosity and shear rate dependence during the pseudoplastic phase. The main constituents of the cell wall matrix were covalently bound pectins (probably through diferulate cross-linkings), with long arabinan side chains at the RG-I cores. This pectin domain was also anchored into the XG-cellulose elastic network. Ripening occurred with a decrease in the proportion of HGs, water extractable GGM and xylogalacturonan, and with a concomitant increase in neutral sugars. Ripening was also associated with higher viscosities and thickening effects, and to larger distribution of molecular weights. The highest firmness and compactness of Regina cherry may be associated with its higher proportion of calcium-bound HGs localized in the middle lamellae of cell walls, as well as to some higher molar proportion of NS (Rha and Ara) in covalently bound pectins. These pectins showed significantly better hydration properties than hemicellulose and cellulose network. Chemical composition and functional properties of cell wall polymers were dependent on cherry variety and ripening stage, and helped explain the contrasting firmness of Regina and Sunburst varieties. PMID:23218373

  3. Structural and dynamical properties of water on chemically modified surfaces: The role of the instantaneous surface

    Science.gov (United States)

    Bekele, Selemon; Tsige, Mesfin

    Surfaces of polymers such as atactic polystyrene (aPS) represent very good model systems for amorphous material surfaces. Such polymer surfaces are usually modified either chemically or physically for a wide range of applications that include friction, lubrication and adhesion. It is thus quite important to understand the structural and dynamical properties of liquids that come in contact with them to achieve the desired functional properties. Using molecular dynamics (MD) simulations, we investigate the structural and dynamical properties of water molecules in a slab of water in contact with atactic polystyrene surfaces of varying polarity. We find that the density of water molecules and the number distribution of hydrogen bonds as a function of distance relative to an instantaneous surface exhibit a structure indicative of a layering of water molecules near the water/PS interface. For the dynamics, we use time correlation functions of hydrogen bonds and the incoherent structure function for the water molecules. Our results indicate that the polarity of the surface dramatically affects the dynamics of the interfacial water molecules with the dynamics slowing down with increasing polarity. This work was supported by NSF Grant DMR1410290.

  4. Influence of the Chemical Composition on Electrical Conductivity and Mechanical Properties of the Hypoeutectic Al-Si-Mg Alloys

    OpenAIRE

    Dybowski B.; Szymszal J.; Poloczek Ł.; Kiełbus A.

    2016-01-01

    Due to low density and good mechanical properties, aluminium alloys are widely applied in transportation industry. Moreover, they are characterized by the specific physical properties, such as high electrical conductivity. This led to application of the hypoeutectic Al-Si-Mg alloys in the power generation industry. Proper selection of the alloys chemical composition is an important stage in achievement of the demanded properties. The following paper presents results of the research on the inf...

  5. Spatial dynamics chemical properties in a lowland soil under sugarcane crop

    Science.gov (United States)

    Pereira da Silva, Wellington; Duarte Guedes Cabral de Almeida, Ceres; Machado Siqueira, Glécio; Patrícia Prazeres Marques, Karina; Medeiros Bezerra, Joel; Gomes de Almeida, Brivaldo

    2013-04-01

    Lowland soils are very important to sugarcane crop in rainy coastal zone in Northeast of Brazil. This soil is flat, high yield potential and high natural soil fertility. However, soil salinity problems can be occurred due to incorrect management, poor drainage and seasonal flood. The objective of this study was to evaluate spatial variability of chemical soil properties in a Gley soil under sugarcane crop. The study area is located in Rio Formoso city, Pernambuco (Brazil), at latitude 08°38'91"S and longitude 35°16'08"W, 60.45 m above sea level and average annual rainfall of 2100 mm. The region is characterized by rainy tropical, with dry summer, rainy season between May and August and temperatures ranging from 24 to 29°C. Non-deformed soil samples were collected from the surface layer (0-20 cm) in 5 ha, total of 54 samples. The following chemical properties were studied: pH, electrical conductivity (EC), calcium, magnesium, potassium, sodium, aluminum, hydrogen + aluminum, sum of bases, cation exchange capacity (CEC), sodicity (ESP), aluminum saturation, bases saturation and total exchangeable bases. Descriptive statistics and geostatistical techniques were used to spatial modeling and construction of maps. Overall, the data appeared to be normally distributed, with the exception of Ca, Mg, K, Al and aluminum saturation. The highest coefficient of variation was found for percentage of aluminum saturation (113%) and the lowest was for Na (26.03%). The attributes that spatially dependent models were fitted to the Gaussian (pH and Ca), exponential (Mg) and spherical (base saturation and CEC), the other attributes denoted a pure nugget effect. The presence of nugget effect for most of the attributes is due of the high water table fluctuation and recharge that acts directly on the spatial distribution of them. The maps of spatial variability of chemical soil proprieties showed that EC have been influenced by different chemical elements, but sodium was the

  6. Effect of gamma irradiation on the properties of various kinds of milk fat. I. Some chemical properties of milk fat

    International Nuclear Information System (INIS)

    Fresh cow's, buffalo's and goat's milk samples were subjected to ascendent doses of 8-rays of 250, 500 and 750 K.rad and heat treatment (700C/15 sec. then cooled) and were compared with raw milk sample (control). Acid values were 0.505, 0.486 and 0.568; peroxide values were 0.00, 0.00 and 0.178; iodine numbers were, 24.95, 32.95 and 33.06; Reichart-Meissl values were 24.91, 28.45 and 27.47 and Polenske values were 2.85, 3.73 and 7.07, respectively for cow's buffalo's and goat's raw milk fats, respectively. Heat treatment induced minor changes in the chemical properties of the three types of milk fat. Meanwhile, the exposure of the three types of milk to ascendent doses of γ-rays caused a gradual increase in acid and peroxide values and a gradual decrease in Reichart-Meissl and Polenske numbers. On the other hand, γ-irradiation decreased the iodine number of both buffalo's and goat's milk fat, while the same doses had no effect on this value of cow's milk fat

  7. Minimum quantity of urban refuse compost affecting physical and chemical soil properties

    Directory of Open Access Journals (Sweden)

    Andrea Rocchini

    2011-02-01

    Full Text Available The increasing production of urban waste requires urgent responses because of various environmental problems that arise when urban refuse is stored in landfills or incinerated. Recycling of domestic waste and composting of its organic fraction has been indicated as a possible disposal solution. A three-year experiment was conducted to quantify the minimum rate of urban refuse compost (URC addition able to improve some physical and chemical soil properties at the lowest cost and environmental impact. URC was added to a silty clay soil and to a sandy loam soil 0%, 3%, 6%, 9% rate (w/w. Samplings were made 12, 24 and 36 months after URC application. To study the only effect of compost on soil due to its interaction with the soil matrix, each soil-compost mixture was divided into three boxes and kept outdoors weed free. After 12 months, 3% URC resulted the minimum quantity able to ameliorate several soil properties. In silty clay soil this rate significantly ameliorated microaggregate stability and hydraulic conductivity, but negative effects were observed on electrical conductivity. After 24 months, 3% rate significantly increased soil organic matter content. In the sandy loam soil, after 12 months, 3% rate of URC determined a positive effect on organic matter and cone resistance in dry soil condition. Electrical conductivity increased at 3% URC addition. The minimum URC quantity affecting hydraulic conductivity and plastic limit was 6%, and 9% for the liquid limit. Under these experimental conditions, the lowest rate (3% of URC incorporation to soils appears to be the minimum quantity able to improve most of the soil properties influencing fertility. What the results show is that, to achieve sustainability of urban refuse compost application to agricultural soil, further research is needed to investigate soil property changes in the range between 0% and 3%.

  8. Minimum quantity of urban refuse compost affecting physical and chemical soil properties

    Directory of Open Access Journals (Sweden)

    Paolo Bazzoffi

    Full Text Available The increasing production of urban waste requires urgent responses because of various environmental problems that arise when urban refuse is stored in landfills or incinerated. Recycling of domestic waste and composting of its organic fraction has been indicated as a possible disposal solution. A three-year experiment was conducted to quantify the minimum rate of urban refuse compost (URC addition able to improve some physical and chemical soil properties at the lowest cost and environmental impact. URC was added to a silty clay soil and to a sandy loam soil 0%, 3%, 6%, 9% rate (w/w. Samplings were made 12, 24 and 36 months after URC application. To study the only effect of compost on soil due to its interaction with the soil matrix, each soil-compost mixture was divided into three boxes and kept outdoors weed free. After 12 months, 3% URC resulted the minimum quantity able to ameliorate several soil properties. In silty clay soil this rate significantly ameliorated microaggregate stability and hydraulic conductivity, but negative effects were observed on electrical conductivity. After 24 months, 3% rate significantly increased soil organic matter content. In the sandy loam soil, after 12 months, 3% rate of URC determined a positive effect on organic matter and cone resistance in dry soil condition. Electrical conductivity increased at 3% URC addition. The minimum URC quantity affecting hydraulic conductivity and plastic limit was 6%, and 9% for the liquid limit. Under these experimental conditions, the lowest rate (3% of URC incorporation to soils appears to be the minimum quantity able to improve most of the soil properties influencing fertility. What the results show is that, to achieve sustainability of urban refuse compost application to agricultural soil, further research is needed to investigate soil property changes in the range between 0% and 3%.

  9. A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties

    KAUST Repository

    Ahmed, Ahfaz

    2015-03-01

    Gasoline is the most widely used fuel for light duty automobile transportation, but its molecular complexity makes it intractable to experimentally and computationally study the fundamental combustion properties. Therefore, surrogate fuels with a simpler molecular composition that represent real fuel behavior in one or more aspects are needed to enable repeatable experimental and computational combustion investigations. This study presents a novel computational methodology for formulating surrogates for FACE (fuels for advanced combustion engines) gasolines A and C by combining regression modeling with physical and chemical kinetics simulations. The computational methodology integrates simulation tools executed across different software platforms. Initially, the palette of surrogate species and carbon types for the target fuels were determined from a detailed hydrocarbon analysis (DHA). A regression algorithm implemented in MATLAB was linked to REFPROP for simulation of distillation curves and calculation of physical properties of surrogate compositions. The MATLAB code generates a surrogate composition at each iteration, which is then used to automatically generate CHEMKIN input files that are submitted to homogeneous batch reactor simulations for prediction of research octane number (RON). The regression algorithm determines the optimal surrogate composition to match the fuel properties of FACE A and C gasoline, specifically hydrogen/carbon (H/C) ratio, density, distillation characteristics, carbon types, and RON. The optimal surrogate fuel compositions obtained using the present computational approach was compared to the real fuel properties, as well as with surrogate compositions available in the literature. Experiments were conducted within a Cooperative Fuels Research (CFR) engine operating under controlled autoignition (CAI) mode to compare the formulated surrogates against the real fuels. Carbon monoxide measurements indicated that the proposed surrogates

  10. Immunobiological properties of sesquiterpene lactones obtained by chemically transformed structural modifications of trilobolide.

    Science.gov (United States)

    Harmatha, Juraj; Vokáč, Karel; Buděšínský, Miloš; Zídek, Zdeněk; Kmoníčková, Eva

    2015-12-01

    Our previous research on immunostimulatory properties of trilobolide and its structurally related natural analogues isolated from Laser trilobum (L.) Borkh., encouraged us to investigate structurally related guaianolides belonging to a specific group of sesquiterpene lactones with characteristic glycol moiety attached to the lactone ring. Ever increasing attention has been paid to certain guaianolides such as thapsigargin and trilobolide for their promising anti-inflammatory, anticancer, anti-infectious and SERCA inhibitory activities. However, due to their alkylation capabilities, they might be cytotoxic. Search for compounds with preserved immunobiological properties and decreased cytotoxicity led us to transform some of their structural features, particularly those related to their side chain functionality. For this reason, we prepared a series of over 20 various deacylated, acyl modified, or relactonized derivatives of trilobolide. The immunobiological effects were screened in vitro using the rat peritoneal cells primed with lipopolysaccharide. Secretion of interferon-γ (IFN-γ), interleukins (IL) IL-1β, IL-6 and tumour necrosis factor-α (TNF-α) were determined by ELISA, and nitric oxide (NO) production by Griess reagent. Relation between the molecular structure and immunobiological activity was investigated. Acetylation at 7-OH and 11-OH positions of the lactone ring, or acyl modification of the guaianolide functionalities (including relactonization) of trilobolide, led to inability to stimulate secretion of cytokines and production of NO. Interestingly, minor structural changes achieved by catalytic hydrogenation or hydrogenolysis retained the original immunoactivity of trilobolide. It can be concluded that several new chemically transformed sesquiterpene lactones resembling the immunobiological properties of trilobolide or thapsigargin were prepared and identified. The implication of the lactone vicinal diol (glycol) moiety, combined with other structure

  11. Chemical synthesis, characterizations and magnetic properties of nanocrystalline Fe50Co50 alloy

    International Nuclear Information System (INIS)

    Nanocrystalline Fe50Co50 alloy has been synthesized successfully by chemical reduction route using superhydride as reducing agent and oleic acid and oleylamine as capping agents. Phase purity, crystallite size and lattice parameters of the synthesized NPs are determined by X-ray powder diffraction method. FeCo alloy crystallizes in body centered cubic (bcc) structure having crystallite size equal to 29 nm and lattice parameters equal to 2.8546 Å. The size and shape morphologies of the material were studied by SEM analysis. SEM micrograph study shows the average particle size to be 60 nm and indicates the appearance of agglomerates of the nano-particles consisting of several crystallites. The room temperature magnetic hysteresis studies indicate ferromagnetic behavior of the materials. The values of saturation magnetization and coercivity were 65 emu/g and 460 Oe, respectively. Magnetic properties of the material were interpreted on the basis of fine particle magnetism

  12. Chemical properties of surimi seafood nutrified with ω-3 rich oils.

    Science.gov (United States)

    Pietrowski, Brittney N; Tahergorabi, Reza; Matak, Kristen E; Tou, Janet C; Jaczynski, Jacek

    2011-12-01

    Surimi-based seafood products are widely accepted and enjoyed worldwide. The US consumption increased in 1980s; however, it leveled thereafter. Food products nutrified with ω-3 polyunsaturated fatty acids (PUFAs) are in increasing demand due to demonstrated health benefits. Currently, surimi seafood is not nutrified with ω-3 PUFAs. In the present study, surimi seafood was nutritionally-enhanced with ω-3 PUFAs-rich oils (flaxseed, algae, menhaden, krill, and blend). The objectives were (1) chemical characterization of FA composition and oxidation, and (2) determination of physicochemical properties (colour and texture) of the nutritionally-enhanced surimi seafood. Oil addition resulted in increased (Poil was added. Although the ω-3 PUFAs nutrification resulted in increased (Pkrill oil or blend was added. This study demonstrates that nutritional value of surimi seafood can be enhanced with concurrent improvement of colour and without affecting texture. PMID:25212318

  13. Tribological properties of diamond films grown by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Uniform and continuous diamond films have been deposited on Si, Mo, and many other substrates by plasma-enhanced chemical vapor deposition. We have developed processes to enhance the adhesion of diamond films to metal substrates for tribological applications. The tribological properties of the diamond films are found to be significantly different depending on their morphology, grain size, and roughness. However, under all cases tested using a ring-on-block tribotester, it is found that for diamond films with a small grain size of 1--3 μm, the coefficient of friction of the diamond films sliding against a steel ring under lubrication of a jet of mineral oil is about 0.04

  14. Evaluation of physico-chemical properties of electron beam-irradiated polycarbonate film

    International Nuclear Information System (INIS)

    In this work, polycarbonate (PC) film samples were irradiated with 10 MeV electrons at different doses ranging from 25 to 250 kGy. Characterization techniques viz. thermogravimetric analysis (TGA), Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction analysis (XRD) and electron paramagnetic resonance (EPR) were exploited to understand the induced changes in the physico-chemical properties of the polymer. An increase in the decomposition temperature with increasing dose was observed, while the crystallinity remained unchanged as a result of the formation of cross-link bond. EPR technique characterized the stability of the free radicals in the irradiated PC. The result showed that cross-linking process occurs at low absorbed doses, whereas polymer degradation happens at higher doses

  15. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties

    DEFF Research Database (Denmark)

    Debosz, K.; Petersen, S.O.; Kure, L.K.;

    2002-01-01

    Recycling of organic wastes within agriculture may help maintain soil fertility via effects on physical, chemical and biological properties. Efficient use, however, requires an individual assessment of waste products, and effects should be compared with natural variations due to climate and soil...... type. An 11-month incubation experiment was conducted between April 1998 and March 1999, in which a sandy loam without or with anerobically digested sewage sludge (4.2 t dry matter (DM) ha(-1)) or household compost (17 t DM ha(-1)) was incubated under constant laboratory conditions at 10 degreesC, as...... fluctuating climatic conditions in the field. To evaluate accumulated effects of repeated waste applications, soil was also sampled from a field trial, in which the sewage sludge and household compost had been applied at the same rates as in the incubation study for three consecutive years. Sampling took...

  16. EFFECT OF PRESSURE INDUCED GRAFT COPOLYMERIZATION ON THE PHYSICO-CHEMICAL PROPERTIES OF BIO-FIBERS

    Directory of Open Access Journals (Sweden)

    Amar Singh Singha

    2010-04-01

    Full Text Available The present study deals with the surface modification of Agave americana L. fiber through graft copolymerization of methyl methacrylate under pressure in the presence of ceric ammonium nitrate as redox initiator. The various reaction parameters such as reaction time, pressure, concentration of nitric acid, initiator, and monomer, etc. were optimized to have the maximum graft yield of 13.6%. The grafted fibers were then subjected to the evaluation of different physico-chemical properties such as swelling behavior, solubility, moisture absorption under different humidity levels, resistance to acids and bases, etc. It was observed that swelling behavior, solubility behavior, and moisture absorbance decreased with increase in grafting, whereas resistance to acids and bases increased with grafting. The fibers grafted under the optimized conditions were then characterized by Fourier transform infra-red spectroscopy, scanning electron microscopy, thermogravimetric analysis, and x-ray diffraction techniques.

  17. Tuning the Electrical Properties of Graphene via Nitrogen Plasma-Assisted Chemical Modification.

    Science.gov (United States)

    Jung, Min Wook; Song, Wooseok; Jung, Dae Sung; Lee, Sun Sook; Park, Chong-Yun; An, Ki-Seok

    2016-03-01

    The control in electrical properties of graphene is essentially required in order to realize graphenebased nanoelectronics. In this study, N-doped graphene was successfully obtained via nitrogen plasma treatment. Graphene was synthesized on copper foil using thermal chemical vapor deposition. After N2 plasma treatment, the G-band of the graphene was blueshifted and the intensity ratio of 2D- to G-bands decreased with increasing the plasma power. Pyrrolic-N bonding configuration induced by N2 plasma treatment was studied by X-ray photoelectron spectroscopy. Remarkably, electrical characterization including Hall measurement and I-V characteristics of the N-doped graphene exhibit semiconducting behavior as well as the n-type doping effect. PMID:27455703

  18. Comparison of some physico-chemical properties of irradiated cereal starches, separated or contained in flour

    International Nuclear Information System (INIS)

    In this study some physico-chemical properties of separated wheat starch from flour type 500 and 850, rye starch from flour type 720 and triticale starch from flour type 680 were compared. All starches were irradiated with medium doses of gamma rays: 2,3 and 5 kGy directly (after their separation from flour) and in flour. The water binding capacity of starches, their solubility in water and reduction capacity were found to depend on the dose applied and the method of irradiation, individually for each starch. Additional direct irradiation of all starches caused a smaller decrease in the viscosity of starch pastes and a stronger inhibition of the retrogradation process, in comparison to the starches separated from the irradiated flours. (author)

  19. Changes in mechanical and chemical wood properties by electron beam irradiation

    International Nuclear Information System (INIS)

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations

  20. Changes in mechanical and chemical wood properties by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Thomas, E-mail: thomas.schnabel@fh-salzburg.ac.at [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Huber, Hermann [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Grünewald, Tilman A. [BOKU University of Natural Resources and Life Sciences, Institute of Physics and Materials Science, Peter Jordan Straße 82, 1190 Vienna (Austria); Petutschnigg, Alexander [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); BOKU University of Natural Resources and Life Sciences, Konrad Lorenzstraße 24, 3430 Tulln (Austria)

    2015-03-30

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations.

  1. The use of potato fibre to improve bread physico-chemical properties during storage.

    Science.gov (United States)

    Curti, Elena; Carini, Eleonora; Diantom, Agoura; Vittadini, Elena

    2016-03-15

    Bread staling reduction is a very important issue for the food industry. A fibre with high water holding capacity, extracted from potato peel, was studied for its ability to reduce bread staling even if employed at low level (0.4 g fibre/100 g flour). Physico-chemical properties (water activity, moisture content, frozen water content, amylopectin retrogradation) and (1)H Nuclear Magnetic Resonance molecular mobility were characterised in potato fibre added bread over 7 days of storage. Potato fibre addition in bread slightly affected water activity and moisture content, while increased frozen water content and resulted in a softer bread crumb, more importantly when the optimal amount of water was used in the formulation. Potato fibre also reduced (1)H NMR molecular mobility changes in bread crumb during storage. Potato fibre addition in bread contributed to reduce bread staling. PMID:26575713

  2. Annealing effect on structural and optical properties of chemical bath deposited MnS thin film

    Science.gov (United States)

    Ulutas, Cemal; Gumus, Cebrail

    2016-03-01

    MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (Eg) of the film was determined. XRD measurements reveal that the film is crystallized in the wurtzite phase and changed to tetragonal Mn3O4 phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.

  3. Effect of chemical composition and alumina content on structure and properties of ceramic insulators

    Indian Academy of Sciences (India)

    Arman Sedghi; Nastaran Riahi-Noori; Naser Hamidnezhad; Mohammad Reza Salmani

    2014-04-01

    In the present work, six electrical porcelain compositions with different amount of alumina and silica have been prepared and fired in an industrial furnace at 1300°C. Density, porosity, bending strength and electrical strength were measured in the samples. In order to find a relationship between properties and sample microstructures, samples were analyzed by scanning electron microscope (SEM) and x-ray diffraction (XRD) techniques. The results showed that, with chemical composition of 53.5 wt.% SiO2 and 37.5 wt.% alumina, highest electrical strength of 21.97 kV/mm was achieved in fabricated electrical porcelains. Increasing amount of alumina up to 30 wt.% decreases quartz and cristobalite phases, but increases corundum phase 3 to 5 times. SEM observation revealed that dense particles and uniform distribution of long and thin needle shaped mullite are predominant in sample microstructures with highest electrical strength.

  4. Physico-chemical and nutritional properties of cereal-pulse blends for bread making.

    Science.gov (United States)

    Dhingra, Shfali; Jood, Sudesh

    2002-01-01

    Supplementation of soy (full fat and defatted) and barley flours to wheat flour at 51 10, 15 and 20% levels were carried out to see their effect on physico-chemical and nutritional properties of blends for bread making. The gluten content and sedimentation value of flour blends decreased and water absorption capacity increased with increase in the level of soybean and barley flour separately and in combinations to bread flour. All the blends at 20% levels were found nutritionally superior but breads prepared from them found organoleptically unacceptable. However, addition of 15% barley flour, 10% full fat soy flour, 10% defatted soy flour, 15% full fat soy flour + barley flour and 15% defatted soy flour + barley flour to wheat flour not only increased the total protein, glutelin (protein fraction), total lysine, dietary fibre and beta-glucan contents of cereal-pulse blends for bread making, but could also produce a product of acceptable quality. PMID:12418802

  5. Response of mechanical properties of glasses to their chemical, thermal and mechanical histories

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    glass fibers are dependent on the thermal history (measured as fictive temperature), tension, chemical composition and redox state. However, the fictive temperature affects the hardness of bulk glass in a complicated manner, i.e., the effect does not exhibit a clear regularity in the range of the......, surface, thermal history or excess entropy of the final glass state. Here I review recent progresses in understanding of the responses of mechanical properties of oxide glasses to the compositional variation, thermal history and mechanical deformation. The tensile strength, elastic modulus and hardness of...... fictive temperatures that we have measured so far. It depends on type of glass systems. This complicated effect is discussed in terms of glass structure, dynamics and relaxation behavior. Our recent experimental findings indicate that for oxide glass fibers the tensile strength, elastic modulus and...

  6. Bio solids Application on Banana Production: Soil Chemical Properties and Plant Nutrition

    International Nuclear Information System (INIS)

    Bio solids are relatively rich in N, P, and S and could be used to substitute mineral fertilization for banana crop. A field experiment was carried out in a Yellow Oxisol to investigate the effects of bio solids application on soil chemical properties and on banana leaf's nutrient concentration during the first cropping cycle. Soil analysis (ph, organic matter, resin P, exchangeable Ca and K, available B, DTPA-extracted micro nutrients, and heavy metals) and index-leaf analysis (B, Cu, Fe, Mn, Zn, Cd, Cr, Ni, and Pb) were evaluated. Bio solids can completely substitute mineral N and P fertilizer to banana growth. Soil exchangeable K and leaf-K concentration must be monitored in order to avoid K deficiency in banana plants. No risk of heavy metal (Cr, Ni, Pb, and Cd) concentration increase in the index leaf was observed when bio solids were applied at the recommended N rate.

  7. Optimization of mechanical and chemical properties of sulphuric anodized aluminium using statistical experimental methods

    Energy Technology Data Exchange (ETDEWEB)

    Bensalah, W. [Unite de recherche de Chimie Industrielle et Materiaux (URCIM), ENIS, B.P.W. Sfax (Tunisia); Elleuch, K. [Laboratoire des Systemes Electromecaniques (LASEM), ENIS, B.P.W. Sfax (Tunisia); Feki, M. [Unite de recherche de Chimie Industrielle et Materiaux (URCIM), ENIS, B.P.W. Sfax (Tunisia); Wery, M. [IUT Mesures Physiques d' Orsay, Plateau du Moulon, 91400 Orsay (France); Gigandet, M.P. [LCMI-Corrosion et Traitements de surface 16, Route de Gray, 25030 Besancon Cedex (France); Ayedi, H.F. [Unite de recherche de Chimie Industrielle et Materiaux (URCIM), ENIS, B.P.W. Sfax (Tunisia)], E-mail: feridayedi@yahoo.fr

    2008-04-15

    We described a three-step strategy to achieve simultaneous optimization of mechanical and chemical properties of an anodic aluminium oxide layer elaborated in a sulphuric acid solution. In the first two steps, a Doehlert design was carried out and then the canonical analysis has been conducted to study the four fitted models of the responses, namely: dissolution rate, Vickers microhardness, weight loss after abrasion and deflection at failure of the anodic oxide layer. Canonical analysis showed that the experimental conditions where the optima are found for each individual response are just opposite, so it is required to look for a certain compromise, which was achieved using the desirability function, in the last step. The morphology and the composition of 'optimum' layer was examined by scanning electron microscopy (SEM), atomic force microscopy (AFM) and glow-discharge optical emission spectroscopy (GDOES)

  8. Chemical doping modulation of nonlinear photoluminescence properties in monolayer MoS2

    Science.gov (United States)

    Mouri, Shinichiro; Miyauchi, Yuhei; Matsuda, Kazunari

    2016-05-01

    We demonstrate a simple modulation technique of nonlinear optical properties in monolayer (1L) MoS2 via chemical doping. The strong nonlinear behavior of the exciton photoluminescence (PL) intensity is observed with increasing excitation power density for low-electron-density 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ)-doped 1L-MoS2, whereas the exciton PL intensity of as-prepared, heavily electron-doped 1L-MoS2 exhibits weak sublinear behavior. These results are attributable to an enhanced exciton–exciton annihilation rate for the excitons in F4TCNQ-doped 1L-MoS2 as the dominant decay pathway under strong optical excitation conditions.

  9. Physico-chemical and mineralogical properties influencing water-stability of aggregates of some Italian surface soils

    International Nuclear Information System (INIS)

    A laboratory study was conducted to determine the relationship between physical, chemical and mineralogical properties of some surface soils (developed in north central Italy) and the stability of their aggregates to water. The index of stability used is the mean-weight diameter of water-stable aggregates (MWD). The ratio of total sand to clay which correlated negatively with MWD (r=-0.638) is the physical property which explained most of the variability in aggregate stability. The chemical properties which correlated best with aggregate stability are FeO (r=0.671), CaO (R=0.635), CaCO3 (r=0.651) and SiO2 (r=-0.649). Feldspar, chlorite and calcite are the minerals which influence MWD most, with respective ''r'' values of -0.627, 0.588 and 0.550. The best-fit model developed from soil physical properties explained 59% of the variation in MWD with a standard error of 0.432, that developed from chemical properties explained 97% of the variation in MWD with a standard error of 0.136, whereas the model developed from mineralogical properties explained 78% of the variation in MWD with a standard error of 0.222. Also the closest relationship between measured and model-predicted MWD was obtained with the chemical properties-based model (r=0.985), followed by the mineralogical properties-based model (r=0.884) and then the physical properties-based model (r=0.656). This indicates that the most reliable inference on the stability of these soils in water can be made from a knowledge of the amount and composition of their chemical constituents. (author). 32 refs, 1 fig., 9 tabs

  10. Fauna-associated Changes in Chemical and Biochemical Properties of Soil

    Institute of Scientific and Technical Information of China (English)

    G. TRIPATHI; B. M. SHARMA

    2006-01-01

    Objective To study the impacts of abundance of woodlice, termites, and mites on some functional aspects of soil in order to elucidate the specific role of soil fauna in improving soil fertility in desert. Methods Fauna-rich sites were selected as experimental sites and adjacent areas were taken as control. Soil samples were collected from both sites. Soil respiration was measured at both sites. The soil samples were sent to laboratory, their chemical and biochemical properties were analyzed.Results Woodlice showed 25% decrease in organic carbon and organic matter as compared to control site. Whereas termites and mites showed 58% and 16% decrease in organic carbon and organic matter. In contrast, available nitrogen (nitrate and ammonical both) and phosphorus exhibited 2-fold and 1.2-fold increase, respectively. Soil respiration and dehydrogenase activity at the sites rich in woodlice, termites and mites produced 2.5-, 3.5- and 2-fold increases, respectively as compared to their control values. Fauna-associated increase in these biological parameters clearly reflected fauna-induced microbial activity in soil. Maximum decrease in organic carbon and increase in nitrate-nitrogen and ammonical-nitrogen, available phosphorus, soil respiration and dehydrogenase activity were produced by termites and minimum by mites reflecting termite as an efficient soil improver in desert environment. Conclusion The soil fauna-associated changes in chemical (organic carbon, nitrate-nitrogen, ammonical-nitrogen, phosphorus) and biochemical (soil respiration, dehydrogenase activity) properties of soil improve soil health and help in conservation of desert pedoecosystem.

  11. Physico-chemical properties and biological effects of diesel and biomass particles.

    Science.gov (United States)

    Longhin, Eleonora; Gualtieri, Maurizio; Capasso, Laura; Bengalli, Rossella; Mollerup, Steen; Holme, Jørn A; Øvrevik, Johan; Casadei, Simone; Di Benedetto, Cristiano; Parenti, Paolo; Camatini, Marina

    2016-08-01

    Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects. Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones. Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure. These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement. PMID:27194366

  12. Effect of Drying Temperature on the Chemical Properties and Diffusivity of belimbi (averrhoa belimbi)

    Science.gov (United States)

    Shahari, N.; Jamil, N.; Rasmani, K. A.; Nursabrina

    2015-09-01

    In recent years, many dried fruit products have been developed in response to a strong demand by the customer. This type of fruit has a different composition and hence different moisture diffusivity (D). During drying, Fick's Law of diffusion, which describes the movement of liquid water was used to calculate this diffusivity. However diffusivity has strong effects on the material drying characteristics and these must be determined. In this paper, Fick's Law of diffusion with different kinds of boundary conditions was solve using separation of variable (SOV). In order to get the value of D, results obtained using SOV will be compared with the results from the drying of belimbi at temperature of 40°C, 50°C and 60°C. Although the results show that variation in the values of diffusivity for different temperatures is relatively small, but the variation in the total time required for drying is significantly bigger: between 3-7 hours. Its shown that diffusivity is an important measurement and should be considered in the modeling of the drying process. The chemical properties of belimbi slices in terms of vitamin C, total ash and antioxidant activity with different air temperatures and pretreatment were also investigated. Higher drying temperatures gives less drying time, a lower vitamin C and antioxidant activity but a greater total of ash, whilst pre-treatment can increased vitamin C and antioxidant activity. The results show that pre-treatment and the drying temperature are important variables to improve mass and heat transfer, as well as the belimbi chemical properties.

  13. Optical property tuning of bismuth chalcogenides using chemical intercalation (Presentation Recording)

    Science.gov (United States)

    Yao, Jie

    2015-10-01

    Two-dimensional (2D) materials with natural layer structures have been proven to provide extraordinary physical and chemical properties. Bismuth chalcogenides are examples of such two-dimensional materials. They are strongly bonded within layers and weak van der Waals interaction ties those layers together. Such naturally layered structure allows chemical intercalation of foreign atoms into the van der Waals gaps. Here, we show that by adding large number of copper atoms into van der Waals gaps of bismuth chalcogenides, we observed counter-intuitive enhancement of optical transparency together with improved electrical conductivity, which is on the contrary to most bulk materials in which doping reduces the light transmission. This surprising behavior is caused by substantial tuning of material optical property and nanophotonic anti-reflection effect unique to ultra-thin nanoplates. With the intercalation of copper atoms, large number of electrons have been added into the semiconducting material system and effectively lift the Fermi level of the resulting material to its conduction band, as proved by our densityfunctional- theory computations. Occupied lower states in the conduction band do not allow the optical excitation of electrons in the valence band to the bottom of the conduction band, leading to an effective widening of optical band gap. Optical transmission is further enhanced by constructive interference of reflected beams as bismuth chalcogenides have large permittivity than the environment. The synergy of these two effects in two-dimensional nanostructures can be exploited for various optoelectronic applications including transparent electrode. The reversible intercalation process allows potential dynamic tuning capability.

  14. Effect of pozzolans with different physical and chemical characteristics on concrete properties

    Directory of Open Access Journals (Sweden)

    Paiva, H.

    2016-06-01

    Full Text Available The durability of concrete structures is an important issue nowadays. Specifically in the case of reinforced concrete bridges or other infrastructures one of the main form of environmental attack is the penetration of chloride ions, which leads to corrosion of concrete steel reinforcement. This study aims to evaluate the effect of the introduction of metakaolin and diatomite, two chemically and physically different pozzolans, on the resistance of concrete to the penetration of chlorides but also the effect on other properties of concrete, namely, its compressive strength and its porosity distribution. The results of this study show that the pozzolans physical and chemical characteristics have a strong influence on the pozzolans behavior and, consequently, on the concrete properties.La durabilidad de las estructuras de hormigón es un tema importante hoy en día. En concreto, en el caso de los puentes de hormigón armado u otras infraestructuras, el principal factor de agresión medioambiental es la penetración de iones cloruro, lo que conduce a la corrosion del acero de refuerzo del hormigón. Este estudio tiene como objetivo evaluar el efecto de la introducción de metacaolín y diatomita, dos puzolanas química y físicamente diferentes, sobre la resistencia del hormigón a la penetración de cloruros, y también sobre otras de sus propiedades como la distribución de su porosidad o su resistencia a compresión. Los resultados de este estudio muestran que las características fisicoquímicas de las puzolanas tienen una fuerte influencia en su comportamiento y en consecuencia, en las propiedades del hormigón.

  15. Caustic-Side Solvent Extraction Chemical and Physical Properties Progress in FY 2000 and FY 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, BA

    2002-04-17

    The purpose of this work was to provide chemical- and physical-property data addressing the technical risks of the Caustic-Side Solvent Extraction (CSSX) process as applied specifically to the removal of cesium from alkaline high-level salt waste stored at the US Department of Energy Savannah River Site. As part of the overall Salt Processing Project, this effort supported decision-making in regards to selecting a preferred technology among three alternatives: (1) CSSX, (2) nonelutable ion-exchange with an inorganic silicotitanate material and (3) precipitation with tetraphenylborate. High risks, innate to CSSX, that needed specific attention included: (1) chemical stability of the solvent matrix, (2) radiolytic stability of the solvent matrix, (3) proof-of-concept performance of the proposed process flowsheet with simulated waste, and (4) performance of the CSSX flowsheet with actual SRS high-level waste. This body of work directly addressed the chemical-stability risk and additionally provided supporting information that served to plan, carry out, and evaluate experiments conducted by other CSSX investigators addressing the other high risks. Information on cesium distribution in extraction, scrubbing, and stripping served as input for flowsheet design, provided a baseline for evaluating solvent performance under numerous stresses, and contributed to a broad understanding of the effects of expected process variables. In parallel, other measurements were directed toward learning how other system components distribute in the flowsheet. Such components include the solvent components themselves, constituents of the waste, and solvent-degradation products. Upon understanding which components influence flowsheet performance, it was then possible to address in a rational fashion how to clean up the solvent and maintain its stable function.

  16. Mapping dry matter production of Tifton 85 and its correlation with the soil chemical properties

    Directory of Open Access Journals (Sweden)

    Osmar Henrique de Castro Pias

    2015-07-01

    Full Text Available The creation of cattle in the semi extensive system has currently been the most used by the farmers on Brazil, however, problems such as degradation of pastures are committing this production system, reducing the production of forager and consequently the profitability of producers. In this sense, the aim of this study was to perform the mapping of the dry mass production, nitrogen accumulation, phosphorus and potassium in the Tifton 85, and evaluate their correlations with the chemical attributes in different layers of the soil profile. The study was carried out in an area of 4.3 ha constituted of Tifton 85 in the city of Vista Gaucha - RS, Brazil, during the months from October to December in the year of 2012. The experimental area was georeferenced and divided into a sample mesh of 50 x 50 m, resulting in 16 sampling points. It was conducted two cuts on Tifton 85 to evaluate the dry mass production. Soil sampling was done in the layers from 0.00 - 0.10 m, 0.10 - 0.20 and 0.20 - 0.40 m. The data were submitted to descriptive statistical analysis and linear correlation matrix of Pearson, being the results specialized in thematic maps. The production of dry mass, nitrogen accumulation, phosphorus and potassium by Tifton 85 showed coefficients of variation ranked of high to very high, and in generally, demonstrated low correlation with the soil chemical properties, independently of the layer profile evaluated.

  17. DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydrides

    International Nuclear Information System (INIS)

    This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen: (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magneto-volume and chemical interactions (metal-H) effects within the following hydrided systems: binary Laves (e.g. ScFe2) and Haucke (e.g. LaNi5) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U2Ni2Sn) alloys on the other hand. (author)

  18. Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition

    Science.gov (United States)

    Kamilli, K. A.; Poulain, L.; Held, A.; Nowak, A.; Birmili, W.; Wiedensohler, A.

    2014-01-01

    Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site Laboratoire d'Hygiène de la Ville de Paris (LHVP) in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously with a humidified differential mobility particle sizer (HDMPS) and a twin differential mobility particle sizer (TDMPS). For 90% relative humidity, the DGF varied from 1.06 to 1.46 in summer, and from 1.06 to 1.66 in winter. Temporal variations in the observed mean DGF could be well explained with a simple growth model based on the aerosol chemical composition measured by aerosol mass spectrometry (AMS) and black carbon photometry (MAAP). In particular, good agreement was observed when sulfate was the predominant inorganic factor. A clear overestimation of the predicted growth factor was found when the nitrate mass concentration exceeded values of 10 μg m-3, e.g., during winter.

  19. Chemical and kinematical properties of BSSs and HB stars in NGC 6397

    CERN Document Server

    Lovisi, L; Lanzoni, B; Ferraro, F R; Gratton, R; Dalessandro, E; Ramos, R Contreras

    2012-01-01

    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 Blue Straggler Stars (BSSs) and 86 main sequence turn-off and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O and Mg abundances. All the unevolved stars in our sample turn out to have low rotational velocites (v sin i8200 K and T> 10500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H]=-2.12). While similar chemical patterns have been already observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interprete these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes.

  20. Physical and chemical properties of fish and chicken bones as calcium source for mineral supplements

    Directory of Open Access Journals (Sweden)

    Worapot Suntornsuk

    2006-03-01

    Full Text Available Physical and chemical properties of two bones of two species of fish, hoki (Macruronus novaezelandiae and giant seaperch (Lates calcarifer Bloch., were compared with chicken bone to evaluate their composition for use as natural calcium supplement. The information could be useful for waste utilization in the food and pharmaceutical industries. Physical testing and chemical analyses were performed according to the USP 24 and BP 1998 standards under calcium carbonate monograph. Loss on drying found in hoki, giant seaperch and chicken bones was 12.4, 11.3 and 5.9 % w/w, calculated on dried basis, respectively. Total calcium determined by complexometric titration was 31.8, 28.1 and 32.2% w/w in hoki, giant seaperch and chicken bones, respectively. All samples contained carbonate and phosphate anion residues but gluconate, acetate and citrate were absent. The presence of calcium carbonate was confirmed by thermogravimetry. Results from all bones showed that limit tests for heavy metals, arsenic and iron complied with the USP standard, whereas barium, chloride and sulfate conformed to the BP standard. The magnesium and alkali metals in giant seaperch bone were within the BP limit (1.5%, but those of hoki and chicken bone exceeded the limit.

  1. Variable effects of the internal gelation process in the physical and chemical properties of alumina microspheres

    International Nuclear Information System (INIS)

    Ceramic microspheres have been used in various applications, related to the nuclear, pharmaceutical, chemical, medical, environmental, biotechnology, etc. It is possible to obtain, by internal gelation method, microspheres of different ceramic materials, dense or porous (with controlled porosity) and different sizes. However, the major obstacle is the formation of cracks on drying and/or calcination, which can hinder their use. This study have an objective at the production of alumina (AI2O3) based microspheres by internal gelation process, varying processing parameters in order to control the chemical and physical characteristics such as size, porosity, specific surface area, etc., in addition to specific characteristics that enable their application in filling of the elution columns of 99Mo-99mTc generators. It was developed a simple and efficient method of washing treatment of the microspheres, which enables the extraction of a significant portion of the organic phase present prior to drying and calcination; thus virtually eliminates all cracks that arise during drying, and particularly in calcination step. In addition, process parameters were varied for controlling the porosity and specific surface of the microspheres. Were also characterized in parallel, two transition alumina in the form of powders currently used in filling of elution columns of 99Mo-99mTc generator so as to get an idea of the current requirements for physical properties of the filling material. (author)

  2. Structural, electrical and optical properties of copper selenide thin films deposited by chemical bath deposition technique

    International Nuclear Information System (INIS)

    A low cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films on glass substrates. Structural, electrical and optical properties of these films were investigated. X-ray diffraction (XRD) study of the Cu2-xSe films annealed at 523K suggests a cubic structure with a lattice constant of 5.697A. Chemical composition was investigated by X-ray photoelectron spectroscopy (XPS). It reveals that absorbed oxygen in the film decreases remarkably on annealing above 423K. The Cu/Se ratio was observed to be the same in as-deposited and annealed films. Both as- deposited and annealed films show very low resistivity in the range of (0.04- 0.15) x 10-5 Ω-m. Transmittance and Reflectance were found in the range of 5-50% and 2-20% respectively. Optical absorption of the films results from free carrier absorption in the near infrared region with absorption coefficient of ∼108 m-1. The band gap for direct transition, Eg.dir varies in the range of 2.0-2.3eV and that for indirect transition Eg.indir is in the range of 1.25-1.5eV.1. (author)

  3. Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal.

    Science.gov (United States)

    Sobral, Filipa; Sampaio, Andreia; Falcão, Soraia; Queiroz, Maria João R P; Calhelha, Ricardo C; Vilas-Boas, Miguel; Ferreira, Isabel C F R

    2016-08-01

    Bee venom (BV) or apitoxin is a complex mixture of substances with reported biological activity. In the present work, five bee venom samples obtained from Apis mellifera iberiensis from the Northeast Portugal (two different apiaries) were chemically characterized and evaluated for their antioxidant, anti-inflammatory and cytotoxic properties. The LC/DAD/ESI-MS(n) analysis of the samples showed that melittin was the most abundant compound, followed by phospholipase A2 and apamin. All the samples revealed antioxidant and anti-inflammatory activity but without a direct relation with any of the individual chemical components identified. The results highlight that there are specific concentrations (present in BV5) in which these compounds are more active. The BV samples showed similar cytotoxicity for all the tested tumour cell lines (MCF-7, NCI-H460, HeLa and HepG2), being MCF-7 and HeLa the most susceptible ones. Nevertheless, the studied samples seem to be suitable to treat breast, hepatocellular and cervical carcinoma because at the active concentrations, the samples were not toxic for non-tumour cells (PLP2). Regarding the non-small cell lung carcinoma, BV should be used under the toxic concentration for non-tumour cells. Overall, the present study corroborates the enormous bioactive potential of BV being the first report on samples from Portugal. PMID:27288930

  4. Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties.

    Science.gov (United States)

    Das, Oisik; Sarmah, Ajit K; Bhattacharyya, Debes

    2016-03-01

    To identify a route for organic wastes utilisation, biochar made from various feedstocks (landfill pine saw dust, sewage sludge, and poultry litter) and at diverse pyrolysis conditions, were collected. These biochars were used to fabricate wood and polypropylene biocomposites with a loading level of 24 mass%. The composites were tested for their mechanical, chemical, thermal, morphological, and fire properties. The poultry litter biochar biocomposite, with highest ash content, was found to have high values of tensile/flexural strength, tensile/flexural modulus, and impact strength, compared to other composites. In general, addition of all the biochars enhanced the tensile/flexural moduli of the composites. The crystal structure of polypropylene in the composite was intact after the incorporation of all the biochars. The final chemical and crystal structure of the composite were an additive function of the individual components. The biochar particles along with wood acted as nucleating agents for the recrystallization of polypropylene in composite. Each component in the composites was found to decompose individually under thermal regime. The electron microscopy revealed the infiltration of polypropylene into the biochar pores and a general good dispersion in most composites. The poultry litter composite was found to have lower heat release rate under combustion regime. PMID:26724232

  5. Cell adhesion over two distinct surfaces varied with chemical and mechanical properties

    International Nuclear Information System (INIS)

    Chitosan is widely recognized as a natural and proper scaffold material; however, as a base substrate, it shows little promotion effect for the growth of cultured fibroblast cells. In this study, chitosan in a film form was prepared and used as a cell-culturing matrix, followed by patterning the evaporated Au upon it. Micro-scale Au clusters of ∼ 150 μm in diameter and ∼ 20 nm in thickness were then patterned and adhered upon the chitosan matrix. Physical and chemical properties of Au/chitosan were characterized. In particular, nano-indentation with dynamic contact module was applied to measure the nano-hardness of the tailored surfaces on Au/chitosan. Fibroblast cells were thereafter cultured on Au/chitosan. Experimental results demonstrated that as compared with the chitosan matrix, Au clusters and their boundary area exhibited favorable to promote cell adhesion, spreading, and growth. As well, nano-hardness on the boundary area of Au/chitosan significantly enhanced, while the cultured fibroblast cells aggregated upon Au clusters and the boundary area. In combination with the possible chemical and mechanical changes resulted by the evaporation of Au clusters upon the chitosan matrix, a selectively-enhanced Au/chitosan to promote fibroblast cells proliferation was created. Such design is anticipated for enabling a surface for scaffold materials with the cell-guidable function.

  6. Effects of digestate on soil chemical and microbiological properties: A comparative study with compost and vermicompost.

    Science.gov (United States)

    Gómez-Brandón, María; Juárez, Marina Fernández-Delgado; Zangerle, Matthias; Insam, Heribert

    2016-01-25

    Anaerobic digestion has become increasingly popular as an alternative for recycling wastes from different origins. Consequently, biogas residues, most of them with unknown chemical and biological composition, accrue in large quantities and their application into soil has become a widespread agricultural practise. The aim of this study was to evaluate the effects of digestate application on the chemical and microbiological properties of an arable soil in comparison with untreated manure, compost and vermicompost. Once in the soil matrix either the addition of compost or digestate led to an increased nitrification rate, relative to unamended and manure-treated soil, after 15 and 60 days of incubation. Faecal coliform and E. coli colony forming units (CFUs) were not detected in any of the amended soils after 60 days. The highest number of Clostridium perfringens CFUs was recorded in manure-amended soil at the beginning of the experiment and after 15 days; whilst after 60 days the lowest CFU number was registered in digestate-treated soil. Denaturing gradient gel electrophoresis patterns also showed that besides the treatment the date of sampling could have contributed to modifications in the soil ammonia-oxidising bacteria community, thereby indicating that the soil itself may influence the community diversity more strongly than the treatments. PMID:26476314

  7. Physico-chemical properties of soil at oil palm plantation area, Labu, Negeri Sembilan

    Science.gov (United States)

    Rozieta, R.; Sahibin A., R.; Wan Mohd Razi, I.

    2015-09-01

    A study on the physico-chemical characteristics of soil from oil palm plantation area at New Labu Estate, Negeri Sembilan was carried out. A number of 20 topsoil (0-20cm) samples were collected based on plantation block by using `Dutch Auger'. The soil physico-chemical properties determined were particle size distribution, organic matter content, pH and total organic carbon. Particle size distribution was determined by pipette method and dry sieving. Bulk density was determined by waxing method. Organic matter and total organic carbon were measured through loss of ignition and Walkley-Black method, respectively. Soil pH was determined based on soil:water ratio of 1:2.5. Results showed that the texture of the soil was classified as sandy clay with the highest percentage of sand particles component. Organic matter content is considered as low at less than 4% and soil organic carbon content was low with 1.75%. The average soil pH in the study area was very acidic with values of 3.81.

  8. Physico-Chemical Properties of the Oils and Fat from Crotalaria cleomifolia Seeds

    International Nuclear Information System (INIS)

    The seeds of C. cleomifolia (locally known as kacang hantu) collected along Simpang Pulai - Berinchang Road, Cameron Highlands, was defatted with hexane and the resulting oil was analysed for their physico-chemical properties. The percentage yield of the oil was calculated as 5.3 %. The acid value (1.2 %), iodine value (85), peroxide value (0.6), saponification value (192.0) and unsaponifiable matter (2.3 %) were determined to assess the quality of the oil. The physico-chemical characterisation showed that C. cleomifolia seeds oil is unsaturated semi-drying oil, with high saponification and acidic values. The fatty acid composition of C. cleomifolia seed oil was determined by Gas Chromatography and Gas Chromatography-Mass Spectrometry (ToF). The seed oil of C. cleomifolia contained linoleic acid (57.59 %) and palmitic acid (5.07 %), the most abundant unsaturated and saturated fatty acids, respectively. The polyunsaturated triacylglycerol (TAG) in C. cleomifolia seed oil determined by reverse phase High performance Liquid Chromatography; contained as PLL (18.04 %) followed by POL + SLL (11.92 %), OOL (7.04 %) and PLLn (6.31 %). The melting and cooling point of the oil were 16.22 degree Celsius and -33.54 degree Celsius, respectively. (author)

  9. Correlations between Optical, Chemical and Physical Properties ofBiomass Burn Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury; Wang, Z.; Tivanski, Alexei V.; Arnott, W.P.; Laskin, Alexander; Gilles, M.K.

    2008-01-29

    Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap} (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.

  10. The physico-chemical properties and biostimulative activities of humic substances regenerated from lignite.

    Science.gov (United States)

    David, Jan; Smejkalová, Daniela; Hudecová, Sárka; Zmeškal, Oldřich; von Wandruszka, Ray; Gregor, Tomáš; Kučerík, Jiří

    2014-01-01

    The positive effect of humic acids on the growth of plant roots is well known, however, the mechanisms and role of their physical structure in these processes have not been fully explained yet. In this work, South-Moravian lignite was oxidized by means of nitric acid and hydrogen peroxide to produce a set of regenerated humic acids. The elemental composition, solid state stability and solution characteristics were determined and correlated in vitro with their biological activity. A modified hydroponic method was applied to determine the effects of their potassium salts on Zea mays seedlings roots with respect to the plant weight, root length, root division, and starch and protein content. The relations between the determined parameters were evaluated through Principal Component Analysis and Pearson's correlation coefficients. The results indicated that the most important factor determining the biological activity of South-Moravian lignite potassium humates is related to the nature of self-assemblies, while the chemical composition had no direct connection with the root growth of Zea mays seedlings. It was demonstrated a controlled processing that provided humic substances with different chemical and physicochemical properties and variable biological activity. PMID:24790812

  11. Chemical treatment of olive pomace: Effect on acid-basic properties and metal biosorption capacity

    International Nuclear Information System (INIS)

    In this study, olive pomace, an agricultural waste that is very abundant in Mediterranean area, was modified by two chemical treatments in order to improve its biosorption capacity. Potentiometric titrations and IR analyses were used to characterise untreated olive pomace (OP), olive pomace treated by phosphoric acid (PAOP) and treated by hydrogen peroxide (HPOP). Acid-base properties of all investigated biosorbents were characterised by two main kinds of active sites, whose nature and concentration were determined by a mechanistic model assuming continuous distribution for the proton affinity constants. Titration modelling denoted that all investigated biosorbents (OP, PAOP and HPOP) were characterised by the same kinds of active sites (carboxylic and phenolic), but with different total concentrations with PAOP richer than OP and HPOP. Single metal equilibrium studies in batch reactors were carried out to determine the capacity of these sorbents for copper and cadmium ions at constant pH. Experimental data were analysed and compared using the Langmuir isotherm. The order of maximum uptake capacity of copper and cadmium ions on different biosorbents was PAOP > HPOP > OP. The maximum adsorption capacity of copper and cadmium, was obtained as 0.48 and 0.10 mmol/g, respectively, for PAOP. Metal biosorption tests in presence of Na+ in solution were also carried out in order to evaluate the effect of chemical treatment on biomass selectivity. These data showed that PAOP is more selective for cadmium than the other sorbents, while similar selectivity was observed for copper

  12. Physical and chemical properties of the Martian soil: Review of resources

    Science.gov (United States)

    Stoker, C. R.; Gooding, James L.; Banin, A.; Clark, Benton C.; Roush, Ted

    The chemical and physical properties of Martian surface materials are reviewed from the perspective of using these resources to support human settlement. The resource potential of Martian sediments and soils can only be inferred from limited analyses performed by the Viking Landers (VL), from information derived from remote sensing, and from analysis of the SNC meteorites thought to be from Mars. Bulk elemental compositions by the VL inorganic chemical (x ray fluorescence) analysis experiments have been interpreted as evidence for clay minerals (possibly smectites) or mineraloids (palagonite) admixed with sulfate and chloride salts. The materials contained minerals bearing Fe, Ti, Al, Mg and Si. Martian surface materials may be used in many ways. Martian soil, with appropriate preconditioning, can probably be used as a plant growth medium, supplying mechanical support, nutrient elements, and water at optimal conditions to the plants. Loose Martian soils could be used to cover structures and provide radiation shielding for surface habitats. Martian soil could be wetted and formed into abode bricks used for construction. Duricrete bricks, with strength comparable to concrete, can probably be formed using compressed muds made from martian soil.

  13. Solid waste disposal in the soil: effects on the physical, chemical, and organic properties of soil

    Directory of Open Access Journals (Sweden)

    Vanessa Regina Lasaro Mangieri

    2015-04-01

    Full Text Available Currently, there is growing concern over the final destination of the solid waste generated by society. Landfills should not be considered the endpoint for substances contained or generated in solid waste. The sustainable use of natural resources, especially soil and water, has become relevant, given the increase in anthropogenic activities. Agricultural use is an alternative to solid waste (leachate, biosolid disposal, considering the hypothesis that the agricultural use of waste is promising for reducing waste treatment costs, promoting nutrient reuse and improving the physical and chemical conditions of soil. Thus, this literature review, based on previously published data, seeks to confirm or disprove the hypothesis regarding the promising use of solid waste in agriculture to decrease the environmental liability that challenges public administrators in the development of efficient management. The text below addresses the following subtopics after the introduction: current solid waste disposal and environmental issues, the use of solid waste in agriculture, and the effect on the physical and chemical properties of soil and on organic matter, ending with final considerations.

  14. Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life.

    Science.gov (United States)

    Zieliński, Henryk; del Castillo, Maria Dolores; Przygodzka, Małgorzata; Ciesarova, Zuzana; Kukurova, Kristina; Zielińska, Danuta

    2012-12-15

    Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life were investigated in this study. In particular, the changes in antioxidants content, antioxidative and reducing capacity, and Maillard reaction development in rye ginger cakes after long-term storage were addressed. Ginger cakes produced according to the traditional and current recipe were stored for 5 years at room temperature in a dark place. The total phenolic compounds (TPC), inositol hexaphosphate (IP6), reduced (GSH) and oxidised glutathione (GSSG) contents, antioxidant and reducing capacity and Maillard reaction products (MRPs) were determined in ginger cakes after storage and then compared to those measured after baking. After long-term storage a decrease in TPC and IP6 contents in cakes was noted. In contrast, an increase in antioxidative and reducing capacity of stored cakes was observed. Long-term storage induced formation of furosine, advanced and final Maillard reaction products and caused changes in both reduced and oxidised forms of glutathione. After long-term storage the modest changes in furosine, FAST index and browning in ginger cake formulated with dark rye flour may suggest that this product is the healthiest among others. Therefore, traditional rye ginger cakes can be considered as an example of a healthy food that is also relatively stable during long term storage as noted by the small chemical changes observed in its composition. PMID:22980898

  15. Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition

    Directory of Open Access Journals (Sweden)

    K. A. Kamilli

    2013-05-01

    Full Text Available Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site LHVP in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously with a humidified differential mobility particle sizer (HDMPS and a twin differential mobility particle sizer (TDMPS. For 90% relative humidity, the DGF varied from 1.06 to 1.46 in summer, and from 1.06 to 1.66 in winter. Temporal variations in the observed mean DGF could be well explained with a simple growth model based on the aerosol chemical composition measured by aerosol mass spectrometry (AMS and black carbon photometry (MAAP. In particular, good agreement was observed when sulfate was the predominant inorganic factor. A clear overestimation of the predicted growth factor was found when the nitrate mass concentration exceeded values of 10 μg m3, e.g. during winter.

  16. Synergistic Effect of Chemical and Thermical Treatment on the Structure and Sorption Properties of Natural and Chemically Modified Slovak Zeolite

    Directory of Open Access Journals (Sweden)

    Štefan Svetík

    2005-06-01

    Full Text Available The calcinated natural and chemically modified zeolite from the deposit Nižný Hrabovec (Slovak Republic was studied. The changes of zeolite structure due to synergistic effect of temperature and chemical treat-ment were studied by DTA. The static radioindicatore method was used for studying the sorption of zeolite through the uptake of Cs and Co cations from model solutions. The results showed that the uptake of Cs and Co cations strongly depends on the modification of zeolite and on the higher temperature of calcination.

  17. Hydraulic Conductivity Functions in Relation to Some Chemical Properties in a Cultivated Oxisols of a Humid Region, Delta State, Nigeria

    Directory of Open Access Journals (Sweden)

    Egbuchua, C. N.

    2014-04-01

    Full Text Available The study was conducted to evaluate hydraulic conductivity functions in relation to some soil chemical properties in an oxisols of the tropics. Field and laboratory studies were carried out and data collected, subjected to statistical analytical procedure for computing coefficient of variability and correlation among soil properties. Results of the study showed that hydraulic conductivity functions varied spatially and temporarily across the experimental points with a moderate mean value of 0.0026 cm/h and a coefficient o variation of 31.45% soil chemical properties showed that the soils were acidic with a mean pH value of 5.12. Organic carbon, total nitrogen and available phosphorus were low with mean values of 1.29%, 0.68% and 4.43 mgkg-1. Coefficient of variability among soil properties indicated less to moderately variable. Soil pH had negative correlation with all the soil properties evaluated.

  18. Physical chemical properties of sludges of a chemical treatment of boilers feed water and ways of their utilization

    Directory of Open Access Journals (Sweden)

    T. Krasnenko

    2013-03-01

    Full Text Available Water is a necessary process for TPP power plant operation. To the power station, in the production of electricity and heat as a result of the preparation of large amounts of water to compensate for losses associated with the release of process steam for production, produce large quantities of waste water treatment - water treatment chemical sludge (WTCS.

  19. Bioactivity, physical and chemical properties of MTA mixed with propylene glycol

    Directory of Open Access Journals (Sweden)

    Vaishali Prakash NATU

    2015-08-01

    Full Text Available AbstractObjective To investigate the physical (setting time, hardness, flowability, microstructure and chemical (pH change, calcium release, crystallinity properties and the biological outcomes (cell survival and differentiation of mineral trioxide aggregate (MTA mixed using different proportions of propylene glycol (PG and water.Material and Methods White MTA was mixed with different water/PG ratios (100/0, 80/20 and 50/50. Composition (XRD, microstructure (SEM, setting time (ASTM C266-13, flowability (ANSI/ADA 57-2000, Knoop hardness (100 g/10 s and chemical characteristics (pH change and Ca2+ release for 7 days were evaluated. Cell proliferation, osteo/odontoblastic gene expression and mineralization induced by MTA mixed with PG were evaluated. MTA discs (5 mm in diameter, 2 mm thick were prepared and soaked in culture medium for 7 days. Next, the discs were removed and the medium used to culture dental pulp stem cells (DPSC for 28 days. Cells survival was evaluated using MTS assay (24, 72 and 120 h and differentiation with RT-PCR (ALP, OCN, Runx2, DSPP and MEPE and alizarin red staining (7 and 14 days. Data were analysed using one-way ANOVA and Tukey’s post-hoc analysis (a=0.05.Results The addition of PG significantly increased setting time, flowability and Ca2+ release, but it compromised the hardness of the material. SEM showed that 50/50 group resulted porous material after setting due to the incomplete setting reaction, as shown by XRD analysis. The addition of PG (80/20 and 50/50 was not capable to improve cell proliferation or to enhance gene expression, and mineralized deposition of DPSC after 7 and 14 days as compared to the 100/0.Conclusion Except for flowability, the addition of PG did not promote further improvements on the chemical and physical properties evaluated, and it was not capable of enhancing the bioactivity of the MTA.

  20. Dialkyldithiophosphoric acids - chemical properties and 5f and 4f elements ions extraction

    International Nuclear Information System (INIS)

    This work is a contribution to the study of the properties of the dialkyldithiophosphoric acids and of the extraction of the 4f and 5f ions from weakly acidic nitrate and phosphate media. Following a complete bibliographic study, synthesis and purification of the di-2-ethylhexyl-dithiophosphoric acid (HDEHDTP) is studied. It is identified with chemical methods and spectroscopic methods (I.R., N.M.R., V.P.C.); its by products, the di-2-ethylhexyl (monothio) phosphoric acids (HDEHTP, HDEHP) are also identified and characterized. Stability against hydrolysis and radiolysis is determined. The extractive properties are studied for the 4f and 5f ions. The presence of a sulfur donor atom in HDEHDTP makes it inefficient for the extraction of trivalent lanthanides and actinides but brings out a certain selectivity for americium. For HDEHTP, the presence of an oxygen donor atom rubs out any selectivity and the extraction constants are greater. Selectivity of HDEHDTP is increased by TBP (tri-n-butylphosphate) in synergistic mixtures. The mechanism of extraction of hexavalent uranium from phosphoric medium is elucidated. A model is developed by NMR for the micellisation of the sodium salts of HDEHDTP, HDEHTP and HDEHP, and extrapolated it to the trivalent rare earth salts of the acids. The structures are verified by light scattering and low angle X-ray diffraction

  1. Study of chemical and electrochemical properties of some elements in molten NaAlCl

    International Nuclear Information System (INIS)

    We describe a study of the electrochemical and chemical properties in molten mixtures of Aluminium Chloride-Sodium chloride, at 210 deg. C and the concept of acidity, related to chloride activity, is previously summarized. In a first part, the study of Mercury and Cadmium by means of electro-analytical techniques, states the Hg2+2, Hg2+, Cd2+2 and Cd2+ ions and their acid properties. Some diagrams Equilibrium potential vs acidity are the synthesis of these results. In a second part, it is shown that a nickel electrode is an indicator of the presence of oxide ions; from interpretation of electrochemical results, O2 appears to behave, in terms of the chloro-acido-basicity concept, as a strong di-base, giving the solvated form AlOCl-2, or a strong tri-base giving AlOCl. A saturation effect by Al2O3 appears when the oxide concentration is increased; the solubility of Al2O3 versus acidity is determined from the electrochemical results. In a third part, results for the Ni/Ni(II) or HCl/H2O systems are related to dissolved oxide ion presence in chloroaluminate melts; elimination of oxide ions, through H2O formation, by reaction with HCl is noteworthy. (author)

  2. Review of chemical and radio toxicological properties of polonium for internal contamination purposes

    International Nuclear Information System (INIS)

    The discovery of polonium (Po) was first published in July, 1898 by P. Curie and M. Curie. It was the first element to be discovered by the radiochemical method. Polonium can be considered as a famous but neglected element: only a few studies of polonium chemistry have been published, mostly between 1950 and 1990. The recent (2006) event in which Po-210 evidently was used as a poison to kill A. Litvinenko has raised new interest in polonium. 2011 being the 100. anniversary of the Marie Curie Nobel Prize in Chemistry, the aim of this review is to look at the several aspects of polonium linked to its chemical properties and its radiotoxicity, including (i) its radiochemistry and interaction with matter; (ii) its main sources and uses; (iii) its physicochemical properties; (iv) its main analytical methods; (v) its background exposure risk in water, food, and other environmental media; (vi) its biokinetics and distribution following inhalation, ingestion, and wound contamination; (vii) its dosimetry; and (viii) treatments available (decorporation) in case of internal contamination. (authors)

  3. Effect of gamma irradiation on microbiological, chemical, and sensory properties of fresh ashitaba and kale juices

    Science.gov (United States)

    Jo, Cheorun; Ahn, Dong Uk; Lee, Kyung Haeng

    2012-08-01

    Due to the popularity of health effects upon intake of fresh fruits and vegetables, the demand for fresh vegetables and fruit juices has rapidly increased. However, currently, washing is the only procedure for reducing contaminated microorganisms, which obviously limits the shelf-life of fresh vegetable juice (less than 3 days). In this study, we examined the effects of irradiation on the microbiological, chemical and sensory properties of ashitaba and kale juices for industrial application and possible shelf-life extension. Freshly made ashitaba and kale juices already had 2.3×105 and 9.5×104 CFU/mL, respectively. Irradiation of 5 kGy induced higher than 2 decimal reductions in the microbial level, which was consistently maintained during storage for 7 days under refrigerated conditions. Total content of ascorbic acid in vegetable juice decreased upon irradiation in a dose-dependent manner. However, the content of flavonoids did not change, whereas that of polyphenols increased upon irradiation. In sensory evaluation, the ashitaba and kale juices without irradiation (control) scored lower than the irradiated samples after 1 and 3 days, respectively. This study confirms that irradiation is an effective method for sterilizing fresh vegetable juice without compromising sensory property, which cannot be subjected to heat pasteurization due to changes in the bioactivities of the products.

  4. Changes in the physical and chemical properties of Pvdf irradiated by 4 MeV protons

    International Nuclear Information System (INIS)

    The behavior of poly-vinylidene fluoride (Pvdf) under bombardment of different kinds of radiation is of interest due to the polymer's unique piezo-electric properties and various crystalline forms. In this work, Pvdf film samples of 0.3 mm thickness and density 1.76 g/cm3 were irradiated with 4 MeV protons from the Instituto de Fisica 9SDH-2 Pelletron Accelerator. Changes in the physical and chemical properties were investigated using Fourier Transform Infrared Spectroscopy (Ftir) with Atr, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSc) and gel fraction measurements. The gel percent increases with fluence to almost 60% for a fluence of 1013 cm-2, and then more slowly up to 100% for a fluence of 3 x 1014 cm-2. The DSc curve of the control sample shows a sharp band at 176 C with a shoulder on the low temperature side. A well defined lower temperature peak, related to the relaxation of inter-crystalline regions appears at a fluence of 1013 cm-2. At 3 x 1014 cm-2 there are no melting peaks, due to complete destruction of the crystalline structure. This was confirmed at this high fluence by the Ftir spectra, and by x-ray diffraction, where an amorphous structure was observed. (Author)

  5. Effect of electric pulse processing on physical and chemical properties of inorganic materials

    Science.gov (United States)

    Sakipova, S. E.; Nussupbekov, B. R.; Ospanova, D.; Khassenov, A.; Sakipova, Sh E.

    2015-04-01

    This article analyzes various aspects of the practical application of electric pulse technology of industrial raw materials processing as a result of a spark electric discharge in a liquid solution of the raw material under processing. The object of the study are samples of technogenic materials from a deposit in Central Kazakhstan, which are crushed and ground to particles with a preset degree of fragmentation. The electric pulse processing is performed by using different numbers of discharges. The effect of electric pulse processing with different electrical parameters is carried out on the basis of comparison of the properties and structure of metal-containing and industrial raw materials after machining and electric pulse processing. The X-ray spectral microanalysis was performed using a scanning microscope. The researchers obtained data on changes in the microstructure and elemental composition of inorganic material samples as a result of electric pulse processing. It was established that the technology of electric pulse crushing and grinding of inorganic materials makes it possible to obtain not only a final product with desired size of dispersed particles, but also to change their physical and chemical properties.

  6. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method

    International Nuclear Information System (INIS)

    Copper nanoparticles, due to their interesting properties, low cost preparation and many potential applications in catalysis, cooling fluid or conductive inks, have attracted a lot of interest in recent years. In this study, copper nanoparticles were synthesized through the chemical reduction of copper sulfate with sodium borohydride in water without inert gas protection. In our synthesis route, ascorbic acid (natural vitamin C) was employed as a protective agent to prevent the nascent Cu nanoparticles from oxidation during the synthesis process and in storage. Polyethylene glycol (PEG) was added and worked both as a size controller and as a capping agent. Cu nanoparticles were characterized by Fourier transform infrared (FT-IR) spectroscopy to investigate the coordination between Cu nanoparticles and PEG. Transmission electron microscopy (TEM) and UV–vis spectrometry contributed to the analysis of size and optical properties of the nanoparticles, respectively. The average crystal sizes of the particles at room temperature were less than 10 nm. It was observed that the surface plasmon resonance phenomenon can be controlled during synthesis by varying the reaction time, pH, and relative ratio of copper sulfate to the surfactant. The surface plasmon resonance peak shifts from 561 to 572 nm, while the apparent color changes from red to black, which is partly related to the change in particle size. Upon oxidation, the color of the solution changes from red to violet and ultimately a blue solution appears

  7. Electrical properties of aluminum-doped zinc oxide (AZO) nanoparticles synthesized by chemical vapor synthesis

    International Nuclear Information System (INIS)

    Aluminum-doped zinc oxide nanoparticles have been prepared by chemical vapor synthesis, which facilitates the incorporation of a higher percentage of dopant atoms, far above the thermodynamic solubility limit of aluminum. The electrical properties of aluminum-doped and undoped zinc oxide nanoparticles were investigated by impedance spectroscopy. The impedance is measured under hydrogen and synthetic air between 323 and 673 K. The measurements under hydrogen as well as under synthetic air show transport properties depending on temperature and doping level. Under hydrogen atmosphere, a decreasing conductivity with increasing dopant content is observed, which can be explained by enhanced scattering processes due to an increasing disorder in the nanocrystalline material. The temperature coefficient for the doped samples switches from positive temperature coefficient behavior to negative temperature coefficient behavior with increasing dopant concentration. In the presence of synthetic air, the conductivity firstly increases with increasing dopant content by six orders of magnitude. The origin of the increasing conductivity is the generation of free charge carriers upon dopant incorporation. It reaches its maximum at a concentration of 7.7% of aluminum, and drops for higher doping levels. In all cases, the conductivity under hydrogen is higher than under synthetic air and can be changed reversibly by changing the atmosphere.

  8. Effects of Sorghum Flour Addition on Chemical and Rheological Properties of Hard White Winter Wheat

    Directory of Open Access Journals (Sweden)

    Ranya F. Abdelghafor

    2013-11-01

    Full Text Available This study was carried out to investigate the chemical and rheological properties of different blends prepared using hard white winter wheat (HWWW; Triticum aestivum Desf. and whole or decorticated sorghum (Sorghum bicolor. Whole and decorticated sorghum were used to replace 5, 10, 15 and 20% of wheat flour. Wheat samples had higher protein, moisture and calcium values and lower fat, ash, carbohydrates, iron and phosphorous values compared to whole and decorticated sorghum flours. Decortication of sorghum grains decreased moisture, ash, fat, crude protein, iron and phosphorous content, but increased carbohydrate content. Farinogram properties such as dough water absorption, development time and stability and Farinograph quality number decreased as the amount of substituted sorghum increased; whereas mixing tolerance index increased. Moreover, at fixed gluten levels, as sorghum flour increased in the blend, wet gluten, dry gluten and gluten index decreased. Increasing sorghum in the blend also decreased energy, resistance to extension and extensibility of the dough, but contributed to an increase in the ratio of resistance to extensibility. Furthermore, as fermentation time increased, energy, resistance to extension and the ratio number of energy to extension increased, whereas extensibility decreased.

  9. Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour.

    Science.gov (United States)

    Savlak, Nazlı; Türker, Burcu; Yeşilkanat, Nazlıcan

    2016-12-15

    The objective of this study was to examine the effect of particle size distribution on physical, chemical and functional properties of unripe banana flour for the first time. A pure triploid (AAA group) of Musa acuminata subgroup Cavendish (°Brix;0.2, pH;4.73, titratable acidity; 0.56g/100g malic acid, total solids; 27.42%) which was supplied from Gazipaşa, Antalya, Turkey from October 2014 to October 2015 was used. Size fractions of <212, 212-315, 316-500 and 501-700μm were characterized for their physical, functional and antioxidant properties. Particle size significantly effected color, water absorbtion index and wettability. L(∗) value decreased, a(∗) and b(∗) values decreased by increasing particle size (r(2)=-0.94, r(2)=0.72, r(2)=0.73 respectively). Particles under 212μm had the lowest rate of wettability (83.40s). A negative correlation between particle size and wettability (r(2)=-0.75) and positive correlation between particle size and water absorption index (r(2)=0.94) was observed. PMID:27451170

  10. COMPARISON OF THE PHYSICAL AND CHEMICAL PROPERTIES OF THE DISPERSIVE AND SODIC SOILS

    Directory of Open Access Journals (Sweden)

    G. NAGY

    2016-03-01

    Full Text Available Some cohesive soils show very little resistance when it comes to interaction with relatively pure water, however the water flow itself does not have to necessarily cause any damage in the soil structure. These soils are so poorly bonded, that this small amount of water flow can lead to structural breakdown. The effect caused several dike and earth dam damages and failures in the past years, therefore the behavior itself is considered as a geotechnical risk in the process of design. The dike breaches lead to the emergence of knowing how to identify and locate the areas and soil types, where the hazardous soils occur. In geotechnical engineering these soils are referred as dispersive soils, and their properties are known since the 1960s. In the recent years researches were carried out to get a better point of view of the reasons of these kind of behavior. Therefore the investigation of physical and chemical properties were made. The results showed that the dispersive behavior can be connected with the amount of dissolved salts in the soil extract. Since these are known as the origin of sodic soils, the relationship was investigated.

  11. Chemical, Biochemical, and Microbiological Properties of Soils from Abandoned and Extensively Cultivated Olive Orchards

    Directory of Open Access Journals (Sweden)

    A. M. Palese

    2013-01-01

    Full Text Available The abandonment of olive orchards is a phenomenon of great importance triggered mainly by economic and social causes. The aim of this study was to investigate some chemical, biochemical, and microbiological properties in a soil of a southern olive grove abandoned for 25 years. In order to define the effect of the long-term land abandonment on soil properties, an adjacent olive grove managed according to extensive practices was taken as reference (essentially minimum tillage and no fertilization. Soil organic matter, total nitrogen, and pH were significantly higher in the abandoned olive grove due to the absence of tillage and the natural inputs of organic matter at high C/N ratio which, inter alia, increased the number of cellulolytic bacteria and stimulated the activity of β-glucosidase, an indicator of a more advanced stage of soil evolution. The soil of the abandoned olive orchard showed a lower number of total bacteria and fungi and a lower microbial diversity, measured by means of the Biolog method, as a result of a sort of specialization trend towards low quality organic substrates. From this point of view, the extensive cultivation management seemed to not induce a disturbance to microbiological communities.

  12. Temporal changes of selected chemical properties in three manure - amended soils of Hawaii.

    Science.gov (United States)

    Ortiz Escobar, M E; Hue, N V

    2008-12-01

    Soil amendment with organic materials (crop residues animal manure, and green manure) reportedly has positive effects on soil properties, from acidity to plant-nutrient availability. To examine that hypothesis, an incubation study was conducted to assess the changes in some chemical properties of three different tropical soils (Andisol, Ultisol, and Oxisol) amended with chicken manure and green manure (Leucaena leucocephala) at the rate of 10tha(-1). The results showed that organic amendments raised soil pH and EC, regardless of the type of manure used. Manuring lowered the concentrations of Mehlich-3 extractable Ca, P, Mn and Si in all soils and decreased the concentration of Mg in the Ultisol and Oxisol. However, manure amendment led to increases in the concentrations of Mg and K in the Andisol. Organic amendments caused a decrease in KCl extractable Al. Initial soluble C levels were highest in the Oxisol (60micromolg(-1)) and lowest in the Andisol (20micromolg(-1)). The concentration of soluble C decreased exponentially with duration of incubation. Three low molecular weight organic molecules (acetic acid, catechol and oxalic acid) out of the eight tested were found in all manure-amended soils. This study quantified the release of some Al chelating organic acids, the reduction of exchangeable Al, and the changes in major plant-nutrients when organic materials were added to nutrient poor, tropical acid soils. PMID:18550367

  13. Microbiological and chemical properties of litter from different chicken types and production systems

    Energy Technology Data Exchange (ETDEWEB)

    Omeira, N. [Department of Land and Water Resources, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut (Lebanon); Barbour, E.K. [Department of Animal Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut (Lebanon)]. E-mail: eb01@aub.edu.lb; Nehme, P.A. [Department of Land and Water Resources, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut (Lebanon); Hamadeh, S.K. [Department of Animal Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut (Lebanon); Zurayk, R. [Department of Land and Water Resources, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut (Lebanon); Bashour, I. [Department of Land and Water Resources, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut (Lebanon)

    2006-08-15

    Chicken litter is produced in large quantities from all types of poultry raising activities. It is primarily used for land application, thus it is essential to analyze its properties before it is released to the environment. The objective of this study is to compare the microbiological and chemical properties of litter generated from layer and broiler chickens reared under intensive and free-range production systems. The microbiological analysis consisted of the enumeration of total bacteria, total coliforms, Staphylococcus species, Salmonella species and Clostridium perfringens. Chicken litter from layers reared under intensive and free range systems showed lower mean total bacterial count than the litter collected from chicken broilers reared under either of the two systems (P = 0.0291). The litter from intensive layers had the lowest mean total coliform counts (P = 0.0222) while the lowest Staphylococcus species count was observed in the litter from free-range layers (P = 0.0077). The C. perfringens count was the lowest in chicken litter from intensively raised broilers and layers (P = 0.0001). The chemical properties of litter from the different chicken types and production systems were compared based on determination of pH, electrical conductivity, carbon, nitrogen, phosphorus, potassium, cadmium and zinc. Litter from free-range broilers showed the highest pH value (P = 0.0005); however, the electrical conductivity was higher in the litter from both intensive and free-range layers compared to the litter from both broiler production systems (P = 0.0117). Chicken litter from intensive systems had higher nitrogen content than litter from free-range systems (P = 0.0000). The total phosphorus was the lowest in free-range broiler litter (P = 0.0001), while the total potassium was the lowest in litter from intensively managed broilers (P = 0.0000). Zinc appeared higher in litter from layers compared to that from broilers (P = 0.0101). The cadmium content was higher

  14. Microbiological and chemical properties of litter from different chicken types and production systems

    International Nuclear Information System (INIS)

    Chicken litter is produced in large quantities from all types of poultry raising activities. It is primarily used for land application, thus it is essential to analyze its properties before it is released to the environment. The objective of this study is to compare the microbiological and chemical properties of litter generated from layer and broiler chickens reared under intensive and free-range production systems. The microbiological analysis consisted of the enumeration of total bacteria, total coliforms, Staphylococcus species, Salmonella species and Clostridium perfringens. Chicken litter from layers reared under intensive and free range systems showed lower mean total bacterial count than the litter collected from chicken broilers reared under either of the two systems (P = 0.0291). The litter from intensive layers had the lowest mean total coliform counts (P = 0.0222) while the lowest Staphylococcus species count was observed in the litter from free-range layers (P = 0.0077). The C. perfringens count was the lowest in chicken litter from intensively raised broilers and layers (P = 0.0001). The chemical properties of litter from the different chicken types and production systems were compared based on determination of pH, electrical conductivity, carbon, nitrogen, phosphorus, potassium, cadmium and zinc. Litter from free-range broilers showed the highest pH value (P = 0.0005); however, the electrical conductivity was higher in the litter from both intensive and free-range layers compared to the litter from both broiler production systems (P = 0.0117). Chicken litter from intensive systems had higher nitrogen content than litter from free-range systems (P = 0.0000). The total phosphorus was the lowest in free-range broiler litter (P = 0.0001), while the total potassium was the lowest in litter from intensively managed broilers (P = 0.0000). Zinc appeared higher in litter from layers compared to that from broilers (P = 0.0101). The cadmium content was higher

  15. The effect of finite temperature and chemical potential on nucleon properties in the logarithmic quark sigma model

    Science.gov (United States)

    Abu-Shady, M.; Abu-Nab, A.

    2015-12-01

    The logarithmic quark sigma model is applied to study the nucleon properties at finite temperature and chemical potential. The field equations have been solved numerically in the mean-field approximation by using the extended iteration method at finite temperature and baryon chemical potential. Baryon properties are investigated, such as the hedgehog mass, the magnetic moments of the proton and neutron, and the pion-nucleon coupling constant. We find that the hedgehog mass and the magnetic moments of the proton and neutron increase with increasing temperature and chemical potential, while the pion-nucleon coupling constant decreases. A comparison with the original sigma model and QCD sum rules is presented. We conclude that the logarithmic quark sigma model successfully describes baryon properties of a hot and dense medium.

  16. THE INFLUENCE OF THE COMPLEX CHEMICAL ADDITIVE CONTAINING THE STRUCTURED CARBON NANOMATERIAL ON PROPERTIES OF CEMENT

    Directory of Open Access Journals (Sweden)

    O. Yu. Sheyda

    2015-01-01

    Full Text Available The paper presents results of investigations on influence of domestic complex chemical additive containing structured carbon nanomaterial and characterized by a combination effect (curing acceleration and plasticizing on cement and cement stone properties. The purpose of the investigations, on the one hand, has been to confirm efficacy of УКД-1additive from the perspective for increasing the rate of gain, strength growth of cement concrete and additive influence on setting time with the purpose to preserve molding properties of concrete mixes in time, and on the other hand, that is to assess “mechanism” of the УКД-1 additive action in the cement concrete. The research results have revealed regularities in changes due to the additive of water requirements and time period of the cement setting. The reqularities are considered as a pre-requisite for relevant changes in molding properties of the concrete mixes. The paper also experimentally substantiates the possibility to decrease temperature of cement concrete heating with the УДК-1 additive. It has been done with the purpose to save energy resources under production conditions. In addition to this the paper proves the efficiency of the additive which is expressed in strength increase of cement stone up to 20–40 % in the rated age (28 days that is considered as a basis for strength growth of cement concrete. The paper confirms a hypothesis on physical nature of this phenomenon because the X-ray phase analysis method has shown that there are no changes in morphology of portland cement hydration products under the action of the additive agent containing a structured carbon nanomaterial. Results of theoretical and experimental investigations on УКД-1 additive efficiency have been proved by industrial approbation while fabricating precast concrete products and construction of monolithic structures under plant industrial conditions (Minsk, SS “Stroyprogress” JSC MAPID and on

  17. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite

    International Nuclear Information System (INIS)

    Graphical abstract: Room temperature Raman spectra of CoFe2−xGdxO4 (CFGO, x = 0.0–0.3) compounds as a function of wavenumber (cm−1). - Highlights: • Gd substituted ferrites were synthesized under controlled concentration. • Gd ion induced lattice dynamical changes are significant. • Enhanced magnetization is observed upon Gd-incorporation in cobalt ferrite. • A correlation between lattice dynamics and magnetic properties is established. - Abstract: Polycrystalline gadolinium (Gd) substituted cobalt ferrites (CoFe2−xGdxO4; x = 0–0.3, referred to CFGO) ceramics have been synthesized by solid state reaction method. Chemical bonding, crystal structure and magnetic properties of CFGO compounds have been evaluated as a function of Gd-content. X-ray diffraction (XRD) and Raman spectroscopic analyses confirmed the formation of inverse spinel cubic structure. However, a secondary ortho-ferrite phase (GdFeO3) nucleates for higher values of Gd-content. A considerable increase in the saturation magnetization has been observed upon the initial substitution of Gd (x = 0.1). The saturation magnetization drastically decreases at higher Gd content (x ⩾ 0.3). No contribution from ortho-ferrite GdFeO3 phase is noted to the magnetic properties. The increase in the magnetic saturation magnetization is attributed to the higher magnetic moment of Gd3+ (4f7) residing in octahedral sites is higher when compared to that of Fe3+ (3d5) and as well due to the migration of Co2+ (3d7) ions from the octahedral to the tetrahedral sites with a magnetic moment aligned anti-parallel to those of rare earth (RE3+) ions in the spinel lattice. Increase in coercivity with increase in Gd3+ is content is attributed to magnetic anisotropy in the ceramics

  18. Influence of land cover changes on the physical and chemical properties of alpine meadow soil

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Taking the alpine cold meadow grassland in the southeastern part of the Qinghai-Tibetan Plateau as an example, this research deals with the characteristics of alpine meadow soil property changes, including soil nutrients, soil physical properties and soil moisture content under different land coverage conditions. With the degradation of grassland vegetation and the decline of vegetation coverage, soil compactness reduces, gravel content increases and bulk density increases. The originally dense root-system layer is gradually denuded, making the soil coarse and gravel. The change of the organic matter contents with the vegetation coverage change in the surface soil layer (0-20 cm) has shown an obvious cubic polynomial curve process. The organic matter contents increase rapidly when land coverage is above 60%, contrarily decreases on a large scale when land coverage is below 30%. Between 30%-60% of land coverage the organic matter contents remain stable. The total N and organic matter contents in soil have shown quite similar change regularity. Following this the mathematic equations are derived to describe such change processes. Moisture content in soil changes sharply with the vegetation coverage change. Soil moisture content change with the vegetation coverage change has shown a quadratic parabola process. Results have shown that organic matter content and the total N content of the alpine meadow soil decrease by 14890 kg/hm2 and 5505 kg/hm2 respectively as the vegetation coverage reduces from 90% to less than 30%. The heavy changes of soil physical and chemical properties with grassland degradation have made the recovery of alpine meadow ecological system impossible. The protection of alpine meadow vegetation is of vital importance to the maintenance of the regional soil environment and the regional ecological system.

  19. Effect of gamma irradiation on microbiological, chemical, and sensory properties of fresh ashitaba and kale juices

    International Nuclear Information System (INIS)

    Due to the popularity of health effects upon intake of fresh fruits and vegetables, the demand for fresh vegetables and fruit juices has rapidly increased. However, currently, washing is the only procedure for reducing contaminated microorganisms, which obviously limits the shelf-life of fresh vegetable juice (less than 3 days). In this study, we examined the effects of irradiation on the microbiological, chemical and sensory properties of ashitaba and kale juices for industrial application and possible shelf-life extension. Freshly made ashitaba and kale juices already had 2.3×105 and 9.5×104 CFU/mL, respectively. Irradiation of 5 kGy induced higher than 2 decimal reductions in the microbial level, which was consistently maintained during storage for 7 days under refrigerated conditions. Total content of ascorbic acid in vegetable juice decreased upon irradiation in a dose-dependent manner. However, the content of flavonoids did not change, whereas that of polyphenols increased upon irradiation. In sensory evaluation, the ashitaba and kale juices without irradiation (control) scored lower than the irradiated samples after 1 and 3 days, respectively. This study confirms that irradiation is an effective method for sterilizing fresh vegetable juice without compromising sensory property, which cannot be subjected to heat pasteurization due to changes in the bioactivities of the products. - Highlights: ► We examined the effects of irradiation of fresh vegetable juices (ashitaba and kale) for industrial application. ► Irradiation of 5 kGy induced higher than 2 decimal reductions in the microbial level. ► Ascorbic acid in vegetable juice decreased upon irradiation in a dose-dependent manner. ► Content of flavonoids did not change whereas that of polyphenols increased. ► There was no change in sensory properties after irradiation.

  20. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    Science.gov (United States)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  1. Effect of Azolla Based - Organic Fertilizer, Rock Phosphate and Rice Hull Ash on Rice Yield and Chemical Properties of Alfisols

    OpenAIRE

    Sudadi; Sumarno; Wiki Handi

    2014-01-01

    The application of chemical fertilizer for long time may adverse soil environment. Organic agriculture, for example combination use of azolla based-organic fertilizer, phosphate rock and rice hull ash, was one of ways that able to recover it. Research was conducted in Sukosari, Jumantono, Karanganyar while soi chemical properties analysis was analysed in Soil Chemistry and Fertility Laboratory, Fac. of Agriculture, Sebelas Maret University April to November 2013. Research design used was R...

  2. Assessment of physico-chemical properties and metal contents of water and sediments of Bodo Creek, Niger Delta, Nigeria

    OpenAIRE

    Vincent-Akpu, Ijeoma Favour; Tyler, Andrew N.; Wilson, Clare; MacKinnon, Gillian

    2015-01-01

    Some physico-chemical properties and the concentrations of the metals Fe, Mn, Ni, Cd, Cr, Co, Cu, Pb, and Zn in water and sediments were examined from September 2011 to January 2012 in Bodo Creek, where oil spills have been recurrent. Temperature, pH, total dissolved solid, conductivity, salinity, dissolved oxygen, biological oxygen demand (BOD), chemical oxygen demand (COD), total hardness, sulfate, nitrate, and phosphate were determined in surface water. Particle size, total organic matter ...

  3. Investigation of chemical and physical properties of carbon nanotubes and their effects on cell biomechanics

    Science.gov (United States)

    Dong, Chenbo

    Carbon nanotubes (CNTs) are used for a variety of applications from nanocircuits, to hydrogen storage devices, and from designing optical fibers to forming conductive plastics. Recently, their functionalization with biomolecules led to exciting biological and biomedical applications in drug delivery or bioimaging. However, because of CNTs interactions with biological systems and their ability to translocate and persist into the circulatory and lymphatic systems and biological tissues, concerns about CNTs intrinsic toxicity have risen. It is thus necessary to develop and implement sensitive analysis technologies that allow investigation of CNTs toxicity upon uptake into a biological system. This thesis provides a comprehensive guide of experiments that have been performed during my Ph.D. tenure at West Virginia University in the Department of Chemical Engineering, in the group of Prof. Cerasela Zoica Dinu. Briefly: Chapter one presents a systematic study of the CNTs physical and chemical properties and how these properties are changed upon exposure to chemical agents normally used during their cleaning and purification processes. Also, this chapter shows how acid oxidation treatment leads to improved CNTs biocompatibility. Specifically, by incubating CNTs in a strong acid mixture we created a user-defined library of CNTs samples with different characteristics as recorded using Raman energy dispersive x-ray spectroscopy, atomic force microscopy, or solubility tests. Systematically characterized CNTs were subsequently tested for their biocompatibility in relation to human epithelial cells or enzymes. Such selected examples are building pertinent relationships between CNTs biocompatibility and their intrinsic properties by showing that acid oxidation treatment lowers CNTs toxicity making CNTs feasible platforms to be used for biomedical applications or the next generation of biosensors. (Publication: Chenbo Dong, Alan S Campell, Reem Eldawud, Gabriela Perhinschi, and

  4. Impact of chemical treatments on the mechanical and water absorption properties of coconut fibre (Cocos nucifera reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Isiaka O. OLADELE

    2016-07-01

    Full Text Available In this work, chemically treated coconut fibres were used to reinforce Homopolymer Polypropylene in order to ascertain the effect of the treatments on the mechanical and water absorption properties of the composites produced. Coconut fibre was first extracted from its husk by soaking it in water and was dried before it was cut into 10 mm lengths. It was then chemically treated in alkali solution of sodium hydroxide (NaOH and potassium hydroxide (KOH in a shaker water bath. The treated coconut fibres were used as reinforcements in polypropylene matrix to produce composites of varied fibre weight contents; 2, 4, 6, 8 and 10 wt.%. Tensile and flexural properties were investigated using universal testing machine while water absorption test was carried out on the samples for 7 days. It was observed from the results that, NaOH treated samples gave the best tensile properties while KOH treated samples gave the best flexural and water repellent properties.

  5. Physical and chemical modifications of surface properties lead to alterations in osteoblast behavior

    Science.gov (United States)

    Dorst, Kathryn Elizabeth

    Proper formation of the bone extracellular matrix (ECM), or osteoid, depends on the surface properties of pre-existing tissue and the aqueous chemical environment. Both of these factors greatly influence osteoblast migration, cytoskeletal organization, and calcium nodule production, important aspects when considering the biocompatibility of bone implants. By perturbing the physical and/or chemical micro-environment, it may be possible to elucidate effects on cellular function. To examine these factors, murine pre-osteoblasts (MC3T3-E1 subclones 4 and 24) were seeded on polydimethylsiloxane (PDMS) substrates containing "wide" micro-patterned ridges (20 mum width, 30 mum pitch, & 2 mum height), "narrow" micro-patterned ridges (2 mum width, 10 mum pitch, 2 mum height), no patterns (flat PDMS), and standard tissue culture (TC) polystyrene as a control. Zinc concentration was adjusted to mimic deficient (0.23 muM), serum-level (3.6 muM), and zinc-rich (50 muM) conditions. It was found that cells exhibited distinct anisotropic migration in serum-level zinc and zinc-deficient media on the wide PDMS patterns, however this was disrupted under zinc-rich conditions. Production of differentiation effectors, activated metalloproteinase-2 (MMP-2) and transforming growth factor - beta 1 (TGF-beta1), was increased with the addition of exogenous zinc. Early stage differentiation, via alkaline phosphatase, was modified by zinc levels on patterned polydimethylsiloxane (PDMS) surfaces, but not on flat PDMS or tissue culture polystyrene (TC). Late stage differentiation, visualized through calcium phosphate nodules, was markedly different at various zinc levels when the cells were cultured on TC substrates. This susceptibility to zinc content can lead to differences in bone mineral production on certain substrates if osteoblasts are not able to maintain and remodel bone effectively, a process vital to successful biomaterial integration.

  6. Visualization of physico-chemical properties and microbial distribution in soil and root microenvironments

    Science.gov (United States)

    Eickhorst, Thilo; Schmidt, Hannes

    2016-04-01

    Plant root development is influenced by soil properties and environmental factors. In turn plant roots can also change the physico-chemical conditions in soil resulting in gradients between roots and the root-free bulk soil. By releasing a variety of substances roots facilitate microbial activities in their direct vicinity, the rhizosphere. The related microorganisms are relevant for various ecosystem functions in the root-soil interface such as nutrient cycling. It is therefore important to study the impact and dynamics of microorganisms associated to different compartments in root-soil interfaces on a biologically meaningful micro-scale. The analysis of microorganisms in their habitats requires microscopic observations of the respective microenvironment. This can be obtained by preserving the complex soil structure including the root system by resin impregnation resulting in high quality thin sections. The observation of such sections via fluorescence microscopy, SEM-EDS, and Nano-SIMS will be highlighted in this presentation. In addition, we will discuss the combination of this methodological approach with other imaging techniques such as planar optodes or non-invasive 3D X-ray CT to reveal the entire spatial structure and arrangement of soil particles and roots. When combining the preservation of soil structure via resin impregnation with 16S rRNA targeted fluorescence in situ hybridization (FISH) single microbial cells can be visualized, localized, and quantified in the undisturbed soil matrix including the root-soil interfaces. The simultaneous use of multiple oligonucleotide probes thereby provides information on the spatial distribution of microorganisms belonging to different phylogenetic groups. Results will be shown for paddy soils, where management induced physico-chemical dynamics (flooding and drying) as well as resulting microbial dynamics were visualized via correlative microscopy in resin impregnated samples.

  7. Physical-chemical determinant properties of biological communities in continental semi-arid waters.

    Science.gov (United States)

    da Rocha, Francisco Cleiton; de Andrade, Eunice Maia; Lopes, Fernando Bezerra; de Paula Filho, Francisco José; Filho, José Hamilton Costa; da Silva, Merivalda Doroteu

    2016-08-01

    Throughout human history, water has undergone changes in quality. This problem is more serious in dry areas, where there is a natural water deficit due to climatic factors. The aims of this study, therefore, were (i) to verify correlations between physical attributes, chemical attributes and biological metrics and (ii) from the biological attributes, to verify the similarity between different points of a body of water in a tropical semi-arid region. Samples were collected every 2 months, from July 2009 to July 2011, at seven points. Four physical attributes, five chemical attributes and four biological metrics were investigated. To identify the correlations between the physicochemical properties and the biological metrics, hierarchical cluster analysis (HCA) and canonical correlation analysis (CCA) were applied. Nine classes of phytoplankton were identified, with the predominance of species of cyanobacteria, and ten families of macroinvertebrates. The use of HCA resulted in the formation of three similar groups, showing that it was possible to reduce the number of sampling points when monitoring water quality with a consequent reduction in cost. Group I was formed from the waters at the high end of the reservoir (points P1, P2 and P3), group II by the waters from the middle third (points P4 and P5), and group III by the waters from the lower part of the reservoir (points P6 and P7). Richness of the phytoplanktons Cyanophyceae, Chorophyceae and Bacillariophyceae was the attribute which determined dissimilarity in water quality. Using CCA, it was possible to identify the spatial variability of the physicochemical attributes (TSS, TKN, nitrate and total phosphorus) that most influence the metrics of the macroinvertebrates and phytoplankton present in the water. Low macroinvertebrate diversity, with a predominance of indicator families for deterioration in water quality, and the composition of phytoplankton showing a predominance of cyanobacteria, suggests greater

  8. Effect of Grain Size on Selected Physico-Chemical Properties of Clay

    Directory of Open Access Journals (Sweden)

    Osumanu H. Ahmed

    2009-01-01

    Full Text Available Problem statement: Mixture of the right proportion of expanding and non-expanding clays to improve plasticity (moldability of clays used in the pot industry of Malaysia is yet to be well investigated. In addition, little is known about the choice of the right clay size to eliminate or reduce the content of undesirable compounds such as Fe2O3, Al2O3 to improve the strength of pots and roofing tiles in the country. The objective of this study was to investigate how selected physico-chemical properties of pottery clay relate to grain size of Nyalau series ((Typic Paleudults. Approach: Soil samples were refined into 25, 20 and 63 µm using size grading method. The mineralogical composition of the samples was determined using X-Ray Diffraction (XRD. The chemical composition of the samples was also determined using standard procedures. Firing was done at 800°C in a muffle furnace and the cracks of the samples recorded. Results: The clay particles with sizes 20 and 25 µm were higher in LOI and total C than that those of 63 µm regardless of grain size, the clay investigated had quartz (SiO2, illite-montmorillonite, Anatase ((TiO2 and kaolinite. Grading affected the concentrations of Fe, Al and Si as clays with particle sizes 20 and 25 µm had higher contents of the aforementioned elements compared with those of 63 µm. The clay with particles 63 µm had the best strength and this was so because the clay particles had the lowest amount of Fe, Al and Si. Conclusion: The strength of Malaysian pots could be improved upon proper grading of the clay particles.

  9. Influence of the Organic Fertilizer Conditon the Content of Heavy Metals and Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    Ján Hecl

    2012-10-01

    Full Text Available Effect of amendment Condit on the mobility and uptake of Cd, Pb and Ni by crops, such as peas, spring barley, carrot and red beet, and selected chemical soil properties was tested in a field trial in years 2006–2008. Experimental field was situated close by sources of pollution, chemical factory Chemko Strážske and waste dump. The soil at experimental area was highly contaminated mainly by Cd. Heavy metals content was tested in the following parts of the crops: pea seed, spring barley green mater, carrot root and red beet root. Heavy metals content in soil and plant samples was detected in 2M HNO3 solution by the AAS method. It was found that Condit reduced Cd content in the soil under each cultivated crop. The most considerable Cd reducing (77.2% was at treatment with pea. The reduction of Pb and Ni content in the soil after Condit application was markedly lower as in the case of Cd, in comparison with control treatment. Positive effect of tested amendment Condit on reduction of Cd uptake was found by all crops under test. The best effect of Condit was found in carrot. Content of Cd in the carrot root was lower for about 55% compared with control treatment without amendment. Soil organic carbon content was significantly higher at treatment with Condit in comparison with control treatment. Measured content of soil organic carbon was higher by 1.16 g kg-1. The changes of soil carbon were insignificant at control treatment. Tested amendment Condit had significant impact on uptake of all measured heavy metals by plants. The result suggests that most significant impact had Condit on uptake of Cd. The measured amounts were the lowest of evaluated heavy metals.

  10. Exploring routes to tailor the physical and chemical properties of oxides via doping: an STM study.

    Science.gov (United States)

    Nilius, Niklas

    2015-08-01

    Doping opens fascinating possibilities for tailoring the electronic, optical, magnetic, and chemical properties of oxides. The dopants perturb the intrinsic behavior of the material by generating charge centers for electron transfer into adsorbates, by inducing new energy levels for electronic and optical excitations, and by altering the surface morphology and hence the adsorption and reactivity pattern. Despite a vivid scientific interest, knowledge on doped oxides is limited when compared to semiconductors, which reflects the higher complexity and the insulating nature of many oxides. In fact, atomic-scale studies, aiming at a mechanistic understanding of dopant-related processes, are still scarce.In this article, we review our scanning tunneling microscopy (STM) experiments on thin, crystalline oxide films with a defined doping level. We demonstrate how the impurities alter the surface morphology and produce cationic/anionic vacancies in order to keep the system charge neutral. We discuss how individual dopants can be visualized in the lattice, even if they reside in subsurface layers. By means of STM-conductance and x-ray photoelectron spectroscopy, we determine the electronic impact of dopants, including the energies of their eigen states and local band-bending effects in the host oxide. Electronic transitions between dopant-induced gap states give rise to new optical modes, as detected with STM luminescence spectroscopy. From a chemical perspective, dopants are introduced to improve the redox potential of oxide materials. Electron transfer from Mo-donors, for example, alters the growth behavior of gold and activates O2 molecules on a wide-gap CaO surface. Such results demonstrate the enormous potential of doped oxides in heterogeneous catalysis. Our experiments address the issue of doping from a fundamental viewpoint, posing questions on the lattice position, charge state, and electron-transfer potential of the impurity ions. Whether doped oxides are suitable

  11. Influence of the Organic Fertilizer Conditon the Content of Heavy Metals and Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    Jan Hecl

    2014-02-01

    Full Text Available Effect of amendment Condit on the mobility and uptake of Cd, Pb and Ni by crops, such as peas, spring barley, carrot and red beet, and selected chemical soil properties was tested in a field trial in years 2006–2008. Experimental field was situated close by sources of pollution, chemical factory Chemko Strážske and waste dump. The soil at experimental area was highly contaminated mainly by Cd. Heavy metals content was tested in the following parts of the crops: pea seed, spring barley green mater, carrot root and red beet root. Heavy metals content in soil and plant samples was detected in 2M HNO3 solution by the AAS method. It was found that Condit reduced Cd content in the soil under each cultivated crop. The most considerable Cd reducing (77.2% was at treatment with pea. The reduction of Pb and Ni content in the soil after Condit application was markedly lower as in the case of Cd, in comparison with control treatment. Positive effect of tested amendment Condit on reduction of Cd uptake was found by all crops under test. The best effect of Condit was found in carrot. Content of Cd in the carrot root was lower for about 55% compared with control treatment without amendment. Soil organic carbon content was significantly higher at treatment with Condit in comparison with control treatment. Measured content of soil organic carbon was higher by 1.16 g kg-1. The changes of soil carbon were insignificant at control treatment. Tested amendment Condit had significant impact on uptake of all measured heavy metals by plants. The result suggests that most significant impact had Condit on uptake of Cd. The measured amounts were the lowest of evaluated heavy metals.

  12. Influence of the Organic Fertilizer Conditon the Content of Heavy Metals and Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    Ján Hecl

    2012-09-01

    Full Text Available Effect of amendment Condit on the mobility and uptake of Cd, Pb and Ni by crops, such as peas, spring barley, carrot and red beet, and selected chemical soil properties was tested in a field trial in years 2006–2008. Experimental field was situated close by sources of pollution, chemical factory Chemko Strážske and waste dump. The soil at experimental area was highly contaminated mainly by Cd. Heavy metals content was tested in the following parts of the crops: pea seed, spring barley green mater, carrot root and red beet root. Heavy metals content in soil and plant samples was detected in 2M HNO3 solution by the AAS method. It was found that Condit reduced Cd content in the soil under each cultivated crop. The most considerable Cd reducing (77.2% was at treatment with pea. The reduction of Pb and Ni content in the soil after Condit application was markedly lower as in the case of Cd, in comparison with control treatment. Positive effect of tested amendment Condit on reduction of Cd uptake was found by all crops under test. The best effect of Condit was found in carrot. Content of Cd in the carrot root was lower for about 55% compared with control treatment without amendment. Soil organic carbon content was significantly higher at treatment with Condit in comparison with control treatment. Measured content of soil organic carbon was higher by 1.16 g kg-1. The changes of soil carbon were insignificant at control treatment. Tested amendment Condit had significant impact on uptake of all measured heavy metals by plants. The result suggests that most significant impact had Condit on uptake of Cd. The measured amounts were the lowest of evaluated heavy metals.

  13. Characterization of Anticancer, Antimicrobial, Antioxidant Properties and Chemical Compositions of Peperomia Pellucida Leaf Extract

    Directory of Open Access Journals (Sweden)

    Desy Fitrya Syamsumir

    2011-10-01

    Full Text Available Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium assay against human breast adenocarcinoma (MCF-7 cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then characterized using α, α-diphenyl-β-picrylhydrazyl (DPPH radical scavenging method and the chemical compositions were screened and identified using gas chromatography-mass spectrometry (GC-MS. The results of present study indicated that P. pellucida leaf extract possessed anticancer activities with half maximal inhibitory concentration (IC50 of 10.4±0.06 µg/ml. The minimum inhibitory concentration (MIC values were ranged from 31.25 to 125 mg/l in which the plant extract was found to inhibit the growth of Edwardsiella tarda, Escherichia coli, Flavobacterium sp., Pseudomonas aeruginosa and Vibrio cholerae at 31.25 mg/l; Klebsiella sp., Aeromonas hydrophila and Vibrio alginolyticus at 62.5 mg/l; and it was able to control the growth of Salmonella sp. and Vibrio parahaemolyticus at 125 mg/l. At the concentration of 0.625 ppt, the plant extract was found to inhibit 30% of DPPH, free radical. Phytol (37.88% was the major compound in the plant extract followed by 2-Naphthalenol, decahydro- (26.20%, Hexadecanoic acid, methyl ester (18.31% and 9,12-Octadecadienoic acid (Z,Z-, methyl ester (17.61%. Findings from this study indicated that methanol extract of P. pellucida leaf possessed vast potential as medicinal drug especially in breast cancer treatment.

  14. Unusual chemical properties of N-terminal histidine residues of glucagon and vasoactive intestinal peptide

    International Nuclear Information System (INIS)

    An N-terminal histidine residue of a protein or peptide has two functional groups, viz., an alpha-amino group and an imidazole group. A new procedure, based on the competitive labeling approach described by Duggleby and Kaplan has been developed by which the chemical reactivity of each functional group in such a residue can be determined as a function of pH. Only very small amounts of material are required, which makes it possible to determine the chemical properties in dilute solution or in proteins and polypeptides that can be obtained in only minute quantities. With this approach, the reactivity of the alpha-amino group of histidylglycine toward 1-fluoro-2,4-dinitrobenzene gave an apparent pK /sub a/ value of 7.64 +/- 0.07 at 37 degrees C, in good agreement with a value of 7.69 +/- 0.02 obtained by acid-base titration. However, the reactivity of the imidazole function gave an apparent pK /sub a/ value of 7.16 +/- 0.07 as compared to the pK /sub a/ value of 5.85 +/- 0.01 obtained by acid-base titration. Similarly, in glucagon and vasoactive intestinal peptide (VIP), apparent pKa values of 7.60 +/- 0.04 and 7.88 +/- 0.18, respectively, were obtained for the alpha-amino of their N-terminal histidine, and pKa values of 7.43 +/- 0.09 and 7.59 +/- 0.18 were obtained for the imidazole function

  15. A study on the medicinal mushroom Cordyceps militaris (L.) link: chemical characterization, antioxidant, antimicrobial and antiproliferative properties

    OpenAIRE

    Reis, Filipa S.; Stojković, Dejan; Glamočlija, Jasmina; Ćirić, Ana; Van Griensven, Leo J. L. D.; Soković, Marina; Isabel C. F. R. Ferreira

    2013-01-01

    The Cordyceps genus is well known for its medicinal properties. A number of bioactive constituents from Cordyceps species have been reported such as antibacterial, antifungal, immunopotentiating or antitumor agents [1]. The anti-inflammatory and anti-angiogenic properties of Cordyceps militaris (L.) Link have been reported as also the antioxidant activity of its cultured mycelium [2]. In this work, the chemical characterization of C. militaris was performed, includingbioactive ...

  16. Computer modelling system of the chemical composition and treatment parameters influence on mechanical properties of structural steels

    OpenAIRE

    L.A. Dobrzański; R. Honysz

    2009-01-01

    Purpose: This paper presents Neuro-Lab. It is an authorship programme, which use algorithms of artificial intelligence for structural steels mechanical properties estimation.Design/methodology/approach: On the basis of chemical composition, parameters of heat and mechanical treatment and elements of geometrical shape and size this programme has the ability to calculate the mechanical properties of examined steel and introduce them as raw numeric data or in graphic as influence charts. Possibl...

  17. Hygroscopic and Chemical Properties of Aerosols collected near a Copper Smelter: Implications for Public and Environmental Health

    OpenAIRE

    Sorooshian, Armin; Csavina, Janae; Shingler, Taylor; Dey, Stephen; Brechtel, Fred J.; Sáez, A. Eduardo; Betterton, Eric A.

    2012-01-01

    Particulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active coppe...

  18. Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kostaki, Vasiliki T.; Florou, Ageliki B. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece); Prodromidis, Mamas I., E-mail: mprodrom@cc.uoi.gr [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece)

    2011-10-01

    Highlights: > Electrochemical treatment endows analytical characteristics to SPEs. > A sensitive chemical sensor for uranium is described. > Performance is due to a synergy between electrochemical treatment and ink's solvents. > The amount of the solvent controls the achievable sensitivity. - Abstract: We report for the first time on the possibility to develop chemical sensors based on electrochemically treated, non-modified, graphite screen-printed electrodes (SPEs). The applied galvanostatic treatment (5 {mu}A for 6 min in 0.1 M H{sub 2}SO{sub 4}) is demonstrated to be effective for the development of chemical sensors for the determination of uranium in aqueous solutions. A detailed study of the effect of various parameters related to the fabrication of SPEs on the performance of the resulting sensors along with some diagnostic experiments on conventional graphite electrodes showed that the inducible analytical characteristics are due to a synergy between electrochemical treatment and ink's solvents. Indeed, the amount of the latter onto the printed working layer controls the achievable sensitivity. The preconcentration of the analyte was performed in an electroless mode in an aqueous solutions of U(VI), pH 4.6, and then, the accumulated species was reduced by means of a differential pulse voltammetry scan in 0.1 M H{sub 3}BO{sub 3}, pH 3. Under selected experimental conditions, a linear calibration curve over the range 5 x 10{sup -9} to 10{sup -7} M U(VI) was constructed. The 3{sigma} limit of detection at a preconcentration time of 30 min, and the relative standard deviation of the method were 4.5 x 10{sup -9} M U(VI) and >12% (n = 5, 5 x 10{sup -8} M U(VI)), respectively. The effect of potential interferences was also examined.

  19. Physico-chemical properties of blends of palm olein with other vegetable oils

    Directory of Open Access Journals (Sweden)

    Mobin Siddique, Bazlul

    2010-12-01

    Full Text Available Palm oil (olein was blended with other edible oils for the enhancement of its market acceptability in terms of melting point depression and shelf life. The physico-chemical properties like viscosity, density, melting behavior, peroxide value (PV, saponification value (SV and iodine value (IV of four different binary blends with four vegetable oils were evaluated. Palm olein was found to be more stable against rancidity than the other oils. For the stability against oxidation and melting point depression the palm olein-canola (PO/CO blend was found to be better than the others. The Differential Scanning Calorimeter (DSC thermogram of the melting behavior of the blends traces some new polymorphs of the triglyceride. This study will help the oil producing industry to find out the most economically viable oil blends for cooking purposes, with maximum nutrition as well as desirable physico-chemical properties.

    Aceite de palma (oleína fue mezclada con otros aceites comestibles para aumentar su aceptabilidad en el mercado en términos de descenso del punto de fusión y mejora de su almacenamiento. Las propiedades físico-químicas tales como viscosidad, densidad, comportamiento en la fusión, valor de peróxidos (PV, valor de saponificación (SV e índice de yodo (IV de cuatro diferentes mezclas binarias con cuatro aceites vegetales fueron evaluadas. La oleína de palma fue más estable frente a la rancidez que otros aceites. En la estabilidad frente la oxidación y el descenso del punto de fusión, la mezcla de oleína de palma/canola (PO/CO fue mejor que las otras. Los termogramas del calorímetro diferencial de barrido (DSC referidos al comportamiento de fusión de las mezclas indican algunos nuevos polimorfismos de los triglicéridos. Este estudio podría ayudar a las empresas que elaboran aceites a encontrar los aceites económicamente más viables para cocinar, con buenas propiedades nutricionales, así como con unas propiedades f

  20. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance.A series of activated carbons (ACs) were prepared using HNO3,H2O2,NH3·H2O and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The ACs were physically and chemically characterized by iodine and SO2 adsorption,ultimate analysis,Boehm titration,and temperature-programmed reduction (TPR).Results showed that the iodine number and desulphurization capacity of NH3·H2O activated carbon (AC-NH3) increase with both activation time,and its desulphurization capacity also increases with the concentration of activation agent.However,HNO3 activated carbon (AC-HNO3) and H2O2 activated carbon (AC-H2O2) exhibit more complex behavior.Only their iodine numbers increase monotonously with activation time.Compared with steam activated AC (AC-H2O),the nitrogen content increases 0.232% in AC-NH3 and 0.077% in AC-HNO3.The amount of total basic site on AC-HNO3 is 0.19 mmol·g-1 higher than that on AC-H2O.H2O2 activation introduces an additional 0.08 mmol·g-1 carboxyl groups to AC surface than that introduced by steam activation.The desulphurization capacity of ACs in simulate flue gas desulphurization decreases as follows: AC-NH3 > AC-HNO3 > AC-H2O2 > AC-H2O.This sequence is in accord with the SO2 catalytic oxidation/oxidation ratio in the absence of oxygen and the oxidation property reflected by TPR.In the presence of oxygen,all adsorbed SO2 on ACs can be oxidized into SO3.The desulphurization capacity increases differently according to the activation agents;the desulphurization capacity of AC-NH3 and AC-HNO3 improves by 4.8 times,yet AC-H2O increases only by 2.62 as compared with the desulphurization of corresponding ACs in absence of oxygen.