WorldWideScience

Sample records for chemical product formation

  1. Predicting soil formation on the basis of transport-limited chemical weathering

    Science.gov (United States)

    Yu, Fang; Hunt, Allen Gerhard

    2018-01-01

    Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.

  2. Teaching and Learning in Chemical Product Engineering - an Evolving par of the Chemical Engineering Curriculum

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Kiil, Søren; Wesselingh, Johannes

    2007-01-01

    Over the last decade Chemical Product Engineering has evolved as part of the Chemical Engineering Curriculum at several universities in Europe and America. At the DTU Chemical Product Engineering was introduced in 2000. This presentation will report on the experiences gained from teaching classes...... and preparing a text book on the subject. [1] Chemical Product Engineering is solidly based on chemical technical and engineering knowledge. Furthermore, the subject naturally calls for a holistic approach to teaching and learning and introduces elements which target transferable and professional engineering...... skills. Such skills are important in Chemical Product Engineering when dealing with open-ended problems, creative problem solutions, operating in a team working environment and exercising project management. In our course we emphasise team activites, formative feed back to the students as well as helping...

  3. Chemical products and industrial materials

    International Nuclear Information System (INIS)

    1995-12-01

    A compilation of all universities, industrial and governmental agencies in Quebec which are actively involved in research and development of chemical products and industrial materials derived from biomass products, was presented. Each entry presented in a standard format that included a description of the major research activities of the university or agency, the principal technologies used in the research, available research and analytical equipment, a description of the research personnel, names, and addresses of contact persons for the agency or university. Thirty entries were presented. These covered a wide diversity of activities including biotechnological research such as genetic manipulations, bioconversion, fermentation, enzymatic hydrolysis and physico-chemical applications such as bleaching, de-inking, purification and synthesis. tabs

  4. Formation of by-products at radiation - chemical treatment of water solutions of chloroform

    International Nuclear Information System (INIS)

    Ahmedov, S.A.; Abdullayev, E.T.; Gurbanov, M.A.; Gurbanov, A.H.; Ibadov, N.A.

    2006-01-01

    Full text: Radiation-chemical treatment is considered as a perspective method of water purification from chloroform. It provides the high level of purification (98 percent) of water solutions from chloroform and other chlorine-containing compounds. Meanwhile, other chlorine-containing products can be formed during the process of chloroform degradation and as a result of it the quality of water can change. This work studies the formation of by-products of γ-radiolysis of water solutions at various initial contents of chloroform. Dichlormethane and tetrachlorethane are identified as by-products. It is shown that at high contents of chloroform after certain adsorbed dose the forming products are reducing till their full disappearing. At small contents of chloroform in the studied interval of doses di-chlor-methane is forming. Differences of dose dependences of by-products at various contents of chloroform can be connected with the transition from radical mechanism to chain reaction at high concentrations of chloroform in solutions saturated by oxygen. pH-solutions also reduces during the radiation till pH=1, although this reduction also depends on initial concentration of chloroform. Essential change of pH occurs only at the radiolysis of water solutions containing chloroform ≥0,2 percent. And at radiating of 0,03 percent solution pH reduces only till 4 - 4,5

  5. Amadori products formation in emulsified systems

    NARCIS (Netherlands)

    Troise, Antonio Dario; Berton-Carabin, Claire C.; Fogliano, Vincenzo

    2016-01-01

    The formation of Amadori products (APs) is the key step determining the development of the Maillard reaction (MR). The information on the chemical behaviour of the reaction between amino acids and reducing sugars in emulsions during thermal treatments is scanty and mainly focused on volatile

  6. LCA of Chemicals and Chemical Products

    DEFF Research Database (Denmark)

    Fantke, Peter; Ernstoff, Alexi

    2018-01-01

    This chapter focuses on the application of Life Cycle Assessment (LCA) to evaluate the environmental performance of chemicals as well as of products and processes where chemicals play a key role. The life cycle stages of chemical products, such as pharmaceuticals drugs or plant protection products......, are discussed and differentiated into extraction of abiotic and biotic raw materials, chemical synthesis and processing, material processing, product manufacturing, professional or consumer product use, and finally end-of-life . LCA is discussed in relation to other chemicals management frameworks and concepts...... including risk assessment , green and sustainable chemistry , and chemical alternatives assessment. A large number of LCA studies focus on contrasting different feedstocks or chemical synthesis processes, thereby often conducting a cradle to (factory) gate assessment. While typically a large share...

  7. Chemical Product Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    2004-01-01

    This paper highlights for a class of chemical products, the design process, their design with respect to the important issues, the need for appropriate tools and finally, lists some of the challenges and opportunities for the process systems engineering (PSE)/computer-aided process engineering...... (CAPE) community. The chemical products considered belong to the following types: chemical/biochemical/agrochemical products, coatings and solvents, food (nutraceuticals), HIM (household, industrial and institutional), personal care, pharmaceuticals and drugs. The challenges and opportunities...... are highlighted in terms of the needs for multi-level modeling with emphasis on property models that are suitable for computer-aided applications, flexible solution strategies that are able to solve a large range of chemical product design problems and finally, a systems chemical product design framework...

  8. Data on the chemical properties of commercial fish sauce products.

    Science.gov (United States)

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2017-12-01

    This data article reports on the chemical properties of commercial fish sauce products associated with the fish sauce taste and flavor. All products were analyzed in triplicate. Dried solid content was analyzed by moisture analyzer. Fish sauce salinity was determined by a salt meter. pH was measured using a pH meter. The acidity was determined using a titration assay. Amino nitrogen and total nitrogen were evaluated using a titration assay and Combustion-type nitrogen analyzer, respectively. The analyzed products originated from Japan, Thailand, Vietnam, China, the Philippines, and Italy. Data on the chemical properties of the products are provided in table format in the current article.

  9. Chemical impurity production under boronized wall conditions in TEXTOR

    International Nuclear Information System (INIS)

    Philipps, V.; Vietzke, E.; Erdweg, M.

    1992-01-01

    The TEXTOR SNIFFER probe has been used to analyse the chemical impurity production under various plasma and boronized wall conditions. Methane formation has been observed to 0.6-1 x 10 -2 CH 4 /H at room temperature, increasing slightly with increasing density in the SOL. The hydrocarbon formation yields increase from R.T. to the maximum at about 500 o C by a factor of 1.5-2.5. Increasing the impact energy by biasing the graphite plate leads to a decrease of the hydrocarbon yield at room temperature but to an increase at 500 o C. Chemical CO formation due interaction of oxygen impurities with the graphite reaches ratios between 0.5 and 3 x 10 -2 CO/H,D increasing with increasing distance to the limiter edge. (author) 10 refs., 6 figs

  10. Chemical pathways for the formation of ammonia in Hanford wastes

    International Nuclear Information System (INIS)

    Stock, L.M.; Pederson, L.R.

    1997-12-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important)

  11. Chemical pathways for the formation of ammonia in Hanford wastes

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Pederson, L.R.

    1997-12-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important).

  12. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  13. Galactic chemical evolution in hierarchical formation models

    Science.gov (United States)

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  14. Production parameters for the formation of metallic nanotubules in etched tracks

    International Nuclear Information System (INIS)

    Fink, D.; Petrov, A.V.; Rao, V.; Wilhelm, M.; Demyanov, S.; Szimkowiak, P.; Behar, M.; Alegaonkar, P.S.; Chadderton, L.T.

    2003-01-01

    The formation of conducting nanotubules in etched tracks is reported in literature since about a decade. However, up to now precise production recipes are scarce. For this sake we present here a systematic study on some important factors that influence the formation of metallic nanotubules. In the case of chemical deposition, the first question to be answered is the choice of the activation technique to produce the required activation centers. Both the time of activation and the time of subsequent chemical deposition are crucial parameters in this connection. Finally, the maximum temperature is determined up to which thermal stability of the etched tracks and of the tubules therein is given. This study should allow one to predict better the efficiency of conducting nanotubule formation

  15. Physical-chemical model of nanodiamond formation at explosion

    International Nuclear Information System (INIS)

    Chernyshev, A.P.; Lukyanchikov, L.A.; Lyakhov, N.Z.; Pruuel, E.R.; Sheromov, M.A.; Ten, K.A.; Titov, V.M.; Tolochko, B.P.; Zhogin, I.L.; Zubkov, P.I.

    2007-01-01

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state

  16. Physical-chemical model of nanodiamond formation at explosion

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, A.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Lukyanchikov, L.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Lyakhov, N.Z. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Pruuel, E.R. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Sheromov, M.A. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Ten, K.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Titov, V.M. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Tolochko, B.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation)]. E-mail: b.p.tolochko@inp.nsk.su; Zhogin, I.L. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Zubkov, P.I. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation)

    2007-05-21

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state.

  17. Egg Production Constrains Chemical Defenses in a Neotropical Arachnid.

    Directory of Open Access Journals (Sweden)

    Taís M Nazareth

    Full Text Available Female investment in large eggs increases the demand for fatty acids, which are allocated for yolk production. Since the biosynthetic pathway leading to fatty acids uses the same precursors used in the formation of polyketides, allocation trade-offs are expected to emerge. Therefore, egg production should constrain the investment in chemical defenses based on polyketides, such as benzoquinones. We tested this hypothesis using the harvestman Acutiosoma longipes, which produces large eggs and releases benzoquinones as chemical defense. We predicted that the amount of secretion released by ovigerous females (OFs would be smaller than that of non-ovigerous females (NOF. We also conducted a series of bioassays in the field and in the laboratory to test whether egg production renders OFs more vulnerable to predation. OFs produce less secretion than NOFs, which is congruent with the hypothesis that egg production constrains the investment in chemical defenses. Results of the bioassays show that the secretion released by OFs is less effective in deterring potential predators (ants and spiders than the secretion released by NOFs. In conclusion, females allocate resources to chemical defenses in a way that preserves a primary biological function related to reproduction. However, the trade-off between egg and secretion production makes OFs vulnerable to predators. We suggest that egg production is a critical moment in the life of harvestman females, representing perhaps the highest cost of reproduction in the group.

  18. Galaxy formation with radiative and chemical feedback

    NARCIS (Netherlands)

    Graziani, L.; Salvadori, S.; Schneider, R.; Kawata, D.; de Bennassuti, M.; Maselli, A.

    Here we introduce GAMESH, a novel pipeline that implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post-process realistic outputs of

  19. Chemical properties and colors of fermenting materials in salmon fish sauce production

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Nakano

    2018-02-01

    Full Text Available This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce (moromi, and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format. Keywords: Fish sauce, Chum salmon, Fermentation, Chemical properties, Color

  20. Chemical stability of insulin. 2. Formation of higher molecular weight transformation products during storage of pharmaceutical preparations.

    Science.gov (United States)

    Brange, J; Havelund, S; Hougaard, P

    1992-06-01

    Formation of covalent, higher molecular weight transformation (HMWT) products during storage of insulin preparations at 4-45 degrees C was studied by size exclusion chromatography. The main products are covalent insulin dimers (CID), but in protamine-containing preparations the concurrent formation of covalent insulin-protamine (CIP) products takes place. At temperatures greater than or equal to 25 degrees C parallel or consecutive formation of covalent oligo- and polymers can also be observed. Rate of HMWT is only slightly influenced by species of insulin but varies with composition and formulation, and for isophane (NPH) preparations, also with the strength of preparation. Temperature has a pronounced effect on CID, CIP, and, especially, covalent oligo- and polymer formation. The CIDs are apparently formed between molecules within the hexameric unit common for all types of preparations and rate of formation is generally faster in glycerol-containing preparations. Compared with insulin hydrolysis reactions (see the preceding paper), HMWT is one order of magnitude slower, except for NPH preparations.

  1. Chemical properties and colors of fermenting materials in salmon fish sauce production.

    Science.gov (United States)

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2018-02-01

    This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content) and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce ( moromi ), and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format.

  2. Chemical pathways for the formation of ammonia in Hanford wastes

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Pederson, L.R.

    1997-09-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important). Reduction of nitrite ions is believed to be the most important source of ammonia. Whether by radiolytic or thermal routes, nitrite reduction reactions proceed through nitrogen dioxide, nitric oxide, the nitrosyl anion, and the hyponitrite anion. Nitrite ion is also converted into hydroxylamine, another important intermediate on the pathway to form ammonia. These reaction pathways additionally result in the formation of nitrous oxide and molecular nitrogen, whereas hydrogen formation is produced in a separate reaction sequence.

  3. Chemical pathways for the formation of ammonia in Hanford wastes

    International Nuclear Information System (INIS)

    Stock, L.M.; Pederson, L.R.

    1997-09-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important). Reduction of nitrite ions is believed to be the most important source of ammonia. Whether by radiolytic or thermal routes, nitrite reduction reactions proceed through nitrogen dioxide, nitric oxide, the nitrosyl anion, and the hyponitrite anion. Nitrite ion is also converted into hydroxylamine, another important intermediate on the pathway to form ammonia. These reaction pathways additionally result in the formation of nitrous oxide and molecular nitrogen, whereas hydrogen formation is produced in a separate reaction sequence

  4. Advances in chemical product design

    DEFF Research Database (Denmark)

    Zhang, Lei; Fung, Ka Yip; Wibowo, Christianto

    2018-01-01

    The nature of chemical product design problems is diverse and multidisciplinary. It involves many design issues such as project management, market study, product design, process design, and economic analysis for better organizing the product design project and achieving better products. This arti......The nature of chemical product design problems is diverse and multidisciplinary. It involves many design issues such as project management, market study, product design, process design, and economic analysis for better organizing the product design project and achieving better products....... This article provides an overview of chemical product design with a multidisciplinary hierarchical framework including all the design issues and tasks. Each of the design issues and tasks are introduced and discussed, methods and tools are summarized and compared, challenges and perspectives are presented...... to help the chemical product design researchers on finding more novel, innovative and sustainable products, by the combined effort from academia and industry to develop a systematic generic framework, and tools including product simulator, process simulator, database manager, modeling tool, and templates...

  5. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation.

    Science.gov (United States)

    Ye, Wei; Wu, Hongqing; He, Xin; Wang, Lei; Zhang, Weimin; Li, Haohua; Fan, Yunfei; Tan, Guohui; Liu, Taomei; Gao, Xiaoxia

    2016-01-01

    Agarwood is a traditional Chinese medicine used as a clinical sedative, carminative, and antiemetic drug. Agarwood is formed in Aquilaria sinensis when A. sinensis trees are threatened by external physical, chemical injury or endophytic fungal irritation. However, the mechanism of agarwood formation via chemical induction remains unclear. In this study, we characterized the transcriptome of different parts of a chemically induced A. sinensis trunk sample with agarwood. The Illumina sequencing platform was used to identify the genes involved in agarwood formation. A five-year-old Aquilaria sinensis treated by formic acid was selected. The white wood part (B1 sample), the transition part between agarwood and white wood (W2 sample), the agarwood part (J3 sample), and the rotten wood part (F5 sample) were collected for transcriptome sequencing. Accordingly, 54,685,634 clean reads, which were assembled into 83,467 unigenes, were obtained with a Q20 value of 97.5%. A total of 50,565 unigenes were annotated using the Nr, Nt, SWISS-PROT, KEGG, COG, and GO databases. In particular, 171,331,352 unigenes were annotated by various pathways, including the sesquiterpenoid (ko00909) and plant-pathogen interaction (ko03040) pathways. These pathways were related to sesquiterpenoid biosynthesis and defensive responses to chemical stimulation. The transcriptome data of the different parts of the chemically induced A. sinensis trunk provide a rich source of materials for discovering and identifying the genes involved in sesquiterpenoid production and in defensive responses to chemical stimulation. This study is the first to use de novo sequencing and transcriptome assembly for different parts of chemically induced A. sinensis. Results demonstrate that the sesquiterpenoid biosynthesis pathway and WRKY transcription factor play important roles in agarwood formation via chemical induction. The comparative analysis of the transcriptome data of agarwood and A. sinensis lays the foundation

  6. Cyanobacterial chemical production.

    Science.gov (United States)

    Case, Anna E; Atsumi, Shota

    2016-08-10

    The increase in global temperatures caused by rising CO2 levels necessitates the development of alternative sources of fuel and chemicals. One appealing alternative that has been receiving increased attention in recent years is the photosynthetic conversion of atmospheric CO2 to biofuels and chemical products using genetically engineered cyanobacteria. This can help to not only provide an alternate "greener" source for some of the most popular petroleum based products but it can also help to reduce atmospheric CO2. Utilizing cyanobacteria rather than plants allows for reduced land requirements and reduces competition with food crops. This review discusses advancements in the field since 2012 with a particular emphasis on production of hydrocarbons. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Chemical signal activation of an organocatalyst enables control over soft material formation.

    Science.gov (United States)

    Trausel, Fanny; Maity, Chandan; Poolman, Jos M; Kouwenberg, D S J; Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2017-10-12

    Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organocatalyst that is activated by a chemical signal, enabling temporal control over reaction rates and the formation of materials. Using self-immolative chemistry, we design a deactivated aniline organocatalyst that is activated by the chemical signal hydrogen peroxide and catalyses hydrazone formation. Upon activation of the catalyst, the rate of hydrazone formation increases 10-fold almost instantly. The responsive organocatalyst enables temporal control over the formation of gels featuring hydrazone bonds. The generic design should enable the use of a large range of triggers and organocatalysts, and appears a promising method for the introduction of signal response in materials, constituting a first step towards achieving communication between artificial chemical systems.Enzymes regulated by chemical signals are common in biology, but few such artificial catalysts exist. Here, the authors design an aniline catalyst that, when activated by a chemical trigger, catalyses formation of hydrazone-based gels, demonstrating signal response in a soft material.

  8. Photomixotrophic chemical production in cyanobacteria.

    Science.gov (United States)

    Matson, Morgan M; Atsumi, Shota

    2018-04-01

    The current global dependence on fossil fuels for both energy and chemical production has spurred concerns regarding long-term resource security and environmental detriments resulting from increased CO 2 levels. Through the installation of exogenous metabolic pathways, engineered cyanobacteria strains can directly fix CO 2 into industrially relevant chemicals currently produced from petroleum. This review highlights some of the studies that have successfully implemented photomixotrophic conditions to increase cyanobacterial chemical production. Supplementation with fixed carbon sources provides additional carbon building blocks and energy to enhance production and occasionally aid in growth. Photomixotrophic production has increased titers up to 5-fold over traditional autotrophic conditions, demonstrating promising applications for future commercialization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Room temperature chemical synthesis of highly oriented PbSe nanotubes based on negative free energy of formation

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R., E-mail: brsankapal@rediffmail.com [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001 (MS) (India); Ladhe, R.D.; Salunkhe, D.B.; Baviskar, P.K. [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001 (MS) (India); Gupta, V.; Chand, S. [Organic and Hybrid Solar Cell, Physics of Energy Harvesting Division, Dr. K.S. Krishnan Marg, National Physical Laboratory, New Delhi 110012 (India)

    2011-10-13

    Highlights: > Simple, inexpensive and room temperature chemical synthesis route. > Highly oriented PbSe nanotubes from Cd(OH){sub 2} nanowires through lead hydroxination. > The process was template free without the use of any capping agent. > Reaction kinetics was accomplished due to more negative free energy of formation. > The ion exchange mechanism due to difference in the solubility products. - Abstract: The sacrificial template free chemical synthesis of PbSe nanotubes at room temperature has been performed by lead hydroxination from cadmium hydroxide nanowires. This process was based on the ion exchange reaction to replace Cd{sup 2+} with Pb{sup 2+} ions from hydroxyl group followed by replacement of hydroxyl group with selenium ions. The reaction kinetics was accomplished due to more negative free energy of formation and thus the difference in the solubility products. The formed nanotubes were inclusive of Pb and Se with proper inter-chemical bonds with preferred orientations having diameter in tens of nanometer. These nanotubes can have future applications in electronic, optoelectronics and photovoltaic's as well.

  10. Room temperature chemical synthesis of highly oriented PbSe nanotubes based on negative free energy of formation

    International Nuclear Information System (INIS)

    Sankapal, B.R.; Ladhe, R.D.; Salunkhe, D.B.; Baviskar, P.K.; Gupta, V.; Chand, S.

    2011-01-01

    Highlights: → Simple, inexpensive and room temperature chemical synthesis route. → Highly oriented PbSe nanotubes from Cd(OH) 2 nanowires through lead hydroxination. → The process was template free without the use of any capping agent. → Reaction kinetics was accomplished due to more negative free energy of formation. → The ion exchange mechanism due to difference in the solubility products. - Abstract: The sacrificial template free chemical synthesis of PbSe nanotubes at room temperature has been performed by lead hydroxination from cadmium hydroxide nanowires. This process was based on the ion exchange reaction to replace Cd 2+ with Pb 2+ ions from hydroxyl group followed by replacement of hydroxyl group with selenium ions. The reaction kinetics was accomplished due to more negative free energy of formation and thus the difference in the solubility products. The formed nanotubes were inclusive of Pb and Se with proper inter-chemical bonds with preferred orientations having diameter in tens of nanometer. These nanotubes can have future applications in electronic, optoelectronics and photovoltaic's as well.

  11. VPPD Lab - The Chemical Product Simulator

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Hussain, Rehan; Elbashir, Nimir

    2015-01-01

    , detergent, etc.). It has interface to identify workflow/data-flow for the inter-related activities between knowledge-based system and model-based calculation procedures to systematically, efficiently and robustly solve various types of product design-analysis problems. The application of the software......In this paper, the development of a systematic model-based framework for product design, implemented in the new product design software called VPPD-Lab is presented. This framework employs its in-house knowledge-based system to design and evaluate chemical products. The built-in libraries...... of product performance models and product-chemical property models are used to evaluate different classes of product. The product classes are single molecular structure chemicals (lipids, solvents, aroma, etc.), blended products (gasoline, jet-fuels, lubricants, etc.), and emulsified product (hand wash...

  12. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    International Nuclear Information System (INIS)

    Shan, Tzu-Ray; Thompson, Aidan P

    2014-01-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO 2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N 2 and H 2 O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  13. Consolidation of the formation sand by chemical methods

    Directory of Open Access Journals (Sweden)

    Mariana Mihočová

    2006-10-01

    Full Text Available The sand control by consolidation involves the process of injecting chemicals into the naturally unconsolidated formation to provide an in situ grain-to-grain cementation. The sand consolidation chemicals are available for some 30 years. Several types of consolidating material were tried. Presently available systems utilize solidified plastics to provide the cementation. These systems include phenol resin, phenol-formaldehyde, epoxy, furan and phenolic-furfuryl.The sand consolidation with the steam injection is a novel technique. This process provides a highly alkaline liquid phase and temperatures to 300 °C to geochemically create cements by interacting with the dirty sand.While the formation consolidation has widely applied, our experience has proved a high level of success.

  14. Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2013-01-01

    Full Text Available Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.

  15. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Dawson, J. K.; Moseley, F.

    1960-01-01

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author) [fr

  16. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  17. Chemical fingerprints of hot Jupiter planet formation

    Science.gov (United States)

    Maldonado, J.; Villaver, E.; Eiroa, C.

    2018-05-01

    Context. The current paradigm to explain the presence of Jupiter-like planets with small orbital periods (P involves their formation beyond the snow line following inward migration, has been challenged by recent works that explore the possibility of in situ formation. Aims: We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra. Stellar parameters and abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn for a sample of 88 planet hosts are derived. The sample is divided into stars hosting hot (a 0.1 au) Jupiter-like planets. The metallicity and abundance trends of the two sub-samples are compared and set in the context of current models of planet formation and migration. Results: Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding p-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 072.C-0033(A), 072.C-0488(E), 074.B-0455(A), 075.C-0202(A), 077.C-0192(A), 077.D-0525(A), 078.C-0378(A), 078.C-0378(B), 080.A-9021(A), 082.C-0312(A) 082.C-0446(A), 083.A-9003(A), 083.A-9011(A), 083.A-9011(B), 083.A-9013(A), 083.C-0794(A), 084.A-9003(A), 084.A-9004(B), 085.A-9027(A), 085.C-0743(A), 087.A-9008(A), 088.C-0892(A), 089.C-0440(A), 089.C-0444(A), 089.C-0732(A), 090.C-0345(A), 092.A-9002(A), 192.C-0852

  18. Making Online Products More Tangible: The Effect of Product Presentation Formats on Product Evaluations.

    Science.gov (United States)

    Verhagen, Tibert; Vonkeman, Charlotte; van Dolen, Willemijn

    2016-07-01

    Although several studies have looked at the effects of online product presentations on consumer decision making, no study thus far has considered a potential key factor in online product evaluations: tangibility. The present study aims at filling this gap by developing and testing a model that relates different online product presentation formats to the three-dimensional concept of product tangibility. We test how the three tangibility dimensions influence perceived diagnosticity and, eventually, online purchase intentions. A between-subjects lab experiment (n = 366) was used to test the hypothesized effects of three common online product presentation formats (pictures vs. 360 spin rotation vs. virtual mirror). The results showed that out of these formats, virtual mirrors were superior in providing a sense of product tangibility, followed by the 360-spin rotation format and static pictures. Furthermore, in terms of predictive validity, two of the three tangibility dimensions significantly increased perceived diagnosticity, which, in turn, positively and strongly affected purchase intentions. Overall, our results add to previous works studying the relationships between online product presentation formats and consumer decision making. Also, they hold value for online practitioners by highlighting the potential benefits of applying technologically advanced product presentation formats such as the virtual mirror.

  19. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  20. Chemical oxidation of unsymmetrical dimethylhydrazine transformation products in water

    Directory of Open Access Journals (Sweden)

    Madi Abilev

    2015-03-01

    Full Text Available Oxidation of unsymmetrical dimethylhydrazine (UDMH during a water treatment has several disadvantages including formation of stable toxic byproducts. Effectiveness of treatment methods in relation to UDMH transformation products is currently poorly studied. This work considers the effectiveness of chemical oxidants in respect to main metabolites of UDMH – 1-formyl-2,2-dimethylhydrazine, dimethylaminoacetontrile, N-nitrosodimethylamine and 1-methyl-1H-1,2,4-triazole. Experiments on chemical oxidation by Fenton's reagent, potassium permanganate and sodium nitrite were conducted. Quantitative determination was performed by HPLC. Oxidation products were identified by gas chromatography-mass spectrometry in combination with solid-phase microextraction. 1-Formyl-2,2-dimethylhydrazine was completely oxidized by Fenton's reagent with formation of formaldehyde N-formyl-N-methyl-hydrazone, 1,4-dihydro-1,4-dimethyl-5H-tetrazol-5-one by the action of potassium permanganate and N-methyl-N-nitro-methanamine in the presence of sodium nitrite. Oxidation of 1-formyl-2,2-dimethylhydrazine also resulted in formation of N-nitrosodimethylamine. Oxidation of dimethylaminoacetontrile proceeded with formation of hydroxyacetonitrile, dimethylformamide and 1,2,5-trimethylpyrrole. After 30 days, dimethylaminoacetontrile was not detected in the presence of Fenton’s reagent and potassium permanganate, but it’s concentration in samples with sodium nitrite was 77.3 mg/L. In the presence of Fenton’s reagent, potassium permanganate and sodium nitrite after 30 days, N-nitrosodimethylamine concentration decreased by 85, 80 and 50%, respectively. In control sample, N-nitrosodimethylamine concentration decreased by 50%, indicating that sodium nitrite has no effect of on N-nitrosodimethylamine concentration. Only Fenton's reagent allowed to reduce the concentration of 1-methyl-1H-1,2,4-triazole to 50% in 30 days. In the presence of other oxidants, 1-methyl-1H-1,2,4-triazole

  1. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products.

    Science.gov (United States)

    Levi, Peter G; Cullen, Jonathan M

    2018-02-20

    Chemical products are ubiquitous in modern society. The chemical sector is the largest industrial energy consumer and the third largest industrial emitter of carbon dioxide. The current portfolio of mitigation options for the chemical sector emphasizes upstream "supply side" solutions, whereas downstream mitigation options, such as material efficiency, are given comparatively short shrift. Key reasons for this are the scarcity of data on the sector's material flows, and the highly intertwined nature of its complex supply chains. We provide the most up to date, comprehensive and transparent data set available publicly, on virgin production routes in the chemical sector: from fossil fuel feedstocks to chemical products. We map global mass flows for the year 2013 through a complex network of transformation processes, and by taking account of secondary reactants and by-products, we maintain a full mass balance throughout. The resulting data set partially addresses the dearth of publicly available information on the chemical sector's supply chain, and can be used to prioritise downstream mitigation options.

  2. The Chemical Product Simulator - ProCAPD

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Eden, Mario Richard; Gani, Rafiqul

    2017-01-01

    In this paper, a chemical product design simulator called ProCAPD is presented. ProCAPD works in the same way as a chemical process simulator, that is, it helps to verify product design decisions and generates information that can be used to make design decisions. Like the contents of the process...... simulator, the product simulator needs a database of chemicals and properties, a library of models, numerical routines to solve mathematical problems as well as various calculation options. Also, like the process simulator, the product simulator comes with a user-interface to describe the problems.......); calculation tools (product attributes, blend compositions, environmental impact, etc.); design templates (single molecules, blends, formulations, emulsions, devices); and, design-simulation-analysis functions. All these capabilities are based on the prototype tool developed by Kalakul et al. (2017...

  3. Advancing Consumer Product Composition and Chemical ...

    Science.gov (United States)

    This presentation describes EPA efforts to collect, model, and measure publically available consumer product data for use in exposure assessment. The development of the ORD Chemicals and Products database will be described, as will machine-learning based models for predicting chemical function. Finally, the talk describes new mass spectrometry-based methods for measuring chemicals in formulation and articles. This presentation is an invited talk to the ICCA-LRI workshop "Fit-For-Purpose Exposure Assessments For Risk-Based Decision Making". The talk will share EPA efforts to characterize the components of consumer products for use in exposure assessment with the international exposure science community.

  4. Investigation of acrylamide formation on bakery products using a crust-like model.

    Science.gov (United States)

    Açar, Ozge C; Gökmen, Vural

    2009-12-01

    Baking is a complex process where a temperature gradient occurs within the product as a result of simultaneous heat and mass transfers. This behaviour makes the physical parameters (baking temperature and product dimensions) as effective as the chemical parameters on the rate of acrylamide formation in bakery foods. In this study, the change of temperature in different locations of the sample was shown as influenced by the product thickness. The temperature values were close to each other in the sample having thickness of 1 mm (crust model). The product temperature rapidly increased to the oven temperature. A temperature gradient was recorded in the sample having a thickness of 10 mm. As a result, the product temperature did not exceed 100 degrees C within a baking time of 30 min. The product thickness significantly influenced the rate of acrylamide formation during baking. Acrylamide concentration rapidly increased to 411+/-49 ng/g within 8 min in the crust model sample. However, no acrylamide was detected in the thicker sample within 15 min under the same conditions, because the moisture content was still above 10%. The crust model was considered useful to test the effectiveness of different mitigation strategies in bakery foods.

  5. Experimental and theoretical study of the influence of water on hydrolyzed product formation during the feruloylation of vegetable oil.

    Science.gov (United States)

    Compton, David L; Evans, Kervin O; Appell, Michael

    2017-07-01

    Feruloylated vegetable oil is a valuable green bioproduct that has several cosmeceutical applications associated with its inherent anti-oxidant and ultraviolet-absorption properties. Hydrolyzed vegetable oil by-products can influence product quality and consistency. The formation of by-products by residual water in the enzymatic synthesis of feruloylated vegetable oil was investigated using chemical theory and experimental studies by monitoring the reaction over a 22-day period. The hydrolysis of vegetable oil is thermodynamically favored over the hydrolysis of the ethyl ferulate starting material. These results suggest that hydrolyzed vegetable oil products will be experimentally observed in greater concentrations compared to hydrolyzed ethyl ferulate products. Quantum chemical studies identified several reaction mechanisms that explain the formation of side products by water, suggesting that residual water influences product quality. Efforts to reduce residual water can improve product consistency and reduce purification costs. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  6. From quantum chemical formation free energies to evaporation rates

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2012-01-01

    Full Text Available Atmospheric new particle formation is an important source of atmospheric aerosols. Large efforts have been made during the past few years to identify which molecules are behind this phenomenon, but the actual birth mechanism of the particles is not yet well known. Quantum chemical calculations have proven to be a powerful tool to gain new insights into the very first steps of particle formation. In the present study we use formation free energies calculated by quantum chemical methods to estimate the evaporation rates of species from sulfuric acid clusters containing ammonia or dimethylamine. We have found that dimethylamine forms much more stable clusters with sulphuric acid than ammonia does. On the other hand, the existence of a very deep local minimum for clusters with two sulfuric acid molecules and two dimethylamine molecules hinders their growth to larger clusters. These results indicate that other compounds may be needed to make clusters grow to larger sizes (containing more than three sulfuric acid molecules.

  7. Calcium phosphate formation from sea urchin - (brissus latecarinatus via modified mechano-chemical (ultrasonic conversion method

    Directory of Open Access Journals (Sweden)

    R. Samur

    2013-07-01

    Full Text Available This study aims to produce apatite structures, such as hydroxyapatite (HA and fluorapatite (FA, from precursor calcium phosphates of biological origin, namely from sea urchin, with mechano-chemical stirring and hot-plating conversion method. The produced materials were heat treated at 800 °C for 4 hours. X-ray diffraction and scanning electron microscopy (SEM studies were conducted. Calcium phosphate phases were developed. The SEM images showed the formation of micro to nano-powders. The experimental results suggest that sea urchin, Brissus latecarinatus skeleton could be an alternative source for the production of various mono or biphasic calcium phosphates with simple and economic mechano-chemical (ultrasonic conversion method.

  8. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2009-06-01

    Full Text Available Green leaf volatiles (GLVs are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1–5 TgC yr−1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  9. Searching for chemical signatures of brown dwarf formation

    Science.gov (United States)

    Maldonado, J.; Villaver, E.

    2017-06-01

    Context. Recent studies have shown that close-in brown dwarfs in the mass range 35-55 MJup are almost depleted as companions to stars, suggesting that objects with masses above and below this gap might have different formation mechanisms. Aims: We aim to test whether stars harbouring massive brown dwarfs and stars with low-mass brown dwarfs show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra (R 57 000) from 2-3 m class telescopes. We determine the fundamental stellar parameters, as well as individual abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn for a large sample of stars known to have a substellar companion in the brown dwarf regime. The sample is divided into stars hosting massive and low-mass brown dwarfs. Following previous works, a threshold of 42.5 MJup was considered. The metallicity and abundance trends of the two subsamples are compared and set in the context of current models of planetary and brown dwarf formation. Results: Our results confirm that stars with brown dwarf companions do not follow the well-established gas-giant planet metallicity correlation seen in main-sequence planet hosts. Stars harbouring massive brown dwarfs show similar metallicity and abundance distribution as stars without known planets or with low-mass planets. We find a tendency of stars harbouring less-massive brown dwarfs of having slightly higher metallicity, [XFe/Fe] values, and abundances of Sc II, Mn I, and Ni I than the stars having the massive brown dwarfs. The data suggest, as previously reported, that massive and low-mass brown dwarfs might present differences in period and eccentricity. Conclusions: We find evidence of a non-metallicity dependent mechanism for the formation of massive brown dwarfs. Our results agree with a scenario in which massive brown dwarfs are formed as stars. At high metallicities, the core

  10. The statutory approach: the control of chemical products

    International Nuclear Information System (INIS)

    Briens, F.

    1997-01-01

    The evaluation and management of risks linked with chemical products and in particular with petroleum products is now performed using all the available tools developed by the OECD or the European Union in order to harmonize the procedures between member states. This paper describes the statutory liabilities linked to the trade of chemical products of industrial use in the case of new and of existing chemical substances (classification, labelling, risk evaluation and reduction, physico-chemical properties, toxicological and eco-toxicological studies, neutralization, limitation of trade and use, import/export, protection of the ozone layer, etc..). It refers to the legal framework (orders, by-laws, decrees, guidelines..) defined by the OECD and the European Community and recalls the organization and administration of the competent authorities for the control of chemical products. (J.S.)

  11. Chemicals in Household Products: Problems with Solutions

    Science.gov (United States)

    Glegg, Gillian A.; Richards, Jonathan P.

    2007-12-01

    The success of a regulatory regime in decreasing point-source emissions of some harmful chemicals has highlighted the significance of other sources. A growing number of potentially harmful chemicals have been incorporated into an expanding range of domestic household products and are sold worldwide. Tighter regulation has been proposed, and the European Commission has introduced the Regulation on the Registration, Evaluation, and Authorisation of Chemicals to address this concern. However, it is clear that in addition to the regulation, there is a potential to effect change through retailer and consumer attitudes and behaviours. Interviews were conducted with 7 key stakeholder groups to identify critical issues, which were then explored using a public survey questionnaire (1,008 respondents) and 8 subsequent focus groups. The findings demonstrated that the issue of chemicals in products is of concern to consumers for reasons of personal health rather than environmental protection. Key obstacles to the wider purchase of “green-alternative” products included perceived high cost and poor performance, lack of availability of products, and poor information concerning such products. Although improved regulation was seen as part of the solution, consumers must also play a role. It was clear from this study that consumers are not currently able to make informed choices about the chemicals they use but that they would be receptive to moving toward a more sustainable use of chemicals in the future if empowered to do so.

  12. Endocrine disruptors and asthma-associated chemicals in consumer products.

    Science.gov (United States)

    Dodson, Robin E; Nishioka, Marcia; Standley, Laurel J; Perovich, Laura J; Brody, Julia Green; Rudel, Ruthann A

    2012-07-01

    Laboratory and human studies raise concerns about endocrine disruption and asthma resulting from exposure to chemicals in consumer products. Limited labeling or testing information is available to evaluate products as exposure sources. We analytically quantified endocrine disruptors and asthma-related chemicals in a range of cosmetics, personal care products, cleaners, sunscreens, and vinyl products. We also evaluated whether product labels provide information that can be used to select products without these chemicals. We selected 213 commercial products representing 50 product types. We tested 42 composited samples of high-market-share products, and we tested 43 alternative products identified using criteria expected to minimize target compounds. Analytes included parabens, phthalates, bisphenol A (BPA), triclosan, ethanolamines, alkylphenols, fragrances, glycol ethers, cyclosiloxanes, and ultraviolet (UV) filters. We detected 55 compounds, indicating a wide range of exposures from common products. Vinyl products contained > 10% bis(2-ethylhexyl) phthalate (DEHP) and could be an important source of DEHP in homes. In other products, the highest concentrations and numbers of detects were in the fragranced products (e.g., perfume, air fresheners, and dryer sheets) and in sunscreens. Some products that did not contain the well-known endocrine-disrupting phthalates contained other less-studied phthalates (dicyclohexyl phthalate, diisononyl phthalate, and di-n-propyl phthalate; also endocrine-disrupting compounds), suggesting a substitution. Many detected chemicals were not listed on product labels. Common products contain complex mixtures of EDCs and asthma-related compounds. Toxicological studies of these mixtures are needed to understand their biological activity. Regarding epidemiology, our findings raise concern about potential confounding from co-occurring chemicals and misclassification due to variability in product composition. Consumers should be able to avoid

  13. Engineering microbes for efficient production of chemicals

    Science.gov (United States)

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  14. Fragrance chemicals in domestic and occupational products

    DEFF Research Database (Denmark)

    Rastogi, Suresh Chandra; Heydorn, S; Johansen, J D

    2001-01-01

    Epidemiological studies have described an increasing prevalence of fragrance allergy and indicated an association with hand eczema. 59 domestic and occupational products intended for hand exposure were subjected to gas chromatography-mass spectrometric (GC-MS) analyses to test the hypothesis...... that fragrance chemicals known to have the potential to cause contact allergy but not included in fragrance mix (FM) may be common ingredients in these products. A quantitative analysis of 19 selected fragrances was performed by GC-MS. Further analysis of GC-MS data revealed the presence of 43 other fragrance...... chemicals/groups of fragrance chemicals in the products investigated. Among the 19 target substances the most commonly detected were limonene in 78%, linalool in 61% and citronellol in 47% of the products investigated. The FM ingredients were present in these products with the following frequencies: oak...

  15. Enhancement of Biomass and Lipid Productivities of Water Surface-Floating Microalgae by Chemical Mutagenesis.

    Science.gov (United States)

    Nojima, Daisuke; Ishizuka, Yuki; Muto, Masaki; Ujiro, Asuka; Kodama, Fumito; Yoshino, Tomoko; Maeda, Yoshiaki; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-05-27

    Water surface-floating microalgae have great potential for biofuel applications due to the ease of the harvesting process, which is one of the most problematic steps in conventional microalgal biofuel production. We have collected promising water surface-floating microalgae and characterized their capacity for biomass and lipid production. In this study, we performed chemical mutagenesis of two water surface-floating microalgae to elevate productivity. Floating microalgal strains AVFF007 and FFG039 (tentatively identified as Botryosphaerella sp. and Chlorococcum sp., respectively) were exposed to ethyl methane sulfonate (EMS) or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), and pale green mutants (PMs) were obtained. The most promising FFG039 PM formed robust biofilms on the surface of the culture medium, similar to those formed by wild type strains, and it exhibited 1.7-fold and 1.9-fold higher biomass and lipid productivities than those of the wild type. This study indicates that the chemical mutation strategy improves the lipid productivity of water surface-floating microalgae without inhibiting biofilm formation and floating ability.

  16. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis

    Science.gov (United States)

    Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng

    2013-01-01

    Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass. PMID:23350028

  17. CHEMICAL EVOLUTION LIBRARY FOR GALAXY FORMATION SIMULATION

    International Nuclear Information System (INIS)

    Saitoh, Takayuki R.

    2017-01-01

    We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of these quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.

  18. CHEMICAL EVOLUTION LIBRARY FOR GALAXY FORMATION SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Takayuki R., E-mail: saitoh@elsi.jp [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo, 152-8551 (Japan)

    2017-02-01

    We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of these quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.

  19. Multi-generation chemical aging of α-pinene ozonolysis products by reactions with OH

    Directory of Open Access Journals (Sweden)

    N. Wang

    2018-03-01

    Full Text Available Secondary organic aerosol (SOA formation from volatile organic compounds (VOCs in the atmosphere can be thought of as a succession of oxidation steps. The production of later-generation SOA via continued oxidation of the first-generation products is defined as chemical aging. This study investigates aging in the α-pinene ozonolysis system with hydroxyl radicals (OH through smog chamber experiments. The first-generation α-pinene ozonolysis products were allowed to react further with OH formed via HONO photolysis. After an equivalent of 2–4 days of typical atmospheric oxidation conditions, homogeneous OH oxidation of the α-pinene ozonolysis products resulted in a 20–40 % net increase in the SOA for the experimental conditions used in this work. A more oxygenated product distribution was observed after aging based on the increase in aerosol atomic oxygen-to-carbon ratio (O : C by up to 0.04. Experiments performed at intermediate relative humidity (RH of 50 % showed no significant difference in additional SOA formation during aging compared to those performed at a low RH of less than 20 %.

  20. Study of the Chemical Mechanism Involved in the Formation of Tungstite in Benzyl Alcohol by the Advanced QEXAFS Technique

    DEFF Research Database (Denmark)

    Olliges‐Stadler, Inga; Stötzel, Jan; Koziej, Dorota

    2012-01-01

    Insight into the complex chemical mechanism for the formation of tungstite nanoparticles obtained by the reaction of tungsten hexachloride with benzyl alcohol is presented herein. The organic and inorganic species involved in the formation of the nanoparticles were studied by time‐dependent gas......‐scanning extended X‐ray absorption fine structure spectroscopy enabled the time‐dependent evolution of the starting compound, the intermediates and the product to be monitored over the full reaction period. The reaction starts with fast chlorine substitution and partial reduction during the dissolution...

  1. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  2. Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production.

    Science.gov (United States)

    Gentner, Drew R; Worton, David R; Isaacman, Gabriel; Davis, Laura C; Dallmann, Timothy R; Wood, Ezra C; Herndon, Scott C; Goldstein, Allen H; Harley, Robert A

    2013-10-15

    Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.

  3. Production of chemicals and fuels from biomass

    Science.gov (United States)

    Qiao, Ming; Woods, Elizabeth; Myren, Paul; Cortright, Randy; Kania, John

    2018-01-23

    Methods, reactor systems, and catalysts are provided for converting in a continuous process biomass to fuels and chemicals, including methods of converting the water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  4. Chemical stability of insulin. 5. Isolation, characterization and identification of insulin transformation products.

    Science.gov (United States)

    Brange, J; Hallund, O; Sørensen, E

    1992-01-01

    During storage of insulin formulated for therapy, minor amounts of various degradation and covalent di- and polymerization products are formed [1-3]. The main chemical transformation products were isolated from aged preparations and characterized chemically and biologically. The most prominent products formed in neutral medium were identified as a mixture of deamidation products hydrolyzed at residue B3, namely isoAsp B3 and Asp B3 derivatives. A hydrolysis product formed only in crystals of insulin zinc suspensions containing a surplus of zinc ions in the supernatant was identified as an A8-A9 cleavage product. The small amounts of covalent insulin dimers (CID) formed in all formulations were shown to be a heterogenous mixture of 5-6 different CIDs with a composition dependent on the pharmaceutical formulation. The chemical characteristics of the CIDs indicate that they are formed through a transamidation reaction mainly between the B-chain N-terminal and one of the four amide side-chains of the A chain. GlnA15, AsnA18 and, in particular, AsnA21 participate in the formation of such isopeptide links between two insulin molecules. The covalent insulin-protamine products (CIPP) formed during storage of NPH preparations presumably originate from a similar reaction between the protamine N-terminal with an amide in insulin. Covalent polymerization products, mainly formed during storage of amorphously suspended insulin at higher temperature, were shown to be due to disulfide interactions. Biological in vivo potencies relative to native insulin were less than 2% for the split-(A8-A9)-product and for the covalent disulfide exchange polymers, 4% for the CIPP, approximately 15% for the CIDs, whereas the B3 derivatives exhibited full potency. Rabbit immunization experiments revealed that none of the insulin transformation products had significantly increased immunogenicity in rabbits.

  5. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Elias, Ryan J; Silakov, Alexey; Foulds, Jonathan; Muscat, Joshua; Richie, John P

    2018-05-20

    Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included β-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    Science.gov (United States)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles cloud formation and potential

  7. Chemical evolution of formation waters in the Palm Valley gas field, Northern Territory

    International Nuclear Information System (INIS)

    Andrew, A.S.; Giblin, A.M.

    2000-01-01

    The chemical composition and evolution of formation waters associated with gas production in the Palm Valley field, Northern Territory, has important implications for reservoir management, saline water disposal, and gas reserve calculations. Historically, the occurrence of saline formation water in gas fields has been the subject of considerable debate. A better understanding of the origin, chemical evolution and movement of the formation water at Palm Valley has important implications for future reservoir management, disposal of highly saline water and accurate gas reserves estimation. Major and trace element abundance data suggest that a significant component of the highly saline water from Palm Valley has characteristics that may have been derived from a modified evaporated seawater source such as an evaporite horizon. The most dilute waters probably represent condensate and the variation in the chemistry of the intermediate waters suggests they were derived from a mixture of the condensate with the highly saline brine. The chemical and isotopic results raise several interrelated questions; the ultimate source of the high salinity and the distribution of apparently mixed compositions. In this context several key observation are highlighted. Strontium concentrations are extremely high in the brines; although broadly similar in their chemistry, the saline fluids are neither homogeneous nor well mixed; the 87 Sr/ 86 Sr ratios in the brines are higher than the signatures preserved in the evaporitic Bitter Springs Formation, and all other conceivably marine-related evaporites (Strauss, 1993); the 87 Sr/ 86 Sr ratios in the brines are lower than those measured from groundmass carbonates in the host rocks, and that the 87 Sr/ 86 Sr ratios of the brines are similar, but still somewhat higher than those measured in vein carbonates from the reservoir. It is concluded that the high salinity brine entered the reservoir during the Devonian uplift and was subsequently

  8. Formation and elution of toxic compounds from sterilized medical products: toxic compound formation from irradiated products

    International Nuclear Information System (INIS)

    Shintani, Hideharu

    1996-01-01

    No formation of MDA was observed in chain-extended thermoplastic polyurethane (PU) when sterilized by autoclave or γ-ray irradiation. No formation of MDA was observed in nonchain-extended thermoplastic PU when sterilized by γ-ray irradiation. Less than 1 ppm MDA was produced in nonchain-extended thermoplastic PU sterilized by autoclave sterilization. Autoclave sterilization did not produce MDA in thermosetting PU potting material. MDA formation in potting material was promoted by γ-irradiation and increased with increasing irradiation at a quadratic equation of regression. MDA formation at 100 kGy irradiation is a few ppm and < 1 ppm at 25kGy irradiation, therefore the potential risk to human recipients was not significant. The elution of compounds other than MDA from potting material was more problematic. Solvent extracts from potting material presented mutagenicity in the absence of metabolic activity. MDA presented mutagenicity in the presence of metabolic activity, therefore MDA was not the mutagenic trigger. The chemical and biological characteristics of the specific mutagens required to identify in a further study. Negative promotion of MDA formation and a less presence of mutagen in autoclave sterilized potting material indicated that autoclave sterilization was preferable. (Author)

  9. Chemical product and function dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Merged product weight fraction and chemical function data. This dataset is associated with the following publication: Isaacs , K., M. Goldsmith, P. Egeghy , K....

  10. Production of chemicals and fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  11. Commercial production of specialty chemicals and pharmaceuticals from biomass

    Energy Technology Data Exchange (ETDEWEB)

    McChesney, J.D. [Univ. of Mississippi, University, MS (United States)

    1993-12-31

    The chemical substances utilized in consumer products, and for pharmaceutical and agricultural uses are generally referred to as specialty chemicals. These may be flavor or fragrance substances, intermediates for synthesis of drugs or agrochemicals or the drugs or agrochemicals themselves, insecticides or insect pheromones or antifeedants, plant growth regulators, etc. These are in contrast to chemicals which are utilized in large quantities for fuels or preparation of plastics, lubricants, etc., which are usually referred to as industrial chemicals. The specific utilization of specialty chemicals is associated with a specific important physiochemical or biological property. They may possess unique properties as lubricants or waxes or have a very desirable biological activity such as a drug, agrochemical or perfume ingredient. These unique properties convey significant economic value to the specific specialty chemical. The economic commercial production of specialty chemicals commonly requires the isolation of a precursor or the specialty chemical itself from a natural source. The discovery, development and commercialization of specialty chemicals is presented and reviewed. The economic and sustainable production of specialty chemicals is discussed.

  12. Diversion of the melanin synthetic pathway by dopamine product scavengers: A quantum chemical modeling of the reaction mechanisms

    Directory of Open Access Journals (Sweden)

    T. B. Demissie

    2017-01-01

    Full Text Available We report the stability and reactivity of the oxidation products as well as L-cysteine and N-acetylcysteine adducts of dopamine studied using quantum chemical calculations. The overall reactions studied were subdivided into four reaction channels. The first reaction channel is the oxidation of dopamine to form dopaminoquinone. The second reaction channel leads to melanin formation through subsequent reactions. The third and fourth reaction channels are reactions leading to the formation of dopaminoquinone adducts which are aimed to divert the synthesis of melanin. The results indicate that L-cysteine and N-acetylcysteine undergo chemical reactions mainly at C5 position of dopaminoquinone. The analyses of the thermodynamic energies indicate that L-cysteine and N-acetylcysteine covalently bind to dopaminoquinone by competing with the internal cyclization reaction of dopaminoquinone which leads to the synthesis of melanin. The analysis of the results, based on the reaction free energies, is also supported by the investigation of the natural bond orbitals of the reactants and products.

  13. Engineering cyanobacteria for fuels and chemicals production.

    Science.gov (United States)

    Zhou, Jie; Li, Yin

    2010-03-01

    The world's energy and global warming crises call for sustainable, renewable, carbon-neutral alternatives to replace fossil fuel resources. Currently, most biofuels are produced from agricultural crops and residues, which lead to concerns about food security and land shortage. Compared to the current biofuel production system, cyanobacteria, as autotrophic prokaryotes, do not require arable land and can grow to high densities by efficiently using solar energy, CO(2), water, and inorganic nutrients. Moreover, powerful genetic techniques of cyanobacteria have been developed. For these reasons, cyanobacteria, which carry out oxygenic photosynthesis, are attractive hosts for production of fuels and chemicals. Recently, several chemicals including ethanol, isobutanol and isoprene have been produced by engineered cyanobacteria directly using solar energy, CO(2), and water. Cyanobacterium is therefore a potential novel cell factory for fuels and chemicals production to address global energy security and climate change issues.

  14. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    Science.gov (United States)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  15. Date fruit: chemical composition, nutritional and medicinal values, products.

    Science.gov (United States)

    Tang, Zhen-Xing; Shi, Lu-E; Aleid, Salah M

    2013-08-15

    Date fruit has served as a staple food in the Arab world for centuries. Worldwide production of date fruit has increased almost threefold over the last 40 years, reaching 7.68 million tons in 2010. Date fruit can provide many essential nutrients and potential health benefits to the consumer. Date fruit goes through four ripening stages named kimri, khalal, rutab and tamer. The main chemical components of date fruit include carbohydrates, dietary fibre, enzymes, protein, fat, minerals, vitamins, phenolic acids and carotenoids. The chemical composition of date fruit varies according to ripening stage, cultivar, growing environment, postharvest conditions, etc. The nutritional and medicinal activities of date fruit are related to its chemical composition. Many studies have shown that date fruit has antioxidant, antimutagenic, anti-inflammatory, gastroprotective, hepatoprotective, nephroprotective, anticancer and immunostimulant activities. Various date fruit-based products such as date syrup, date paste, date juice and their derived products are available. Date by-products can be used as raw materials for the production of value-added products such as organic acids, exopolysaccharides, antibiotics, date-flavoured probiotic-fermented dairy produce, bakery yeasts, etc. In this paper the chemical composition and nutritional and medicinal values of date fruit as well as date fruit-based products are reviewed. © 2013 Society of Chemical Industry.

  16. Assessment of chemicals in construction products

    DEFF Research Database (Denmark)

    Krogh, Hanne; Olsen, Stig Irving

    2000-01-01

    . The reasons for that are lacks of product-specific emissions by manufacturing of chemical products, e.g. waterproofing systems and sealants. Besides, most LCA-models do not include assessments of emissions in working environment, in indoor environment or from disposal processes. It was therefore...

  17. Cyanobacterial metabolic engineering for biofuel and chemical production.

    Science.gov (United States)

    Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota

    2016-12-01

    Rising levels of atmospheric CO 2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO 2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO 2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The U.S. Chemical Industry, the Products It Makes

    Science.gov (United States)

    Chemical and Engineering News, 1972

    1972-01-01

    This section of the annual report on the chemical industry presents data on these areas of chemical production: growth rates, man-made fibers; the 50 largest volume chemicals, major inorganics and organics, plastics, drugs, magnesium, and paint. Includes production figures for 1961, 1969, 1970, 1971 and percent change for 1970-71 and for 1961-71.…

  19. Utilization of oleo-chemical industry by-products for biosurfactant production

    Science.gov (United States)

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  20. Bainite Formation in Medium-Carbon Low-Silicon Spring Steels Accounting for Chemical Segregation

    NARCIS (Netherlands)

    Goulas, C.; Mecozzi, M.G.; Sietsma, J.

    2016-01-01

    In this paper, the effect of chemical inhomogeneity on the isothermal bainite formation is investigated in medium-carbon low-silicon spring steel by dilatometry and microscopy. The analysis of the microstructure at different times during transformation shows that chemical segregation of

  1. Gas to liquid to solid transition in halogen hot atom chemistry. 6. Product formation routes and chemical selectivity of high energy iodine reactions with butyne isomers

    International Nuclear Information System (INIS)

    Garmestani, S.K.; Firouzbakht, M.L.; Rack, E.P.

    1979-01-01

    Reactions of recoil produced iodine-128 with isomers of butyne were studied in gaseous, high pressure, and condensed phase conditions, with rare gas additives and in the presence and absence of radical scavengers (I 2 and O 2 ). It was found that recoil iodine-128 reactions were initiated by thermal electronically excited I + species for both 1-butyne and 2-butyne systems. While the diverse and complex nature of the reactions cannot be explained by simple chemical parameters, comparisons among the alkyne systems demonstrate preferential attack of iodine at the triple bond resulting, mainly, in electronically excited intermediates. A comparison of the various product formation routes results in the characterization of general traits common to the alkynes. 6 figures, 4 tables

  2. Strangeness Production in a Chemically Equilibrating Quark-Gluon Plasma

    Institute of Scientific and Technical Information of China (English)

    HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang

    2004-01-01

    @@ We study the strangeness of a chemically equilibrating quark-gluon plasma at finite baryon density based on the and will accelerate with the change of the initial system from a chemically non-equilibrated to an equilibrated system. We also find that the calculated strangeness is very different from the one in the thermodynamic equilibrium system. This study may be helpful to understand the formation of quark-gluon plasma via a chemically non-equilibrated evolution framework.

  3. Formation and repair of physically and chemically induced DNA damage in human cells. Final report, September 1, 1976-November 30, 1978

    International Nuclear Information System (INIS)

    Cerutti, P.A.

    1979-01-01

    The major topic was the study of the formation and repair of DNA damage by energy related physical and chemical agents in cultured human cells. Two pathways of damage production were distinguished: (1) indirect action, i.e., attack of DNA by active oxygen species which are formed by the reaction of the primary agent with a non-DNA target; and (2) direct action, i.e., reaction of the primary agent or a chemical derivative of the primary agent with DNA usually resulting in the formation of a covalent adduct. Near-ultraviolet light and ionizing radiation were studied as agents which operate at least in part via indirect action and benzo(a)pyrene as chemical carcinogen operating mostly by direct action. The formation of monomeric thymine damage of the 5,6-dihydroxy-dihydrothymine type by γ-rays and ultraviolet light was investigated. Indirect action of near-ultraviolet light is also responsible for the induction of DNA single strand breaks. Their formation and repair following exposure to 313 nm light was studied in skin fibroblasts from patients with the hereditary disease Xeroderma pigmentosum (XP). Excision repair of γ-ray induced 5,6-dihydroxy-dihydrothymine type lesions was studied in fibroblasts from Ataxia telangiectasia (AT) patients. The formation and repair of covalent purine adducts was studied in actively metabolizing rodent and human cells following treatment with the procarcinogen benzo(a)pyrene and with the ultimate metabolite benzo(a)pyrene-diol-epoxide I

  4. Consumer exposure to chemicals in indoor environment : A specific focus on chemicals from textile products

    NARCIS (Netherlands)

    Wijnhoven SWP; Kooi MW; te Biesebeek JD; SIR; vgc

    2010-01-01

    Textile products in indoor environment contain a variety of chemicals. Well-known examples are flame retardants, phthalates, formaldehyde and dimethylfumarate. Consumers are potentially exposed to these chemicals since a lot of textile products are present in indoor environment (clothing, curtains,

  5. Explosively fracturing a productive oil and gas formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, C W

    1966-06-23

    In this method of fracturing an oil- or gas-producing strata, a portion of the formation adjacent to, but separated from, the producing strata is fractured. Explosives are then introduced into the fracture in this portion of the formation and thereafter detonated to fracture the productive strata. Also claimed are a method of variably controlling the extent and force of the explosives used, and a method of increasing oil and gas production from a productive strata.

  6. Microbial production of building block chemicals and polymers.

    Science.gov (United States)

    Lee, Jeong Wook; Kim, Hyun Uk; Choi, Sol; Yi, Jongho; Lee, Sang Yup

    2011-12-01

    Owing to our increasing concerns on the environment, climate change, and limited natural resources, there has recently been considerable effort exerted to produce chemicals and materials from renewable biomass. Polymers we use everyday can also be produced either by direct fermentation or by polymerization of monomers that are produced by fermentation. Recent advances in metabolic engineering combined with systems biology and synthetic biology are allowing us to more systematically develop superior strains and bioprocesses for the efficient production of polymers and monomers. Here, we review recent trends in microbial production of building block chemicals that can be subsequently used for the synthesis of polymers. Also, recent successful cases of direct one-step production of polymers are reviewed. General strategies for the production of natural and unnatural platform chemicals are described together with representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effects of chemical complexity on the autoxidation mechanisms of endocyclic alkene ozonolysis products

    DEFF Research Database (Denmark)

    Rissanen, Matti P.; Kurtén, Theo; Sipilä, Mikko

    2015-01-01

    (NO3-) based ionization scheme. The experiments were performed in borosilicate glass flow tube reactors at room temperature (T = 293 ± 3 K) and at ambient pressure. An ensemble of oxidized monomer and dimer products was detected, with elemental compositions obtained from the high......Formation of highly oxidized, multifunctional products in the ozonolysis of three endocyclic alkenes, 1- methylcyclohexene, 4-methylcyclohexene, and α-pinene, was investigated using a chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometer with a nitrate ion......-resolution mass spectra. The monomer product distributions have O/C ratios from 0.8 to 1.6 and can be explained with an autocatalytic oxidation mechanism (=autoxidation) where the oxygen-centered peroxy radical (RO2) intermediates internally rearrange by intramolecular hydrogen shift reactions...

  8. The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene

    DEFF Research Database (Denmark)

    Rissanen, Matti P.; Kurtén, Theo; Sipilä, Mikko

    2014-01-01

    ionization atmospheric pressure interface time-of-flight mass spectrometer with a nitrate ion (NO3 -)-based ionization scheme. Quantum chemical calculations were performed at the CCSD(T)-F12a/VDZ-F12//ωB97XD/aug-cc-pVTZ level, with kinetic modeling using multiconformer transition state theory, including...... of seconds. Dimerization of the peroxy radicals by recombination and cross-combination reactions is in competition with the formation of highly oxidized monomer species and is observed to lead to peroxides, potentially diacyl peroxides. The molar yield of these highly oxidized products (having O/C > 1...

  9. Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.

    Science.gov (United States)

    Toure, Oumar; Dussap, Claude-Gilles

    2016-08-01

    Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Consumer exposure to chemicals in indoor environment : A specific focus on chemicals from textile products

    OpenAIRE

    Wijnhoven SWP; Kooi MW; te Biesebeek JD; SIR; vgc

    2010-01-01

    Textile products in indoor environment contain a variety of chemicals. Well-known examples are flame retardants, phthalates, formaldehyde and dimethylfumarate. Consumers are potentially exposed to these chemicals since a lot of textile products are present in indoor environment (clothing, curtains, floor covering, and upholstery of furniture) and consumers are in contact with these products for up to 24 hours a day. The Food and Consumer Product Safety Authority (VWA) commissioned RIVM to mak...

  11. Characterization and prediction of chemical functions and weight fractions in consumer products

    Directory of Open Access Journals (Sweden)

    Kristin K. Isaacs

    Full Text Available Assessing exposures from the thousands of chemicals in commerce requires quantitative information on the chemical constituents of consumer products. Unfortunately, gaps in available composition data prevent assessment of exposure to chemicals in many products. Here we propose filling these gaps via consideration of chemical functional role. We obtained function information for thousands of chemicals from public sources and used a clustering algorithm to assign chemicals into 35 harmonized function categories (e.g., plasticizers, antimicrobials, solvents. We combined these functions with weight fraction data for 4115 personal care products (PCPs to characterize the composition of 66 different product categories (e.g., shampoos. We analyzed the combined weight fraction/function dataset using machine learning techniques to develop quantitative structure property relationship (QSPR classifier models for 22 functions and for weight fraction, based on chemical-specific descriptors (including chemical properties. We applied these classifier models to a library of 10196 data-poor chemicals. Our predictions of chemical function and composition will inform exposure-based screening of chemicals in PCPs for combination with hazard data in risk-based evaluation frameworks. As new information becomes available, this approach can be applied to other classes of products and the chemicals they contain in order to provide essential consumer product data for use in exposure-based chemical prioritization. Keywords: Chemical function, Exposure modeling, Chemical prioritization, Consumer products, Cosmetics, ExpoCast

  12. Effect of radiation parameters on the formation of radiolysis products in meat and meat substances

    International Nuclear Information System (INIS)

    Merritt, C. Jr.; Angelini, P.; Graham, R.A.

    1978-01-01

    Analytical chemical methods, employing gas and liquid chromatography for separation and mass spectrometry for identification, have been used to study the formation of radiolysis products in various meats such as beef and pork and in fats and proteins derived from meat. In this study the dependency of the amount of product formed in beef is evaluated as a function of various parameters such as radiation dose, dose rate, temperature of irradiation, precursor concentration, and various other factors. Statistical analysis of data accumulated from a large number of samples is provided by means of a laboratory automation computer. The significance of the data is assessed with particular regard to the wholesomeness of the irradiated product

  13. Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media.

    Science.gov (United States)

    Willrodt, Christian; David, Christian; Cornelissen, Sjef; Bühler, Bruno; Julsing, Mattijs K; Schmid, Andreas

    2014-08-01

    The efficiency and productivity of cellular biocatalysts play a key role in the industrial synthesis of fine and bulk chemicals. This study focuses on optimizing the synthesis of (S)-limonene from glycerol and glucose as carbon sources using recombinant Escherichia coli. The cyclic monoterpene limonene is extensively used in the fragrance, food, and cosmetic industries. Recently, limonene also gained interest as alternative jet fuel of biological origin. Key parameters that limit the (S)-limonene yield, related to genetics, physiology, and reaction engineering, were identified. The growth-dependent production of (S)-limonene was shown for the first time in minimal media. E. coli BL21 (DE3) was chosen as the preferred host strain, as it showed low acetate formation, fast growth, and high productivity. A two-liquid phase fed-batch fermentation with glucose as the sole carbon and energy source resulted in the formation of 700 mg L(org) (-1) (S)-limonene. Specific activities of 75 mU g(cdw) (-1) were reached, but decreased relatively quickly. The use of glycerol as a carbon source resulted in a prolonged growth and production phase (specific activities of ≥50 mU g(cdw) (-1) ) leading to a final (S)-limonene concentration of 2,700 mg L(org) (-1) . Although geranyl diphosphate (GPP) synthase had a low solubility, its availability appeared not to limit (S)-limonene formation in vivo under the conditions investigated. GPP rerouting towards endogenous farnesyl diphosphate (FPP) formation also did not limit (S)-limonene production. The two-liquid phase fed-batch setup led to the highest monoterpene concentration obtained with a recombinant microbial biocatalyst to date. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. New Vistas in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Zhang, Lei; Babi, Deenesh Kavi; Gani, Rafiqul

    2016-01-01

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product......, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design....... Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack...

  15. 76 FR 1067 - Testing of Certain High Production Volume Chemicals; Second Group of Chemicals

    Science.gov (United States)

    2011-01-07

    ... Mfg & NOES (number based criteria based criteria significant chemicals (lbs) industrial of workers... 2070-AD16 Testing of Certain High Production Volume Chemicals; Second Group of Chemicals AGENCY... section 4(a)(1)(B) of the Toxic Substances Control Act (TSCA) to require manufacturers, importers, and...

  16. Cyanobacteria: Promising biocatalysts for sustainable chemical production.

    Science.gov (United States)

    Knoot, Cory J; Ungerer, Justin; Wangikar, Pramod P; Pakrasi, Himadri B

    2018-04-06

    Cyanobacteria are photosynthetic prokaryotes showing great promise as biocatalysts for the direct conversion of CO 2 into fuels, chemicals, and other value-added products. Introduction of just a few heterologous genes can endow cyanobacteria with the ability to transform specific central metabolites into many end products. Recent engineering efforts have centered around harnessing the potential of these microbial biofactories for sustainable production of chemicals conventionally produced from fossil fuels. Here, we present an overview of the unique chemistry that cyanobacteria have been co-opted to perform. We highlight key lessons learned from these engineering efforts and discuss advantages and disadvantages of various approaches. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Ecological Assembly of Chemical Mixtures

    Science.gov (United States)

    Human-environment interactions have a significant role in the formation of chemical mixtures in the environment and by extension in human tissues and fluids. These interactions, which include decisions to purchase and use products containing chemicals as well as behaviors and act...

  18. Preventive effect of chemical peeling on ultraviolet induced skin tumor formation.

    Science.gov (United States)

    Abdel-Daim, Mohamed; Funasaka, Yoko; Kamo, Tsuneyoshi; Ooe, Masahiko; Matsunaka, Hiroshi; Yanagita, Emmy; Itoh, Tomoo; Nishigori, Chikako

    2010-10-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photoaged skin. We assessed the photochemopreventive effect of several clinically used chemical peeling agents on the ultraviolet (UV)-irradiated skin of hairless mice. Chemical peeling was done using 35% glycolic acid dissolved in distilled water, 30% salicylic acid in ethanol, 10% or 35% trichloroacetic acid (TCA) in distilled water at the right back of UV-irradiated hairless mice every 2 weeks in case of glycolic acid, salicylic acid, and 10% TCA and every 4 weeks in case of 35% TCA for totally 18 weeks after the establishment of photoaged mice by irradiation with UVA+B range light three times a week for 10 weeks at a total dose of 420 J/cm(2) at UVA and 9.6 J/cm(2) at UVB. Tumor formation was assessed every week. Skin specimens were taken from treated and non-treated area for evaluation under microscopy, evaluation of P53 expression, and mRNA expression of cyclooxygenase (COX)-2. Serum level of prostaglandin E(2) was also evaluated. All types of chemical peeling reduced tumor formation in treated mice, mostly in the treated area but also non-treated area. Peeling suppressed clonal retention of p53 positive abnormal cells and reduced mRNA expression of COX-2 in treated skin. Further, serum prostaglandin E(2) level was decreased in chemical peeling treated mice. These results indicate that chemical peeling with glycolic acid, salicylic acid, and TCA could serve tumor prevention by removing photodamaged cells. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Estimating chemical emissions from home and personal care products in China

    International Nuclear Information System (INIS)

    Hodges, J.E.N.; Holmes, C.M.; Vamshi, R.; Mao, D.; Price, O.R.

    2012-01-01

    China's economy has grown significantly and concomitantly so has the demand for home and personal care (HPC) products. The detection of chemicals used in HPC products is increasing in profile as China strives to improve its environmental management. China is developing robust exposure models for use in regulatory risk-based assessments of chemicals, including those chemicals used in HPC products. Accurate estimates of chemical emissions play an important role within this. A methodology is presented to derive spatially refined emissions from demographic and economic indicators with large variations in emissions calculated, showing product usage being higher in East and South China. The less affordable a product, the greater the influence per capita Gross Domestic Product has on the product distribution. Lastly, more spatially resolved input data highlights greater variation of product use. Linking product sales data with population density increased the observed variability in absolute usage distribution of HPC products at the county > province > regional > country scale. - Highlights: ► We combined sales data with spatial datasets on demographic and economic indicators. ► Large variation in chemical emissions exists across China. ► More spatially resolved input data results in greater variation of product use. ► Results could be used to parameterise future exposure models in China. - A methodology to derive accurate estimates of chemical emissions for China using demographic and economic indicators.

  20. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    Science.gov (United States)

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modelling formation of disinfection by-products in water distribution: Optimisation using a multi-objective evolutionary algorithm

    KAUST Repository

    Radhakrishnan, Mohanasundar; Pathirana, Assela; Ghebremichael, Kebreab A.; Amy, Gary L.

    2012-01-01

    Concerns have been raised regarding disinfection by-products (DBPs) formed as a result of the reaction of halogen-based disinfectants with DBP precursors. In order to appreciate the chemical and biological tradeoffs, it is imperative to understand the formation trends of DBPs and their spread in the distribution network. However, the water at a point in a complex distribution system is a mixture from various sources, whose proportions are complex to estimate and requires advanced hydraulic analysis. To understand the risks of DBPs and to develop mitigation strategies, it is important to understand the distribution of DBPs in a water network, which requires modelling. The goal of this research was to integrate a steady-state water network model with a particle backtracking algorithm and chlorination as well as DBPs models in order to assess the tradeoffs between biological and chemical risks in the distribution network. A multi-objective optimisation algorithm was used to identify the optimal proportion of water from various sources, dosages of alum, and dosages of chlorine in the treatment plant and in booster locations to control the formation of chlorination DBPs and to achieve a balance between microbial and chemical risks. © IWA Publishing 2012.

  2. Modelling formation of disinfection by-products in water distribution: Optimisation using a multi-objective evolutionary algorithm

    KAUST Repository

    Radhakrishnan, Mohanasundar

    2012-05-01

    Concerns have been raised regarding disinfection by-products (DBPs) formed as a result of the reaction of halogen-based disinfectants with DBP precursors. In order to appreciate the chemical and biological tradeoffs, it is imperative to understand the formation trends of DBPs and their spread in the distribution network. However, the water at a point in a complex distribution system is a mixture from various sources, whose proportions are complex to estimate and requires advanced hydraulic analysis. To understand the risks of DBPs and to develop mitigation strategies, it is important to understand the distribution of DBPs in a water network, which requires modelling. The goal of this research was to integrate a steady-state water network model with a particle backtracking algorithm and chlorination as well as DBPs models in order to assess the tradeoffs between biological and chemical risks in the distribution network. A multi-objective optimisation algorithm was used to identify the optimal proportion of water from various sources, dosages of alum, and dosages of chlorine in the treatment plant and in booster locations to control the formation of chlorination DBPs and to achieve a balance between microbial and chemical risks. © IWA Publishing 2012.

  3. Chemical methods and techniques to monitor early Maillard reaction in milk products; A review.

    Science.gov (United States)

    Aalaei, Kataneh; Rayner, Marilyn; Sjöholm, Ingegerd

    2018-01-23

    Maillard reaction is an extensively studied, yet unresolved chemical reaction that occurs as a result of application of the heat and during the storage of foods. The formation of advanced glycation end products (AGEs) has been the focus of several investigations recently. These molecules which are formed at the advanced stage of the Maillard reaction, are suspected to be involved in autoimmune diseases in humans. Therefore, understanding to which extent this reaction occurs in foods, is of vital significance. Because of their composition, milk products are ideal media for this reaction, especially when application of heat and prolonged storage are considered. Thus, in this work several chemical approaches to monitor this reaction in an early stage are reviewed. This is mostly done regarding available lysine blockage which takes place in the very beginning of the reaction. The most popular methods and their applications to various products are reviewed. The methods including their modifications are described in detail and their findings are discussed. The present paper provides an insight into the history of the most frequently-used methods and provides an overview on the indicators of the Maillard reaction in the early stage with its focus on milk products and especially milk powders.

  4. Consumer product chemical weight fractions from ingredient lists

    Science.gov (United States)

    Assessing human exposures to chemicals in consumer products requires composition information. However, comprehensive composition data for products in commerce are not generally available. Many consumer products have reported ingredient lists that are constructed using specific gu...

  5. The Virtual Product-Process Design Laboratory for Structured Chemical Product Design and Analysis

    DEFF Research Database (Denmark)

    Mattei, Michele; Yunus, Nor Alafiza Binti; Kalakul, Sawitree

    2014-01-01

    The objective of this paper is to present new methods for design of chemicals based formulated products and their implementation in the software, the Virtual Product-Process Design Laboratory. The new products are tailor-made blended liquid products and emulsion-based products. The new software...

  6. Stochastic thermodynamics and entropy production of chemical reaction systems

    Science.gov (United States)

    Tomé, Tânia; de Oliveira, Mário J.

    2018-06-01

    We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end, we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states and on appropriate definitions of entropy and entropy production. The system is in contact with a heat reservoir and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlögl reaction models.

  7. Sustainable Chemical Processes and Products. New Design Methodology and Design Tools

    OpenAIRE

    Korevaar, G.

    2004-01-01

    The current chemical industry is not sustainable, which leads to the fact that innovation of chemical processes and products is too often hazardous for society in general and the environment in particular. It really is a challenge to implement sustainability considerations in the design activities of chemical engineers. Therefore, the main question of this thesis is: how can a trained chemical engineer develop a conceptual design of a chemical process or a chemical product in such a way that ...

  8. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Effects of chemical dispersants on oil-brine interfacial tension and droplet formation

    International Nuclear Information System (INIS)

    Khelifa, A.; So, L.L.C.

    2009-01-01

    The dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). In this study, the physical properties and dispersion of oil were measured in order to determine the effects of chemical dispersants on IFT and oil viscosity and the effects on oil droplet formation. In theory, the maximum size of oil droplet that forms under turbulent mixing increases with IFT. Therefore, a reduction in IFT reduces the size distribution of oil droplets. This paper presented the results of an ongoing project aimed at providing quantitative understanding the influence that chemical dispersants have on the size distribution of oil droplets and oil dispersion. Findings showed that a valid approach is to separate the direct effects of chemical dispersants on oil properties, specifically oil-brine IFT and the effects of mixing on dispersion of chemically treated oil. Under constant mixing conditions, the reduction of the maximum oil droplet size that overcomes the breakage process is determined by the effects of chemical dispersant on oil properties. This correlates well with the dispersant-to-oil ratio (DOR) up to the critical micelle concentration (CMC). This good agreement can be attributed to the reduction of IFT with DOR. It was concluded that the reduction of IFT with dispersant concentration is an additional signature of oil composition on droplet formation, while mixing energy is an external parameter that is independent of oil properties. 17 refs., 3 tabs., 9 figs

  10. STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF THE SEXTANS DWARF SPHEROIDAL GALAXY

    International Nuclear Information System (INIS)

    Lee, Myung Gyoon; Yuk, In-Soo; Park, Hong Soo; Harris, Jason; Zaritsky, Dennis

    2009-01-01

    We present the star formation history (SFH) and chemical evolution of the Sextans dSph galaxy as a function of a galactocentric distance. We derive these from the VI photometry of stars in the 42' x 28' field using the SMART model developed by Yuk and Lee and adopting a closed-box model for chemical evolution. For the adopted age of Sextans 15 Gyr, we find that >84% of the stars formed prior to 11 Gyr ago, significant star formation extends from 15 to 11 Gyr ago (∼ 65% of the stars formed 13-15 Gyr ago, while ∼ 25% formed 11-13 Gyr ago), detectable star formation continued to at least 8 Gyr ago, the SFH is more extended in the central regions than the outskirts, and the difference in star formation rates between the central and outer regions is most marked 11-13 Gyr ago. Whether blue straggler stars are interpreted as intermediate-age main-sequence stars affects conclusions regarding the SFH for times 4-8 Gyr ago, but this is at most only a trace population. We find that the metallicity of the stars increased rapidly up to [Fe/H] = -1.6 in the central region and to [Fe/H] = -1.8 in the outer region within the first Gyr, and has varied slowly since then. The abundance ratios of several elements derived in this study are in good agreement with the observational data based on the high-resolution spectroscopy in the literature. We conclude that the primary driver for the radial gradient of the stellar population in this galaxy is the SFH, which self-consistently drives the chemical enrichment history.

  11. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Disinfection aboard cruise liners and naval units: formation of disinfection by-products using chlorine dioxide in different qualities of drinking water.

    Science.gov (United States)

    Ufermann, Petra; Petersen, Hauke; Exner, Martin

    2011-12-01

    The world-wide deployment of cruise liners and naval units has caused an increased need for the disinfection of drinking water. The main cause for this is the unknown quality of drinking water in foreign harbours--besides the formation of bio-films due to the climatically disadvantageous conditions in the operational area. Water conduits on board are currently disinfected with calcium hypochlorite in case of microbiological contamination. Chemical and physical analyses after disinfection with calcium hypochlorite have shown that organic by-products consisting of trihalomethanes develop in considerable amounts during disinfection. Furthermore, the method is susceptible to handling errors and thus often leads to insufficient disinfection results. Hitherto, the use of other disinfection methods allowed by government regulations, especially chlorine dioxide, is not widely spread. Unlike disinfection with calcium hypochlorite, chlorine dioxide does not lead to the formation of trihalomethanes. Typical disinfection by-products (DBP) are the anions chlorite and chlorate, which are formed in oxidative processes. The formation conditions of these anions have not yet been elucidated. For this reason, the probability of the generation of inorganic by-products after disinfection with chlorine dioxide has been determined, and their occurrence in drinking water on board has been examined with respect to a possible correlation between water quality and the formation of chlorate and chlorite. Therefore, a chromatographic method was developed and validated in order to determine the periodical development of chlorate and chlorite from chorine dioxide in purified water at different pH-values as well as in actual drinking water samples from water conduits on board. The formation of the by-products chlorite and chlorate after disinfection with chlorine dioxide is influenced neither by pH-value nor by chemical properties of the disinfected water. Considering the examined conditions

  13. Production of chemical substances in Tajikistan

    International Nuclear Information System (INIS)

    Boboev, Kh.E.; Nazarov, K.M.

    2010-01-01

    Full text: Government of the Republic of Tajikistan has signed Convention "On prohibition of chemical weapon application"and no chemical weapon (CHW) is produced on the territory of republic. However, the potential production of CHW by individual persons or groups can be organized, using available production and obtaining chemical substances from other countries. Chemical substances, which have strong damage effect, easily, can be synthesized in chemical laboratories. These are general toxic substances, as hydrocyanic acid acid, phosgene, mustard gas, lewisite, sarin and others. The similar chemical substances of industrial significance are produced in Tajikistan: ammonia, chlorine, explosives, caustic soda, carbamide, formaldehyde and others. For industrial needs and agriculture from other countries Tajikistan is receiving the following: sodium cyanide and potassium for gold-mining; mineral acids; pesticides and others. Besides, there are different deposits in Tajikistan, reprocessing of which gives an opportunity to obtain different chemical substances. What can be obtained from chemicals produced in Tajikistan? Chlorine - from this reagent the fluoride chlorine, phosgene COCl_2 and many other compounds are easily synthesized, which are CHW components. Obtained cyanic compounds for gold mining can be used as precursor for neuroparalytic action. A big amount of metallic aluminum is produced in the republic. The Al powder for rocket fuel can be obtained from it. Obtained from other countries pesticides are potential components for CHW creation. A strong control and account of pesticides use is necessary. It is extremely important to control materials, equipment and technologies which allow countries and separate groups to create weapons of mass destruction (WMD). The most important factor is goods identification. Firstly - inspection of external view, labeling, packing specifications, license availability and etc. Strong control of checklists is necessary according

  14. chemical kinetic study of nitrogen oxides formation in methane flameless combustion

    International Nuclear Information System (INIS)

    Alvarado T, Pedro N; Cadavid S, Francisco; Mondragon, P Fanor; Ruiz, Wilson

    2009-01-01

    The present paper deals with the nitrogen oxides formation in a flameless combustion process characterized for using air highly diluted and preheated at high temperatures. The combustion model used in this study was the one dimensional counterflow methane air diffusion flame. The NOx production rate analysis showed that the thermal and prompt mechanisms are the most important for the formation and consumption of NO under dilution conditions for the oxidant in N 2 and combustion products. These mechanisms are related since the starting reaction for NO formation (N2 molecular dissociation) belongs to the prompt mechanism while the NO formation is reported mainly for the thermal mechanism reactions. On the other hand, the NO - NO 2 equilibrium showed that the reaction rates are comparable to that obtained by the thermal and prompt mechanisms, but its global contribution to NO formation are almost insignificant due to the oxidation reaction with radicals HO 2 .

  15. Radiation-chemical formation of acids in polyvinyl butyral films with chlorinated additives

    International Nuclear Information System (INIS)

    Kriminiskaya, Z.K.

    1993-01-01

    Radiochromic indicators are commonly produced by reacting an indicator dye with an acid formed inside a polymer by irradiation. Halogenated and unhalogenated polymers were used, the latter containing halogenated organics. It was therefore of interest to study the formation of acid in polyvinyl butyral (PVD) with addition of a halogenated compound. Yields were measured of radiation-chemical acid formation in PVB films containing chloral hydrate and hexachloroethane. 5 refs., 1 fig., 2 tabs

  16. Exposure to Chemicals in Consumer Products: The Role of the Near-Field Environment

    DEFF Research Database (Denmark)

    Fantke, Peter; Ernstoff, Alexi; Huang, L.

    2016-01-01

    Humans can be exposed to chemicals in consumer products during product use and environmental releases with inhalation, ingestion, and dermal uptake as typical exposure routes. Nevertheless, chemical exposure modeling has traditionally focused on the far-field with near-field indoor models only...... recently gaining attention. Further, models that are mostly emissions-based, may not necessarily be applicable to all types of chemical release from consumer products. To address this gap, we (1) define a framework to simultaneously account for exposure to chemicals in the near- and far-field, (2......) determine chemical product concentrations for various functional use categories, (3) introduce a quantitative metric linking exposure to chemical mass in products, the Product Intake Fraction (PiF), and (4) demonstrate our framework for various consumer product categories. This framework lends itself...

  17. [Chemical pollution of baby food products in the Russian Federation].

    Science.gov (United States)

    Pivovarov, Yu P; Milushkina, O Yu; Tikhonova, y l; Aksenova, O I; Kalinovskaya, M V

    One of the main problems of nutrition of children and adolescents is to assess chemical contamination of baby food products and the establishment of the relation with the health of the child population. With the entering different chemical compounds in the body of the child there can be observed disorders of the nervous, urinary, cardiovascular system, gastrointestinal tract, as well as metabolic deteriorations, degenerative processes in parenchymal organs and bone destruction. The aim of the study was to analyze data on chemical contamination of baby food products in the Russian Federation for 2012-2014. The analysis was executed on the data of Federal Information Fund of social and hygienic monitoring of the Russian Federation. There were identified priority pollutants (toxic elements, nitrites, nitrates, nitrosamines, pesticides, hydroxymethylfurfural, mycotoxins) and risk areas (the Lipetsk region, the Krasnodar Territory, the Republic of Adygea, city of Moscow, Tatarstan, the Kabardino-Balkar Republic, the Ryazan region). There are detected contamination levels not exceeding MAC (in the dynamics of the three years offollow up, on average 22%), requiring their hygienic assessment. There were determined the baby food products containing most common occurred chemical contaminants: fruits and vegetables products, canned products, canned meat, cereals, dairy products, liquid and adapted and partially adapted milk formalas. Identified data indicate to a need for further studies of chemical substances in products for children’s nutrition in order to establish the causal relationships with a various diseases and the substantiation of methodological approaches to the risk assessment of combined exposure to chemical contaminants in concentrations up to the MPC on health of children, including infants.

  18. Evaluation of Consumer Product Co-occurrence to Inform Chemical Exposure

    Science.gov (United States)

    Consumer products are an important target of chemical innovation. Used daily for personal hygiene, home care, disinfection and cleaning, consumer products provide a host of benefits, and also an efficient delivery vehicle for a variety of chemicals into our homes and bodies. Al...

  19. A comparative study on the raft chemical properties of various alginate antacid raft-forming products.

    Science.gov (United States)

    Dettmar, Peter W; Gil-Gonzalez, Diana; Fisher, Jeanine; Flint, Lucy; Rainforth, Daniel; Moreno-Herrera, Antonio; Potts, Mark

    2018-01-01

    Research to measure the chemical characterization of alginate rafts for good raft performance and ascertain how formulation can affect chemical parameters. A selection of alginate formulations was investigated all claiming to be proficient raft formers with significance between products established and ranked. Procedures were selected which demonstrated the chemical characterization allowing rafts to effectively impede the reflux into the esophagus or in severe cases to be refluxed preferentially into the esophagus and exert a demulcent effect, with focus of current research on methods which complement previous studies centered on physical properties. The alginate content was analyzed by a newly developed HPLC method. Methods were used to determine the neutralization profile and the acid neutralization within the raft determined along with how raft structure affects neutralization. Alginate content of Gaviscon Double Action (GDA) within the raft was significantly superior (p raft acid neutralization capacity were GDA and Rennie Duo, the latter product not being a raft former. Raft structure was key and GDA had the right level of porosity to allow for longer duration of neutralization. Alginate formulations require three chemical reactions to take place simultaneously: transformation to alginic acid, sodium carbonate reacting to form carbon dioxide, calcium releasing free calcium ions to bind with alginic acid providing strength to raft formation. GDA was significantly superior (p <.0001) to all other comparators.

  20. Biorefineries for the production of top building block chemicals and their derivatives

    DEFF Research Database (Denmark)

    Choi, Sol; Song, Chan Woo; Shin, Jae Ho

    2015-01-01

    commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals...... years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been...

  1. Open Babel: An open chemical toolbox

    Directory of Open Access Journals (Sweden)

    O'Boyle Noel M

    2011-10-01

    Full Text Available Abstract Background A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language and de facto standards have arisen (for example, SMILES format, the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example, and competition between software along with a lack of vendor-neutral formats. Results We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Conclusions Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org.

  2. Open Babel: An open chemical toolbox

    Science.gov (United States)

    2011-01-01

    Background A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. Results We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Conclusions Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org. PMID:21982300

  3. Chemical Composition of Defatted Cottonseed and Soy Meal Products

    Science.gov (United States)

    He, Zhongqi; Zhang, Hailin; Olk, Dan C.

    2015-01-01

    Chemical composition is critical information for product quality and exploration of new use. Hence defatted cottonseed meals from both glanded (with gossypol) and glandless (without gossypol) cotton seeds were separated into water soluble and insoluble fractions, or water soluble, alkali soluble as well as total protein isolates. The contents of gossypol, total protein and amino acids, fiber and carbohydrates, and selected macro and trace elements in these products were determined and compared with each other and with those of soy meal products. Data reported in this work improved our understanding on the chemical composition of different cottonseed meal products that is helpful for more economical utilization of these products. These data would also provide a basic reference for product standards and quality control when the production of the cottonseed meal products comes to pilot and industrial scales. PMID:26079931

  4. Bryophytes - an emerging source for herbal remedies and chemical production

    DEFF Research Database (Denmark)

    Sabovljevic, Marko S.; Sabovljević, Aneta D.; Ikram, Nur Kusaira K.

    2016-01-01

    biomass in various ecosystems, bryophytes are a seldom part of ethnomedicine and rarely subject to medicinal and chemical analyses. Still, hundreds of novel natural products have been isolated from bryophytes. Bryophytes have been shown to contain numerous potentially useful natural products, including...... loss, plant growth regulators and allelopathic activities. Bryophytes also cause allergies and contact dermatitis. All these effects highlight bryophytes as potential source for herbal remedies and production of chemicals to be used in various products....

  5. International Product Market Integration, Rents and Wage Formation

    DEFF Research Database (Denmark)

    Sørensen, Allan

    including product market rents and the possibility that jobs may be relocated across national labour markets. Possibilities and threats, however, will not in general be uniformly distributed across firms and therefore groups in the labour market. These issues are explored in a Ricardian trade model......International product market integration enhances both export possibilities through easier access to foreign markets, but also the import threat arising from foreign firms penetrating into the domestic market. These mechanisms affect wage formation and employment creation through many channels...... with imperfect competition, heterogeneity in the labour market, and decentralized wage-bargaining. The Paper analyses how product market integration affects wage formation, and identifies characteristics of winners and losers in the integration process....

  6. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  7. New Vistas in Chemical Product and Process Design.

    Science.gov (United States)

    Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul

    2016-06-07

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates.

  8. Engineering yeast metabolism for production of fuels and chemicals

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2016-01-01

    faster development of metabolically engineered strains that can be used for production of fuels and chemicals. The yeast Saccharomyces cerevisiae is widely used for production of fuels, chemicals, pharmaceuticals and materials. Through metabolic engineering of this yeast a number of novel industrial...... as for metabolic design. In this lecture it will be demonstrated how the Design-Build-Test cycle of metabolic engineering has allowed for development of yeast cell factories for production of a range of different fuels and chemicals. Some examples of different technologies will be presented together with examples......Metabolic engineering relies on the Design-Build-Test cycle. This cycle includes technologies like mathematical modeling of metabolism, genome editing and advanced tools for phenotypic characterization. In recent years there have been advances in several of these technologies, which has enabled...

  9. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    Science.gov (United States)

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  10. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.

    Science.gov (United States)

    Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae

    2018-05-01

    Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.

  11. Linking neuroethology to the chemical biology of natural products

    DEFF Research Database (Denmark)

    Olivera, Baldomero M.; Raghuraman, Shrinivasan; Schmidt, Eric W.

    2017-01-01

    From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively...... a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as “Chemical Neuroethology”, linking...... the substantial work carried out by chemists on natural products with accelerating advances in neuroethology....

  12. [Applications of nitrile converting enzymes in the production of fine chemicals].

    Science.gov (United States)

    Zheng, Yuguo; Xue, Yaping; Liu, Zhiqiang; Zheng, Renchao; Shen, Yinchu

    2009-12-01

    Nitriles are an important type of synthetic intermediates in the production of fine chemicals because of their easy preparations and versatile transformations. The traditional chemical conversion of nitriles to carboxylic acids and amides is feasible but it requires relatively harsh conditions of heat, acid or alkali. Nitrile converting enzymes (nitrilase, nitrile hydratase and amidase) which are used as biocatalyst for the production of fine chemicals have attracted substantial interest because of their ability to convert readily available nitriles into the corresponding higher value amides or acids under mild conditions with excellent chemo-, regio- and stereo-selectivities. Many nitrile converting enzymes have been explored and widely used for the production of fine chemicals. In this paper, various examples of biocatalytic synthesis of pharmaceuticals and their intermediates, agrochemicals and their intermediates, food and feed additives, and other fine chemicals are presented. In the near future, an increasing number of novel nitrile converting enzymes will be screened and their potential in the production of useful fine chemicals will be further exploited.

  13. Characterization and Prediction of Chemical Functions and Weight Fractions in Consumer Products

    Science.gov (United States)

    Assessing exposures from the thousands of chemicals in commerce requires quantitative information on the chemical constituents of consumer products. Unfortunately, gaps in available composition data prevent assessment of exposure to chemicals in many products. Here we propose fil...

  14. The role of chemical admixtures in the formation of the structure of cement stone

    Directory of Open Access Journals (Sweden)

    Sopov Viktor

    2017-01-01

    Full Text Available The influence of sulfates and carbonates of potassium and sodium on the character of the formation of the microstructure of cement stone was studied. The role of cations in the structure formation of cement stone is shown. The efficiency of chemical additives, hardening accelerators, was estimated from the ratio of the volumes of gel and capillary micropores. The ratio of gel and capillary pores allows to determine the efficiency coefficient of the action of chemical additives. It is shown that the potassium carbonate for Portland cement is the most effective additive for hardening in terms of microstructure modification, and potassium sulfate for slag Portland cement.

  15. Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis.

    Science.gov (United States)

    Xu, Juan; Sheng, Guo-Ping; Luo, Hong-Wei; Fang, Fang; Li, Wen-Wei; Zeng, Raymond J; Tong, Zhong-Hua; Yu, Han-Qing

    2011-01-01

    Soluble microbial products (SMPs) present a major part of residual chemical oxygen demand (COD) in the effluents from biological wastewater treatment systems, and the SMP formation is greatly influenced by a variety of process parameters. In this study, response surface methodology (RSM) coupled with grey relational analysis (GRA) method was used to evaluate the effects of substrate concentration, temperature, NH(4)(+)-N concentration and aeration rate on the SMP production in batch activated sludge reactors. Carbohydrates were found to be the major component of SMP, and the influential priorities of these factors were: temperature>substrate concentration > aeration rate > NH(4)(+)-N concentration. On the basis of the RSM results, the interactive effects of these factors on the SMP formation were evaluated, and the optimal operating conditions for a minimum SMP production in such a batch activated sludge system also were identified. These results provide useful information about how to control the SMP formation of activated sludge and ensure the bioreactor high-quality effluent. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Chemical production from industrial by-product gases: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  17. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes

    DEFF Research Database (Denmark)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca

    2018-01-01

    , we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical......Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational...... engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined...

  18. Retail sales of scheduled listed chemical products; self-certification of regulated sellers of scheduled listed chemical products. Interim final rule with request for comment.

    Science.gov (United States)

    2006-09-26

    In March 2006, the President signed the Combat Methamphetamine Epidemic Act of 2005, which establishes new requirements for retail sales of over-the-counter (nonprescription) products containing the List I chemicals ephedrine, pseudoephedrine, and phenylpropanolamine. The three chemicals can be used to manufacture methamphetamine illegally. DEA is promulgating this rule to incorporate the statutory provisions and make its regulations consistent with the new requirements. This action establishes daily and 30-day limits on the sales of scheduled listed chemical products to individuals and requires recordkeeping on most sales.

  19. Workshop on Indian Chemical Industry: perspectives on safety, cleaner production and environment production

    NARCIS (Netherlands)

    Ham, J.M.

    1996-01-01

    A Workshop on "Indian Chemical Industry: Perspectives on Safety, Cleaner Production and Environmental Protection" was held on 3, 4 and 5 January 1996, in Bombay, India. The main objective of the workshop, which was organised jointly by the Government of India, UNIDO/UNDP and the Indian Chemical

  20. Aspartic acid functions as carbonyl trapper to inhibit the formation of advanced glycation end products by chemical chaperone activity.

    Science.gov (United States)

    Prasanna, Govindarajan; Saraswathi, N T

    2016-05-01

    Advanced glycation end products (AGEs) were implicated in pathology of numerous diseases. In this study, we present the bioactivity of aspartic acid (Asp) to inhibit the AGEs. Hemoglobin and bovine serum albumin (BSA) were glycated with glucose, fructose, and ribose in the presence and absence of Asp (100-200 μM). HbA1c inhibition was investigated using human blood and characterized by micro-column ion exchange chromatography. The effect of methyl glyoxal (MG) on hemoglobin and BSA was evaluated by fluorescence spectroscopy and gel electrophoresis. The effect of MG on red blood cells morphology was characterized by scanning electron micrographs. Molecular docking was performed on BSA with Asp. Asp is capable of inhibiting the formation of fluorescent AGEs by reacting with the reducing sugars. The presence of Asp as supplement in whole blood reduced the HbA1c% from 8.8 to 6.1. The presence of MG showed an increase in fluorescence and the presence of Asp inhibited the glycation thereby the fluorescence was quenched. MG also affected the electrophoretic mobility of hemoglobin and BSA by forming high molecular weight aggregates. Normal RBCs showed typical biconcave shape. MG modified RBCs showed twisted and elongated shape whereas the presence of ASP tends to protect RBC from twisting. Asp interacted with arginine residues of bovine serum albumin particularly ARG 194, ARG 198, and ARG 217 thereby stabilized the protein complex. We conclude that Asp has dual functions as a chemical chaperone to stabilize protein and as a dicarbonyl trapper, and thereby it can prevent the complications caused by glycation.

  1. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping

    2013-06-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions representative of seawater and river water). A bipolar membrane (BPM) was placed next to the anode to prevent Cl- contamination and acidification of the anolyte, and to produce protons for HCl recovery. A 5-cell paired reverse-electrodialysis (RED) stack provided the electrical energy required to overcome the BPM over-potential (0.3-0.6 V), making the overall process spontaneous. The MRCC reactor produced electricity (908 mW/m2) as well as concentrated acidic and alkaline solutions, and therefore did not require an external power supply. After a fed-batch cycle, the pHs of the chemical product solutions were 1.65 ± 0.04 and 11.98 ± 0.10, due to the production of 1.35 ± 0.13 mmol of acid, and 0.59 ± 0.14 mmol of alkali. The acid- and alkali-production efficiencies based on generated current were 58 ± 3% and 25 ± 3%. These results demonstrated proof-of-concept acid and alkali production using only renewable energy sources. © 2013 Elsevier B.V.

  2. Production of nanomaterials: physical and chemical technologies

    International Nuclear Information System (INIS)

    Giorgi, Leonardo; Salernitano, Elena

    2015-01-01

    Are define nanomaterials those materials which have at least one dimension in the range between 1 and 100 nm. By the term nanotechnology refers, instead, to the study of phenomena and manipulation of materials at the atomic and molecular level. The materials brought to the nanometric dimensions take particular chemical-physical properties different from the corresponding conventional macro materials. Speaking about the structure of nanoscale, you can check some basic properties materials (eg. Melting temperature, magnetic and electrical properties) without changing its chemical composition. In this perspective are crucial knowledge and control of production processes in order to design and get the nanomaterial more suitable for a specific application. For this purpose, it describes a series of processes of production of nanomaterials with application examples. [it

  3. Chemicalization in water treatment in peat production areas

    International Nuclear Information System (INIS)

    Madekivi, O.; Marja-Aho, J.; Selin, P.; Jokinen, S.

    1995-01-01

    Chemicalization of runoff waters of peat production has been studied since 1989, first in laboratory and since 1990 in practice. The methods have been developed as cooperation between Vapo Oy and Kemira Chemicals Oy. In chemicalization the dissolved substances are coagulated and they settle after that into sedimentation basins. Good purification results require rapid and effective mixing, so the formed particles are combined to larger particles, and they form settleable flock. The coagulation efficiency depends on the properties of the water to be purified, such as alkalinity and pH, the quality and the quantity of humic substances, and the quality and the quantity of the flocking chemicals. Chemicalization is at present the most effective, but also the most expensive method for purification of drying waters of peat production areas. The chemicalized water is on the basis of most quality factors cleaner than water running off a virgin bog. The most visible change is the clarification of the water which is due to the coagulation of the colouring humic substances and iron. The colorimetric value is decreased by over 70 %, the best results being over 90 %. The colorimetric value of the purified water (30-100 mg Pt/l) is below the values of the runoff water of a virgin bog (100-200 mg Pt/l). The chemicalization process and the results of the researches are presented in the article. (3 refs., 6 figs., 2 tabs.)

  4. Percolation transport theory and relevance to soil formation, vegetation growth, and productivity

    Science.gov (United States)

    Hunt, A. G.; Ghanbarian, B.

    2016-12-01

    Scaling laws of percolation theory have been applied to generate the time dependence of vegetation growth rates (both intensively managed and natural) and soil formation rates. The soil depth is thus equal to the solute vertical transport distance, the soil production function, chemical weathering rates, and C and N storage rates are all given by the time derivative of the soil depth. Approximate numerical coefficients based on the maximum flow rates in soils have been proposed, leading to a broad understanding of such processes. What is now required is an accurate understanding of the variability of the coefficients in the scaling relationships. The present abstract focuses on the scaling relationship for solute transport and soil formation. A soil formation rate relates length, x, and time, t, scales, meaning that the missing coefficient must include information about fundamental space and time scales, x0 and t0. x0 is proposed to be a fundamental mineral heterogeneity scale, i.e. a median particle diameter. to is then found from the ratio of x0 and a fundamental flow rate, v0, which is identified with the net infiltration rate. The net infiltration rate is equal to precipitation P less evapotranspiration, ET, plus run-on less run-off. Using this hypothesis, it is possible to predict soil depths and formation rates as functions of time and P - ET, and the formation rate as a function of depth, soil calcic and gypsic horizon depths as functions of P-ET. It is also possible to determine when soils are in equilibrium, and predict relationships of erosion rates and soil formation rates.

  5. Why Leading Consumer Product Companies Develop Proactive Chemical Management Strategies

    Science.gov (United States)

    Scruggs, Caroline E.; Van Buren, Harry J.

    2014-01-01

    Scholars have studied the various pressures that companies face related to socially responsible behavior when stakeholders know the particular social issues under consideration. Many have examined social responsibility in the context of environmental responsibility and the general approaches companies take regarding environmental management. The issue of currently unregulated, but potentially hazardous, chemicals in consumer products is not well understood by the general public, but a number of proactive consumer product companies have voluntarily adopted strategies to minimize use of such chemicals. These companies are exceeding regulatory requirements by restricting from their products chemicals that could harm human or environmental health, despite the fact that these actions are costly. They do not usually advertise the details of their strategies to end consumers. This article uses interviews with senior environmental directors of 20 multinational consumer product companies to investigate why these companies engage in voluntary chemicals management. The authors conclude that the most significant reasons are to achieve a competitive advantage and stay ahead of regulations, manage relationships and maintain legitimacy with stakeholders, and put managerial values into practice. Many of the characteristics related to the case of chemicals management are extendable to other areas of stakeholder management in which risks to stakeholders are either unknown or poorly understood. PMID:27471326

  6. Why Leading Consumer Product Companies Develop Proactive Chemical Management Strategies.

    Science.gov (United States)

    Scruggs, Caroline E; Van Buren, Harry J

    2016-05-01

    Scholars have studied the various pressures that companies face related to socially responsible behavior when stakeholders know the particular social issues under consideration. Many have examined social responsibility in the context of environmental responsibility and the general approaches companies take regarding environmental management. The issue of currently unregulated, but potentially hazardous, chemicals in consumer products is not well understood by the general public, but a number of proactive consumer product companies have voluntarily adopted strategies to minimize use of such chemicals. These companies are exceeding regulatory requirements by restricting from their products chemicals that could harm human or environmental health, despite the fact that these actions are costly. They do not usually advertise the details of their strategies to end consumers. This article uses interviews with senior environmental directors of 20 multinational consumer product companies to investigate why these companies engage in voluntary chemicals management. The authors conclude that the most significant reasons are to achieve a competitive advantage and stay ahead of regulations, manage relationships and maintain legitimacy with stakeholders, and put managerial values into practice. Many of the characteristics related to the case of chemicals management are extendable to other areas of stakeholder management in which risks to stakeholders are either unknown or poorly understood.

  7. Multi-scale modeling for sustainable chemical production.

    Science.gov (United States)

    Zhuang, Kai; Bakshi, Bhavik R; Herrgård, Markus J

    2013-09-01

    With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes associated with the development and implementation of a sustainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process, chemical industry, economy, and ecosystem. In addition, we propose a multi-scale approach for integrating the existing models into a cohesive framework. The major benefit of this proposed framework is that the design and decision-making at each scale can be informed, guided, and constrained by simulations and predictions at every other scale. In addition, the development of this multi-scale framework would promote cohesive collaborations across multiple traditionally disconnected modeling disciplines to achieve sustainable chemical production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2013-01-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions

  9. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening

    Science.gov (United States)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-02-01

    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  10. Environmental Product Development Combining the Life Cycle Perspective with Chemical Hazard Information

    DEFF Research Database (Denmark)

    Askham, Cecilia

    in the design or redesign process. This thesis concerns marrying the life cycle perspective with chemical hazard information, in order to advance the practice of environmental product development, and hence takes further steps towards sustainable development. The need to consider the full value chain...... for the life cycle of products meant that systems theory and systems engineering principles were important in this work. Life cycle assessment methodology was important for assessing environmental impacts for case products. The new European regulation for chemicals (REACH) provided the main driver......Concerns regarding the short- and long-term detrimental effects of chemicals on human health and ecosystems have made the minimisation of chemical hazards a vitally important issue. If sustainable development is to be achieved, environmental efficient products (and product life cycles...

  11. By-Product Formation in Repetitive PCR Amplification of DNA Libraries during SELEX

    DEFF Research Database (Denmark)

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recogniz......The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target......-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments....... Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation...

  12. PFB air gasification of biomass. Investigation of product formation and problematic issues related to ammonia, tar and alkali

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader

    2000-09-01

    Fluidised bed thermal gasification of biomass is an effective route that results in 100 % conversion of the fuel. In contrast to chemical, enzymatic or anaerobic methods of biomass treatment, the thermal conversion leaves no contaminated residue after the process. The product gas evolved within thermal conversion can be used in several applications such as: fuel for gas turbines, combustion engines and fuel cells, and raw material for production of chemicals and synthetic liquid fuels. This thesis treats a part of the experimental data from two different gasifiers: a 90 kW{sub th} pressurised fluidised bubbling bed gasifier at Lund University and a 18 MW{sub th} circulating fluidised bed gasifier integrated with gas turbine (IGCC) in Vaernamo. A series of parallel and consecutive chemical reactions is involved in thermal gasification, giving origin to formation of a variety of products. These products can be classified within three major groups: gases, tars and oils, and char. The proportion of these categories of species in the final product is a matter of the gasifier design and the process parameters. The thesis addresses the technical and theoretical aspects of the biomass thermochemical conversion and presents a new approach in describing the gasification reactions. There is an evidence of fuel effect on the characteristics of the final products: a mixture of plastic waste (polyethylene) and biomass results in higher concentration of linear hydrocarbons in the gas than gasification of pure biomass. Mixing the biomass with textile waste (containing aromatic structure) results in a high degree of formation of aromatic compounds and light tars. Three topic questions within biomass gasification, namely: tar, NO{sub x} and alkali are discussed in the thesis. The experimental results show that gasification at high ER or high temperature decreases the total amount of the tars and simultaneously reduces the contents of the oxygenated and alkyl-substituted poly

  13. A review of models for near-field exposure pathways of chemicals in consumer products

    DEFF Research Database (Denmark)

    Huang, Lei; Ernstoff, Alexi; Fantke, Peter

    2017-01-01

    able to quantify the multiple transfers of chemicals from products used near-field to humans. The present review therefore aims at an in-depth overview of modeling approaches for near-field chemical release and human exposure pathways associated with consumer products. It focuses on lower......-tier, mechanistic models suitable for life cycle assessments (LCA), chemical alternative assessment (CAA) and high-throughput screening risk assessment (HTS). Chemicals in a product enter the near-field via a defined “compartment of entry”, are transformed or transferred to adjacent compartments, and eventually end......Exposure to chemicals in consumer products has been gaining increasing attention, with multiple studies showing that near-field exposures from products is high compared to far-field exposures. Regarding the numerous chemical-product combinations, there is a need for an overarching review of models...

  14. Teaching chemical product design to engineering students: course contents and challenges

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Kiil, Søren

    Chemical product design is not taught in the same way as traditional engineering courses like unit operations or transport phenomena. This paper gives an overview of the challenges that we, as teachers, have faced when teaching chemical product design to engineering students. Specific course...

  15. Hazard assessment and risk management of offshore production chemicals

    International Nuclear Information System (INIS)

    Schobben, H.P.M.; Scholten, M.C.T.; Vik, E.A.; Bakke, S.

    1994-01-01

    There is a clear need for harmonization of the regulations with regard to the use and discharge of drilling and production chemicals in the North Sea. Therefore the CHARM (Chemical Hazard Assessment and Risk Management) model was developed. Both government (of several countries) and industry (E and P and chemical suppliers) participated in the project. The CHARM model is discussed and accepted by OSPARCON. The CHARM model consists of several modules. The model starts with a prescreening on the basis of hazardous properties like persistency, accumulation potential and the appearance on black lists. The core of the model.consists of modules for hazard assessment and risk analysis. Hazard assessment covers a general environmental evaluation of a chemical on the basis of intrinsic properties of that chemical. Risk analysis covers a more specific evaluation of the environmental impact from the use of a production chemical, or a combination of chemicals, under actual conditions. In the risk management module the user is guided to reduce the total risk of all chemicals used on a platform by the definition of measures in the most cost-effective way. The model calculates the environmental impact for the marine environment. Thereto three parts are distinguished: pelagic, benthic and food chain. Both hazard assessment and risk analysis are based on a proportional comparison of an estimated PEC with an estimated NEC. The PEC is estimated from the use, release, dilution and fate of the chemical and the NEC is estimated from the available toxicity data of the chemicals

  16. Metabolic Engineering of TCA Cycle for Production of Chemicals

    NARCIS (Netherlands)

    Vuoristo, K.S.; Mars, A.E.; Sanders, J.P.M.; Eggink, G.; Weusthuis, R.A.

    2016-01-01

    The tricarboxylic acid (TCA) cycle has been used for decades in the microbial production of chemicals such as citrate, L-glutamate, and succinate. Maximizing yield is key for cost-competitive production. However, for most TCA cycle products, the maximum pathway yield is lower than the theoretical

  17. Unit Price Scaling Trends for Chemical Products

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Wei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathre, Roger [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, III, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    To facilitate early-stage life-cycle techno-economic modeling of emerging technologies, here we identify scaling relations between unit price and sales quantity for a variety of chemical products of three categories - metal salts, organic compounds, and solvents. We collect price quotations for lab-scale and bulk purchases of chemicals from both U.S. and Chinese suppliers. We apply a log-log linear regression model to estimate the price discount effect. Using the median discount factor of each category, one can infer bulk prices of products for which only lab-scale prices are available. We conduct out-of-sample tests showing that most of the price proxies deviate from their actual reference prices by a factor less than ten. We also apply the bootstrap method to determine if a sample median discount factor should be accepted for price approximation. We find that appropriate discount factors for metal salts and for solvents are both -0.56, while that for organic compounds is -0.67 and is less representative due to greater extent of product heterogeneity within this category.

  18. Bio-based C-3 Platform Chemical: Biotechnological Production and -Conversion of 3-Hydroxypropionaldehyde

    OpenAIRE

    Rezaei, Roya

    2013-01-01

    Demands for efficient, greener, economical and sustainable production of chemicals, materials and energy have led to development of industrial biotechnology as a key technology area to provide such products from bio-based raw materials from agricultural-, forestry- and related industrial residues and by-products. For the bio-based industry, it is essential to develop a number of building blocks or platform chemicals for C2-C6 chemicals and even aromatic chemicals. 3-hydroxypropionaldehyde (3H...

  19. Hydrogenation of rapeseed oil for production of liquid bio-chemicals

    International Nuclear Information System (INIS)

    Pinto, F.; Martins, S.; Gonçalves, M.; Costa, P.; Gulyurtlu, I.; Alves, A.; Mendes, B.

    2013-01-01

    Highlights: ► Production of renewable liquid hydrocarbons through rapeseed oil hydrogenation. ► Hydrogenation at lower temperature and lower hydrogen pressures. ► Test of a catalyst commonly employed in petrochemical industry. ► Improve of hydrogenation process viability by decreasing operational costs. ► Analysis of hydrogenated product applications as bio-chemicals. -- Abstract: The main objective of rapeseed oil hydrogenation tests was the production of liquid bio-chemicals to be used as renewable raw material for the production of several chemicals and in chemical synthesis to substitute petroleum derived stuff. As, hydrogenation of vegetable oils is already applied for the production of biofuels, the work done focused in producing aromatic compounds, due to their economic value. The effect of experimental conditions on rapeseed oil hydrogenation was studied, namely, reaction temperature and time with the aim of selecting the most favourable conditions to convert rapeseed oil into liquid valuable bio-chemicals. Rapeseed oil was hydrogenated at a hydrogen initial pressure of 1.10 MPa. Reaction temperature varied in the range from 200 °C to 400 °C, while reaction times between 6 and 180 min were tested. The performance of a commercial cobalt and molybdenum catalyst was also studied. The highest hydrocarbons yields were obtained at the highest temperature and reaction times tested. At a temperature of 400 °C and at the reaction time of 120 min hydrocarbons yield was about 92% in catalyst presence, while in the absence of the catalyst this value decreased to 85%. Hydrocarbons yield was even higher when the reaction time of 180 min was used in the presence of catalyst, as the yield of 97% was observed. At these conditions hydrocarbons formed had a high content of aromatic compounds, around 50%. For this reason, the viscosity values of hydrogenated oils were lower than that established by EN590, which together with hydrogenated liquids composition

  20. By-product formation in repetitive PCR amplification of DNA libraries during SELEX.

    Science.gov (United States)

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper; Mayer, Günter

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments. Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation and improving the success rate of aptamer selection.

  1. Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Toshinari [Artie McFerrin Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A and M University, College Station, TX 77843-3122 (United States); Wood, Thomas K. [Artie McFerrin Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A and M University, College Station, TX 77843-3122 (United States); Department of Biology, Texas A and M University, College Station, TX 77843-3258 (United States); Zachry Department of Civil and Environmental Engineering, Texas A and M University, College Station, TX 77843-3136 (United States)

    2008-05-15

    Mutagenesis of Escherichia coli for hydrogen production is difficult since there is no high-throughput screen. Here we describe a method for rapid detection of enhanced hydrogen production by engineered strains by detecting formate via potassium permanganate; in E. coli, hydrogen is synthesized from formate using the formate hydrogen lyase system. (author)

  2. Coptis chinensis Polysaccharides Inhibit Advanced Glycation End Product Formation.

    Science.gov (United States)

    Yang, Ye; Li, Yun; Yin, Dengke; Chen, Song; Gao, Xiangdong

    2016-06-01

    Coptis chinensis Franch (Huanglian) is commonly used to treat diabetes in China. In this study, the effects of the C. chinensis Franch polysaccharides (CCP) on advanced glycation end product (AGE) formation in vitro and in streptozotocin-induced diabetic mice were investigated. CCP significantly inhibited all the three periods of nonenzymatic protein glycation in vitro, including Amadori product, dicarbonyl compound, and AGE formation (P < .01). In diabetic mice, the administration of CCP not only improved both bodyweight and serum insulin and decreased fasting blood glucose and glycated serum protein concentrations but also decreased the AGE accumulations and morphological abnormalities in pancreas and liver. The inhibitory effects of CCP on AGE formation afford a potential therapeutic use in the prevention and treatment of diabetes.

  3. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    Science.gov (United States)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  4. Chapter 3 – VPPD-Lab: The Chemical Product Simulator

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Cignitti, Stefano; Zhang, L.

    2017-01-01

    for computer-aided chemical product design and evaluation, implemented in the software called VPPD-Lab, is presented. In the same way a typical process simulator works, the VPPD-Lab allows users to: (1) analyze chemical-based products by performing virtual experiments (product property and performance......Computer-aided methods and tools for current and future product–process design and development need to manage problems requiring efficient handling of models, data, and knowledge from different sources and at different times and size scales. In this chapter, a systematic model-based framework...... lotion design. Through these case studies, the use of design templates, associated workflows (methods), data flows (software integration), and solution strategies (database and tools) are highlighted....

  5. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, December 1, 1978-February 28, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1979-02-01

    The ongoing progress of a coordinated research program aimed at optimizing the biodegradation of cellulosic biomass to ethanol and chemical feedstocks is summarized. Growth requirements and genetic manipulations of clostridium thermocellum for selection of high cellulose producers are reported. The enzymatic activity of the cellulase produced by these organisms was studied. The soluble sugars produced from hydrolysis were analyzed. Increasing the tolerance of C. thermocellum to ethanol during liquid fuel production, increasing the rate of product formation, and directing the catabolism to selectively achieve high ethanol concentrations with respect to other products were studied. Alternative substrates for C. thermocellum were evaluated. Studies on the utilization of xylose were performed. Single stage fermentation of cellulose using mixed cultures of C. thermocellum and C. thermosaccharolyticum were studied. The study of the production of chemical feedstocks focused on acrylic acid, acetone/butanol, acetic acid, and lactic acid.

  6. Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products.

    Science.gov (United States)

    Lavtižar, Vesna; van Gestel, Cornelis A M; Dolenc, Darko; Trebše, Polonca

    2014-01-01

    This study aimed at assessing the photodegradation of the insecticide chlorantraniliprole (CAP) in deionized water and in tap water amended with humic acids and nitrate. Photolysis was carried out under simulated solar or UV-A light. CAP (39 μM) photodegradation was slightly faster in tap water than in deionized water with half lives of 4.1 and 5.1 days, respectively. Photodegradation rate of CAP was hardly affected by humic acids (up to 100 mg L(-1)) and nitrate. Photodegradation pattern was different in slightly acidic (pH=6.1) deionized water compared to basic (pH=8.0) tap water. Four main degradation products have been isolated and characterized spectroscopically, and crystal structure was recorded for the first two photodegradation products. CAP also degraded in the dark controls, but only at basic pH (23% loss at pH 8.0 in tap water after 6 days), resulting in the formation of one single degradation product. Our study shows that the degradation of chlorantraniliprole in water is a combination of chemical and photochemical reactions, which are highly dependent on the pH of the solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    Science.gov (United States)

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A scientific approach to the attribution problem of renaissance ceramic productions based on chemical and mineralogical markers

    Science.gov (United States)

    Padeletti, G.; Fermo, P.

    2010-09-01

    Renaissance lustred majolica shards from Gubbio and Deruta (Central Italy) were investigated in order to point out differences in chemical and mineralogical composition between these two very similar Italian potteries and furthermore to find correlations with the local raw clay materials probably used for their production. Chemical and mineralogical analysis on the ceramic body were performed by ICP-OES (inductively coupled plasma optical emission spectroscopy) and XRD (X-ray diffraction), respectively. Investigation of the ceramic body revealed significant differences on calcium content indicating that it could be used as a marker for the two different productions. A separation of the ceramic shards in groups, on the base of their provenance, has been achieved applying to the data set formed by the chemical compositional data some multivariate techniques, such as PCA (principal component analysis) and HCA (hierarchical cluster analysis). Even the mineralogical composition of the groups shows very interesting features, differing Gubbio production from Deruta one for the presence of several mineralogical species. The investigations carried out on clays that were collected in the two geographical places have confirmed these differences. In fact, the clay materials have a chemical composition coherent with that one found in the shards. Firing tests performed by heating these clay in different conditions (temperature and soaking time) have shown a different behaviour as concerns the formation of the minerals and it is compatible with the shard composition found. From the comparison between the fired clay and the ceramic shards, some assumptions about the firing conditions applied by the ancient potters have been drawn.

  9. [Formation mechanism and chemical safety of nonintentional chemical substances present in chlorinated drinking water and wastewater].

    Science.gov (United States)

    Onodera, Sukeo

    2010-09-01

    This paper reviews the formation mechanism and chemical safety of nonintentional chemical substances (NICS) present in chlorine-treated water containing organic contaminants. Undesirable compounds, i.e., NICS, may be formed under certain conditions when chlorine reacts with organic matter. The rate and extent of chlorine consumption with organics are strongly dependent on their chemical structures, particularly whether double bonds or sulfur and nitrogen atoms occur in the molecules. Organothiophosphorus pesticides (P=S type) are easily oxidized to their phosphorus compounds (P=O type) in chlorinated water containing HOCl as little as 0.5 mg/l, resulting in an increase in cholinesterase-inhibitory activity. Chlorination of phenols in water also produces a series of highly chlorinated compounds, including chlorophenols, chloroquinones, chlorinated carboxylic acids, and polychlorinated phenoxyphenols (PCPPs). In some of these chloroquinones, 2,6-dichloroalkylsemiquinones exhibit a strong mutagenic response as do positive controls used in the Ames test. 2-phenoxyphenols in these PCPPs are particularly interesting, as they are present in the chlorine-treated phenol solution and they are also precursors (predioxins) of the highly toxic chlorinated dioxins. Polynuclear aromatic hydrocarbons (PAHs) were found to undergo chemical changes due to hypochlorite reactions to give chloro-substituted PAHs, oxygenated (quinones) and hydroxylated (phenols) compounds, but they exhibit a lower mutagenic response. In addition, field work was performed in river water and drinking water to obtain information on chemical distribution and their safety, and the results are compared with those obtained in the model chlorination experiments.

  10. THE STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES IN THE NEARBY UNIVERSE

    International Nuclear Information System (INIS)

    Torres-Papaqui, J. P.; Coziol, R.; Ortega-Minakata, R. A.; Neri-Larios, D. M.

    2012-01-01

    We have determined the metallicity (O/H) and nitrogen abundance (N/O) of a sample of 122,751 star-forming galaxies (SFGs) from the Data Release 7 of the Sloan Digital Sky Survey. For all these galaxies we have also determined their morphology and obtained a comprehensive picture of their star formation history (SFH) using the spectral synthesis code STARLIGHT. The comparison of the chemical abundance with the SFH allows us to describe the chemical evolution of the SFGs in the nearby universe (z ≤ 0.25) in a manner consistent with the formation of their stellar populations and morphologies. A high fraction (45%) of the SFGs in our sample show an excess abundance of nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen-rich and nitrogen-poor SFGs. Our analysis suggests that they all form their stars through a succession of bursts of star formation extended over a period of few Gyr. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, and have more massive bulges and earlier morphologies than those showing no excess. Contrary to expectation, we find no evidence that the starburst wind efficiency decreases with the mass of the galaxies. As a possible explanation we propose that the loss of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more

  11. Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis.

    Science.gov (United States)

    Guo, Da-liang; Yuan, Hong-you; Yin, Xiu-li; Wu, Chuang-zhi; Wu, Shu-bin; Zhou, Zhao-qiu

    2014-01-01

    The effects of Na as organic bound form or as inorganic salts form on the pyrolysis products characteristics of alkali lignin were investigated by using thermogravimetric analyzer coupled with Fourier transform infrared spectrometry (TG-FTIR), tube furnace and thermo-gravimetric analyzer (TGA). Results of TG-FTIR and tube furnace indicated that the two chemical forms Na reduced the releasing peak temperature of CO and phenols leading to the peak temperature of the maximum mass loss rate shifted to low temperature zone. Furthermore, organic bound Na obviously improved the elimination of alkyl substituent leading to the yields of phenol and guaiacol increased, while inorganic Na increased the elimination of phenolic hydroxyl groups promoting the formation of ethers. It was also found the two chemical forms Na had different effects on the gasification reactivity of chars. For inorganic Na, the char conversion decreased with increasing the char forming temperature, while organic bound Na was opposite. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    International Nuclear Information System (INIS)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  13. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Leong, Susanna Su Jan [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Singapore Institute of Technology, Singapore (Singapore); Chang, Matthew Wook, E-mail: bchcmw@nus.edu.sg [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore)

    2014-12-23

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  14. New conception in the theory of chemical bonding; the role of core and valence atomic orbitals in formation of chemical bonds

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Kostikov, Yu.P.; Korol'kov, D.V.

    1986-01-01

    An analysis of x-ray photoelectron spectra leads to a simple and consistent conception in the theory of chemical bonding, which satisfies (unlike the simple MO-LCAO theory) the virial theorem and defines the roles of the core and valence atomic orbitals in the formation of chemical bonds. Its essence is clear from the foregoing: the exothermic effects of the formation of complexes are caused by the lowering of the energies of the core levels of the central atoms with simultaneous small changes in the energies of the core levels of the ligands despite the significant destabilization of the delocalized valence MO's in comparison to the orbital energies of the corresponding free atoms. In order to confirm these ideas, they recorded the x-ray photoelectron spectra of the valence region and the inner levels of single-crystal silicon carbide, silicon, and graphite

  15. Primordial black holes formation from particle production during inflation

    International Nuclear Information System (INIS)

    Erfani, Encieh

    2016-01-01

    We study the possibility that particle production during inflation can source the required power spectrum for dark matter (DM) primordial black holes (PBH) formation. We consider the scalar and the gauge quanta production in inflation models, where in the latter case, we focus in two sectors: inflaton coupled i) directly and ii) gravitationally to a U(1) gauge field. We do not assume any specific potential for the inflaton field. Hence, in the gauge production case, in a model independent way we show that the non-production of DM PBHs puts stronger upper bound on the particle production parameter. Our analysis show that this bound is more stringent than the bounds from the bispectrum and the tensor-to-scalar ratio derived by gauge production in these models. In the scenario where the inflaton field coupled to a scalar field, we put an upper bound on the amplitude of the generated scalar power spectrum by non-production of PBHs. As a by-product we also show that the required scalar power spectrum for PBHs formation is lower when the density perturbations are non-Gaussian in comparison to the Gaussian density perturbations

  16. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role

  17. Chemical risk factors responsible for the formation of wedge-shaped lesions

    Directory of Open Access Journals (Sweden)

    Perić Dejan

    2015-01-01

    Full Text Available Introduction: Non-carious tooth substances loss pose a major health problem of a modern man. The literature often collectively describes all non-carious lesions and is therefore difficult to compare results obtained by different authors. Chemical factors are one of the predisposing factors responsible for the formation of wedge-shaped erosions. Aim: Examination of chemical risk factors as one of the predisposing causes responsible for the formation of wedge-shaped lesions. Method: We examined 62 patients with wedge-shaped erosions (mean age 45.52 ± 12.03 years, 58.1% of men and 60 patients without erosions in the control group (mean age 34.40 ± 9.28 years, 60% men . The entire examination was completed by using a questionnaire at the Dental Clinic of the University of Pristina - Kosovska Mitrovica. salivary pH was measured by the pH meter. Results: The results show that the wedge-shaped lesions often occur equally in both men and women. Considerably often it might appear in older people but can also occur in teenagers. Patients with wedge-shaped erosion have increased acidity of saliva, a heightened sense of acid in the mouth and consume a lot more carbonated drinks compared to patients without erosions. Conclusion: Wedge-shaped lesions are more common in people older than 40 years. Taking into account the results obtained in this study it can be concluded that the chemical risk factors truly fall within the predisposing factors that may be responsible for the creation of wedge-shaped erosions.

  18. Characterization of Industrial Pt-Sn/Al2O3 Catalyst and Transient Product Formations during Propane Dehydrogenation

    Directory of Open Access Journals (Sweden)

    Kah Sing Ho

    2013-06-01

    Full Text Available The major problem plaguing propane dehydrogenation process is the coke formation on the Pt-Sn/Al2O3 catalyst which leads to catalyst deactivation. Due to information paucity, the physicochemical characteristics of the commercially obtained regenerated Pt-Sn/Al2O3 catalyst (operated in moving bed reactor and coke formation at different temperatures of reaction were discussed. The physicochemical characterization of regenerated catalyst gave a BET surface area of 104.0 m2/g with graphitic carbon content of 8.0% indicative of incomplete carbon gasification during the industrial propylene production. Effect of temperatures on coke formation was identified by studying the product yield via temperature-programmed reaction carried out at 500oC, 600oC and 700oC. It was found that ethylene was precursor to carbon laydown while propylene tends to crack into methane. Post reaction, the spent catalyst possessed relatively lower surface area and pore radius whilst exhibited higher carbon content (31.80% at 700oC compared to the regenerated catalyst. Significantly, current studies also found that higher reaction temperatures favoured the coke formation. Consequently, the propylene yield has decreased with reaction temperature. © 2013 BCREC UNDIP. All rights reservedReceived: 10th March 2013; Revised: 28th April 2013; Accepted: 6th May 2013[How to Cite: Kah, S.H., Joanna Jo, E.C., Sim, Y.C., Chin, K.C. (2013. Characterization of Industrial Pt-Sn/Al2O3 Catalyst and Transient Product Formations during Propane Dehydrogenation. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 77-82. (doi:10.9767/bcrec.8.1.4569.77-82][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4569.77-82] | View in  |

  19. Concurrent production of biodiesel and chemicals through wet in situ transesterification of microalgae.

    Science.gov (United States)

    Im, Hanjin; Kim, Bora; Lee, Jae W

    2015-10-01

    This work addresses an unprecedented way of co-producing biodiesel (FAEE) and valuable chemicals of ethyl levulinate (EL), ethyl formate (EF) and diethyl ether (DEE) from wet in situ transesterification of microalgae. EL, EF, and DEE were significantly produced up to 23.1%, 10.3%, and 52.1% of the maximum FAEE mass with the FAEE yield higher than 90% at 125 °C. Experiments to elucidate a detailed route of EL and EF synthesis were fulfilled and it was found that its main route to the production of EL and EF was the acid hydrolysis of algal cells and esterification with ethanol. To investigate the effect of reaction variables on the products yields, comprehensive experiments were carried out with varying temperatures, solvent and alcohol volumes, moisture contents and catalyst amounts. Coproduction of DEE, EL, EF and FAEE can contribute to elevating the economic feasibility of microalgae-based biodiesel supply chain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Computational Methods to Assess the Production Potential of Bio-Based Chemicals.

    Science.gov (United States)

    Campodonico, Miguel A; Sukumara, Sumesh; Feist, Adam M; Herrgård, Markus J

    2018-01-01

    Elevated costs and long implementation times of bio-based processes for producing chemicals represent a bottleneck for moving to a bio-based economy. A prospective analysis able to elucidate economically and technically feasible product targets at early research phases is mandatory. Computational tools can be implemented to explore the biological and technical spectrum of feasibility, while constraining the operational space for desired chemicals. In this chapter, two different computational tools for assessing potential for bio-based production of chemicals from different perspectives are described in detail. The first tool is GEM-Path: an algorithm to compute all structurally possible pathways from one target molecule to the host metabolome. The second tool is a framework for Modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes, and economic impact assessment. Integrating GEM-Path and MuSIC will play a vital role in supporting early phases of research efforts and guide the policy makers with decisions, as we progress toward planning a sustainable chemical industry.

  1. Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction

    Directory of Open Access Journals (Sweden)

    Thomas Zeuch

    2013-11-01

    Full Text Available Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn’s largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br, allyl chloride (C3H5Cl, and 1,5-hexadiene (CH2CH(CH22CHCH2 at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re- combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re- combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.

  2. Centralized vs. Decentralized Wage Formation: The Role of Firms' Production Technology

    OpenAIRE

    Hirsch, Boris; Merkl, Christian; Müller, Steffen; Schnabel, Claus

    2014-01-01

    This paper is the first to show theoretically and empirically how firms' production technology affects the choice of their preferred wage formation regime. Our theoretical framework predicts, first, that the larger the total factor productivity of a firm, the more likely it is to opt for centralized wage formation where it can hide behind less productive firms. Second, the larger a firm's scale elasticity, the higher its incentive to choose centralized rather than decentralized wage setting d...

  3. Kinetics and mechanism of the condensation of pyridoxal hydrochloride with L-tryptophan and D-tryptophan, and the chemical transformation of their products

    Science.gov (United States)

    Pishchugin, F. V.; Tuleberdiev, I. T.

    2017-10-01

    The kinetics and mechanism of interaction between pyridoxal and L-tryptophan, D-tryptophan, and their derivatives are studied. It is found that condensation reactions proceed via three kinetically distinguishable stages: (1) the rapid intraplanar addition of the NH2 groups of the amino acids to pyridoxal with the formation of amino alcohols; (2) the rotational isomerism of amino alcohol fragments with their subsequent dehydration and the formation of a Schiff base with a specific configuration; (3) the abstraction of α-hydrogen in the product of condensation of pyridoxal with L-tryptophan, or the abstraction of CO2 in the product of condensation of pyridoxal with D-tryptophan with the formation of quinoid structures, hydrolysis of which results in the preparation of pyridoxamine and keto acid or pyridoxal and tryptamine, respectively. Schiff bases resistant to further chemical transformations are formed in the reaction with tryptophan methyl ester.

  4. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  5. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  6. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  7. Computational chemical product design problems under property uncertainties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Cignitti, Stefano; Abildskov, Jens

    2017-01-01

    Three different strategies of how to combine computational chemical product design with Monte Carlo based methods for uncertainty analysis of chemical properties are outlined. One method consists of a computer-aided molecular design (CAMD) solution and a post-processing property uncertainty...... fluid design. While the higher end of the uncertainty range of the process model output is similar for the best performing fluids, the lower end of the uncertainty range differs largely....

  8. Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products

    Science.gov (United States)

    Huang, Yu; Lee, Shun Cheng; Ho, Kin Fai; Ho, Steven Sai Hang; Cao, Nanying; Cheng, Yan; Gao, Yuan

    2012-11-01

    Biogenic volatile organic compounds (BVOCs) emitted from cleaning products and air fresheners indoors are prone to oxidation resulting in the formation of secondary pollutants that can pose health risks on residents. Ammonia (NH3) is ubiquitous in ambient and indoor environments. In this study, we investigated the effect of ammonia (NH3) on secondary pollutants formation from the ozonolysis of BVOCs emitted from cleaning products including floor cleaner (FC), kitchen cleaner (KC) and dishwashing detergent (DD) in a large environmental chamber. Our results demonstrated that the presence of NH3 (maximum concentration is 240 ppb) could significantly enhance secondary organic aerosols (SOAs) formation from the ozonolysis of all the three categories of cleaning products. For example, for the FC sample, the maximum total particle concentration was up to 2.0 × 104 # cm-3 in the presence of NH3, while it was 1.3 × 104 # cm-3 which was 35% lower without NH3. However, it was found that the extent of NH3 effect on SOAs formation from the ozonolysis of BVOCs emissions was component-dependent. The presence of NH3 in the reaction systems could increase the consumptions of d-limonene that is the dominant BVOC species as identified in cleaning products. The percent yields (%) of secondary carbonyl compounds generated from the ozonolysis of BVOCs emitted from three categories of cleaning products were identified in the presence and absence of NH3, respectively. The increase in SOAs particle number concentration can be attributed to the formation of condensable salts from reactions between NH3 and organic compounds generated from the BVOCs ozonolysis processes. By investigating the NH3 effect on the ozonolysis of BVOCs mixtures in contrast to the chemistry of individual compounds, a better assessment can be made of the overall impact cleaning products have on real indoor environments.

  9. Consumer Product Chemical Weight Fractions from Ingredient Lists

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data and model predictions supporting the manuscript: Isaacs K.K., Phillips K.A., Biryol D., Dionisio K.L., and Price P. Consumer product chemical weight fractions...

  10. Systematic Search for Chemical Reactions in Gas Phase Contributing to Methanol Formation in Interstellar Space.

    Science.gov (United States)

    Gamez-Garcia, Victoria G; Galano, Annia

    2017-10-05

    A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.

  11. Radiolytic gas formation in high-level liquid waste solutions

    International Nuclear Information System (INIS)

    Brodda, B.-G.; Dix, Siegfried; Merz, E.R.

    1989-01-01

    High-level fission product waste solutions originating from the first-cycle raffinate stream of spent fast breeder reactor fuel reprocessing have been investigated gas chromatographically for their radiolytic and chemical gas production. The solutions showed considerable formation of hydrogen, carbon dioxide and dinitrogen oxide, whereas atmospheric oxygen was consumed completely within a short time. In particular, carbon dioxide resulted from the radiolytic degradation of entrained organic solvent. After nearly complete degradation of the organic solvent, the influence of hydrazine and nitrogen dioxide on hydrogen formation was investigated. Hydrazinium hydroxide led to the formation of dinitrogen oxide and nitrogen. After 60 d, the concentration of dinitrogen oxide had reduced to zero, whereas the amount of nitrogen formed had reached a maximum. This may be explained by simultaneous chemical and radiolytic reactions leading to the formation of dinitrogen oxide and nitrogen and photolytic fission of dinitrogen oxide. Addition of sodium nitrite resulted in the rapid formation of dinitrogen oxide. The rate of hydrogen production was not changed significantly after the addition of hydrazine or nitrite. The results indicate that under normal operating conditions no dangerous hydrogen radiolysis yields should develop in the course of reprocessing and high-level liquid waste tank storage. Organic entrainment may lead to enhanced radiolytic decomposition and thus to considerable hydrogen production rates and pressure build-up in closed systems. (author)

  12. Models and Modelling Tools for Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    2016-01-01

    The design, development and reliability of a chemical product and the process to manufacture it, need to be consistent with the end-use characteristics of the desired product. One of the common ways to match the desired product-process characteristics is through trial and error based experiments......-based framework is that in the design, development and/or manufacturing of a chemical product-process, the knowledge of the applied phenomena together with the product-process design details can be provided with diverse degrees of abstractions and details. This would allow the experimental resources...... to be employed for validation and fine-tuning of the solutions from the model-based framework, thereby, removing the need for trial and error experimental steps. Also, questions related to economic feasibility, operability and sustainability, among others, can be considered in the early stages of design. However...

  13. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China

    Science.gov (United States)

    Li, Kangwei; Chen, Linghong; Ying, Fang; White, Stephen J.; Jang, Carey; Wu, Xuecheng; Gao, Xiang; Hong, Shengmao; Shen, Jiandong; Azzi, Merched; Cen, Kefa

    2017-11-01

    Regional ozone pollution has become one of the most challenging problems in China, especially in the more economically developed and densely populated regions like Hangzhou. In this study, measurements of O3, CO, NOx and non-methane hydrocarbons (NMHCs), together with meteorological data, were obtained for the period July 1, 2013-August 15, 2013 at three sites in Hangzhou. These sites included an urban site (Zhaohui ;ZH;), a suburban site (Xiasha ;XS;) and a rural site (Qiandaohu ;QDH;). During the observation period, both ZH and XS had a higher ozone level than QDH, with exceeding rates of 41.3% and 47.8%, respectively. Elevated O3 levels in QDH were found at night, which could be explained by less prominent NO titration effect in rural area. Detailed statistical analysis of meteorological and chemical impacts on ozone formation was carried out for ZH, and higher ozone concentration was observed when the wind direction was from the east. This is possibly due to emissions of VOCs from XS, a typical chemical industrial park located in 30 km upwind area of ZH. A comprehensive comparison between three ozone episode periods and one non-episode period were made in ZH. It was concluded that elevated concentrations of precursors and temperatures, low relative humidity and wind speed and easterly-dominated wind direction contribute to urban ozone episodes in Hangzhou. VOCs reactivity analysis indicated that reactive alkenes like isoprene and isobutene contributed most to ozone formation. Three methods were applied to evaluate O3-VOCs-NOx sensitivity in ZH: VOCs/NOx ratio method, Smog Production Model (SPM) and Relative Incremental Reactivity (RIR). The results show that summer ozone in urban Hangzhou mostly presents VOCs-limited and transition region alternately. Our study implies that the increasing automobiles and VOCs emissions from upwind area could result in ozone pollution in urban Hangzhou, and synergistic reduction of VOCs and NOx will be more effective.

  14. Coupled near-field and far-field exposure assessment framework for chemicals in consumer products

    DEFF Research Database (Denmark)

    Fantke, Peter; Ernstoff, Alexi; Huang, Lei

    2016-01-01

    Humans can be exposed to chemicals in consumer products through product use and environmental emissions over the product life cycle. Exposure pathways are often complex, where chemicals can transfer directly from products to humans during use or exchange between various indoor and outdoor...... compartments until sub-fractions reach humans. To consistently evaluate exposure pathways along product life cycles, a flexible mass balance-based assessment framework is presented structuring multimedia chemical transfers in a matrix of direct inter-compartmental transfer fractions. By matrix inversion, we...

  15. Mineralogy, geologic and physico-chemical characteristics of uranotitanate formation

    International Nuclear Information System (INIS)

    Korolev, K.G.; Miguta, A.K.; Polyakova, V.M.; Rumyantseva, G.V.

    1979-01-01

    Results of experimental and field study of varieties of brannerite and davidite are described. Special attention is paid to medium-low temperature variety of brannerite, which is the component of the majority of known uranotitanate ores. Natural concentrations of uranium are characterized: geologic peculiarities of their localization, mineral paragenesis, periore alterations. Syntheses of brannerite and davidite have been realized for the first time under hydrothermal conditions. Complex multiphase products of uranium titanate transformation, decomposition reactions of brannerite into constituent oxides in particular. Peculiarities of uranium and titanium migration in aqueous solutions at high temperatures and pressures are discussed. The processes of brannerite and davidite formation in hydrothermal conditions and from the melts are considered. Application of thermodynamic calculations of equilibria to the reactions of solid phase formation out of diluted ( -6 M) solutions and to the solid dispersoids in general is found to be erroneous as the formation of the latters is connected with kinetic phenomena

  16. Crystal chemical analysis of formation of solid solutions on the basis of compounds with garnet structure

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Kozlikin, S.N.

    1989-01-01

    Crystal chemical formulas permitting to evaluate the character of changes in interatomic distances during isomorphous substitution and, hence, the probability of formation of internal solid solutions and successive isomorphous substitution, are presented. The possibility of formation of introduction solid solutions is considered, using as an example Sc, Y oxides, rare earths with garnet structure

  17. Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation

    Czech Academy of Sciences Publication Activity Database

    Barilla, J.; Lokajíček, Miloš; Pisaková, Hana; Šimr, P.

    2013-01-01

    Roč. 36, č. 1 (2013), s. 11-17 ISSN 0158-9938 Institutional support: RVO:68378271 Keywords : radiobiological mechanism * chemical phase * DSB formation * oxygen effect Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.848, year: 2013

  18. Chemical products induce resistance to Xanthomonas perforans in tomato

    Directory of Open Access Journals (Sweden)

    Adriana Terumi Itako

    2015-09-01

    Full Text Available The bacterial spot of tomato, caused by Xanthomonas spp., is a very important disease, especially in the hot and humid periods of the year. The chemical control of the disease has not been very effective for a number of reasons. This study aimed to evaluate, under greenhouse conditions, the efficacy of leaf-spraying chemicals (acibenzolar-S-methyl (ASM (0.025 g.L−1, fluazinam (0.25 g.L−1, pyraclostrobin (0.08 g.L−1, pyraclostrobin + methiran (0.02 g.L−1 + 2.2 g.L−1, copper oxychloride (1.50 g.L−1, mancozeb + copper oxychloride (0.88 g.L−1 + 0.60 g.L−1, and oxytetracycline (0.40 g.L−1 on control of bacterial spot. Tomatoes Santa Clara and Gisele cultivars were pulverized 3 days before inoculation with Xanthomonas perforans. The production of enzymes associated with resistance induction (peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, β-1,3-glucanase, and protease was quantified from leaf samples collected 24 hours before and 24 hours after chemical spraying and at 1, 2, 4, 6, and 8 days after bacterial inoculation. All products tested controlled bacterial spot, but only ASM, pyraclostrobin, and pyraclostrobin + metiram increased the production of peroxidase in the leaves of the two tomato cultivars, and increased the production of polyphenol oxidase and β-1,3-glucanase in the Santa Clara cultivar.

  19. Chemical products induce resistance to Xanthomonas perforans in tomato.

    Science.gov (United States)

    Itako, Adriana Terumi; Tolentino Júnior, João Batista; Silva Júnior, Tadeu Antônio Fernandes da; Soman, José Marcelo; Maringoni, Antonio Carlos

    2015-01-01

    The bacterial spot of tomato, caused by Xanthomonas spp., is a very important disease, especially in the hot and humid periods of the year. The chemical control of the disease has not been very effective for a number of reasons. This study aimed to evaluate, under greenhouse conditions, the efficacy of leaf-spraying chemicals (acibenzolar-S-methyl (ASM) (0.025 g.L(-1)), fluazinam (0.25 g.L(-1)), pyraclostrobin (0.08 g.L(-1)), pyraclostrobin + methiran (0.02 g.L(-1) + 2.2 g.L(-1)), copper oxychloride (1.50 g.L(-1)), mancozeb + copper oxychloride (0.88 g.L(-1) + 0.60 g.L(-1)), and oxytetracycline (0.40 g.L(-1))) on control of bacterial spot. Tomatoes Santa Clara and Gisele cultivars were pulverized 3 days before inoculation with Xanthomonas perforans. The production of enzymes associated with resistance induction (peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, β-1,3-glucanase, and protease) was quantified from leaf samples collected 24 hours before and 24 hours after chemical spraying and at 1, 2, 4, 6, and 8 days after bacterial inoculation. All products tested controlled bacterial spot, but only ASM, pyraclostrobin, and pyraclostrobin + metiram increased the production of peroxidase in the leaves of the two tomato cultivars, and increased the production of polyphenol oxidase and β-1,3-glucanase in the Santa Clara cultivar.

  20. Biorefineries for the production of top building block chemicals and their derivatives.

    Science.gov (United States)

    Choi, Sol; Song, Chan Woo; Shin, Jae Ho; Lee, Sang Yup

    2015-03-01

    Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Formation of stable products from cluster-cluster collisions

    International Nuclear Information System (INIS)

    Alamanova, Denitsa; Grigoryan, Valeri G; Springborg, Michael

    2007-01-01

    The formation of stable products from copper cluster-cluster collisions is investigated by using classical molecular-dynamics simulations in combination with an embedded-atom potential. The dependence of the product clusters on impact energy, relative orientation of the clusters, and size of the clusters is studied. The structures and total energies of the product clusters are analysed and compared with those of the colliding clusters before impact. These results, together with the internal temperature, are used in obtaining an increased understanding of cluster fusion processes

  2. The Heck reaction in the production of fine chemicals

    NARCIS (Netherlands)

    Vries, Johannes G. de

    2001-01-01

    An overview is given of the use of the Heck reaction for the production of fine chemicals. Five commercial products have been identified that are produced on a scale in excess of 1 ton/year. The herbicide Prosulfuron™ is produced via a Matsuda reaction of 2-sulfonatobenzenediazonium on

  3. Characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe2 and related compounds

    International Nuclear Information System (INIS)

    Maeda, Tsuyoshi; Wada, Takahiro

    2009-01-01

    We studied characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe 2 (CIS) by first principles calculations. The chalcopyrite-type CIS has two kinds of chemical bonds, Cu-Se and In-Se. The Cu-Se bond is a weak covalent bonding because electrons occupy both bonding and antibonding orbitals of Cu 3d and Se 4p and occupy only the bonding orbital (a 1 ) of Cu 4s and Se 4p and do not occupy the antibonding orbital (a 1 * ) of Cu 4s and Se 4p. On the other hand, the In-Se bond has a partially covalent and partially ionic character because the In 5s orbital covalently interacts with Se 4p; the In 5p orbital is higher than Se 4p and so the electron in the In 5p orbital moves to the Se 4p orbital. The average bond order of the Cu-Se and In-Se bonds can be calculated to be 1/4 and 1, respectively. The bond order of Cu-Se is smaller than that of In-Se. The characteristics of these two chemical bonds are related to the formation of Cu and In vacancies in CIS. The formation energy of the Cu vacancy is smaller than that of the In vacancy under both Cu-poor and In-poor conditions. The displacement (Δl) of the surrounding Se atoms after the formation of the Cu vacancy is smaller than the Δl after the formation of the In vacancy. The interesting and unique characteristics of CIS are discussed on the basis of the characteristics of the chemical bond. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... application. The chemical product tree is potentially very large and a wide range of options exist for selecting the product to make, the raw material to use as well as the processing route to employ. It is shown that systematic computer-aided methods and tools integrated within a model-data based design...

  5. Chemical Kinetic Study of Nitrogen Oxides Formation Trends in Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Junfeng Yang

    2012-01-01

    Full Text Available The use of biodiesel in conventional diesel engines results in increased NOx emissions; this presents a barrier to the widespread use of biodiesel. The origins of this phenomenon were investigated using the chemical kinetics simulation tool: CHEMKIN-2 and the CFD KIVA3V code, which was modified to account for the physical properties of biodiesel and to incorporate semidetailed mechanisms for its combustion and the formation of emissions. Parametric ϕ-T maps and 3D engine simulations were used to assess the impact of using oxygen-containing fuels on the rate of NO formation. It was found that using oxygen-containing fuels allows more O2 molecules to present in the engine cylinder during the combustion of biodiesel, and this may be the cause of the observed increase in NO emissions.

  6. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    OpenAIRE

    Jarboe, Laura R.; Zhang, Xueli; Wang, Xuan; Moore, Jonathan C.; Shanmugam, K. T.; Ingram, Lonnie O.

    2010-01-01

    Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibito...

  7. 75 FR 33824 - Pharmaceutical Products and Chemical Intermediates, Fourth Review: Advice Concerning the Addition...

    Science.gov (United States)

    2010-06-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 332-520] Pharmaceutical Products and Chemical Intermediates, Fourth Review: Advice Concerning the Addition of Certain Products to the Pharmaceutical Appendix..., Pharmaceutical Products and Chemical Intermediates, Fourth Review: Advice Concerning the Addition of Certain...

  8. A field survey of chemicals and biological products used in shrimp farming

    International Nuclear Information System (INIS)

    Graeslund, S.; Holmstroem, K.; Wahlstroem, A.

    2003-01-01

    This study documented the use of chemicals and biological products in marine and brackish water shrimp farming in Thailand, the world's top producer of farmed shrimp. Interviews were conducted with 76 shrimp farmers in three major shrimp producing regions, the eastern Gulf coast, the southern Gulf coast and the Andaman coast area. Farmers in the study used on average 13 different chemicals and biological products. The most commonly used products were soil and water treatment products, pesticides and disinfectants. Farmers in the southern Gulf coast area used a larger number of products than farmers in the other two areas. In the study, the use of more than 290 different chemicals and biological products was documented. Many of the pesticides, disinfectants and antibiotics used by the farmers could have negative effects on the cultured shrimps, cause a risk for food safety, occupational health, and/or have negative effects on adjacent ecosystems. Manufacturers and retailers of the products often neglected to provide farmers with necessary information regarding active ingredient and relevant instructions for safe and efficient use

  9. Use of a hand-portable gas chromatograph-toroidal ion trap mass spectrometer for self-chemical ionization identification of degradation products related to O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Philip A., E-mail: Smith.Philip.A@dol.gov [Uniformed Services University of the Health Sciences, Department of Preventive Medicine and Biometrics, 4301 Jones Bridge Road, Bethesda, MD, 20814 (United States); Lepage, Carmela R. Jackson [Defence R and D Canada - Suffield, Box 400, Station Main, Medicine Hat, Alberta, T1A 8K6 (Canada); Savage, Paul B. [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT, 84602 (United States); Bowerbank, Christopher R.; Lee, Edgar D. [Torion Technologies Inc., 796 East Utah Valley Drive, Suite 200, American Fork, UT, 84003 (United States); Lukacs, Michael J. [Defence R and D Canada - Suffield, Box 400, Station Main, Medicine Hat, Alberta, T1A 8K6 (Canada)

    2011-04-01

    The chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX) and many related degradation products produce poorly diagnostic electron ionization (EI) mass spectra by transmission quadrupole mass spectrometry. Thus, chemical ionization (CI) is often used for these analytes. In this work, pseudomolecular ([M+H]{sup +}) ion formation from self-chemical ionization (self-CI) was examined for four VX degradation products containing the diisopropylamine functional group. A person-portable toroidal ion trap mass spectrometer with a gas chromatographic inlet was used with EI, and both fixed-duration and feedback-controlled ionization time. With feedback-controlled ionization, ion cooling (reaction) times and ion formation target values were varied. Evidence for protonation of analytes was observed under all conditions, except for the largest analyte, bis(diisopropylaminoethyl)disulfide which yielded [M+H]{sup +} ions only with increased fixed ionization or ion cooling times. Analysis of triethylamine-d{sub 15} provided evidence that [M+H]{sup +} production was likely due to self-CI. Analysis of a degraded VX sample where lengthened ion storage and feedback-controlled ionization time were used resulted in detection of [M+H]{sup +} ions for VX and several relevant degradation products. Dimer ions were also observed for two phosphonate compounds detected in this sample.

  10. Use of a hand-portable gas chromatograph-toroidal ion trap mass spectrometer for self-chemical ionization identification of degradation products related to O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX)

    International Nuclear Information System (INIS)

    Smith, Philip A.; Lepage, Carmela R. Jackson; Savage, Paul B.; Bowerbank, Christopher R.; Lee, Edgar D.; Lukacs, Michael J.

    2011-01-01

    The chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX) and many related degradation products produce poorly diagnostic electron ionization (EI) mass spectra by transmission quadrupole mass spectrometry. Thus, chemical ionization (CI) is often used for these analytes. In this work, pseudomolecular ([M+H] + ) ion formation from self-chemical ionization (self-CI) was examined for four VX degradation products containing the diisopropylamine functional group. A person-portable toroidal ion trap mass spectrometer with a gas chromatographic inlet was used with EI, and both fixed-duration and feedback-controlled ionization time. With feedback-controlled ionization, ion cooling (reaction) times and ion formation target values were varied. Evidence for protonation of analytes was observed under all conditions, except for the largest analyte, bis(diisopropylaminoethyl)disulfide which yielded [M+H] + ions only with increased fixed ionization or ion cooling times. Analysis of triethylamine-d 15 provided evidence that [M+H] + production was likely due to self-CI. Analysis of a degraded VX sample where lengthened ion storage and feedback-controlled ionization time were used resulted in detection of [M+H] + ions for VX and several relevant degradation products. Dimer ions were also observed for two phosphonate compounds detected in this sample.

  11. Production of chemical energy carriers by non-expendable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Nitsch, J

    1976-01-01

    The different forms of energy (radiation, high-temperature heat and electricity) arising from non-expendable energy sources like solar energy can be used for the production of chemical energy-carriers. Possible methods are the splitting of water by means of photolysis, thermochemical cycles and electrolysis, as well as the storage of energy in closed loop chemical systems. These methods are described and efficiencies and costs of the production of these energy carriers are specified. Special problems of the long-distance transportation of hydrogen produced by solar energy are described and the resulting costs are estimated.

  12. Bioprocess intensification for the effective production of chemical products

    DEFF Research Database (Denmark)

    Woodley, John

    2017-01-01

    The further implementation of new bioprocesses, using biocatalysts in various formats, for the synthesis of chemicals is highly dependent upon effective process intensification. The need for process intensification reflects the fact that the conditions under which a biocatalyst carries out...... a reaction in nature are far from those which are optimal for industrial processes. In this paper the rationale for intensification will be discussed, as well as the four complementary approaches used today to achieve bioprocess intensification. Two of these four approaches are based on alteration...... of the biocatalyst (either by protein engineering or metabolic engineering), resulting in an extra degree of freedom in the process design. To date, biocatalyst engineering has been developed independently from the conventional process engineering methodology to intensification. Although the integration of these two...

  13. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  14. Chemical stability and defect formation in CaHfO3

    KAUST Repository

    Alay-E-Abbas, Syed Muhammad

    2014-04-01

    Defects in CaHfO3 are investigated by ab initio calculations based on density functional theory. Pristine and anion-deficient CaHfO 3 are found to be insulating, whereas cation-deficient CaHfO 3 is hole-doped. The formation energies of neutral and charged cation and anion vacancies are evaluated to determine the stability in different chemical environments. Moreover, the energies of the partial and full Schottky defect reactions are computed. We show that clustering of anion vacancies in the HfO layers is energetically favorable for sufficiently high defect concentrations and results in metallicity. © 2014 EPLA.

  15. Chemical stability and defect formation in CaHfO3

    KAUST Repository

    Alay-E-Abbas, Syed Muhammad; Nazir, Safdar; Mun Wong, Kin; Shaukat, Ali; Schwingenschlö gl, Udo

    2014-01-01

    Defects in CaHfO3 are investigated by ab initio calculations based on density functional theory. Pristine and anion-deficient CaHfO 3 are found to be insulating, whereas cation-deficient CaHfO 3 is hole-doped. The formation energies of neutral and charged cation and anion vacancies are evaluated to determine the stability in different chemical environments. Moreover, the energies of the partial and full Schottky defect reactions are computed. We show that clustering of anion vacancies in the HfO layers is energetically favorable for sufficiently high defect concentrations and results in metallicity. © 2014 EPLA.

  16. Catalyst and processing effects on metal-assisted chemical etching for the production of highly porous GaN

    International Nuclear Information System (INIS)

    Geng, Xuewen; Grismer, Dane A; Bohn, Paul W; Duan, Barrett K; Zhao, Liancheng

    2013-01-01

    Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal–semiconductor interface. (paper)

  17. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    addresses modeling of the arc process for fullerene and carbon nanotube production using O-D, 1-D and 2-D fluid flow models. The third part addresses simulations of the pulsed laser ablation process using time-dependent techniques in 2-D, and a steady state 2-D simulation of a continuous laser ablation process. The fourth part addresses steady state modeling in O-D and 2-D of the HiPco process. In each of the simulations, there is a variety of simplifications that are made that enable one to concentrate on one aspect or another of the process. There are simplifications that can be made to the chemical reaction models , e.g. reduction in number of species by lumping some of them together in a representative species. Other simulations are carried out by eliminating the chemistry altogether in order to concentrate on the fluid dynamics. When solving problems with a large number of species in more than one spatial dimension, it is almost imperative that the problem be decoupled by solving for the fluid dynamics to find the fluid motion and temperature history of "particles" of fluid moving through a reactor. Then one can solve the chemical rate equations with complex chemistry following the temperature and pressure history. One difficulty is that often mixing with an ambient gas is involved. Therefore, one needs to take dilution and mixing into account. This changes the ratio of carbon species to background gas. Commercially available codes may have no provision for including dilution as part of the input. One must the write special solvers for including dilution in decoupled problems. The article addresses both ful1erene production and single-walled carbon nanotube (SWNT) production. There are at least two schemes or concepts of SWNT growth. This article will only address growth in the gas phase by carbon and catalyst cluster growth and SW T formation by the addition of carbon. There are other models that conceive of SWNT growth as a phase separation process from clusters me

  18. Demarketing of Tobacco Products and Consumers Behavior Formation

    Directory of Open Access Journals (Sweden)

    Barbara Jacennik

    2008-03-01

    Full Text Available Demarketing of tobacco products includes methods aimed at changing the consumer behavior and the marketing environment. The main strategies consist of price manipulation, anti-smoking advertising, regulations restricting or banning tobacco advertising, limitations of distribution or consumption of tobacco products, and warning messages on packages and advertisements. These measures influence either directly or indirectly the following psychosocial and environmental variables: health beliefs, social attractiveness of smoking, accessibility of tobacco products and associated behaviors. The article presents a review of international research on the demarketing of tobacco and its effects for the formation and change of health behavior.

  19. Harmonisation of food consumption data format for dietary exposure assessments of chemicals analysed in raw agricultural commodities

    DEFF Research Database (Denmark)

    Boon, Polly E.; Ruprich, Jiri; Petersen, Annette

    2009-01-01

    In this paper, we present an approach to format national food consumption data at raw agricultural commodity (RAC) level. In this way, the data is both formatted in a harmonised way given the comparability of RACs between countries, and suitable to assess the dietary exposure to chemicals analysed......, and the use of the FAO/WHO Codex Classification system of Foods and Animal Feeds to harmonise the classification. We demonstrate that this approach works well for pesticides and glycoalkaloids, and is an essential step forward in the harmonisation of risk assessment procedures within Europe when addressing...... chemicals analysed in RACs by all national food control systems....

  20. Integrated Computer-aided Framework for Sustainable Chemical Product Design and Evaluation

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Cignitti, Stefano; Zhang, Lei

    2016-01-01

    This work proposes an integrated model-based framework for chemical product design and evaluation based on which the software, VPPD-Lab (The Virtual Product-Process Design Laboratory) has been developed. The framework allows the following options: (1) design a product using design templates...

  1. Fatty acid-derived biofuels and chemicals production in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Yongjin J. Zhou

    2014-09-01

    Full Text Available Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable and cost-effective energy resources. Advanced biofuels have potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. Microbial biosynthesis is generally considered as an environmental friendly refinery process, and fatty acid biosynthesis is an attractive route to synthesize chemicals and especially drop-in biofuels due to the high degree of reduction of fatty acids. The robustness and excellent accessibility to molecular genetics make the yeast S. cerevisiae a suitable host for the production of biofuels, chemicals and pharmaceuticals, and recent advances in metabolic engineering as well as systems and synthetic biology allow us to engineer the yeast fatty acid metabolism and modification pathways for production of advanced biofuels and chemicals.

  2. 9 CFR 318.16 - Pesticide chemicals and other residues in products.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION... ingredients. Residues of pesticide chemicals, food additives and color additives or other substances in or on ingredients (other than meat, meat byproducts, and meat food products) used in the formulation of products...

  3. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  4. Evacuation of performance and significant chemical constituents and by products in drinking water treatment

    International Nuclear Information System (INIS)

    Jamrah, I. A.

    1999-01-01

    Drinking water treatment is a task that comprises of several processes that eventually lead to the addition of chemicals to achieve the objectives of treatment. This study was conducted to assess treatment performance, explain the presence of significant chemical species in water, and investigate the interactions and chemical by-products that are formed during the course of treatment. Grab water samples were collected on a regular basis from the influent and effluent of Zai water treatment plant. Chemical analysis were conducted to determine the concentrations of various chemical species of interest. Turbidity, temperature, and pH of the samples were also measured. The study concluded that Zai Water Treatment Plant produces potable drinking water in accordance with Jordanian Standards. The use of treatment chemical resulted in an increase in the concentrations of certain materials, such as manganese, aluminum, and sulfate. The turbidity of the raw water and the TOC of the samples were positively correlated, and the treatment results in approximately 20% TOC reduction, which demonstrates that the measures used for the control of TOC (carbon adsorption and permanganate pre-oxidation), are not very effective. The study also showed that the TOC content of our raw water samples and the concentration of tribalomethanes resulting after disinfection were positively correlated, and that bromoform was the dominant component. Also chloroform was the minor component of tribalomethanes formed during treatment. Positive correlation between the total concentration of tribalomethanes in water and the chlorine dose used for disinfection was also observed, and the total concentration of tribalomethanes increased with temperature. The formation of tribalomethanes was enhanced as the pH of water increased and as the concentration of bromide ion in raw water became significant. (author). 25 refs., 14 figs.1 table

  5. Exploring consumer exposure pathways and patterns of use for chemicals in the environment through the Chemical/Product Categories Database

    Science.gov (United States)

    Exploring consumer exposure pathways and patterns of use for chemicals in the environment through the Chemical/Product Categories Database (CPCat) (Presented by: Kathie Dionisio, Sc.D., NERL, US EPA, Research Triangle Park, NC (1/23/2014).

  6. A theoretical quantum chemical study of alanine formation in interstellar medium

    Science.gov (United States)

    Shivani; Pandey, Parmanad; Misra, Alka; Tandon, Poonam

    2017-08-01

    The interstellar medium, the vast space between the stars, is a rich reservoir of molecular material ranging from simple diatomic molecules to more complex, astrobiologically important molecules such as amino acids, nucleobases, and other organic species. Radical-radical and radical-neutral interaction schemes are very important for the formation of comparatively complex molecules in low temperature chemistry. An attempt has been made to explore the possibility of formation of complex organic molecules in interstellar medium, through detected interstellar molecules like CH3CN and HCOOH. The gas phase reactions are theoretically studied using quantum chemical techniques. We used the density functional theory (DFT) at the B3LYP/6-311G( d, p) level. The reaction energies, potential barrier and optimized structures of all the geometries, involved in the reaction path, has been discussed. We report the potential energy surfaces for the reactions considered in this work.

  7. selectivity engineering in sustainable production of chemicals, fuels ...

    Indian Academy of Sciences (India)

    admin

    Cost. Landfill. –400. Source: Tuck et al., Science, 337 (6095): 695-699 10 August ... libraries for novel enzymes that transform lignocellulosics ... Bio-process engineering for optimal production of ... fine chemicals and petrochemical industries. ..... Mole ratio : Epichlorohydrin to acetone of 1:8 , 100 % atom economy. Sr.No.

  8. Fragranced consumer products: Chemicals emitted, ingredients unlisted

    International Nuclear Information System (INIS)

    Steinemann, Anne C.; MacGregor, Ian C.; Gordon, Sydney M.; Gallagher, Lisa G.; Davis, Amy L.; Ribeiro, Daniel S.; Wallace, Lance A.

    2011-01-01

    Fragranced consumer products are pervasive in society. Relatively little is known about the composition of these products, due to lack of prior study, complexity of formulations, and limitations and protections on ingredient disclosure in the U.S. We investigated volatile organic compounds (VOCs) emitted from 25 common fragranced consumer products-laundry products, personal care products, cleaning supplies, and air fresheners-using headspace analysis with gas chromatography/mass spectrometry (GC/MS). Our analysis found 133 different VOCs emitted from the 25 products, with an average of 17 VOCs per product. Of these 133 VOCs, 24 are classified as toxic or hazardous under U.S. federal laws, and each product emitted at least one of these compounds. For 'green' products, emissions of these compounds were not significantly different from the other products. Of all VOCs identified across the products, only 1 was listed on any product label, and only 2 were listed on any material safety data sheet (MSDS). While virtually none of the chemicals identified were listed, this nonetheless accords with U.S. regulations, which do not require disclosure of all ingredients in a consumer product, or of any ingredients in a mixture called 'fragrance.' Because the analysis focused on compounds emitted and listed, rather than exposures and effects, it makes no claims regarding possible risks from product use. Results of this study contribute to understanding emissions from common products, and their links with labeling and legislation.

  9. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production.

    Science.gov (United States)

    Kanno, Masahiro; Atsumi, Shota

    2017-01-20

    Cyanobacteria have attracted much attention as a means to directly recycle carbon dioxide into valuable chemicals that are currently produced from petroleum. However, the titers and productivities achieved are still far below the level required in industry. To make a more industrially applicable production scheme, glycerol, a byproduct of biodiesel production, can be used as an additional carbon source for photomixotrophic chemical production. Glycerol is an ideal candidate due to its availability and low cost. In this study, we found that a heterologous glycerol respiratory pathway enabled Synechococcus elongatus PCC 7942 to utilize extracellular glycerol. The engineered strain produced 761 mg/L of 2,3-butanediol in 48 h with a 290% increase over the control strain under continuous light conditions. Glycerol supplementation also allowed for continuous cell growth and 2,3-butanediol production in diurnal light conditions. These results highlight the potential of glycerol as an additional carbon source for photomixotrophic chemical production in cyanobacteria.

  10. Electro-biocatalytic production of formate from carbon dioxide using an oxygen-stable whole cell biocatalyst.

    Science.gov (United States)

    Hwang, Hyojin; Yeon, Young Joo; Lee, Sumi; Choe, Hyunjun; Jang, Min Gee; Cho, Dae Haeng; Park, Sehkyu; Kim, Yong Hwan

    2015-06-01

    The use of biocatalysts to convert CO2 into useful chemicals is a promising alternative to chemical conversion. In this study, the electro-biocatalytic conversion of CO2 to formate was attempted with a whole cell biocatalyst. Eight species of Methylobacteria were tested for CO2 reduction, and one of them, Methylobacterium extorquens AM1, exhibited an exceptionally higher capability to synthesize formate from CO2 by supplying electrons with electrodes, which produced formate concentrations of up to 60mM. The oxygen stability of the biocatalyst was investigated, and the results indicated that the whole cell catalyst still exhibited CO2 reduction activity even after being exposed to oxygen gas. From the results, we could demonstrate the electro-biocatalytic conversion of CO2 to formate using an obligate aerobe, M. extorquens AM1, as a whole cell biocatalyst without providing extra cofactors or hydrogen gas. This electro-biocatalytic process suggests a promising approach toward feasible way of CO2 conversion to formate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    Science.gov (United States)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  12. Chemical systems, chemical contiguity and the emergence of life

    Directory of Open Access Journals (Sweden)

    Terrence P. Kee

    2017-08-01

    Full Text Available Charting the emergence of living cells from inanimate matter remains an intensely challenging scientific problem. The complexity of the biochemical machinery of cells with its exquisite intricacies hints at cells being the product of a long evolutionary process. Research on the emergence of life has long been focusing on specific, well-defined problems related to one aspect of cellular make-up, such as the formation of membranes or the build-up of information/catalytic apparatus. This approach is being gradually replaced by a more “systemic” approach that privileges processes inherent to complex chemical systems over specific isolated functional apparatuses. We will summarize the recent advances in system chemistry and show that chemical systems in the geochemical context imply a form of chemical contiguity in the syntheses of the various molecules that precede modern biomolecules.

  13. Sustainable Chemical Processes and Products. New Design Methodology and Design Tools

    NARCIS (Netherlands)

    Korevaar, G.

    2004-01-01

    The current chemical industry is not sustainable, which leads to the fact that innovation of chemical processes and products is too often hazardous for society in general and the environment in particular. It really is a challenge to implement sustainability considerations in the design activities

  14. Galactic chemical evolution in hierarchical formation models - I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matías; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  15. Galactic chemical evolution in hierarchical formation models : I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matias; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    2010-01-01

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  16. Formation of electrophilic oxidation products from mitochondrial cardiolipin in vitro and in vivo in the context of apoptosis and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Huiqin Zhong

    2014-01-01

    Full Text Available Emerging evidence indicates that mitochondrial cardiolipins (CL are prone to free radical oxidation and this process appears to be intimately associated with multiple biological functions of mitochondria. Our previous work demonstrated that a significant amount of potent lipid electrophiles including 4-hydroxy-nonenal (4-HNE was generated from CL oxidation through a novel chemical mechanism. Here we provide further evidence that a characteristic class of CL oxidation products, epoxyalcohol-aldehyde-CL (EAA-CL, is formed through this novel mechanism in isolated mice liver mitochondria when treated with the pro-apoptotic protein t-Bid to induce cyt c release. Generation of these oxidation products are dose-dependently attenuated by a peroxidase inhibitor acetaminophen (ApAP. Using a mouse model of atherosclerosis, we detected significant amount of these CL oxidation products in liver tissue of low density lipoprotein receptor knockout (LDLR −/− mice after Western diet feeding. Our studies highlight the importance of lipid electrophiles formation from CL oxidation in the settings of apoptosis and atherosclerosis as inhibition of CL oxidation and lipid electrophiles formation may have potential therapeutic value in diseases linked to oxidant stress and mitochondrial dysfunctions.

  17. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    International Nuclear Information System (INIS)

    Ross, R.J.; Ravenscroft, P.D.

    1996-01-01

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO 2 corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs

  18. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    Energy Technology Data Exchange (ETDEWEB)

    Ross, R J [Donlar Corporation (United States); Ravenscroft, P D [BP Exploration Operating Company, (United Kingdom)

    1997-12-31

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO{sub 2} corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs.

  19. THE RESEARCH PROJECTS THROUGH UNIVERSITY-BUSINESS RELATIONSHIP IN THE CONTINUOUS FORMATION OF CHEMICAL ENGINEERS

    Directory of Open Access Journals (Sweden)

    Diana Niurka Concepción Toledo

    2015-07-01

    Full Text Available Economic and social development requires the establishment of strategic alliances of society to higher education. The university, based on the benefits of deep multiplier effect, has the ability and the duty to manage knowledge and transferring scientific results obtained in its substantive processes: teaching, scientific research and university extension to the productive context. In this paper the experience developed by Chemical Engineering Department of Central University “Marta Abreu” of Las Villas in which the scientific community in the industry of sugar cane is prepared to manage knowledge through university- business relationship is exposed. For this effort, an innovative process focused on the execution of research projects from scientific and technological demands set by the sugar factory "Antonio Sanchez" Aguada de Pasajeros develops. In the development of the planned actions it will be attended teacher-researchers, specialists and managers of the company and the incorporation of students in the race for the exercise of labor practice, innovative aspect of its formation, which consolidates professional preparation. The experience showed the potential offered by the connection of university science with industry through the establishment of innovative processes in knowledge management to ensure greater relevance of university substantive processes and the immediate incorporation of scientific results to the productive sector as the supreme goal of this activity.

  20. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... framework can manage the complexity associated with product-process problems very efficiently. Three specific computer-aided tools (ICAS, Sustain-Pro and VPPDLab) have been presented and their applications to product-process design, highlighted....

  1. CHARACTERISTICS OF STRUCTURE FORMATION IN COOKED SAUSAGE PRODUCTS USING SONOCHEMICAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    A. M. Yevtushenko

    2016-01-01

    Full Text Available This paper studies the features of formation of sausage product structure in the process of cooking. It is shown that the viscosity of sausage meat varies in a complex manner and has three characteristic areas. The characteristic parameters that determine the formation of the structure of sausages for each area were found. It is established that the use of the cavitation brine gives the finished product a gentle consistence, elasticity and distinct taste that makes it more preferable for the consumer.

  2. Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe

    Science.gov (United States)

    Cote, Benoit; JINA-CEE, NuGrid, ChETEC

    2018-06-01

    Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.

  3. NODC Standard Format Marine Toxic Substances and Pollutants (F144) chemical identification codes (NODC Accession 9200273)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival information package contains a listing of codes and chemical names that were used in NODC Standard Format Marine Toxic Substances and Pollutants (F144)...

  4. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  5. Establishment of the carbon label mechanism of coal chemical products based oncarbon footprint

    Directory of Open Access Journals (Sweden)

    Wu Bishan

    Full Text Available ABSTRACT After redefining the carbon footprint and carbon label, the paper analyzesthe significance of the carbon labels under the background of the low carbon economy development, and establishes the concept of model of the carbon labels mechanism to chemical products. At the same time, the paper quantitatively studies carbon label data sourceof three kinds of coal chemical industry power products, which are fromhaving not CCS technologies of supercritical boiler of coal, using CCS technologies of supercritical boiler of coal and adopting CCS and IGCC technologies to power generation in CCI. Based on the three kinds of differences, the paper puts forward of establishing the carbon labels mechanism of chemical products under the low carbon consumption.

  6. Drying-induced physico-chemical changes in cranberry products.

    Science.gov (United States)

    Michalska, Anna; Wojdyło, Aneta; Honke, Joanna; Ciska, Ewa; Andlauer, Wilfried

    2018-02-01

    Sugar-free cranberry juice (XAD) and juice with 15% of maltodextrin were dried by freeze-, vacuum and spray drying methods. Total phenolics (589-6435mg/kg dry matter) including 5 flavonols, 3 phenolic acids, 2 procyanidins and 5 anthocyanins were stronger affected by juice formulation than by drying methods. Spray drying of juice, regardless of its formulation, was competitive to freeze drying in terms of polyphenols' retention. Increase in temperature up to 100°C during vacuum drying of XAD extracts resulted in degradation of polyphenolics (down to 4%), except chlorogenic acid. Its content increased with rise in temperature and accelerated hydroxymethylfurfural formation. The stronger the impact of drying, the more chlorogenic acid is present in cranberry products. In all powders analysed, formation of furoylmethyl amino acids was noted. Antioxidant capacity of cranberry products was influenced by juice formulation and was linked to content of polyphenols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Formation indicators to measure the competitiveness of products in the development the production program of the enterprise

    OpenAIRE

    A. A. Kushner; V. U. Padalkin

    2013-01-01

    The system of product competitiveness’s indicators regarding with peculiarities of enterprise producing medical plug is represented. The estimation based on this system of indicators is the premise for production planning's formation of branch enterprise.

  8. High-throughput exposure modeling to support prioritization of chemicals in personal care products

    DEFF Research Database (Denmark)

    Csiszar, Susan A.; Ernstoff, Alexi; Fantke, Peter

    2016-01-01

    -on and wash-off products which had median PiFs of 0.5 and 0.02 across the 518 chemicals, respectively. The PiF is a function of product characteristics and physico-chemical properties and is maximized when skin permeability is high and volatility is low such that there is no competition between skin and air...

  9. FORMATION RATES OF POPULATION III STARS AND CHEMICAL ENRICHMENT OF HALOS DURING THE REIONIZATION ERA

    International Nuclear Information System (INIS)

    Trenti, Michele; Stiavelli, Massimo

    2009-01-01

    The first stars in the universe formed out of pristine primordial gas clouds that were radiatively cooled to a few hundreds of degrees kelvin either via molecular or atomic (Lyman-α) hydrogen lines. This primordial mode of star formation was eventually quenched once radiative and/or chemical (metal enrichment) feedbacks marked the transition to Population II stars. In this paper, we present a model for the formation rate of Population III stars based on Press-Schechter modeling coupled with analytical recipes for gas cooling and radiative feedback. Our model also includes a novel treatment for metal pollution based on self-enrichment due to a previous episode of Population III star formation in progenitor halos. With this model, we derive the star formation history of Population III stars, their contribution to the reionization of the universe and the time of the transition from Population III star formation in minihalos (M ∼ 10 6 M sun , cooled via molecular hydrogen) to that in more massive halos (M ∼> 2 x 10 7 M sun , where atomic hydrogen cooling is also possible). We consider a grid of models highlighting the impact of varying the values for the free parameters used, such as star formation and feedback efficiency. The most critical factor is the assumption that only one Population III star is formed in a halo. In this scenario, metal-free stars contribute only to a minor fraction of the total number of photons required to reionize the universe. In addition, metal-free star formation is primarily located in minihalos, and chemically enriched halos become the dominant locus of star formation very early in the life of the universe-at redshift z ∼ 25-even assuming a modest fraction (0.5%) of enriched gas converted in stars. If instead multiple metal-free stars are allowed to form out of a single halo, then there is an overall boost of Population III star formation, with a consequent significant contribution to the reionizing radiation budget. In addition

  10. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.

    Science.gov (United States)

    Brandt-Pollmann, U; Lebiedz, D; Diehl, M; Sager, S; Schlöder, J

    2005-09-01

    Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics.

  11. Peristalticity-driven banded chemical garden

    Science.gov (United States)

    Pópity-Tóth, É.; Schuszter, G.; Horváth, D.; Tóth, Á.

    2018-05-01

    Complex structures in nature are often formed by self-assembly. In order to mimic the formation, to enhance the production, or to modify the structures, easy-to-use methods are sought to couple engineering and self-assembly. Chemical-garden-like precipitation reactions are frequently used to study such couplings because of the intrinsic chemical and hydrodynamic interplays. In this work, we present a simple method of applying periodic pressure fluctuations given by a peristaltic pump which can be used to achieve regularly banded precipitate membranes in the copper-phosphate system.

  12. Chemical generation of iodine atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, Kevin B. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)]. E-mail: kevin.hewett@kirtland.af.mil; Hager, Gordon D. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States); Crowell, Peter G. [Northrup Grumman Information Technology, Science and Technology Operating Unit, Advanced Technology Division, P.O. Box 9377, Albuquerque, NM 87119-9377 (United States)

    2005-01-10

    The chemical generation of atomic iodine using a chemical combustor to generate the atomic fluorine intermediate, from the reaction of F{sub 2} + H{sub 2}, followed by the production of atomic iodine, from the reaction of F + HI, was investigated. The maximum conversion efficiency of HI into atomic iodine was observed to be approximately 75%, which is in good agreement with the theoretical model. The conversion efficiency is limited by the formation of iodine monofluoride at the walls of the combustor where the gas phase temperature is insufficient to dissociate the IF.

  13. Star Formation, Quenching And Chemical Enrichment In Local Galaxies From Integral Field Spectroscopy

    Science.gov (United States)

    Belfiore, Francesco

    2017-08-01

    Within the currently well-established ΛCDM cosmological framework we still lack a satisfactory understanding of the processes that trigger, regulate and eventually quench star formation on galactic scales. Gas flows (including inflows from the cosmic web and supernovae-driven outflows) are considered to act as self-regulatory mechanisms, generating the scaling relations between stellar mass, star formation rate and metallicity observed in the local Universe by large spectroscopic surveys. These surveys, however, have so far been limited by the availability of only one spectrum per galaxy. The aim of this dissertation is to expand the study of star formation and chemical abundances to resolved scales within galaxies by using integral field spectroscopy (IFS) data, mostly from the ongoing SDSS-IV MaNGA survey. In the first part of this thesis I demonstrate the ubiquitous presence of extended low ionisation emission-line regions (LIERs) in both late- and early-type galaxies. By studying the Hα equivalent width and diagnostic line ratios radial profiles, together with tracers of the underlying stellar population, I show that LIERs are not due to a central point source but to hot evolved (post-asymptotic giant branch) stars. In light of this, I suggest a new classification scheme for galaxies based on their line emission. By analysing the colours, star formation rates, morphologies, gas and stellar kinematics and environmental properties of galaxies with substantial LIER emission, I identify two distinct populations. Galaxies where the central regions are LIER-like, but show star formation at larger radii are late types in which star formation is slowly quenched inside-out. This transformation is associated with massive bulges. Galaxies dominated by LIER emission at all radii, on the other hand, are red-sequence galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Quiescent galaxies devoid of line emission reside in denser

  14. Vitamin C Degradation Products and Pathways in the Human Lens*

    OpenAIRE

    Nemet, Ina; Monnier, Vincent M.

    2011-01-01

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation ...

  15. Formation indicators to measure the competitiveness of products in the development the production program of the enterprise

    Directory of Open Access Journals (Sweden)

    A. A. Kushner

    2013-01-01

    Full Text Available The system of product competitiveness’s indicators regarding with peculiarities of enterprise producing medical plug is represented. The estimation based on this system of indicators is the premise for production planning's formation of branch enterprise.

  16. Investigation of the potential influence of production treatment chemicals on produced water toxicity

    International Nuclear Information System (INIS)

    Stine, E.R.; Gala, W.R.; Henry, L.R.

    1993-01-01

    Production treatment chemicals represent a diverse collection of chemical classes, added at various points from the wellhead to the final flotation cell, to prevent operational upsets and enhance the separation of oil from water. Information in the literature indicates that while many treatment chemicals are thought to partition into oil and not into the produced water, there are cases where a sufficiently water soluble treatment chemical is added at high enough concentrations to suggest that the treatment chemical may add to the aquatic toxicity of the produced water. A study was conducted to evaluate the potential effect of production treatment chemicals on the toxicity of produced waters using the US EPA Seven-day Mysidopsis bahia Survival, Growth and Fecundity Test. Samples of produced water were collected and tested for toxicity from three platforms under normal operating conditions, followed by repeated sampling and testing after a 72-hour period in which treatment chemical usage was discontinued, to the degree possible. Significant reductions in produced water toxicity were observed for two of the three platforms tested following either cessation of treatment chemical usage, or by comparing the toxicity of samples collected upstream and downstream of the point of treatment chemical addition

  17. Chemically Treated 3D Printed Polymer Scaffolds for Biomineral Formation.

    Science.gov (United States)

    Jackson, Richard J; Patrick, P Stephen; Page, Kristopher; Powell, Michael J; Lythgoe, Mark F; Miodownik, Mark A; Parkin, Ivan P; Carmalt, Claire J; Kalber, Tammy L; Bear, Joseph C

    2018-04-30

    We present the synthesis of nylon-12 scaffolds by 3D printing and demonstrate their versatility as matrices for cell growth, differentiation, and biomineral formation. We demonstrate that the porous nature of the printed parts makes them ideal for the direct incorporation of preformed nanomaterials or material precursors, leading to nanocomposites with very different properties and environments for cell growth. Additives such as those derived from sources such as tetraethyl orthosilicate applied at a low temperature promote successful cell growth, due partly to the high surface area of the porous matrix. The incorporation of presynthesized iron oxide nanoparticles led to a material that showed rapid heating in response to an applied ac magnetic field, an excellent property for use in gene expression and, with further improvement, chemical-free sterilization. These methods also avoid changing polymer feedstocks and contaminating or even damaging commonly used selective laser sintering printers. The chemically treated 3D printed matrices presented herein have great potential for use in addressing current issues surrounding bone grafting, implants, and skeletal repair, and a wide variety of possible incorporated material combinations could impact many other areas.

  18. Chemical Kinetics for Bridging Molecular Mechanisms and Macroscopic Measurements of Amyloid Fibril Formation.

    Science.gov (United States)

    Michaels, Thomas C T; Šarić, Anđela; Habchi, Johnny; Chia, Sean; Meisl, Georg; Vendruscolo, Michele; Dobson, Christopher M; Knowles, Tuomas P J

    2018-04-20

    Understanding how normally soluble peptides and proteins aggregate to form amyloid fibrils is central to many areas of modern biomolecular science, ranging from the development of functional biomaterials to the design of rational therapeutic strategies against increasingly prevalent medical conditions such as Alzheimer's and Parkinson's diseases. As such, there is a great need to develop models to mechanistically describe how amyloid fibrils are formed from precursor peptides and proteins. Here we review and discuss how ideas and concepts from chemical reaction kinetics can help to achieve this objective. In particular, we show how a combination of theory, experiments, and computer simulations, based on chemical kinetics, provides a general formalism for uncovering, at the molecular level, the mechanistic steps that underlie the phenomenon of amyloid fibril formation.

  19. Chemical Kinetics for Bridging Molecular Mechanisms and Macroscopic Measurements of Amyloid Fibril Formation

    Science.gov (United States)

    Michaels, Thomas C. T.; Šarić, Anđela; Habchi, Johnny; Chia, Sean; Meisl, Georg; Vendruscolo, Michele; Dobson, Christopher M.; Knowles, Tuomas P. J.

    2018-04-01

    Understanding how normally soluble peptides and proteins aggregate to form amyloid fibrils is central to many areas of modern biomolecular science, ranging from the development of functional biomaterials to the design of rational therapeutic strategies against increasingly prevalent medical conditions such as Alzheimer's and Parkinson's diseases. As such, there is a great need to develop models to mechanistically describe how amyloid fibrils are formed from precursor peptides and proteins. Here we review and discuss how ideas and concepts from chemical reaction kinetics can help to achieve this objective. In particular, we show how a combination of theory, experiments, and computer simulations, based on chemical kinetics, provides a general formalism for uncovering, at the molecular level, the mechanistic steps that underlie the phenomenon of amyloid fibril formation.

  20. Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1979-10-30

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of sulfomethylated lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the sulfomethylated lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  1. Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1981-05-26

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of sulfomethylated lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the sulfomethylated lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  2. US adult tobacco users' absolute harm perceptions of traditional and alternative tobacco products, information-seeking behaviors, and (mis)beliefs about chemicals in tobacco products.

    Science.gov (United States)

    Bernat, Jennifer K; Ferrer, Rebecca A; Margolis, Katherine A; Blake, Kelly D

    2017-08-01

    Harm perceptions about tobacco products may influence initiation, continued use, and cessation efforts. We assessed associations between adult traditional tobacco product use and absolute harm perceptions of traditional and alternative tobacco products. We also described the topics individuals looked for during their last search for information, their beliefs about chemicals in cigarettes/cigarette smoke, and how both relate to harm perceptions. We ran multivariable models with jackknife replicate weights to analyze data from the 2015 administration of the National Cancer Institute's Health Information National Trends Survey (N=3376). Compared to never users, individuals reported lower perceived levels of harm for products they use. Among current tobacco users, ethnicity, thinking about chemicals in tobacco, and information-seeking were all factors associated with tobacco product harm perceptions. In the full sample, some respondents reported searching for information about health effects and cessation and held misperceptions about the source of chemicals in tobacco. This study fills a gap in the literature by assessing the absolute harm perceptions of a variety of traditional and alternative tobacco products. Harm perceptions vary among tobacco products, and the relationship among tobacco use, information seeking, thoughts about chemicals in tobacco products, and harm perceptions is complex. Data suggest that some individuals search for information about health effects and cessation and hold misperceptions about chemicals in tobacco products. Future inquiry could seek to understand the mechanisms that contribute to forming harm perceptions and beliefs about chemicals in tobacco products. Published by Elsevier Ltd.

  3. Trends in Exposure to Chemicals in Personal Care and Consumer Products.

    Science.gov (United States)

    Calafat, Antonia M; Valentin-Blasini, Liza; Ye, Xiaoyun

    2015-12-01

    Synthetic organic chemicals can be used in personal care and consumer products. Data on potential human health effects of these chemicals are limited-sometimes even contradictory-but because several of these chemicals are toxic in experimental animals, alternative compounds are entering consumer markets. Nevertheless, limited information exists on consequent exposure trends to both the original chemicals and their replacements. Biomonitoring (measuring concentrations of chemicals or their metabolites in people) provides invaluable information for exposure assessment. We use phthalates and bisphenol A-known industrial chemicals-and organophosphate insecticides as case studies to show exposure trends to these chemicals and their replacements (e.g., other phthalates, non-phthalate plasticizers, various bisphenols, pyrethroid insecticides) among the US general population. We compare US trends to national trends from Canada and Germany. Exposure to the original compounds is still prevalent among these general populations, but exposures to alternative chemicals may be increasing.

  4. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures.

    Science.gov (United States)

    Faramarzi, Mohammad Ali; Sadighi, Armin

    2013-03-01

    The synthesis of inorganic nanomaterials and nanostructures by the means of diverse physical, chemical, and biological principles has been developed in recent decades. The nanoscale materials and structures creation continue to be an active area of researches due to the exciting properties of the resulting nanomaterials and their innovative applications. Despite physical and chemical approaches which have been used for a long time to produce nanomaterials, biological resources as green candidates that can replace old production methods have been focused in recent years to generate various inorganic nanoparticles (NPs) or other nanoscale structures. Cost-effective, eco-friendly, energy efficient, and nontoxic produced nanomaterials using diverse biological entities have been received increasing attention in the last two decades in contrast to physical and chemical methods owe using toxic solvents, generate unwanted by-products, and high energy consumption which restrict the popularity of these ways employed in nanometric science and engineering. In this review, the biosynthesis of gold, silver, gold-silver alloy, magnetic, semiconductor nanocrystals, silica, zirconia, titania, palladium, bismuth, selenium, antimony sulfide, and platinum NPs, using bacteria, actinomycetes, fungi, yeasts, plant extracts and also informational bio-macromolecules including proteins, polypeptides, DNA, and RNA have been reported extensively to mention the current status of the biological inorganic nanomaterial production. In other hand, two well-known wet chemical techniques, namely chemical reduction and sol-gel methods, used to produce various types of nanocrystalline powders, metal oxides, and hybrid organic-inorganic nanomaterials have presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Metabolic Engineering of TCA Cycle for Production of Chemicals.

    Science.gov (United States)

    Vuoristo, Kiira S; Mars, Astrid E; Sanders, Johan P M; Eggink, Gerrit; Weusthuis, Ruud A

    2016-03-01

    The tricarboxylic acid (TCA) cycle has been used for decades in the microbial production of chemicals such as citrate, L-glutamate, and succinate. Maximizing yield is key for cost-competitive production. However, for most TCA cycle products, the maximum pathway yield is lower than the theoretical maximum yield (Y(E)). For succinate, this was solved by creating two pathways to the product, using both branches of the TCA cycle, connected by the glyoxylate shunt (GS). A similar solution cannot be applied directly for production of compounds from the oxidative branch of the TCA cycle because irreversible reactions are involved. Here, we describe how this can be overcome and what the impact is on the yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Chemical Product Design: A new challenge of applied thermodynamics

    DEFF Research Database (Denmark)

    Abildskov, Jens; Kontogeorgis, Georgios

    2004-01-01

    , and then to outline some specific examples from our research activities in the area of thermodynamics for chemical products. The examples cover rather diverse areas such as interrelation between thermodynamic and engineering properties in detergents (surfactants), paint thermodynamics and the development of models...

  7. Environmental impact of industrial sludge stabilization/solidification products: chemical or ecotoxicological hazard evaluation?

    Science.gov (United States)

    Silva, Marcos A R; Testolin, Renan C; Godinho-Castro, Alcione P; Corrêa, Albertina X R; Radetski, Claudemir M

    2011-09-15

    Nowadays, the classification of industrial solid wastes is not based on risk analysis, thus the aim of this study was to compare the toxicity classifications based on the chemical and ecotoxicological characterization of four industrial sludges submitted to a two-step stabilization/solidification (S/S) processes. To classify S/S products as hazardous or non-hazardous, values cited in Brazilian chemical waste regulations were adopted and compared to the results obtained with a battery of biotests (bacteria, alga and daphnids) which were carried out with soluble and leaching fractions. In some cases the hazardous potential of industrial sludge was underestimated, since the S/S products obtained from the metal-mechanics and automotive sludges were chemically classified as non-hazardous (but non-inert) when the ecotoxicity tests showed toxicity values for leaching and soluble fractions. In other cases, the environmental impact was overestimated, since the S/S products of the textile sludges were chemically classified as non-inert (but non-hazardous) while ecotoxicity tests did not reveal any effects on bacteria, daphnids and algae. From the results of the chemical and ecotoxicological analyses we concluded that: (i) current regulations related to solid waste classification based on leachability and solubility tests do not ensure reliable results with respect to environmental protection; (ii) the two-step process was very effective in terms of metal immobilization, even at higher metal-concentrations. Considering that S/S products will be subject to environmental conditions, it is of great interest to test the ecotoxicity potential of the contaminants release from these products with a view to avoiding environmental impact given the unreliability of ecotoxicological estimations originating from chemical analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Chemical oxidation of unsymmetrical dimethylhydrazine transformation products in water

    NARCIS (Netherlands)

    Abilev, M.; Kenessov, B.N.; Batyrbekova, S.; Grotenhuis, J.T.C.

    2015-01-01

    Oxidation of unsymmetrical dimethylhydrazine (UDMH) during a water treatment has several disadvantages including formation of stable toxic byproducts. Effectiveness of treatment methods in relation to UDMH transformation products is currently poorly studied. This work considers the effectiveness of

  9. Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues

    Czech Academy of Sciences Publication Activity Database

    Blom, J. F.; Horňák, Karel; Šimek, Karel; Pernthaler, J.

    2010-01-01

    Roč. 12, č. 9 (2010), s. 2486-2495 ISSN 1462-2912 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : aggregate formation * Sphingobium sp. * chemical cues * growth state Subject RIV: EE - Microbiology, Virology Impact factor: 5.537, year: 2010

  10. Optimised formation of blue Maillard reaction products of xylose and glycine model systems and associated antioxidant activity.

    Science.gov (United States)

    Yin, Zi; Sun, Qian; Zhang, Xi; Jing, Hao

    2014-05-01

    A blue colour can be formed in the xylose (Xyl) and glycine (Gly) Maillard reaction (MR) model system. However, there are fewer studies on the reaction conditions for the blue Maillard reaction products (MRPs). The objective of this study is to investigate characteristic colour formation and antioxidant activities in four different MR model systems and to determine the optimum reaction conditions for the blue colour formation in a Xyl-Gly MR model system, using the random centroid optimisation program. The blue colour with an absorbance peak at 630 nm appeared before browning in the Xyl-Gly MR model system, while no blue colour formation but only browning was observed in the xylose-alanine, xylose-aspartic acid and glucose-glycine MR model systems. The Xyl-Gly MR model system also showed higher antioxidant activity than the other three model systems. The optimum conditions for blue colour formation were as follows: xylose and glycine ratio 1:0.16 (M:M), 0.20 mol L⁻¹ NaHCO₃, 406.1 mL L⁻¹ ethanol, initial pH 8.63, 33.7°C for 22.06 h, which gave a much brighter blue colour and a higher peak at 630 nm. A characteristic blue colour could be formed in the Xyl-Gly MR model system and the optimum conditions for the blue colour formation were proposed and confirmed. © 2013 Society of Chemical Industry.

  11. Enabling continuous-flow chemistry in microstructured devices for pharmaceutical and fine-chemical production.

    Science.gov (United States)

    Kockmann, Norbert; Gottsponer, Michael; Zimmermann, Bertin; Roberge, Dominique M

    2008-01-01

    Microstructured devices offer unique transport capabilities for rapid mixing, enhanced heat and mass transfer and can handle small amounts of dangerous or unstable materials. The integration of reaction kinetics into fluid dynamics and transport phenomena is essential for successful application from process design in laboratory to chemical production. Strategies to implement production campaigns up to tons of pharmaceutical chemicals are discussed, based on Lonza projects.

  12. Use of bacterial co-cultures for the efficient production of chemicals.

    Science.gov (United States)

    Jones, J Andrew; Wang, Xin

    2017-12-02

    The microbial production of chemicals has traditionally relied on a single engineered microbe to enable the complete bioconversion of substrate to final product. Recently, a growing fraction of research has transitioned towards employing a modular co-culture engineering strategy using multiple microbes growing together to facilitate a divide-and-conquer approach for chemical biosynthesis. Here, we review key success stories that leverage the unique advantages of co-culture engineering, while also addressing the critical concerns that will limit the wide-spread implementation of this technology. Future studies that address the need to monitor and control the population dynamics of each strain module, while maintaining robust flux routes towards a wide range of desired products will lead the efforts to realize the true potential of co-culture engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of toxic metals and chemicals on biofilm and biocorrosion.

    Science.gov (United States)

    Fang, Herbert H P; Xu, Li-Chong; Chan, Kwong-Yu

    2002-11-01

    Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92% proteins and 8-16% polysaccharides, accelerated the corrosion of the mild steel. However, there was no quantitative relationship between the degree of increased corrosion and the toxicity of metals/chemicals towards sulfate-reducing bacteria, or the increased EPS production.

  14. Effects of nutrition label format and product assortment on the healthfulness of food choice.

    Science.gov (United States)

    Aschemann-Witzel, Jessica; Grunert, Klaus G; van Trijp, Hans C M; Bialkova, Svetlana; Raats, Monique M; Hodgkins, Charo; Wasowicz-Kirylo, Grazyna; Koenigstorfer, Joerg

    2013-12-01

    This study aims to find out whether front-of-pack nutrition label formats influence the healthfulness of consumers' food choices and important predictors of healthful choices, depending on the size of the choice set that is made available to consumers. The predictors explored were health motivation and perceived capability of making healthful choices. One thousand German and Polish consumers participated in the study that manipulated the format of nutrition labels. All labels referred to the content of calories and four negative nutrients and were presented on savoury and sweet snacks. The different formats included the percentage of guideline daily amount, colour coding schemes, and text describing low, medium and high content of each nutrient. Participants first chose from a set of 10 products and then from a set of 20 products, which was, on average, more healthful than the first choice set. The results showed that food choices were more healthful in the extended 20-product (vs. 10-product) choice set and that this effect is stronger than a random choice would produce. The formats colour coding and texts, particularly colour coding in Germany, increased the healthfulness of product choices when consumers were asked to choose a healthful product, but not when they were asked to choose according to their preferences. The formats did not influence consumers' motivation to choose healthful foods. Colour coding, however, increased consumers' perceived capability of making healthful choices. While the results revealed no consistent differences in the effects between the formats, they indicate that manipulating choice sets by including healthier options is an effective strategy to increase the healthfulness of food choices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. High-Throughput Genetic Screen Reveals that Early Attachment and Biofilm Formation Are Necessary for Full Pyoverdine Production by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Donghoon Kang

    2017-09-01

    Full Text Available Pseudomonas aeruginosa is a re-emerging, multidrug-resistant, opportunistic pathogen that threatens the lives of immunocompromised patients, patients with cystic fibrosis, and those in critical care units. One of the most important virulence factors in this pathogen is the siderophore pyoverdine. Pyoverdine serves several critical roles during infection. Due to its extremely high affinity for ferric iron, pyoverdine gives the pathogen a significant advantage over the host in their competition for iron. In addition, pyoverdine can regulate the production of multiple bacterial virulence factors and perturb host mitochondrial homeostasis. Inhibition of pyoverdine biosynthesis decreases P. aeruginosa pathogenicity in multiple host models. To better understand the regulation of pyoverdine production, we developed a high-throughput genetic screen that uses the innate fluorescence of pyoverdine to identify genes necessary for its biosynthesis. A substantial number of hits showing severe impairment of pyoverdine production were in genes responsible for early attachment and biofilm formation. In addition to genetic disruption of biofilm, both physical and chemical perturbations also attenuated pyoverdine production. This regulatory relationship between pyoverdine and biofilm is particularly significant in the context of P. aeruginosa multidrug resistance, where the formation of biofilm is a key mechanism preventing access to antimicrobials and the immune system. Furthermore, we demonstrate that the biofilm inhibitor 2-amino-5,6-dimethylbenzimidazole effectively attenuates pyoverdine production and rescues Caenorhabditis elegans from P. aeruginosa-mediated pathogenesis. Our findings suggest that targeting biofilm formation in P. aeruginosa infections may have multiple therapeutic benefits and that employing an unbiased, systems biology-based approach may be useful for understanding the regulation of specific virulence factors and identifying novel anti

  16. Chemical reactions of fission products with ethylene using the gas jet technique

    International Nuclear Information System (INIS)

    Contis, E.T.; Rengan, Krish; Griffin, Henry C.

    1994-01-01

    An understanding of the nature of the chemical reactions taking place between fission products and their carrier gases, and the designing of a fast separation procedure were the purposes of this investigation. Chemical reactions of short-lived (less than one minute half-life) fission products with carrier gases lead to various chemical species which can be separated in the gas phase. The Gas Jet Facility at the Ford Nuclear Reactor was used to study the yields of volatile selenium and bromine fission products of 235 U using a semi-automatic batch solvent extraction technique. Heptane and water were used as organic and inorganic solvents. A carrier gas mixture of ethylene to pre-purified nitrogen (1 : 3) was used to sweep the fission products from the target to the chemistry area for analysis. The results indicated that the volatile selenium products generated by the interaction of selenium fission fragments with ethylene were predominantly organic in nature (84%), possibly organoselenides. The selenium values were used to resolve the fractions of the bromine nuclides, which come from two major sources, viz., directly from fission and from the beta-decay of selenium. The data showed that the fractions of independent bromine fission products in the organic phase were much lower compared to selenium; the bromine values range from 10 to 22% and varied with mass number. Results indicated that the bromine products were inorganic in nature, as possibly hydrogen chloride. ((orig.))

  17. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents.

    Science.gov (United States)

    Witkiewicz, Zygfryd; Neffe, Slawomir; Sliwka, Ewa; Quagliano, Javier

    2018-09-03

    Recent advances in analysis of precursors, simulants and degradation products of chemical warfare agents (CWA) are reviewed. Fast and reliable analysis of precursors, simulants and CWA degradation products is extremely important at a time, when more and more terrorist groups and radical non-state organizations use or plan to use chemical weapons to achieve their own psychological, political and military goals. The review covers the open source literature analysis after the time, when the chemical weapons convention had come into force (1997). The authors stated that during last 15 years increased number of laboratories are focused not only on trace analysis of CWA (mostly nerve and blister agents) in environmental and biological samples, but the growing number of research are devoted to instrumental analysis of precursors and degradation products of these substances. The identification of low-level concentration of CWA degradation products is often more important and difficult than the original CWA, because of lower level of concentration and a very large number of compounds present in environmental and biological samples. Many of them are hydrolysis products and are present in samples in the ionic form. For this reason, two or three instrumental methods are used to perform a reliable analysis of these substances.

  18. Chemical factors affecting fission product transport in severe LMFBR accidents

    International Nuclear Information System (INIS)

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly

  19. Effect of finite chemical potential on QGP-hadron phase transition in a statistical model of fireball formation

    International Nuclear Information System (INIS)

    Ramanathan, R.; Singh, S.S.; Jha, A.K.; Gupta, K.K.

    2011-01-01

    We study the effect of finite chemical potential for the QGP constituents in the Ramanathan et al. statistical model. While the earlier computations using this model with vanishing chemical potentials indicated a weakly first order phase transition for the system in the vicinity of 170 MeV, the introduction of finite values for the chemical potentials of the constituents makes the transition a smooth roll over of the phases, while allowing fireball formation with radius of a few 'fermi' to take place. This seems to be in conformity with the latest consensus on the nature of the QGP-Hadron phase transition. (author)

  20. To prevent the diversion of chemical products or installations. CWC - An international regulation on chemical products. Handbook of PCOD declaration. Handbook for Table 1 declaration. Handbook for Table 2 declaration. Handbook for Table 3 declaration

    International Nuclear Information System (INIS)

    2006-01-01

    The Chemical Weapons Convention (CWC) aims at preventing risks of diversion of chemical products and installations, and therefore may concern various types of companies. A first document, illustrated by graphs, figures and tables proposes an overview of concerned actors, sectors, products and usages, of involved chemical reactions and associated production thresholds, and of levels of concerned international trade for a country. It mentions obligations and indicates some of the concerned products which are classified in four categories: Discrete Organic Chemicals, Table 1, Table 2, and Table 3. The four other documents are handbooks aimed at defining and describing whether and how to make associated declarations about these four categories. They recall the definition of the concerned products, indicate the concerned establishments, describe how to assess whether a declaration must be made, present the associated declarations and describe how to complete them in terms of method (paper form or through the internet) and of content

  1. Optimal pH in chlorinated swimming pools - balancing formation of by-products

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Albrechtsen, Hans-Jørgen; Andersen, Henrik Rasmus

    2013-01-01

    In order to identify the optimal pH range for chlorinated swimming pools the formation of trihalomethanes, haloacetonitriles and trichloramine was investigated in the pH-range 6.5–7.5 in batch experiments. An artificial body fluid analogue was used to simulate bather load as the precursor for by-products....... The chlorine-to-precursor ratio used in the batch experiments influenced the amounts of by-products formed, but regardless of the ratio the same trends in the effect of pH were observed. Trihalomethane formation was reduced by decreasing pH but haloacetonitrile and trichloramine formation increased....... To evaluate the significance of the increase and decrease of the investigated organic by-products at the different pH values, the genotoxicity was calculated based on literature values. The calculated genotoxicity was approximately at the same level in the pH range 6.8–7.5 and increased when pH was 6...

  2. Effect of nutrition label format and product assortment on healthfulness of food choice

    DEFF Research Database (Denmark)

    Aschemann-Witzel, Jessica; Grunert, Klaus G; van Trijp, Hans

    2013-01-01

    This study aims to find out whether front-of-pack nutrition label formats influence the healthfulness of consumers’ food choices and important predictors of healthful choices, depending on the size of the choice set that is made available to consumers. The predictors explored were health motivati...... the results revealed no consistent differences in the effects between the formats, they indicate that manipulating choice sets by including healthier options is an effective strategy to increase the healthfulness of food choices........ The results showed that food choices were more healthful in the extended 20-product (vs. 10-product) choice set and that this effect is stronger than a random choice would produce. The formats colour coding and texts, particularly colour coding in Germany, increased the healthfulness of product choices when...

  3. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    Science.gov (United States)

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  4. Humic-like Products Formation via the Reaction of Phenol with Nitrite in Ice Phase

    Science.gov (United States)

    Min, D. W.; Choi, W.

    2017-12-01

    Understanding the chemical nature of humic substances is very important but the origin of humic substances in nature is not well known. Therefore, elucidating the mechanisms leading to the generation of humic substances in nature is of great interests. It is believed that humic substances are produced from the transformation of natural organic matters, like lignin, by biological pathways. Recently, it has been reported that monomer molecules like quinones and sugars could be polymerized with amino compounds to form humic-like substances. This humification process is considered as a possible mechanism of humic substances production in the environment. In this work, we report the first observation on the formation of humic-like substances from the reaction between phenol and nitrite under a frozen state. In aqueous solution, nitrite slowly reacts with phenol, producing phenolic compounds like nitrophenol. Under frozen state, however, phenol reacted rapidly with nitrite and produced diverse organic compounds, like hydroquinone, dimerized phenolic substances, and much bigger molecules such as humic-like substances. The humic-like substances produced in ice are likely caused by the formation of phenolic radical and nitrosonium ion. This work may provide some insights into unknown pathways for the origin of humic substances especially in frozen environments.

  5. Ultrafaint dwarfs—star formation and chemical evolution in the smallest galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia)

    2014-11-20

    In earlier work, we showed that a dark matter halo with a virial mass of 10{sup 7} M {sub ☉} can retain a major part of its baryons in the face of the pre-ionization phase and supernova (SN) explosion from a 25 M {sub ☉} star. Here, we expand on the results of that work, investigating the star formation and chemical evolution of the system beyond the first SN. In a galaxy with a mass M {sub vir} = 10{sup 7} M {sub ☉}, sufficient gas is retained by the potential for a second period of star formation to occur. The impact of a central explosion is found to be much stronger than that of an off-center explosion both in blowing out the gas and in enriching it, as in the off-center case most of the SN energy and metals escape into the intergalactic medium. We model the star formation and metallicity, given the assumption that stars form for 100, 200, 400, and 600 Myr, and discuss the results in the context of recent observations of very low-mass galaxies. We show that we can account for most features of the observed relationship between [α/Fe] and [Fe/H] in ultra-faint dwarf galaxies with the assumption that the systems formed at a low mass, rather than being remnants of much larger systems.

  6. Ferrospheres from fly ashes of Chelyabinsk coals: chemical composition, morphology and formation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sokol, E.V.; Kalugin, V.M.; Nigmatulina, E.N.; Volkova, N.I.; Frenkel, A.E.; Maksimova, N.V. [Geophysics and Mineralogy Sb RAS, Novosibirsk (Russian Federation). United Institute of Geology

    2002-05-01

    Ferrospheres originating during the pulverised fuel firing of brown coals from the Chelyabinsk basin (South Urals, Russia) have been examined for determination of their chemical and phase compositions, morphology and formation conditions. Most of the ferrospheres are close to ideal spheres with dendritic or skeletal structure. The appearance of microsphere inner anatomy is determined by morphology of ferrispinel aggregates, which compose more than 85 vol% of these globules. The analysed ferrispinels are complex solid solutions based on FeFe{sub 2}O{sub 4} with impurities of MgFe{sub 2}O{sub 4}, MnFe{sub 2}O{sub 4} and nCaO x mFe{sub 2}O{sub 3}. The glasses coexisted with ferrispinel crystallites are basic-ultrabasic in composition. Ferrospheres are the quenching products of high-ferrous melts originated from melting of iron-bearing carbonate admixtures in coals. The mass crystallisation of ferrispinels in ferrospheres was a result of iron changes from Fe{sup 2+} to Fe{sup 3+} and following ferritisation of high-ferrous melts during molten drops cooling. The residual melt is quenched to form a low-silicon, high-calcium, high-ferrous glass. the skeletal and dendritic forms of ferrispinel are due to their crystallisation under drastic supercooling conditions. 22 refs., 6 figs., 2 tabs.

  7. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals...... and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals......, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable...

  8. Nursing Doctorates in Brazil: research formation and theses production.

    Science.gov (United States)

    Scochi, Carmen Gracinda Silvan; Gelbcke, Francine Lima; Ferreira, Márcia de Assunção; Lima, Maria Alice Dias da Silva; Padilha, Katia Grillo; Padovani, Nátali Artal; Munari, Denize Bouttelet

    2015-01-01

    to analyze the formation of nursing doctorates in Brazil, from theses production, disciplines and other strategies focusing on research offered by courses. a descriptive and analytical study of the performance of 18 doctoral courses in nursing, running from 1982 to 2010, and defended their theses between 2010-2012. 502 theses were defended in this period, most linked to the online research process of health and nursing care. There are gaps in the knowledge of theoretical and philosophical foundations of care, nursing history and ethics. There are also weaknesses in the methodological design of the theses, with a predominance of descriptive and/or exploratory studies. This was consistent with international standards set with regards to the proposition of research of disciplines and complementary strategies in forming the doctorate. despite the efforts and advances in research formation, it is essential to expand to more robust research designs with a greater impact on production knowledge that is incorporated into practice.

  9. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    Science.gov (United States)

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates.

    Science.gov (United States)

    Elliot, Samuel G; Tolborg, Søren; Sádaba, Irantzu; Taarning, Esben; Meier, Sebastian

    2017-07-21

    The future role of biomass-derived chemicals relies on the formation of diverse functional monomers in high yields from carbohydrates. Recently, it has become clear that a series of α-hydroxy acids, esters, and lactones can be formed from carbohydrates in alcohol and water solvents using tin-containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters bearing additional olefin and alcohol functionalities. An NMR approach was used to identify, quantify, and optimize the formation of these building blocks in the Sn-Beta-catalyzed transformation of abundant carbohydrates. Record yields of the target molecules can be achieved by obstructing competing reactions through solvent selection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cyanobacteria as a Platform for the High-Value Chemicals Production

    DEFF Research Database (Denmark)

    Wlodarczyk, Artur Jacek

    and cheap fertilizer as a medium for the cultivation of engineered cyanobacterial strains is shown. Alternative strategy to engineer Synechocystis sp. PCC 6803 as a universal platform for the sustainable production of diverse range high-value phenylpropanoids which find use as pharmaceuticals, cosmetics......Emerging problems like increasing global warming and depletion of fossil fuels bring serious concerns regarding production of food and various chemicals in the future. Clearly, there is a need for finding alternative and more sustainable ways of producing chemicals in order to satisfy increasing...... consumer demands of an ever growing population. Considering the ability to convert solar energy and carbon dioxide into biomass, cyanobacteria and microalgae have potential for becoming such alternative in the future. Biosynthesis of a great number of plant high-value secondary metabolites requires...

  12. Tandem Mass Spectrometry and Ion Mobility Reveals Structural Insight into Eicosanoid Product Ion Formation.

    Science.gov (United States)

    Di Giovanni, James P; Barkley, Robert M; Jones, David N M; Hankin, Joseph A; Murphy, Robert C

    2018-04-23

    Ion mobility measurements of product ions were used to characterize the collisional cross section (CCS) of various complex lipid [M-H] - ions using traveling wave ion mobility mass spectrometry (TWIMS). TWIMS analysis of various product ions derived after collisional activation of mono- and dihydroxy arachidonate metabolites was found to be more complex than the analysis of intact molecular ions and provided some insight into molecular mechanisms involved in product ion formation. The CCS observed for the molecular ion [M-H] - and certain product ions were consistent with a folded ion structure, the latter predicted by the proposed mechanisms of product ion formation. Unexpectedly, product ions from [M-H-H 2 O-CO 2 ] - and [M-H-H 2 O] - displayed complex ion mobility profiles suggesting multiple mechanisms of ion formation. The [M-H-H 2 O] - ion from LTB 4 was studied in more detail using both nitrogen and helium as the drift gas in the ion mobility cell. One population of [M-H-H 2 O] - product ions from LTB 4 was consistent with formation of covalent ring structures, while the ions displaying a higher CCS were consistent with a more open-chain structure. Using molecular dynamics and theoretical CCS calculations, energy minimized structures of those product ions with the open-chain structures were found to have a higher CCS than a folded molecular ion structure. The measurement of product ion mobility can be an additional and unique signature of eicosanoids measured by LC-MS/MS techniques. Graphical Abstract ᅟ.

  13. Production data in media systems and press front ends: capture, formats and database methods

    Science.gov (United States)

    Karttunen, Simo

    1997-02-01

    The nature, purpose and data presentation features of media jobs are analyzed in relation to the content, document, process and resource management in media production. Formats are the natural way of presenting, collecting and storing information, contents, document components and final documents. The state of the art and the trends in the media formats and production data are reviewed. The types and the amount of production data are listed, e.g. events, schedules, product descriptions, reports, visual support, quality, process states and color data. The data exchange must be vendor-neutral. Adequate infrastructure and system architecture are defined for production and media data. The roles of open servers and intranets are evaluated and their potential roles as future solutions are anticipated. The press frontend is the part of print media production where large files dominate. The new output alternatives, i.e. film recorders, direct plate output (CTP and CTP-on-press) and digital, plateless printing lines need new workflow tools and very efficient file and format management. The paper analyzes the capture, formatting and storing of job files and respective production data, such as the event logs of the processes. Intranet, browsers, Java applets and open web severs will be used to capture production data, especially where intranets are used anyhow, or where several companies are networked to plan, design and use documents and printed products. The user aspects of installing intranets is stressed since there are numerous more traditional and more dedicated networking solutions on the market.

  14. Tandem Mass Spectrometry and Ion Mobility Reveals Structural Insight into Eicosanoid Product Ion Formation

    Science.gov (United States)

    Di Giovanni, James P.; Barkley, Robert M.; Jones, David N. M.; Hankin, Joseph A.; Murphy, Robert C.

    2018-04-01

    Ion mobility measurements of product ions were used to characterize the collisional cross section (CCS) of various complex lipid [M-H]- ions using traveling wave ion mobility mass spectrometry (TWIMS). TWIMS analysis of various product ions derived after collisional activation of mono- and dihydroxy arachidonate metabolites was found to be more complex than the analysis of intact molecular ions and provided some insight into molecular mechanisms involved in product ion formation. The CCS observed for the molecular ion [M-H]- and certain product ions were consistent with a folded ion structure, the latter predicted by the proposed mechanisms of product ion formation. Unexpectedly, product ions from [M-H-H2O-CO2]- and [M-H-H2O]- displayed complex ion mobility profiles suggesting multiple mechanisms of ion formation. The [M-H-H2O]- ion from LTB4 was studied in more detail using both nitrogen and helium as the drift gas in the ion mobility cell. One population of [M-H-H2O]- product ions from LTB4 was consistent with formation of covalent ring structures, while the ions displaying a higher CCS were consistent with a more open-chain structure. Using molecular dynamics and theoretical CCS calculations, energy minimized structures of those product ions with the open-chain structures were found to have a higher CCS than a folded molecular ion structure. The measurement of product ion mobility can be an additional and unique signature of eicosanoids measured by LC-MS/MS techniques. [Figure not available: see fulltext.

  15. Glycerol (byproduct of biodiesel production) as a source of fuels and chemicals : mini review

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Burton, R. [Piedmont Biofuels Industrial, Pittsboro, NC (United States); Zhou, Y. [Yonezawa Hamari Chemical, Ltd., Yonezawa, Yamagata (Japan)

    2010-07-01

    Glycerol, a byproduct of biodiesel production, is a potential renewable feedstock for the production of functional chemicals. This paper reviewed recent developments in the conversion of glycerol into value-added products, including citric acid, lactic acid, 1,3-dihydroxyacetone (DHA), 1,3-propanediol (1,3-PD), dichloro-2-propanol (DCP), acrolein, hydrogen, and ethanol. The new applications of glycerol will improve the economic viability of the biodiesel industry and capitalize on the oversupply of crude glycerol that the biodiesel industry has produced. Increasing abundance and attractive pricing make glycerol an attractive feedstock for deriving value-added chemical compounds. The processes turn glycerol into chemicals, materials, and fuels and fuel additives. Whereas glycerol from first-generation biodiesel production has low purity, glycerol from second-generation biodiesel production, which uses non-edible oil as a feedstock, produces a higher purity glycerol, minimizing the related impurity problem and potentially increasing the applications of glycerol. Glycerol is also being looked at as a carbon source for algal biomass fermentation. 36 refs.

  16. Production of solar chemicals: gaining selectivity with hybrid molecule/semiconductor assemblies.

    Science.gov (United States)

    Hennessey, Seán; Farràs, Pau

    2018-05-29

    Research on the production of solar fuels and chemicals has rocketed over the past decade, with a wide variety of systems proposed to harvest solar energy and drive chemical reactions. In this Feature Article we have focused on hybrid molecule/semiconductor assemblies in both powder and supported materials, summarising recent systems and highlighting the enormous possibilities offered by such assemblies to carry out highly demanding chemical reactions with industrial impact. Of relevance is the higher selectivity obtained in visible light-driven organic transformations when using molecular catalysts compared to photocatalytic materials.

  17. Construction of a risk assessment system for chemical residues in agricultural products.

    Science.gov (United States)

    Choi, Shinai; Hong, Jiyeon; Lee, Dayeon; Paik, Minkyoung

    2014-01-01

    Continuous monitoring of chemical residues in agricultural and food products has been performed by various government bodies in South Korea. These bodies have made attempts to systematically manage this information by creating a monitoring database system as well as a system based on these data with which to assess the health risk of chemical residues in agricultural products. Meanwhile, a database system is being constructed consisting of information about monitoring and, following this, a demand for convenience has led to the need for an evaluation tool to be constructed with the data processing system. Also, in order to create a systematic and effective tool for the risk assessment of chemical residues in foods and agricultural products, various evaluation models are being developed, both domestically and abroad. Overseas, systems such as Dietary Exposure Evaluation Model: Food Commodity Intake Database and Cumulative and Aggregate Risk Evaluation System are being used; these use the US Environmental Protection Agency as a focus, while the EU has developed Pesticide Residue Intake Model for assessments of pesticide exposure through food intake. Following this, the National Academy of Agricultural Science (NAAS) created the Agricultural Products Risk Assessment System (APRAS) which supports the use and storage of monitoring information and risk assessments. APRAS efficiently manages the monitoring data produced by NAAS and creates an extraction feature included in the database system. Also, the database system in APRAS consists of a monitoring database system held by the NAAS and food consumption database system. Food consumption data is based on Korea National Health and Nutrition Examination Survey. This system is aimed at exposure and risk assessments for chemical residues in agricultural products with regards to different exposure scenarios.

  18. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece

    International Nuclear Information System (INIS)

    Voudrias, Evangelos; Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini

    2012-01-01

    Highlights: ► We studied pharmaceutical and chemical waste production in a Greek hospital. ► Pharmaceutical waste comprised 3.9% w/w of total hazardous medical waste. ► Unit production rate for total pharmaceutical waste was 12.4 ± 3.90 g/patient/d. ► Chemical waste comprised 1.8% w/w of total hazardous medical waste. ► Unit production rate for total chemical waste was 5.8 ± 2.2 g/patient/d. - Abstract: The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and “other”. Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and

  19. A future perspective on the role of industrial biotechnology for chemicals production

    DEFF Research Database (Denmark)

    Woodley, John; Breuer, Michael; Mink, Daniel

    2013-01-01

    The development of recombinant DNA technology, the need for renewable raw materials and a green, sustainable profile for future chemical processes have been major drivers in the implementation of industrial biotechnology. The use of industrial biotechnology for the production of chemicals is well...... established in the pharmaceutical industry but is moving down the value chain toward bulk chemicals. Chemical engineers will have an essential role in the development of new processes where the need is for new design methods for effective implementation, just as much as new technology. Most interesting...

  20. Production of fuels and chemicals from apple pomace

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Y.D.

    1987-03-01

    Nearly 36 million tons of apples are produced annually in the US. Approximately 45% of the total US apple production is used for processing purposes. The primary by-product of apple processing is apple pomace. It consists of the presscake resulting from pressing apples for juice or cider, including the presscake obtained in pressing peel and core wastes generated in the manufacture of apple sauce or slices. More than 500 food processing plants in the US produce a total of about 1.3 million metric tons of apple pomace each year, and it is likely that annual disposal fees exceed $10 million. Apple pomace has the potential to be used for the production of fuels (ethanol and biogas containing 60% methane) and food-grade chemicals. These uses will be reviewed in this article.

  1. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  2. Chemical changes in the soil and production of oat fertilized with treated wastewater

    Directory of Open Access Journals (Sweden)

    Paulo Fortes Neto

    2013-12-01

    Full Text Available The purpose of this project was to ensure the quality and impact of the application of treated sewage wastewater on the chemical properties of Dystrophic Yellow Argisol and on biomass and grain production of white oat (Avena sativa, L. After the wastewater was chemically characterized, it was applied to the soil in concentrations of 0, 30, 60 and 90 m3 ha-1 in plots of 200 m2. Doses of water were compared with mineral fertilizer doses recommended for oat. The experimental design was a split plot with four randomized blocks. The wastewater had chemical qualities useful for grain cultivation. The values of calcium, CTC, V, pH increased and acidity potential decreased in the soil after the wastewater was applied. Doses of the wastewater provided increments in biomass production and oat grains similar to that obtained with chemical fertilizers. We conclude that wastewater can be used to correct soil acidity and replace or supplement chemical fertilizers.

  3. Nonlinear flow model for well production in an underground formation

    Directory of Open Access Journals (Sweden)

    J. C. Guo

    2013-05-01

    Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

  4. Formation of undesired by-products in deNO{sub x} catalysis by hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, Frank; Koeppel, Rene A; Baiker, Alfons [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1995-11-20

    The catalytic performance of Cu/ZSM-5 and {gamma}-alumina in the selective catalytic reduction of nitrogen oxides by alkenes in excess oxygen and the formation of potentially harmful by-products such as hydrogen cyanide, cyanic acid, ammonia, nitrous oxide and carbon monoxide have been studied by means of FT-IR-gas phase analysis. Over Cu/ZSM-5 the reduction activity was strongly influenced by the type of hydrocarbon, while there was no significant difference when starting from NO or NO{sub 2}. In contrast, with {gamma}-alumina NO{sub 2} was reduced more efficiently than NO with both reductants. Water addition strongly suppressed the catalytic activity of {gamma}-alumina. Regarding the formation of undesired by-products, substantial amounts of carbon monoxide were observed in all experiments, independently of the feed composition. The type of catalyst, the use of either NO or NO{sub 2}, the alkene used as a reductant and water strongly influenced the formation of other by-products. With alumina ethene showed a lower tendency to form HCN as compared to propene and water addition further suppressed by-product formation. This contrasts the findings with Cu/ZSM-5, where HCN production was not significantly altered by the presence of water. On this catalyst HNCO was found additionally for dry feeds, whereas ammonia appeared in the presence of water in the same temperature range. Under special feed gas compositions further by-products, formaldehyde and hydrocarbons, were found over Cu/ZSM-5, whereas none of these compounds were observed over {gamma}-alumina

  5. Rapid formation of complexity in the total synthesis of natural products enabled by oxabicyclo[2.2.1]heptene building blocks.

    Science.gov (United States)

    Schindler, Corinna S; Carreira, Erick M

    2009-11-01

    This critical review showcases examples of rapid formation of complexity in total syntheses starting from 7-oxabicyclo[2.2.1]hept-5-ene derivatives. An overview of methods allowing synthetic access to these building blocks is provided and their application in recently developed synthetic transformations to structurally complex systems is illustrated. In addition, the facile access to a novel oxabicyclo[2.2.1]heptene derived building block is presented which significantly enlarges the possibilities of previously known chemical transformations and is highlighted in the enantioselective route to the core of the banyaside and suomilide natural products (107 references).

  6. The role of milk proteins in the structure formation of dairy products

    Directory of Open Access Journals (Sweden)

    Olga Rybak

    2015-04-01

    Full Text Available Introduction. The structure of dairy products is a complex of proteins, fat, minerals and water that determines the texture and sensory properties of the product. Material and methods. The fermented milks (using the example of yogurt, cheese, ice cream, aerated milk and frozen fruit desserts have been researched. Scientific articles, published during 2000 and 2014 years, as well as theses and monographs of dairy science have been analysed too. Methodology of the investigation is based upon the use of the methods of analysis, comparison and synthesis. Results and discussion. The scientific understanding of the milk proteins’ role in the structure formation of dairy product has been summarized. Negligible changes of structure as a result of compositional or technological changes can lead to shifts in the stability, texture and rheology of products, which are closely related to each other. The allowance of these properties has significant influence on the manufacturing. Acid coagulation is a major functional property of milk proteins, which used in the structure formation of cheese and fermented dairy products. However, the form and properties of milk curd depend on the heat treatment of milk before fermentation. Milk proteins exhibit other functional properties (emulsification and partial coalescence of fat globules, aeration and foam stability during a churning, viscosity increasing of external phase in the development of structure in the ice cream, aerated milk and frozen fruit desserts. Conclusions. It is expedient to use results into a further study of the structure formation mechanism of dairy products and the development of recommendations in order to an efficient production.

  7. The role of milk proteins in the structure formation of dairy products

    Directory of Open Access Journals (Sweden)

    Olga Rybak

    2014-09-01

    Full Text Available Introduction. The structure of dairy products is a complex of proteins, fat, minerals and water that determines the texture and sensory properties of the product. Material and methods. The fermented milks (using the example of yogurt, cheese, ice cream, aerated milk and frozen fruit desserts have been researched. Scientific articles, published during 2000 and 2014 years, as well as theses and monographs of dairy science have been analysed too. Methodology of the investigation is based upon the use of the methods of analysis, comparison and synthesis. Results and discussion. The scientific understanding of the milk proteins’ role in the structure formation of dairy product has been summarized. Negligible changes of structure as a result of compositional or technological changes can lead to shifts in the stability, texture and rheology of products, which are closely related to each other. The allowance of these properties has significant influence on the manufacturing. Acid coagulation is a major functional property of milk proteins, which used in the structure formation of cheese and fermented dairy products. However, the form and properties of milk curd depend on the heat treatment of milk before fermentation. Milk proteins exhibit other functional properties (emulsification and partial coalescence of fat globules, aeration and foam stability during a churning, viscosity increasing of external phase in the development of structure in the ice cream, aerated milk and frozen fruit desserts. Conclusions. It is expedient to use results into a further study of the structure formation mechanism of dairy products and the development of recommendations in order to an efficient production.

  8. The role of milk proteins in the structure formation of dairy products

    Directory of Open Access Journals (Sweden)

    O. Rybak

    2015-05-01

    Full Text Available Introduction. The structure of dairy products is a complex of proteins, fat, minerals and water that determines the texture and sensory properties of the product. Material and methods. The fermented milks (using the example of yogurt, cheese, ice cream, aerated milk and frozen fruit desserts have been researched. Scientific articles, published during 2000 and 2014 years, as well as theses and monographs of dairy science have been analysed too. Methodology of the investigation is based upon the use of the methods of analysis, comparison and synthesis. Results and discussion. The scientific understanding of the milk proteins’ role in the structure formation of dairy product has been summarized. Negligible changes of structure as a result of compositional or technological changes can lead to shifts in the stability, texture and rheology of products, which are closely related to each other. The allowance of these properties has significant influence on the manufacturing. Acid coagulation is a major functional property of milk proteins, which used in the structure formation of cheese and fermented dairy products. However, the form and properties of milk curd depend on the heat treatment of milk before fermentation. Milk proteins exhibit other functional properties (emulsification and partial coalescence o f fatglobules, aeration and foam stability during a churning, viscosity increasing of external phase in the development of structure in the ice cream, aerated milk and frozen fruit desserts. Conclusions.It is expedient to use results into a further study of the structure formation mechanism of dairy products and the development of recommendations in order to an efficient production.

  9. Application of electron-chemical curing in the production of thin composite materials

    International Nuclear Information System (INIS)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V.

    1993-01-01

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author)

  10. Chemical monitoring of mud products on drilled cuttings

    International Nuclear Information System (INIS)

    Hughes, T.L.; Jones, T.G.J.; Tomkins, P.G.; Gilmour, A.; Houwen, O.H.; Sanders, M.

    1991-01-01

    An increasing area of concern for offshore drilling practices in the environmental impact of discharged drilled cuttings contaminated with drilling fluids. The standard retort analysis is of limited accuracy and chemical specificity. Anticipating future requirements for a more complete accounting of mud chemicals discharged to the environment, we present here results for chemical monitoring using a modern comprehensive chemical analysis technique. Fourier transform infrared (FT-IR) spectrometry. In this paper description is given of sampling methods found to be practical and the main calibration requirements are discussed. The techniques developed in the course of this work give a good mineralogical breakdown of mud solids (commercial and drilled solids) in addition to the environmentally relevant measurements relating to mud on cuttings. The possibility of using the new technique for the rigsite monitoring of drilling cuttings is demonstrated. Cuttings samples simultaneously from the flow line, shaker screen, desilter and mud cleaner were analyzed. It is found that mud polymers and other organic additives can be measured with sufficient accuracy to measure the removal of mud products by discharged cuttings. The technique is also applicable to quantify the losses of oil-based mud on cuttings. Field testing has shown that the instrumentation used in sufficiently robust and simple to use for rig-site application

  11. Multi-scale modeling for sustainable chemical production

    DEFF Research Database (Denmark)

    Zhuang, Kai; Bakshi, Bhavik R.; Herrgard, Markus

    2013-01-01

    associated with the development and implementation of a su stainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow......With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes...... models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process...

  12. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    Science.gov (United States)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The effect of an insulin releasing agent, BTS 67582, on advanced glycation end product formation in vitro.

    Science.gov (United States)

    Simpson, A E; Jones, R B

    1999-01-01

    BTS 67582 (1,1-dimethyl-2-(2-morpholinophenyl) guanidine fumarate) is an insulin-releasing agent currently in phase II clinical trials. Its effect on advanced glycation end product (AGE) formation was measured in the BSA/D-glucose and L-lysine/glucose-6-phosphate assay systems and Amadori product formation was measured in the BSA/D-glucose assay system, following a 3 week incubation period. In the BSA/D-glucose assay system, 200 mM BTS 67582 caused an approximate 70% inhibition in AGE formation (pBTS 67582 and 200 mM aminoguanidine-HCl retarded Amadori product formation by 88% (pBTS 67582 at 20 mM and 2 mM was shown to inhibit Amadori product formation by 67% and 57%, respectively, (pBTS 67582 and 200 mM aminoguanidine-HCl were shown to inhibit AGE formation by about 70% and 96% (p<0.001), respectively. Tolbutamide (200 microM) and glibenclamide (100 microM) had no significant effect on AGE formation.

  14. Advanced construction materials for thermo-chemical hydrogen production from VHTR process heat

    International Nuclear Information System (INIS)

    Kosmidou, Theodora; Haehner, Peter

    2009-01-01

    The (very) high temperature reactor concept ((V)HTR) is characterized by its potential for process heat applications. The production of hydrogen by means of thermo-chemical cycles is an appealing example, since it is more efficient than electrolysis due to the direct use of process heat. The sulfur-iodine cycle is one of the best studied processes for the production of hydrogen, and solar or nuclear energy can be used as a heating source for the high temperature reaction of this process. The chemical reactions involved in the cycle are: I 2 (l) + SO 2 (g) +2 H 2 O (l) → 2HI (l) + H 2 SO 4 (l) (70-120 deg. C); H 2 SO 4 (l) → H 2 O (l) + SO 2 (g) + 1/2 O 2 (g) (800-900 deg. C); 2HI (l) → I 2 (g) + H 2 (g) (300-450 deg. C) The high temperature decomposition of sulphuric acid, which is the most endothermic reaction, results in a very aggressive chemical environment which is why suitable materials for the decomposer heat exchanger have to be identified. The class of candidate materials for the decomposer is based on SiC. In the current study, SiC based materials were tested in order to determine the residual mechanical properties (flexural strength and bending modulus, interfacial strength of brazed joints), after exposure to an SO 2 rich environment, simulating the conditions in the hydrogen production plant. Brazed SiC specimens were tested after 20, 100, 500 and 1000 hrs exposure to SO 2 rich environment at 850 o C under atmospheric pressure. The gas composition in the corrosion rig was: 9.9 H 2 O, 12.25 SO 2 , 6.13 O 2 , balance N 2 (% mol). The characterization involved: weight change monitoring, SEM microstructural analysis and four-point bending tests after exposure. Most of the specimens gained weight due to the formation of a corrosion layer as observed in the SEM. The corrosion treatment also showed an effect on the mechanical properties. In the four-point bending tests performed at room temperature and at 850 deg. C, a decrease in bending modulus with

  15. Chemical methods for peptide and protein production.

    Science.gov (United States)

    Chandrudu, Saranya; Simerska, Pavla; Toth, Istvan

    2013-04-12

    Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported α-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  16. 3-D simulation of soot formation in a direct-injection diesel engine based on a comprehensive chemical mechanism and method of moments

    Science.gov (United States)

    Zhong, Bei-Jing; Dang, Shuai; Song, Ya-Na; Gong, Jing-Song

    2012-02-01

    Here, we propose both a comprehensive chemical mechanism and a reduced mechanism for a three-dimensional combustion simulation, describing the formation of polycyclic aromatic hydrocarbons (PAHs), in a direct-injection diesel engine. A soot model based on the reduced mechanism and a method of moments is also presented. The turbulent diffusion flame and PAH formation in the diesel engine were modelled using the reduced mechanism based on the detailed mechanism using a fixed wall temperature as a boundary condition. The spatial distribution of PAH concentrations and the characteristic parameters for soot formation in the engine cylinder were obtained by coupling a detailed chemical kinetic model with the three-dimensional computational fluid dynamic (CFD) model. Comparison of the simulated results with limited experimental data shows that the chemical mechanisms and soot model are realistic and correctly describe the basic physics of diesel combustion but require further development to improve their accuracy.

  17. Formation kinetics of gemfibrozil chlorination reaction products: analysis and application.

    Science.gov (United States)

    Krkosek, Wendy H; Peldszus, Sigrid; Huck, Peter M; Gagnon, Graham A

    2014-07-01

    Aqueous chlorination kinetics of the lipid regulator gemfibrozil and the formation of reaction products were investigated in deionized water over the pH range 3 to 9, and in two wastewater matrices. Chlorine oxidation of gemfibrozil was found to be highly dependent on pH. No statistically significant degradation of gemfibrozil was observed at pH values greater than 7. Gemfibrozil oxidation between pH 4 and 7 was best represented by first order kinetics. At pH 3, formation of three reaction products was observed. 4'-C1Gem was the only reaction product formed from pH 4-7 and was modeled with zero order kinetics. Chlorine oxidation of gemfibrozil in two wastewater matrices followed second order kinetics. 4'-C1Gem was only formed in wastewater with pH below 7. Deionized water rate kinetic models were applied to two wastewater effluents with gemfibrozil concentrations reported in literature in order to calculate potential mass loading rates of 4'C1Gem to the receiving water.

  18. Evaluation of the Atmospheric Chemical Entropy Production of Mars

    Directory of Open Access Journals (Sweden)

    Alfonso Delgado-Bonal

    2015-07-01

    Full Text Available Thermodynamic disequilibrium is a necessary situation in a system in which complex emergent structures are created and maintained. It is known that most of the chemical disequilibrium, a particular type of thermodynamic disequilibrium, in Earth’s atmosphere is a consequence of life. We have developed a thermochemical model for the Martian atmosphere to analyze the disequilibrium by chemical reactions calculating the entropy production. It follows from the comparison with the Earth atmosphere that the magnitude of the entropy produced by the recombination reaction forming O3 (O + O2 + CO2 ⥦ O3 + CO2 in the atmosphere of the Earth is larger than the entropy produced by the dominant set of chemical reactions considered for Mars, as a consequence of the low density and the poor variety of species of the Martian atmosphere. If disequilibrium is needed to create and maintain self-organizing structures in a system, we conclude that the current Martian atmosphere is unable to support large physico-chemical structures, such as those created on Earth.

  19. Artisanal Sonoran cheese (Cocido cheese): an exploration of its production process, chemical composition and microbiological quality.

    Science.gov (United States)

    Cuevas-González, Paúl F; Heredia-Castro, Priscilia Y; Méndez-Romero, José I; Hernández-Mendoza, Adrián; Reyes-Díaz, Ricardo; Vallejo-Cordoba, Belinda; González-Córdova, Aarón F

    2017-10-01

    The objective of this study was to explore and document the production process of artisanal Cocido cheese and to determine its chemical composition and microbiological quality, considering samples from six dairies and four retailers. Cocido cheese is a semi-hard (506-555 g kg -1 of moisture), medium fat (178.3-219.1 g kg -1 ), pasta filata-type cheese made from raw whole cow's milk. The production process is not standardized and therefore the chemical and microbiological components of the sampled cheeses varied. Indicator microorganisms significantly decreased (P pasteurize milk. Nevertheless, since Cocido cheese is a non-ripened, high-moisture product, it is a highly perishable product that could present a health risk if not properly handled. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Pronuclear formation by ICSI using chemically activated ovine oocytes and zona pellucida bound sperm

    Directory of Open Access Journals (Sweden)

    J. E. Hernández-Pichardo

    2016-11-01

    Full Text Available Abstract Background In order to improve ICSI, appropiate sperm selection and oocyte activation is necessary. The objective of the present study was to determine the efficiency of fertilization using ICSI with chemically activated ovine oocytes and sperm selected by swim up (SU or swim up + zona pellucida (SU + ZP binding. Results Experiment 1, 4–20 replicates with total 821 in vitro matured oocytes were chemically activated with ethanol, calcium ionophore or ionomycin, to determine oocyte activation (precense of one PN. Treatments showed similar results (54, 47, 42 %, respectively but statistically differents (P  0.05. Conclusions Chemical activation induces higher ovine oocyte activation than mechanical activation. Ethanol slightly displays higher oocyte activation than calcium ionophore and ionomicine. Sperm selection with SU + ZP increased AR/A and AR/D rates in comparison with SU in fresh and frozen-thawed sperm. According to this, in terms of fertilization rates, chemical activation after ICSI increased oocyte PN formation compared to mechanical activation. Also, fresh sperm treated with SU and SU + ZP were significantly different than frozen-thawed sperm, but between sperm treatments no significant differences were obtained.

  1. Predicting the formation and the dispersion of toxic combustion products from the fires of dangerous substances

    Science.gov (United States)

    Nevrlý, V.; Bitala, P.; Danihelka, P.; Dobeš, P.; Dlabka, J.; Hejzlar, T.; Baudišová, B.; Míček, D.; Zelinger, Z.

    2012-04-01

    Natural events, such as wildfires, lightning or earthquakes represent a frequent trigger of industrial fires involving dangerous substances. Dispersion of smoke plume from such fires and the effects of toxic combustion products are one of the reference scenarios expected in the framework of major accident prevention. Nowadays, tools for impact assessment of these events are rather missing. Detailed knowledge of burning material composition, atmospheric conditions, and other factors are required in order to describe quantitatively the source term of toxic fire products and to evaluate the parameters of smoke plume. Nevertheless, an assessment of toxic emissions from large scale fires involves a high degree of uncertainty, because of the complex character of physical and chemical processes in the harsh environment of uncontrolled flame. Among the others, soot particle formation can be mentioned as still being one of the unresolved problems in combustion chemistry, as well as decomposition pathways of chemical substances. Therefore, simplified approach for estimating the emission factors from outdoor fires of dangerous chemicals, utilizable for major accident prevention and preparedness, was developed and the case study illustrating the application of the proposed method was performed. ALOFT-FT software tool based on large eddy simulation of buoyant fire plumes was employed for predicting the local toxic contamination in the down-wind vicinity of the fire. The database of model input parameters can be effectively modified enabling the simulation of the smoke plume from pool fires or jet fires of arbitrary flammable (or combustible) gas, liquid or solid. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic via the project LD11012 (in the frame of the COST CM0901 Action) and the Ministry of Environment of the Czech Republic (project no. SPII 1a10 45/70).

  2. Enhanced oil recovery chemicals from renewable wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Grune, W.N.; Compere, A.L.; Griffith, W.L.; Crenshaw, J.M.

    1979-04-01

    Most of the wood pulp in the U.S. is produced by cooking, or digesting, wood chips in a chemical solution. These pulping processes have effluent streams which contain dissolved lignins, lignin breakdown products, and carbohydrates. There is a substantial economic incentive to use these materials as feedstocks for the production of high-valued micellar flood chemicals. The pulp and paper industries have practiced chemical recovery for almost a century. The largest chemical recycle processes are the internal recycle of inorganic salts for reuse in pulping. This is coupled with the use of waste organic compounds in the liquor as a fuel for directly-fired evaporation processes. Diversion of effluent and low valued streams for chemical recovery using fermentation, purification, or synthesis methods appears technically feasible in several cases. The use of new recovery processes could yield a variety of different wood-effluent based products. Some of the sugar acids in pulping liquors might be used as sequestering agents in reservoirs where there are large amounts of multivalent cations in flood brines. Fermentation production of high viscosity polymers, sequestering agents, and coagent alcohols appears worth further investigation. Tall oil acids and their derivatives can be used as surfactants in some reservoirs. Some waste constituents may adsorb preferentially on formations and thereby reduce loss of surfactants and other higher-valued chemicals.

  3. Positronium formation in porous materials for antihydrogen production

    International Nuclear Information System (INIS)

    Ferragut, R; Calloni, A; Dupasquier, A; Consolati, G; Giammarchi, M G; Quasso, F; Trezzi, D; Egger, W; Ravelli, L; Petkov, M P; Jones, S M; Wang, B; Yaghi, O M; Jasinska, B; Chiodini, N; Paleari, A

    2010-01-01

    Positronium (Ps) formation measurements in several porous materials as: Vycor, germanate Xerogel, Metal-Organic Frameworks MOF-177 and Aerogel with two densities (20 and 150 mg/cm 3 ), were performed by means of a variable energy positron beam provided with a Ge detector and a positron lifetime spectrometer. An efficient formation of cooled Ps atoms is a requisite for the production of antihydrogen, with the aim of a direct measurement of the Earth gravitational acceleration g of antimatter, which is a primary scientific goal of AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy). Porous materials are necessary to form a high yield of Ps atoms as well as to cool Ps through collisions with the inner walls of the pores. The different materials were characterized and produce Ps into the pores. Lifetime measurements give an estimation of the typical pores dimension of the substances. A comparative study of the positron lifetime and the Ps fraction values in the above mentioned materials indicates that silica Aerogel, with the appropriate density, is an excellent candidate for an efficient formation of cold Ps atoms for the AEGIS project.

  4. Top value platform chemicals: bio-based production of organic acids.

    Science.gov (United States)

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. How do organic vapors contribute to new-particle formation?

    CERN Document Server

    Donahue, Neil M; Chuang, Wayne; Riipinen, Ilona; Riccobono, Francesco; Schobesberger, Siegfried; Dommen, Josef; Baltensperger, Urs; Kulmala, Markku; Worsnop, Douglas R; Vehkamaki, Hanna

    2013-01-01

    Highly oxidised organic vapors can effectively stabilize sulphuric acid in heteronuclear clusters and drive new-particle formation. We present quantum chemical calculations of cluster stability, showing that multifunctional species can stabilize sulphuric acid and also present additional polar functional groups for subsequent cluster growth. We also model the multi-generation oxidation of vapors associated with secondary organic aerosol formation using a two-dimensional volatility basis set. The steady-state saturation ratios and absolute concentrations of extremely low volatility products are sufficient to drive new-particle formation with sulphuric acid at atmospherically relevant rates.

  6. 76 FR 78610 - Notice of Intent To Suspend the Nursery Production, the Nursery and Floriculture Chemical Use...

    Science.gov (United States)

    2011-12-19

    ... Nursery Production, the Nursery and Floriculture Chemical Use, and the Christmas Tree Production Surveys... Agricultural Statistics Service (NASS) to suspend currently approved information collections for all Nursery and Christmas Tree Production Surveys along with the Nursery and Floriculture Chemical Use Survey...

  7. Accessing the Impact of Sea-Salt Emissions on Aerosol Chemical Formation and Deposition Over Pearl River Delta, China

    Science.gov (United States)

    Fan, Q.; Wang, X.; Liu, Y.; Wu, D.; Chan, P. W.; Fan, S.; Feng, Y.

    2015-12-01

    Sea-salt aerosol (SSA) emissions have a significant impact on aerosol pollution and haze formation in the coastal areas. In this study, Models-3/CMAQ modeling system was utilized to access the impact of SSA emissions on aerosol chemical formation and deposition over Pearl River Delta (PRD), China in July 2006. More SSAs were transported inland from the open-ocean under the southeast wind in summertime. Two experiments (with and without SSA emissions in the CMAQ model) were set up to compare the modeling results with each other. The results showed that the increase of sulfate concentrations were more attributable to the primary emissions of coarse SO42- particles in SSA, while the increase of nitrate concentrations were more attributable to secondary chemical formations, known as the mechanisms of chloride depletion in SSA. In the coastal areas, 17.62 % of SO42-, 26.6% of NO3- and 38.2% of PM10 were attributed to SSA emissions, while those portions were less than 1% in the inland areas. The increases of PM10 and its components due to SSA emissions resulted in higher deposition fluxes over PRD, particularly in the coastal areas, except for the wet deposition of nitrate. Nitrate was more sensitive to SSA emissions in chemical formations than sulfate and dry deposition of aerosol was also more sensitive than that for wet deposition. Process analysis of sulfate and nitrate was applied to find out the difference of physical and chemical mechanisms between Guangzhou (the inland areas) and Zhuhai (the coastal areas). The negative contributions of dry deposition process to both sulfate and nitrate concentrations increased if SSA emissions were taken into account in the model, especially for Zhuhai. The negative contributions of cloud process also increased due to cloud scavenging and wet deposition process. In the coastal area, the gas-to-particle conversions became more active with high contributions of aerosol process to nitrate concentrations.

  8. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 2: Isotopic and field-production evidence for fluid connectivity

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, Peter, E-mail: birkle@iie.org.mx [Instituto de Investigaciones Electricas (IIE), Gerencia de Geotermia, Cuernavaca 62490, Morelos (Mexico); Garcia, Bernardo Martinez; Milland Padron, Carlos M. [PEMEX Exploracion y Produccion, Region Sur, Activo Integral Bellota-Jujo, Diseno de Explotacion, Cardenas, Tabasco (Mexico); Eglington, Bruce M. [Saskatchewan Isotope Laboratory, University of Saskatchewan, Saskatoon, Canada SK S7N 5E2 (Canada)

    2009-04-15

    The chemical and isotopic characterization of formation water from 18 oil production wells, extracted from 5200 to 6100 m b.s.l. at the Jujo-Tecominoacan carbonate reservoir in SE-Mexico, and interpretations of historical production records, were undertaken to determine the origin and hydraulic behavior of deep groundwater systems. The infiltration of surface water during Late Pleistocene to Early Holocene time is suggested by {sup 14}C-concentrations from 2.15 to 31.86 pmC, and by {sup 87}Sr/{sup 86}Sr-ratios for high-salinity formation water (0.70923-0.70927) that are close to the composition of Holocene to modern seawater. Prior to infiltration, the super-evaporation of seawater reached maximum TDS concentrations of 385 g/L, with lowest {delta}{sup 18}O values characterizing the most hypersaline samples. Minor deviations of formation water and dolomite host rocks from modern and Jurassic {sup 87}Sr/{sup 86}Sr-seawater composition, respectively, suggest ongoing water-rock interaction, and partial isotopic equilibration between both phases. The abundance of {sup 14}C in all sampled formation water, {sup 87}Sr/{sup 86}Sr-ratios for high-salinity water close to Holocene - present seawater composition, a water salinity distribution that is independent of historic water-cut, and a total water extraction volume of 2.037 MMm{sup 3} (1/83-4/07) excludes a connate, oil-leg origin for the produced water of the Jurassic-Cretaceous mudstone-dolomite sequence. Temporal fluctuations of water chemistry in production intervals, the accelerated migration of water fronts from the reservoir flanks, and isotopic mixing trends between sampled wells confirms the existence of free aquifer water below oil horizons. Vertical and lateral hydraulic mobility has probably been accelerated by petroleum extraction. The combination of interpreting historical fluctuations of salinity and water percentage in production wells with chemical-isotopic analysis of formation water resulted in a

  9. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 2: Isotopic and field-production evidence for fluid connectivity

    International Nuclear Information System (INIS)

    Birkle, Peter; Garcia, Bernardo Martinez; Milland Padron, Carlos M.; Eglington, Bruce M.

    2009-01-01

    The chemical and isotopic characterization of formation water from 18 oil production wells, extracted from 5200 to 6100 m b.s.l. at the Jujo-Tecominoacan carbonate reservoir in SE-Mexico, and interpretations of historical production records, were undertaken to determine the origin and hydraulic behavior of deep groundwater systems. The infiltration of surface water during Late Pleistocene to Early Holocene time is suggested by 14 C-concentrations from 2.15 to 31.86 pmC, and by 87 Sr/ 86 Sr-ratios for high-salinity formation water (0.70923-0.70927) that are close to the composition of Holocene to modern seawater. Prior to infiltration, the super-evaporation of seawater reached maximum TDS concentrations of 385 g/L, with lowest δ 18 O values characterizing the most hypersaline samples. Minor deviations of formation water and dolomite host rocks from modern and Jurassic 87 Sr/ 86 Sr-seawater composition, respectively, suggest ongoing water-rock interaction, and partial isotopic equilibration between both phases. The abundance of 14 C in all sampled formation water, 87 Sr/ 86 Sr-ratios for high-salinity water close to Holocene - present seawater composition, a water salinity distribution that is independent of historic water-cut, and a total water extraction volume of 2.037 MMm 3 (1/83-4/07) excludes a connate, oil-leg origin for the produced water of the Jurassic-Cretaceous mudstone-dolomite sequence. Temporal fluctuations of water chemistry in production intervals, the accelerated migration of water fronts from the reservoir flanks, and isotopic mixing trends between sampled wells confirms the existence of free aquifer water below oil horizons. Vertical and lateral hydraulic mobility has probably been accelerated by petroleum extraction. The combination of interpreting historical fluctuations of salinity and water percentage in production wells with chemical-isotopic analysis of formation water resulted in a successful method to distinguish four groundwater bodies

  10. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation.

    Science.gov (United States)

    Jang, Ji-Woong; Jung, Hwi-Min; Im, Dae-Kyun; Jung, Moo-Young; Oh, Min-Kyu

    2017-11-01

    Enterobacter aerogenes was metabolically engineered for acetoin production. To remove the pathway enzymes that catalyzed the formation of by-products, the three genes encoding a lactate dehydrogenase (ldhA) and two 2,3-butanediol dehydrogenases (budC, and dhaD), respectively, were deleted from the genome. The acetoin production was higher under highly aerobic conditions. However, an extracellular glucose oxidative pathway in E. aerogenes was activated under the aerobic conditions, resulting in the accumulation of 2-ketogluconate. To decrease the accumulation of this by-product, the gene encoding a glucose dehydrogenase (gcd) was also deleted. The resulting strain did not produce 2-ketogluconate but produced significant amounts of acetoin, with concentration reaching 71.7g/L with 2.87g/L/h productivity in fed-batch fermentation. This result demonstrated the importance of blocking the glucose oxidative pathway under highly aerobic conditions for acetoin production using E. aerogenes. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Application of electron-chemical curing in the production of thin composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V. (Polyrad Research and Production Co., Moscow (Russian Federation))

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author).

  13. Electrochemical formation of InP porous nanostructures and its application to amperometric chemical sensors

    International Nuclear Information System (INIS)

    Sato, Taketomo; Mizohata, Akinori; Fujino, Toshiyuki; Hashizume, Tamotsu

    2008-01-01

    In this paper, we report the electrochemical formation of the InP porous nanostructures and their feasibility for the application to the amperometric chemical sensors. Our two step electrochemical process consists of the pore formation on a (001) n-type InP substrate and the subsequent etching of pore walls caused by changing the polarity of the InP electrode in a HCl-based electrolyte. By applying the anodic bias to the InP electrode, the high-density array of uniform nanopores was formed on the surface. Next, the cathodic bias was applied to the porous sample to reduce the wall thickness by cathodic decomposition of InP, where the thickness of InP nanowall decreased uniformly along the entire depth of the porous layer. From the amperometric measurements of the porous electrode, it was found that the electrocatalytic activity was much higher than that of the planar electrode. Furthermore, the current sensitivity for the H 2 O 2 detection was much enhanced after the cathodic decomposition process. The InP porous nanostructure formed by the present process is one of the promising structures for the application to the semiconductor-based bio/chemical sensors. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Polyfluorinated chemicals and transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Knepper, Thomas P. [Univ. of Applied Sciences Fresenius, Idstein (Germany). Inst. for Analytical Research; Lange, Frank Thomas (eds.) [DVGW-Technologiezentrum Wasser, Karlsruhe (Germany)

    2012-07-01

    Due to their unparalleled effectiveness and efficiency, polyfluorinated chemicals (PFC) have become essential in numerous technical applications. However, many PFCs brought to market show limited biodegradability, and their environmental persistence combined with toxic and bioaccumulative potential have become a matter of concern in some instances. This volume highlights the synthesis of PFCs, focusing on substances with improved application and environmental properties, which are a challenge for synthetic chemists. Further, modern mass spectrometric techniques for the detection and identification of biotransformation products of PFCs are described. The sorption and leaching behavior of PFC in soil is also addressed in order to predict their fate in the environment. Several contributions discuss the monitoring of PFCs in European surface, ground and drinking waters, treatment options for PFC removal from drinking water, occurrence in food, and the human biomonitoring of PFCs. (orig.)

  15. DOE contractor's meeting on chemical toxicity

    International Nuclear Information System (INIS)

    1987-01-01

    The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metals Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session

  16. Chemical Characterization, Antioxidant and Enzymatic Activity of Brines from Scandinavian Marinated Herring Products

    DEFF Research Database (Denmark)

    Gringer, Nina; Osman, Ali; Nielsen, Henrik Hauch

    2014-01-01

    Brines generated during the last marination step in the production of marinated herring (Clupea harengus) were chemically characterized and analyzed for antioxidant and enzyme activities. The end-products were vinegar cured, spice cured and traditional barrel-salted herring with either salt...... or spices. The chemical characterization encompassed pH, dry matter, ash, salt, fatty acids, protein, polypeptide pattern, iron and nitrogen. The antioxidant activity was tested with three assays measuring: iron chelation, reducing power and radical scavenging activity. The enzymatic activity for peroxidase...

  17. Roadmap for a Smart Factory: A Modular, Intelligent Concept for the Production of Specialty Chemicals.

    Science.gov (United States)

    Reitze, Arnulf; Jürgensmeyer, Nikolas; Lier, Stefan; Kohnke, Marco; Riese, Julia; Grünewald, Marcus

    2018-04-09

    Digitalization and increasing the flexibility of production concepts offer the possibility to react to market challenges in the field of specialty chemicals. Shorter product lifetimes, increasing product individualization, and the resulting market volatility impose new requirements on plant operators. Novel concepts such as modular production plants and developments in digitalization (Industry 4.0) are able to assist the implementation of smart factories in specialty chemicals. These essential concepts will be presented in this Minireview. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Formation-evolution model of uranium-productive basin and its recognition criteria

    Energy Technology Data Exchange (ETDEWEB)

    Zuyi, Chen; Ziying, Li [Beijing Research Inst. of Uranium Geology, Beijing (China); Weixun, Zhou; Taiyang, Guan [East China Inst. of Technology, Fuzhou (China)

    2004-11-15

    Based on geologic-tectonic setting and dynamic evolution of important U-productive basins both at home and abroad, authors distinguish six type of U-productive basins, and nominate each type by typical representative of this type, namely Chu-Sarysu and Syr-Darya type, Central Kyzylkum type, Zaural and West-Siberia type, Zabaikal type, Bohemia type, and South Texas type. The formation-evolution model of each type of U-productive basin has been established and recognition criteria have been proposed. Finially, the difference between each type U-productive basin is discussed and some assumption on prospecting for U-productive basins is proposed. (authors)

  19. Formation-evolution model of uranium-productive basin and its recognition criteria

    International Nuclear Information System (INIS)

    Chen Zuyi; Li Ziying; Zhou Weixun; Guan Taiyang

    2004-11-01

    Based on geologic-tectonic setting and dynamic evolution of important U-productive basins both at home and abroad, authors distinguish six type of U-productive basins, and nominate each type by typical representative of this type, namely Chu-Sarysu and Syr-Darya type, Central Kyzylkum type, Zaural and West-Siberia type, Zabaikal type, Bohemia type, and South Texas type. The formation-evolution model of each type of U-productive basin has been established and recognition criteria have been proposed. Finially, the difference between each type U-productive basin is discussed and some assumption on prospecting for U-productive basins is proposed. (authors)

  20. Procedure of Destructive Chemical Recovery of Precious Metals in Nitric Acid Production

    Directory of Open Access Journals (Sweden)

    Ljubičić, M.

    2012-07-01

    Full Text Available The heart of the nitric acid production process is the chemical reactor containing a platinum-based catalyst pack and an associated catchment system, which allows the ammonia oxidation reaction to take place efficiently. Under the severe operating conditions imposed by the high-pressure ammonia oxidation process, the catalyst gauzes experience progressive deterioration, as shown by the restricted surface of the catalyst wires, the loss of catalytic activity and the loss of catalytic materials. The higher the pressure of gaseous ammonia oxidation, the greater the loss of platinum group metals from the surface of the applied selective heterogeneous catalysts. Total losses for one batch over the whole period of using selective heterogeneous catalysts may account in the range from 20 to 40 % of the total installed quantity of precious metals. An important part of the platinum removed from the platinum-rhodium alloy wires can be recovered at the outlet of the reactor by means of palladium catchment gauzes. However, this catchment process, which is based on the great ability of palladium to alloy with platinum, is not 100 % effective and a fraction of the platinum and practically all of the rhodium lost by the catalyst wires, evades the catchment package and is then deposited in other parts of the plant, especially heat exchangers. From the above mentioned operating equipment, the retained mass of precious metals can be recovered by the technical procedure of non-destructive and destructive chemical solid-liquid extraction.Shown is the technical procedure of destructive chemical recovery of preheater and boiler for preheating and production of steam by applying sulfuric acid (w = 20 % and subsequent procedure of raffination of derived sludge, to the final recovery of precious metals. The technical procedure of destructive chemical recovery of precious metals from preheater and boiler for preheating and production of steam in nitric acid production is

  1. High production volume chemical Amine Oxide [C8-C20] category environmental risk assessment

    DEFF Research Database (Denmark)

    Sanderson, Hans; Tibazarwa, Caritas; Greggs, William

    2009-01-01

    and personal care products. Given the lack of persistence or bioaccumulation, and the low likelihood of these chemicals partitioning to soil, the focus of the environmental assessment is on the aquatic environment. In the United States, the E-FAST model is used to estimate effluent concentrations in the United......An environmental assessment of amine oxides has been conducted under the OECD SIDS High Production Volume (HPV) Program via the Global International Council of Chemical Associations (ICCA) Amine Oxides Consortium. Amine oxides are primarily used in conjunction with surfactants in cleaning...... States from manufacturing facilities and from municipal facilities resulting from consumer product uses. Reasonable worst-case ratios of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) range from 0.04 to 0.003, demonstrating that these chemicals are a low risk...

  2. 'Sustainable chemical production' - A review of the 7th Symposium of Fribourg 2005

    International Nuclear Information System (INIS)

    Kaeser, K.

    2005-01-01

    The Division 'Industrial Chemistry' of the Swiss Chemical Society organizes periodically a two-day event for the post-graduate education of its members. This event is known as the Freiburger Symposium. This year it focussed on sustainable chemical production. The twelve talks covered the following aspects: ethical needs for sustainability standards, the required, attained, and yet to be attained sustainability goals in chemical industry. Diverse case studies showed the highly developed awareness about the sustainability issue within the chemical community. (author)

  3. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, C.R.; Jokumsen, K.V.; Villadsen, John

    2002-01-01

    promoters in L. lactis MG1363 and in the PFL-deficient strain CRM40. Strains with five different PFL levels were obtained. Variation in the PFL level markedly affected the resulting end-product formation in these strains. During growth on galactose, the flux towards mixed-acid products was to a great extent...

  4. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the deve......Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up...... the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  5. TRACKING THE PROCESSES OF MELANODIN FORMATION IN COFFEE

    Directory of Open Access Journals (Sweden)

    Snezhana Ivanova

    2017-06-01

    Full Text Available Melanoidins are high molecular brown colored substances and products of sugar-amine reaction of Maillard. They are formed during roasting a green coffee beans under different thermal regimes of heat treatment. In the technological production of different types coffee beverages, the coffee powder is subjected to after-heat treatment. In these additional operations again become active processes of melanoidin formation and their changing their structures. This is changes of the Melanoidins have different effects on human health. It is therefore important to know their chemical structures and changes. Previous studies have shown that polysaccharides, proteins and chlorogenic acids are included in the formation of these melanoidins. However, the precise structures of coffee melanoidins and mechanisms involved in the formation are not yet clarified. This article systematize available information and provides an overview of research obtained so far on the structure of coffee melanoidins and mechanisms of their formation and potential health effects.

  6. Phenodynamics of production and chemical pools in mayapple and flowering dogwood

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, F.G. Jr.

    1991-01-01

    The objective of this study is to provide an understanding of the seasonality of biomass production and chemical storage among selected forest species as an aid to the analysis and management of a forest ecosystem model. The specific goals to accomplish the objectives included: (1) the construction of phenological calendars to be superimposed on the civil calendar, such that the seasons of the year are not marked by calendar dates but rather by dated groups of phenological events; (2) to develop a capability to predict onset of the generative phase (flowering) from heat unit summation methods; (3) to illustrate the role of phenology to biomass production and chemical storage in two indicator species, mayapple and flowering dogwood; and (4) to develop the capability to predict aboveground and below ground standing crop biomass in dogwood. Observations in this study focused on the generative phases (flowering) of individual plants and colonies of plants as indicators of productivity. 16 figs., 11 tabs.

  7. Evaluation of maillard reaction variables and their effect on heterocyclic amine formation in chemical model systems.

    Science.gov (United States)

    Dennis, Cara; Karim, Faris; Smith, J Scott

    2015-02-01

    Heterocyclic amines (HCAs), highly mutagenic and potentially carcinogenic by-products, form during Maillard browning reactions, specifically in muscle-rich foods. Chemical model systems allow examination of in vitro formation of HCAs while eliminating complex matrices of meat. Limited research has evaluated the effects of Maillard reaction parameters on HCA formation. Therefore, 4 essential Maillard variables (precursors molar concentrations, water amount, sugar type, and sugar amounts) were evaluated to optimize a model system for the study of 4 HCAs: 2-amino-3-methylimidazo-[4,5-f]quinoline, 2-amino-3-methylimidazo[4,5-f]quinoxaline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, and 2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline. Model systems were dissolved in diethylene glycol, heated at 175 °C for 40 min, and separated using reversed-phase liquid chromatography. To define the model system, precursor amounts (threonine and creatinine) were adjusted in molar increments (0.2/0.2, 0.4/0.4, 0.6/0.6, and 0.8/0.8 mmol) and water amounts by percentage (0%, 5%, 10%, and 15%). Sugars (lactose, glucose, galactose, and fructose) were evaluated in several molar amounts proportional to threonine and creatinine (quarter, half, equi, and double). The precursor levels and amounts of sugar were significantly different (P < 0.05) in regards to total HCA formation, with 0.6/0.6/1.2 mmol producing higher levels. Water concentration and sugar type also had a significant effect (P < 0.05), with 5% water and lactose producing higher total HCA amounts. A model system containing threonine (0.6 mmol), creatinine (0.6 mmol), and glucose (1.2 mmol), with 15% water was determined to be the optimal model system with glucose and 15% water being a better representation of meat systems. © 2015 Institute of Food Technologists®

  8. Radiation-chemical transformations of antioxidants of alkylated phenols class. 3. 2.2'-methylene-bis-4-methyl-6-tret-butylphenol bis-phenol transformations in the absence of oxygen

    International Nuclear Information System (INIS)

    Antonova, E.A.; Zhirkova, O.A.

    1993-01-01

    Experimental results on radiation-chemical yields of products in the course of bisphenol-agidol transformations in n-decane in the absence of oxygen are presented. It is ascertained that monophenols of different structure are the main stable products of radiation-chemical transformations of agidol. Radiation-chemical mechanism of required product formation is discussed

  9. Alignment of microbial fitness with engineered product formation: obligatory coupling between acetate production and photoautotrophic growth.

    Science.gov (United States)

    Du, Wei; Jongbloets, Joeri A; van Boxtel, Coco; Pineda Hernández, Hugo; Lips, David; Oliver, Brett G; Hellingwerf, Klaas J; Branco Dos Santos, Filipe

    2018-01-01

    Microbial bioengineering has the potential to become a key contributor to the future development of human society by providing sustainable, novel, and cost-effective production pipelines. However, the sustained productivity of genetically engineered strains is often a challenge, as spontaneous non-producing mutants tend to grow faster and take over the population. Novel strategies to prevent this issue of strain instability are urgently needed. In this study, we propose a novel strategy applicable to all microbial production systems for which a genome-scale metabolic model is available that aligns the production of native metabolites to the formation of biomass. Based on well-established constraint-based analysis techniques such as OptKnock and FVA, we developed an in silico pipeline-FRUITS-that specifically 'Finds Reactions Usable in Tapping Side-products'. It analyses a metabolic network to identify compounds produced in anabolism that are suitable to be coupled to growth by deletion of their re-utilization pathway(s), and computes their respective biomass and product formation rates. When applied to Synechocystis sp. PCC6803, a model cyanobacterium explored for sustainable bioproduction, a total of nine target metabolites were identified. We tested our approach for one of these compounds, acetate, which is used in a wide range of industrial applications. The model-guided engineered strain shows an obligatory coupling between acetate production and photoautotrophic growth as predicted. Furthermore, the stability of acetate productivity in this strain was confirmed by performing prolonged turbidostat cultivations. This work demonstrates a novel approach to stabilize the production of target compounds in cyanobacteria that culminated in the first report of a photoautotrophic growth-coupled cell factory. The method developed is generic and can easily be extended to any other modeled microbial production system.

  10. Micro algae to obtain chemical products. Las microalgas como fuente de productos quimicos

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.E.; Molina, E.; Garcia, F. (Departamento de Ingenieria Quimica. Facultad de Ciencias. Universidad de Granada. Granada (Spain))

    1994-01-01

    The aim of this paper is to show the relevance of micro algae biomass production to obtain chemicals of industrial application. The chemicals are classified in: lipids, pigments, colloids, glycerol and others, it emphasizes the culture conditions that mainly induce the synthesis of these compounds.

  11. Pricing Strategy and the Formation and Evolution of Reference Price Perceptions in New Product Categories

    OpenAIRE

    Lowe, Ben; Alpert, Frank

    2010-01-01

    This study examines the formation and evolution of reference price perceptions in new product categories. It contributes to our understanding of pricing new products by integrating two important research streams in marketing-reference price theory and the theory of pioneer brand advantage. Prior research has focused solely on products in existing or incrementally new categories, and has typically examined fast-moving consumer goods. Using a cross-sectional experiment to study the formation of...

  12. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  13. Biogenic amine formation and bacterial contribution in Natto products.

    Science.gov (United States)

    Kim, Bitna; Byun, Bo Young; Mah, Jae-Hyung

    2012-12-01

    Twenty-one Natto products currently distributed in Korea were analysed for biogenic amine contents and tested to determine physicochemical and bacterial contributions to biogenic amine formation. Among them, nine products (about 43%) had β-phenylethylamine or tyramine contents greater than the toxic dose (30mg/kg and 100mg/kg, respectively) of each amine, although no products showed total amounts of biogenic amines above the harmful level (1000mg/kg), which indicates that the amounts of biogenic amines in some Natto products are not within the safe level for human health. From four different Natto products, that contained noticeable levels of β-phenylethylamine and tyramine, 80 bacterial strains were isolated. All the strains were identified to be Bacillus subtilis and highly capable of producing β-phenylethylamine and tyramine. Therefore, it seems likely that the remarkable contents of β-phenylethylamine and tyramine in Natto predominantly resulted from the strains highly capable of producing those amines present in the food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Hyperosmotic stress reduces melanin production by altering melanosome formation.

    Science.gov (United States)

    Bin, Bum-Ho; Bhin, Jinhyuk; Yang, Seung Ha; Choi, Dong-Hwa; Park, Kyuhee; Shin, Dong Wook; Lee, Ai-Young; Hwang, Daehee; Cho, Eun-Gyung; Lee, Tae Ryong

    2014-01-01

    Many tissues of the human body encounter hyperosmotic stress. The effect of extracellular osmotic changes on melanin production has not yet been elucidated. In this study, we determined that hyperosmotic stress induced by organic osmolytes results in reduced melanin production in human melanoma MNT-1 cells. Under hyperosmotic stress, few pigmented mature melanosomes were detected, but there was an increase in swollen vacuoles. These vacuoles were stained with an anti-M6PR antibody that recognizes late endosomal components and with anti-TA99 and anti-HMB45 antibodies, implying that melanosome formation was affected by hyperosmotic stress. Electron microscopic analysis revealed that the M6PR-positive swollen vacuoles were multi-layered and contained melanized granules, and they produced melanin when L-DOPA was applied, indicating that these vacuoles were still capable of producing melanin, but the inner conditions were not compatible with melanin production. The vacuolation phenomenon induced by hyperosmotic conditions disappeared with treatment with the PI3K activator 740 Y-P, indicating that the PI3K pathway is affected by hyperosmotic conditions and is responsible for the proper formation and maturation of melanosomes. The microarray analysis showed alterations of the vesicle organization and transport under hyperosmotic stress. Our findings suggest that melanogenesis could be regulated by physiological conditions, such as osmotic pressure.

  15. Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm.

    Science.gov (United States)

    Skinnider, Michael A; Dejong, Chris A; Franczak, Brian C; McNicholas, Paul D; Magarvey, Nathan A

    2017-08-16

    Natural products represent a prominent source of pharmaceutically and industrially important agents. Calculating the chemical similarity of two molecules is a central task in cheminformatics, with applications at multiple stages of the drug discovery pipeline. Quantifying the similarity of natural products is a particularly important problem, as the biological activities of these molecules have been extensively optimized by natural selection. The large and structurally complex scaffolds of natural products distinguish their physical and chemical properties from those of synthetic compounds. However, no analysis of the performance of existing methods for molecular similarity calculation specific to natural products has been reported to date. Here, we present LEMONS, an algorithm for the enumeration of hypothetical modular natural product structures. We leverage this algorithm to conduct a comparative analysis of molecular similarity methods within the unique chemical space occupied by modular natural products using controlled synthetic data, and comprehensively investigate the impact of diverse biosynthetic parameters on similarity search. We additionally investigate a recently described algorithm for natural product retrobiosynthesis and alignment, and find that when rule-based retrobiosynthesis can be applied, this approach outperforms conventional two-dimensional fingerprints, suggesting it may represent a valuable approach for the targeted exploration of natural product chemical space and microbial genome mining. Our open-source algorithm is an extensible method of enumerating hypothetical natural product structures with diverse potential applications in bioinformatics.

  16. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path

    DEFF Research Database (Denmark)

    Campodonico, Miguel A.; Andrews, Barbara A.; Asenjo, Juan A.

    2014-01-01

    The production of 75% of the current drug molecules and 35% of all chemicals could be achieved through bioprocessing (Arundel and Sawava, 2009). To accelerate the transition from a petroleum based chemical industry to a sustainable bio-based industry, systems metabolic engineering has emerged...... to computationally design metabolic pathways for chemical production. Although algorithms able to provide specific metabolic interventions and heterologous production pathways are available, a systematic analysis for all possible production routes to commodity chemicals in Escherichia call is lacking. Furthermore...... could be identified for 1271 of the 6615 conditions evaluated. This study characterizes the potential for E coli to produce commodity chemicals, and outlines a generic strain design workflow to design production strains. (C) 2014 international Metabolic Engineering Society. Published by Elsevier Inc...

  17. The environmental injustice of beauty: framing chemical exposures from beauty products as a health disparities concern.

    Science.gov (United States)

    Zota, Ami R; Shamasunder, Bhavna

    2017-10-01

    The obstetrics-gynecology community has issued a call to action to prevent toxic environmental chemical exposures and their threats to healthy human reproduction. Recent committee opinions recognize that vulnerable and underserved women may be impacted disproportionately by environmental chemical exposures and recommend that reproductive health professionals champion policies that secure environmental justice. Beauty product use is an understudied source of environmental chemical exposures. Beauty products can include reproductive and developmental toxicants such as phthalates and heavy metals; however, disclosure requirements are limited and inconsistent. Compared with white women, women of color have higher levels of beauty product-related environmental chemicals in their bodies, independent of socioeconomic status. Even small exposures to toxic chemicals during critical periods of development (such as pregnancy) can trigger adverse health consequences (such as impacts on fertility and pregnancy, neurodevelopment, and cancer). In this commentary, we seek to highlight the connections between environmental justice and beauty product-related chemical exposures. We describe racial/ethnic differences in beauty product use (such as skin lighteners, hair straighteners, and feminine hygiene products) and the potential chemical exposures and health risks that are associated with these products. We also discuss how targeted advertising can take advantage of mainstream beauty norms to influence the use of these products. Reproductive health professionals can use this information to advance environmental justice by being prepared to counsel patients who have questions about toxic environmental exposures from beauty care products and other sources. Researchers and healthcare providers can also promote health-protective policies such as improved ingredient testing and disclosure for the beauty product industry. Future clinical and public health research should consider beauty

  18. Evaluating exposures to complex mixtures of chemicals during a new production process in the plastics industry

    NARCIS (Netherlands)

    Meijster, T.; Burstyn, I.; Wendel de Joode, B. van; Posthumus, M.A.; Kromhout, H.

    2004-01-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations.

  19. Evaluating Exposures to Complex Mixtures of Chemicals During a New Production Process in the Plastics Industry

    NARCIS (Netherlands)

    Meijster, T.; Burstyn, I.; Wendel de Joode, van B.; Posthumus, M.A.; Kromhout, H.

    2004-01-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations.

  20. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste.

    Science.gov (United States)

    Almeida, João R M; Fávaro, Léia C L; Quirino, Betania F

    2012-07-18

    The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a "waste-stream" instead of a valuable "coproduct". The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others) by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  1. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Compounds

    Science.gov (United States)

    George, C.; Passananti, M.; Kong, L.; Shang, J.; Perrier, S.; Jianmin, C.; Donaldson, D. J.

    2016-12-01

    The atmospheric formation of organosulfur derivatives through reaction with SO2 is generally mediated by oxidants such as O3, OH; recently we have proposed a direct reaction between SO2 and unsaturated compounds as another possible pathway for organosulfate formation in the troposphere. For the first time it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds on various unsaturated compounds, and may therefore have a general environmental impact. We used different experimental strategies i.e., a coated flow tube (CFT), an aerosol flow tube (AFT) and a DRIFT (diffuse reflectance infrared Fourier transform) cell. The reaction products were analyzed by means of liquid chromatography coupled to a high resolution mass spectrometer (LC-HR-MS). We report indeed that SO2 reacts with large variety of C=C unsaturations and that even in the presence of ozone, SO2 reacts with OA leading to organosulfur products. A strong enhancement in product formation is observed under actinic illumination, increases the atmospheric significance of this chemical pathway. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%. The detection in atmospheric aerosols of organosulfur compounds with the same chemical formulae as the products identified here seems to confirm the importance of this reaction in the atmosphere.

  2. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece.

    Science.gov (United States)

    Voudrias, Evangelos; Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini

    2012-07-01

    The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and "other". Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and solid waste with 11.4% w/w of the total. The total production of chemical waste comprised 1.8% w/w of the total hazardous medical waste produced by the hospital. Thus, the sum of pharmaceutical and chemical waste was 5.7% w/w of the total hazardous medical waste produced by the hospital. The unit production rates for total chemical waste for the hospital were 5.8 (2.2) g/patient/d and 1.1 (0.4) g/exam/d. The respective

  3. Radiochemical problems of radiation chemical synthesis in n, γ-field of nuclear reactor

    International Nuclear Information System (INIS)

    Mironov, V.P.; Frejdus, N.V.; Bugaenko, L.T.; Kalyazin, E.P.; Petryaev, E.P.

    1981-01-01

    A wide applicability of products of radiation chemical synthesis (RCS), using n, γ-irradiation, is limited by possible contamination of the latter with long-lived radioactive isotopes of chemical elements included in the composition of the reagent and compounds syntesized (chemically non-separable radionuclides - CNR). A technique of the determination of the limit accumulation CNR on the basis of radiation chemical parameters of the synthesis (radiation-chemical yield, the dose rate absorbed, singleness of purpose of RCS etc.) and radiochemical parameters of formation and accumulation of CNR (radiochemical yields of CNR in the products of radiolysis, neutron fluence, the reagent purity etc.) is suggested. The radiochemical evaluation of CNR accumulation (tritium and carbon-14), formed at the expense of activation with neutrons of chemical elements of water and organic substances, consisting of hydrogen, carbon and oxygen has shown that at relatively low yields of final products (> or approximately 3 molecules/100 eV) no accumulation of radionuclides in concentrations reaching the average admissible concentration takes place [ru

  4. Property Model-based Tailor-made Design of Chemical-based Products

    DEFF Research Database (Denmark)

    Kalakul, Sawitree

    Computer-aided model-based methods and tools are increasingly playing important roles in chemical product design. They have the potential to very quickly search for and identify reliable product candidates that can then be verified through experiments. Inthis way, the time and resources spent...... on experiment are reduced leading to faster and cheaper to market the products. The tools also help to manage the solution of product design problems, which usually require efficient handling of model-data-knowledge from different sources and at different time and size scales. The main contribution...... the needed template for a desired product is not available. VPPD-Lab employs a suite of algorithms(such as database search, molecular and mixture blend design) and toolboxes (such asproperty calculations and property model consistency tests) for specific product property prediction, design, and/or analysis...

  5. Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation.

    Science.gov (United States)

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-05-01

    This study investigated the effects of transformation conditions such as initial pH, the initial concentration of glucose and yeast extract in the medium, and the separate addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing by-product formation by Amycolatopsis sp. ATCC 39116. The extent and nature of by-product formation and vanillin yield were affected by initial pH and different initial concentrations of glucose and yeast extract in the medium, with a high yield of vanillin and high cell density obtained at pH 8.0, 10 g/l glucose, and 8 g/l yeast extract. High concentrations of ferulic acid were found to negatively affect cell density. Additional supplementation of 100 mg/l vanillic acid, a metabolically linked by-product, was found to result in a high concentration of vanillin and guaiacol, an intermediate of vanillin. Via an analysis of the effect of these transformation conditions on competing by-product formation, high concentrations of ferulic acid were transformed with a molar yield to vanillin of 96.1 and 95.2 %, by Amycolatopsis sp. ATCC 39116 and Streptomyces V1, respectively, together with a minor accumulation of by-products. These are among the highest performance values reported in the literature to date for Streptomyces in batch cultures.

  6. GLOBAL AND REGIONAL GEOCHEMICAL INDEXES OF PRODUCTION OF CHEMICAL ELEMENTS

    Directory of Open Access Journals (Sweden)

    Nikolay S. Kasimov

    2014-01-01

    Full Text Available This paper presents a geochemical assessment of the primary involvement of chemical elements in technogenesis in the world and individual countries. In order to compare the intensity of production of various chemical elements in different countries, the authors have introduced a number of new terms and parameters. The new term is “abstract rock” (AR - an elemental equivalent, whose average composition corresponds to the average chemical composition of the upper continental crust. The new parameters are: “conditional technophility of an element” (TY, “specific technophility” (TYN “regional conditional technophility” (TYR, “specific regional technophility” (TN, and “density of regional conditional technophility” (TS. TY equals to the tons of AR per year necessary for the production of the current level of the element. TY of different elements has been estimated for 2008-2010. The highest TY values are associated with C, S, N, Ra, and Au. TY of many micro- and ultramicroelements is of the order of n•1011t. TYN reflects the volume of AR per the world’s capita. TYN changes from the 1960s to 2010 indicates that the Earth’s population is growing much faster than its demand for many chemical elements. TYR, TN, and TS were used for the integrated assessment of technogenesis at the regional scale; they reflect the intensity of the technogenesis process at the level of individual countries and allow comparing countries with different levels of elements production, population, and areas. The TN and TS levels of the leaders in extraction of natural resources are below these values in other countries due to the large territories (Russia, USA, Canada, Australia, Saudi Arabia, Kazakhstan, Argentina, Bolivia, Venezuela, Colombia, Zambia, Mali, Libya, Mongolia, and Sudan, to the large population (Indonesia, Vietnam, the Philippines, Bangladesh, Nigeria, or to both high spatial and demographic dimensions (India, Brazil, France, Egypt

  7. A novel biochemical route for fuels and chemicals production from cellulosic biomass.

    Directory of Open Access Journals (Sweden)

    Zhiliang Fan

    Full Text Available The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1 cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2 both of the two hydrolysis products of cellobionate--glucose and gluconate--can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route.

  8. A novel biochemical route for fuels and chemicals production from cellulosic biomass.

    Science.gov (United States)

    Fan, Zhiliang; Wu, Weihua; Hildebrand, Amanda; Kasuga, Takao; Zhang, Ruifu; Xiong, Xiaochao

    2012-01-01

    The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1) cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2) both of the two hydrolysis products of cellobionate--glucose and gluconate--can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route.

  9. Chemical modeling of formation water of the active Luna, Tabasco; Modelacion quimica de aguas de formacion del activo Luna, Tabasco

    Energy Technology Data Exchange (ETDEWEB)

    Barragan R, Rosa M; Portugal M, Enrique; Arellano G, Victor M. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Martinez A, Ana E; Ascencio C, Fernando [Petroleos Mexicanos (Mexico)

    2001-07-01

    From the data of chemical composition of the water, the chemical equilibrium at a given temperature can be modeled for, later, obtain the saturation indexes of characteristic minerals with the intention of knowing or predict which phases can form the deposits. The Gerencia de Productividad de Pozos (GPP) of the Subdivision of Technology and Professional Development (STDP) of PEMEX, has among its objectives to promote studies tending to solve problematic that affect the wells productivity, reason why it showed interest in making a study of chemical modeling of formation waters of the Active Luna, in order to know the saturation state of the main mineral phases. This way a joint project was executed in 1997 among the GPP, the Active of Production Luna of PEMEX and the Gerencia de Geotermia of the IIE. The objectives of the project were: (a) sampling and physicochemical characterization of waters pertaining to oil wells of the Actives of Production Luna, and (b) modeling of the chemical equilibrium at well head and deposit conditions to obtain saturation indexes of characteristic minerals of hydrothermal systems, in order to predict the mineral phases that can be found in superficial and deep incrustations. [Spanish] A partir de los datos de composicion quimica del agua, pude modelarse el equilibrio quimico a una temperatura dada para, posteriormente, obtener los indices de saturacion de los minerales caracteristicos con el objeto de conocer o predecir cuales fases pueden formar los depositos. La Gerencia de Productividad de Pozos (GPP) de la Subdireccion de Tecnologia y Desarrollo Profesional (STDP) de Pemex, tiene entre sus objetivos promover estudios tendientes a resolver problematicas que impactan la productividad de los pozos, por lo que mostro interes en realizar un estudio de modelacion quimica de las aguas de formacion del Activo Luna, con el proposito de conocer el estado de saturacion de las principales fases minerales. De esta forma se realizo un proyecto

  10. Persistent local chemical bonds in intermetallic phase formation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yanwen [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Qin, Xubo [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang, Shuo; Huang, Yuying [Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2014-05-01

    We found a direct evidence for the existence of the local chemical Bi–In bonds in the BiIn{sub 2} melt. These bonds are strong and prevail, dominating the structure evolution of the intermetallic clusters. From the local structure of the melt-quenched BiIn{sub 2} ribbon, the chemical Bi–In bonds strengthen compared with those in the equilibrium solidified alloy. The chemical bonds in BiIn{sub 2} melt retain to solid during a rapid quenching process. The results suggest that the intermetallic clusters in the melt evolve into the as-quenched intermetallic phase, and the intermetallic phase originates from the chemical bonds between unlike atoms in the melt. The chemical bonds preserve the chemical ordered clusters and dominate the clusters evolution.

  11. Student’s Video Production as Formative Assessment

    Directory of Open Access Journals (Sweden)

    Eduardo Gama

    2017-04-01

    Full Text Available Learning assessments are subject of discussion both in their theoretical and practical approaches. The process of measuring learning in physics by high school students, either qualitatively or quantitatively, is one in which it should be possible to identify not only the concepts and contents students failed to achieve but also the reasons for the failure. We propose that students’ video production offers a very effective formative assessment tool to teachers: as a formative assessment, it produces information that allows the understanding of where and when the learning process succeeded or failed, of identifying, as a subject or as a group, the deficiencies or misunderstandings related to the theme under analysis and their interpretation by students, and it provides also a different kind of assessment, related to some other life skills, such as ability to carry on a project till its conclusion and to work cooperatively. In this paper, we describe the use of videos produced by high school students as an assessment resource. The students were asked to prepare a short video, which was then presented to the whole group and discussed. The videos reveal aspects of students’ difficulties that usually do not appear in formal assessments such as tests and questionnaires. After the use of the videos as a component of classroom assessments and the use of the discussions to rethink learning activities in the group, the videos were analysed and classified in various categories. This analysis showed a strong correlation between the technical quality of the video and the content quality of the students’ argumentation. Also, it was shown that the students do not prepare their video based on quick and easy production; they usually choose forms of video production that require careful planning and implementation, and this reflects directly on the overall quality of the video and of the learning process.

  12. A study of the formation of minority chlorination disinfection by-products; Estudio de la formacion de subproductos minoritarios de la desinfeccion con cloro

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Vidal, F. J.; Ibeas Reoyo, M. v.; Perez Serrano, A.; Orozco Barrenetxea, C.; Gonzalez Delgado, N. [Universidad de Burgos (Spain)

    2001-07-01

    Chlorine has been the traditional choice of chemical for the disinfection in drinking water treatment; however, chlorination of water can lead to the formation of disinfection by-products (DBPs). Tri halomethanes are the most abundant and studied volatile DBPs, but in recent years the study of the minority DBPs is becoming more and more important due to the possible health effects of these compounds and therefore, the need to establish maximum contaminant levels for their presence in public water supplies. In the present work, some of these minority DBPs are evaluated, di chloroacetonitrile (DCAN), chloropicrin or trichloronitromethane (CP) and 1.1,1-tetrachloroethane (TCAC), studying the main parameters influencing their formation: type and concentration of the precursor organic matter, presence of bromide ion, pH and influence of the previous ozonization treatment. (Author) 33 refs.

  13. Clean Air Act Standards and Guidelines for Chemical Production and Distribution

    Science.gov (United States)

    This page contains the stationary sources of air pollution for the chemical production & distribution industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, click on the links below.

  14. The Gas-Phase Formation of Methyl Formate in Hot Molecular Cores

    Science.gov (United States)

    Horn, Anne; Møllendal, Harald; Sekiguchi, Osamu; Uggerud, Einar; Roberts, Helen; Herbst, Eric; Viggiano, A. A.; Fridgen, Travis D.

    2004-08-01

    Methyl formate, HCOOCH3, is a well-known interstellar molecule prominent in the spectra of hot molecular cores. The current view of its formation is that it occurs in the gas phase from precursor methanol, which is synthesized on the surfaces of grain mantles during a previous colder era and evaporates while temperatures increase during the process of high-mass star formation. The specific reaction sequence thought to form methyl formate, the ion-molecule reaction between protonated methanol and formaldehyde followed by dissociative recombination of the protonated ion [HCO(H)OCH3]+, has not been studied in detail in the laboratory. We present here the results of both a quantum chemical study of the ion-molecule reaction between [CH3OH2]+ and H2CO as well as new experimental work on the system. In addition, we report theoretical and experimental studies for a variety of other possible gas-phase reactions leading to ion precursors of methyl formate. The studied chemical processes leading to methyl formate are included in a chemical model of hot cores. Our results show that none of these gas-phase processes produces enough methyl formate to explain its observed abundance.

  15. Chemical of shales belonging to Castellanos and Migues formations (Cretaceous), Santa Lucia basin - Uruguay: Paleoenvironment considerations

    International Nuclear Information System (INIS)

    Peel, E.; Veloslavsky, G.; Fulfaro, J.

    1998-01-01

    In the present work there are analyzed 16 samples of shales belonging to Castellanos and Migues formations (Cretaceous), taken from cores of various boreholes of the Santa Lucia Basin (Uruguay). Chemical analysis of major elements, trace elements (B,V, Sr, Rb, Cr y Ga) and X- ray diffractometry were done to them in order to obtain a geochemical characterization. The characterization shows that their chemical composition is comparable to the world average composition of shales. Besides, the X-ray diffractometry. Based on that, it is clear to deduce that it existed a change in the environment conditions having a shift from a redactor environment which agrees with former micropaleontologic studies. (author)

  16. When the dust settles: stable xenon isotope constraints on the formation of nuclear fallout

    International Nuclear Information System (INIS)

    Cassata, W.S.; Prussin, S.G.; Knight, K.B.; Hutcheon, I.D.; Isselhardt, B.H.; Renne, P.R.

    2014-01-01

    Nuclear weapons represent one of the most immediate threats of mass destruction. In the event that a procured or developed nuclear weapon is detonated in a populated metropolitan area, timely and accurate nuclear forensic analysis and fallout modeling would be needed to support attribution efforts and hazard assessments. Here we demonstrate that fissiogenic xenon isotopes retained in radioactive fallout generated by a nuclear explosion provide unique constraints on (1) the timescale of fallout formation, (2) chemical fractionation that occurs when fission products and nuclear fuel are incorporated into fallout, and (3) the speciation of fission products in the fireball. Our data suggest that, in near surface nuclear tests, the presence of a significant quantity of metal in a device assembly, combined with a short time allowed for mixing with the ambient atmosphere (seconds), may prevent complete oxidation of fission products prior to their incorporation into fallout. Xenon isotopes thus provide a window into the chemical composition of the fireball in the seconds that follow a nuclear explosion, thereby improving our understanding of the physical and thermo-chemical conditions under which fallout forms. - Highlights: • Radioactive fallout generated by nuclear explosions contains fissiogenic xenon isotopes. • Xe isotopes provide constraints on timescales of fallout formation and the speciation of fission products in the fireball. • Our data indicate that macroscopic fallout forms rapidly (<3 s). • Chemical fractionation trends suggest that fission products may not have been fully oxidized prior to incorporation

  17. Quantification of Chemical and Mechanical Effects on the Formation of the G-Quadruplex and i-Motif in Duplex DNA.

    Science.gov (United States)

    Selvam, Sangeetha; Mandal, Shankar; Mao, Hanbin

    2017-09-05

    The formation of biologically significant tetraplex DNA species, such as G-quadruplexes and i-motifs, is affected by chemical (ions and pH) and mechanical [superhelicity (σ) and molecular crowding] factors. Because of the extremely challenging experimental conditions, the relative importance of these factors on tetraplex folding is unknown. In this work, we quantitatively evaluated the chemical and mechanical effects on the population dynamics of DNA tetraplexes in the insulin-linked polymorphic region using magneto-optical tweezers. By mechanically unfolding individual tetraplexes, we found that ions and pH have the largest effects on the formation of the G-quadruplex and i-motif, respectively. Interestingly, superhelicity has the second largest effect followed by molecular crowding conditions. While chemical effects are specific to tetraplex species, mechanical factors have generic influences. The predominant effect of chemical factors can be attributed to the fact that they directly change the stability of a specific tetraplex, whereas the mechanical factors, superhelicity in particular, reduce the stability of the competing species by changing the kinetics of the melting and annealing of the duplex DNA template in a nonspecific manner. The substantial dependence of tetraplexes on superhelicity provides strong support that DNA tetraplexes can serve as topological sensors to modulate fundamental cellular processes such as transcription.

  18. 15 CFR 714.3 - Advance declaration requirements for additionally planned production of Schedule 3 chemicals.

    Science.gov (United States)

    2010-01-01

    ... COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 3 CHEMICALS § 714.3 Advance... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Advance declaration requirements for additionally planned production of Schedule 3 chemicals. 714.3 Section 714.3 Commerce and Foreign Trade...

  19. Potential of commodity chemicals to become bio-based according to maximum yields and petrochemical prices

    NARCIS (Netherlands)

    Straathof, Adrie J.J.; Bampouli, A.

    2017-01-01

    Carbohydrates are the prevailing biomass components available for bio-based production. The most direct way to convert carbohydrates into commodity chemicals is by one-step conversion at maximum theoretical yield, such as by anaerobic fermentation without side product formation. Considering these

  20. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    Science.gov (United States)

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Prediction of novel synthetic pathways for the production of desired chemicals

    Directory of Open Access Journals (Sweden)

    Park Jin

    2010-03-01

    Full Text Available Abstract Background There have been several methods developed for the prediction of synthetic metabolic pathways leading to the production of desired chemicals. In these approaches, novel pathways were predicted based on chemical structure changes, enzymatic information, and/or reaction mechanisms, but the approaches generating a huge number of predicted results are difficult to be applied to real experiments. Also, some of these methods focus on specific pathways, and thus are limited to expansion to the whole metabolism. Results In the present study, we propose a system framework employing a retrosynthesis model with a prioritization scoring algorithm. This new strategy allows deducing the novel promising pathways for the synthesis of a desired chemical together with information on enzymes involved based on structural changes and reaction mechanisms present in the system database. The prioritization scoring algorithm employing Tanimoto coefficient and group contribution method allows examination of structurally qualified pathways to recognize which pathway is more appropriate. In addition, new concepts of binding site covalence, estimation of pathway distance and organism specificity were taken into account to identify the best synthetic pathway. Parameters of these factors can be evolutionarily optimized when a newly proven synthetic pathway is registered. As the proofs of concept, the novel synthetic pathways for the production of isobutanol, 3-hydroxypropionate, and butyryl-CoA were predicted. The prediction shows a high reliability, in which experimentally verified synthetic pathways were listed within the top 0.089% of the identified pathway candidates. Conclusions It is expected that the system framework developed in this study would be useful for the in silico design of novel metabolic pathways to be employed for the efficient production of chemicals, fuels and materials.

  2. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve

  3. Innovation in Integrated Chemical Product-Process Design - Development through a Model-based Systems Approach

    DEFF Research Database (Denmark)

    Conte, Elisa

    The ‘consumer oriented chemicals based products’ such as shampoos, sunscreens, insect repellents are used everyday by millions of people. They are structured products, constituted of numerous chemicals. This complexity gives the reason for which mainly experimental techniques are still employed...

  4. Measurements and thermodynamics of hydrotreater product sludge stability

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I. [Technical Univ. of Denmark, Lyngby (Denmark)

    2003-07-01

    Sludge is a by-product of the hydrotreating process of asphaltene during feedstock conversions. The stability of the asphaltenes in the system is related to the produced sludge. The remaining asphaltenes are unstable due to chemical changes in the mixture even though a large conversion of heptane asphaltene occurs. The flocculation titration technique was applied to several feedstocks and catalysts to understand changes in stability and to develop conversion schemes that avoid sludge formation. The effect of temperature conversion was studied in detail. Results obtained by flocculation titration were in agreement with size exclusion chromatography, elemental analysis, infrared spectroscopy and other methods. The authors also examined the chemical changes in product and in product asphaltenes. It was concluded that high hydrotreatment temperature leads to the formation of unstable products as cracking occurs. It was shown that molecular weight of asphaltenes decreases during the hydroprocessing, and the transition temperature is related to the feed. tabs., figs.

  5. The production of fuels and chemicals from food processing wastes & cellulosics. Final research report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Okos, M.; Burgos, N. [and others

    1997-06-15

    High strength food wastes of about 15-20 billion pounds solids are produced annually by US food producers. Low strength food wastes of 5-10 billion pounds/yr. are produced. Estimates of the various components of these waste streams are shown in Table 1. Waste paper/lignocellulosic crops could produce 2 to 5 billion gallons of ethanol per year or other valuable chemicals. Current oil imports cost the US about $60 billion dollars/yr. in out-going balance of trade costs. Many organic chemicals that are currently derived from petroleum can be produced through fermentation processes. Petroleum based processes have been preferred over biotechnology processes because they were typically cheaper, easier, and more efficient. The technologies developed during the course of this project are designed to allow fermentation based chemicals and fuels to compete favorably with petroleum based chemicals. Our goals in this project have been to: (1) develop continuous fermentation processes as compared to batch operations; (2) combine separation of the product with the fermentation, thus accomplishing the twin goals of achieving a purified product from a fermentation broth and speeding the conversion of substrate to product in the fermentation broth; (3) utilize food or cellulosic waste streams which pose a current cost or disposal problem as compared to high cost grains or sugar substrates; (4) develop low energy recovery methods for fermentation products; and finally (5) demonstrate successful lab scale technologies on a pilot/production scale and try to commercialize the processes. The scale of the wastes force consideration of {open_quotes}bulk commodity{close_quotes} type products if a high fraction of the wastes are to be utilized.

  6. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste

    Directory of Open Access Journals (Sweden)

    Almeida João R M

    2012-07-01

    Full Text Available Abstract The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a “waste-stream” instead of a valuable “coproduct”. The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  7. Chemical forms of radioiodine

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1979-01-01

    Release of radioiodine built-up during reactor operations presents a potential problem from the standpoint of environmental safety. Among the chemical forms of radioiodine, depending upon the circumstances, organic iodides cast a most serious problem because of its difficulties in the trapping and because of its stability compared to other chemical forms. Furthermore, pellet-cladding interaction (PCl) fuel failures in LWR fuel rods are believed to be stress corrosion cracks caused by embrittling fission product species, radioiodine. To deal with these problems, knowledge is required on the chemical behaviors of radioiodine in and out of fuels, as well as the release behaviors from fuels. Here a brief review is given of these respects, in aiming at clearing-up the questions still remaining unknown. The data seem to indicate that radioiodine exists as a combined form in fuels. upon heating slightly irradiated fuels, the iodine atoms are released in a chemical form associated with uranium atoms. Experiments, however, as needed with specimen of higher burnup, where the interactions of radioiodine with metallic fission products could be favored. The dominant release mechanism of radioiodine under normal operating temperatures will be diffusion to grain boundaries leading to open surfaces. Radiation-induced internal traps, however, after the rate of diffusion significantly. The carbon sources of organic iodides formed under various conditions and its formation mechanisms have also been considered. (author)

  8. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2016-01-01

    Full Text Available Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass production potential, excellent nitrogen usage efficiency, wide adaptability, drought resistance, and water lodging tolerance and salinity resistance. The ability to withstand severe drought conditions and its high water usage efficiency make sorghum a good renewable feedstock suitable for cultivation in arid regions, such as the southern US and many areas in Africa and Asia. Sorghum varieties include grain sorghum, sweet sorghum, and biomass sorghum. Grain sorghum, having starch content equivalent to corn, has been considered as a feedstock for ethanol production. Its tannin content, however, may cause problems during enzyme hydrolysis. Sweet sorghum juice contains sucrose, glucose and fructose, which are readily fermentable by Saccharomyces cerevisiae and hence is a good substrate for ethanol fermentation. The enzyme invertase, however, needs to be added to convert sucrose to glucose and fructose if the juice is used for production of industrial chemicals in fermentation processes that employ microorganisms incapable of metabolizing sucrose. Biomass sorghum requires pretreatment prior to enzymatic hydrolysis to generate fermentable sugars to be used in the subsequent fermentation process. This report reviews the current knowledge on bioconversion of sorghum to fuels and chemicals and identifies areas that deserve further studies.

  9. Using Star Clusters as Tracers of Star Formation and Chemical Evolution: The Chemical Enrichment History of the Large Magellanic Cloud

    Science.gov (United States)

    Chilingarian, Igor V.; Asa’d, Randa

    2018-05-01

    The star formation (SFH) and chemical enrichment (CEH) histories of Local Group galaxies are traditionally studied by analyzing their resolved stellar populations in a form of color–magnitude diagrams obtained with the Hubble Space Telescope. Star clusters can be studied in integrated light using ground-based telescopes to much larger distances. They represent snapshots of the chemical evolution of their host galaxy at different ages. Here we present a simple theoretical framework for the chemical evolution based on the instantaneous recycling approximation (IRA) model. We infer a CEH from an SFH and vice versa using observational data. We also present a more advanced model for the evolution of individual chemical elements that takes into account the contribution of supernovae type Ia. We demonstrate that ages, iron, and α-element abundances of 15 star clusters derived from the fitting of their integrated optical spectra reliably trace the CEH of the Large Magellanic Cloud obtained from resolved stellar populations in the age range 40 Myr age–metallicity relation. Moreover, the present-day total gas mass of the LMC estimated by the IRA model (6.2× {10}8 {M}ȯ ) matches within uncertainties the observed H I mass corrected for the presence of molecular gas (5.8+/- 0.5× {10}8 {M}ȯ ). We briefly discuss how our approach can be used to study SFHs of galaxies as distant as 10 Mpc at the level of detail that is currently available only in a handful of nearby Milky Way satellites. .

  10. Studies on Disinfection By-Products and Drinking Water

    Science.gov (United States)

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  11. Formation and rearrangement of homoserine depsipeptides and depsiproteins in the α-ketoacid-hydroxylamine ligation with 5-oxaproline.

    Science.gov (United States)

    Wucherpfennig, Thomas G; Rohrbacher, Florian; Pattabiraman, Vijaya R; Bode, Jeffrey W

    2014-11-03

    The primary products of the chemical ligation of α-ketoacids and 5-oxaproline peptides are esters, rather than the previously reported amides. The depsipeptide product rapidly rearranges to the amide in basic buffers. The formation of esters sheds light on possible mechanisms for the type II KAHA ligations and opens an avenue for the chemical synthesis of depsiproteins. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chemical composition of essential oil in Mosla chinensis Maxim cv. Jiangxiangru and its inhibitory effect on Staphylococcus aureus biofilm formation

    Directory of Open Access Journals (Sweden)

    Peng Liang

    2018-03-01

    Full Text Available The essential oil of Mosla chinensis Maxim cv. Jiangxiangru is known for its antibacterial ability. This study aimed to investigate the chemical composition of Jiangxiangru essential oil and its inhibitory effect on Staphylococcus aureus biofilm formation. Gas chromatography/mass spectrometry (GC–MS was used to determine the chemical composition of Jiangxiangru essential oil. Subsequently, the eight major chemical components were quantitatively analyzed using GC– MS, and their minimum inhibitory concentration (MIC values against S. aureus were tested. Biofilm formation was detected by crystal violet semi-quantitative method and silver staining. Of the 59 peaks detected, 29 were identified by GC–MS. Of these peaks, thymol, carvacrol, p-cymene, γ-terpinene, thymol acetate, α-caryophyllene, 3-carene, and carvacryl acetate were present at a relatively higher concentration. The results of the quantitative test showed that thymol, carvacrol, p-cymene, and γ-terpinene were the major components of the essential oil. Among the eight reference substances, only thymol, carvacrol, and thymol acetate had lower MICs compared with the essential oil. Essential oil, carvacrol, carvacryl acetate, α-caryophyllene, and 3-carene showed the better inhibition of S. aureus biofilm formation. When one fourth of the MIC concentrations were used for these substances (0.0625 mg/mL for essential oil, 0.0305 mg/mL for carvacrol, 1.458 mg/mL for carvacryl acetate, 0.1268 mg/mL for α-caryophyllene, and 2.5975 mg/mL for 3-carene, the inhibition rates were over 80%. However, thymol, γ-terpinene, thymol acetate, and p-cymene showed a relatively poor inhibition of S. aureus biofilm formation. When 1× MIC concentrations of these substances were used, the inhibition rates were less than 50%. In conclusion, Jiangxiangru essential oil and its major components, carvacrol, carvacryl acetate, α-caryophyllene, and 3-carene, strongly inhibited biofilm formation in S. aureus.

  13. Chemical Evolution and Star Formation History of the Disks of Spirals in Local Group

    Science.gov (United States)

    Yin, J.

    2011-05-01

    Milky Way (MW), M31 and M33 are the only three spiral galaxies in our Local group. MW and M31 have similar mass, luminosity and morphology, while M33 is only about one tenth of MW in terms of its baryonic mass. Detailed theoretical researches on these three spirals will help us to understand the formation and evolution history of both spiral galaxies and Local group. Referring to the phenomenological chemical evolution model adopted in MW disk, a similar model is established to investigate the star formation and chemical enrichment history of these three local spirals. Firstly, the properties of M31 disk are studied by building a similar chemical evolution model which is able to successfully describe the MW disk. It is expected that a simple unified phenomenological chemical evolution model could successfully describe the radial and global properties of both disks. Comparing with the former work, we adopt an extensive data set as model constraints, including the star formation profile of M31 disk derived from the recent UV data of GALEX. The comparison among the observed properties of these two disks displays very interesting similarities in their radial profiles when the distance from the galactic center is expressed in terms of the corresponding scale length. This implies some common processes in their formation and evolution history. Based on the observed data of the gas mass surface density and SFR surface density, the SFR radial profile of MW can be well described by Kennicutt-Schmidt star formation law (K-S law) or modified K-S law (SFR is inversely proportional to the distance from the galactic center), but this is not applicable to the M31 disk. Detailed calculations show that our unified model describes fairly well all the main properties of the MW disk and most properties of M31 disk, provided that the star formation efficiency of M31 disk is adjusted to be twice as large as that of MW disk (as anticipated from the lower gas fraction of M31). However, the

  14. Inventory of chemicals used at Hanford Site production plants and support operations (1944-1980)

    Energy Technology Data Exchange (ETDEWEB)

    Klem, M. J.

    1990-04-01

    A complete list of chemicals used in the production facilities and support operations of the US Department of Energy Hanford Site is presented to aid development of plans for characterizing the radioactive liquid chemical wastes stored in the 149 single-shell tanks. The complete chemical list is compared to the list provided by the regulatory agencies to identify hazardous chemicals stored in the single-shell tanks. A reduced list has been developed by others and is used to identify the chemical constituents for analysis in the Waste Characterization Plan for the Hanford Site Single-Shell Tanks. The chemical list is based on chemical process flowsheets, essential material consumption records, letters, reports, and other historical data. 14 refs., 36 tabs.

  15. Spermine oxidase promotes bile canalicular lumen formation through acrolein production.

    Science.gov (United States)

    Uemura, Takeshi; Takasaka, Tomokazu; Igarashi, Kazuei; Ikegaya, Hiroshi

    2017-11-01

    Spermine oxidase (SMOX) catalyzes oxidation of spermine to generate spermidine, hydrogen peroxide (H 2 O 2 ) and 3-aminopropanal, which is spontaneously converted to acrolein. SMOX is induced by a variety of stimuli including bacterial infection, polyamine analogues and acetaldehyde exposure. However, the physiological functions of SMOX are not yet fully understood. We investigated the physiological role of SMOX in liver cells using human hepatocellular carcinoma cell line HepG2. SMOX localized to the bile canalicular lumen, as determined by F-actin staining. Knockdown of SMOX reduced the formation of bile canalicular lumen. We also found that phospho-Akt (phosphorylated protein kinase B) was localized to canalicular lumen. Treatment with Akt inhibitor significantly reduced the formation of bile canalicular lumen. Acrolein scavenger also inhibited the formation of bile canalicular lumen. PTEN, phosphatase and tensin homolog and an inhibitor of Akt, was alkylated in a SMOX-dependent manner. Our results suggest that SMOX plays a central role in the formation of bile canalicular lumen in liver cells by activating Akt pathway through acrolein production.

  16. Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14

    Science.gov (United States)

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger’s ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39–56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3′-5′)-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

  17. Organic Substances from Unconventional Oil and Gas Production in Shale

    Science.gov (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  18. Chemical evolution studies: the radiolysis and thermal decomposition of malonic acid

    International Nuclear Information System (INIS)

    Cruz-Castaneda, J.; Negron-Mendoza, A.; Heredia, A.; Ramos-Bernal, S.; Villafane-Barajas, S.; Frias, D.; Colin-Garcia, M.

    2015-01-01

    In the context of chemical evolution a simulation of a hydrothermal vent was performed. The thermolysis and radiolysis of malonic acid in aqueous solution were studied. The thermolysis was done by heating the samples (95 deg C) and radiolysis using gamma radiation. Products were identified by gas chromatography and gas chromatography-mass spectrometry. The thermal treatment produced acetic acid and CO 2 . The radiolysis experiments yield carbon dioxide, acetic acid, and di- and tricarboxylic acids. A theoretical model of the chemical process occurring under irradiation was developed; this was able to reproduce formation of products and the consumption of malonic acid. (author)

  19. Chemical Emissions of Residential Materials and Products: Review of Available Information

    Energy Technology Data Exchange (ETDEWEB)

    Willem, Henry; Singer, Brett

    2010-09-15

    This report is prepared in the context of a larger program whose mission is to advance understanding of ventilation and indoor air quality in U.S. homes. A specific objective of this program is to develop the scientific basis ? through controlled experiments, monitoring and analysis ? for health risk-based ventilation standards. Appropriate and adequate ventilation is a basic element of a healthy home. Ventilation provides outdoor air and in the process removes indoor odors and contaminants including potentially unhealthful chemicals emitted by indoor materials, products and activities. Ventilation traditionally was assured to occur via infiltration of outdoor air through cracks and other leakage pathways in the residential building envelope. As building air tightness is improved for energy efficiency, infiltration can be reduced to inadequate levels. This has lead to the development of standards requiring mechanical ventilation. Though nominally intended to ensure acceptable indoor air quality, the standards are not explicitly tied to health risk or pollutant exposure targets. LBNL is currently designing analyses to assess the impact of varying ventilation standards on pollutant concentrations, health risks and energy use. These analyses require information on sources of chemical pollutant emissions, ideally including emission rates and the impact of ventilation on emissions. Some information can be obtained from recent studies that report measurements of various air contaminants and their concentrations in U.S. residences. Another way to obtain this information is the bottom-up approach of collecting and evaluating emissions data from construction and interior materials and common household products. This review contributes to the latter approach by summarizing available information on chemical emissions from new residential products and materials. We review information from the scientific literature and public sources to identify and discuss the databases that

  20. Perturbation of formate pathway for hydrogen production by expressions of formate hydrogen lyase and its transcriptional activator in wild Enterobacter aerogenes and its mutants

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Lai, Qiheng; Xing, Xin-Hui [Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-06-15

    To examine perturbation effects of formate pathway on hydrogen productivity in Enterobacter aerogenes (Ea), formate dehydrogenase FDH-H gene (fdhF) and formate hydrogen lyase activator protein FHLA gene (fhlA) originated from Escherichia coli, were overexpressed in the wild strain Ea, its hycA-deleted mutant (A) by knockout the formate hydrogen lyase repressor and hybO-deleted mutant (O) by knockout of the uptake hydrogenase, respectively. Overexpression of fdhF and fhlA promoted cell growth and volumetric hydrogen production rates of all the strains, and the hydrogen production per gram cell dry weight (CDW) for Ea, A and O was increased by 38.5%, 21.8% and 5.25%, respectively. The fdhF and fhlA overexpression improved the hydrogen yield per mol glucose of strains Ea and A, but declined that of strain O. The increase of hydrogen yield of the strain Ea with fdhF and fhlA expression was mainly attributed to the increase of formate pathway, while for the mutant A, the improved hydrogen yield with fdhF and fhlA expression was mainly due to the increase of NADH pathway. Analysis of the metabolites and ratio of ethanol-to-acetate showed that the cellular redox state balance and energy level were also changed for these strains by fdhF and fhlA expression. These findings demonstrated that the hydrogen production was not only dependent on the hydrogenase genes, but was also affected by the regulation of the whole metabolism. Therefore, fdhF and fhlA expression in different strains of E. aerogenes could exhibit different perturbation effects on the metabolism and the hydrogen productivity. (author)

  1. Heavy crude production from shallow formations: long horizontal wells versus horizontal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Valko, P.; Economides, M. J. [Texas A and M Univ., TX (United States)

    1998-12-31

    The feasibility of producing heavy oil from shallow formations using either horizontal wells or short horizontal wells fractured horizontally is demonstrated. The problem of optimum proppant placement is solved in two steps. In step one, the finite productivity performance is considered in general terms showing that the performance is a function of two dimensionless parameters. Following derivation of optimum conditions, the solution is applied to the horizontal fracture consideration. The limiting factor is that to create an effective finite conductivity fracture, the dimensionless fracture conductivity must be on the order of unity, a fracture that is difficult to realize in higher permeability formations. The best candidates for the suggested configuration are shallow or moderate formations, or formations otherwise proven to accept horizontal fractures, and formations with low permeability/viscosity ratio. 7 refs., 2 tabs., 10 figs., 2 appendices.

  2. Modeling the formation of soluble microbial products (SMP in drinking water biofiltration

    Directory of Open Access Journals (Sweden)

    Yu Xin

    2008-09-01

    Full Text Available Both a theoretical and an empirical model were developed for predicting the formation of soluble microbial products (SMP during drinking water biofiltration. Four pilot-scale biofilters with ceramsite as the medium were fed with different acetate loadings for the determination of SMP formation. Using numerically simulated and measured parameters, the theoretical model was developed according to the substrate and biomass balance. The results of this model matched the measured data better for higher SMP formation but did not fit well when SMP formation was lower. In order to better simulate the reality and overcome the difficulties of measuring the kinetic parameters, a simpler empirical model was also developed. In this model, SMP formation was expressed as a function of fed organic loadings and the depth of the medium, and a much better fit was obtained.

  3. Chemical diversity of microbial volatiles and their potential for plant growth and productivity

    Directory of Open Access Journals (Sweden)

    CHIDANANDA NAGAMANGALA KANCHISWAMY

    2015-03-01

    Full Text Available Microbial volatile organic compounds (MVOCs are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs and their potential physiological effects on crops and analyze potential and actual limitations for MVOC use as a sustainable strategy for improving productivity and reducing pesticide use.

  4. Evaluation of a high-throughput peptide reactivity format assay for assessment of the skin sensitization potential of chemicals

    Directory of Open Access Journals (Sweden)

    Chin Lin eWong

    2016-03-01

    Full Text Available The direct peptide reactivity assay (DPRA is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium and high concentrations and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme and non-sensitizers with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF, cysteine- (Ac-RFAACAA and lysine- (Ac-RFAAKAA containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7% and glass (47.3% vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2,4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further

  5. Hard sludge formation in modern steam generators of nuclear power plants. Formation, risks and mitigation

    International Nuclear Information System (INIS)

    Strohmer, F.

    2014-01-01

    In recent years modern steam generators with triangular pitch tube bundle geometry have experienced damage caused by hard sludge formation on top of the tube sheet and denting. The effect can lead to a limitation of the modern steam generators’ lifetime. The current publication shows reasons for the generation of hard sludge formation. Moreover, it describes the risk arising from hard sludge formation for the concerned steam generators and the mitigation of the problem. The main factors contributing to the formation of hard sludge are: the amount of corrosion product ingress into the steam generators, hard sludge formation favouring impurities and, skipped maintenance applications during outages. The main damaging mechanism of denting that can arise under certain secondary side conditions from hard sludge is explained. For steam generator tube denting, aggressive, oxidizing conditions have to be established in crevices beneath the hard sludge piles. Severely dented tubes are sensitive toward outer diameter stress corrosion cracking (ODSCC). The denting and ODSCC mechanism is explained. In addition, a proactive long-term maintenance strategy to avoid the formation of hard sludge piles will be shown. The strategy is based on a reduction of the corrosion product ingress into the steam generator's secondary side, and on the regular removal of deposits from the tube sheet and from the entire upper bundle area by latest mechanical cleaning methods. For hard deposits - formed either by silicates or long term hardened corrosion products, which, in the past, could not be removed by chemical or mechanical means - a new, simple, mechanical cleaning method is presented. This method can be used during the normal time frame of an outage and allows the restart of the unit with clean steam generator tube sheets. This mitigates the tendency to form hard sludge and denting in the long term. (author)

  6. Evolution of the chemical bonding nature and electrode activity of indium selenide upon the composite formation with graphene nanosheets

    International Nuclear Information System (INIS)

    Oh, Seung Mi; Lee, Eunsil; Adpakpang, Kanyaporn; Patil, Sharad B.; Park, Mi Jin; Lim, Young Soo; Lee, Kyu Hyoung; Kim, Jong-Young; Hwang, Seong-Ju

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • In 4 Se 2.85 @graphene nanocomposite is easily prepared by high energy mechanical milling process. • The bond covalency of In 4 Se 2.85 is notably changed upon the composite formation with graphene. • In 4 Se 2.85 @graphene nanocomposite shows promising anode performance for lithium ion battery. -- Abstract: Evolution of the chemical bonding nature and electrochemical activity of indium selenide upon the composite formation with carbon species is systematically investigated. Nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black are synthesized via a solid state reaction between In and Se elements, and the following high energy mechanical milling of In 4 Se 2.85 with graphene and carbon-black, respectively. The high energy mechanical milling (HEMM) of In 4 Se 2.85 with carbon species gives rise to a decrease of particle size with a significant depression of the crystallinity of In 4 Se 2.85 phase. In contrast to the composite formation with carbon-black, that with graphene induces a notable decrease of (In−Se) bond covalency, underscoring significant chemical interaction between graphene and In 4 Se 2.85 . Both the nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black show much better anode performance for lithium ion batteries with larger discharge capacity and better cyclability than does the pristine In 4 Se 2.85 material, indicating the beneficial effect of composite formation on the electrochemical activity of indium selenide. Between the present nanocomposites, the electrode performance of the In 4 Se 2.85 @graphene nanocomposite is superior to that of the In 4 Se 2.85 @carbon-black nanocomposite, which is attributable to the weakening of (In−Se) bonds upon the composite formation with graphene as well as to the better mixing between In 4 Se 2.85 and graphene. The present study clearly demonstrates that the composite formation with graphene has strong influence

  7. Techno-economic assessment of the production of bio-based chemicals from glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Gangarapu, S.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    In this review, possible process steps for the production of bio-based industrial chemicals from glutamic acid are described, including a techno-economic assessment of all processes. The products under investigation were those that were shown to be synthesized from glutamic acid on lab-scale, namely

  8. Computational Methods to Assess the Production Potential of Bio-Based Chemicals

    DEFF Research Database (Denmark)

    Campodonico, Miguel A; Sukumara, Sumesh; Feist, Adam M.

    2018-01-01

    are described in detail. The first tool is GEM-Path: an algorithm to compute all structurally possible pathways from one target molecule to the host metabolome. The second tool is a framework for Modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular...... metabolism, bioreactor design, upstream/downstream processes, and economic impact assessment. Integrating GEM-Path and MuSIC will play a vital role in supporting early phases of research efforts and guide the policy makers with decisions, as we progress toward planning a sustainable chemical industry....

  9. The UK chemical nuclear data library: a summary of the data available in ENDF/B format

    International Nuclear Information System (INIS)

    Davies, B.S.J.

    1981-11-01

    The UK Chemical Nuclear Data Committee files have been considerably revised and extended. The files now embrace: fission yields (C31), fission product decay data (UKFPDD-2), activation product decay data (UKPADD-1), and heavy element decay data (UKHEDD-1). The fission yield data is based on Crouch's third round of adjustment and includes yields to isometric states. The decay data files include data on half-life, decay modes, branching ratios and alpha, beta and gamma radiation energies and intensities. The data have all been recommended by the UK Chemical Nuclear Data Committee for use in the UK reactor programme; they are stored on magnetic tape at AERE Harwell, AEE Winfrith and CEGB Berkeley Nuclear Laboratories. (author)

  10. Use of chemicals and biological products in Asian aquacultire and their potential environmental risks: a critical review

    NARCIS (Netherlands)

    Rico, A.; Satapornvanit, K.; Haque, M.M.; Min, J.; Nguyen, P.T.; Telfer, T.; Brink, van den P.J.

    2012-01-01

    Over the past few decades, Asian aquaculture production has intensified rapidly through the adoption of technological advances, and the use of a wide array of chemical and biological products to control sediment and water quality and to treat and prevent disease outbreaks. The use of chemicals in

  11. The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    Science.gov (United States)

    Chojniak, Joanna; Biedroń, Izabela; Mendrek, Barbara; Płaza, Grażyna

    2017-11-01

    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated.

  12. Industry of petroleum and its by-products

    International Nuclear Information System (INIS)

    Haddad, Antoine

    1989-01-01

    A comprehensive study of petroleum industry and its by-products is presented. Petroleum, since its origin and all steps of its industry including its detection, production and transportation is described. A historical description of the production and formation of fuels under the ground strates through million of years, as well as its chemical composition are presented. A full description of refining petrol and all by-products derived is given. Pictures and tables enhance the explanation

  13. Denaturation of collagen structures and their transformation under the physical and chemical effects

    Science.gov (United States)

    Ivankin, A.; Boldirev, V.; Fadeev, G.; Baburina, M.; Kulikovskii, A.; Vostrikova, N.

    2017-11-01

    The process of denaturation of collagen structures under the influence of physical and chemical factors play an important role in the manufacture of food technology and the production of drugs for medicine and cosmetology. The paper discussed the problem of the combined effects of heat treatment, mechanical dispersion and ultrasonic action on the structural changes of the animal collagen in the presence of weak protonated organic acids. Algorithm combined effects of physical and chemical factors as a result of the formation of the technological properties of products containing collagen has been shown.

  14. Renewable Formate from C-H Bond Formation with CO2: Using Iron Carbonyl Clusters as Electrocatalysts.

    Science.gov (United States)

    Loewen, Natalia D; Neelakantan, Taruna V; Berben, Louise A

    2017-09-19

    As a society, we are heavily dependent on nonrenewable petroleum-derived fuels and chemical feedstocks. Rapid depletion of these resources and the increasingly evident negative effects of excess atmospheric CO 2 drive our efforts to discover ways of converting excess CO 2 into energy dense chemical fuels through selective C-H bond formation and using renewable energy sources to supply electrons. In this way, a carbon-neutral fuel economy might be realized. To develop a molecular or heterogeneous catalyst for C-H bond formation with CO 2 requires a fundamental understanding of how to generate metal hydrides that selectively donate H - to CO 2 , rather than recombining with H + to liberate H 2 . Our work with a unique series of water-soluble and -stable, low-valent iron electrocatalysts offers mechanistic and thermochemical insights into formate production from CO 2 . Of particular interest are the nitride- and carbide-containing clusters: [Fe 4 N(CO) 12 ] - and its derivatives and [Fe 4 C(CO) 12 ] 2- . In both aqueous and mixed solvent conditions, [Fe 4 N(CO) 12 ] - forms a reduced hydride intermediate, [H-Fe 4 N(CO) 12 ] - , through stepwise electron and proton transfers. This hydride selectively reacts with CO 2 and generates formate with >95% efficiency. The mechanism for this transformation is supported by crystallographic, cyclic voltammetry, and spectroelectrochemical (SEC) evidence. Furthermore, installation of a proton shuttle onto [Fe 4 N(CO) 12 ] - facilitates proton transfer to the active site, successfully intercepting the hydride intermediate before it reacts with CO 2 ; only H 2 is observed in this case. In contrast, isoelectronic [Fe 4 C(CO) 12 ] 2- features a concerted proton-electron transfer mechanism to form [H-Fe 4 C(CO) 12 ] 2- , which is selective for H 2 production even in the presence of CO 2 , in both aqueous and mixed solvent systems. Higher nuclearity clusters were also studied, and all are proton reduction electrocatalysts, but none

  15. Monitoring pulsating giant stars in M33: star formation history and chemical enrichment

    Science.gov (United States)

    Javadi, A.; van Loon, J. Th

    2017-06-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1-4] and disc of M33 [5-8].

  16. Monitoring pulsating giant stars in M33: star formation history and chemical enrichment

    International Nuclear Information System (INIS)

    Javadi, A; Van Loon, J Th

    2017-01-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1–4] and disc of M33 [5–8]. (paper)

  17. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2013-01-01

    trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass. Metabolic engineering is moving from traditional methods...... for the production of hydrolytic enzymes, biofuels and chemicals from biomass. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  18. Effects of de-icing chemicals sodium chloride and potassium formate on cadmium solubility in a coarse mineral soil

    Energy Technology Data Exchange (ETDEWEB)

    Rasa, Kimmo [Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 27, FIN-00014, University of Helsinki (Finland)]. E-mail: kimmo.rasa@helsinki.fi; Peltovuori, Tommi [Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 27, FIN-00014, University of Helsinki (Finland); Hartikainen, Helinae [Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 27, FIN-00014, University of Helsinki (Finland)

    2006-08-01

    Excessive use of sodium chloride (NaCl) as de-icing chemical causes environmental problems, such as elevated chloride concentrations in groundwater. On vulnerable sites, this can be avoided by using alternative organic de-icing chemicals, such as potassium formate (KHCOO). The environmental impacts of KCHOO are, however, not well known. This study reports the potential effects of NaCl and KCHOO on mechanisms controlling the mobility of cadmium (Cd) in roadside soils as a result of vehicular traffic. Changes in the solubility of Cd in a coarse mineral soil treated with these two de-icing chemicals were studied in a 50-day incubation experiment under four different moisture and temperature combinations and an initial soil Cd concentration of 3 mg kg{sup -1}. After incubation, the distribution of soil Cd into different fractions was analyzed using a sequential extraction method. Soil pH and soil redox potential were recorded and the occurrence of Cd-Cl complexes in the soil was estimated using published stability constants. During incubation, KCHOO lowered the soil redox potential, but this was not accompanied by a decrease in the sorption capacity of oxides and the release of oxide-bound Cd into soil solution. On the other hand, elevated pH (from 4.3 to 6.7-8.5) in the formate treatments increased the sorption of Cd onto the oxide surfaces (up to 80% of total sorbed Cd). In the NaCl treatments, cation competition and formation of Cd-Cl complexes increased the water-soluble Cd fraction. Consequently, the amount of bioavailable Cd was 3.5 times smaller in the KCHOO than in the NaCl treatments.

  19. Peculiarities of Production of Chromium Carbonitride Nanopowder and Its Physical-Chemical Certification

    International Nuclear Information System (INIS)

    Shiryaeva, L S; Nozdrin, I V; Galevsky, G V

    2015-01-01

    Scientific and technological basics of plasma synthesis of chromium carbonitride have been developed, including analysis of the current production state and application of chromium carbon compounds, defining characteristics of three-jet plasma reactor, modeling- mathematical study of interaction of raw materials and plasma streams, prediction of technological parameters of plasma stream based on the modeling results, selection of optimal technological option, implementation of plasma-metallurgical technology of chromium nitride production, its physical-chemical certification and defining technical-economical production factors. (paper)

  20. How can we avoid the lock-in problem in the substitution of hazardous chemicals used in consumer products?

    DEFF Research Database (Denmark)

    Scheringer, Martin; Fantke, Peter; Weber, R.

    2014-01-01

    A wide range of chemical substances is used in consumer products for various purposes, including plastic softeners, dyestuffs and colorants, flame retardants, impregnation agents, antioxidants and UV absorbers, preservation agents and biocides, and many others. Among these chemicals, there is a c......A wide range of chemical substances is used in consumer products for various purposes, including plastic softeners, dyestuffs and colorants, flame retardants, impregnation agents, antioxidants and UV absorbers, preservation agents and biocides, and many others. Among these chemicals...

  1. Precipitation of organic arsenic compounds and their degradation products during struvite formation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jin-Biao; Yuan, Shoujun [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Wang, Wei, E-mail: dwhit@126.com [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Hu, Zhen-Hu, E-mail: zhhu@hfut.edu.cn [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Yu, Han-Qing [Department of Chemistry, University of Science & Technology of China, Hefei 230026 (China)

    2016-11-05

    Highlights: • Organic and inorganic arsenic compounds precipitated during struvite formation. • Precipitation of organic arsenic compounds in struvite decreased with increasing pH. • Arsenate easily precipitate in struvite as compared to organic arsenic compounds. • Arsenic compounds in solution affected the shape of struvite crystallization products. - Abstract: Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH{sub 4}{sup +}-N) and phosphate (PO{sub 4}{sup 3−}-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO{sub 4}{sup 3−}-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation.

  2. Modelling of Combustion and Pollutant Formation in a Large, Two-Stroke Marine Diesel Engine using Integrated CFD-Skeletal Chemical Mechanism

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Karvounis, Nikolas; Schramm, Jesper

    In this reported work, simulation studies of in-cylinder diesel combustion and pollutant formation processesin a two-stroke, low-speed uniflow-scavenged marine diesel engine are presented. Numerical computation is performed by integrating chemical kinetics into CFD computations. In order...... to minimize the computational runtime, an in-house skeletal n-heptane chemical mechanism is coupled with the CFD model. This surrogate fuel model comprises 89 reactions with 32 species essential to diesel ignition/combustion processes as well as the formation of soot precursors and nitrogen monoxide (NO......). Prior to the marine engine simulation,coupling of the newly developed surrogate fuel model and a revised multi-step soot model [1] is validated on the basis of optical diagnostics measurement obtained at varying ambient pressure levels [2]. It is demonstrated that the variation of ignition delay times...

  3. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria

    Science.gov (United States)

    Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota

    2017-03-01

    Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  4. Investigating the Formation Process of Sn-Based Lead-Free Nanoparticles with a Chemical Reduction Method

    International Nuclear Information System (INIS)

    Zhang, W.; Zhao, B.; Gao, Y.; Zhang, W.; Zhao, B.; Zou, Ch.; Zhai, Q.; Gao, Y.; Gao, Y.; Acquah, S.F.A.

    2013-01-01

    Nanoparticles of a promising lead-free solder alloy (Sn 3.5 Ag (wt.%, Sn Ag) and Sn 3.0 Ag 0.5 Cu (wt.%, SAC)) were synthesized through a chemical reduction method by using anhydrous ethanol and 1,10-phenanthroline as the solvent and surfactant, respectively. To illustrate the formation process of Sn-Ag alloy based nanoparticles during the reaction, X-ray diffraction (XRD) was used to investigate the phases of the samples in relation to the reaction time. Different nucleation and growth mechanisms were compared on the formation process of the synthesized nanoparticles. The XRD results revealed different reaction process compared with other researchers. There were many contributing factors to the difference in the examples found in the literature, with the main focus on the formation mechanism of crystal nuclei, the solubility and ionizability of metal salts in the solvent, the solid solubility of Cu in Ag nuclei, and the role of surfactant on the growth process. This study will help define the parameters necessary for the control of both the composition and size of the nanoparticles

  5. Chemical production from waste carbon monoxide: its potential for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmann, C.A.; Schiefelbein, G.F.; Molton, P.M.; Li, C.T.; Elliott, D.C.; Baker, E.G.

    1977-11-01

    Results of a study of the potential for energy conservation by producing chemicals from by-product or waste carbon monoxide (CO) from industrial sources are summarized. Extensive compilations of both industrial sources and uses for carbon monoxide were developed and included. Reviews of carbon monoxide purification and concentration technology and preliminary economic evaluations of carbon monoxide concentration, pipeline transportation and utilization of CO in the synthesis of ammonia and methanol are included. Preliminary technical and economic feasibility studies were made of producing ammonia and methanol from the by-product CO produced by a typical elemental phosphorus plant. Methanol synthesis appears to be more attractive than ammonia synthesis when using CO feedstock because of reduced water gas shift and carbon dioxide removal requirements. The economic studies indicate that methanol synthesis from CO appears to be competitive with conventional technology when the price of natural gas exceeds $0.82/million Btu, while ammonia synthesis from CO is probably not competitive until the price of natural gas exceeds $1.90/million Btu. It is concluded that there appears to be considerable potential for energy conservation in the chemical industry, by collecting CO rather than flaring it, and using it to make major chemicals such as ammonia and methanol.

  6. Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy.

    Science.gov (United States)

    Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula

    2007-12-01

    Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards.

  7. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    Science.gov (United States)

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  8. Probing the chemical environments of early star formation: A multidisciplinary approach

    Science.gov (United States)

    Hardegree-Ullman, Emily Elizabeth

    Chemical compositions of prestellar and protostellar environments in the dense interstellar medium are best quantified using a multidisciplinary approach. For my dissertation, I completed two projects to measure molecular abundances during the earliest phases of star formation. The first project investigates gas phase CO depletion in molecular cloud cores, the progenitors of star systems, using infrared photometry and molecular line spectroscopy at radio wavelengths. Hydrogenation of CO depleted onto dust is an important first step toward building complex organic molecules. The second project constrains polycyclic aromatic hydrocarbon (PAH) abundances toward young stellar objects (YSO). Band strengths measured from laboratory spectroscopy of pyrene/water ice mixtures were applied to estimate abundances from features attributed to PAHs in observational YSO spectra. PAHs represent a distinct but important component of interstellar organic material that is widely observed but not well quantified in star-forming regions.

  9. DOE contractor's meeting on chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metals Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session.

  10. Mechanism of pulse discharge production of iodine atoms from CF3I molecules for a chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2009-01-01

    The pulsed chemical oxygen-iodine laser (COIL) development is aimed at many new applications. Pulsed electric discharge is most effective in turning COIL operation into the pulse mode by instant production of iodine atoms. A numerical model is developed for simulations of the pulsed COIL initiated by an electric discharge. The model comprises a system of kinetic equations for neutral and charged species, electric circuit equation, gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are found by solving the electron Boltzmann equation, which is re-calculated in a course of computations when plasma parameters changed. The processes accounted for in the Boltzmann equation include excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions, second-kind collisions and stepwise excitation of molecules. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. Results of numerical simulations are compared with experimental laser pulse waveforms. It is concluded that there is satisfactory agreement between theory and the experiment. The prevailing mechanism of iodine atom formation from the CF 3 I donor in a very complex kinetic system of the COIL medium under pulse discharge conditions, based on their detailed numerical modelling and by comparing these results both with experimental results of other authors and their own experiments, is established. The dominant iodine atom production mechanism for conditions under study is the electron-impact dissociation of CF 3 I molecules. It was proved that in the conditions of the experiment the secondary chemical reactions with O atoms play an insignificant role.

  11. Evaluation of chemical stability of vitrification media for radioactive waste products

    International Nuclear Information System (INIS)

    Barkatt, A.; Simmons, J.H.; Macedo, P.B.

    1981-01-01

    Test methods and test results concerning the measurement of chemical durability of glass media proposed for nuclear waste fixation are described. In order to develop predictive models and risk calculations, the release rates of individual components are measured. The results are used to determine matrix dissolution rates, possible transport of components through the matrix, and chemical and physical corrosion mechanisms. Measurements on model borosilicate and high silica glass fixation media are reported and discussed in terms of layer formation, approach to steady state, interaction of polyvalent ions with the dealkalised layer, structural disintegration of the layer, and the effects of glass composition and of environmental conditions (temperature, leachant composition and pH, γ dose). The extrapolation of short term laboratory tests to long time storage conditions and the use of such extrapolation in predicting safe upper limits for the release rates of components of the glass are described. (author)

  12. Formation of radiation-induced defects and their influence on tritium extraction from lithium silicates in out-of-pile experiments

    International Nuclear Information System (INIS)

    Abramenkovs, A.A.; Tiliks, J.E.

    1991-01-01

    Formation and properties of radiation-induced defects and radiolysis products in lithium silicates irradiated in nuclear reactor till absorbed doses 1000 MGy were studied. Radiation-induced defects (RD) and radiolysis products (RP) were qualitatively and quantitatively determinated by methods of chemical scavengers (MHS), electron-spin resonance (ESR) and optical spectroscopy. Colloidal silicon and lithium, lithium and silicon oxides, oxygen, silicon and lithium peroxides are the final products of the lithium silicates radiolysis at absorbed energy doses D abs = 1000 MGy. The concentration of radiation defects and products of radiolysis strongly depend on the temperature of irradiation, humidity, granural size. The thermostimulated extraction of tritiated water (95-98% of the released tritium is in chemical form of water) from lithium silicates ceramics proceeds according to two independent mechanisms: a) chemidesorption of surface localized tritiated water (the first order chemical reaction); b) formation of the tritium water molecules limited by triton diffusion to the near-surface layer of grains. It has been found that the concentration of radiation-induced defects considerably affects the tritium localization and releasing processes from lithium silicates. (orig.)

  13. Chemical safety of cassava products in regions adopting cassava production and processing - experience from Southern Africa

    DEFF Research Database (Denmark)

    Nyirenda, D.B.; Chiwona-Karltun, L.; Chitundu, M.

    2011-01-01

    and perceptions concerning cassava and chemical food safety. Chips, mixed biscuits and flour, procured from households and markets in three regions of Zambia (Luapula-North, Western and Southern) as well as products from the Northern, Central and Southern regions of Malawi, were analyzed for total cyanogenic...... of products commercially available on the market. Risk assessments disclose that effects harmful to the developing central nervous system (CNS) may be observed at a lower exposure than previously anticipated. We interviewed farmers in Zambia and Malawi about their cultivars, processing procedures......The cassava belt area in Southern Africa is experiencing an unforeseen surge in cassava production, processing and consumption. Little documentation exists on the effects of this surge on processing procedures, the prevailing levels of cyanogenic glucosides of products consumed and the levels...

  14. Secondary organic aerosol formation from a large number of reactive man-made organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, Richard G., E-mail: r.derwent@btopenworld.com [rdscientific, Newbury, Berkshire (United Kingdom); Jenkin, Michael E. [Atmospheric Chemistry Services, Okehampton, Devon (United Kingdom); Utembe, Steven R.; Shallcross, Dudley E. [School of Chemistry, University of Bristol, Bristol (United Kingdom); Murrells, Tim P.; Passant, Neil R. [AEA Environment and Energy, Harwell International Business Centre, Oxon (United Kingdom)

    2010-07-15

    A photochemical trajectory model has been used to examine the relative propensities of a wide variety of volatile organic compounds (VOCs) emitted by human activities to form secondary organic aerosol (SOA) under one set of highly idealised conditions representing northwest Europe. This study applied a detailed speciated VOC emission inventory and the Master Chemical Mechanism version 3.1 (MCM v3.1) gas phase chemistry, coupled with an optimised representation of gas-aerosol absorptive partitioning of 365 oxygenated chemical reaction product species. In all, SOA formation was estimated from the atmospheric oxidation of 113 emitted VOCs. A number of aromatic compounds, together with some alkanes and terpenes, showed significant propensities to form SOA. When these propensities were folded into a detailed speciated emission inventory, 15 organic compounds together accounted for 97% of the SOA formation potential of UK man made VOC emissions and 30 emission source categories accounted for 87% of this potential. After road transport and the chemical industry, SOA formation was dominated by the solvents sector which accounted for 28% of the SOA formation potential.

  15. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals

    NARCIS (Netherlands)

    Zakzeski, J.|info:eu-repo/dai/nl/326160256; Bruijnincx, P.C.A.|info:eu-repo/dai/nl/33799529X; Jongerius, A.L.|info:eu-repo/dai/nl/325840202; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2013-01-01

    Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.

  16. Soursop (Annona muricata) vinegar production and its chemical compositions

    Science.gov (United States)

    Ho, Chin Wai; Lazim, Azwan Mat; Fazry, Shazrul; Zaki, Umi Kalsum Hj Hussain; Lim, Seng Joe

    2016-11-01

    Vinegar is a liquid product that undergoes double fermentations, which are alcoholic and acetous fermentation. Sugar source was converted to ethanol in alcoholic fermentation, meanwhile ethanol was oxidised to acetic acid during acetous fermentation. Soursop (Annona muricata) was the starting material in this study, as it is easily available in Malaysia. Its highly aromatic, juicy and distinctive flavours enables the production of high quality vinegar. The objective of this research is to produce good quality soursop vinegar as an innovative method to preserve and utilise the soursop fruit in Malaysia and to determine its chemical compositions. It was found that the sugar content reduces over time, and it is inversely proportional to the ethanol concentration, due to the production of ethanol from sugar. Acetic acid was also found to increase with increasing fermentation time. pH showed no significant difference (p>0.05) in the reduction of sugar and the production of ethanol. However, significantly higher (p 0.05) in Vitamin C contents in all soursop vinegar samples produced using different treatments.

  17. Hydrogenation of silyl formates: sustainable production of silanol and methanol from hydrosilane and carbon dioxide.

    Science.gov (United States)

    Koo, Jangwoo; Kim, Seung Hyo; Hong, Soon Hyeok

    2018-05-10

    A new process for simultaneously obtaining two chemical building blocks, methanol and silanol, was realized starting from silyl formates which can be derived from silane and carbon dioxide. Understanding the reaction mechanism enabled us to improve the reaction efficiency by the addition of a small amount of methanol.

  18. Acetoin catabolism and acetylbutanediol formation by Bacillus pumilus in a chemically defined medium.

    Directory of Open Access Journals (Sweden)

    Zijun Xiao

    Full Text Available BACKGROUND: Most low molecular diols are highly water-soluble, hygroscopic, and reactive with many organic compounds. In the past decades, microbial research to produce diols, e.g. 1,3-propanediol and 2,3-butanediol, were considerably expanded due to their versatile usages especially in polymer synthesis and as possible alternatives to fossil based feedstocks from the bioconversion of renewable natural resources. This study aimed to provide a new way for bacterial production of an acetylated diol, i.e. acetylbutanediol (ABD, 3,4-dihydroxy-3-methylpentan-2-one, by acetoin metabolism. METHODOLOGY/PRINCIPAL FINDINGS: When Bacillus pumilus ATCC 14884 was aerobically cultured in a chemically defined medium with acetoin as the sole carbon and energy source, ABD was produced and identified by gas chromatography--chemical ionization mass spectrometry and NMR spectroscopy. CONCLUSIONS/SIGNIFICANCE: Although the key enzyme leading to ABD from acetoin has not been identified yet at this stage, this study proposed a new metabolic pathawy to produce ABD in vivo from using renewable resources--in this case acetoin, which could be reproduced from glucose in this study--making it the first facility in the world to prepare this new bio-based diol product.

  19. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2013-01-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective...... production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological...

  20. Catalysis of copper corrosion products on chlorine decay and HAA formation in simulated distribution systems.

    Science.gov (United States)

    Zhang, Hong; Andrews, Susan A

    2012-05-15

    This study investigated the effect of copper corrosion products, including Cu(II), Cu(2)O, CuO and Cu(2)(OH)(2)CO(3), on chlorine degradation, HAA formation, and HAA speciation under controlled experimental conditions. Chlorine decay and HAA formation were significantly enhanced in the presence of copper with the extent of copper catalysis being affected by the solution pH and the concentration of copper corrosion products. Accelerated chlorine decay and increased HAA formation were observed at pH 8.6 in the presence of 1.0 mg/L Cu(II) compared with that observed at pH 6.6 and pH 7.6. Further investigation of chlorine decay in the presence of both Suwannee River NOM and Cu(II) indicated that an increased reactivity of NOM with dissolved and/or solid surface-associated Cu(II), rather than chlorine auto-decomposition, was a primary reason for the observed rapid chlorine decay. Copper corrosion solids [Cu(2)O, CuO, Cu(2)(OH)(2)CO(3)] exhibited catalytic effects on both chlorine decay and HAA formation. Contrary to the results observed when in the absence of copper corrosion products, DCAA formation was consistently predominant over other HAA species in the presence of copper corrosion products, especially at neutral and high pH. This study improves the understanding for water utilities and households regarding chlorine residuals and HAA concentrations in distribution systems, in particular once the water reaches domestic plumbing where copper is widely used. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Suitability of macrophage inflammatory protein-1beta production by THP-1 cells in differentiating skin sensitizers from irritant chemicals.

    Science.gov (United States)

    Lim, Yeon-Mi; Moon, Seong-Joon; An, Su-Sun; Lee, Soo-Jin; Kim, Seo-Young; Chang, Ih-Seop; Park, Kui-Lea; Kim, Hyoung-Ah; Heo, Yong

    2008-04-01

    Worldwide restrictions in animal use for research have driven efforts to develop alternative methods. The study aimed to test the efficacy of the macrophage inflammatory protein-1beta (MIP-1beta) assay for testing chemicals' skin-sensitizing capacity. The assay was performed using 9 chemicals judged to be sensitizing and 7 non-sensitizing by the standard in vivo assays. THP-1 cells were cultured in the presence or absence of 4 doses, 0.01x, 0.1x, 0.5x, or 1x IC(50) (50% inhibitory concentration for THP-1 cell proliferation) of these chemicals for 24 hr, and the MIP-1beta level in the supernatants was determined. Skin sensitization by the test chemicals was determined by MIP-1beta production rates. The MIP-1beta production rate was expressed as the relative increase in MIP-1beta production in response to chemical treatment compared with vehicle treatment. When the threshold MIP-1beta production rate used was 100% or 105% of dimethyl sulfoxide, all the sensitizing chemicals tested (dinitrochlorobenzene, hexyl cinnamic aldehyde, eugenol, hydroquinone, dinitrofluorobenzene, benzocaine, nickel, chromium, and 5-chloro-2-methyl-4-isothiazolin-3-one) were positive, and all the non-sensitizing chemicals (methyl salicylate, benzalkonium chloride, lactic acid, isopropanol, and salicylic acid), with the exception of sodium lauryl sulfate, were negative for MIP-1beta production. These results indicate that MIP-1beta could be a biomarker for classification of chemicals as sensitizers or non-sensitizers.

  2. 3D slicing of radiogenic heat production in Bahariya Formation, Tut oil field, North-Western Desert, Egypt.

    Science.gov (United States)

    Al-Alfy, I M; Nabih, M A

    2013-03-01

    A 3D block of radiogenic heat production was constructed from the subsurface total gamma ray logs of Bahariya Formation, Western Desert, Egypt. The studied rocks possess a range of radiogenic heat production varying from 0.21 μWm(-3) to 2.2 μWm(-3). Sandstone rocks of Bahariya Formation have higher radiogenic heat production than the average for crustal sedimentary rocks. The high values of density log of Bahariya Formation indicate the presence of iron oxides which contribute the uranium radioactive ores that increase the radiogenic heat production of these rocks. The average radiogenic heat production produced from the study area is calculated as 6.3 kW. The histogram and cumulative frequency analyses illustrate that the range from 0.8 to 1.2 μWm(-3) is about 45.3% of radiogenic heat production values. The 3D slicing of the reservoir shows that the southeastern and northeastern parts of the study area have higher radiogenic heat production than other parts. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. Avoiding tar formation in biocoke production from waste biomass

    International Nuclear Information System (INIS)

    Adrados, A.; De Marco, I.; Lopez-Urionabarrenechea, A.; Solar, J.; Caballero, B.

    2015-01-01

    This paper focuses in avoiding tar formation and in optimizing pyrolysis gas (maximizing H 2 and CO) in the production of biocoke from waste lignocellulosic biomass. In order to obtain metallurgical grade biochar (biocoke) slow heating rate and high temperature are required. Under such conditions useless pyrolysis liquids, mainly composed of water together with some heavy-sticky tars, are obtained. In order to make biocoke a cost-effective process it is necessary to optimize pyrolysis vapors avoiding tar formation and maximizing the amount and quality of both coke and gases. With this objective, in this work different heating rates (3–20 °C min −1 ) and catalysts (zeolite, Ni/CeO 2 –Al 2 O 3 ) have been tested in a two step pyrolysis process. Olive tree cuttings have been pyrolyzed in a 3.5 L batch reactor at 750 °C and the vapors generated have been thermally and catalytically treated at 900 °C in a second tubular reactor. About 25 wt.% biocoke useful as reducing agent in certain metallurgical processes, ≈57 wt.% gases with near 50 vol.% H 2 , and no tar production has been achieved when a heating rate of 3 °C min −1 and the homemade Ni/CeO 2 –Al 2 O 3 catalyst were used. - Highlights: • Metallurgical grade biochar was obtained by olive waste pyrolysis. • Low heating rates avoid tar formation and increase gas and biochar yields. • Ni/CeO 2 –Al 2 O 3 was better than HZSM5 zeolite for vapor upgrading in a second step. • Ni/CeO 2 –Al 2 O 3 and 3 °C min −1 gave the maximum H 2 , gas and biochar yields

  4. Basic mechanisms of photosynthesis and applications to improved production and conversion of biomass to fuels and chemical products

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, M. [Georgia Institute of Tech., Atlanta, GA (United States); Greenbaum, E. [Oak Ridge National Laboratory, TN (United States); Wasielewski, M. [Argonne National Lab., IL (United States)

    1996-09-01

    Natural photosynthesis, the result of 3.5 billion years of evolutionary experimentation, is the best proven, functional solar energy conversion technology. It is responsible for filling the vast majority of humanity`s energy, nutritional, and materials needs. Understanding the basic physical chemical principles underlying photosynthesis as a working model system is vital to further exploitation of this natural technology. These principles can be used to improve or modify natural photosynthesis so that it is more efficient or so that it can produce unusual products such as hydrogen, methane, methanol, ethanol, diesel fuel substitutes, biodegradable materials, or other high value chemical products. Principles garnered from the natural process can also be used to design artificial photosynthetic devices that employ analogs of natural antenna and reaction center function, self-assembly and repair concepts, photoinduced charge transfer processes, photoprotection, and dark reactions that facilitate catalytic action to convert light into, useful chemical or electrical energy. The present broad understanding of many structural and functional aspects of photosynthesis has resulted from rapid recent research progress. X-ray structures of several key photosynthetic reaction centers and antenna systems are available, and the overall principles controlling photoinduced energy and electron transfer are being established.

  5. Formation of initial cost of stocks of own production

    Directory of Open Access Journals (Sweden)

    Elena Krukovskiy

    2016-06-01

    Full Text Available The concept and component stocks according to national accounting standards are revealed. The procedure for forming the initial value of the stock, depending on the way they arrive at the company according to the guidelines as well as methods for evaluating stocks of own production is grounded. The methodological principles of formation of information on stocks and the disclosure of its financial statements are considered. In the article investigated the procedure of forming the original value of stocks depending on how they flow to the enterprise. Number of methods of assessment of inventory, which can be used to reflect their value in the accounting and financial reporting, and methods of evaluation of own production is characterized. Identified costs are included in the initial cost of inventories, including inventories of own production. The estimation of the definition of agricultural produce at fair value and features of its application in the enterprise is proposed by authors.

  6. Innovative technology to meet the demands of the white biotechnology revolution of chemical production

    DEFF Research Database (Denmark)

    Villadsen, John

    2007-01-01

    by which a technological revolution termed "white biotechnology" for production of commodity chemicals has proved its credibility. Obviously, the rapid advances in biology has been crucial for the development of industrial biotechnology towards a position where even its cheap products such as bio-fuels can...... of sophisticated models, supported by accurate data obtained in experimental equipment that did not exist a few years ago. The need to update the chemical engineering education to meet the needs of the bio-industry is also evident. Much of the progress of the bio-industry has up to now been based on fundamental...

  7. Prediction of Hydrolysis Products of Organic Chemicals under Environmental pH Conditions

    Science.gov (United States)

    Cheminformatics-based software tools can predict the molecular structure of transformation products using a library of transformation reaction schemes. This paper presents the development of such a library for abiotic hydrolysis of organic chemicals under environmentally relevant...

  8. Chemically-bonded brick production based on burned clay by means of semidry pressing

    Energy Technology Data Exchange (ETDEWEB)

    Voroshilov, Ivan, E-mail: Nixon.06@mail.ru; Endzhievskaya, Irina, E-mail: icaend@mail.ru; Vasilovskaya, Nina, E-mail: icaend@mail.ru [FSAEI HVE Siberian Federal University, 82 Svobodny Prospekt, Krasnoyarsk, 660130 (Russian Federation)

    2016-01-15

    We presented a study on the possibility of using the burnt rocks of the Krasnoyarsk Territory for production of chemically-bonded materials in the form of bricks which are so widely used in multistory housing and private house construction. The radiographic analysis of the composition of burnt rock was conducted and a modifier to adjust the composition uniformity was identified. The mixing moisture content was identified and optimal amount at 13-15% was determined. The method of semidry pressing has been chosen. The process of obtaining moldings has been theoretically proved; the advantages of chemically-bonded wall materials compared to ceramic brick were shown. The production of efficient artificial stone based on material burnt rocks, which is comparable with conventionally effective ceramic materials or effective with cell tile was proved, the density of the burned clay-based cell tile makes up to 1630-1785 kg \\ m{sup 3}, with compressive strength of 13.6-20.0 MPa depending on the compression ratio and cement consumption, frost resistance index is F50, and the thermal conductivity in the masonry is λ = 0,459-0,546 W \\ m {sup *} °C. The clear geometric dimensions of pressed products allow the use of the chemically-bonded brick based on burnt clay as a facing brick.

  9. Flavour chemicals in a sample of non-cigarette tobacco products without explicit flavour names sold in New York City in 2015.

    Science.gov (United States)

    Farley, Shannon M; Schroth, Kevin Rj; Grimshaw, Victoria; Luo, Wentai; DeGagne, Julia L; Tierney, Peyton A; Kim, Kilsun; Pankow, James F

    2018-03-01

    Youth who experiment with tobacco often start with flavoured products. In New York City (NYC), local law restricts sales of all tobacco products with 'characterising flavours' except for 'tobacco, menthol, mint and wintergreen'. Enforcement is based on packaging: explicit use of a flavour name (eg, 'strawberry') or image depicting a flavour (eg, a fruit) is presumptive evidence that a product is flavoured and therefore prohibited. However, a tobacco product may contain significant levels of added flavour chemicals even when the label does not explicitly use a flavour name. Sixteen tobacco products were purchased within NYC in 2015 that did not have explicit flavour names, along with three with flavour names. These were analysed for 92 known flavour chemicals plus triacetin by gas chromatography/mass spectrometry. 14 of the 16 products had total determined flavour chemical levels that were higher (>0.3 mg/g) than in previously studied flavour-labelled products and of a chemical profile indicating added flavour chemicals. The results suggest that the tobacco industry has responded to sales restrictions by renaming flavoured products to avoid explicitly identifying them as flavoured. While chemical analysis is the most precise means of identifying flavours in tobacco products, federal tobacco laws pre-empt localities from basing regulations on that approach, limiting enforcement options. If the Food and Drug Administration would mandate that all tobacco products must indicate when flavourings are present above a specific level, local jurisdictions could enforce their sales restrictions. A level of 0.1 mg/g for total added flavour chemicals is suggested here as a relevant reference value for regulating added flavour chemicals in tobacco products. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. A comparison of chemical mechanisms using tagged ozone production potential (TOPP analysis

    Directory of Open Access Journals (Sweden)

    J. Coates

    2015-08-01

    Full Text Available Ground-level ozone is a secondary pollutant produced photochemically from reactions of NOx with peroxy radicals produced during volatile organic compound (VOC degradation. Chemical transport models use simplified representations of this complex gas-phase chemistry to predict O3 levels and inform emission control strategies. Accurate representation of O3 production chemistry is vital for effective prediction. In this study, VOC degradation chemistry in simplified mechanisms is compared to that in the near-explicit Master Chemical Mechanism (MCM using a box model and by "tagging" all organic degradation products over multi-day runs, thus calculating the tagged ozone production potential (TOPP for a selection of VOCs representative of urban air masses. Simplified mechanisms that aggregate VOC degradation products instead of aggregating emitted VOCs produce comparable amounts of O3 from VOC degradation to the MCM. First-day TOPP values are similar across mechanisms for most VOCs, with larger discrepancies arising over the course of the model run. Aromatic and unsaturated aliphatic VOCs have the largest inter-mechanism differences on the first day, while alkanes show largest differences on the second day. Simplified mechanisms break VOCs down into smaller-sized degradation products on the first day faster than the MCM, impacting the total amount of O3 produced on subsequent days due to secondary chemistry.

  11. EDUCATION AS BASIS OF FORMATION OF «NEW PRODUCTIVE FORCES» IN POST-INDUSTRIAL SOCIETY

    Directory of Open Access Journals (Sweden)

    Mikhail Grechko

    2016-12-01

    Full Text Available Search of trajectories of transformation of domestic economy and society, in aspect of transition to a post-industrial stage of development, is actual and significant for today. In the author presented to article it is reasoned that synchronous formation of the «new productive forces» adequate to the formed relations of production in post-industrial society has to become the main imperative of development of domestic economy. Taking into account conceptual results of the political economic, evolutionary and institutional economic theory, the author put forward and proved situation that the new productive forces serving subsequently as basis for formation of relations of production adequate to them in borders of a post-industrial stage of development, have to be formed in sectors of generation of knowledge, thus the special part is assigned to educational sector. In the conclusion the main conclusions on the conducted research are systematized.

  12. SYNBIOCHEM Synthetic Biology Research Centre, Manchester – A UK foundry for fine and speciality chemicals production

    Directory of Open Access Journals (Sweden)

    Le Feuvre RA

    2016-12-01

    Full Text Available The UK Synthetic Biology Research Centre, SYNBIOCHEM, hosted by the Manchester Institute of Biotechnology at the University of Manchester is delivering innovative technology platforms to facilitate the predictable engineering of microbial bio-factories for fine and speciality chemicals production. We provide an overview of our foundry activities that are being applied to grand challenge projects to deliver innovation in bio-based chemicals production for industrial biotechnology.

  13. Quantum chemical and thermodynamic calculations of fulvic and humic copper complexes in reactions of malachite and azurite formation

    International Nuclear Information System (INIS)

    Fomin, Vitaliy N.; Gogol, Daniil B.; Rozhkovoy, Ivan E.; Ponomarev, Dmitriy L.

    2017-01-01

    This article provides a thermodynamic evaluation of the reactions of humic and fulvic acids in the process of malachite and azurite mineralogenesis. Semi-empirical methods AM/1, MNDO, PM3, PM5, PM6 and PM7 were used to compute the heat of formation, enthalpy and entropy for thermodynamic calculations of the reactions performed on the basis of Hess's law. It is shown that methods PM6 and PM7 in the MOPAC software package provide good compliance with experimental and calculated heats of formation for copper complexes and alkaline earth metal complexes with organic acids. It is found that the malachite and azurite formation processes involving humus complexing substances are thermodynamically possible. - Highlights: • Copper and alkali-earth metal complexes with humic and fulvic acids are considered. • Quantum chemical calculation of thermodynamics for the structures was performed. • Semi-empirical methods PM6 and PM7 provide best correlation for the properties. • Parameters of basic copper carbonate formation reactions were obtained by Hess's law. • Processes of malachite and azurite formation from humus complexes are possible.

  14. FISPRO: a simplified computer program for general fission product formation and decay calculations

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.; Bailey, P.G.

    1979-08-01

    This report describes a computer program that solves a general form of the fission product formation and decay equations over given time steps for arbitrary decay chains composed of up to three nuclides. All fission product data and operational history data are input through user-defined input files. The program is very useful in the calculation of fission product activities of specific nuclides for various reactor operational histories and accident consequence calculations

  15. Chemical and Spectral Characterization of The Ozonation Products of κ-Carrageenan

    Directory of Open Access Journals (Sweden)

    Prasetyaningrum Aji

    2018-01-01

    Full Text Available Kappa (κ- carrageenan oligomers are known to have several biological activities. Recent progress in the development of modified κ-carrageenan has resulted low molecular of κ-carrageenan. Ozone is a powerful oxidant and considered for depolymerization of κ-carrageenan. However, few studies have investigated the changes in κ-carrageenan properties associated with ozone treatment. This study would investigate on the changes in chemical structure after ozonation process. The experiments were carried out in a glass reactor equipped with an ozone bubble diffuser. Ozone with concentration of 80 ± 2 was bubbled into the solution. The ozone treatment was conducted at different times, i.e., 0 (control, 5, 10, 15, and 20 minutes. The experiments were conducted at pH 7 and constant stirring speed (200 rpm. Ozone-treated κ-carrageenan was dried at 60 ºC for 24 h in a forced air oven. The chemical and spectral analyses of κ-carrageenan after ozonation process were carried out using UV-Vis and FT-IR spectroscopy. These changes are seen in the UV spectra as a high intensity of absorbance peak at 290 nm. It is shows that ozonation of κ-carrageenan leads to some chemical changes such as the formation of carbonyl, carboxyl or double bonds.The FT-IR spectra reveals that the chemical structure of degraded κ-carrageenan, in term of sulfate content, is only slightly affected by the ozone treatment.

  16. A Comprehensive Framework for Surfactant Selection and Design for Emulsion Based Chemical Product Design

    DEFF Research Database (Denmark)

    Mattei, Michele; Kontogeorgis, Georgios; Gani, Rafiqul

    2014-01-01

    The manufacture of emulsified products is of increasing interest in the consumer oriented chemical indus-try. Several cosmetic, house-hold and pharmaceutical products are in the emulsified form when soldand/or they are expected to form an emulsion when used. Therefore, there is a need...

  17. Chemical equilibrium of hydrogen and aqueous solutions of 1 : 1 bicarbonate and formate salts with a common cation

    NARCIS (Netherlands)

    Engel, D.C.; Versteeg, G.F.; Swaaij, W.P.M. van

    1997-01-01

    The chemical equilibrium of hydrogen and aqueous solutions of 1:1 bicarbonate and formate salts with a common cation has been investigated in an intensively stirred batch reactor: MHCO3(aq) + H2(aq) ↔ MOOCH(aq) + H2O(l) This was accomplished for the sodium (M = Na), potassium (M = K) and ammonium (M

  18. Aluminum Oxide Formation On Fecral Catalyst Support By Electro-Chemical Coating

    Directory of Open Access Journals (Sweden)

    Yang H.S.

    2015-06-01

    Full Text Available FeCrAl is comprised essentially of Fe, Cr, Al and generally considered as metallic substrates for catalyst support because of its advantage in the high-temperature corrosion resistance, high mechanical strength, and ductility. Oxidation film and its adhesion on FeCrAl surface with aluminum are important for catalyst life. Therefore various appropriate surface treatments such as thermal oxidation, Sol, PVD, CVD has studied. In this research, PEO (plasma electrolytic oxidation process was applied to form the aluminum oxide on FeCrAl surface, and the formed oxide particle according to process conditions such as electric energy and oxidation time were investigated. Microstructure and aluminum oxide particle on FeCrAl surface after PEO process was observed by FE-SEM and EDS with element mapping analysis. The study presents possibility of aluminum oxide formation by electro-chemical coating process without any pretreatment of FeCrAl.

  19. Interfacial micropore defect formation in PEDOT:PSS-Si hybrid solar cells probed by TOF-SIMS 3D chemical imaging.

    Science.gov (United States)

    Thomas, Joseph P; Zhao, Liyan; Abd-Ellah, Marwa; Heinig, Nina F; Leung, K T

    2013-07-16

    Conducting p-type polymer layers on n-type Si have been widely studied for the fabrication of cost-effective hybrid solar cells. In this work, time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to provide three-dimensional chemical imaging of the interface between poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) and SiOx/Si in a hybrid solar cell. To minimize structural damage to the polymer layer, an Ar cluster sputtering source is used for depth profiling. The present result shows the formation of micropore defects in the interface region of the PEDOT:PSS layer on the SiOx/Si substrate. This interfacial micropore defect formation becomes more prominent with increasing thickness of the native oxide layer, which is a key device parameter that greatly affects the hybrid solar cell performance. Three-dimensional chemical imaging coupled with Ar cluster ion sputtering has therefore been demonstrated as an emerging technique for probing the interface of this and other polymer-inorganic systems.

  20. Oxygenated base chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Roeper, M.

    1984-11-01

    Methyl formate, a syngas based intermediate, is already today produced on large scale by base catalyzed methanol carbonylation. An alternative synthesis, based on methanol dehydrogenation, seems to be ready for commercialization, whereas other routes including direct carbon monoxide hydrogenation, formaldehyde disproportionation or methanol oxydehydrogenation are less advanced. Besides being used as a solvent or an insect control agent, methyl formate serves as a feedstock for e.g. formic acid, formamide, N,N-dimethylformamide, and N-formyl morpholine. Newer formic acid processes are based on direct hydrolysis of methyl formate, and appear to replace the traditional indirect formamide based route. Future use of methyl formate could include the production of pure carbon monoxide, methanol, dimethyl carbonate, diphosgene, ethylene glycol via methyl glycolate, acetic acid, and methyl propionate. All these processes either avoid the use of high purity carbon monoxide or proceed under milder conditions than conventional routes. They could gain interest, if syngas and methanol become available at a large scale as competitive feedstocks for the chemical industry.

  1. Online data sources for regulation and remediation of chemical production, distribution, use and disposal

    International Nuclear Information System (INIS)

    Snow, B.; Arnold, S.

    1995-01-01

    Environmental awareness is essential for todays corporation. Corporations have been held liable for the short-term and long-term effects of such chemicals as pharmaceuticals, agrochemicals and petrochemicals to name a few. Furthermore, corporations have been held accountable for disposal of wastes or by-products of chemical production. Responsibility for the environment either mandated by government agencies or done voluntarily is an economic factor for business operations. Remediation of environmental hazards on a voluntary basis has often created goodwill and a payoff for being socially responsible. Remediation also can result in new business opportunities or savings in production costs. To be environmentally aware and socially responsible, the chemist should know where to find regulatory information for countries worldwide. Using online data sources is an efficient method of seeking this information

  2. Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2012-10-01

    Full Text Available Microbial biocatalysts such as Escherichia coli and Saccharomyces cerevisiae have been extensively subjected to Metabolic Engineering for the fermentative production of biorenewable fuels and chemicals. This often entails the introduction of new enzymes, deletion of unwanted enzymes and efforts to fine-tune enzyme abundance in order to attain the desired strain performance. Enzyme performance can be quantitatively described in terms of the Michaelis-Menten type parameters Km, turnover number kcat and Ki, which roughly describe the affinity of an enzyme for its substrate, the speed of a reaction and the enzyme sensitivity to inhibition by regulatory molecules. Here we describe examples of where knowledge of these parameters have been used to select, evolve or engineer enzymes for the desired performance and enabled increased production of biorenewable fuels and chemicals. Examples include production of ethanol, isobutanol, 1-butanol and tyrosine and furfural tolerance. The Michaelis-Menten parameters can also be used to judge the cofactor dependence of enzymes and quantify their preference for NADH or NADPH. Similarly, enzymes can be selected, evolved or engineered for the preferred cofactor preference. Examples of exporter engineering and selection are also discussed in the context of production of malate, valine and limonene.

  3. OPTIMIZATION OF ENZYME PARAMETERS FOR FERMENTATIVE PRODUCTION OF BIORENEWABLE FUELS AND CHEMICALS

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2012-10-01

    Full Text Available Microbial biocatalysts such as Escherichia coli and Saccharomyces cerevisiae have been extensively subjected to Metabolic Engineering for the fermentative production of biorenewable fuels and chemicals. This often entails the introduction of new enzymes, deletion of unwanted enzymes and efforts to fine-tune enzyme abundance in order to attain the desired strain performance. Enzyme performance can be quantitatively described in terms of the Michaelis-Menten type parameters Km, turnover number kcat and Ki, which roughly describe the affinity of an enzyme for its substrate, the speed of a reaction and the enzyme sensitivity to inhibition by regulatory molecules. Here we describe examples of where knowledge of these parameters have been used to select, evolve or engineer enzymes for the desired performance and enabled increased production of biorenewable fuels and chemicals. Examples include production of ethanol, isobutanol, 1-butanol and tyrosine and furfural tolerance. The Michaelis-Menten parameters can also be used to judge the cofactor dependence of enzymes and quantify their preference for NADH or NADPH. Similarly, enzymes can be selected, evolved or engineered for the preferred cofactor preference. Examples of exporter engineering and selection are also discussed in the context of production of malate, valine and limonene.

  4. PRODUCTION OF METAL CHEMICAL WELDING ADDITIVE WITH NANODISPERSED PARTICLES OF TITANIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    BOLDYREV Alexander Mikhaylovich

    2013-12-01

    Full Text Available When welding bridge structures automatic welding under a gumboil layer with metal chemical additive (MCA is widely applied in the modern bridge building. MCA consists of a chopped welding wire (granulated material, which is powdered by modifying chemical additive of titanium dioxide (TiO₂ in the cylindrical mixer «drunk cask». Chemical composition of all welding materials including welding wire, gumboil, electrodes, are strictly normalized and controlled. However, the existing technology of producing MCA doesn’t allow precise controlling of its structure under working conditions and that causes an impact on the stability of welded connections properties. Therefore the aim of this work is to develop a technology to produce stable MCA structure. The paper compares the existing and proposed manufacturing techniques of the metal chemical additive (MCA which is applied in automatic welding of butt connections for bridge structures. It is shown that production of MCA in a high-energy planetary mill provides more stable structure of the additive introduced into a welded joint. The granulometric analysis of the powder TiO₂ showed that when processing MCA in a planetary mill TiO₂ particles are crashed to nanodimensional order. This process is accompanied by crushing of granulated material too. The proposed method for production of MCA in a planetary mill provides stronger cohesion of dioxide with the granulate surface and, as a consequence, more stable MCA chemical structure. Application of MCA which has been mechanical intensified in a planetary mill, increases stability of mechanical properties, if compare with applied technology, in single-order by breaking point and almost twice by impact viscosity.

  5. Application of FUZZY mathematics in the interpretation of logging data to evaluate high productivity oil-bearing formation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.

    1987-01-01

    In this paper, the construction of the mathematic models, membership function and the FUZZY matrix for a formation evaluation in the digital processing of well logging data are demonstrated. The study of FUZZY operators and an analysis of their effectiveness is emphasized. W type operators, FUZZY factors, and productivity equations for different geological conditions are also suggested in this paper. The programs given by the author, as expressed in this paper, can give as comprehensive evaluation of the oil-bearing formation and its geological parameters, and can give the productivity (ton/day), the type of the reservoir formation, locate the high productive formation and the degree of credit of such an evaluation, as well. All these will give bases for decision making. These results have been applied in the digital processing of well logging data interpretation in Nanhai, Dongpu, and Liahoe oil fields, and good results are obtained. Thus the designed process provides a new technique for the interpretation of a complex hydrocarbon bearing formation and the current technique of data processing of the logging data will be advanced to a new level.

  6. Chemical Reduction Synthesis of Iron Aluminum Powders

    Science.gov (United States)

    Zurita-Méndez, N. N.; la Torre, G. Carbajal-De; Ballesteros-Almanza, L.; Villagómez-Galindo, M.; Sánchez-Castillo, A.; Espinosa-Medina, M. A.

    In this study, a chemical reduction synthesis method of iron aluminum (FeAl) nano-dimensional intermetallic powders is described. The process has two stages: a salt reduction and solvent evaporation by a heat treatment at 1100°C. The precursors of the synthesis are ferric chloride, aluminum foil chips, a mix of Toluene/THF in a 75/25 volume relationship, and concentrated hydrochloric acid as initiator of the reaction. The reaction time was 20 days, the product obtained was dried at 60 °C for 2 h and calcined at 400, 800, and 1100 °C for 4 h each. To characterize and confirm the obtained synthesis products, X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) techniques were used. The results of morphology and chemical characterization of nano-dimensional powders obtained showed a formation of agglomerated particles of a size range of approximately 150 nm to 1.0 μm. Composition of powders was identified as corundum (Al2O3), iron aluminide (FeAl3), and iron-aluminum oxides (Fe0. 53Al0. 47)2O3 phases. The oxide phases formation were associated with the reaction of atmospheric concentration-free oxygen during synthesis and sintering steps, reducing the concentration of the iron aluminum phase.

  7. Seasonality of New Particle Formation in Vienna, Austria - Influence of Air Mass Origin and Aerosol Chemical Composition

    Czech Academy of Sciences Publication Activity Database

    Wonaschütz, A.; Demattio, A.; Wagner, R.; Burkart, J.; Zíková, Naděžda; Vodička, Petr; Ludwig, W.; Steiner, G.; Schwarz, Jaroslav; Hitzenberger, R.

    2015-01-01

    Roč. 118, OCT 2015 (2015), s. 118-126 ISSN 1352-2310 R&D Projects: GA MŠk 7AMB12AT021; GA ČR(CZ) GBP503/12/G147 Grant - others:FWF(AT) P19515-N20 Institutional support: RVO:67985858 Keywords : urban aerosol * aerosol chemical composition * new particle formation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.459, year: 2015

  8. Computer Aided Methods & Tools for Separation & Purification of Fine Chemical & Pharmaceutical Products

    DEFF Research Database (Denmark)

    Afonso, Maria B.C.; Soni, Vipasha; Mitkowski, Piotr Tomasz

    2006-01-01

    An integrated approach that is particularly suitable for solving problems related to product-process design from the fine chemicals, agrochemicals, food and pharmaceutical industries is presented together with the corresponding methods and tools, which forms the basis for an integrated computer...

  9. 77 FR 21065 - Certain High Production Volume Chemicals; Test Rule and Significant New Use Rule; Fourth Group of...

    Science.gov (United States)

    2012-04-09

    ... 2070-AJ66 Certain High Production Volume Chemicals; Test Rule and Significant New Use Rule; Fourth... an opportunity to comment on a proposed test rule for 23 high production volume (HPV) chemical... necessary, to prohibit or limit that activity before it occurs. The opportunity to present oral comment was...

  10. Chemical denitration of aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1987-11-01

    The Plant for Active Waste Liquids (PAWL) at CRNL will immobilize in glass the fission products in waste from Mo-99 production. The nitrate ions in the waste can be destroyed by heating, but also by chemical reaction with formic acid (HCOOH). Since chemical denitration has several advantages over thermal denitration it was studied in the course of vitrification process development. Two free radical mechanisms are examined here to explain kinetic data on chemical denitration of nitric acid solutions with formic acid. One mechanism is applicable at > 1 mol/L HNO 3 and involves the formate radical (HCOO . ). The second mechanism holds at 3 and involves the hyponitrous radical (HNO . ). Mass balances for various species were written based on the law of mass action applied to the equations describing the reaction mechanism. Analytical and numerical solutions were obtained and compared. Literature data on batch denitration were used to determine some of the rate constants while others were set arbitrarily. Observed stoichiometry and trends in reactant concentrations are predicted accurately for batch data. There are no literature data to compare with the prediction of negligible induction time

  11. Chemical state analysis of oxidation products on steel surface by conversion electron Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Nomura, Kiyoshi

    1978-01-01

    The polished NT-70H steel (Fe: 95.97%, C: 0.56%, diameter: 5 cm, thickness: 0.5 cm) was immersed in deionized water or in solutions containing (0.25 -- 0.5) M of chloride, sulfate and nitrate ions. The chemical states of oxidation products of iron on the surface were identified through the analysis of conversion electron Moessbauer spectra (CEMS). CEMS of the steel surface, which had been dipped in deionized water, revealed that γ-FeOOH was formed on the surface. The thickness of γ-FeOOH layer increased with the increase of the duration of dipping. Dissolved oxygen in the solution played an essential role in the oxidation of iron to γ-FeOOH. Oxidation product of iron dipped in the 0.5 M sodium chloride solution was identified as γ-FeOOH. Amorphous paramagnetic iron (III) compound tended to form in the presence of hydrogen peroxide or ammonium ions in the solutions. The increase of alkalinity of the solution up to pH 12 suppressed the oxidation rate and assisted the formation of green rust, which was confirmed by the appearance of the quadrupole splitting peaks of the green rust. In the 0.25 M sodium sulfate solution, oxidation of the steel surface proceeded slowly and the quadrupole splitting peaks of Fe(OH) 2 were seen in the CEMS. The peak intensity of Fe(OH) 2 gradually decreased and that of γ-FeOOH increased by the extension of immersion of steel in the solution. Magnetite (Fe 3 O 4 ) layer was developed beneath the γ-FeOOH layer, when steel was dipped in 0.5 M sodium nitrate solution. However, the peaks of Fe 3 O 4 were not seen on CEMS of steel surface immersed in 0.5 M ammonium nitrate solution. Thus, applying the feasibility of CEMS for the characterization of oxidated compounds of iron on the steel surface formed by the immersion in solutions, the oxidation mechanism of the steel surface was discussed based upon the results of chemical state analyses. (author)

  12. Norepinephrine stimulates progesterone production in highly estrogenic bovine granulosa cells cultured under serum-free, chemically defined conditions.

    Science.gov (United States)

    Piccinato, Carla A; Montrezor, Luis H; Collares, Cristhianna A V; Vireque, Alessandra A; Rosa e Silva, Alzira A M

    2012-11-22

    Since noradrenergic innervation was described in the ovarian follicle, the actions of the intraovarian catecholaminergic system have been the focus of a variety of studies. We aimed to determine the gonadotropin-independent effects of the catecholamine norepinephrine (NE) in the steroid hormone profile of a serum-free granulosa cell (GC) culture system in the context of follicular development and dominance. Primary bovine GCs were cultivated in a serum-free, chemically defined culture system supplemented with 0.1% polyvinyl alcohol. The culture features were assessed by hormone measurements and ultrastructural characteristics of GCs. GCs produced increasing amounts of estradiol and pregnenolone for 144h and maintained ultrastructural features of healthy steroidogenic cells. Progesterone production was also detected, although it significantly increased only after 96h of culture. There was a highly significant positive correlation between estradiol and pregnenolone production in high E2-producing cultures. The effects of NE were further evaluated in a dose-response study. The highest tested concentration of NE (10 (-7) M) resulted in a significant increase in progesterone production, but not in estradiol or pregnenolone production. The specificity of NE effects on progesterone production was further investigated by incubating GCs with propranolol (10 (-8) M), a non-selective beta-adrenergic antagonist. The present culture system represents a robust model to study the impact of intrafollicular factors, such as catecholamines, in ovarian steroidogenesis and follicular development. The results of noradrenergic effects in the steroidogenesis of GC have implications on physiological follicular fate and on certain pathological ovarian conditions such as cyst formation and anovulation.

  13. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  14. Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass.

    Science.gov (United States)

    Shylesh, Sankaranarayanapillai; Gokhale, Amit A; Ho, Christopher R; Bell, Alexis T

    2017-10-17

    Growing concern with the environmental impact of CO 2 emissions produced by combustion of fuels derived from fossil-based carbon resources has stimulated the search for renewable sources of carbon. Much of this focus has been on the development of methods for producing transportation fuels, the major source of CO 2 emissions today, and to a lesser extent on the production of lubricants and chemicals. First-generation biofuels such as bioethanol, produced by the fermentation of sugar cane- or corn-based sugars, and biodiesel, produced by the transesterification reaction of triglycerides with alcohols to form a mixture of long-chain fatty esters, can be blended with traditional fuels in limited amounts and also arise in food versus fuel debates. Producing molecules that can be drop-in solutions for fossil-derived products used in the transportation sector allows for efficient use of the existing infrastructure and is therefore particularly interesting. In this context, the most viable source of renewable carbon is abundantly available lignocellulosic biomass, a complex mixture of lignin, hemicellulose, and cellulose. Conversion of the carbohydrate portion of biomass (hemicellulose and cellulose) to fuels requires considerable chemical restructuring of the component sugars in order to achieve the energy density and combustion properties required for transportation fuels-gasoline, diesel, and jet. A different set of constraints must be met for the conversion of biomass-sourced sugars to lubricants and chemicals. This Account describes strategies developed by us to utilize aldehydes, ketones, alcohols, furfurals, and carboxylic acids derived from C 5 and C 6 sugars, acetone-butanol-ethanol (ABE) fermentation mixtures, and various biomass-derived carboxylic acids and fatty acids to produce fuels, lubricants, and chemicals. Oxygen removal from these synthons is achieved by dehydration, decarboxylation, hydrogenolysis, and hydrodeoxygenation, whereas reactions such as

  15. Organic Animal Production and Mycotoxins

    Directory of Open Access Journals (Sweden)

    Nurcan Çetinkaya

    2018-03-01

    Full Text Available Organic animal production; is a form of production without using any chemical inputs from production to consumption. In organic livestock production; organic breeding, feedstuff and animal nutrition conditions are stated in the Regulation on the Principles and Implementation of Organic Agriculture. Organic animal products must be prevented from recontamination. There are three different contamination hazards; biological (mold-toxins and pathogenic micro-organisms, chemical (pesticide residues, and physical (broken metal or glass, etc.. Molding and mycotoxin formation in organic feeds is one of the most important problems since they adversly affect animal health and toxines pass through the products. Since any chemical method cannot be applied to the organic feedstuffs especially in the struggle with mycotoxin in organic animal production, this should be considered in the measures to be taken and in the systems to be applied and the system should be planned to include organic agriculture. Countries that have established HACCP and ISO 22000 food safety management systems are able to avoid the problem of mycotoxin pollution in organic animal foods. The establishment of the feed safety system based on HACCP principles and its application in production have been made compulsory by Feed Hygiene Regulation issued in Turkey since 2011. In this review, the relationship between organic animal production and mycotoxin, and the precautions to be taken are discussed.

  16. Moving from batch towards continuous organic‐chemical pharmaceutical production

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili

    process understanding. Developing a process within a more flexible design space based on sound engineering judgment potentially allows process optimization once the product has already been approved. Micro‐ and mini‐chemical systems have been envisaged as the optimal scale for pharmaceutical production...... are the highest benefits found? How can a continuous process be designed and implemented? Are continuous processes compatible with slow reactions? Do they allow problem free processing of solid particles? What is the cost needed to implement a continuous process? This PhD thesis tries to answer some of those...... questions through the development of a systematic framework that takes advantage of continuous processing technologies and process systems engineering for the efficient design of continuous pharmaceutical processes. The framework consists of a step‐by‐step procedure that guides the user from drug discovery...

  17. Formation of early and advanced Maillard reaction products correlates to the ripening of cheese.

    Science.gov (United States)

    Spanneberg, Robert; Salzwedel, Grit; Glomb, Marcus A

    2012-01-18

    The present study deals with the characterization of the ripening of cheese. A traditional German acid curd cheese was ripened under defined conditions at elevated temperature, and protein and amino acid modifications were investigated. Degree of proteolysis and analysis of early [Amadori compound furosine (6)] and advanced [N(ε)-carboxymethyllysine (4), N(ε)-carboxyethyllysine (5)] Maillard reaction products confirmed the maturation to proceed from the rind to the core of the cheese. Whereas 6 was decreased, 4 and 5 increased over time. Deeper insight into the Maillard reaction during the ripening of cheese was achieved by the determination of selected α-dicarbonyl compounds. Especially methylglyoxal (2) showed a characteristic behavior during storage of the acid curd cheese. Decrease of this reactive structure was directly correlated to the formation of 5. To extend the results of experimental ripening to commercial cheeses, different aged Gouda types were investigated. Maturation times of the samples ranged from 6 to 8 weeks (young) to more than 1 year (aged). Again, increase of 5 and decrease of 2 were able to describe the ripening of this rennet coagulated cheese. Therefore, both chemical parameters are potent markers to characterize the degree of maturation, independent of coagulation.

  18. Teachers' Misconceptions about the Effects of Addition of More Reactants or Products on Chemical Equilibrium

    Science.gov (United States)

    Cheung, Derek; Ma, Hong-jia; Yang, Jie

    2009-01-01

    The importance of research on misconceptions about chemical equilibrium is well recognized by educators, but in the past, researchers' interest has centered on student misconceptions and has neglected teacher misconceptions. Focusing on the effects of adding more reactants or products on chemical equilibrium, this article discusses the various…

  19. Chemically modified tetracyclines stimulate matrix metalloproteinase-s production by periodontal ligament cells

    NARCIS (Netherlands)

    Bildt, M.M.; Snoek-van Beurden, A.M.P.; Groot, J. de; El, B. van; Kuijpers-Jagtman, A.M.; Hoff, J.W. van den

    2006-01-01

    Background and Objective: The purpose of this study was to investigate the effects of chemically modified tetracyclines (CMTs) on the production of gelatinases [matrix metalloproteinase (MMP)-2 and -9] by human periodontal ligament (PDL) cells, and on the activity of recombinant gelatinases.

  20. Enhanced production of para-hydroxybenzoic acid by genetically engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Averesch, Nils J H; Prima, Alex; Krömer, Jens O

    2017-08-01

    Saccharomyces cerevisiae is a popular organism for metabolic engineering; however, studies aiming at over-production of bio-replacement precursors for the chemical industry often fail to overcome proof-of-concept stage. When intending to show real industrial attractiveness, the challenge is twofold: formation of the target compound must be increased, while minimizing the formation of side and by-products to maximize titer, rate and yield. To tackle these, the metabolism of the organism, as well as the parameters of the process, need to be optimized. Addressing both we show that S. cerevisiae is well-suited for over-production of aromatic compounds, which are valuable in chemical industry and are particularly useful in space technology. Specifically, a strain engineered to accumulate chorismate was optimized for formation of para-hydroxybenzoic acid. Then a fed-batch bioreactor process was developed, which delivered a final titer of 2.9 g/L, a maximum rate of 18.625 mg pHBA /(g CDW  × h) and carbon-yields of up to 3.1 mg pHBA /g glucose .

  1. Hydrogen Production from Cyclic Chemical Looping Steam Methane Reforming over Yttrium Promoted Ni/SBA-16 Oxygen Carrier

    Directory of Open Access Journals (Sweden)

    Sanaz Daneshmand-Jahromi

    2017-09-01

    Full Text Available In this work, the modification of Ni/SBA-16 oxygen carrier (OC with yttrium promoter is investigated. The yttrium promoted Ni-based oxygen carrier was synthesized via co-impregnation method and applied in chemical looping steam methane reforming (CL-SMR process, which is used for the production of clean energy carrier. The reaction temperature (500–750 °C, Y loading (2.5–7.4 wt. %, steam/carbon molar ratio (1–5, Ni loading (10–30 wt. % and life time of OCs over 16 cycles at 650 °C were studied to investigate and optimize the structure of OC and process temperature with maximizing average methane conversion and hydrogen production yield. The synthesized OCs were characterized by multiples techniques. The results of X-ray powder diffraction (XRD and energy dispersive X-ray spectroscopy (EDX of reacted OCs showed that the presence of Y particles on the surface of OCs reduces the coke formation. The smaller NiO species were found for the yttrium promoted OC and therefore the distribution of Ni particles was improved. The reduction-oxidation (redox results revealed that 25Ni-2.5Y/SBA-16 OC has the highest catalytic activity of about 99.83% average CH4 conversion and 85.34% H2 production yield at reduction temperature of 650 °C with the steam to carbon molar ratio of 2.

  2. Chemical reactions in reverse micelle systems

    Science.gov (United States)

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  3. Strangeness production in nuclear collisions: Color rope formations?

    International Nuclear Information System (INIS)

    Toneev, V.D.; Amelin, N.S.; Csernai, L.P.; Gudima, K.K.; Sivoklokov, S.Yu.

    1992-12-01

    Strangeness production at SPS-CERN energies is studied within the Quark Gluon String Model. This analysis indicates that the observed shape of rapidity and transverse mass distributions are reproduced fairly well for both peripheral and central heavy ion collisions. However, for central collisions the model underpredicts strange particles abundance by a factor of about 2:2:4 for K S 0 , Λ and anti Λ, respectively. This discrepancy can be considered as a possible manifestation of string-string interactions of a collective type similar to the formation of a color rope. The model predictions for coming experiments with the Pb beam at CERN are given. (orig.)

  4. Interesterificação química: alternativa para obtenção de gorduras zero trans Chemical interresterification: alternative to production of zero trans fats

    Directory of Open Access Journals (Sweden)

    Ana Paula Badan Ribeiro

    2007-10-01

    Full Text Available The function of lipids in human nutrition has been intensively debated in the last decade.This context reinforces the concern about controlling the trans fat ingestion, due to its negative implications on health. Interesterification provides an important alternative to modify the consistency of oils and fats without causing formation of trans isomers. This article reports research done towards production of zero trans fats by chemical interesterification, for different industrial purposes. Aspects related to the effect of trans fats on diet, their impact on health and modifications in Brazilian legislation are also covered.

  5. Uniform formation of Au coated polystyrene core-shell structure using metallization process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoungseob; Koo, Jonghyun; Roh, Yonghan, E-mail: yhroh@skku.edu

    2011-08-01

    There are several methods for the fabrication of core-shell particles, including chemical reduction and self-assembly. In this study, the chemical reduction method was used to fabricate 100 nm, Au-coated polystyrene nanoparticles. The formation of the gold layer was based on the increase of gold coverage by the reaction with aniline and HAuCl{sub 4}. This method allowed for efficient control of the gold coverage and led to relatively stable products. The formation of Au clusters on the surface of the 100 nm polystyrene beads was characterized by scanning electron microscope and high resolution tunneling electron microscope. As a result, the Au-coated nanoparticles can be used in various applications such as surface plasmon resonators, drug delivery systems and electronic optical devices.

  6. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.

    Science.gov (United States)

    Olguín, Eugenia J

    2012-01-01

    Excess greenhouse gas emissions and the concomitant effect on global warming have become significant environmental, social and economic threats. In this context, the development of renewable, carbon-neutral and economically feasible biofuels is a driving force for innovation worldwide. A lot of effort has been put into developing biodiesel from microalgae. However, there are still a number of technological, market and policy barriers that are serious obstacles to the economic feasibility and competitiveness of such biofuels. Conversely, there are also a number of business opportunities if the production of such alternative biofuel becomes part of a larger integrated system following the Biorefinery strategy. In this case, other biofuels and chemical products of high added value are produced, contributing to an overall enhancement of the economic viability of the whole integrated system. Additionally, dual purpose microalgae-bacteria-based systems for treating wastewater and production of biofuels and chemical products significantly contribute to a substantial saving in the overall cost of microalgae biomass production. These types of systems could help to improve the competitiveness of biodiesel production from microalgae, according to some recent Life Cycle Analysis studies. Furthermore, they do not compete for fresh water resources for agricultural purposes and add value to treating the wastewater itself. This work reviews the most recent and relevant information about these types of dual purpose systems. Several aspects related to the treatment of municipal and animal wastewater with simultaneous recovery of microalgae with potential for biodiesel production are discussed. The use of pre-treated waste or anaerobic effluents from digested waste as nutrient additives for weak wastewater is reviewed. Isolation and screening of microalgae/cyanobacteria or their consortia from various wastewater streams, and studies related to population dynamics in mixed cultures

  7. Mapping Students' Conceptual Modes When Thinking about Chemical Reactions Used to Make a Desired Product

    Science.gov (United States)

    Weinrich, M. L.; Talanquer, V.

    2015-01-01

    The central goal of this qualitative research study was to uncover major implicit assumptions that students with different levels of training in the discipline apply when thinking and making decisions about chemical reactions used to make a desired product. In particular, we elicited different ways of conceptualizing why chemical reactions happen…

  8. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Alexis T. [Univ. of California, Berkeley, CA (United States); Alger, Monty M. [Pennsylvania State Univ., University Park, PA (United States); Flytzani-Stephanopoulos, Maria [Tufts Univ., Medford, MA (United States); Gunnoe, T. Brent [Univ. of Virginia, Charlottesville, VA (United States); Lercher, Johannes A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, James [Dow Chemical Company, Torrance, CA (United States); Alper, Joe; Tran, Camly [National Academies of Sciences, Engineering, and Medicine, Washington, DC (United States)

    2016-11-14

    A decade ago, the U.S. chemical industry was in decline. Of the more than 40 chemical manufacturing plants being built worldwide in the mid-2000s with more than $1 billion in capitalization, none were under construction in the United States. Today, as a result of abundant domestic supplies of affordable natural gas and natural gas liquids resulting from the dramatic rise in shale gas production, the U.S. chemical industry has gone from the world’s highest-cost producer in 2005 to among the lowest-cost producers today. The low cost and increased supply of natural gas and natural gas liquids provides an opportunity to discover and develop new catalysts and processes to enable the direct conversion of natural gas and natural gas liquids into value-added chemicals with a lower carbon footprint. The economic implications of developing advanced technologies to utilize and process natural gas and natural gas liquids for chemical production could be significant, as commodity, intermediate, and fine chemicals represent a higher-economic-value use of shale gas compared with its use as a fuel. To better understand the opportunities for catalysis research in an era of shifting feedstocks for chemical production and to identify the gaps in the current research portfolio, the National Academies of Sciences, Engineering, and Medicine conducted an interactive, multidisciplinary workshop in March 2016. The goal of this workshop was to identify advances in catalysis that can enable the United States to fully realize the potential of the shale gas revolution for the U.S. chemical industry and, as a result, to help target the efforts of U.S. researchers and funding agencies on those areas of science and technology development that are most critical to achieving these advances. This publication summarizes the presentations and discussions from the workshop.

  9. Reliability Evaluation and Improvement Approach of Chemical Production Man - Machine - Environment System

    Science.gov (United States)

    Miao, Yongchun; Kang, Rongxue; Chen, Xuefeng

    2017-12-01

    In recent years, with the gradual extension of reliability research, the study of production system reliability has become the hot topic in various industries. Man-machine-environment system is a complex system composed of human factors, machinery equipment and environment. The reliability of individual factor must be analyzed in order to gradually transit to the research of three-factor reliability. Meanwhile, the dynamic relationship among man-machine-environment should be considered to establish an effective blurry evaluation mechanism to truly and effectively analyze the reliability of such systems. In this paper, based on the system engineering, fuzzy theory, reliability theory, human error, environmental impact and machinery equipment failure theory, the reliabilities of human factor, machinery equipment and environment of some chemical production system were studied by the method of fuzzy evaluation. At last, the reliability of man-machine-environment system was calculated to obtain the weighted result, which indicated that the reliability value of this chemical production system was 86.29. Through the given evaluation domain it can be seen that the reliability of man-machine-environment integrated system is in a good status, and the effective measures for further improvement were proposed according to the fuzzy calculation results.

  10. Methods and systems for chemoautotrophic production of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

    2018-02-27

    The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

  11. Postgraduate education and research in Brazil: regulation and reconfiguration processes of academic work formation and production

    Directory of Open Access Journals (Sweden)

    João Ferreira de Oliveira

    2015-07-01

    Full Text Available This text analyses some of the processes of formation and production regulation and reconfiguration of the scholarly work in Brazil. Initially we examine the context and meaning of knowledge production in times of flexible accumulation, as well as the current landscape of Postgraduate education in the country. We seek to understand how public policies in the area, particularly the actions of evaluation and promotion, and the new modus operandi of the Postgraduate study and research organization have been reconfiguring the work production of teaching and students within the programs, especially in education. Above all, we seek to highlight the role of promotion and evaluation agencies, increasingly committed to a vision of expansion that drives the production of knowledge associated with demands of economic-productivity, rather than a consistent formative project that would result in a significant advancement in the production and dissemination of knowledge in the different areas.

  12. Effect of chemicals on production, composition and antioxidant activity of polysaccharides of Inonotus obliquus.

    Science.gov (United States)

    Xu, Xiangqun; Quan, Lili; Shen, Mengwei

    2015-01-01

    Polysaccharides are important secondary metabolites from the medicinal mushroom Inonotus obliquus. Various fatty acids, surfactants and organic solvents as cell membrane-reorganizing chemicals were investigated for their stimulatory effects on the growth of fungal mycelium and production of exopolysaccharides (EPS) and endopolysaccharides (IPS) by submerged fermentation of I. obliquus. After evaluation of 14 chemicals, oleic acid, Tween 80, and TritonX-100 were chosen for optimization of addition concentration and addition time. Among the three chemicals, 0.1% (v/v) Tween 80 gave maximum production of mycelial biomass, EPS, IPS1, and IPS2 with a increase of 16.6, 81.6, 37.7 and 18.1%, respectively, when supplemented at the early growth phase (24h after inoculation). These EPS, IPS1, and IPS2 had significantly (pmonosaccharide compositions than those from the control. The simultaneously enhanced accumulation of bioactive EPS and IPS of cultured I. obliquus supplemented with Tween 80 was evident. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation.

    Science.gov (United States)

    Barilla, Jiří; Lokajíček, Miloš; Pisaková, Hana; Simr, Pavel

    2013-03-01

    Mathematical analytical model of the processes running in individual radical clusters during the chemical phase (under the presence of radiomodifiers) proposed by us earlier has been further developed and improved. It has been applied to the data presented by Blok and Loman characterizing the oxygen effect in SSB and DSB formation (in water solution and at low-LET radiation) also in the region of very small oxygen concentrations, which cannot be studied with the help of experiments done with living cells. In this new analysis the values of all reaction rates and diffusion parameters known from literature have been made use of. The great increase of SSB and DSB at zero oxygen concentration may follow from the fact that at small oxygen concentrations the oxygen absorbs other radicals while at higher concentrations the formation of oxygen radicals prevails. It explains the double oxygen effect found already earlier by Ewing. The model may be easily extended to include also the effects of other radiomodifiers present in medium during irradiation.

  14. Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation

    International Nuclear Information System (INIS)

    Barilla, Jiři; Simr, Pavel; Lokajíček, Miloš; Pisaková, Hana

    2013-01-01

    Mathematical analytical model of the processes running in individual radical clusters during the chemical phase (under the presence of radiomodifiers) proposed by us earlier has been further developed and improved. It has been applied to the data presented by Blok and Loman characterizing the oxygen effect in SSB and DSB formation (in water solution and at low-LET radiation) also in the region of very small oxygen concentrations, which cannot be studied with the help of experiments done with living cells. In this new analysis the values of all reaction rates and diffusion parameters known from literature have been made use of. The great increase of SSB and DSB at zero oxygen concentration may follow from the fact that at small oxygen concentrations the oxygen absorbs other radicals while at higher concentrations the formation of oxygen radicals prevails. It explains the double oxygen effect found already earlier by Ewing. The model may be easily extended to include also the effects of other radiomodifiers present in medium during irradiation.

  15. Formation of anodic layers on InAs (111)III. Study of the chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Prosvirin, I. P.; Kalinkin, A. V. [Russian Academy of Sciences, Boreskov Institute of Catalysis, Siberian Branch (Russian Federation); Goljashov, V. A. [Novosibirsk State University (Russian Federation); Levtzova, T. A. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Bukhtiyarov, V. I. [Russian Academy of Sciences, Boreskov Institute of Catalysis, Siberian Branch (Russian Federation)

    2012-04-15

    The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine and elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.

  16. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof...... biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae. We describe......-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic...

  17. DISINFECTION BY-PRODUCT FORMATION BY ALTERNATIVE DISINFECTANTS AND REMOVAL BY GRANULAR ACTIVATED CARBON

    Science.gov (United States)

    The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...

  18. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    Directory of Open Access Journals (Sweden)

    E. Asmi

    2010-05-01

    Full Text Available The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  19. Influence of Electrical Conductivity, Days in Milk and Parity on Milk Production and Chemical Composition

    Directory of Open Access Journals (Sweden)

    Radu Ionel Neamț

    2016-10-01

    Full Text Available The aim of study was to assess milk production and chemical composition during the first 100 days of lactation, under the influence of electrical conductivity, parity and days in milk. Study was conducted at Research and Development Station for Bovine Arad, on 66 Romanian Spotted cows (20 primiparous, 46 multiparous. Significantly higher values (p≤0.017 of electrical conductivity were recorded for primiparous (10.15±0.09 mS/cm compared with multiparous (8.79±0.15 mS/cm. During the first 30 DIM electrical conductivity was higher (9.7±0.12 mS/cm than for 31 to 60 DIM (9.04±0.12 mS/cm; p≤0.001 and for 61 to 100 DIM (8.17±0.11 mS/cm, p≤0.001. Multifactorial regression model applied highlights significant influence of month of calving (p≤0.001 and DIM (p≤0.034 on the electrical conductivity, while parity had no influence (p>0.36. Medium and negative correlations were calculated between electrical conductivity and some chemical components (fat R=-0.15, protein R=-0.13, while to milk production correlation was positive (R=0.12. No significant correlations were obtained according to lactose content (R=-0.013. Dynamics of milk production and chemical composition have been significantly influenced by month of calving (p≤0.001, DIM (p≤0.001 and parity (p≤0.002. This study found no significant influence of milk electrical conductivity on milk production or chemical composition (p>0.59.

  20. Formation and changes of groundwater chemical composition of the western Carpathian carbonate systems

    International Nuclear Information System (INIS)

    Flakova, R.

    1998-01-01

    Karst-fissure water, genetically related to the Mesozoic carbonate complexes, participates in the formation of drinking water supplies in Slovakia. There were evaluated 13 drinking water resources which are built up from originating in the valley of the Starohorsky potok brook and the Harmanecka dolina valley in the Velka Fatra mountain range. These sources represent an important part of the Jergaly branch and the Harmanec branch of the public water supply 'Pohronsky skupinovy vodovod'. As starting data 538 chemical analyses of the checking process for period from 1981 to 1994 and also the results of own groundwater sampling from the April 1992 and October 1995 were used. Basic hydrogeochemical evaluation has shown that observed sources represented typical carbonatogenic water. Evaluation of carbonate equilibria confirmed the assumption supposing that in conditions of karst-fissure and karst circulation the water is non-saturated with carbonate minerals. Based on obtained data the quality regime of groundwater was described. Chemical composition of groundwater shows typical changes in certain time of a year, short-term. seasonal and long-term changes can be observed. The trend analysis of HCO 3 - , SO 4 2+ , NO 3 - , Cl - , ChSK Mn and dissolved O 2 were used to evaluation of stability of chemical composition. Increasing amounts of nitrate concentrations in all sources, sulphate pollution in the sources of Jergaly branch and chloride pollution in groundwater of Harmanec branch confirmed anthropogenic influences. The main problem of water remains often the microbial pollution. Obtained results showed high vulnerability of karst-fissure water and the continuously threatening danger of its pollution. (author)