WorldWideScience

Sample records for chemical processing cell

  1. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  2. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-06

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.

  3. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    Science.gov (United States)

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  4. Revealing chemical processes and kinetics of drug action within single living cells via plasmonic Raman probes.

    Science.gov (United States)

    Li, Shan-Shan; Guan, Qi-Yuan; Meng, Gang; Chang, Xiao-Feng; Wei, Ji-Wu; Wang, Peng; Kang, Bin; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-05-23

    Better understanding the drug action within cells may extend our knowledge on drug action mechanisms and promote new drugs discovery. Herein, we studied the processes of drug induced chemical changes on proteins and nucleic acids in human breast adenocarcinoma (MCF-7) cells via time-resolved plasmonic-enhanced Raman spectroscopy (PERS) in combination with principal component analysis (PCA). Using three popular chemotherapy drugs (fluorouracil, cisplatin and camptothecin) as models, chemical changes during drug action process were clearly discriminated. Reaction kinetics related to protein denaturation, conformational modification, DNA damage and their associated biomolecular events were calculated. Through rate constants and reaction delay times, the different action modes of these drugs could be distinguished. These results may provide vital insights into understanding the chemical reactions associated with drug-cell interactions.

  5. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-08

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components, antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).

  6. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  7. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Greil, Stefanie M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Lauermann, Iver, E-mail: Iver.lauermann@helmholtz-berlin.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Aziz, Emad F., E-mail: Emad.Aziz@helmholtz-berlin.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany)

    2010-02-15

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  8. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    International Nuclear Information System (INIS)

    Greil, Stefanie M.; Lauermann, Iver; Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu; Aziz, Emad F.

    2010-01-01

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  9. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    Science.gov (United States)

    Greil, Stefanie M.; Lauermann, Iver; Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu; Aziz, Emad F.

    2010-02-01

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  10. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    International Nuclear Information System (INIS)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-01-01

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  11. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  12. Exergy analysis of the biogas sorption-enhanced chemical looping reforming process integrated with a high-temperature proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kasemanand, Sarunyou; Im-orb, Karittha; Tippawan, Phanicha; Wiyaratn, Wisitsree; Arpornwichanop, Amornchai

    2017-01-01

    Highlights: • A biogas reforming and fuel cell integrated process is considered. • Energy and exergy analyses of the integrated process are performed. • Increasing the nickel oxide-to-biogas ratio decreases the exergy efficiency. • The exergy destruction of the fuel cell increases with increasing cell temperature. • The exergy efficiency of the process is improved when heat integration is applied. - Abstract: A biogas sorption-enhanced chemical looping reforming process integrated with a high-temperature proton exchange membrane fuel cell is analyzed. Modeling of such an integrated process is performed by using a flowsheet simulator (Aspen plus). The exergy analysis is performed to evaluate the energy utilization efficiency of each unit and that of the integrated process. The effect of steam and nickel oxide to biogas ratios on the exergetic performance of the stand-alone biogas sorption-enhanced chemical looping reforming process is investigated. The total exergy destruction increases as the steam or nickel oxide to biogas ratio increases. The main exergy destruction is found at the air reactor. For the high-temperature proton exchange membrane fuel cell, the main exergy destruction is found at the cathode. The total exergy destruction increases when cell temperature increases, whereas the inverse effect is found when the current density is considered as a key parameter. Regarding the exergy efficiency, the results show opposite trend to the exergy destruction. The heat integration analysis is performed to improve the exergetic performance. It is found that the integrated process including the heat integration system can improve the exergy destruction and exergy efficiency of 48% and 60%, respectively.

  13. Cell behaviour on chemically microstructured surfaces

    International Nuclear Information System (INIS)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-01-01

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 μm) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions

  14. Chemicals as the Sole Transformers of Cell Fate.

    Science.gov (United States)

    Ebrahimi, Behnam

    2016-05-30

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes.

  15. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  16. MRI of chemical reactions and processes.

    Science.gov (United States)

    Britton, Melanie M

    2017-08-01

    As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  17. Ultrasound in chemical processes

    International Nuclear Information System (INIS)

    Baig, S.; Farooq, R.; Malik, A.H.

    2009-01-01

    The use of ultrasound to promote chemical reactions or sono chemistry is a field of chemistry which involves the process of acoustic cavitations i.e. the collapse of microscopic bubbles in liquid. There are two essential components for the application of sono chemistry, a liquid medium and a source of high-energy vibrations. The liquid medium is necessary because sono chemistry is driven by acoustic cavitations that can only occur in liquids. The source of the vibrational energy is the transducer. The chemical effects of ultrasound include the enhancement of reaction rates at ambient temperatures and striking advancements in stoichiometric and catalytic reactions In some cases, ultrasonic irradiation can increase reactivities by nearly million fold. The ultrasound has large number of applications not only in emending old chemical processes but also in developing new synthetic strategies. Ultrasound enhances all chemical and physical processes e.g., crystallization, vitamin synthesis, preparation of catalysts, dissolution of chemicals, organometallic reactions, electrochemical processes, etc. High-power ultrasonics is a new powerful technology that is not only safe and environmentally friendly in its application but is also efficient and economical. It can be applied to existing processes to eliminate the need for chemicals and/or heat application in a variety of industrial processes. (author)

  18. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  20. Chemical Cell Lysis System Applicable to Lab-on-a-Disc.

    Science.gov (United States)

    Lim, Dayeseul; Yoo, Jae Chern

    2017-09-01

    The design and fabrication of a heating system has been a significant challenge in implementing chemical lysis on a lab-on-a-disc (LOD). The proposed system contains a sample inlet, phase change material (PCM) array, heating chamber, and valve in a single disc, providing cost-effective, rapid, and fully automated chemical cell lysis. Compared to the conventional cell lysis system, our cell lysis system has many advantages, such as a compact structure that is easily integrated into the LOD and reduced processing time and labor. The experiments are conducted with Salmonella typhimurium strains to demonstrate the performance. The experimental results show that the proposed approach is greatly effective in realizing a chemical cell lysis system on an LOD with higher throughput in terms of purity and yield of DNA.

  1. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    Science.gov (United States)

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  2. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development.

    Science.gov (United States)

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-10-16

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAF(V600E) melanomas.

  3. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.

    Science.gov (United States)

    Ayuyan, Artem G; Cohen, Fredric S

    2018-02-27

    Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways. Copyright © 2018. Published by

  4. Outline of the Chemical Processing Facility (CPF)

    International Nuclear Information System (INIS)

    Arita, Katsuhiko

    1978-01-01

    Concerning the Chemical Processing Facility (CPF), a high level radioactive material research facility, to be installed in Tokai Works of Power Reactor and Nuclear Fuel Development Corporation (PNC), the detailed design and the governmental safety inspection were finished. The construction has been already started, and it will be completed in 1980. Under the national policy of establishing a nuclear fuel cycle, PNC is now carrying out the development of its downstream technology. The objects of the Chemical Processing Facility are the researches of the treatment techniques of high level radioactive liquid wastes from fuel reprocessing and of the reprocessing of fast reactor fuel. The following matters are described: purpose of the CPF, i.e. fast reactor fuel reprocessing and high-level liquid waste treatment; construction of the CPF, i.e. buildings, cells and an exhaust stack; test systems, i.e. fuel reprocessing and liquid waste vitrification; and facility safety. (Mori, K.)

  5. Modelling the collective response of heterogeneous cell populations to stationary gradients and chemical signal relay

    Science.gov (United States)

    Pineda, M.; Eftimie, R.

    2017-12-01

    The directed motion of cell aggregates toward a chemical source occurs in many relevant biological processes. Understanding the mechanisms that control this complex behavior is of great relevance for our understanding of developmental biological processes and many diseases. In this paper, we consider a self-propelled particle model for the movement of heterogeneous subpopulations of chemically interacting cells towards an imposed stable chemical gradient. Our simulations show explicitly how self-organisation of cell populations (which could lead to engulfment or complete cell segregation) can arise from the heterogeneity of chemotactic responses alone. This new result complements current theoretical and experimental studies that emphasise the role of differential cell-cell adhesion on self-organisation and spatial structure of cellular aggregates. We also investigate how the speed of individual cell aggregations increases with the chemotactic sensitivity of the cells, and decreases with the number of cells inside the aggregates

  6. Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bouttemy, M.; Tran-Van, P. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Gerard, I., E-mail: gerard@chimie.uvsq.fr [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Hildebrandt, T.; Causier, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Pelouard, J.L.; Dagher, G. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Jehl, Z.; Naghavi, N. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Voorwinden, G.; Dimmler, B. [Wuerth Elektronik Research GmbH, Industriestr. 4, 70565 Stuttgart (Germany); Powalla, M. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung (ZSW), Industriestr. 6, 70565 Stuttgart (Germany); Guillemoles, J.F. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Lincot, D. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Etcheberry, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France)

    2011-08-31

    CIGSe absorber was etched in HBr/Br{sub 2}/H{sub 2}O to prepare defined thicknesses of CIGSe between 2.7 and 0.5 {mu}m. We established a reproducible method of reducing the absorber thickness via chemical etching. We determine the dissolution kinetics rate of CIGSe using trace analysis by graphite furnace atomic absorption spectrometry of Ga and Cu. The roughness of the etching surface decreases during the first 500 nm of the etching to a steady state value of the root-mean-square roughness near 50 nm. X-ray photoelectron spectroscopy analyses demonstrate an etching process occurring with a constant chemical composition of the treated surface acidic bromine solutions provide a controlled chemical thinning process resulting in an almost flat surface and a very low superficial Se{sup 0} enrichment.

  7. Reactive chemicals and process hazards

    International Nuclear Information System (INIS)

    Surianarayanan, M.

    2016-01-01

    Exothermic chemical reactions are often accompanied by significant heat release, and therefore, need a thorough investigation before they are taken to a plant scale. Sudden thermal energy releases from exothermic decompositions and runaway reactions have contributed to serious fire and explosions in several chemical process plants. Similarly, thermal runaway had also occurred in storage and transportation of reactive chemicals. The secondary events of thermal runaway reactions can be rupture of process vessel, toxic spills and release of explosive vapor clouds or combination of these also. The explosion hazards are governed by the system thermodynamics and kinetics of the thermal process. Theoretical prediction of limiting temperature is difficult due to process complexities. Further, the kinetic data obtained through classical techniques, at conditions far away from runaway situation, is often not valid for assessing the runaway behavior of exothermic processes. The main focus of this lecture is to discuss the causes and several contributing factors for thermal runaway and instability and present analyses of the methodologies of the new instrumental techniques for assessing the thermal hazards of reactive chemicals during processing, storage and transportation. (author)

  8. Plasma-chemical processes and systems

    International Nuclear Information System (INIS)

    Castro B, J.

    1987-01-01

    The direct applications of plasma technology on chemistry and metallurgy are presented. The physical fundaments of chemically active non-equilibrium plasma, the reaction kinetics, and the physical chemical transformations occuring in the electrical discharges, which are applied in the industry, are analysed. Some plasma chemical systems and processes related to the energy of hydrogen, with the chemical technology and with the metallurgy are described. Emphasis is given to the optimization of the energy effectiveness of these processes to obtain reducers and artificial energetic carriers. (M.C.K.) [pt

  9. Intracellular renin disrupts chemical communication between heart cells. Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Walmor eDe Mello

    2015-01-01

    Full Text Available The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; 1 under normal conditions, Lucifer Yellow flows from cell-to-cell through gap junctions; 2 the intracellular dialysis of renin (100nM disrupts chemical communication-an effect enhanced by simultaneous administration of angiotensinogen (100nM; 3 enalaprilat (10-9M administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; 4 aliskiren (10-8M inhibited the effect of renin on chemical communication;5 the possible role of intracellular renin independently of angiotensin II (Ang II was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; 6 the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed;7 the present results indicate that intracellular renin due to internalization or in situ synthesis, causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  10. Modular Chemical Process Intensification: A Review.

    Science.gov (United States)

    Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas

    2017-06-07

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.

  11. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  12. Chemical radwaste solidification processes

    International Nuclear Information System (INIS)

    Malloy, C.W.

    1979-01-01

    Some of these processes and their problems are briefly reviewed: early cement systems; urea-formaldehyde; Dow solidification process; low-viscosity chemical agents (POLYPAC); and water-extensible polyester. 9 refs

  13. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  14. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Science.gov (United States)

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Automated Physico-Chemical Cell Model Development through Information Theory

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Ortoleva

    2005-11-29

    The objective of this project was to develop predictive models of the chemical responses of microbial cells to variations in their surroundings. The application of these models is optimization of environmental remediation and energy-producing biotechnical processes.The principles on which our project is based are as follows: chemical thermodynamics and kinetics; automation of calibration through information theory; integration of multiplex data (e.g. cDNA microarrays, NMR, proteomics), cell modeling, and bifurcation theory to overcome cellular complexity; and the use of multiplex data and information theory to calibrate and run an incomplete model. In this report we review four papers summarizing key findings and a web-enabled, multiple module workflow we have implemented that consists of a set of interoperable systems biology computational modules.

  16. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buyck, N.; Thomas, S.

    2001-01-01

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) at the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.

  17. Biomimetic chemical sensors using bioengineered olfactory and taste cells.

    Science.gov (United States)

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.

  18. Cell-mediated mutagenesis and cell transformation of mammalian cells by chemical carcinogens

    International Nuclear Information System (INIS)

    Huberman, E.; Langenbach, R.

    1977-01-01

    We have developed a cell-mediated mutagenesis assay in which cells with the appropriate markers for mutagenesis are co-cultivated with either lethally irradiated rodent embryonic cells that can metabolize carcinogenic hydrocarbons or with primary rat liver cells that can metabolize chemicals carcinogenic to the liver. During co-cultivation, the reactive metabolites of the procarcinogen appear to be transmitted to the mutable cells and induce mutations in them. Assays of this type make it possible to demonstrate a relationship between carcinogenic potency of the chemicals and their ability to induce mutations in mammalian cells. In addition, by simultaneously comparing the frequencies of transformation and mutation induced in normal diploid hamster cells by benzo(a)pyrene (BP) and one of its metabolites, it is possible to estimate the genetic target size for cell transformation in vitro

  19. Chemical process control using Mat lab

    International Nuclear Information System (INIS)

    Kang, Sin Chun; Kim, Raeh Yeon; Kim, Yang Su; Oh, Min; Yeo, Yeong Gu; Jung, Yeon Su

    2001-07-01

    This book is about chemical process control, which includes the basis of process control with conception, function, composition of system and summary, change of laplace and linearization, modeling of chemical process, transfer function and block diagram, the first dynamic property of process, the second dynamic property of process, the dynamic property of combined process, control structure of feedback on component of control system, the dynamic property of feedback control loop, stability of closed loop control structure, expression of process, modification and composition of controller, analysis of vibration response and adjustment controller using vibration response.

  20. Applications of Neutron Scattering in the Chemical Industry: Proton Dynamics of Highly Dispersed Materials, Characterization of Fuel Cell Catalysts, and Catalysts from Large-Scale Chemical Processes

    Science.gov (United States)

    Albers, Peter W.; Parker, Stewart F.

    The attractiveness of neutron scattering techniques for the detailed characterization of materials of high degrees of dispersity and structural complexity as encountered in the chemical industry is discussed. Neutron scattering picks up where other analytical methods leave off because of the physico-chemical properties of finely divided products and materials whose absorption behavior toward electromagnetic radiation and electrical conductivity causes serious problems. This is demonstrated by presenting typical applications from large-scale production technology and industrial catalysis. These include the determination of the proton-related surface chemistry of advanced materials that are used as reinforcing fillers in the manufacture of tires, where interrelations between surface chemistry, rheological properties, improved safety, and significant reduction of fuel consumption are the focus of recent developments. Neutron scattering allows surface science studies of the dissociative adsorption of hydrogen on nanodispersed, supported precious metal particles of fuel cell catalysts under in situ loading at realistic gas pressures of about 1 bar. Insight into the occupation of catalytically relevant surface sites provides valuable information about the catalyst in the working state and supplies essential scientific input for tailoring better catalysts by technologists. The impact of deactivation phenomena on industrial catalysts by coke deposition, chemical transformation of carbonaceous deposits, and other processes in catalytic hydrogenation processes that result in significant shortening of the time of useful operation in large-scale plants can often be traced back in detail to surface or bulk properties of catalysts or materials of catalytic relevance. A better understanding of avoidable or unavoidable aspects of catalyst deactivation phenomena under certain in-process conditions and the development of effective means for reducing deactivation leads to more energy

  1. Feeder cells support the culture of induced pluripotent stem cells even after chemical fixation.

    Directory of Open Access Journals (Sweden)

    Xiao-Shan Yue

    Full Text Available Chemically fixed mouse embryonic fibroblasts (MEFs, instead of live feeder cells, were applied to the maintenance of mouse induced pluripotent stem (miPS cells. Formaldehyde and glutaraldehyde were used for chemical fixation. The chemically fixed MEF feeders maintained the pluripotency of miPS cells, as well as their undifferentiated state. Furthermore, the chemically fixed MEF feeders were reused several times without affecting their functions. These results indicate that chemical fixation can be applied to modify biological feeders chemically, without losing their original functions. Chemically fixed MEF feeders will be applicable to other stem cell cultures as a reusable extracellular matrix candidate that can be preserved on a long-term basis.

  2. A nucleic acid dependent chemical photocatalysis in live human cells

    DEFF Research Database (Denmark)

    Arian, Dumitru; Cló, Emiliano; Gothelf, Kurt V

    2010-01-01

    Only two nucleic acid directed chemical reactions that are compatible with live cells have been reported to date. Neither of these processes generate toxic species from nontoxic starting materials. Reactions of the latter type could be applied as gene-specific drugs, for example, in the treatment...

  3. Applications of Process Synthesis: Moving from Conventional Chemical Processes towards Biorefinery Processes

    DEFF Research Database (Denmark)

    Yuan, Zhihong; Chen, Bingzhen; Gani, Rafiqul

    2013-01-01

    Concerns about diminishing petroleum reserves, enhanced worldwide demand for fuels and fluctuations in the global oil market, together with climate change and national security have promoted many initiatives for exploring alternative, non-petroleum based processes. Among these initiatives......, biorefinery processes for converting biomass-derived carbohydrates into transportation fuels and chemicals are now gaining more and more attention from both academia and industry. Process synthesis, which has played a vital role for the development, design and operation of (petro) chemical processes, can...

  4. Wet-chemical approach for the cell-adhesive modification of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Gabriel, Matthias; Dahm, Manfred; Vahl, Christian-F

    2011-01-01

    Polytetrafluoroethylene (PTFE), a frequently utilized polymer for the fabrication of synthetic vascular grafts, was surface-modified by means of a wet-chemical process. The inherently non-cell-adhesive polymer does not support cellular attachment, a prerequisite for the endothelialization of luminal surface grafts in small diameter applications. To impart the material with cell-adhesive properties a treatment with sodium-naphthalene provided a basis for the subsequent immobilization of the adhesion promoting RGD-peptide using a hydroxy- and amine-reactive crosslinker. Successful conjugation was shown with cell culture experiments which demonstrated excellent endothelial cell growth on the modified surfaces.

  5. Hybrid bio-photo-electro-chemical cells for solar water splitting

    OpenAIRE

    Pinhassi, Roy I.; Kallmann, Dan; Saper, Gadiel; Dotan, Hen; Linkov, Artyom; Kay, Asaf; Liveanu, Varda; Schuster, Gadi; Adir, Noam; Rothschild, Avner

    2016-01-01

    Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox...

  6. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  7. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  8. Enzymatic cell disruption of microalgae biomass in biorefinery processes.

    Science.gov (United States)

    Demuez, Marie; Mahdy, Ahmed; Tomás-Pejó, Elia; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-10-01

    When employing biotechnological processes for the procurement of biofuels and bio-products from microalgae, one of the most critical steps affecting economy and yields is the "cell disruption" stage. Currently, enzymatic cell disruption has delivered effective and cost competitive results when compared to mechanical and chemical cell disruption methods. However, the introduction of enzymes implies additional associated cost within the overall process. In order to reduce this cost, autolysis of microalgae is proposed as alternative enzymatic cell disruption method. This review aims to provide the state of the art of enzymatic cell disruption treatments employed in biorefinery processes and highlights the use of endopeptidases. During the enzymatic processes of microalgae life cycle, some lytic enzymes involved in cell division and programmed cell death have been proven useful in performing cell lysis. In this context, the role of endopeptidases is emphasized. Mirroring these natural events, an alternative cell disruption approach is proposed and described with the potential to induce the autolysis process using intrinsic cell enzymes. Integrating induced autolysis within biofuel production processes offers a promising approach to reduce overall global costs and energetic input associated with those of current cell disruption methods. A number of options for further inquiry are also discussed. © 2015 Wiley Periodicals, Inc.

  9. Chemical process and plant design bibliography 1959-1989

    International Nuclear Information System (INIS)

    Ray, M.S.

    1991-01-01

    This book is concerned specifically with chemical process in formation and plant equipment design data. It is a source for chemical engineers, students and academics involved in process and design evaluation. Over 500 chemical categories are included, from Acetaldehyde to zirconium Dioxide, with cross-referencing within the book to appropriate associated chemicals

  10. Al-induced root cell wall chemical components differences of wheat ...

    African Journals Online (AJOL)

    Root growth is different in plants with different levels of Al-tolerance under Al stress. Cell wall chemical components of root tip cell are related to root growth. The aim of this study was to explore the relationship between root growth difference and cell wall chemical components. For this purpose, the cell wall chemical ...

  11. Repair of human DNA: radiation and chemical damage in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Setlow, R.B.

    1976-01-01

    We present the experimental evidence we have gathered, using a particular assay for DNA repair in human cells, the photolysis of bromodeoxyuridine (BrdUrd) incorporated during repair. This assay characterizes the sequence of repair events that occur in human cells after radiation, both ultraviolet and ionizing, and permits an estimation of the size of the average repaired region after these physical insults to DNA. We will discuss chemical insults to DNA and attempt to liken the repair processes after chemical damages of various kinds to those repair processes that occur in human DNA after damage from physical agents. We will also show results indicating that, under certain conditions, repair events resembling those seen after uv-irradiation can be observed in normal human cells after ionizing radiation. Furthermore the XP cells, defective in the repair of uv-induced DNA damage, show defective repair of these uv-like DNA lesions induced by ionizing radiation

  12. Study of process technology for GaAlAs/GaAs heteroface solar cells

    Science.gov (United States)

    Conway, E. J.; Walker, G. H.; Byvik, C. E.; Almgren, D. W.

    1980-01-01

    Two processes were considered: the infinite melt process and the finite melt process. The only technique that is developed to the point that 10,000 cells could be produced in one year is the infinite melt liquid phase epitaxy process. The lowest cost per cell was achieved with the advanced metal organic chemical vapor deposition process. Molecular beam epitaxy was limited by the slow growth rate. The lowest cost, an 18 percent efficient cell at air mass zero, was approximately $70 per watt.

  13. Decontamination and decommissioning of the Chemical Process Cell (CPC): Topical report for the period January 1985-March 1987

    International Nuclear Information System (INIS)

    Meigs, R.A.

    1987-07-01

    To support interim storage of vitrified High-Level Waste (HLW) at the West Valley Demonstration Project, the shielded, remotely operated Chemical Process Cell (CPC) was decommissioned and decontaminated. All equipment was removed, packaged and stored for future size reduction and decontamination. Floor debris was sampled, characterized, and vacuumed into remotely handled containers. The cell walls, ceiling, and floor were decontaminated. Three 20 Mg (22.5 ton) concrete neutron absorber cores were cut with a high-pressure water/abrasive jet cutting system and packaged for disposal. All operations were performed remotely using two overhead bridge cranes which included two 1.8 Mg (2 ton) hoists, one 14.5 Mg (16 ton) hoist, and an electromechanical manipulator or an industrial robot mounted on a mobile platform. Initial general area dose rates in the cell ranged from 1 to 50 R/h. Target levels of less than 10 mR/h general area readings were established before decontamination and decommissioning was initiated; general area dose rates between 200 mR/h and 1200 mR/h were obtained at the completion of the decontamination work. 4 refs., 11 figs., 8 tabs

  14. Textiles and clothing sustainability sustainable textile chemical processes

    CERN Document Server

    2017-01-01

    This book highlights the challenges in sustainable wet processing of textiles, natural dyes, enzymatic textiles and sustainable textile finishes. Textile industry is known for its chemical processing issues and many NGO’s are behind the textile sector to streamline its chemical processing, which is the black face of clothing and fashion sector. Sustainable textile chemical processes are crucial for attaining sustainability in the clothing sector. Seven comprehensive chapters are aimed to highlight these issues in the book.

  15. Chemical process safety management within the Department of Energy

    International Nuclear Information System (INIS)

    Piatt, J.A.

    1995-07-01

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA's Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites

  16. An investigation of changes in element distribution and chemical states during differentiation of embryonic stem cells

    International Nuclear Information System (INIS)

    Sugimoto, T.; Ide-Ektessabi, A.; Ishihara, R.; Tanigaki, M.

    2004-01-01

    Metallic elements and their organic compounds have dynamic regulatory functions in cells. In this study, we implemented a new approach to investigate the mechanism of differentiation of embryonic stem cells, by measuring and analyzing the change in distribution and chemical states of intracellular trace elements. We anticipate that trace metal elements and metalloproteins play important roles in the direction of differentiation, both as active centers, and as factors in the death of neural cells in neurodegenerative disorders. The aim of this study is to analyze the distribution and chemical states of trace elements during the process of differentiation of mouse embryonic stem cells, and to understand how these factors relate to the differentiation process. Using the experimental results, some previously unexplained points are considered, namely (1) how the intracellular elements change during the process of neuronal differentiation, and (2) what the optimal conditions of such elements are for neuronal differentiation. The information obtained during this study is relevant to nervous system development and evolution

  17. An investigation of changes in element distribution and chemical states during differentiation of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, T.; Ide-Ektessabi, A. E-mail: h51167@sakura.kudpc.kyoto-u.ac.jp; Ishihara, R.; Tanigaki, M

    2004-07-01

    Metallic elements and their organic compounds have dynamic regulatory functions in cells. In this study, we implemented a new approach to investigate the mechanism of differentiation of embryonic stem cells, by measuring and analyzing the change in distribution and chemical states of intracellular trace elements. We anticipate that trace metal elements and metalloproteins play important roles in the direction of differentiation, both as active centers, and as factors in the death of neural cells in neurodegenerative disorders. The aim of this study is to analyze the distribution and chemical states of trace elements during the process of differentiation of mouse embryonic stem cells, and to understand how these factors relate to the differentiation process. Using the experimental results, some previously unexplained points are considered, namely (1) how the intracellular elements change during the process of neuronal differentiation, and (2) what the optimal conditions of such elements are for neuronal differentiation. The information obtained during this study is relevant to nervous system development and evolution.

  18. Lunasin-aspirin combination against NIH/3T3 cells transformation induced by chemical carcinogens.

    Science.gov (United States)

    Hsieh, Chia-Chien; Hernández-Ledesma, Blanca; de Lumen, Ben O

    2011-06-01

    Carcinogenesis is a multistage process involving a number of molecular pathways sensitive to intervention. Chemoprevention is defined as the use of natural and/or synthetic substances to block, reverse, or retard the process of carcinogenesis. To achieve greater inhibitory effects on cancer cells, combination of two or more chemopreventive agents is commonly considered as a better preventive and/or therapeutic strategy. Lunasin is a promising cancer preventive peptide identified in soybean and other seeds. Its efficacy has been demonstrated by both in vitro and in vivo models. This peptide has been found to inhibit human breast cancer MDA-MB-231 cells proliferation, suppressing cell cycle progress and inducing cell apoptosis. Moreover, lunasin potentiates the effects on these cells of different synthetic and natural compounds, such as aspirin and anacardic acid. This study explored the role of lunasin, alone and in combination with aspirin and anacardic acid on cell proliferation and foci formation of transformed NIH/3T3 cells induced by chemical carcinogens 7,12-dimethylbenz[a]anthracene or 3-methylcholanthrene. The results revealed that lunasin, acting as a single agent, inhibits cell proliferation and foci formation. When combined with aspirin, these effects were significantly increased, indicating that this combination might be a promising strategy to prevent/treat cancer induced by chemical carcinogens.

  19. Conceptual Chemical Process Design for Sustainability.

    Science.gov (United States)

    This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyse...

  20. Lasers in chemical processing

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-01-01

    The high cost of laser energy is the crucial issue in any potential laser-processing application. It is expensive relative to other forms of energy and to most bulk chemicals. We show those factors that have previously frustrated attempts to find commercially viable laser-induced processes for the production of materials. Having identified the general criteria to be satisfied by an economically successful laser process and shown how these imply the laser-system requirements, we present a status report on the uranium laser isotope separation (LIS) program at the Lawrence Livermore National Laboratory

  1. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.

    Science.gov (United States)

    Biswas, Dhruba; Jiang, Peng

    2016-02-06

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming.

  2. Cell patterning without chemical surface modification: Cell cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel

    Science.gov (United States)

    Chen, C. Y.; Barron, J. A.; Ringeisen, B. R.

    2006-10-01

    Cell printing offers the unique ability to directly deposit one or multiple cell types directly onto a surface without the need to chemically pre-treat the surface with lithographic methods. We utilize biological laser printing (BioLP ™) to form patterns of bovine aortic endothelial cells (BAECs) onto a homogeneous cell adherent hydrogel surface. These normal cells are shown to retain near-100% viability post-printing. In order to determine whether BAECs encountered shear and/or heat stress during printing, immunocytochemical staining experiments were performed to detect potential expression of heat shock proteins (HSP) by the deposited cells. Printed BAECs expressed HSP at levels similar to negative control cells, indicating that the BioLP process does not expose cells to damaging levels of stress. However, HSP expression was slightly higher at the highest laser energy studied, suggesting more stress was present under these extreme conditions. Printed BAECs also showed preferential asymmetric growth and migration towards each other and away from the originally printed pattern, demonstrating a retained ability for the cells to communicate post-printing.

  3. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis

    Directory of Open Access Journals (Sweden)

    Moo-Jung Seo

    2018-02-01

    Full Text Available Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  4. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis.

    Science.gov (United States)

    Seo, Moo-Jung; Yoo, Jae-Chern

    2018-02-26

    Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD) platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS)-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  5. Influence of chemical sprinkle on the processes in activated tank of wastewater treatment

    Directory of Open Access Journals (Sweden)

    Milan Búgel

    2012-12-01

    Full Text Available The research deals with processes occurring in the activation tank during the snow-melt inflow of chemical component of roadsalt. Chemical composition of the suspension in the activation tank is changing following the metabolism of organisms and chemicalcomposition of the influent wastewater. Sludge and wastewater in nitrification tail of the activation tank has higher conductivity, highercontents of chloride, higher sludge index and other characteristics are changing during snow – melt. The amount of the inflow road saltis a determining factor of lyses of microorganism cells.

  6. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  7. Plant cell tissue culture: A potential source of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and development opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.

  8. Chemical reagent and process for refuse disposal

    International Nuclear Information System (INIS)

    Somerville, R.B.; Fan, L.T.

    1989-01-01

    A process for treating refuse by mixing them with a reactive chemical and a puzzolana-type material. Said chemical includes a retarding agent which modifies the viscosity and an accelerating agent. (author)

  9. Low temperature radio-chemical energy conversion processes

    International Nuclear Information System (INIS)

    Gomberg, H.J.

    1986-01-01

    This patent describes a radio-chemical method of converting radiated energy into chemical energy form comprising the steps of: (a) establishing a starting chemical compound in the liquid phase that chemically reacts endothermically to radiation and heat energy to produce a gaseous and a solid constituent of the compound, (b) irradiating the compound in its liquid phase free of solvents to chemically release therefrom in response to the radiation the gaseous and solid constituents, (c) physically separating the solid and gaseous phase constituents from the liquid, and (d) chemically processing the constituents to recover therefrom energy stored therein by the irradiation step (b)

  10. Processing of CuInSe{sub 2}-based solar cells: Characterization of deposition processes in terms of chemical reaction analyses. Phase 2 Annual Report, 6 May 1996--5 May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.

    1999-10-20

    This report describes research performed by the University of Florida during Phase 2 of this subcontract. First, to study CIGS, researchers adapted a contactless, nondestructive technique previously developed for measuring photogenerated excess carrier lifetimes in SOI wafers. This dual-beam optical modulation (DBOM) technique was used to investigate the differences between three alternative methods of depositing CdS (conventional chemical-bath deposition [CBD], metal-organic chemical vapor deposition [MOCVD], and sputtering). Second, a critical assessment of the Cu-In-Se thermochemical and phase diagram data using standard CALPHAD procedures is being performed. The outcome of this research will produce useful information on equilibrium vapor compositions (required annealing ambients, Sex fluxes from effusion cells), phase diagrams (conditions for melt-assisted growth), chemical potentials (driving forces for diffusion and chemical reactions), and consistent solution models (extents of solid solutions and extending phase diagrams). Third, an integrated facility to fabricate CIS PV devices was established that includes migration-enhanced epitaxy (MEE) for deposition of CIS, a rapid thermal processing furnace for absorber film formation, sputtering of ZnO, CBD or MOCVD of CdS, metallization, and pattern definition.

  11. Chemical systems, chemical contiguity and the emergence of life

    Directory of Open Access Journals (Sweden)

    Terrence P. Kee

    2017-08-01

    Full Text Available Charting the emergence of living cells from inanimate matter remains an intensely challenging scientific problem. The complexity of the biochemical machinery of cells with its exquisite intricacies hints at cells being the product of a long evolutionary process. Research on the emergence of life has long been focusing on specific, well-defined problems related to one aspect of cellular make-up, such as the formation of membranes or the build-up of information/catalytic apparatus. This approach is being gradually replaced by a more “systemic” approach that privileges processes inherent to complex chemical systems over specific isolated functional apparatuses. We will summarize the recent advances in system chemistry and show that chemical systems in the geochemical context imply a form of chemical contiguity in the syntheses of the various molecules that precede modern biomolecules.

  12. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Chemical engineering of nanomaterials. Energy- and resource-saving chemical-engineering processes and problems of their intensification. Processes and apparatuses of chemical engineering, chemical cybernetics. Ecological problems of chemical engineering and related fields

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning chemical engineering of nanomaterials, energy- and resource-saving chemical-engineering processes, processes and apparatuses of chemical engineering, chemical cybernetics, ecological problems of chemical engineering and related fields. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  13. Chemicals Industry New Process Chemistry Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  14. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  15. Reflow process stabilization by chemical characteristics and process conditions

    Science.gov (United States)

    Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho

    2002-07-01

    With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.

  16. Process Security in Chemical Engineering Education

    Science.gov (United States)

    Piluso, Cristina; Uygun, Korkut; Huang, Yinlun; Lou, Helen H.

    2005-01-01

    The threats of terrorism have greatly alerted the chemical process industries to assure plant security at all levels: infrastructure-improvement-focused physical security, information-protection-focused cyber security, and design-and-operation-improvement-focused process security. While developing effective plant security methods and technologies…

  17. Laser Process for Selective Emitter Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    G. Poulain

    2012-01-01

    Full Text Available Selective emitter solar cells can provide a significant increase in conversion efficiency. However current approaches need many technological steps and alignment procedures. This paper reports on a preliminary attempt to reduce the number of processing steps and therefore the cost of selective emitter cells. In the developed procedure, a phosphorous glass covered with silicon nitride acts as the doping source. A laser is used to open locally the antireflection coating and at the same time achieve local phosphorus diffusion. In this process the standard chemical etching of the phosphorous glass is avoided. Sheet resistance variation from 100 Ω/sq to 40 Ω/sq is demonstrated with a nanosecond UV laser. Numerical simulation of the laser-matter interaction is discussed to understand the dopant diffusion efficiency. Preliminary solar cells results show a 0.5% improvement compared with a homogeneous emitter structure.

  18. Hybrid bio-photo-electro-chemical cells for solar water splitting.

    Science.gov (United States)

    Pinhassi, Roy I; Kallmann, Dan; Saper, Gadiel; Dotan, Hen; Linkov, Artyom; Kay, Asaf; Liveanu, Varda; Schuster, Gadi; Adir, Noam; Rothschild, Avner

    2016-08-23

    Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox couple from the thylakoids to a transparent electrode serving as the anode, yielding a photocurrent density of 0.5 mA cm(-2). Hydrogen evolution occurs at the cathode at a bias as low as 0.8 V. A tandem cell comprising the BPEC cell and a Si photovoltaic module achieves overall water splitting with solar to hydrogen efficiency of 0.3%. These results demonstrate the promise of combining natural photosynthetic membranes and man-made photovoltaic cells in order to convert solar power into hydrogen fuel.

  19. The Role of Chemical Processes in the Transition to Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stucki, S.; Palumbo, R.; Baltensperger, U.; Boulouchos, K.; Haas, O.; Scherer, G.G.; Siegwolf, R.; Wokaun, A

    2002-01-01

    Chemical science and engineering play a central role in improving the eco- efficiency of energy services, be it by optimizing fossil fuel utilization from the source to the sinks, be it by exploring new ways of replacing fossil fuels with renewable ones. Catalytic fuel processing is required for providing clean and easy to convert inputs from contaminated and/or high molecular weight primary resources into efficient energy conversion systems such as advanced combustion engines and fuel cells. The switch from conventional fossil fuel resources to renewables such as solar or biomass requires new approaches in chemical engineering. Efficiency vs. emissions trade-offs for improving the eco-performance of combustion engines need to be optimized with improved understanding of the complex chemistry taking place in flames. New materials for fuel cells and batteries provide a means of making these devices applicable, thereby drastically cutting down on emissions from energy systems. Chemistry is not only involved in fuel processing and conversion, but it is also important at the end of the pipe, i.e. in catalytic emission control devices, in the treatment of hazardous residues from the incineration of waste materials, and in the complex interactions of air pollutants with the biosphere. (author)

  20. Quality Assessment of Film Processing Chemicals in Dentistry

    International Nuclear Information System (INIS)

    Han, Mi Ra; Kang, Byung Chul

    1999-01-01

    The purpose of this study was to compare the qualities of the four different processing chemicals (solutions). With EP 21 films (Ektaspeed plus film, Kodak Co., USA), nine unexposed and nine exposed films of a step wedge were processed utilizing automatic film processor (XR 24, Durr Co., Germany) for 5 days. During 5 days, the total number of processed films including out-patient's intraoral films were about 400-500 for each brand. Base plus fog density, film density, contrast of processed films were measured with densitometer (model 07-443 digital densitometer, Victoreen Co., USA). These measurements were analyzed for comparison. The results were as follows,1. For the base plus fog density, there was significant difference among the four chemicals (p<0.05). The sequence of the base plus fog densities was in ascending order by Kodak, X-dol 90, Agfa and Konica. 2. For the film density, all chemicals showed useful range of photographic densities (0.25-2.5). The sequence of the film densities was in ascending order by Kodak, X-dol 90, Konica and Agfa. But there was no statistically significant difference of film density between X-dol and Kodak (p<0.05). 3. The sequence of the contrasts was in ascending order by Konica, X-dol 90, Kodak and Agfa. But there was no statistically significant difference of contrast between X-dol and Konica (p<0.05). These results indicated that the four processing chemicals had the clinically useful film density and contrast, but only Kodak processing chemical had useful base plus fog density.

  1. Solution-processing of ultra-thin CdTe/ZnO nanocrystal solar cells

    International Nuclear Information System (INIS)

    MacDonald, Brandon I.; Gengenbach, Thomas R.; Watkins, Scott E.; Mulvaney, Paul; Jasieniak, Jacek J.

    2014-01-01

    We have carried out a detailed study into how modifications of the physical, chemical and optical properties of solution-processed, nanocrystalline CdTe layers influence the photovoltaic performance of sintered CdTe/ZnO nanocrystal solar cells. Such solar cells are fabricated through layer-by-layer assembly, which is enabled through an inter layer chemical and thermal treatment cycle. In this manner we are able to fabricate working solar cells with sintered CdTe layers as low as 90 nm, provided that grain size is precisely controlled. We show that the extent of grain growth achieved during the CdTe sintering process is strongly dependent on nanocrystal surface chemistry and chemical environment, with the removal of the organic capping ligands and the introduction of CdCl 2 prior to annealing leading to greatly enhanced growth. Due to the air processing involved and the nanocrystalline nature of the CdTe, the overall performance of these solar cells is shown to be strongly dependent on both annealing temperature and time, with optimal results requiring a balance between crystal growth and degradation due to oxidation. Using this simple bi-layer device structure, optimized treatment conditions result in power conversion efficiencies of up to 7.7% and peak internal quantum efficiencies in excess of 95%. - Highlights: • We study the growth of nanocrystalline CdTe thin films from colloidal nanocrystals. • We examine the CdTe growth profiles as a function of surface chemistry. • We show that nanocrystalline CdTe is susceptible to oxidation under air annealing. • We show how this oxidation influences performance in CdTe/ZnO solar cells. • We demonstrate CdTe/ZnO solar cells with an efficiency of 7.7% fabricated in air

  2. Process Design and Evaluation for Chemicals Based on Renewable Resources

    DEFF Research Database (Denmark)

    Fu, Wenjing

    . In addition, another characteristic of chemicals based on renewable feedstocks is that many alternative technologies and possible routes exist, resulting in many possible process flowsheets. The challenge for process engineers is then to choose between possible process routes and alternative technologies...... development of chemicals based on renewable feedstocks. As an example, this thesis especially focuses on applying the methodology in process design and evaluation of the synthesis of 5-hydroxymethylfurfural (HMF) from the renewable feedstock glucose/fructose. The selected example is part of the chemoenzymatic......One of the key steps in process design is choosing between alternative technologies, especially for processes producing bulk and commodity chemicals. Recently, driven by the increasing oil prices and diminishing reserves, the production of bulk and commodity chemicals from renewable feedstocks has...

  3. Environmentally benign chemical synthesis and processing

    International Nuclear Information System (INIS)

    Hancock, K.G.

    1992-01-01

    A new era of university-industry-government partnership is required to address the intertwined problems of industrial economic competitiveness and environmental quality. Chemicals that go up the stacks and down the drains are simultaneously a serious detriment to the environment, a waste of natural resources, and a threat to industrial profitability. Recently, the NSF Divisions of Chemistry and chemical and Thermal Systems have joined with the Council for Chemical research in a new grant program to reduce pollution at the source by underwriting research aimed at environmentally benign chemical synthesis and processing. Part of a broader NSF initiative on environmental science research, this new program serves as a model for university-industry-government joint action and technology transfer. Other features of this program and related activities will be described in this paper

  4. Renal cell carcinoma and occupational exposure to chemicals in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Mao, Y.; White, K. [Health Canada, Ottawa, ON (Canada). Population & Public Health Branch

    2002-05-01

    This study assesses the effect of occupational exposure to specific chemicals on the risk of renal cell carcinoma in people in Canada. Mailed questionnaires were used to obtain data on 1279 (691 male and 588 female) newly diagnosed, histologically confirmed renal cell carcinoma cases and 5370 population controls in eight Canadian provinces, between 1994 and 1997. Data were collected on socio-economic status, smoking habit, alcohol use, diet, residential and occupational histories, and years of exposure to any of 17 chemicals. Odds ratios (ORs) and 95% confidence intervals (CIs) were derived using unconditional logistic regression. The study found an increased risk of renal cell carcinoma in males only, which was associated with occupational exposure to benzene; benzidine; coal tar, soot, pitch, creosote or asphalt; herbicides; mineral, cutting or lubricating oil; mustard gas; pesticides; and vinyl chloride. Very few females were exposed to specific chemicals in this study; further research is needed to clarify the association between occupational exposure to chemicals and renal cell carcinoma in females.

  5. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  6. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  7. Method for innovative synthesis-design of chemical process flowsheets

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Gani, Rafiqul

    Chemical process synthesis-design involve the identification of the processing route to reach a desired product from a specified set of raw materials, design of the operations involved in the processing route, the calculations of utility requirements, the calculations of waste and emission...... to the surrounding and many more. Different methods (knowledge-based [1], mathematical programming [2], hybrid, etc.) have been proposed and are also currently employed to solve these synthesis-design problems. D’ Anterroches [3] proposed a group contribution based approach to solve the synthesis-design problem...... of chemical processes, where, chemical process flowsheets could be synthesized in the same way as atoms or groups of atoms are synthesized to form molecules in computer aided molecular design (CAMD) techniques [4]. That, from a library of building blocks (functional process-groups) and a set of rules to join...

  8. Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay.

    Directory of Open Access Journals (Sweden)

    Kelly J Chandler

    Full Text Available The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES cells provide an in vitro model of embryonic development and an alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use pesticides, from the ToxCast™ chemical library using a mouse ES cell platform. ES cells were cultured in the absence of pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (α,β myosin heavy chain; MYH6/MYH7 and cytotoxicity (DRAQ5™/Sapphire700™ were measured by In-Cell Western™ analysis. Half-maximal activity concentration (AC₅₀ values for differentiation and cytotoxicity endpoints were determined, with 18% of the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays (∼500 revealed significant associations for a subset of chemicals (26 that perturbed transcription-based activities and impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2, PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A were strongly associated with decreased ES cell differentiation as well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation.

  9. Systematic methods for synthesis and design of sustainable chemical and biochemical processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    Chemical and biochemical process design consists of designing the process that can sustainably manufacture an identified chemical product through a chemical or biochemical route. The chemical product tree is potentially very large; starting from a set of basic raw materials (such as petroleum...... for process intensification, sustainable process design, identification of optimal biorefinery models as well as integrated process-control design, and chemical product design. The lecture will present the main concepts, the decomposition based solution approach, the developed methods and tools together...

  10. Mechanisms of chemical modification of neoplastic cell transformation by ionizing radiation

    International Nuclear Information System (INIS)

    Yang, T.C.; Tobias, C.A.

    1985-01-01

    During space travel, astronauts will be continuously exposed to ionizing radiation; therefore, it is necessary to minimize the radiation damage by all possible means. The authors' studies show that DMSO (when present during irradiation) can protect cells from being killed and transformed by X rays and that low concentration of DMSO can reduce the transformation frequency significantly when it is applied to cells, even many days after irradiation. The process of neoplastic cell transformation is a complicated one and includes at least two different stages: induction and expression. DMSO apparently can modify the radiation damage during both stages. There are several possible mechanisms for the DMSO effect: (1) changing the cell membrane structure and properties; (2) inducing cell differentiation by acting on DNA; and (3) scavanging free radicals in the cell. Recent studies with various chemical agents, e.g., 5-azacytidine, dexamethane, rhodamin-123, etc., indicate that the induction of cell differentiation by acting on DNA may be an important mechanism for the suppression of expression of neoplastic cell transformation by DMSO

  11. High content screening of defined chemical libraries using normal and glioma-derived neural stem cell lines.

    Science.gov (United States)

    Danovi, Davide; Folarin, Amos A; Baranowski, Bart; Pollard, Steven M

    2012-01-01

    Small molecules with potent biological effects on the fate of normal and cancer-derived stem cells represent both useful research tools and new drug leads for regenerative medicine and oncology. Long-term expansion of mouse and human neural stem cells is possible using adherent monolayer culture. These cultures represent a useful cellular resource to carry out image-based high content screening of small chemical libraries. Improvements in automated microscopy, desktop computational power, and freely available image processing tools, now means that such chemical screens are realistic to undertake in individual academic laboratories. Here we outline a cost effective and versatile time lapse imaging strategy suitable for chemical screening. Protocols are described for the handling and screening of human fetal Neural Stem (NS) cell lines and their malignant counterparts, Glioblastoma-derived neural stem cells (GNS). We focus on identification of cytostatic and cytotoxic "hits" and discuss future possibilities and challenges for extending this approach to assay lineage commitment and differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Modeling of an improved chemical vapor infiltration process for ceramic composites fabrication

    International Nuclear Information System (INIS)

    Tai, N.H.; Chou, T.W.

    1990-01-01

    A quasi-steady-state approach is applied to model the pressure-driven, temperature-gradient chemical vapor infiltration (improved CVI process) for ceramic matrix composites fabrication. The deposited matrix in this study is SiC which is converted from the thermal decomposition of methyltrichlorosilane gas under excess hydrogen. A three-dimensional unit cell is adopted to simulate the spatial arrangements of reinforcements in discontinuous fiber mats and three-dimensionally woven fabrics. The objectives of this paper are to predict the temperature and density distributions in a fibrous preform during processing, the advancement of the solidified front, the total fabrication period, and the vapor inlet pressure variation for maintaining a constant flow rate

  13. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  14. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  15. Physical and chemical processes for the generation of 1-μm-structures

    International Nuclear Information System (INIS)

    Mader, L.

    1979-01-01

    The following processes for the realization of fine structures in isolator and metal layers on silicon wafers have been studied: Wet chemical etching of silicon dioxide and aluminum layers; plasma etching of polysilicon layers; ion beam etching of silicon dioxide and polysilicon layers, lift-off technique for metal pattern generation. Test structures and functioning integrated circuits (memory cells, CCDs) with minimum dimensions of 1.5 μm were realized using these methods of pattern generation. (orig.) 891 ORU/orig. 892 MB [de

  16. ACToR Chemical Structure processing using Open Source ...

    Science.gov (United States)

    ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d

  17. New Vistas in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Zhang, Lei; Babi, Deenesh Kavi; Gani, Rafiqul

    2016-01-01

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product......, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design....... Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack...

  18. Sustainable Chemical Processes and Products. New Design Methodology and Design Tools

    OpenAIRE

    Korevaar, G.

    2004-01-01

    The current chemical industry is not sustainable, which leads to the fact that innovation of chemical processes and products is too often hazardous for society in general and the environment in particular. It really is a challenge to implement sustainability considerations in the design activities of chemical engineers. Therefore, the main question of this thesis is: how can a trained chemical engineer develop a conceptual design of a chemical process or a chemical product in such a way that ...

  19. Chemical kinetics and oil shale process design

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  20. Dynamics of chemical elements in the fermentation process of ethanol production

    International Nuclear Information System (INIS)

    Nepomuceno, N.; Fernandes, E.A.N.; Bacchi, M.A.

    1997-01-01

    Brazil has become the largest producer of biomass ethanol derived from sugar cane. The industrial production is based on the fermentation of sugar cane juice by yeast, inside of large volume vats, in a fed-batch process that recycles yeast cells. To study the dynamics of chemical elements in each operating cycle, five stages of the fermentation process were considered: must, yeast suspension, wine, non-yeast wine and yeast cream. For this, a mass balance of the terrigenous elements, Ce, Co, Cs, Eu, Fe, Hf, La, Na, Sc, Sm, and Th, and the sugar cane plant elements, Br, K, Rb, and Zn, were established in fermentation vats of an industrial scale unit, with sampling undertaken during different climatic conditions (dry and rainy periods). A similar distribution of the sugar cane characteristics elements was found for the stages analysed, while for the terrigenous elements a trend of accumulation in the yeast cream was observed. Preferential absorption of Br, K, Rb, and Zn by yeast cells was indicated by the smaller concentrations observed in yeast suspension than in yeast cream. (author)

  1. Idaho Chemical Processing Plant Process Efficiency improvements

    International Nuclear Information System (INIS)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

  2. Cell-in-Shell Hybrids: Chemical Nanoencapsulation of Individual Cells.

    Science.gov (United States)

    Park, Ji Hun; Hong, Daewha; Lee, Juno; Choi, Insung S

    2016-05-17

    Nature has developed a fascinating strategy of cryptobiosis ("secret life") for counteracting the stressful, and often lethal, environmental conditions that fluctuate sporadically over time. For example, certain bacteria sporulate to transform from a metabolically active, vegetative state to an ametabolic endospore state. The bacterial endospores, encased within tough biomolecular shells, withstand the extremes of harmful stressors, such as radiation, desiccation, and malnutrition, for extended periods of time and return to a vegetative state by breaking their protective shells apart when their environment becomes hospitable for living. Certain ciliates and even higher organisms, for example, tardigrades, and others are also found to adopt a cryptobiotic strategy for survival. A common feature of cryptobiosis is the structural presence of tough sheaths on cellular structures. However, most cells and cellular assemblies are not "spore-forming" and are vulnerable to the outside threats. In particular, mammalian cells, enclosed with labile lipid bilayers, are highly susceptible to in vitro conditions in the laboratory and daily life settings, making manipulation and preservation difficult outside of specialized conditions. The instability of living cells has been a main bottleneck to the advanced development of cell-based applications, such as cell therapy and cell-based sensors. A judicious question arises: can cellular tolerance against harmful stresses be enhanced by simply forming cell-in-shell hybrid structures? Experimental results suggest that the answer is yes. A micrometer-sized "Iron Man" can be generated by chemically forming an ultrathin (cell. Since the report on silica nanoencapsulation of yeast cells, in which cytoprotective yeast-in-silica hybrids were formed, several synthetic strategies have been developed to encapsulate individual cells in a cytocompatible fashion, mimicking the cryptobiotic cell-in-shell structures found in nature, for example

  3. Dry Phosphorus silicate glass etching and surface conditioning and cleaning for multi-crystalline silicon solar cell processing

    International Nuclear Information System (INIS)

    Kagilik, Ahmed S.

    2014-01-01

    As an alternative to the wet chemical etching method, dry chemical etching processes for Phosphorus silicate glass [PSG} layer removal using Trifluormethane/Sulfur Hexafluoride (CHF 3 / SF 6 ) gas mixture in commercial silicon-nitride plasma enhanced chemical vapour deposition (SiN-PECVD) system is applied. The dependence of the solar cell performance on the etching temperature is investigated and optimized. It is found that the SiN-PECVD system temperature variation has a significant impact on the whole solar cell characteristics. A dry plasma cleaning treatment of the Si wafer surface after the PSG removal step is also investigated and developed. The cleaning step is used to remove the polymer film which is formed during the PSG etching using both oxygen and hydrogen gases. By applying an additional cleaning step, the polymer film deposited on the silicon wafer surface after PSG etching is eliminated. The effect of different plasma cleaning conditions on solar cell performance is investigated. After optimization of the plasma operating conditions, the performance of the solar cell is improved and the overall gain in efficiency of 0.6% absolute is yielded compared to a cell without any further cleaning step. On the other hand, the best solar cell characteristics can reach values close to that achieved by the conventional wet chemical etching processes demonstrating the effectiveness of the additional O 2 /H 2 post cleaning treatment.(author)

  4. On-line process control monitoring system

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Van Hare, D.R.; Prather, W.S.

    1992-01-01

    This patent describes apparatus for monitoring at a plurality of locations within a system the concentration of at least one chemical substance involved in a chemical process. It comprises plurality of process cells; first means for carrying the light; second means for carrying the light; means for producing a spectrum from the light received by the second carrying means; multiplexing means for selecting one process cell of the plurality of process cells at a time so that the producing means can produce a process spectrum from the one cell of the process cells; a reference cell for producing a reference spectrum for comparison to the process spectrum; a standard cell for producing a standard spectrum for comparison to the process spectrum; and means for comparing the reference spectrum, the standard spectrum and the process spectrum and determining the concentration of the chemical substance in the process cell

  5. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  6. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals

    International Nuclear Information System (INIS)

    Boyd, Jessica M.; Huang, Li; Xie Li; Moe, Birget; Gabos, Stephan; Li Xingfang

    2008-01-01

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC 50 ) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC 50 values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC 50 concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC 50 . Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPhA causing cell

  7. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Jessica M [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Huang, Li [Environmental Health Sciences, Department of Public Health Sciences, School of Public Health, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Li, Xie; Moe, Birget [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Gabos, Stephan [Public Health Surveillance and Environmental Health, Alberta Health and Wellness, 10025 Jasper Avenue, Box 1360, Edmonton, Alberta, T5J 2N3 (Canada); Xingfang, Li [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Environmental Health Sciences, Department of Public Health Sciences, School of Public Health, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada)], E-mail: xingfang.li@ualberta.ca

    2008-05-12

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC{sub 50}) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC{sub 50} values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC{sub 50} concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC{sub 50}. Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPh

  8. Development of chemical process for synthesis of polyunsaturated esters

    OpenAIRE

    Vera LÃcia Viana do Nascimento

    2014-01-01

    This work aimed to develop refining processes, chemical alcoholysis followed by separation of fatty acids using the complexation with urea technique for the synthesis of poly-unsaturated esters from waste of fish oils. The special crude fish oil was purchased from Company Campestre - SÃo Paulo. Initially this oil has undergone a process of physical and chemical refining. From the refined oil, an alcoholysis process was carried out to obtain the mixture of free fatty acids. From the hydrolyzed...

  9. Physical and chemical characterization of bioaerosols - Implications for nucleation processes

    Science.gov (United States)

    Ariya, P. A.; Sun, J.; Eltouny, N. A.; Hudson, E. D.; Hayes, C. T.; Kos, G.

    The importance of organic compounds in the oxidative capacity of the atmosphere, and as cloud condensation and ice-forming nuclei, has been recognized for several decades. Organic compounds comprise a significant fraction of the suspended matter mass, leading to local (e.g. toxicity, health hazards) and global (e.g. climate change) impacts. The state of knowledge of the physical chemistry of organic aerosols has increased during the last few decades. However, due to their complex chemistry and the multifaceted processes in which they are involved, the importance of organic aerosols, particularly bioaerosols, in driving physical and chemical atmospheric processes is still very uncertain and poorly understood. Factors such as solubility, surface tension, chemical impurities, volatility, morphology, contact angle, deliquescence, wettability, and the oxidation process are pivotal in the understanding of the activation processes of cloud droplets, and their chemical structures, solubilities and even the molecular configuration of the microbial outer membrane, all impact ice and cloud nucleation processes in the atmosphere. The aim of this review paper is to assess the current state of knowledge regarding chemical and physical characterization of bioaerosols with a focus on those properties important in nucleation processes. We herein discuss the potential importance (or lack thereof) of physical and chemical properties of bioaerosols and illustrate how the knowledge of these properties can be employed to study nucleation processes using a modeling exercise. We also outline a list of major uncertainties due to a lack of understanding of the processes involved or lack of available data. We will also discuss key issues of atmospheric significance deserving future physical chemistry research in the fields of bioaerosol characterization and microphysics, as well as bioaerosol modeling. These fundamental questions are to be addressed prior to any definite conclusions on the

  10. Gas-discharge plasma processes for surface modification and conversion of chemical substances. Application for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, K.; Meyer, D.; Rohland, B.; Heintze, M.; Zahn, R.J.; Hannemann, M.; Meusinger, J.; Ohl, A. [Institute of Non-Thermal Plasma Physics, Greifswald (Germany)]|[Gesellschaft fuer Angewandte Technik mbH Greifswald (Germany)]|[GAPC, Adam Opel AG, IPC, Ruesselsheim (Germany)

    2001-07-01

    The potential of plasma processes towards hydrogen and fuel cell technology will be demonstrated by two examples with preliminary results: 1. plasma modification of polymer electrolyte membranes for direct methanol fuel cells, and 2. plasma supported steam reforming.

  11. Laser isotope separation - a new class of chemical process

    International Nuclear Information System (INIS)

    Woodall, K.B.; Mannik, L.; O'Neill, J.A.; Mader, D.L.; Nickerson, S.B.; Robins, J.R.; Bartoszek, F.E.; Gratton, D.

    1983-01-01

    Lasers may soon find several applications in chemical processing. The applications that have attracted the most research funding to date involve isotope separation for the nuclear industry. These isotopes have an unusually high value (≥$1000/kg) compared to bulk chemicals (∼$1/kg) and are generally required in very large quantities. In a laser isotope separation process, light is used to convert a separation that is very difficult or even impossible by conventional chemical engineering techniques to one that is readily handled by conventional separation technology. For some isotopes this can result in substantial capital and energy savings. A uranium enrichment process developed at the Lawrence Livermore National Laboratory is the closest to commercialization of the large scale laser isotope separation processes. Of particular interest to the Canadian nuclear industry are the laser separation of deuterium, tritium, zirconium-90 and carbon-14. In this paper, the basic principles behind laser isotope separation are reviewed and brief dscriptions of the more developed processes are given

  12. Chemical-cleaning process evaluation: Westinghouse steam generators. Final report

    International Nuclear Information System (INIS)

    Cleary, W.F.; Gockley, G.B.

    1983-04-01

    The Steam Generator Owners Group (SGOG)/Electric Power Research Institute (EPRI) Steam Generator Secondary Side Chemical Cleaning Program, under develpment since 1978, has resulted in a generic process for the removal of accumulated corrosion products and tube deposits in the tube support plate crevices. The SGOG/EPRI Project S150-3 was established to obtain an evaluation of the generic process in regard to its applicability to Westinghouse steam generators. The results of the evaluation form the basis for recommendations for transferring the generic process to a plant specific application and identify chemical cleaning corrosion guidelines for the materials in Westinghouse Steam Generators. The results of the evaluation, recommendations for plant-specific applications and corrosion guidelines for chemical cleaning are presented in this report

  13. Fully Solution-Processed Inverted Polymer Solar Cells with Laminated Nanowire Electrodes

    KAUST Repository

    Gaynor, Whitney

    2010-01-26

    We demonstrate organic photovoltaic cells in which every layer is deposited by solution processing on opaque metal substrates, with efficiencies similar to those obtained in conventional device structures on transparent substrates. The device architecture is enabled by solution-processed, laminated silver nanowire films serving as the top transparent anode. The cells are based on the regioregular poly(3- hexylthiophene) and C 61 butyric acid methyl ester bulk heterojunction and reach an efficiency of 2.5% under 100 mW/cm 2 of AM 1.5G illumination. The metal substrates are adequate barriers to moisture and oxygen, in contrast to transparent plastics that have previously been used, giving rise to the possibility of roll-to-roll solutionprocessed solar cells that are packaged by lamination to glass substrates, combining the cost advantage of roll-toroll processing with the barrier properties of glass and metal foil. © 2010 American Chemical Society.

  14. Fully Solution-Processed Inverted Polymer Solar Cells with Laminated Nanowire Electrodes

    KAUST Repository

    Gaynor, Whitney; Lee, Jung-Yong; Peumans, Peter

    2010-01-01

    We demonstrate organic photovoltaic cells in which every layer is deposited by solution processing on opaque metal substrates, with efficiencies similar to those obtained in conventional device structures on transparent substrates. The device architecture is enabled by solution-processed, laminated silver nanowire films serving as the top transparent anode. The cells are based on the regioregular poly(3- hexylthiophene) and C 61 butyric acid methyl ester bulk heterojunction and reach an efficiency of 2.5% under 100 mW/cm 2 of AM 1.5G illumination. The metal substrates are adequate barriers to moisture and oxygen, in contrast to transparent plastics that have previously been used, giving rise to the possibility of roll-to-roll solutionprocessed solar cells that are packaged by lamination to glass substrates, combining the cost advantage of roll-toroll processing with the barrier properties of glass and metal foil. © 2010 American Chemical Society.

  15. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  16. Sustainability assessment of novel chemical processes at early stage: application to biobased processes

    NARCIS (Netherlands)

    Patel, A.D.; Meesters, K.; Uil, H. den; Jong, E. de; Blok, K.; Patel, M.K.

    2012-01-01

    Chemical conversions have been a cornerstone of industrial revolution and societal progress. Continuing this progress in a resource constrained world poses a critical challenge which demands the development of innovative chemical processes to meet our energy and material needs in a sustainable way.

  17. Non-Chemical Distant Cellular Interactions as a potential confounder of Cell Biology Experiments

    Directory of Open Access Journals (Sweden)

    Ashkan eFarhadi

    2014-10-01

    Full Text Available Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.

  18. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  19. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  20. Thermocouple-based Temperature Sensing System for Chemical Cell Inside Micro UAV Device

    Science.gov (United States)

    Han, Yanhui; Feng, Yue; Lou, Haozhe; Zhang, Xinzhao

    2018-03-01

    Environmental temperature of UAV system is crucial for chemical cell component inside. Once the temperature of this chemical cell is over 259 °C and keeps more than 20 min, the high thermal accumulation would result in an explosion, which seriously damage the whole UAV system. Therefore, we develop a micro temperature sensing system for monitoring the temperature of chemical cell thermally influenced by UAV device deployed in a 300 °C temperature environment, which is quite useful for insensitive munitions and UAV safety enhancement technologies.

  1. Computer-Aided Multiscale Modelling for Chemical Process Engineering

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Gani, Rafiqul

    2007-01-01

    Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framework...

  2. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  3. Effects of chemical-induced DNA damage on male germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Holme, J.A.; Bjoerge, C.; Trbojevic, M.; Olsen, A.K.; Brunborg, G.; Soederlund, E.J. [National Inst. of Public Health, Oslo (Norway). Dept. of Environmental Medicine; Bjoeras, M.; Seeberg, E. [National Hospital, Oslo (Norway). Dept. of Microbiology; Scholz, T.; Dybing, E.; Wiger, R. [National Hospital, Oslo (Norway). Inst. for Surgical Research and Surgical Dept. B

    1998-12-31

    Several recent studies indicate declines in sperm production, as well as increases in the incidence of genitourinary abnormalities such as testicular cancer, cryptorchidism and hypospadias. It is not known if these effects are due to exposure to chemical pollutants or if other ethiological factors are involved. Animal studies indicate that chemicals will induce such effects by various genetic, epigenetic or non-genetic mechanisms. Recently, much attention has been focused on embryonic/fetal exposure to oestrogen-mimicking chemicals (Toppari et al., 1996). However, the possibility that chemicals may cause reproductive toxicity by other mechanisms such as interactions with DNA, should not be ignored. DNA damage in germ cells may lead to the production of mutated spermatozoa, which in turn may result in spontaneous abortions, malformations and/or genetic defects in the offspring. Regarding the consequences of DNA alterations for carcinogenesis it is possible that genetic damage may occur germ cells, but the consequences are not expressed until certain genetic events occur in postnatal life. Transmission of genetic risk is best demonstrated by cancer-prone disorders such as hereditary retinoblastoma and the Li-Fraumeni syndrome. A number of experiments indicate that germ cells and proliferating cells may be particularly sensitive to DNA damaging agents compared to other cells. Furthermore, several lines of evidence have indicated that one of the best documented male reproductive toxicants, 1,2-dibrome-3-chloropropane (DBCP), causes testicular toxicity through DNA damage. It is possible that testicular cells at certain maturational stages are more subject to DNA damage, have less efficient DNA repair, or have different thresholds for initiating apoptosis following DNA damage than other cell types. (orig.)

  4. Chemical Processing Department monthly report, May 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-06-21

    The May, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation.(MB)

  5. Chemical Processing Department monthly report, September 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-10-22

    The September, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation.

  6. A chemically inert drug can stimulate T cells in vitro by their T cell receptor in non-sensitised individuals

    International Nuclear Information System (INIS)

    Engler, Olivier B.; Strasser, Ingrid; Naisbitt, Dean J.; Cerny, Andreas; Pichler, Werner J.

    2004-01-01

    Drugs can interact with T cell receptors (TCR) after binding to peptide-MHC structures. This binding may involve the formation of a stable, covalent bond between a chemically reactive drug and MHC or the peptide embedded within. Alternatively, if the drug is chemically inert, the binding may be non-covalent and readily reversible. Both types of drug presentation account for a substantial number of adverse side effects to drugs. Presently no tests are available to predict the ability of chemically inert drugs to stimulate an immune response. Here we present data on the successful induction of a primary T cell immune response in vitro against a chemically inert drug using blood from healthy individuals, previously not exposed to the drug. Blood lymphocytes were stimulated by the chemically inert drug sulfamethoxazole and the protein-reactive drug-metabolite sulfamethoxazole-nitroso in the presence of IL-2. 9/10 individuals reacted in response to sulfamethoxazole-nitroso, but only three reacted to the chemically inert compound sulfamethoxazole. Drug reactive T cells could be detected after 14-35 days of cell culture by drug-specific proliferation or cytotoxicity, which was MHC-restricted. These cells were CD4, CD8 positive or CD4/CD8 double positive and T cell clones generated secreted Th0 type cytokines. Drug interaction lead to down-regulation of specific TCR. These data confirm the ability of chemically inert drugs to stimulate certain T cells by their TCR and may provide the opportunity to screen new drugs for their ability to interact with TCRs

  7. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  8. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role

  9. Cellular compartments cause multistability and allow cells to process more information

    DEFF Research Database (Denmark)

    Harrington, Heather A; Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    recent developments from dynamical systems and chemical reaction network theory to identify and characterize the key-role of the spatial organization of eukaryotic cells in cellular information processing. In particular, the existence of distinct compartments plays a pivotal role in whether a system...... is capable of multistationarity (multiple response states), and is thus directly linked to the amount of information that the signaling molecules can represent in the nucleus. Multistationarity provides a mechanism for switching between different response states in cell signaling systems and enables multiple...

  10. Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells

    International Nuclear Information System (INIS)

    Avellaneda, David; Delgado, Guadalupe; Nair, M.T.S.; Nair, P.K.

    2007-01-01

    Chemically deposited SnS thin films possess p-type electrical conductivity. We report a photovoltaic structure: SnO 2 :F-CdS-SnS-(CuS)-silver print, with V oc > 300 mV and J sc up to 5 mA/cm 2 under 850 W/m 2 tungsten halogen illumination. Here, SnO 2 :F is a commercial spray-CVD (Pilkington TEC-8) coating, and the rest deposited from different chemical baths: CdS (80 nm) at 333 K, SnS (450 nm) and CuS (80 nm) at 293-303 K. The structure may be heated in nitrogen at 573 K, before applying the silver print. The photovoltaic behavior of the structure varies with heating: V oc ∼ 400 mV and J sc 2 , when heated at 423 K in air, but V oc decreases and J sc increases when heated at higher temperatures. These photovoltaic structures have been found to be stable over a period extending over one year by now. The overall cost of materials, simplicity of the deposition process, and possibility of easily varying the parameters to improve the cell characteristics inspire further work. Here we report two different baths for the deposition of SnS thin films of about 500 nm by chemical deposition. There is a considerable difference in the nature of growth, crystalline structure and chemical stability of these films under air-heating at 623-823 K or while heating SnS-CuS layers, evidenced in XRF and grazing incidence angle XRD studies. Heating of SnS-CuS films results in the formation of SnS-Cu x SnS y . 'All-chemically deposited photovoltaic structures' involving these materials are presented

  11. Investigation of physico-chemical processes in lithium-ion batteries by deconvolution of electrochemical impedance spectra

    Science.gov (United States)

    Manikandan, Balasundaram; Ramar, Vishwanathan; Yap, Christopher; Balaya, Palani

    2017-09-01

    The individual physico-chemical processes in lithium-ion batteries namely solid-state diffusion and charge transfer polarization are difficult to be tracked by impedance spectroscopy due to simultaneous contributions from cathode and anode. A deeper understanding of various polarization processes in lithium-ion batteries is important to enhance storage performance and cycle life. In this context, the polarization processes occurring in cylindrical 18650 cells comprising different cathodes against graphite anode (LiNi0.2Mn0.2Co0.6O2vs. graphite; LiNi0.6Mn0.2Co0.2O2vs. graphite; LiNi0.8Co0.15Al0.05O2vs. graphite and LiFePO4vs. graphite) are investigated by deconvolution of impedance spectra across various states of charge. Further, cathodes and anodes are extracted from the investigated 18650-type cells and tested in half-cells against Li-metal as well as in symmetric cell configurations to understand the contribution of cathode and anode to the full cells of various battery chemistries studied. Except for the LiFePO4vs. graphite cell, the polarization resistance in graphite of other cells are found to be higher than those of the investigated cathodes, proving that the polarization in lithium-ion battery is largely influenced by the graphitic anode. Furthermore, the charge transfer polarization resistance encountered by the cathodes investigated in this work is found to be a strong function of the states of charge.

  12. Chemical Processing Department monthly report, June 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-07-22

    This report for June 1958, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  13. Chemical Processing Division monthly report, January 1966

    Energy Technology Data Exchange (ETDEWEB)

    Reed, P.E.

    1966-02-21

    This report, from the Chemical Processing Department at HAPO for January 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  14. Chemical Processing Department monthly report, March 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-04-21

    This report for March 1961, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  15. Chemical decontamination process and device therefor

    International Nuclear Information System (INIS)

    Takahashi, Ryota; Sakai, Hitoshi

    1998-01-01

    The present invention provides a process and a device for chemical decontamination, which can suppress corrosion of low corrosion resistant materials, keep decontamination properties substantially as same as before and further, reduce the volume of secondary wastes. In a step of reductively melting oxide membranes on an objective material to be decontaminated, a mixture of oxalic acid and a salt thereof is used as a reducing agent, and the reductive melting is conducted while suppressing hydrogen ion concentration of an aqueous liquid system. In order to enhance the reducibility of the oxalic acid ions, it is desirable to add a cyclic hetero compound thereto. The device of the present invention comprises, a decontamination loop including a member to be decontaminated, a heater and a pH meter, a medical injection pump for injecting a reducing agent to the decontamination loop, a metal ion recovering loop including an ion exchange resin tower, a reducing agent decomposing loop including an electrolytic vessel and/or a UV ray irradiation cell, a circulation pump for circulating the decontamination liquid to each of the loops and a plurality of opening/closing valves for switching the loop in which the decontamination liquid is circulated. (T.M.)

  16. New Vistas in Chemical Product and Process Design.

    Science.gov (United States)

    Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul

    2016-06-07

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates.

  17. Intelligent Controller Design for a Chemical Process

    OpenAIRE

    Mr. Glan Devadhas G; Dr.Pushpakumar S.

    2010-01-01

    Chemical process control is a challenging problem due to the strong on*line non*linearity and extreme sensitivity to disturbances of the process. Ziegler – Nichols tuned PI and PID controllers are found to provide poor performances for higher*order and non–linear systems. This paper presents an application of one*step*ahead fuzzy as well as ANFIS (adaptive*network*based fuzzy inference system) tuning scheme for an Continuous Stirred Tank Reactor CSTR process. The controller is designed based ...

  18. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application.

    Science.gov (United States)

    Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long

    2018-02-28

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.

  19. Solar cells elaborated by chemical methods: examples of research and development at CIE-UNAM

    International Nuclear Information System (INIS)

    Rincon, Marina E.

    2008-01-01

    one year by now. The overall cost of the materials explored at CIE-UNAM, the simplicity of the chemical deposition process, and the possibility of optimizing the parameters to improve the cell characteristics inspires further work around chemically deposited films for solar cell technologies

  20. Chemical Processing Division monthly report, November 1966

    Energy Technology Data Exchange (ETDEWEB)

    Reed, P.E.

    1966-12-21

    This report, from the Chemical Processing Department at HAPO for November 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee-relations, and waste management.

  1. A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells

    KAUST Repository

    Risko, Chad

    2011-03-15

    The recent and rapid enhancement in power conversion efficiencies of organic-based, bulk heterojunction solar cells has been a consequence of both improved materials design and better understanding of the underlying physical processes involved in photocurrent generation. In this Perspective, we first present an overview of the application of quantum-chemical techniques to study the intrinsic material properties and molecular- and nano-scale processes involved in device operation. In the second part, these quantum-chemical tools are applied to an oligomer-based study on a collection of donor-acceptor copolymers that have been used in the highest-efficiency solar cell devices reported to date. The quantum-chemical results are found to be in good agreement with the empirical data related to the electronic and optical properties. In particular, they provide insight into the natures of the electronic excitations responsible for the near-infrared/visible absorption profiles, as well as into the energetics of the low-lying singlet and triplet states. These results lead to a better understanding of the inherent differences among the materials, and highlight the usefulness of quantum chemistry as an instrument for material design. Importantly, the results also point to the need to continue the development of integrated, multi scale modeling approaches to provide a thorough understanding of the materials properties. © The Royal Society of Chemistry 2011.

  2. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    Science.gov (United States)

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  3. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application

    Science.gov (United States)

    2018-01-01

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972

  4. The Extracellular Environment's Effect on Cellular Processes: An In Vitro Study of Mechanical and Chemical Cues on Human Mesenchymal Stem Cells and C17.2 Neural Stem Cells

    Science.gov (United States)

    Casey, Meghan E.

    Stem cells are widely used in the area of tissue engineering. The ability of cells to interact with materials on the nano- and micro- level is important in the success of the biomaterial. It is well-known that cells respond to their micro- and nano-environments through a process termed chemo-mechanotransduction. It is important to establish standard protocols for cellular experiments, as chemical modifications to maintenance environments can alter long-term research results. In this work, the effects of different media compositions on human mesenchymal stem cells (hMSCs) throughout normal in vitro maintenance are investigated. Changes in RNA regulation, protein expression and proliferation are studied via quantitative polymerase chain reaction (qPCR), immunocytochemistry (ICC) and cell counts, respectively. Morphological differences are also observed throughout the experiment. Results of this study illustrate the dynamic response of hMSC maintenance to differences in growth medium and passage number. These experiments highlight the effect growth medium has on in vitro experiments and the need of consistent protocols in hMSC research. A substantial opportunity exists in neuronal research to develop a material platform that allows for both the proliferation and differentiation of stem cells into neurons and the ability to quantify the secretome of neuronal cells. Anodic aluminum oxide (AAO) membranes are fabricated in a two-step anodization procedure where voltage is varied to control the pore size and morphology of the membranes. C17.2 neural stem cells are differentiated on the membranes via serum-withdrawal. Cellular growth is characterized by scanning electron microscopy (SEM), ICC and qPCR. ImageJ software is used to obtain phenotypic cell counts and neurite outgrowth lengths. Results indicate a highly tunable correlation between AAO nanopore sizes and differentiated cell populations. By selecting AAO membranes with specific pore size ranges, control of neuronal

  5. Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here,...

  6. Characterization of microcrystalline I-layer for solar cells prepared in low temperature - plastic compatible process

    KAUST Repository

    Sliz, Rafal; Ahnood, Arman; Nathan, Arokia; Myllyla, Risto; Jabbour, Ghassan E.

    2012-01-01

    Microcrystalline silicon (mc-Si) lms deposited using a Plasma Enhanced Chemical Vapour Deposition (PECVD) process constitute an important material for manufacturing low-cost, large-area thin-lm devices, such as solar cells or thin-lm transistors

  7. Chemical Processing Department monthly report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    Young, J. F.; Johnson, W. E.; Reinker, P. H.; Warren, J. H.; McCullugh, R. W.; Harmon, M. K.; Gartin, W. J.; LaFollette, T. G.; Shaw, H. P.; Frank, W. S.; Grim, K. G.; Warren, J. H.

    1963-11-21

    This report, for October 1963 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  8. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts.

    Science.gov (United States)

    Yang, Lifei; Yu, Xuegong; Hu, Weidan; Wu, Xiaolei; Zhao, Yan; Yang, Deren

    2015-02-25

    Graphene-silicon (Gr-Si) heterojunction solar cells have been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the high sheet resistance of chemical vapor deposited (CVD) Gr films is still the most important limiting factor for the improvement of the power conversion efficiency of Gr-Si solar cells, especially in the case of large device-active area. In this work, we have fabricated a novel transparent conductive film by hybriding a monolayer Gr film with silver nanowires (AgNWs) network soldered by the graphene oxide (GO) flakes. This Gr-AgNWs hybrid film exhibits low sheet resistance and larger direct-current to optical conductivity ratio, quite suitable for solar cell fabrication. An efficiency of 8.68% has been achieved for the Gr-AgNWs-Si solar cell, in which the AgNWs network acts as buried contacts. Meanwhile, the Gr-AgNWs-Si solar cells have much better stability than the chemically doped Gr-Si solar cells. These results show a new route for the fabrication of high efficient and stable Gr-Si solar cells.

  9. High-Performance Black Multicrystalline Silicon Solar Cells by a Highly Simplified Metal-Catalyzed Chemical Etching Method

    KAUST Repository

    Ying, Zhiqin

    2016-05-20

    A wet-chemical surface texturing technique, including a two-step metal-catalyzed chemical etching (MCCE) and an extra alkaline treatment, has been proven as an efficient way to fabricate high-efficiency black multicrystalline (mc) silicon solar cells, whereas it is limited by the production capacity and the cost cutting due to the complicated process. Here, we demonstrated that with careful control of the composition in etching solution, low-aspect-ratio bowl-like nanostructures with atomically smooth surfaces could be directly achieved by improved one-step MCCE and with no posttreatment, like alkali solution. The doublet surface texture of implementing this nanobowl structure upon the industrialized acidic-textured surface showed concurrent improvement in optical and electrical properties for realizing 18.23% efficiency mc-Si solar cells (156 mm × 156 mm), which is sufficiently higher than 17.7% of the solely acidic-textured cells in the same batch. The one-step MCCE method demonstrated in this study may provide a cost-effective way to manufacture high-performance mc-Si solar cells for the present photovoltaic industry. © 2016 IEEE.

  10. Toward High-Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells.

    Science.gov (United States)

    Zimmermann, Eugen; Pfadler, Thomas; Kalb, Julian; Dorman, James A; Sommer, Daniel; Hahn, Giso; Weickert, Jonas; Schmidt-Mende, Lukas

    2015-05-01

    Low-cost hybrid solar cells have made tremendous steps forward during the past decade owing to the implementation of extremely thin inorganic coatings as absorber layers, typically in combination with organic hole transporters. Using only extremely thin films of these absorbers reduces the requirement of single crystalline high-quality materials and paves the way for low-cost solution processing compatible with roll-to-roll fabrication processes. To date, the most efficient absorber material, except for the recently introduced organic-inorganic lead halide perovskites, has been Sb 2 S 3 , which can be implemented in hybrid photovoltaics using a simple chemical bath deposition. Current high-efficiency Sb 2 S 3 devices utilize absorber coatings on nanostructured TiO 2 electrodes in combination with polymeric hole transporters. This geometry has so far been the state of the art, even though flat junction devices would be conceptually simpler with the additional potential of higher open circuit voltages due to reduced charge carrier recombination. Besides, the role of the hole transporter is not completely clarified yet. In particular, additional photocurrent contribution from the polymers has not been directly shown, which points toward detrimental parasitic light absorption in the polymers. This study presents a fine-tuned chemical bath deposition method that allows fabricating solution-processed low-cost flat junction Sb 2 S 3 solar cells with the highest open circuit voltage reported so far for chemical bath devices and efficiencies exceeding 4%. Characterization of back-illuminated solar cells in combination with transfer matrix-based simulations further allows to address the issue of absorption losses in the hole transport material and outline a pathway toward more efficient future devices.

  11. Effect of channel aspect ratio on chemical recuperation process in advanced aeroengines

    International Nuclear Information System (INIS)

    Zhang, Silong; Cui, Naigang; Xiong, Yuefei; Feng, Yu; Qin, Jiang; Bao, Wen

    2017-01-01

    The working process of an advanced aeroengine such as scramjet with endothermic hydrocarbon fuel cooling is a chemical recuperative cycle. The design of cooling channel in terms of engine real working conditions is very important for the chemical recuperation process. To study the effects of channel aspect ratio (AR) on chemical recuperation process of advanced aeroengines, three dimensional model of pyrolysis coolant flow inside asymmetrical rectangular cooling channels with fins is introduced and validated through experiments. Cases when AR varies from 1 to 8 are carried out. In the pyrolysis zone of the cooling channel, decreasing the channel aspect ratio can reduce the temperature difference and non-uniformity of fuel conversion in the channel cross section, and it can also increase the final conversion and corresponding chemical heat absorption. A small channel aspect ratio is beneficial for the chemical recuperation process and can guarantee the engine cooling performance in the pyrolysis zone of the cooling channel. - Highlights: • Large non-uniformity of conversion is bad for the chemical recuperation. • Small channel aspect ratio is beneficial for improving the chemical recuperation effectiveness. • Small channel aspect ratio is also beneficial for reducing the engine wall temperature.

  12. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping

    2013-06-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions representative of seawater and river water). A bipolar membrane (BPM) was placed next to the anode to prevent Cl- contamination and acidification of the anolyte, and to produce protons for HCl recovery. A 5-cell paired reverse-electrodialysis (RED) stack provided the electrical energy required to overcome the BPM over-potential (0.3-0.6 V), making the overall process spontaneous. The MRCC reactor produced electricity (908 mW/m2) as well as concentrated acidic and alkaline solutions, and therefore did not require an external power supply. After a fed-batch cycle, the pHs of the chemical product solutions were 1.65 ± 0.04 and 11.98 ± 0.10, due to the production of 1.35 ± 0.13 mmol of acid, and 0.59 ± 0.14 mmol of alkali. The acid- and alkali-production efficiencies based on generated current were 58 ± 3% and 25 ± 3%. These results demonstrated proof-of-concept acid and alkali production using only renewable energy sources. © 2013 Elsevier B.V.

  13. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    1992-01-01

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  14. Role of environmental chemicals, processed food derivatives, and nutrients in the induction of carcinogenesis.

    Science.gov (United States)

    Persano, Luca; Zagoura, Dimitra; Louisse, Jochem; Pistollato, Francesca

    2015-10-15

    In recent years it has been hypothesized that cancer stem cells (CSCs) are the actual driving force of tumor formation, highlighting the need to specifically target CSCs to successfully eradicate cancer growth and recurrence. Particularly, the deregulation of physiological signaling pathways controlling stem cell proliferation, self-renewal, differentiation, and metabolism is currently considered as one of the leading determinants of cancer formation. Given their peculiar, slow-dividing phenotype and their ability to respond to multiple microenvironmental stimuli, stem cells appear to be more susceptible to genetic and epigenetic carcinogens, possibly undergoing mutations resulting in tumor formation. In particular, some animal-derived bioactive nutrients and metabolites known to affect the hormonal milieu, and also chemicals derived from food processing and cooking, have been described as possible carcinogenic factors. Here, we review most recent literature in this field, highlighting how some environmental toxicants, some specific nutrients and their secondary products can induce carcinogenesis, possibly impacting stem cells and their niches, thus causing tumor growth.

  15. Integrated Process Design, Control and Analysis of Intensified Chemical Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil

    chemical processes; for example, intensified processes such as reactive distillation. Most importantly, it identifies and eliminates potentially promising design alternatives that may have controllability problems later. To date, a number of methodologies have been proposed and applied on various problems......, that the same principles that apply to a binary non-reactive compound system are valid also for a binary-element or a multi-element system. Therefore, it is advantageous to employ the element based method for multicomponent reaction-separation systems. It is shown that the same design-control principles...

  16. Bubble Jet agent release cartridge for chemical single cell stimulation.

    Science.gov (United States)

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  17. Transuranium processing plant

    International Nuclear Information System (INIS)

    King, L.J.

    1983-01-01

    The Transuranium Processing Plant (TRU) is a remotely operated, hot-cell, chemical processing facility of advanced design. The heart of TRU is a battery of nine heavily shielded process cells housed in a two-story building. Each cell, with its 54-inch-thick walls of a special high-density concrete, has enough shielding to stop the neutrons and gamma radiation from 1 gram of 252/sub Cf/ and associated fission products. Four cells contain chemical processing equipment, three contain equipment for the preparation and inspection of HFIR targets, and two cells are used for analytical chemistry operations. In addition, there are eight laboratories used for process development, for part of the process-control analyses, and for product finishing operations. Although the Transuranium Processing Plant was built for the purpose of recovering transuranium elements from targets irradiated in the High Flux Isotope Reactor (HFIR), it is also a highly versatile facility which has extensive provisions for changing and modifying equipment. Thus, it was a relatively simple matter to install a Solvent Extraction Test Facility (SETF) in one of the TRU chemical processing cells for use in the evaluation and demonstration of solvent extraction flowsheets for the recovery of fissile and fertile materials from irradiated reactor fuels. The equipment in the SETF has been designed for process development and demonstrations and the particular type of mixer-settler contactors was chosen because it is easy to observe and sample

  18. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  19. Steam Electrolysis by Proton-Conducting Solid Oxide Electrolysis Cells (SOECs) with Chemically Stable BaZrO3-Based Electrolytes

    KAUST Repository

    Bi, Lei

    2015-07-17

    BaZrO3-based material was applied as the electrolyte for proton-conducting solid oxide fuel cells (SOECs). Compared with the instability of BaCeO3-based proton-conductors, BaZrO3-based material could be a more promising candidate for proton-conducting SOECs due to its excellent chemical stability under H2O conditions, but few reports on this aspect has been made due to the processing difficulty for BaZrO3. Our recent pioneering work has demonstrated the feasibility of using BaZrO3-based electrolyte for SOECs and the fabricated cell achieves relatively high cell performance, which is comparable or even higher than that for BaCeO3-based SOECs and offers better chemical stability. Cell performance can be further improved by tailoring the electrolyte and electrode. © The Electrochemical Society.

  20. Safety Considerations in the Chemical Process Industries

    Science.gov (United States)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  1. Chemical Processing effects on the radiation doses measured by Film Dosimeter System

    International Nuclear Information System (INIS)

    Mihai, F.

    2009-01-01

    Halide film dosimetry is a quantitative method of measurement of the radiation doses. The fog density and chemical processing of the dosimeter film affect the radiation dose measurement accuracy. This work presents the effect of the developer solution concentration on the response of the dosimetric film which different fog densities. Thus, three batches of film, dosimeters with following fog density 0.312 ± 1.31 %, 0.71 ± 0.59% and 0.77 ± 0.81 %, were irradiated to 137 Cs standard source to dose value of 1mSv. The halide films have been chemical processed at different concentrations of the developer solution: 20 %; 14.29 %; 11.11%; all other physics-chemical conditions in baths of development have been kept constants. Concentration of 20% is considered to be chemical processed standard conditions of the films. In case of the films exposed to 1 mSv dose, optical density recorded on the low fog films processed at 20% developer solution is rather closed of high fog film optical densities processed at 11.11% developer solution concentration. Also, the chemical processing effect on the image contrast was taken into consideration

  2. Catechol-Based Hydrogel for Chemical Information Processing

    Directory of Open Access Journals (Sweden)

    Eunkyoung Kim

    2017-07-01

    Full Text Available Catechols offer diverse properties and are used in biology to perform various functions that range from adhesion (e.g., mussel proteins to neurotransmission (e.g., dopamine, and mimicking the capabilities of biological catechols have yielded important new materials (e.g., polydopamine. It is well known that catechols are also redox-active and we have observed that biomimetic catechol-modified chitosan films are redox-active and possess interesting molecular electronic properties. In particular, these films can accept, store and donate electrons, and thus offer redox-capacitor capabilities. We are enlisting these capabilities to bridge communication between biology and electronics. Specifically, we are investigating an interactive redox-probing approach to access redox-based chemical information and convert this information into an electrical modality that facilitates analysis by methods from signal processing. In this review, we describe the broad vision and then cite recent examples in which the catechol–chitosan redox-capacitor can assist in accessing and understanding chemical information. Further, this redox-capacitor can be coupled with synthetic biology to enhance the power of chemical information processing. Potentially, the progress with this biomimetic catechol–chitosan film may even help in understanding how biology uses the redox properties of catechols for redox signaling.

  3. Process engineering of ceramic composite coatings for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Kim, H.; Chen, M.; Yang, Q.; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering

    2003-07-01

    Researchers at UBCeram at the Department of Metals and Materials Engineering at the University of British Columbia have developed a technology to chemically bond composite sol-gel (CB-CSG) coating onto metallic surfaces of complex or concave shapes. The process has been optimized for electrically resistive coatings and corrosion-resistant coatings. The CSG is sprayed onto metallic surfaces and is heat-treated at 300 degrees C to partially dehydrate the hydroxides. The CSG film is then chemically bonded through reaction of active alumina with metal phosphates, such as aluminium phosphate. A new chromate-free process is being developed to address the issue of coatings porosity. The electrodeposition technique involves polymer particles mixed with suspended fine alumina particles which are co-deposited by electrophoretic means or by electrocoagulation. The composite e-coatings have excellent mechanical properties and are being considered as a protective coating for various components of fuel cell systems. 9 refs., 7 figs.

  4. A Cell Model to Evaluate Chemical Effects on Adult Human Cardiac Progenitor Cell Differentiation and Function

    Science.gov (United States)

    Adult cardiac stem cells (CSC) and progenitor cells (CPC) represent a population of cells in the heart critical for its regeneration and function over a lifetime. The impact of chemicals on adult human CSC/CPC differentiation and function is unknown. Research was conducted to dev...

  5. Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application

    Science.gov (United States)

    Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.

    2008-04-01

    Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.

  6. Reverse engineering life: physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes.

    Science.gov (United States)

    Skuse, Gary R; Lamkin-Kennard, Kathleen A

    2013-01-01

    Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate differentiation. However, there has also been a realization that stem cell differentiation is not regulated only by chemical signals but also by the physical milieu in which a particular stem cell exists. In this regard we are challenged to mimic both chemical and physical environments. Herein we describe a method to induce stem cell differentiation into cardiomyocytes using a combination of chemical and physical cues. This method can be applied to produce differentiated cells for research and potentially for cell-based therapy of cardiomyopathies.

  7. Textual and chemical information processing: different domains but similar algorithms

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2000-01-01

    Full Text Available This paper discusses the extent to which algorithms developed for the processing of textual databases are also applicable to the processing of chemical structure databases, and vice versa. Applications discussed include: an algorithm for distribution sorting that has been applied to the design of screening systems for rapid chemical substructure searching; the use of measures of inter-molecular structural similarity for the analysis of hypertext graphs; a genetic algorithm for calculating term weights for relevance feedback searching for determining whether a molecule is likely to exhibit biological activity; and the use of data fusion to combine the results of different chemical similarity searches.

  8. Advances in chemical engineering in nuclear and process industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  9. Advances in chemical engineering in nuclear and process industries

    International Nuclear Information System (INIS)

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  10. Material compatibility and corrosion control of the KWU chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1994-01-01

    The concentrations of salt impurities within the deposits on the tube sheet and in the tube to tube-support-plate crevices can induce a variety of corrosion mechanisms on steam generator tubes. One of the most effective ways of counteracting corrosion mechanisms and thus of improving steam generator performance is to clean the steam generators and keep them in a clean condition. As shown by field results chemical cleaning is a way of removing hazardous deposits from steam generators. All available chemical cleaning processes use inhibitors to control the corrosion except the KWU chemical cleaning process. In this article the corrosion control technique of KWU Chemical Cleaning Process without using conventional inhibitors will be explained and the state of the field experience with respect to material compatibility will be presented. (author). 4 figs., 1 tab., 8 refs

  11. The AMES Laboratory chemical disposal site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1996-01-01

    The Ames Laboratory has historically supported the U.S. Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, chemical wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the U.S. Army Corps of Engineers (USACE), OHM Remediation Services Corp (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  12. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2018-04-17

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  13. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2017-05-23

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  14. original article the use of morphological and cell wall chemical

    African Journals Online (AJOL)

    boaz

    THE USE OF MORPHOLOGICAL AND CELL WALL CHEMICAL MARKERS IN. THE IDENTIFICATION OF ... aerial hyphae, with or without diffusible pigments on medium surface (7, 14). Cell wall components of Actinomycetes enable rapid qualitative identification of certain .... Alexander von Humboldt Foundation and the.

  15. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO x , CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed

  16. Chemical processes in neutron capture therapy

    International Nuclear Information System (INIS)

    Brown, B.J.

    1975-01-01

    Research into the radiation chemical effects of neutron capture therapy are described. In the use of neutron capture therapy for the treatment of brain tumours, compounds containing an activatable nuclide are selectively concentrated within tumour tissue and irradiated with neutrons. Target compounds for use in therapy must accumulate selectively in high concentrations in the tumour and must be non toxic to the patient. The most suitable of these are the boron hydrides. Radiation dosages, resulting from neutron capture in normal tissue constituents are tabulated. As part of the program to study the radiation-induced chemical processes undergone by boron target compounds, the radiolytic degredation of boron hydride and phenyl boric acid system was investigated. No direct dependence between the yield of the transient radiolytic species and the concentration of the B-compound was observed. (author)

  17. Life cycle sustainability assessment of chemical processes

    DEFF Research Database (Denmark)

    Xu, Di; Lv, Liping; Ren, Jingzheng

    2017-01-01

    In this study, an integrated vector-based three-dimensional (3D) methodology for the life cycle sustainability assessment (LCSA) of chemical process alternatives is proposed. In the methodology, a 3D criteria assessment system is first established by using the life cycle assessment, the life cycl...

  18. Spectroscopic analyses of chemical adaptation processes within microalgal biomass in response to changing environments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Frank, E-mail: fvogt@utk.edu; White, Lauren

    2015-03-31

    Highlights: • Microalgae transform large quantities of inorganics into biomass. • Microalgae interact with their growing environment and adapt their chemical composition. • Sequestration capabilities are dependent on cells’ chemical environments. • We develop a chemometric hard-modeling to describe these chemical adaptation dynamics. • This methodology will enable studies of microalgal compound sequestration. - Abstract: Via photosynthesis, marine phytoplankton transforms large quantities of inorganic compounds into biomass. This has considerable environmental impacts as microalgae contribute for instance to counter-balancing anthropogenic releases of the greenhouse gas CO{sub 2}. On the other hand, high concentrations of nitrogen compounds in an ecosystem can lead to harmful algae blooms. In previous investigations it was found that the chemical composition of microalgal biomass is strongly dependent on the nutrient availability. Therefore, it is expected that algae’s sequestration capabilities and productivity are also determined by the cells’ chemical environments. For investigating this hypothesis, novel analytical methodologies are required which are capable of monitoring live cells exposed to chemically shifting environments followed by chemometric modeling of their chemical adaptation dynamics. FTIR-ATR experiments have been developed for acquiring spectroscopic time series of live Dunaliella parva cultures adapting to different nutrient situations. Comparing experimental data from acclimated cultures to those exposed to a chemically shifted nutrient situation reveals insights in which analyte groups participate in modifications of microalgal biomass and on what time scales. For a chemometric description of these processes, a data model has been deduced which explains the chemical adaptation dynamics explicitly rather than empirically. First results show that this approach is feasible and derives information about the chemical biomass

  19. Spectroscopic analyses of chemical adaptation processes within microalgal biomass in response to changing environments

    International Nuclear Information System (INIS)

    Vogt, Frank; White, Lauren

    2015-01-01

    Highlights: • Microalgae transform large quantities of inorganics into biomass. • Microalgae interact with their growing environment and adapt their chemical composition. • Sequestration capabilities are dependent on cells’ chemical environments. • We develop a chemometric hard-modeling to describe these chemical adaptation dynamics. • This methodology will enable studies of microalgal compound sequestration. - Abstract: Via photosynthesis, marine phytoplankton transforms large quantities of inorganic compounds into biomass. This has considerable environmental impacts as microalgae contribute for instance to counter-balancing anthropogenic releases of the greenhouse gas CO 2 . On the other hand, high concentrations of nitrogen compounds in an ecosystem can lead to harmful algae blooms. In previous investigations it was found that the chemical composition of microalgal biomass is strongly dependent on the nutrient availability. Therefore, it is expected that algae’s sequestration capabilities and productivity are also determined by the cells’ chemical environments. For investigating this hypothesis, novel analytical methodologies are required which are capable of monitoring live cells exposed to chemically shifting environments followed by chemometric modeling of their chemical adaptation dynamics. FTIR-ATR experiments have been developed for acquiring spectroscopic time series of live Dunaliella parva cultures adapting to different nutrient situations. Comparing experimental data from acclimated cultures to those exposed to a chemically shifted nutrient situation reveals insights in which analyte groups participate in modifications of microalgal biomass and on what time scales. For a chemometric description of these processes, a data model has been deduced which explains the chemical adaptation dynamics explicitly rather than empirically. First results show that this approach is feasible and derives information about the chemical biomass adaptations

  20. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  1. Flow-Injection Responses of Diffusion Processes and Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    tool of automated analytical chemistry. The need for an even lower consumption of chemicals and for computer analysis has motivated a study of the FIA peak itself, that is, a theoretical model was developed, that provides detailed knowledge of the FIA profile. It was shown that the flow in a FIA...... manifold may be characterised by a diffusion coefficient that depends on flow rate, denoted as the kinematic diffusion coefficient. The description was applied to systems involving species of chromium, both in the case of simple diffusion and in the case of chemical reactions. It is suggested that it may...... be used in the resolution of FIA profiles to obtain information about the content of interference’s, in the study of chemical reaction kinetics and to measure absolute concentrations within the FIA-detector cell....

  2. Chemical Activation of the Hypoxia-Inducible Factor Reversibly Reduces Tendon Stem Cell Proliferation, Inhibits Their Differentiation, and Maintains Cell Undifferentiation.

    Science.gov (United States)

    Menon, Alessandra; Creo, Pasquale; Piccoli, Marco; Bergante, Sonia; Conforti, Erika; Banfi, Giuseppe; Randelli, Pietro; Anastasia, Luigi

    2018-01-01

    Adult stem cell-based therapeutic approaches for tissue regeneration have been proposed for several years. However, adult stem cells are usually limited in number and difficult to be expanded in vitro, and they usually tend to quickly lose their potency with passages, as they differentiate and become senescent. Culturing stem cells under reduced oxygen tensions (below 21%) has been proposed as a tool to increase cell proliferation, but many studies reported opposite effects. In particular, cell response to hypoxia seems to be very stem cell type specific. Nonetheless, it is clear that a major role in this process is played by the hypoxia inducible factor (HIF), the master regulator of cell response to oxygen deprivation, which affects cell metabolism and differentiation. Herein, we report that a chemical activation of HIF in human tendon stem cells reduces their proliferation and inhibits their differentiation in a reversible and dose-dependent manner. These results support the notion that hypoxia, by activating HIF, plays a crucial role in preserving stem cells in an undifferentiated state in the "hypoxic niches" present in the tissue in which they reside before migrating in more oxygenated areas to heal a damaged tissue.

  3. Chemical Activation of the Hypoxia-Inducible Factor Reversibly Reduces Tendon Stem Cell Proliferation, Inhibits Their Differentiation, and Maintains Cell Undifferentiation

    Directory of Open Access Journals (Sweden)

    Alessandra Menon

    2018-01-01

    Full Text Available Adult stem cell-based therapeutic approaches for tissue regeneration have been proposed for several years. However, adult stem cells are usually limited in number and difficult to be expanded in vitro, and they usually tend to quickly lose their potency with passages, as they differentiate and become senescent. Culturing stem cells under reduced oxygen tensions (below 21% has been proposed as a tool to increase cell proliferation, but many studies reported opposite effects. In particular, cell response to hypoxia seems to be very stem cell type specific. Nonetheless, it is clear that a major role in this process is played by the hypoxia inducible factor (HIF, the master regulator of cell response to oxygen deprivation, which affects cell metabolism and differentiation. Herein, we report that a chemical activation of HIF in human tendon stem cells reduces their proliferation and inhibits their differentiation in a reversible and dose-dependent manner. These results support the notion that hypoxia, by activating HIF, plays a crucial role in preserving stem cells in an undifferentiated state in the “hypoxic niches” present in the tissue in which they reside before migrating in more oxygenated areas to heal a damaged tissue.

  4. DYNSIR; A dynamic simulator for the chemical process

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Yoo, Jae Hyung; Byeon, Kee Hoh; Park, Jeong Hwa; Park, Seong Won

    1990-03-01

    A program code for dynamic simulation of arbitrary chemical process, called DYNSIR, is developed. The code can simulate rather arbitrary arrangements of individual chemical processing units whose models are described by ordinary differential equations. The code structure to handle input/output, memory and data management, numerical interactive or predetermined changes in parameter values during the simulation. Individual model is easy to maintain since the modular approach is used. The integration routine is highly effective because of the development of algorithm for modular integration method using the cubic spline. DYNSIR's data structures are not the index but the pointer structure. This pointer structure allows the dynamic memory allocation for the memory management. The dynamic memory allocation methods is to minimize the amount of memories and to overcome the limitation of the number of variables to be used. Finally, it includes various functions, such as the input preprocessor, the effective error processing, and plotting and reporting routines. (author)

  5. Chemical Processing Department monthly report for July 1957

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F. K.; Johnson, W. E.; MacCready, W. K.; Warren, J. H.; Schroeder, O. C.; Groswith, C. T.; Mobley, W. N.; LaFollette, T. G.; Grim, K. G.; Shaw, H. P.; Richards, R. B.; Roberts, D. S.

    1957-08-22

    This report, for July 1957 from the Chemical Processing Department at HAPO, discusses the following; Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  6. Chemical Processing Department monthly report for December 1958

    Energy Technology Data Exchange (ETDEWEB)

    1959-01-21

    This report for December 1958, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  7. Chemical Processing Department monthly report for February 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-03-20

    This report for February 1959, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  8. Comparison of chemical washing and physical cell-disruption approaches to assess the surface adsorption and internalization of cadmium by Cupriavidus metallidurans CH34

    Energy Technology Data Exchange (ETDEWEB)

    Desaunay, Aurélien; Martins, Jean M.F., E-mail: jean.martins@ujf-grenoble.fr

    2014-05-01

    Highlights: • Subcellular distribution of cadmium in Cupriavidus metallidurans CH34 cells. • Comparison of a chemical (EDTA washing) and a physical method (physical disruption). • EDTA washings strongly overestimated membrane-bound Cd concentrations. • The physical method revealed surprisingly over 80% of Cd internalization in the cells. • Metal biosorption by bacteria cannot be considered as a surface complexation process. - Abstract: Bacterial biosorption of heavy metals is often considered as a surface complexation process, without considering other retention compartments than cell walls. Although this approach gives a good description of the global biosorption process, it hardly permits the prediction of the fate of biosorbed metals in the environment. This study examines the subcellular distribution of cadmium (Cd) in the metal-tolerant bacterium Cupriavidus metallidurans CH34 through the comparison of an indirect chemical method (washing cells with EDTA) and a direct physical method (physical disruption of cells). The chemical washing approach presented strong experimental biases leading to the overestimation of washed amount of Cd, supposedly bound to cell membranes. On the contrary, the physical disruption approach gave reproducible and robust results of Cd subcellular distribution. Unexpectedly, these results showed that over 80% of passively biosorbed Cd is internalized in the cytoplasm. In disagreement with the common concept of surface complexation of metals onto bacteria the cell wall was poorly reactive to Cd. Our results indicate that metal sorption onto bacterial surfaces is only a first step in metal management by bacteria and open new perspectives on metal biosorption by bacteria in the environment, with implications for soil bioremediation or facilitated transport of metals by bacteria.

  9. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  10. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    International Nuclear Information System (INIS)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira; Shigeno, Keiji; Nakamura, Tatsuo

    2012-01-01

    Highlights: ► Very rapid generation of human iPS cells under optimized conditions. ► Five chemical inhibitors under hypoxia boosted reprogramming. ► We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of i

  11. A ''master key'' to chemical separation processes

    International Nuclear Information System (INIS)

    Madic, Ch.; Hill, C.

    2002-01-01

    One of the keys to sorting nuclear waste is extracting minor actinides - the most troublesome long-lived elements - from the flow of waste by separating them from lanthanides, which have very similar chemical properties to actinides, for possible transmutation into shorter-lived elements. Thanks to a European initiative coordinated by CEA, this key is now available: its name is Sanex. There now remains to develop tough, straightforward industrial processes to integrate it into a new nuclear waste management approach by 2005. Sanex joins the Diamex process, used for the combined separation of lanthanides and minor actinides from fission products. A third process, Sesame, designed to separate americium, completes the list of available separation processes. (authors)

  12. The main chemical safety problems in main process of nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Song Fengli; Zhao Shangui; Liu Xinhua; Zhang Chunlong; Lu Dan; Liu Yuntao; Yang Xiaowei; Wang Shijun

    2014-01-01

    There are many chemical reactions in the aqueous process of nuclear fuel reprocessing. The reaction conditions and the products are different so that the chemical safety problems are different. In the paper the chemical reactions in the aqueous process of nuclear fuel reprocessing are described and the main chemical safety problems are analyzed. The reference is offered to the design and accident analysis of the nuclear fuel reprocessing plant. (authors)

  13. Chemical aspects of nuclear fuel fabrication processes

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, A; Ellis, J F; Watson, R H

    1986-04-01

    Processes used by British Nuclear Fuels plc for the conversion of uranium ore concentrates to uranium metal and uranium hexafluoride, are reviewed. Means of converting the latter compound, after enrichment, to sintered UO/sub 2/ fuel bodies are also described. An overview is given of the associated chemical engineering technology.

  14. Best practices in incident investigation in the chemical process industries with examples from the industry sector and specifically from Nova Chemicals

    International Nuclear Information System (INIS)

    Morrison, Lisa M.

    2004-01-01

    This paper will summarize best practices in incident investigation in the chemical process industries and will provide examples from both the industry sector and specifically from NOVA Chemicals. As a sponsor of the Center for Chemical Process Safety (CCPS), an industry technology alliance of the American Institute of Chemical Engineers, NOVA Chemicals participates in a number of working groups to help develop best practices and tools for the chemical process and associated industries in order to advance chemical process safety. A recent project was to develop an update on guidelines for investigating chemical process incidents. A successful incident investigation management system must ensure that all incidents and near misses are reported, that root causes are identified, that recommendations from incident investigations identify appropriate preventive measures, and that these recommendations are resolved in a timely manner. The key elements of an effective management system for incident investigation will be described. Accepted definitions of such terms as near miss, incident, and root cause will be reviewed. An explanation of the types of incident classification systems in use, along with expected levels of follow-up, will be provided. There are several incident investigation methodologies in use today by members of the CCPS; most of these methodologies incorporate the use of several tools. These tools include: timelines, sequence diagrams, causal factor identification, brainstorming, checklists, pre-defined trees, and team-defined logic trees. Developing appropriate recommendations and then ensuring their resolution is the key to prevention of similar events from recurring, along with the sharing of lessons learned from incidents. There are several sources of information on previous incidents and lessons learned available to companies. In addition, many companies in the chemical process industries use their own internal databases to track recommendations from

  15. A Multi-stage Representation of Cell Proliferation as a Markov Process.

    Science.gov (United States)

    Yates, Christian A; Ford, Matthew J; Mort, Richard L

    2017-12-01

    The stochastic simulation algorithm commonly known as Gillespie's algorithm (originally derived for modelling well-mixed systems of chemical reactions) is now used ubiquitously in the modelling of biological processes in which stochastic effects play an important role. In well-mixed scenarios at the sub-cellular level it is often reasonable to assume that times between successive reaction/interaction events are exponentially distributed and can be appropriately modelled as a Markov process and hence simulated by the Gillespie algorithm. However, Gillespie's algorithm is routinely applied to model biological systems for which it was never intended. In particular, processes in which cell proliferation is important (e.g. embryonic development, cancer formation) should not be simulated naively using the Gillespie algorithm since the history-dependent nature of the cell cycle breaks the Markov process. The variance in experimentally measured cell cycle times is far less than in an exponential cell cycle time distribution with the same mean.Here we suggest a method of modelling the cell cycle that restores the memoryless property to the system and is therefore consistent with simulation via the Gillespie algorithm. By breaking the cell cycle into a number of independent exponentially distributed stages, we can restore the Markov property at the same time as more accurately approximating the appropriate cell cycle time distributions. The consequences of our revised mathematical model are explored analytically as far as possible. We demonstrate the importance of employing the correct cell cycle time distribution by recapitulating the results from two models incorporating cellular proliferation (one spatial and one non-spatial) and demonstrating that changing the cell cycle time distribution makes quantitative and qualitative differences to the outcome of the models. Our adaptation will allow modellers and experimentalists alike to appropriately represent cellular

  16. Colloidal quantum dot solids for solution-processed solar cells

    KAUST Repository

    Yuan, Mingjian

    2016-02-29

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally tuneable infrared bandgap, which enables use in multi-junction cells, as well as the benefit of generating and harvesting multiple charge carrier pairs per absorbed photon. Here we review recent progress in colloidal quantum dot photovoltaics, focusing on three fronts. First, we examine strategies to manage the abundant surfaces of quantum dots, strategies that have led to progress in the removal of electronic trap states. Second, we consider new device architectures that have improved device performance to certified efficiencies of 10.6%. Third, we focus on progress in solution-phase chemical processing, such as spray-coating and centrifugal casting, which has led to the demonstration of manufacturing-ready process technologies.

  17. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    Energy Technology Data Exchange (ETDEWEB)

    Biemann, Ronald, E-mail: ronald.biemann@medizin.uni-halle.de [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Navarrete Santos, Anne [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Navarrete Santos, Alexander [Department of Cardiothoracic Surgery, Martin Luther University, Faculty of Medicine, Halle (Germany); Riemann, Dagmar [Department of Immunology, Martin Luther University, Faculty of Medicine, Halle (Germany); Knelangen, Julia [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Blueher, Matthias [Department of Medicine, University of Leipzig, Leipzig (Germany); Koch, Holger [Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Ruhr-University Bochum, Bochum (Germany); Fischer, Bernd [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  18. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    International Nuclear Information System (INIS)

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blüher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-01

    Highlights: ► Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). ► The adipogenic impact depends strongly on the window of exposure. ► Bisphenol A reduces the potential of MSC to differentiate into adipocytes. ► DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. ► BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPARγ2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 μM) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 μM) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  19. Chemical analysis of isolated cell walls of Gram-positive bacteria and the determination of the cell wall to cell mass ratio.

    NARCIS (Netherlands)

    Wal, van der A.; Norde, W.; Bendinger, B.; Zehnder, A.J.B.; Lyklema, J.

    1997-01-01

    Cell walls of five Gram-positive bacterial strains, including four coryneforms and a Bacillus brevis strain were isolated and subsequently chemically analysed. The wall contribution to the total cell mass is calculated from a comparison of D-Lactate concentrations in hydrolysates of whole cells and

  20. Preliminary viability studies of fibroblastic cells cultured on microcrystalline and nanocrystalline diamonds produced by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    Ana Amélia Rodrigues

    2013-02-01

    Full Text Available Implant materials used in orthopedics surgery have demonstrated some disadvantages, such as metallic corrosion processes, generation of wear particles, inflammation reactions and bone reabsorption in the implant region. The diamond produced through hot-filament chemical vapour deposition method is a new potential biomedical material due to its chemical inertness, extreme hardness and low coefficient of friction. In the present study we analysis two samples: the microcrystalline diamond and the nanocrystalline diamond. The aim of this study was to evaluate the surface properties of the diamond samples by scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Cell viability and morphology were assessed using thiazolyl blue tetrazolium bromide, cytochemical assay and scanning electron microscopy, respectively. The results revealed that the two samples did not interfere in the cell viability, however the proliferation of fibroblasts cells observed was comparatively higher with the nanocrystalline diamond.

  1. Influence of surface coverage on the chemical desorption process

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr [LERMA, Université de Cergy Pontoise et Observatoire de Paris, UMR 8112 du CNRS. 5, mail Gay Lussac, 95031 Cergy Pontoise (France)

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  2. Genetic effects of combined chemical-X-ray treatments in male mouse germ cells

    International Nuclear Information System (INIS)

    Cattanach, B.M.; Rasberry, C.

    1987-01-01

    Several studies have shown that the yield of genetic damage induced by radiation in male mouse germ cells can be modified by chemical treatments. Pre-treatments with radio-protecting agents have given contradictory results but this appears to be largely attributable to the different germ cell stages tested and dependent upon the level of radiation damage induced. Pre-treatments which enhance the yield of genetic damage have been reported although, as yet, no tests have been conducted with radio-sensitizers. Another form of interaction between chemicals and radiation is specifically found with spermatogonial stem cells. Chemicals that kill cells can, by population depletion, substantially and predictably modify the genetic response to subsequent radiation exposure over a period of several days, or even weeks. Enhancement and reduction in the genetic yield can be attained, dependent upon the interval between treatments, with the modification also varying with the type of genetic damage scored. Post-treatment with one chemical (TEM) has been shown to reduce the genetic response to radiation exposure. (author)

  3. Chemical Conversion of Human Fibroblasts into Functional Schwann Cells

    Directory of Open Access Journals (Sweden)

    Eva C. Thoma

    2014-10-01

    Full Text Available Direct transdifferentiation of somatic cells is a promising approach to obtain patient-specific cells for numerous applications. However, conversion across germ-layer borders often requires ectopic gene expression with unpredictable side effects. Here, we present a gene-free approach that allows efficient conversion of human fibroblasts via a transient progenitor stage into Schwann cells, the major glial cell type of peripheral nerves. Using a multikinase inhibitor, we transdifferentiated fibroblasts into transient neural precursors that were subsequently further differentiated into Schwann cells. The resulting induced Schwann cells (iSCs expressed numerous Schwann cell-specific proteins and displayed neurosupportive and myelination capacity in vitro. Thus, we established a strategy to obtain mature Schwann cells from human postnatal fibroblasts under chemically defined conditions without the introduction of ectopic genes.

  4. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  5. Product quality considerations for mammalian cell culture process development and manufacturing.

    Science.gov (United States)

    Gramer, Michael J

    2014-01-01

    The manufacturing of a biologic drug from mammalian cells results in not a single substance, but an array of product isoforms, also known as variants. These isoforms arise due to intracellular or extracellular events as a result of biological or chemical modification. The most common examples related to biomanufacturing include amino acid modifications (glycosylation, isomerization, oxidation, adduct formation, pyroglutamate formation, phosphorylation, sulfation, amidation), amino acid sequence variants (genetic mutations, amino acid misincorporation, N- and C-terminal heterogeneity, clipping), and higher-order structure modifications (misfolding, aggregation, disulfide pairing). Process-related impurities (HCP, DNA, media components, viral particles) are also important quality attributes related to product safety. The observed ranges associated with each quality attribute define the product quality profile. A biologic drug must have a correct and consistent quality profile throughout clinical development and scale-up to commercial production to ensure product safety and efficacy. In general, the upstream process (cell culture) defines the quality of product-related substances, whereas the downstream process (purification) defines the residual level of process- and product-related impurities. The purpose of this chapter is to review the impact of the cell culture process on product quality. Emphasis is placed on studies with industrial significance and where the direct mechanism of product quality impact was determined. Where possible, recommendations for maintaining consistent or improved quality are provided.

  6. Hierarchical optimal control of large-scale nonlinear chemical processes.

    Science.gov (United States)

    Ramezani, Mohammad Hossein; Sadati, Nasser

    2009-01-01

    In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.

  7. Static analysis of the thermochemical hydrogen production IS process for assessment of the operation parameters and the chemical properties

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Onuki, Kaoru; Nomura, Mikihiro; Nakao, Shin-ichi

    2006-01-01

    A sensitivity analysis of the operation parameters and the chemical properties in the thermochemical hydrogen production IS process (iodine-sulfur process) was carried out for a static flow sheet. These parameters were evaluated by hydrogen production thermal efficiency, the mass flow rate or heat exchange based on the heat/mass balance. The most important parameters were the concentration of HI after electro-electrodialysis (EED) and the apparent transport number of protons of the cation exchange membrane in the EED cell. HI concentration operation should be operated carefully because the parameters for optimum thermal efficiency and for the optimum flow rate and heat exchange were different. For the chemical properties, composition at the inlet of the HI decomposition procedure and HI x pseudo-azeotropic composition had great effects. The HI concentration after the EED should be optimized for each composition. The order of priority for the assessment of the operation parameters and chemical properties was determined by the evaluation. (author)

  8. Enrichment of 15N and 10B isotopes by chemical exchange process

    International Nuclear Information System (INIS)

    D'Souza, A.B.; Sonwalkar, A.S.; Subrahmanyam, B.V.; Valladares, B.A.

    1994-01-01

    Many processes are available for separation of stable isotopes like distillation, chemical exchange, thermal diffusion, gaseous diffusion, centrifuge etc. Chemical exchange process is eminently suitable for separation of isotopes of light elements. Work done on separation and enrichment of two of the stable isotopes viz. 15 N and 10 B in Chemical Engineering Division is presented. 15 N is widely used as a tracer in agricultural research and 10 B is used in nuclear industry as control rod material, soluble reactor poison, neutron detector etc. The work on 15 N isotope resulted in a pilot plant, which was the only source of this material in the country for many years and later it was translated into a production plant as M/s. RCF Ltd. The work done on the ion-exchange process for enrichment of 10 B isotope which is basically a chemical exchange process, is now being updated into a pilot plant to produce enriched 10 B to be used as soluble reactor poison. (author)

  9. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    Science.gov (United States)

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers.

  10. Chemical communication between synthetic and natural cells: a possible experimental design.

    Directory of Open Access Journals (Sweden)

    Livia Leoni

    2013-09-01

    Full Text Available The bottom-up construction of synthetic cells is one of the most intriguing and interesting research arenas in synthetic biology. Synthetic cells are built by encapsulating biomolecules inside lipid vesicles (liposomes, allowing the synthesis of one or more functional proteins. Thanks to the in situ synthesized proteins, synthetic cells become able to perform several biomolecular functions, which can be exploited for a large variety of applications. This paves the way to several advanced uses of synthetic cells in basic science and biotechnology, thanks to their versatility, modularity, biocompatibility, and programmability. In the previous WIVACE (2012 we presented the state-of-the-art of semi-synthetic minimal cell (SSMC technology and introduced, for the first time, the idea of chemical communication between synthetic cells and natural cells. The development of a proper synthetic communication protocol should be seen as a tool for the nascent field of bio/chemical-based Information and Communication Technologies (bio-chem-ICTs and ultimately aimed at building soft-wet-micro-robots. In this contribution (WIVACE, 2013 we present a blueprint for realizing this project, and show some preliminary experimental results. We firstly discuss how our research goal (based on the natural capabilities of biological systems to manipulate chemical signals finds a proper place in the current scientific and technological contexts. Then, we shortly comment on the experimental approaches from the viewpoints of (i synthetic cell construction, and (ii bioengineering of microorganisms, providing up-to-date results from our laboratory. Finally, we shortly discuss how autopoiesis can be used as a theoretical framework for defining synthetic minimal life, minimal cognition, and as bridge between synthetic biology and artificial intelligence.

  11. Integration of solid oxide fuel cell (SOFC) and chemical looping combustion (CLC) for ultra-high efficiency power generation and CO2 production

    NARCIS (Netherlands)

    Spallina, Vincenzo; Nocerino, Pasquale; Romano, Matteo C.; van Sint Annaland, Martin; Campanari, Stefano; Gallucci, Fausto

    2018-01-01

    This work presents a thermodynamic analysis of the integration of solid oxide fuel cells (SOFCs) with chemical looping combustion (CLC) in natural gas power plants. The fundamental idea of the proposed process integration is to use a dual fluidized-bed CLC process to complete the oxidation of the

  12. DESIGN, SYNTHESIS, AND APPLICATION OF THE TRIMETHOPRIM-BASED CHEMICAL TAG FOR LIVE CELL IMAGING

    Science.gov (United States)

    Jing, Chaoran; Cornish, Virginia W.

    2013-01-01

    Over the past decade chemical tags have been developed to complement the use of fluorescent proteins in live cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon-output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E.coli dihydrofolatereductase and the antibiotic trimethoprim and subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live cell imaging. Alternative protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. PMID:23839994

  13. Immunogenicity of guinea pig cells transformed in culture by chemical carcinogens.

    Science.gov (United States)

    Ohanian, S H; McCabe, R P; Evans, C H

    1981-12-01

    The immunogenicity of inbred strain 2/N guinea pig fibroblasts transformed to the malignant state in vitro by chemical carcinogens was evaluated with the use of a variety of in vivo and in vitro methods including delayed-type hypersensitivity skin and tumor transplantation tests and analysis of antibody production by immunofluorescence, complement fixation, and staphylococcal protein A binding tests. Neoplastic transformation was induced by direct treatment of cells in culture with benzo[a]pyrene, 3-methylcholanthrene, or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or by the host-mediated method by which fetuses were exposed to diethylnitrosamine or MNNG in vivo prior to cell culture. Rabbits and syngeneic guinea pigs were inoculated with unirradiated and X-irradiated clonally derived cells. Delayed hypersensitivity skin reactions to immunizing or other cells were equivalent in immunized or control guinea pigs, and no protection to tumor outgrowth from a challenge inoculum of immunizing cells was observed. Antibody activity induced in the sera of immunized guinea pigs was cross-reactive and removed by absorption with nontumorigenic cells. Rabbit antisera after absorption with fetal guinea pig cells were nonreactive with the specific immunizing or other culture cells. Chemical carcinogen-induced neoplastic transformation of guinea pig cells can, therefore, occur without formation of detectable, individually distinct cell surface tumor-specific neoantigens.

  14. Immunogenicity of guinea pig cells transformed in culture by chemical carcinogens

    International Nuclear Information System (INIS)

    Ohanian, S.H.; McCabe, R.P.; Evans, C.H.

    1981-01-01

    The immunogenicity of inbred strain 2/N guinea pig fibroblasts transformed to the malignant state in vitro by chemical carcinogens was evaluated with the use of a variety of in vivo and in vitro methods including delayed-type hypersensitivity skin and tumor transplantation tests and analysis of antibody production by immunofluorescence, complement fixation, and staphylococcal protein A binding tests. Neoplastic transformation was induced by direct treatment of cells in culture with benzo[a]pyrene, 3-methylcholanthrene, or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or by the host-mediated method by which fetuses were exposed to diethylnitrosamine or MNNG in vivo prior to cell culture. Rabbits and syngeneic guinea pigs were inoculated with unirradiated and X-irradiated clonally derived cells. Delayed hypersensitivity skin reactions to immunizing or other cells were equivalent in immunized or control guinea pigs, and no protection to tumor outgrowth from a challenge inoculum of immunizing cells was observed. Antibody activity induced in the sera of immunized guinea pigs was cross-reactive and removed by absorption with nontumorigenic cells. Rabbit anitsera after absorption with fetal guinea pig cells were nonreactive with the specific immunizing or other cultured cells. Chemical carcinogen-induced neoplastic transformation of guinea pig cells can, therefore, occur without formation of detectable, individually distinct cell surface tumor-specific neoantigens

  15. Oocyte toxicity: female germ-cell loss from radiation and chemical exposures

    International Nuclear Information System (INIS)

    Dobson, R.L.

    1984-01-01

    In some mammals, female germ cells are extraordinarily sensitive to killing by exposure to ionizing radiation, especially during development. Immature oocytes, which constitute the lifetime germ-cell pool of the female, have an LD 50 in juvenile mice of only 6 rad (compared with typical LD 50 s of 100-300 rad for most other cell types studied). Essentially, the entire germ-cell supply in female squirrel monkeys is destroyed prenatally by exposure of only 0.7 rad/day. Severe but lesser destruction has been found in other species. However, evidence suggests (though not ruled out for all developmental stages) that unusually high sensitivity probably does not occur in the human female. Germ cells can also be killed by certain chemicals, and similarities exist between chemical and radiation effects. More than 75 compounds have been quantitatively studied in mice, with determination of OTI values (OTI = oocyte toxicity index = mouse LD 50 /oocyte LD 50 ) to measure the degree of preferential oocyte killing. High sensitivity in mice does not mean necessarily high sensitivity in women. Of special interest is the recent discovery that the lethal target in the extremely sensitive mouse immature oocyte is probably the plasma membrane, not DNA. Since mouse data form the main basis from which human genetic hazard (for both radiation and chemicals) is estimated, this has important implications for the determination of genetic risk in women

  16. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    Science.gov (United States)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  17. Chemical Processing Department monthly report for February 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-03-21

    This report from the Chemical Processing Department at HAPO, discusses the following: Production operation, purex operation, redox operation, finished products operation, power and general maintenance operation, financial operation, facilities engineering operation, research and engineering operation, and employee relations operation.

  18. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    Science.gov (United States)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  19. Closed-looped in situ nano processing on a culturing cell using an inverted electron beam lithography system

    International Nuclear Information System (INIS)

    Hoshino, Takayuki; Mabuchi, Kunihiko

    2013-01-01

    Highlights: ► An electron beam lithography (EBL) was used as an in situ nano processing for a living cell. ► A synchronized optics was containing an inverted EBL and an optical microscope. ► This system visualized real-time images of the EB-induced nano processing. ► We demonstrated the nano processing for a culturing cell with 200–300 nm resolution. ► Our system would be able to provide high resolution display of virtual environments. -- Abstract: The beam profile of an electron beam (EB) can be focused onto less than a nanometer spot and scanned over a wide field with extremely high speed sweeping. Thus, EB is employed for nano scale lithography in applied physics research studies and in fabrication of semiconductors. We applied a scanning EB as a control system for a living cell membrane which is representative of large scale complex systems containing nanometer size components. First, we designed the opposed co-axial dual optics containing inverted electron beam lithography (I-EBL) system and a fluorescent optical microscope. This system could provide in situ nano processing for a culturing living cell on a 100-nm-thick SiN nanomembrane, which was placed between the I-EBL and the fluorescent optical microscope. Then we demonstrated the EB-induced chemical direct nano processing for a culturing cell with hundreds of nanometer resolution and visualized real-time images of the scanning spot of the EB-induced luminescent emission and chemical processing using a high sensitive camera mounted on the optical microscope. We concluded that our closed-loop in situ nano processing would be able to provide a nanometer resolution display of virtual molecule environments to study functional changes of bio-molecule systems

  20. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

    Directory of Open Access Journals (Sweden)

    Rezende Camila

    2011-11-01

    Full Text Available Abstract Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process, the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between

  1. Chemical Processing Department monthly report for September 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-10-21

    This report, from the Chemical Processing Department at HAPO for September 1963, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations, facilities engineering; research; employee relations; weapons manufacturing operation; and power and crafts operation.

  2. Influence of chemical inhibitors on cell recovery after exposure to different LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Evstratova, Ekaterina S.; Petin, Vladislav G. [Medical Radiological Research Center, Obninsk (Russian Federation); Kim, Jin Kyu; KIm, Jin Hong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-12-15

    Chemical radiosensitizers are often used to increase cell radiosensitivity. It is known that the ability of chemical drugs to increase cell radiosensitivity is related with inhibition of cell recovery from damage induced by ionizing radiation. However, there are little comparative investigations of cell sensitivity modification after exposure to radiation with high linear energy transfer (LET). Therefore, we studied the anticancer drugs cisplatin and endoxan and their impact on the ability of yeast cells to recover after cell exposure to radiations with different LET. The ability of cell recovery from radiation damage was less effective after exposure to high-LET radiation, when cells were irradiated without drug, with the increase in cisplatin concentration resulting in the disappearance of this difference. The increase of cisplatin concentration results in progressive increase in the fraction of irreversible damage independently of radiation quality.

  3. Influence of chemical inhibitors on cell recovery after exposure to different LET radiation

    International Nuclear Information System (INIS)

    Evstratova, Ekaterina S.; Petin, Vladislav G.; Kim, Jin Kyu; KIm, Jin Hong

    2016-01-01

    Chemical radiosensitizers are often used to increase cell radiosensitivity. It is known that the ability of chemical drugs to increase cell radiosensitivity is related with inhibition of cell recovery from damage induced by ionizing radiation. However, there are little comparative investigations of cell sensitivity modification after exposure to radiation with high linear energy transfer (LET). Therefore, we studied the anticancer drugs cisplatin and endoxan and their impact on the ability of yeast cells to recover after cell exposure to radiations with different LET. The ability of cell recovery from radiation damage was less effective after exposure to high-LET radiation, when cells were irradiated without drug, with the increase in cisplatin concentration resulting in the disappearance of this difference. The increase of cisplatin concentration results in progressive increase in the fraction of irreversible damage independently of radiation quality.

  4. In vitro test systems for the identification of gentoxic chemicals in the human environment: The proof of DNA repair synthesis in liver cells

    International Nuclear Information System (INIS)

    Rossberger, S.

    1986-01-01

    This work examines the possibilities of proving a DNA repair by gentoxic chemicals in primary hepatozytes and 2sFou liver cells of rates. Two different processes used for the in vitro mutagenic testing of alien substances for determining the DNA repair synthesis in primary hepatozytes, in the autoradiographic method and the gradient centrifuging method, are compared regarding their reliability and sensitivity. The rat hepatom cell line 2sFou was examined for its suitability for proving chemically induced DNA repair, instead of primary hepatozytes. (orig./MG) [de

  5. Determinants of job stress in chemical process industry: A factor analysis approach.

    Science.gov (United States)

    Menon, Balagopal G; Praveensal, C J; Madhu, G

    2015-01-01

    Job stress is one of the active research domains in industrial safety research. The job stress can result in accidents and health related issues in workers in chemical process industries. Hence it is important to measure the level of job stress in workers so as to mitigate the same to avoid the worker's safety related problems in the industries. The objective of this study is to determine the job stress factors in the chemical process industry in Kerala state, India. This study also aims to propose a comprehensive model and an instrument framework for measuring job stress levels in the chemical process industries in Kerala, India. The data is collected through a questionnaire survey conducted in chemical process industries in Kerala. The collected data out of 1197 surveys is subjected to principal component and confirmatory factor analysis to develop the job stress factor structure. The factor analysis revealed 8 factors that influence the job stress in process industries. It is also found that the job stress in employees is most influenced by role ambiguity and the least by work environment. The study has developed an instrument framework towards measuring job stress utilizing exploratory factor analysis and structural equation modeling.

  6. A roadmap for the synthesis of separation networks for the recovery of bio-based chemicals: Matching biological and process feasibility.

    Science.gov (United States)

    Yenkie, Kirti M; Wu, WenZhao; Clark, Ryan L; Pfleger, Brian F; Root, Thatcher W; Maravelias, Christos T

    2016-12-01

    Microbial conversion of renewable feedstocks to high-value chemicals is an attractive alternative to current petrochemical processes because it offers the potential to reduce net CO 2 emissions and integrate with bioremediation objectives. Microbes have been genetically engineered to produce a growing number of high-value chemicals in sufficient titer, rate, and yield from renewable feedstocks. However, high-yield bioconversion is only one aspect of an economically viable process. Separation of biologically synthesized chemicals from process streams is a major challenge that can contribute to >70% of the total production costs. Thus, process feasibility is dependent upon the efficient selection of separation technologies. This selection is dependent on upstream processing or biological parameters, such as microbial species, product titer and yield, and localization. Our goal is to present a roadmap for selection of appropriate technologies and generation of separation schemes for efficient recovery of bio-based chemicals by utilizing information from upstream processing, separation science and commercial requirements. To achieve this, we use a separation system comprising of three stages: (I) cell and product isolation, (II) product concentration, and (III) product purification and refinement. In each stage, we review the technology alternatives available for different tasks in terms of separation principles, important operating conditions, performance parameters, advantages and disadvantages. We generate separation schemes based on product localization and its solubility in water, the two most distinguishing properties. Subsequently, we present ideas for simplification of these schemes based on additional properties, such as physical state, density, volatility, and intended use. This simplification selectively narrows down the technology options and can be used for systematic process synthesis and optimal recovery of bio-based chemicals. Copyright © 2016 Elsevier

  7. Secondary cleanup of Idaho Chemical Processing Plant solvent

    International Nuclear Information System (INIS)

    Mailen, J.C.

    1985-01-01

    Solvent from the Idaho Chemical Processing Plant (ICPP) (operated by Westinghouse Idaho Nuclear Company, Inc.) has been tested to determine the ability of activated alumina to remove secondary degradation products - those degradation products which are not removed by scrubbing with sodium carbonate

  8. [Revealing the chemical changes of tea cell wall induced by anthracnose with confocal Raman microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Hu, Xiao-qian; Lou, Bing-gan; He, Yong

    2014-06-01

    Healthy tea and tea infected by anthracnose were first studied by confocal Raman microscopy to illustrate chemical changes of cell wall in the present paper. Firstly, Raman spectra of both healthy and infected sample tissues were collected with spatial resolution at micron-level, and ultrastructure of healthy and infected tea cells was got from scanning electron microscope. These results showed that there were significant changes in Raman shift and Raman intensity between healthy and infected cell walls, indicating that great differences occurred in chemical compositions of cell walls between healthy and infected samples. In details, intensities at many Raman bands which were closely associated with cellulose, pectin, esters were reduced after infection, revealing that the content of chemical compounds such as cellulose, pectin, esters was decreased after infection. Subsequently, chemical imaging of both healthy and infected tea cell walls were realized based on Raman fingerprint spectra of cellulose and microscopic spatial structure. It was found that not only the content of cellulose was reduced greatly after infection, but also the ordered structure of cellulose was destroyed by anthracnose infection. Thus, confocal Raman microscopy was shown to be a powerful tool to detect the chemical changes in cell wall of tea caused by anthracnose without any chemical treatment or staining. This research firstly applied confocal Raman microscopy in phytopathology for the study of interactive relationship between host and pathogen, and it will also open a new way for intensive study of host-pathogen at cellular level.

  9. Sustainable chemical processing and energy-carbon dioxide management: review of challenges and opportunities

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Vooradi, Ramsagar; Bertran, Maria-Ona

    2018-01-01

    This paper presents a brief review of the available energy sources for consumption, their effects in terms of CO2-emission and its management, and sustainable chemical processing where energy-consumption, CO2-emission, as well as economics and environmental impacts are considered. Not all available...... energy sources are being utilized efficiently, while, the energy source causing the largest emission of CO2 is being used in the largest amount. The CO2 management is therefore looking at "curing" the problem rather than "preventing" it. Examples highlighting the synthesis, design and analysis...... of sustainable chemical processing in the utilization of biomass-based energy-chemicals production, carbon-capture and utilization with zero or negative CO2-emission to produce value added chemicals as well as retrofit design of energy intensive chemical processes with significant reduction of energy consumption...

  10. Enhanced process understanding and multivariate prediction of the relationship between cell culture process and monoclonal antibody quality.

    Science.gov (United States)

    Sokolov, Michael; Ritscher, Jonathan; MacKinnon, Nicola; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo; Butté, Alessandro

    2017-09-01

    This work investigates the insights and understanding which can be deduced from predictive process models for the product quality of a monoclonal antibody based on designed high-throughput cell culture experiments performed at milliliter (ambr-15 ® ) scale. The investigated process conditions include various media supplements as well as pH and temperature shifts applied during the process. First, principal component analysis (PCA) is used to show the strong correlation characteristics among the product quality attributes including aggregates, fragments, charge variants, and glycans. Then, partial least square regression (PLS1 and PLS2) is applied to predict the product quality variables based on process information (one by one or simultaneously). The comparison of those two modeling techniques shows that a single (PLS2) model is capable of revealing the interrelationship of the process characteristics to the large set product quality variables. In order to show the dynamic evolution of the process predictability separate models are defined at different time points showing that several product quality attributes are mainly driven by the media composition and, hence, can be decently predicted from early on in the process, while others are strongly affected by process parameter changes during the process. Finally, by coupling the PLS2 models with a genetic algorithm first the model performance can be further improved and, most importantly, the interpretation of the large-dimensioned process-product-interrelationship can be significantly simplified. The generally applicable toolset presented in this case study provides a solid basis for decision making and process optimization throughout process development. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1368-1380, 2017. © 2017 American Institute of Chemical Engineers.

  11. Modelling Dietary Exposure to Chemical Components in Heat-Processed Meats

    DEFF Research Database (Denmark)

    Georgiadis, Stylianos; Jakobsen, Lea Sletting; Nielsen, Bo Friis

    Several chemical compounds that potentially increase the risk of developing cancer in humans are formed during heat processing of meat. Estimating the overall health impact of these compounds in the population requires accurate estimation of the exposure to the chemicals, as well as the probabili.......g. the Poisson-Lognormal approach, are promising tools to address this obstacle. The exposure estimates can then be applied to dose-response models to quantify the cancer risk.......Several chemical compounds that potentially increase the risk of developing cancer in humans are formed during heat processing of meat. Estimating the overall health impact of these compounds in the population requires accurate estimation of the exposure to the chemicals, as well as the probability...... that different levels of exposure result in disease. The overall goal of this study was to evaluate the impact of variability of exposure patterns and uncertainty of exposure data in burden of disease estimates. We focus on the first phase of burden of disease modelling, i.e. the estimation of exposure...

  12. Historical events of the Chemical Processing Department

    Energy Technology Data Exchange (ETDEWEB)

    Lane, W.A.

    1965-11-12

    The purpose of this report is to summarize and document the significant historical events pertinent to the operation of the Chemical Processing facilities at Hanford. The report covers, in chronological order, the major construction activities and historical events from 1944 to September, 1965. Also included are the production records achieved and a history of the department`s unit cost performance.

  13. Models and Modelling Tools for Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    2016-01-01

    The design, development and reliability of a chemical product and the process to manufacture it, need to be consistent with the end-use characteristics of the desired product. One of the common ways to match the desired product-process characteristics is through trial and error based experiments......-based framework is that in the design, development and/or manufacturing of a chemical product-process, the knowledge of the applied phenomena together with the product-process design details can be provided with diverse degrees of abstractions and details. This would allow the experimental resources...... to be employed for validation and fine-tuning of the solutions from the model-based framework, thereby, removing the need for trial and error experimental steps. Also, questions related to economic feasibility, operability and sustainability, among others, can be considered in the early stages of design. However...

  14. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik

    2010-01-01

    Reaction Engineering. In order to incorporate reactor design into process design in a meaningful way, the teachers of the respective courses need to collaborate (Standard 9 – Enhancement of Faculty CDIO skills). The students also see that different components of the chemical engineering curriculum relate......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...... of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B...

  15. Chemical and physicochemical characteristics changes during passion fruit juice processing

    Directory of Open Access Journals (Sweden)

    Aline Gurgel Fernandes

    2011-09-01

    Full Text Available Passion fruit is widely consumed due to its pleasant flavour and aroma acidity, and it is considered very important a source of minerals and vitamins. It is used in many products such as ice-cream, mousses and, especially, juices. However, the processing of passion fruit juice may modify the composition and biodisponibility of the bioactive compounds. Investigations of the effects of processing on nutritional components in tropical juices are scarce. Frequently, only losses of vitamin C are evaluated. The objective of this paper is to investigate how some operations of passion fruit juice processing (formulation/homogeneization/thermal treatment affect this product's chemical and physicochemical characteristics. The results showed that the chemical and physicochemical characteristics are little affected by the processing although a reduction in vitamin C contents and anthocyanin, large quantities of carotenoids was verified even after the pasteurization stage.

  16. Methods and tools for sustainable chemical process design

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina; Chairakwongsa, Siwanat; Quaglia, Alberto

    2015-01-01

    As the pressure on chemical and biochemical processes to achieve a more sustainable performance increases, the need to define a systematic and holistic way to accomplish this is becoming more urgent. In this chapter, a multilevel computer-aided framework for systematic design of more sustainable...

  17. MIMO Self-Tuning Control of Chemical Process Operation

    DEFF Research Database (Denmark)

    Hallager, L.; Jørgensen, S. B.; Goldschmidt, L.

    1984-01-01

    The problem of selecting a feasible model structure for a MIMO self-tuning controller (MIMOSC) is addressed. The dependency of the necessary structure complexity in relation to the specific process operating point is investigated. Experimental results from a fixed-bed chemical reactor are used...

  18. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions.

    Science.gov (United States)

    Slamecka, Jaroslav; Salimova, Lilia; McClellan, Steven; van Kelle, Mathieu; Kehl, Debora; Laurini, Javier; Cinelli, Paolo; Owen, Laurie; Hoerstrup, Simon P; Weber, Benedikt

    2016-01-01

    Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.

  19. Comprehensive Mass Analysis for Chemical Processes, a Case Study on L-Dopa Manufacture

    Science.gov (United States)

    To evaluate the “greenness” of chemical processes in route selection and process development, we propose a comprehensive mass analysis to inform the stakeholders from different fields. This is carried out by characterizing the mass intensity for each contributing chemical or wast...

  20. Nano-hydroxyapatite colloid suspension coated on chemically modified porous silicon by cathodic bias: a suitable surface for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Alejandra [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Gonzalez, Jerson [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Garcia-Pineres, Alfonso [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Investigacion en Biologia Celular y Molecular (CIBCM), Universidad de Costa Rica, 2060 (Costa Rica); Montero, Mavis L. [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Centro de Ciencia e Ingenieria en Materiales (CICIMA), Universidad de Costa Rica, 2060 (Costa Rica)

    2011-06-15

    The properties of porous silicon make it an interesting material for biological applications. However, porous silicon is not an appropriate surface for cell growth. Surface modification is an alternative that could afford a bioactive material. In this work, we report a method to yield materials by modification of the porous silicon surface with hydroxyapatite of nanometric dimensions, produced using an electrochemical process and coated on macroporous silicon substrates by cathodic bias. The chemical nature of the calcium phosphate deposited on the substrates after the experimental process and the amount of cell growth on these surfaces were characterized. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Subfemtosecond directional control of chemical processes in molecules

    Science.gov (United States)

    Alnaser, Ali S.; Litvinyuk, Igor V.

    2017-02-01

    Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.

  2. Physico-chemical, functional and processing attributes of some ...

    African Journals Online (AJOL)

    A study was generated from six commercial potato varieties and studied for their physical, chemical, functional and processing attributes. Lady Rosetta followed by Hermes was the most appreciable varieties concerning their physical attributes. A positive correlation (R = 0.765) existed between tuber firmness and specific ...

  3. A document processing pipeline for annotating chemical entities in scientific documents.

    Science.gov (United States)

    Campos, David; Matos, Sérgio; Oliveira, José L

    2015-01-01

    The recognition of drugs and chemical entities in text is a very important task within the field of biomedical information extraction, given the rapid growth in the amount of published texts (scientific papers, patents, patient records) and the relevance of these and other related concepts. If done effectively, this could allow exploiting such textual resources to automatically extract or infer relevant information, such as drug profiles, relations and similarities between drugs, or associations between drugs and potential drug targets. The objective of this work was to develop and validate a document processing and information extraction pipeline for the identification of chemical entity mentions in text. We used the BioCreative IV CHEMDNER task data to train and evaluate a machine-learning based entity recognition system. Using a combination of two conditional random field models, a selected set of features, and a post-processing stage, we achieved F-measure results of 87.48% in the chemical entity mention recognition task and 87.75% in the chemical document indexing task. We present a machine learning-based solution for automatic recognition of chemical and drug names in scientific documents. The proposed approach applies a rich feature set, including linguistic, orthographic, morphological, dictionary matching and local context features. Post-processing modules are also integrated, performing parentheses correction, abbreviation resolution and filtering erroneous mentions using an exclusion list derived from the training data. The developed methods were implemented as a document annotation tool and web service, freely available at http://bioinformatics.ua.pt/becas-chemicals/.

  4. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping

    2014-05-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve natural minerals rich in magnesium/calcium silicates (serpentine), and the alkali generated by the same process was used to absorb CO2 and precipitate magnesium/calcium carbonates. The concentrations of Mg2+ and Ca2+ dissolved from serpentine increased 20 and 145 times by using the acid solution. Under optimal conditions, 24mg of CO2 was absorbed into the alkaline solution and 13mg of CO2 was precipitated as magnesium/calcium carbonates over a fed-batch cycle (24h). Additionally, the MEDCC removed 94% of the COD (initially 822mg/L) and achieved 22% desalination (initially 35g/L NaCl). These results demonstrate the viability of this process for effective CO2 sequestration using renewable organic matter and natural minerals. © 2014 Elsevier Ltd.

  5. Soft X-ray induced chemical modification of polysaccharides in vascular plant cell walls

    International Nuclear Information System (INIS)

    Cody, George D.; Brandes, Jay; Jacobsen, Chris; Wirick, Susan

    2009-01-01

    Scanning transmission X-ray microscopy and micro carbon X-ray Absorption Near Edge Spectroscopy (C-XANES) can provide quantitative information regarding the distribution of the biopolymers cellulose, hemicellulose, and lignin in vascular plant cell walls. In the case of angiosperms, flowering plants, C-XANES may also be able to distinguish variations in lignin monomer distributions throughout the cell wall. Polysaccharides are susceptible to soft X-ray irradiation induced chemical transformations that may complicate spectral analysis. The stability of a model polysaccharide, cellulose acetate, to variable doses of soft X-rays under conditions optimized for high quality C-XANES spectroscopy was investigated. The primary chemical effect of soft X-ray irradiation on cellulose acetate involves mass loss coincident with de-acetylation. A lesser amount of vinyl ketone formation also occurs. Reduction in irradiation dose via defocusing does enable high quality pristine spectra to be obtained. Radiation induced chemical modification studies of oak cell wall reveals that cellulose and hemicellulose are less labile to chemical modification than cellulose acetate. Strategies for obtaining pristine C-XANES spectra of polysaccharides are presented.

  6. Sustainable Chemical Processes and Products. New Design Methodology and Design Tools

    NARCIS (Netherlands)

    Korevaar, G.

    2004-01-01

    The current chemical industry is not sustainable, which leads to the fact that innovation of chemical processes and products is too often hazardous for society in general and the environment in particular. It really is a challenge to implement sustainability considerations in the design activities

  7. Detoxifying of high strength textile effluent through chemical and bio-oxidation processes.

    Science.gov (United States)

    Manekar, Pravin; Patkar, Guarav; Aswale, Pawan; Mahure, Manisha; Nandy, Tapas

    2014-04-01

    Small-scale textile industries (SSTIs) in India struggled for the economic and environmental race. A full-scale common treatment plant (CETP) working on the principle of destabilising negative charge colloidal particles and bio-oxidation of dissolved organic failed to comply with Inland Surface Waters (ISW) standards. Thus, presence of intense colour and organics with elevated temperature inhibited the process stability. Bench scale treatability studies were conducted on chemical and biological processes for its full-scale apps to detoxify a high strength textile process effluent. Colour, SS and COD removals from the optimised chemical process were 88%, 70% and 40%, respectively. Heterotrophic bacteria oxidised COD and BOD more than 84% and 90% at a loading rate 0.0108kgm(-3)d(-1) at 3h HRT. The combined chemical and bio-oxidation processes showed a great promise for detoxifying the toxic process effluent, and implemented in full-scale CETP. The post-assessment of the CETP resulted in detoxify the toxic effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  9. Process cost and facility considerations in the selection of primary cell culture clarification technology.

    Science.gov (United States)

    Felo, Michael; Christensen, Brandon; Higgins, John

    2013-01-01

    The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes 5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.

  10. Model-Based Integrated Process Design and Controller Design of Chemical Processes

    DEFF Research Database (Denmark)

    Abd Hamid, Mohd Kamaruddin Bin

    that is typically formulated as a mathematical programming (optimization with constraints) problem is solved by the so-called reverse approach by decomposing it into four sequential hierarchical sub-problems: (i) pre-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection......This thesis describes the development and application of a new systematic modelbased methodology for performing integrated process design and controller design (IPDC) of chemical processes. The new methodology is simple to apply, easy to visualize and efficient to solve. Here, the IPDC problem...... are ordered according to the defined performance criteria (objective function). The final selected design is then verified through rigorous simulation. In the pre-analysis sub-problem, the concepts of attainable region and driving force are used to locate the optimal process-controller design solution...

  11. Status summary of chemical processing development in plutonium-238 supply program

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wham, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DePaoli, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sherman, Steven R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    This document summarizes the status of development of chemical processing in the Plutonium-238 Supply Program (PSP) near the end of Demonstration 1. The objective of the PSP is “to develop, demonstrate, and document a production process that meets program objectives and to prepare for its operation” (Frazier et al. 2016). Success in the effort includes establishing capability using the current infrastructure to produce Np targets for irradiation in Department of Energy research reactors, chemically processing the irradiated targets to separate and purify the produced Pu and transferring the PuO2 product to Los Alamos National Laboratory (LANL) at an average rate of 1.5 kg/y.

  12. Influence of chemical processing on the imaging properties of microlenses

    International Nuclear Information System (INIS)

    Vasiljevic, Darko; Muric, Branka; Pantelic, Dejan; Panic, Bratimir

    2009-01-01

    Microlenses are produced by irradiation of a layer of tot'hema and eosin sensitized gelatin (TESG) by using a laser beam (Nd:YAG 2nd harmonic; 532 nm). All the microlenses obtained are concave with a parabolic profile. After the production, the microlenses are chemically processed with various concentrations of alum. The following imaging properties of microlenses were calculated and analyzed: the root mean square (rms) wavefront aberration, the geometric encircled energy and the spot diagram. The microlenses with higher concentrations of alum in solution had a greater effective focal length and better image quality. The microlenses chemically processed with 10% alum solution had near-diffraction-limited performance.

  13. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Gooderham Nigel J

    2005-08-01

    Full Text Available Abstract Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent, cryptolepine (CLP, a cytotoxic alkaloid, benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular

  14. Three-Dimensional Optical Trapping for Cell Isolation Using Tapered Fiber Probe by Dynamic Chemical Etching

    International Nuclear Information System (INIS)

    Taguchi, K; Okada, J; Nomura, Y; Tamura, K

    2012-01-01

    In this paper, chemically etched fiber probe was proposed for laser trapping and manipulation of cells. We fabricated tapered fiber probe by dynamic chemical etching technique. Three-Dimensional optical trap of a yeast cell dispersed in water solution could be formed by the fiber tip with 17deg tip. Optical forces were sufficient to move the yeast cell for trapping and manipulation. From these experimental results, it was found that our proposed tapered fiber tip was a promising tool for cell isolation.

  15. Stochastic processes in chemical physics

    CERN Document Server

    Shuler, K E

    2009-01-01

    The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

  16. Security risk assessment and protection in the chemical and process industry

    OpenAIRE

    Reniers, Genserik; van Lerberghe, Paul; van Gulijk, Coen

    2014-01-01

    This article describes a security risk assessment and protection methodology that was developed for use in the chemical- and process industry in Belgium. The approach of the method follows a risk-based approach that follows desing principles for chemical safety. That approach is beneficial for workers in the chemical industry because they recognize the steps in this model from familiar safety models .The model combines the rings-of-protection approach with generic security practices including...

  17. Synchronization and Arrest of the Budding Yeast Cell Cycle Using Chemical and Genetic Methods.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    The cell cycle of budding yeast can be arrested at specific positions by different genetic and chemical methods. These arrests enable study of cell cycle phase-specific phenotypes that would be missed during examination of asynchronous cultures. Some methods for arrest are reversible, with kinetics that enable release of cells back into a synchronous cycling state. Benefits of chemical and genetic methods include scalability across a large range of culture sizes from a few milliliters to many liters, ease of execution, the absence of specific equipment requirements, and synchronization and release of the entire culture. Of note, cell growth and division are decoupled during arrest and block-release experiments. Cells will continue transcription, translation, and accumulation of protein while arrested. If allowed to reenter the cell cycle, cells will do so as a population of mixed, larger-than-normal cells. Despite this important caveat, many aspects of budding yeast physiology are accessible using these simple chemical and genetic tools. Described here are methods for the block and release of cells in G 1 phase and at the M/G 1 transition using α-factor mating pheromone and the temperature-sensitive cdc15-2 allele, respectively, in addition to methods for arresting the cell cycle in early S phase and at G 2 /M by using hydroxyurea and nocodazole, respectively. © 2017 Cold Spring Harbor Laboratory Press.

  18. Application of rat mast cell incubates as a possible short-time test for sensitizing occupational chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Diel, F.; Neidhart, B.; Opree, W.

    1981-08-01

    The direct action of sensitizing occupational chemicals (formaldehyde, phenol, phenylhydrazine, p-aminophenol) on rat mast cells was investigated by determination of histamine using HPLC separation and fluorimetric detection. It turned out that dispersed mast cells from immunized and non-immunized Wistar-rats are more sensitive than small-cut lung tissue slices. Passive cutaneous anaphylaxis was negative after a fortnight sensitizing experiment with the here described occupational chemicals. Short-time tests with rat mast cells reflect anaphylactoid response and are suitable for the screening of sensitizing chemicals.

  19. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    International Nuclear Information System (INIS)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research

  20. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  1. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface.

    Science.gov (United States)

    Lee, Sangmin; Yoon, Hwa In; Na, Jin Hee; Jeon, Sangmin; Lim, Seungho; Koo, Heebeom; Han, Sang-Soo; Kang, Sun-Woong; Park, Soon-Jung; Moon, Sung-Hwan; Park, Jae Hyung; Cho, Yong Woo; Kim, Byung-Soo; Kim, Sang Kyoon; Lee, Taekwan; Kim, Dongkyu; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-09-01

    It is urgently necessary to develop reliable non-invasive stem cell imaging technology for tracking the in vivo fate of transplanted stem cells in living subjects. Herein, we developed a simple and well controlled stem cell imaging method through a combination of metabolic glycoengineering and bioorthogonal copper-free click chemistry. Firstly, the exogenous chemical receptors containing azide (-N 3 ) groups were generated on the surfaces of stem cells through metabolic glycoengineering using metabolic precursor, tetra-acetylated N-azidoacetyl-d-mannosamine(Ac 4 ManNAz). Next, bicyclo[6.1.0]nonyne-modified glycol chitosan nanoparticles (BCN-CNPs) were prepared as imageable nanoparticles to deliver different imaging agents. Cy5.5, iron oxide nanoparticles and gold nanoparticles were conjugated or encapsulated to BCN-CNPs for optical, MR and CT imaging, respectively. These imageable nanoparticles bound chemical receptors on the Ac 4 ManNAz-treated stem cell surface specifically via bioorthogonal copper-free click chemistry. Then they were rapidly taken up by the cell membrane turn-over mechanism resulting in higher endocytic capacity compared non-specific uptake of nanoparticles. During in vivo animal test, BCN-CNP-Cy5.5-labeled stem cells could be continuously tracked by non-invasive optical imaging over 15 days. Furthermore, BCN-CNP-IRON- and BCN-CNP-GOLD-labeled stem cells could be efficiently visualized using in vivo MR and CT imaging demonstrating utility of our stem cell labeling method using chemical receptors. These results conclude that our method based on metabolic glycoengineering and bioorthogonal copper-free click chemistry can stably label stem cells with diverse imageable nanoparticles representing great potential as new stem cell imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A survey of process control computers at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Dahl, C.A.

    1989-01-01

    The Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory is charged with the safe processing of spent nuclear fuel elements for the United States Department of Energy. The ICPP was originally constructed in the late 1950s and used state-of-the-art technology for process control at that time. The state of process control instrumentation at the ICPP has steadily improved to keep pace with emerging technology. Today, the ICPP is a college of emerging computer technology in process control with some systems as simple as standalone measurement computers while others are state-of-the-art distributed control systems controlling the operations in an entire facility within the plant. The ICPP has made maximal use of process computer technology aimed at increasing surety, safety, and efficiency of the process operations. Many benefits have been derived from the use of the computers for minimal costs, including decreased misoperations in the facility, and more benefits are expected in the future

  3. Radiation equivalence of genotoxic chemicals - Validation in cultered mammalian cell lines

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1982-01-01

    Published data on mutations induced by ionizing radiation and 6 monofunctional alkylating agents, namely EMS, MMS, ENNG, MNNG, ENU and MNU, in different cell lines (Chinese hamster ovary, Chinese hamster lung V79, mouse lymphoma L5178 and human cells) were analysed so that radiation-equivalent chemical (REC) values could be calculated. REC values thus obtained for a given alkylating agent with different cell lines fall within a narrow range suggesting its validation in cultured mammalian cell systems including human. (orig.)

  4. Application of nonliner reduction techniques in chemical process modeling: a review

    International Nuclear Information System (INIS)

    Muhaimin, Z; Aziz, N.; Abd Shukor, S.R.

    2006-01-01

    Model reduction techniques have been used widely in engineering fields for electrical, mechanical as well as chemical engineering. The basic idea of reduction technique is to replace the original system by an approximating system with much smaller state-space dimension. A reduced order model is more beneficial to process and industrial field in terms of control purposes. This paper is to provide a review on application of nonlinear reduction techniques in chemical processes. The advantages and disadvantages of each technique reviewed are also highlighted

  5. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts

    Directory of Open Access Journals (Sweden)

    Xinheng eYu

    2015-02-01

    Full Text Available Photosynthetic microalgae have attracted significant attention as they can serve as important sources for cosmetic, food and pharmaceutical products, industrial materials and even biofuel biodiesels. However, current productivity of microalga-based processes is still very low, which has restricted their scale-up application. In addition to various efforts in strain improvement and cultivation optimization, it was proposed that the productivity of microalga-based processes can also be increased using various chemicals to trigger or enhance cell growth and accumulation of bioproducts. Herein, we summarized recent progresses in applying chemical triggers or enhancers to improve cell growth and accumulation of bioproducts in algal cultures. Based on their enhancing mechanisms, these chemicals can be classified into four categories:chemicals regulating biosynthetic pathways, chemicals inducing oxidative stress responses, phytohormones and analogues regulating multiple aspects of microalgal metabolism, and chemicals directly as metabolic precursors. Taken together, the early researches demonstrated that the use of chemical stimulants could be a very effective and economical way to improve cell growth and accumulation of high-value bioproducts in large-scale cultivation of microalgae.

  6. The new risk paradigm for chemical process security and safety.

    Science.gov (United States)

    Moore, David A

    2004-11-11

    The world of safety and security in the chemical process industries has certainly changed since 11 September, but the biggest challenges may be yet to come. This paper will explain that there is a new risk management paradigm for chemical security, discuss the differences in interpreting this risk versus accidental risk, and identify the challenges we can anticipate will occur in the future on this issue. Companies need to be ready to manage the new chemical security responsibilities and to exceed the expectations of the public and regulators. This paper will outline the challenge and a suggested course of action.

  7. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening

    International Nuclear Information System (INIS)

    Druwe, Ingrid; Freudenrich, Theresa M.; Wallace, Kathleen; Shafer, Timothy J.; Mundy, William R.

    2015-01-01

    High-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may be used in a battery of tests for detecting chemicals that could result in developmental neurotoxicity. Apoptosis contributes to nervous system development by regulating the size of the neuroprogenitor cell pool, and the balance between cellular proliferation and apoptosis during neuroprogenitor cell proliferation helps to determine the size and shape of the nervous system. Therefore, chemicals that affect apoptosis during neuronal development can have deleterious effects on the developing brain. The present study examined the utility of a high-throughput assay to detect chemical-induced apoptosis in mouse or human neuroprogenitor cells, as well as differentiated human neurons derived from induced pluripotent stem cells. Apoptosis was assessed using an assay that measures enzymatic activity of caspase-3/7 in a rapid and cost efficient manner. The results show that all three commercially available models generated a robust source of proliferating neuroprogenitor cells, and that the assay was sensitive and reproducible when used in a multi-well plate format. There were differences in the response of rodent and human neuroprogenitor cells to a set of chemicals previously shown to induce apoptosis in vitro. Neuroprogenitor cells were more sensitive to chemical-induced apoptosis than differentiated neurons, suggesting that neuroprogenitor cells are one of the cell models that should be considered for use in a developmental neurotoxicity screening battery

  8. Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering.

    Science.gov (United States)

    Bi, Xiaobao; Yin, Juan; Chen Guanbang, Ashley; Liu, Chuan-Fa

    2018-06-07

    The cell surface serves important functions such as the regulation of cell-cell and cell-environment interactions. The understanding and manipulation of the cell surface is important for a wide range of fundamental studies of cellular behavior and for biotechnological and medical applications. With the rapid advance of biology, chemistry and materials science, many strategies have been developed for the functionalization of bacterial and mammalian cell surfaces. Here, we review the recent development of chemical and enzymatic approaches to cell surface engineering with particular emphasis on discussing the advantages and limitations of each of these strategies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    Science.gov (United States)

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  10. Activities of the Institute of Chemical Processing of Coal at Zabrze

    Energy Technology Data Exchange (ETDEWEB)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  11. Modeling and optimization of CO2 capture processes by chemical absorption

    International Nuclear Information System (INIS)

    Neveux, Thibaut

    2013-01-01

    CO 2 capture processes by chemical absorption lead to a large energy penalty on efficiency of coal-fired power plants, establishing one of the main bottleneck to its industrial deployment. The objective of this thesis is the development and validation of a global methodology, allowing the precise evaluation of the potential of a given amine capture process. Characteristic phenomena of chemical absorption have been thoroughly studied and represented with state-of-the-art models. The e-UNIQUAC model has been used to describe vapor-liquid and chemical equilibria of electrolyte solutions and the model parameters have been identified for four solvents. A rate-based formulation has been adopted for the representation of chemically enhanced heat and mass transfer in columns. The absorption and stripping models have been successfully validated against experimental data from an industrial and a laboratory pilot plants. The influence of the numerous phenomena has been investigated in order to highlight the most limiting ones. A methodology has been proposed to evaluate the total energy penalty resulting from the implementation of a capture process on an advanced supercritical coal-fired power plant, including thermal and electric consumptions. Then, the simulation and process evaluation environments have been coupled with a non-linear optimization algorithm in order to find optimal operating and design parameters with respect to energetic and economic performances. This methodology has been applied to optimize five process flow schemes operating with an monoethanolamine aqueous solution at 30% by weight: the conventional flow scheme and four process modifications. The performance comparison showed that process modifications using a heat pump effect give the best gains. The use of technical-economic analysis as an evaluation criterion of a process performance, coupled with a optimization algorithm, has proved its capability to find values for the numerous operating and design

  12. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  13. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform.

    Science.gov (United States)

    Hui, Jingjing; Bao, Lei; Li, Siqiao; Zhang, Yi; Feng, Yimei; Ding, Lin; Ju, Huangxian

    2017-07-03

    Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chemical sensors and gas sensors for process control in biotechnology

    International Nuclear Information System (INIS)

    Williams, D.E.

    1988-04-01

    This paper is concerned with the possibilities for chemical measurement of the progress of biotechnological processes which are offered by devices already developed for other demanding applications. It considers the potential use of ultrasonic instrumentation originally developed for the nuclear industry, gas measurement methods from the fields of environmental monitoring and combustion control, nuclear instruments developed for the oil, mining and chemical industries, robotic systems and advanced control techniques. (author)

  15. Chemical process measurements in PWR-type nuclear power plants

    International Nuclear Information System (INIS)

    Glaeser, E.

    1978-01-01

    In order to achieve high levels of availability of nuclear power plants equipped with pressurized water reactors, strict standards have to be applied to the purity of coolant and of other media. Chemical process measurements can meet these requirements only if programmes are established giving maximum information with minimum expenditure and if these programmes are realized with effective analytical methods. Analysis programmes known from literature are proved for their usefulness, and hints are given for establishing rational programmes. Analytical techniques are compared with each other taking into consideration both methods which have already been introduced into nuclear power plant practice and methods not yet generally used in practice, such as atomic absorption spectrophotometry, gas chromatography, etc. Finally, based on the state of the art of chemical process measurements in nuclear power plants, the trends of future development are pointed out. (author)

  16. Steps Towards Industrialization of Cu–III–VI2Thin‐Film Solar Cells:Linking Materials/Device Designs to Process Design For Non‐stoichiometric Photovoltaic Materials

    Science.gov (United States)

    Chang, Hsueh‐Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae‐Heng

    2016-01-01

    The concept of in‐line sputtering and selenization become industrial standard for Cu–III–VI2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto‐electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non‐stoichiometric CuMSe2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full‐function analytical solar cell simulator. The future prospects regarding the development of copper–indium–gallium–selenide thin film solar cells have also been discussed. PMID:27840790

  17. Steps Towards Industrialization of Cu-III-VI2Thin-Film Solar Cells:Linking Materials/Device Designs to Process Design For Non-stoichiometric Photovoltaic Materials.

    Science.gov (United States)

    Hwang, Huey-Liang; Chang, Hsueh-Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae-Heng

    2016-10-01

    The concept of in-line sputtering and selenization become industrial standard for Cu-III-VI 2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto-electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non-stoichiometric CuMSe 2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full-function analytical solar cell simulator. The future prospects regarding the development of copper-indium-gallium-selenide thin film solar cells have also been discussed.

  18. In-can melting demonstration of wastes from the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Bjorklund, W.J.; Chick, L.A.; Hollis, H.H.; Mellinger, G.B.; Nelson, T.A.; Petkus, L.L.

    1980-07-01

    The immobilization of Idaho Chemical Processing Plant (ICPP) zirconia calcine using Idaho glass composition (ICPP-127) was evaluated at Pacific Northwest Laboratory (PNL) in two engineering-scale in-can melter tests. The glass was initially characterized in the laboratory to verify processing parameters. Glass was then produced in a pilot-scale melter and then in a full-scale melter to evaluate the processing and the resultant product. Potential corrosion problems were identified with the glass and some processing problems were encountered, but neither is insurmountable. The product is a durable leach-resistant glass. The glass appears to be nonhomogeneous, but chemically it is quite uniform

  19. Chemical bath deposition of thin semiconductor films for use as buffer layers in CuInS2 thin film solar cells

    International Nuclear Information System (INIS)

    Kaufmann, C.A.

    2002-01-01

    A CulnS 2 thin film solar cell is a multilayered semiconductor device. The solar cells discussed have a layer sequence Mo/CulnS 2 /buffer/i-ZnO/ZnO:Ga, where a heterojunction establishes between the p-type absorber and the n-type front contact. Conventionally the buffer consists of CdS, deposited by chemical bath deposition (CBD). Apart from providing process oriented benefits the buffer layer functions as a tool for engineering the energy band line-up at the heterojunction interface. Motivated through environmental concern and EU legislation it is felt necessary to substitute this potentially toxic layer by an alternative, Cd-free component. This thesis investigates the suitability of various Zn- and In-compounds, in particular In(OH,O) x S y , as alternative buffer layer materials using CBD. Initial experiments were carried out depositing Zn-based compounds from aqueous solutions. Characterization of the layers, the solution and the processed solar cells was performed. This thesis focuses on the investigation of the CBD process chemistry for the deposition of In-compound thin films. A careful study of the morphology and composition of the deposited thin films was conducted using electron microscopy (SEM, HREM), elastic recoil detection analysis, X-ray photoelectron spectroscopy and optical transmission spectroscopy. This allowed conclusions concerning the nucleation and film growth mechanism from the chemical bath. Connections between bath chemistry, different growth phases, layer morphology and solar cell performance were sought and an improved deposition process was developed. As a result, Cd-free CulnS 2 thin film solar cells with efficiencies of up to 10.6%) (total area) could be produced. Overall the substitution of CdS is shown to be possible by different alternative compounds, such as Zn(OH,O) x S y or In(OH,O) x S y . In the case of In(OH,O) x S y , an understanding of the CBD process and the effect of different growth phases on the resulting solar cell

  20. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Science.gov (United States)

    2010-07-01

    ... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of this... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL...

  1. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... application. The chemical product tree is potentially very large and a wide range of options exist for selecting the product to make, the raw material to use as well as the processing route to employ. It is shown that systematic computer-aided methods and tools integrated within a model-data based design...

  2. Tracking chemical changes in a live cell: Biomedical applications of SR-FTIR spectromicroscopy

    International Nuclear Information System (INIS)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). We will then present several examples demonstrating the application potentials of SR-FTIR spectromicroscopy in biomedical research. These will include monitoring living cells progressing through the cell cycle, including death, and cells reacting to dilute concentrations of toxins

  3. Tracking chemical changes in a live cell: Biomedical applications of SR-FTIR spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-07-25

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). We will then present several examples demonstrating the application potentials of SR-FTIR spectromicroscopy in biomedical research. These will include monitoring living cells progressing through the cell cycle, including death, and cells reacting to dilute concentrations of toxins.

  4. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Norman K. [Iowa State Univ., Ames, IA (United States)

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect to the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”

  5. Use of plant cell cultures to study the metabolism of environmental chemicals

    International Nuclear Information System (INIS)

    Sandermann, H. Jr.; Scheel, D.; von der Trenck, T.

    1984-01-01

    The metabolism of the following environmental chemicals has been studied in cell suspension cultures of wheat (Triticum aestivum L.) and soybean (Glycine max L.):2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), hexachlorobenzene, pentachlorophenol, diethylhexylphthalate , benzo [alpha] pyrene, and DDT. All chemicals tested, including the persistent ones, were partially metabolized. Polar conjugates predominated in all cases. A covalent incorporation into lignin could be demonstrated for 2,4-D and pentachlorophenol. A specific deposition in the cellular vacuole could be demonstrated for the beta-D-glucopyranoside conjugates derived from 2,4-D. A rapid assay procedure to evaluate the metabolism of a given 14 C-labeled chemical in plant cell suspension cultures is described. This procedure requires about 1 week, and the reproducibility of the results obtained has been assessed

  6. Chemical Assessment of White Wine during Fermentation Process

    Directory of Open Access Journals (Sweden)

    Teodora Coldea

    2014-05-01

    Full Text Available There were investigated chemical properties of indigenous white wine varieties (Fetească albă, Fetească regală and Galbenă de Odobeşti during fermentation. The white wine making process took place at Wine Pilot Station of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. We aimed to monitorize the evolution of fermentation process parameters (temperature, alcohol content, and real extract and the quality of the bottled white wine (total acidity, alcohol content, total sulfur dioxide, total dry extract. The results obtained were in accordance to Romanian Legislation.

  7. A process for treatment of mixed waste containing chemical plating wastes

    International Nuclear Information System (INIS)

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-01-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr VI to Cr III from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions

  8. Characterization of microcrystalline I-layer for solar cells prepared in low temperature - plastic compatible process

    KAUST Repository

    Sliz, Rafal

    2012-06-01

    Microcrystalline silicon (mc-Si) lms deposited using a Plasma Enhanced Chemical Vapour Deposition (PECVD) process constitute an important material for manufacturing low-cost, large-area thin-lm devices, such as solar cells or thin-lm transistors. Although the deposition of electronic-grade mc-Si using the PECVD process is now well established, the high substrate temperature required (~400°C) does not lend itself to electronic devices with exible form factors fabricated on low-cost plastic substrates. In this study, we rst investigated an intrinsic mc-Si layer deposited at plastic-compatible substrate temperatures (~150°C) by characterising the properties of the lm and then evaluated its applicability to p-i-n solar cells though device characterisation. When the performance of the solar cell was correlated with lm properties, it was found that, although it compared unfavourably with mc-Si deposited at higher temperatures, it remained a very promising option. Nonetheless, further development is required to increase the overall eciency of mc-Si exible solar cells.

  9. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    International Nuclear Information System (INIS)

    Kado, T.; Hidaka, T.; Aita, H.; Endo, K.; Furuichi, Y.

    2012-01-01

    Highlights: ► Cell-adhesive molecules were covalently immobilized on a Ti surface. ► Immobilized cell-adhesive molecules maintained native function on the Ti surface. ► Immobilized collagen enhanced adhesion of periodontal ligament cells to the Ti. - Abstract: A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface

  11. Process control of high rate microcrystalline silicon based solar cell deposition by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Kilper, T.; Donker, M.N. van den; Carius, R.; Rech, B.; Braeuer, G.; Repmann, T.

    2008-01-01

    Silicon thin-film solar cells based on microcrystalline silicon (μc-Si:H) were prepared in a 30 x 30 cm 2 plasma-enhanced chemical vapor deposition reactor using 13.56 or 40.68 MHz plasma excitation frequency. Plasma emission was recorded by optical emission spectroscopy during μc-Si:H absorber layer deposition at deposition rates between 0.5 and 2.5 nm/s. The time course of SiH * and H β emission indicated strong drifts in the process conditions particularly at low total gas flows. By actively controlling the SiH 4 gas flow, the observed process drifts were successfully suppressed resulting in a more homogeneous i-layer crystallinity along the growth direction. In a deposition regime with efficient usage of the process gas, the μc-Si:H solar cell efficiency was enhanced from 7.9 % up to 8.8 % by applying process control

  12. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    Science.gov (United States)

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  13. A comparison of two different processing chemicals for mammography: Repercussion on dose to patients

    International Nuclear Information System (INIS)

    Sendra-Portero, F.; Ristori-Bogajo, E.; Buch-Tome, P.; Martinez-Morillo, M.; Nava-Baro, E.

    2001-01-01

    The main technical objective of screen-film mammography is to reach the best image quality with the lowest dose to the breast. Sensitometric gradient and speed are factors related to both subjects respectively. For a given choice of film, these factors are affected by processing variables. For this reason, manufacturers have developed different types of films that are recommended for particular processing conditions. The purpose of this work is to compare the variations of both sensitometric characteristics of mammographic screen and film systems induced by two different manufactured chemicals: RPX-Omat EX/LO (Kodak) and G139/G334 (Agfa). A comparison of thirteen mammographic films by means of light sensitometry was performed at different processing conditions: 90s/Kodak, 120s/Kodak, 180s/Kodak, 90s/Agfa, 120s/Agfa and 180s/Agfa. Secondly, 99 combinations of screens and films were evaluated by X-ray sensitometry at 120s/Kodak and 120s/Agfa processing. At light sensitometry, variations in processing time led to different modifications in film speed, depending on the chemicals used. At X-Ray sensitometry, Agfa chemicals induced higher values of sensitivity for almost all combinations, while Kodak chemicals gave higher gradient/speed quotient. The results show that dose to patients in mammography and image contrast are highly dependent on the chemicals selected at medium cycle (120s) processing. (author)

  14. Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure-induced endothermic chemical reactions

    International Nuclear Information System (INIS)

    Antillon, Edwin; Banlusan, Kiettipong; Strachan, Alejandro

    2014-01-01

    We extend a thermally accurate model for coarse grain dynamics (Strachan and Holian 2005 Phys. Rev. Lett. 94 014301) to enable the description of stress-induced chemical reactions in the degrees of freedom internal to the mesoparticles. Similar to the breathing sphere model, we introduce an additional variable that describes the internal state of the particles and whose dynamics is governed both by an internal potential energy function and by interparticle forces. The equations of motion of these new variables are derived from a Hamiltonian and the model exhibits two desired features: total energy conservation and Galilean invariance. We use a simple model material with pairwise interactions between particles and study pressure-induced chemical reactions induced by hydrostatic and uniaxial compression. These examples demonstrate the ability of the model to capture non-trivial processes including the interplay between mechanical, thermal and chemical processes of interest in many applications. (paper)

  15. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  16. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  17. Interactions between structural and chemical biomimetism in synthetic stem cell niches

    International Nuclear Information System (INIS)

    Nava, Michele M; Raimondi, Manuela T; Credi, Caterina; De Marco, Carmela; Turri, Stefano; Cerullo, Giulio; Osellame, Roberto

    2015-01-01

    Advancements in understanding stem cell functions and differentiation are of key importance for the clinical success of stem-cell-based therapies. 3D structural niches fabricated by two-photon polymerization are a powerful platform for controlling stem cell growth and differentiation. In this paper, we investigate the possibility of further controlling stem cell fate by tuning the mechanical properties of such niches through coating with thin layers of biomimetic hyaluronan-based and gelatin-based hydrogels. We first assess the biocompatibility of chemical coatings and then study the interactions between structural and chemical biomimetism on the response of MSCs in terms of proliferation and differentiation. We observed a clear effect of the hydrogel coating on otherwise identical 3D scaffolds. In particular, in gelatin-coated niches we observed a stronger metabolic activity and commitment toward the osteo-chondral lineage with respect to hyaluronan-coated niches. Conversely, a reduction in the homing effect was observed in all the coated niches, especially in gelatin-coated niches. This study demonstrates the feasibility of controlling independently different mechanical cues, in bioengineered stem cell niches, i.e. the 3D scaffold geometry and the surface stiffness. This will allow, on the one hand, understanding their specific role in stem cell proliferation and differentiation and, on the other hand, finely tuning their synergistic effect. (paper)

  18. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    Science.gov (United States)

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Investigations on an environment friendly chemical reaction process (eco-chemistry). 2; Kankyo ni yasashii kagaku hanno process (eko chemistry) ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In order to structure a chemical reaction process that does not discharge a large amount of waste by-products or harmful chemical substances, or so-called environment friendly process, investigations and discussions were given based on the results derived in the previous fiscal year. A proposal was made to reduce environmental load on development of oxidized and dehydrogenated catalysts that can produce selectively ethylene, propylene and isobutylene in an oxidation process. In liquid phase oxidation, redox-based oxidation and solid catalyzation of automatic oxidation reaction were enumerated. In acid base catalyst reaction, development of ultra strong solid acid was described to structure no pollution discharging process. In the fine chemical and pharmaceutical fields, the optical active substance method and the position-selective aromatics displacement reaction were evaluated to reduce environmental load. A questionnaire survey performed on major chemical corporations inside and outside the country revealed the following processes as the ones that can cause hidden environmental problems: processes discharging large amount of wastes, processes treating dangerous materials, and processes consuming large amount of energy. Development of catalysts is important that can realize high yield, high selectivity and reactions under mild conditions as a future environment harmonizing chemical process. 117 refs., 23 figs., 22 tabs.

  20. Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Giovanni De Filpo

    2018-06-01

    Full Text Available The chemical binding of photocatalytic materials, such as TiO2 and ZnO nanoparticles, onto porous polymer membranes requires a series of chemical reactions and long purification processes, which often result in small amounts of trapped nanoparticles with reduced photocatalytic activity. In this work, a chemical vapor deposition technique was investigated in order to allow the nucleation and growth of ZnO and TiO2 nanoparticles onto polyvinylidene difluoride (PVDF porous membranes for application in advanced oxidation processes. The thickness of obtained surface coatings by sputtered nanoparticles was found to depend on process conditions. The photocatalytic efficiency of sputtered membranes was tested against both a model drug and a model organic pollutant in a small continuous flow reactor.

  1. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    International Nuclear Information System (INIS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-01-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH 2 ), carboxyl (-COOH) and methyl (-CH 3 ), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH 2 ) can absorb more proteins than these modified with more hydrophobic functional group (-CH 3 ). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH 2 modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH 3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  2. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  3. Numerical simulation study on rolling-chemical milling process of aluminum-lithium alloy skin panel

    Science.gov (United States)

    Huang, Z. B.; Sun, Z. G.; Sun, X. F.; Li, X. Q.

    2017-09-01

    Single curvature parts such as aircraft fuselage skin panels are usually manufactured by rolling-chemical milling process, which is usually faced with the problem of geometric accuracy caused by springback. In most cases, the methods of manual adjustment and multiple roll bending are used to control or eliminate the springback. However, these methods can cause the increase of product cost and cycle, and lead to material performance degradation. Therefore, it is of significance to precisely control the springback of rolling-chemical milling process. In this paper, using the method of experiment and numerical simulation on rolling-chemical milling process, the simulation model for rolling-chemical milling process of 2060-T8 aluminum-lithium alloy skin was established and testified by the comparison between numerical simulation and experiment results for the validity. Then, based on the numerical simulation model, the relative technological parameters which influence on the curvature of the skin panel were analyzed. Finally, the prediction of springback and the compensation can be realized by controlling the process parameters.

  4. Study on microwave assisted process in chemical extraction

    International Nuclear Information System (INIS)

    Amer Ali; Rosli Mohd Yunus; Ramlan Abd Aziz

    2001-01-01

    The microwave assisted process is a revolutionary method of extraction that reduces the extraction time to as little as a few seconds, with up to a ten-fold decrease in the use of solvents. The target material is immersed in solvent that is transparent to microwaves, so only the target material is heated, and because of the microwaves tend to heat the inside of the material quickly, the target chemical are expelled in a few seconds. benefits from this process include significant reductions in the amount of energy required and substantial reductions in the cost and dispose of hazardous solvents. A thorough review has been displayed on: using the microwave in extraction, applications of microwave in industry, process flow diagram, mechanism of the process and comparison between microwave process and other extraction techniques (soxhlet, steam distillation and supercritical fluid). This review attempts to summarize the studies about microwave assisted process as a very promising technique. (Author)

  5. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  6. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.

    Science.gov (United States)

    Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya

    2015-08-17

    The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells.

  7. Effect of chemical fixatives on accurate preservation of Escherichia coli and Bacillus subtilis structure in cells prepared by freeze-substitution

    International Nuclear Information System (INIS)

    Graham, L.L.; Beveridge, T.J.

    1990-01-01

    Five chemical fixatives were evaluated for their ability to accurately preserve bacterial ultrastructure during freeze-substitution of select Escherichia coli and Bacillus subtilis strains. Radioisotopes were specifically incorporated into the peptidoglycan, lipopolysaccharide, and nucleic acids of E. coli SFK11 and W7 and into the peptidoglycan and RNA of B. subtilis 168 and W23. The ease of extraction of radiolabels, as assessed by liquid scintillation counting during all stages of processing for freeze-substitution, was used as an indicator of cell structural integrity and retention of cellular chemical composition. Subsequent visual examination by electron microscopy was used to confirm ultrastructural conformation. The fixatives used were: 2% (wt/vol) osmium tetroxide and 2% (wt/vol) uranyl acetate; 2% (vol/vol) glutaraldehyde and 2% (wt/vol) uranyl acetate; 2% (vol/vol) acrolein and 2% (wt/vol) uranyl acetate; 2% (wt/vol) gallic acid; and 2% (wt/vol) uranyl acetate. All fixatives were prepared in a substitution solvent of anhydrous acetone. Extraction of cellular constituents depended on the chemical fixative used. A combination of 2% osmium tetroxide-2% uranyl acetate or 2% gallic acid alone resulted in optimum fixation as ascertained by least extraction of radiolabels. In both gram-positive and gram-negative organisms, high levels of radiolabel were detected in the processing fluids in which 2% acrolein-2% uranyl acetate, 2% glutaraldehyde-2% uranyl acetate, or 2% uranyl acetate alone were used as fixatives. Ultrastructural variations were observed in cells freeze-substituted in the presence of different chemical fixatives. We recommend the use of osmium tetroxide and uranyl acetate in acetone for routine freeze-substitution of eubacteria, while gallic acid is recommended for use when microanalytical processing necessitates the omission of osmium

  8. Special study for the manual transfer of process samples from CPP [Chemical Processing Plant] 601 to RAL [Remote Analytical Laboratory

    International Nuclear Information System (INIS)

    Marts, D.J.

    1987-05-01

    A study of alternate methods to manually transport radioactive samples from their glove boxes to the Remote Analytical Laboratory (RAL) was conducted at the Idaho National Engineering Laboratory. The study was performed to mitigate the effects of a potential loss of sampling capabilities that could take place if a malfunction in the Pneumatic Transfer System (PTS) occurred. Samples are required to be taken from the cell glove boxes and analyzed at the RAL regardless of the operational status of the PTS. This paper documents the conclusions of the study and how a decision was reached that determined the best handling scenarios for manually transporting 15 mL vials of liquid process samples from the K, W, U, WG, or WH cell glove boxes in the Chemical Processing Plant (CPP) 601 to the RAL. This study of methods to manually remove the samples from the glove boxes, package them for safe shipment, transport them by the safest route, receive them at the RAL, and safely unload them was conducted by EG and G Idaho, Inc., for Westinghouse Idaho Nuclear Company as part of the Glove Box Sampling and Transfer System Project for the Fuel Processing Facilities Upgrade, Task 10, Subtask 2. The study focused on the safest and most reliable scenarios that could be implemented using existing equipment. Hardware modifications and new hardware proposals were identified, and their impact on the handling scenario has been evaluated. A conclusion was reached that by utilizing the existing facility hardware, these samples can be safely transported manually from the sample stations in CPP 601 to the RAL, and that additional hardware could facilitate the transportation process even further

  9. Gold processing residue from Jacobina Basin: chemical and physical properties

    OpenAIRE

    Lima, Luiz Rogério Pinho de Andrade; Bernardez, Letícia Alonso; Barbosa, Luís Alberto Dantas

    2007-01-01

    p. 848-852 Gold processing residues or tailings are found in several areas in the Itapicuru River region (Bahia, Brazil), and previous studies indicated significant heavy metals content in the river sediments. The present work focused on an artisanal gold processing residue found in a site from this region. Samples were taken from the processing residue heaps and used to perform a physical and chemical characterization study using X-ray diffraction, scanning electron microscopy, neutron...

  10. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... framework can manage the complexity associated with product-process problems very efficiently. Three specific computer-aided tools (ICAS, Sustain-Pro and VPPDLab) have been presented and their applications to product-process design, highlighted....

  11. Development of a hybrid sputtering/evaporation process for Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, M.; Binetti, S.; Le Donne, A.; Lorenzi, B.; Caccamo, L.; Miglio, L. [Dipartimento di Scienza dei Materiali e Solar Energy Research Center MIB-SOLAR, Universita di Milano Bicocca, Milan (Italy); Moneta, R.; Marchionna, S.; Meschia, M. [Voltasolar s.r.l, Turate (Italy)

    2011-08-15

    In this paper we report a new method for Cu(In,Ga)Se{sub 2} deposition for solar cell application. Differently from the common co-evaporation process, an alterative approach for thin film Cu(In,Ga)Se{sub 2} has been tested: the sputtering deposition of metal elements combined with the selenium evaporation. We have studied the relationships between the growth parameters of our hybrid sputtering/evaporation method and the chemical-physical properties of the CIGS films. The cells are completed with a CdS buffer layer deposited by chemical bath deposition and ZnO + ITO deposited by RF sputtering. Test solar cells of 0.5 cm{sup 2} have shown an efficiency of 10% and 2.5% on glass and stainless steel substrate respectively. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  13. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal

    Science.gov (United States)

    Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K.

    The intercalation of Li ions in natural graphite that was purified by chemical and thermal processes was investigated. A new chemical process was developed that involved a mixed aqueous solution containing 30% H 2SO 4 and 30% NH xF y heated to 90 °C. The results of this process are compared to those obtained by heating the natural graphite from 1500 to 2400 °C in an inert environment (thermal process). The first-cycle coulombic efficiency of the purified natural graphite obtained by the chemical process is 91 and 84% after the thermal process at 2400 °C. Grinding the natural graphite before or after purification had no significant effect on electrochemical performance at low currents. However, grinding to a very small particle size before purification permitted optimization of the size distribution of the particles, which gives rise to a more homogenous electrode. The impurities in the graphite play a role as microabrasion agents during grinding which enhances its hardness and improves its mechanical properties. Grinding also modifies the particle morphology from a 2- to a 3-D structure (similar in shape to a potato). This potato-shaped natural graphite shows high reversible capacity at high current densities (about 90% at 1 C rate). Our analysis suggests that thermal processing is considerably more expensive than the chemical process to obtain purified natural graphite.

  14. Integrated Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, T. Alan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jamison, Timothy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The Massachusetts Institute of Technology (MIT) and Siemens Corporations (SCR) are developing new chemical synthesis processes for commodity chemicals from CO2. The process is assessed as a novel chemical sequestration technology that utilizes CO2 from dilute gas streams generated at industrial carbon emitters as a raw material to produce useful commodity chemicals. Work at Massachusetts Institute of Technology (MIT) commenced on October 1st, 2010, and finished on September 30th, 2013. During this period, we have investigated and accomplished five objectives that mainly focused on converting CO2 into high-value chemicals: 1) Electrochemical assessment of catalytic transformation of CO2 and epoxides to cyclic carbonates; 2) Investigation of organocatalytic routes to convert CO2 and epoxide to cyclic carbonates; 3) Investigation of CO2 Capture and conversion using simple olefins under continuous flow; 4) Microwave assisted synthesis of cyclic carbonates from olefins using sodium bicarbonates in a green pathway; 5) Life cycle analyses of integrated chemical sequestration process. In this final report, we will describe the detailed study performed during the three year period and findings and conclusions drawn from our research.

  15. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  16. Transcriptomic profiling of chemical exposure reveals roles of Yap1 in protecting yeast cells from oxidative and other types of stresses.

    Science.gov (United States)

    Zhang, Chao; Li, Zhouquan; Zhang, Xiaohua; Yuan, Li; Dai, Heping; Xiao, Wei

    2016-01-01

    Transcriptomic profiles are generated by comparing wild-type and the yeast yap1 mutant to various chemicals in an attempt to establish a correlation between this gene mutation and chemical exposure. Test chemicals include ClonNAT as a non-genotoxic agent, methyl methanesulphonate (MMS) as an alkylating agent, tert-butyl hydroperoxide (t-BHP) as an oxidative agent and the mixture of t-BHP and MMS to reflect complex natural exposure. Differentially expressed genes (DEGs) were identified and specific DEGs were obtained by excluding overlapping DEGs with the control group. In the MMS exposure group, deoxyribonucleotide biosynthetic processes were upregulated, while oxidation-reduction processes were downregulated. In the t-BHP exposure group, metabolic processes were upregulated while peroxisome and ion transport pathways were downregulated. In the mixture exposure group, the proteasome pathway was upregulated, while the aerobic respiration was downregulated. Homologue analysis of DEGs related to human diseases showed that many of DEGs were linked to cancer, ageing and neuronal degeneration. These observations confirm that the yap1 mutant is more sensitive to chemicals than wild-type cells and that the susceptible individuals carrying the YAP1-like gene defect may enhance risk to chemical exposure. Hence, this study offers a novel approach to environmental risk assessment, based on the genetic backgrounds of susceptible individuals. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Steam generators secondary side chemical cleaning at Point Lepreau using the Siemen's high temperature process

    International Nuclear Information System (INIS)

    Verma, K.; MacNeil, C.; Odar, S.

    1996-01-01

    The secondary sides of all four steam generators at the Point Lepreau Nuclear Generating Stations were cleaned during the 1995 annual outage run-down using the Siemens high temperature chemical cleaning process. Traditionally all secondary side chemical cleaning exercises in CANDU as well as the other nuclear power stations in North America have been conducted using a process developed in conjunction with the Electric Power Research Institute (EPRI). The Siemens high temperature process was applied for the first time in North America at the Point Lepreau Nuclear Generating Station (PLGS). The paper discusses experiences related to the pre and post award chemical cleaning activities, chemical cleaning application, post cleaning inspection results and waste handling activities. (author)

  18. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2013-01-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions

  19. The Characterization of Cognitive Processes Involved in Chemical Kinetics Using a Blended Processing Framework

    Science.gov (United States)

    Bain, Kinsey; Rodriguez, Jon-Marc G.; Moon, Alena; Towns, Marcy H.

    2018-01-01

    Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical…

  20. Network model of chemical-sensing system inspired by mouse taste buds.

    Science.gov (United States)

    Tateno, Katsumi; Igarashi, Jun; Ohtubo, Yoshitaka; Nakada, Kazuki; Miki, Tsutomu; Yoshii, Kiyonori

    2011-07-01

    Taste buds endure extreme changes in temperature, pH, osmolarity, so on. Even though taste bud cells are replaced in a short span, they contribute to consistent taste reception. Each taste bud consists of about 50 cells whose networks are assumed to process taste information, at least preliminarily. In this article, we describe a neural network model inspired by the taste bud cells of mice. It consists of two layers. In the first layer, the chemical stimulus is transduced into an irregular spike train. The synchronization of the output impulses is induced by the irregular spike train at the second layer. These results show that the intensity of the chemical stimulus is encoded as the degree of the synchronization of output impulses. The present algorithms for signal processing result in a robust chemical-sensing system.

  1. Chemical purification of Gunungpati elephant foot yam flour to improve physical and chemical quality on processed food

    Science.gov (United States)

    Paramita, Octavianti; Wahyuningsih, Ansori, Muhammad

    2017-03-01

    This study was aimed at improving the physicochemical quality of elephant foot yam flour in Gunungpati, Semarang by chemical purification. The utilization of elephant foot yam flour in several processed food was also discussed in this study. The flour purification discussed in this study was expected to become a reference for the manufacturers of elephant foot yam flour and its processed food in Gunungpati. This study modified the elephant foot yam flour using pre - gelatinization method. The physical and chemical quality of each elephant foot yam flour purification sample were assessed using proximate analysis. The likability test was conducted for its processed food. 20 grams of elephant foot yam flour was put into a beaker glass, then 60 ml of water was added. The suspension was then heated at a temperature of 60 ° C and 70 ° C while stirred until it was homogeneous and thickened for 10, 30 and 60 minutes. The flour which had been heated was then cooled at room temperature for 1 hour and then at a temperature of 0 ° C until it was frozen. Furthermore, flour was dried in an oven at a temperature of 60 ° C for 9 hours. The dried flour was sifted with a 80 mesh sieve. Chemical test was conducted after elephant foot yam was pre-gelatinized to determine changes in the quality flour: test levels of protein, fat, crude fiber content, moisture content, ash content and starch content. In addition, color tests and granular test on elephant foot yam flour were also conducted. The pre-gelatinization as chemical treatment on elephant foot yam flour in this study was able to change the functional properties of elephant foot yam flour towards a better processing characterized by a brighter color (L = 70, a = 6 and b = 12), the hydrolysis of polysaccharides flour into shorter chain (flour content decreased to 44%), the expansion of granules in elephant foot yam resulting in a process - ready flour, and better monolayer water content of 9%. The content of protein and fiber

  2. On improved understanding of plasma-chemical processes in complex low-temperature plasmas

    Science.gov (United States)

    Röpcke, Jürgen; Loffhagen, Detlef; von Wahl, Eric; Nave, Andy S. C.; Hamann, Stephan; van Helden, Jean-Piere H.; Lang, Norbert; Kersten, Holger

    2018-05-01

    Over the last years, chemical sensing using optical emission spectroscopy (OES) in the visible spectral range has been combined with methods of mid infrared laser absorption spectroscopy (MIR-LAS) in the molecular fingerprint region from 3 to 20 μm, which contains strong rotational-vibrational absorption bands of a large variety of gaseous species. This optical approach established powerful in situ diagnostic tools to study plasma-chemical processes of complex low-temperature plasmas. The methods of MIR-LAS enable to detect stable and transient molecular species in ground and excited states and to measure the concentrations and temperatures of reactive species in plasmas. Since kinetic processes are inherent to discharges ignited in molecular gases, high time resolution on sub-second timescales is frequently desired for fundamental studies as well as for process monitoring in applied research and industry. In addition to high sensitivity and good temporal resolution, the capacity for broad spectral coverage enabling multicomponent detection is further expanding the use of OES and MIR-LAS techniques. Based on selected examples, this paper reports on recent achievements in the understanding of complex low-temperature plasmas. Recently, a link with chemical modeling of the plasma has been provided, which is the ultimate objective for a better understanding of the chemical and reaction kinetic processes occurring in the plasma. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  3. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  4. Metallurgical engineering and inspection practices in the chemical process industries

    International Nuclear Information System (INIS)

    Moller, G.E.

    1987-01-01

    The process industries, in particular the petroleum refining industry, adopted materials engineering and inspection (ME and I) practices years ago and regularly updated them because they were faced with the handling and refining of flammable, toxic, and corrosive feed stocks. These industries have a number of nonproprietary techniques and procedures, some of which may be applicable in the nuclear power generation field. Some specific inspection and engineering techniques used by the process industries within the framework of the guidelines for inspections and worthy of detailed description include the following: (1) sentry drilling or safety drilling of piping subject to relatively uniform corrosion, such as feedwater heater piping, steam piping, and extraction steam piping; (2) on-stream radiography for thickness measurement and detection of unusual conditions - damaged equipment such as valve blockage; (3) critical analysis of the chemical and refining processes for the relative probability of corrosion; (4) communication of valuable experience within the industry; (5) on-stream ultrasonic thickness testing; and (6) on-stream and off-stream crack and flaw detection. The author, trained in the petroleum refining industry but versed in electric utilities, pulp and paper, chemical process, marine, mining, water handling, waste treatment, and geothermal processes, discusses individual practices of these various industries in the paper

  5. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering.

    Science.gov (United States)

    Lee, Bora; Jiao, Alex; Yu, Seungjung; You, Jae Bem; Kim, Deok-Ho; Im, Sung Gap

    2013-08-01

    Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer known to be nontoxic, water soluble and biocompatible. Here, PNVCL homopolymer was successfully synthesized for the first time by use of a one-step vapor-phase process, termed initiated chemical vapor deposition (iCVD). Fourier transform infrared spectroscopy results showed that radical polymerization took place from N-vinylcaprolactam monomers without damaging the functional caprolactam ring. A sharp lower critical solution temperature transition was observed at 31°C from the iCVD poly(N-vinylcaprolactam) (PNVCL) film. The thermoresponsive PNVCL surface exhibited a hydrophilic/hydrophobic alteration with external temperature change, which enabled the thermally modulated attachment and detachment of cells. The conformal coverage of PNVCL film on various substrates with complex topography, including fabrics and nanopatterns, was successfully demonstrated, which can further be utilized to fabricate cell sheets with aligned cell morphology. The advantage of this system is that cells cultured on such thermoresponsive surfaces could be recovered as an intact cell sheet by simply lowering the temperature, eliminating the need for conventional enzymatic treatments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oshimura, M.; Barrett, J.C.

    1986-01-01

    A literature review with over 200 references examines the growing body of evidence from human and animal cancer cytogenetics that aneuploidy is an important chromosome change in carcinogenesis. Evidence from in vitro cell transformation studies supports the idea that aneuploidy has a direct effect on the conversion of a normal cell to a preneoplastic or malignant cell. Induction of an aneuploid state in a preneoplastic or neoplastic cell could have any of the following four biological effects: a change in gene dosage, a change in gene balance, expression of a recessive mutation, or a change in genetic instability (which could secondarily lead to neoplasia). There are a number of possible mechanisms by which chemicals might induce aneuploidy, including effects on microtubules, damage to essential elements for chromosome function reduction in chromosome condensation or pairing, induction of chromosome interchanges, unresolved recombination structures, increased chromosome stickiness, damage to centrioles, impairment of chromosome alignment ionic alterations during mitosis, damage to the nuclear membrane, and a physical disruption of chromosome segregation. Therefore, a number of different targets exist for chemically induced aneuploidy.

  7. Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Antonio A. Romero

    2012-07-01

    Full Text Available Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic materials.

  8. Cell adhesion over two distinct surfaces varied with chemical and mechanical properties

    International Nuclear Information System (INIS)

    Huang, Chih-Ling; Liao, Jiunn-Der; Yang, Chia-Fen; Chang, Chia-Wei; Ju, Ming-Shaung; Lin, Chou-Ching K.

    2009-01-01

    Chitosan is widely recognized as a natural and proper scaffold material; however, as a base substrate, it shows little promotion effect for the growth of cultured fibroblast cells. In this study, chitosan in a film form was prepared and used as a cell-culturing matrix, followed by patterning the evaporated Au upon it. Micro-scale Au clusters of ∼ 150 μm in diameter and ∼ 20 nm in thickness were then patterned and adhered upon the chitosan matrix. Physical and chemical properties of Au/chitosan were characterized. In particular, nano-indentation with dynamic contact module was applied to measure the nano-hardness of the tailored surfaces on Au/chitosan. Fibroblast cells were thereafter cultured on Au/chitosan. Experimental results demonstrated that as compared with the chitosan matrix, Au clusters and their boundary area exhibited favorable to promote cell adhesion, spreading, and growth. As well, nano-hardness on the boundary area of Au/chitosan significantly enhanced, while the cultured fibroblast cells aggregated upon Au clusters and the boundary area. In combination with the possible chemical and mechanical changes resulted by the evaporation of Au clusters upon the chitosan matrix, a selectively-enhanced Au/chitosan to promote fibroblast cells proliferation was created. Such design is anticipated for enabling a surface for scaffold materials with the cell-guidable function.

  9. Physico-chemical studies of radiation effects in cells: Final report

    International Nuclear Information System (INIS)

    Powers, E.L.

    1987-03-01

    The career of Dr. E.L. Powers, a pioneer in the development of radiobiology, is reviewed. His initial research involved the effects of radiation and certain chemicals on Paramecium, associated ultrastructural studies on protozoan cells, responses of Rickettsia and bacteriophage to irradiation, and the development of techniques for studying bacterial spores. These efforts established the basic radiation biology of the spore and its importance in understanding the effects of free radicals, oxygen, and water. His recent research extended work on the dry spore to the very wet spore and to other selected chemical systems in aqueous suspension. 126 refs., 2 figs

  10. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  11. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.

    Science.gov (United States)

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2006-09-07

    Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.

  12. Chemically different non-thermal plasmas target distinct cell death pathways

    Czech Academy of Sciences Publication Activity Database

    Lunov, O.; Zablotskyy, V.; Chrupina, O.; Lunova, M.; Jirsa, M.; Dejneka, A.; Kubinová, Šárka

    2017-01-01

    Roč. 7, apr (2017), s. 600 ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : chemically different * non-thermal plasmas * target distinct cell death pathways Subject RIV: FP - Other Medical Disciplines OBOR OECD: Biophysics Impact factor: 4.259, year: 2016

  13. In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration.

    Science.gov (United States)

    Pehlivaner Kara, Meryem O; Ekenseair, Adam K

    2016-10-01

    In this study, the efficacy of creating cellular hydrogel coatings on warm tissue surfaces through the minimally invasive, sprayable delivery of thermoresponsive liquid solutions was investigated. Poly(N-isopropylacrylamide)-based (pNiPAAm) thermogelling macromers with or without addition of crosslinking polyamidoamine (PAMAM) macromers were synthesized and used to produce in situ forming thermally and chemically gelling hydrogel systems. The effect of solution and process parameters on hydrogel physical properties and morphology was evaluated and compared to poly(ethylene glycol) and injection controls. Smooth, fast, and conformal hydrogel coatings were obtained when pNiPAAm thermogelling macromers were sprayed with high PAMAM concentration at low pressure. Cellular hydrogel coatings were further fabricated by different spraying techniques: single-stream, layer-by-layer, and dual stream methods. The impact of spray technique, solution formulation, pressure, and spray solution viscosity on the viability of fibroblast and osteoblast cells encapsulated in hydrogels was elucidated. In particular, the early formation of chemically crosslinked micronetworks during bulk liquid flow was shown to significantly affect cell viability under turbulent conditions compared to injectable controls. The results demonstrated that sprayable, in situ forming hydrogels capable of delivering cell populations in a homogeneous therapeutic coating on diseased tissue surfaces offer promise as novel therapies for applications in regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2383-2393, 2016. © 2016 Wiley Periodicals, Inc.

  14. Enrichment of {sup 15}N and {sup 10}B isotopes by chemical exchange process

    Energy Technology Data Exchange (ETDEWEB)

    D` Souza, A B; Sonwalkar, A S; Subrahmanyam, B V; Valladares, B A [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Many processes are available for separation of stable isotopes like distillation, chemical exchange, thermal diffusion, gaseous diffusion, centrifuge etc. Chemical exchange process is eminently suitable for separation of isotopes of light elements. Work done on separation and enrichment of two of the stable isotopes viz. {sup 15}N and {sup 10}B in Chemical Engineering Division is presented. {sup 15}N is widely used as a tracer in agricultural research and {sup 10}B is used in nuclear industry as control rod material, soluble reactor poison, neutron detector etc. The work on {sup 15}N isotope resulted in a pilot plant, which was the only source of this material in the country for many years and later it was translated into a production plant as M/s. RCF Ltd. The work done on the ion-exchange process for enrichment of {sup 10}B isotope which is basically a chemical exchange process, is now being updated into a pilot plant to produce enriched {sup 10}B to be used as soluble reactor poison. (author). 5 refs., 2 figs., 3 tabs.

  15. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve

  16. Characterization of p75+ ectomesenchymal stem cells from rat embryonic facial process tissue

    International Nuclear Information System (INIS)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Zhang, Li; Liu, Rui; Xing, Yongjun; Zhou, Xia; Nie, Xin

    2012-01-01

    Highlights: ► Ectomesenchymal stem cells (EMSCs) were found to migrate to rat facial processes at E11.5. ► We successfully sorted p75NTR positive EMSCs (p75 + EMSCs). ► p75 + EMSCs up to nine passages showed relative stable proliferative activity. ► We examined the in vitro multilineage potential of p75 + EMSCs. ► p75 + EMSCs provide an in vitro model for tooth morphogenesis. -- Abstract: Several populations of stem cells, including those from the dental pulp and periodontal ligament, have been isolated from different parts of the tooth and periodontium. The characteristics of such stem cells have been reported as well. However, as a common progenitor of these cells, ectomesenchymal stem cells (EMSCs), derived from the cranial neural crest have yet to be fully characterized. The aim of this study was to better understand the characteristics of EMSCs isolated from rat embryonic facial processes. Immunohistochemical staining showed that EMSCs had migrated to rat facial processes at E11.5, while the absence of epithelial invagination or tooth-like epithelium suggested that any epithelial–mesenchymal interactions were limited at this stage. The p75 neurotrophin receptor (p75NTR), a typical neural crest marker, was used to select p75NTR-positive EMSCs (p75 + EMSCs), which were found to show a homogeneous fibroblast-like morphology and little change in the growth curve, proliferation capacity, and cell phenotype during cell passage. They also displayed the capacity to differentiate into diverse cell types under chemically defined conditions in vitro. p75 + EMSCs proved to be homogeneous, stable in vitro and potentially capable of multiple lineages, suggesting their potential for application in dental or orofacial tissue engineering.

  17. REDOX DISRUPTING POTENTIAL OF TOXCAST CHEMICALS RANKED BY ACTIVITY IN MOUSE EMBRYONIC STEM CELLS

    Science.gov (United States)

    To gain insight regarding the adverse outcome pathways leading to developmental toxicity following exposure to chemicals, we evaluated ToxCast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay and identified a redox sensitive pathway that correlated with al...

  18. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S P; Waitz, I A [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R C; Brown, R C; Anderson, M R [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W N [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1998-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  19. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  20. Chemomics-based marker compounds mining and mimetic processing for exploring chemical mechanisms in traditional processing of herbal medicines, a continuous study on Rehmanniae Radix.

    Science.gov (United States)

    Zhou, Li; Xu, Jin-Di; Zhou, Shan-Shan; Shen, Hong; Mao, Qian; Kong, Ming; Zou, Ye-Ting; Xu, Ya-Yun; Xu, Jun; Li, Song-Lin

    2017-12-29

    Exploring processing chemistry, in particular the chemical transformation mechanisms involved, is a key step to elucidate the scientific basis in traditional processing of herbal medicines. Previously, taking Rehmanniae Radix (RR) as a case study, the holistic chemome (secondary metabolome and glycome) difference between raw and processed RR was revealed by integrating hyphenated chromatographic techniques-based targeted glycomics and untargeted metabolomics. Nevertheless, the complex chemical transformation mechanisms underpinning the holistic chemome variation in RR processing remain to be extensively clarified. As a continuous study, here a novel strategy by combining chemomics-based marker compounds mining and mimetic processing is proposed for further exploring the chemical mechanisms involved in herbal processing. First, the differential marker compounds between raw and processed herbs were rapidly discovered by untargeted chemomics-based mining approach through multivariate statistical analysis of the chemome data obtained by integrated metabolomics and glycomics analysis. Second, the marker compounds were mimetically processed under the simulated physicochemical conditions as in the herb processing, and the final reaction products were chemically characterized by targeted chemomics-based mining approach. Third, the main chemical transformation mechanisms involved were clarified by linking up the original marker compounds and their mimetic processing products. Using this strategy, a set of differential marker compounds including saccharides, glycosides and furfurals in raw and processed RR was rapidly found, and the major chemical mechanisms involved in RR processing were elucidated as stepwise transformations of saccharides (polysaccharides, oligosaccharides and monosaccharides) and glycosides (iridoid glycosides and phenethylalcohol glycosides) into furfurals (glycosylated/non-glycosylated hydroxymethylfurfurals) by deglycosylation and/or dehydration. The

  1. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  2. In vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis

    Science.gov (United States)

    Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes ...

  3. Practicing chemical process safety: a look at the layers of protection

    International Nuclear Information System (INIS)

    Sanders, Roy E.

    2004-01-01

    This presentation will review a few public perceptions of safety in chemical plants and refineries, and will compare these plant workplace risks to some of the more traditional occupations. The central theme of this paper is to provide a 'within-the-fence' view of many of the process safety practices that world class plants perform to pro-actively protect people, property, profits as well as the environment. It behooves each chemical plant and refinery to have their story on an image-rich presentation to stress stewardship and process safety. Such a program can assure the company's employees and help convince the community that many layers of safety protection within our plants are effective, and protect all from harm

  4. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  5. Property Modelling for Applications in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    such as database, property model library, model parameter regression, and, property-model based product-process design will be presented. The database contains pure component and mixture data for a wide range of organic chemicals. The property models are based on the combined group contribution and atom...... is missing, the atom connectivity based model is employed to predict the missing group interaction. In this way, a wide application range of the property modeling tool is ensured. Based on the property models, targeted computer-aided techniques have been developed for design and analysis of organic chemicals......, polymers, mixtures as well as separation processes. The presentation will highlight the framework (ICAS software) for property modeling, the property models and issues such as prediction accuracy, flexibility, maintenance and updating of the database. Also, application issues related to the use of property...

  6. Economic model predictive control theory, formulations and chemical process applications

    CERN Document Server

    Ellis, Matthew; Christofides, Panagiotis D

    2017-01-01

    This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes. In addition to being...

  7. Incorporation of chemical kinetic models into process control

    International Nuclear Information System (INIS)

    Herget, C.J.; Frazer, J.W.

    1981-01-01

    An important consideration in chemical process control is to determine the precise rationing of reactant streams, particularly when a large time delay exists between the mixing of the reactants and the measurement of the product. In this paper, a method is described for incorporating chemical kinetic models into the control strategy in order to achieve optimum operating conditions. The system is first characterized by determining a reaction rate surface as a function of all input reactant concentrations over a feasible range. A nonlinear constrained optimization program is then used to determine the combination of reactants which produces the specified yield at minimum cost. This operating condition is then used to establish the nominal concentrations of the reactants. The actual operation is determined through a feedback control system employing a Smith predictor. The method is demonstrated on a laboratory bench scale enzyme reactor

  8. Process development for waveguide chemical sensors with integrated polymeric sensitive layers

    Science.gov (United States)

    Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo

    2008-02-01

    Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.

  9. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  10. Integrated cell and process engineering for improved transient production of a "difficult-to-express" fusion protein by CHO cells.

    Science.gov (United States)

    Johari, Yusuf B; Estes, Scott D; Alves, Christina S; Sinacore, Marty S; James, David C

    2015-12-01

    Based on an optimized electroporation protocol, we designed a rapid, milliliter-scale diagnostic transient production assay to identify limitations in the ability of Chinese hamster ovary (CHO) cells to produce a model "difficult-to-express" homodimeric Fc-fusion protein, Sp35Fc, that exhibited very low volumetric titer and intracellular formation of disulfide-bonded oligomeric aggregates post-transfection. As expression of Sp35Fc induced an unfolded protein response in transfected host cells, we utilized the transient assay to compare, in parallel, multiple functionally diverse strategies to engineer intracellular processing of Sp35Fc in order to increase production and reduce aggregation as two discrete design objectives. Specifically, we compared the effect of (i) co-expression of ER-resident molecular chaperones (BiP, PDI, CypB) or active forms of UPR transactivators (ATF6c, XBP1s) at varying recombinant gene load, (ii) addition of small molecules known to act as chemical chaperones (PBA, DMSO, glycerol, betaine, TMAO) or modulate UPR signaling (PERK inhibitor GSK2606414) at varying concentration, (iii) a reduction in culture temperature to 32°C. Using this information, we designed a biphasic, Sp35Fc-specific transient manufacturing process mediated by lipofection that utilized CypB co-expression at an optimal Sp35Fc:CypB gene ratio of 5:1 to initially maximize transfected cell proliferation, followed by addition of a combination of PBA (0.5 mM) and glycerol (1% v/v) at the onset of stationary phase to maximize cell specific production and eliminate Sp35Fc aggregation. Using this optimal, engineered process transient Sp35Fc production was significantly increased sixfold over a 12 day production process with no evidence of disulfide-bonded aggregates. Finally, transient production in clonally derived sub-populations (derived from parental CHO host) screened for a heritably improved capability to produce Sp35Fc was also significantly improved by the optimized

  11. LCA of Chemicals and Chemical Products

    DEFF Research Database (Denmark)

    Fantke, Peter; Ernstoff, Alexi

    2018-01-01

    This chapter focuses on the application of Life Cycle Assessment (LCA) to evaluate the environmental performance of chemicals as well as of products and processes where chemicals play a key role. The life cycle stages of chemical products, such as pharmaceuticals drugs or plant protection products......, are discussed and differentiated into extraction of abiotic and biotic raw materials, chemical synthesis and processing, material processing, product manufacturing, professional or consumer product use, and finally end-of-life . LCA is discussed in relation to other chemicals management frameworks and concepts...... including risk assessment , green and sustainable chemistry , and chemical alternatives assessment. A large number of LCA studies focus on contrasting different feedstocks or chemical synthesis processes, thereby often conducting a cradle to (factory) gate assessment. While typically a large share...

  12. PWR steam generator chemical cleaning. Phase I: solvent and process development. Volume II

    International Nuclear Information System (INIS)

    Larrick, A.P.; Paasch, R.A.; Hall, T.M.; Schneidmiller, D.

    1979-01-01

    A program to demonstrate chemical cleaning methods for removing magnetite corrosion products from the annuli between steam generator tubes and the tube support plates in vertical U-tube steam generators is described. These corrosion products have caused steam generator tube ''denting'' and in some cases have caused tube failures and support plate cracking in several PWR generating plants. Laboratory studies were performed to develop a chemical cleaning solvent and application process for demonstration cleaning of the Indian Point Unit 2 steam generators. The chemical cleaning solvent and application process were successfully pilot-tested by cleaning the secondary side of one of the Indian Point Unit 1 steam generators. Although the Indian Point Unit 1 steam generators do not have a tube denting problem, the pilot test provided for testing of the solvent and process using much of the same equipment and facilities that would be used for the Indian Point Unit 2 demonstration cleaning. The chemical solvent selected for the pilot test was an inhibited 3% citric acid-3% ascorbic acid solution. The application process, injection into the steam generator through the boiler blowdown system and agitation by nitrogen sparging, was tested in a nuclear environment and with corrosion products formed during years of steam generator operation at power. The test demonstrated that the magnetite corrosion products in simulated tube-to-tube support plate annuli can be removed by chemical cleaning; that corrosion resulting from the cleaning is not excessive; and that steam generator cleaning can be accomplished with acceptable levels of radiation exposure to personnel

  13. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-02-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  14. Chemical evolution of the Earth: Equilibrium or disequilibrium process?

    Science.gov (United States)

    Sato, M.

    1985-01-01

    To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.

  15. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  16. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    International Nuclear Information System (INIS)

    Sandre, C.; Moulin, C.; Bresson, C.; Gault, N.; Poncy, J. L.; Lefaix, J. L.

    2010-01-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B 12 , but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, 58 Co and 60 Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl 2 ) with or without gamma-ray doses to mimic contamination by 60 Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  17. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Gault, N. [CEA Fontenay aux Roses, DSV/IRCM/SCSR/LRTS, 92265 Fontenay aux Rose (France); Sandre, C.; Moulin, B.; Bresson, C. [CEA, DEN, SECR, Laboratoire de Speciation des Radionucleides et des Molecules, F-91191 Gif-sur-Yvette (France); Poncy, J.L. [CEA Bruyeres Le Chatel, DSV/IRCM/SREIT/LRT, 91680 Bruyeres Le Chatel (France); Lefaix, J.L. [CEA Caen, DSV/IRCM/SRO/LARIA, 14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B12, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without {gamma}-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate {gamma}-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  18. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Sandre, C.; Moulin, C.; Bresson, C. [CEA Saclay, DEN, SECR, Lab Speciat Radionucleides and Mol, F-91191 Gif Sur Yvette (France); Gault, N. [CEA Fontenay Roses, DSV IRCM SCSR LRTS, F-92265 Fontenay Aux Roses (France); Poncy, J. L. [CEA Bruyeres Le Chatel, DSV IRCM SREIT LRT, F-91680 Bruyeres Le Chatel (France); Lefaix, J. L. [CEA Caen, DSV IRCM SRO LARIA, F-14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B{sub 12}, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without gamma-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  19. Optimisation of electronic interface properties of a-Si:H/c-Si hetero-junction solar cells by wet-chemical surface pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, H. [Hahn-Meitner-Institut, Abt. Siliziumphotovoltaik, Kekulestrasse 5, D-12489 Berlin (Germany)], E-mail: angermann@hmi.de; Korte, L.; Rappich, J.; Conrad, E.; Sieber, I.; Schmidt, M. [Hahn-Meitner-Institut, Abt. Siliziumphotovoltaik, Kekulestrasse 5, D-12489 Berlin (Germany); Huebener, K.; Hauschild, J. [Freie Universitaet Berlin, FB Physik, Arnimallee 14, 14195 Berlin (Germany)

    2008-08-30

    The relation between structural imperfections at structured silicon surfaces, energetic distribution of interface state densities, recombination loss at a-Si:H/c-Si interfaces and solar cell characteristics have been intensively investigated using non-destructive, surface sensitive techniques, surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and electron microscopy (SEM). Sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of Si(111) pyramids. Special wet-chemical smoothing and oxide removal procedures for structured substrates were developed, in order to reduce the preparation-induced surface micro-roughness and density of electronically active defects. H-termination and passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological process. We achieved significantly lower micro-roughness, densities of surface states D{sub it}(E) and recombination loss at a-Si:H/c-Si interfaces on wafers with randomly distributed pyramids, compared to conventional pre-treatments. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H/c-Si/BSF/Al), the c-Si surface becomes part of the a-Si:H/c-Si interface, whose recombination activity determines cell performance. With textured substrates, the smoothening procedure results in a significant increase of short circuit current, fill factor and efficiency.

  20. Optimisation of electronic interface properties of a-Si:H/c-Si hetero-junction solar cells by wet-chemical surface pre-treatment

    International Nuclear Information System (INIS)

    Angermann, H.; Korte, L.; Rappich, J.; Conrad, E.; Sieber, I.; Schmidt, M.; Huebener, K.; Hauschild, J.

    2008-01-01

    The relation between structural imperfections at structured silicon surfaces, energetic distribution of interface state densities, recombination loss at a-Si:H/c-Si interfaces and solar cell characteristics have been intensively investigated using non-destructive, surface sensitive techniques, surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and electron microscopy (SEM). Sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of Si(111) pyramids. Special wet-chemical smoothing and oxide removal procedures for structured substrates were developed, in order to reduce the preparation-induced surface micro-roughness and density of electronically active defects. H-termination and passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological process. We achieved significantly lower micro-roughness, densities of surface states D it (E) and recombination loss at a-Si:H/c-Si interfaces on wafers with randomly distributed pyramids, compared to conventional pre-treatments. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H/c-Si/BSF/Al), the c-Si surface becomes part of the a-Si:H/c-Si interface, whose recombination activity determines cell performance. With textured substrates, the smoothening procedure results in a significant increase of short circuit current, fill factor and efficiency

  1. Selection of chemically defined media for CHO cell fed-batch culture processes

    NARCIS (Netherlands)

    Pan, X.; Streefland, M.; Dalm, C.; Wijffels, R.H.; Martens, D.E.

    2017-01-01

    Two CHO cell clones derived from the same parental CHOBC cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures.
    Higher

  2. In vitro transformation: interactions of chemical carcinogens and radiation

    International Nuclear Information System (INIS)

    DiPaolo, J.A.

    1976-01-01

    The development of reproducible quantitative in vitro procedures resulting in neoplastic transformation of mammalian cells has made possible the separation of events related to the process leading to transformation from secondary events that interfere with the early recognition of transformation. The use of chemical carcinogens on Syrian hamster cell strains results in a dose-response relation consistent with a Poisson distribution, indicating that the transformation phenomenon is inductive. In some circumstances, the joint action or interaction of chemical carcinogens with other agents results in an increased incidence of transformation. The pretreatment of Syrian hamster cells with ionizing radiation (250 R) or alkylating chemicals enhances the frequency of transformation on a cell or colony basis ordinarily obtained with known chemical carcinogens. Pretreatment with non-ionizing irradiation (uv, 254 nm) did not have a similar effect. The two types of irradiation and the alkylating agents reduced the cloning efficiency of the cells. X ray alone produced no transformation; the alkylating chemicals produced transformations infrequently, whereas uv produced a significant number of transformations. The number of transformations associated with uv is increased by pretreatment of the cells by x-irradiation. The enhancement of transformation by x-ray or x-ray-type agents appears to be independent of the type of second carcinogen used

  3. Enhancing the Chemical and Mechanical Durability of Polymer Electrolyte Membranes for Fuel Cell Applications

    Science.gov (United States)

    Baker, Andrew M.

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices which generate electricity from the electrochemical reaction of hydrogen and oxygen. Currently, widespread adoption of PEM fuel cell technology is hindered by low component durability and high costs. In this work, strategies were investigated to improve the mechanical and chemical durability of the ion conducting polymer, or ionomer, which comprises the PEM, in order to directly address these limitations. Owing to their exceptional mechanical properties, carbon nanotubes (CNTs) were investigated for mechanical reinforcement of the PEM. Because of their electronic conductivity, which diminishes cell performance, two strategies were developed to enable the use of CNTs as PEM reinforcement. These systems result in enhanced mechanical properties without sacrificing performance of the PEM during operation. Further, when coated with ceria (CeO2), which scavenges radicals that are generated during operation and cause PEM chemical degradation by attacking vulnerable chemical groups in the ionomer, MWCNTs further improved PEM chemical durability. During cell fabrication, conditioning, and discharge, Ce rapidly migrates between the PEM and catalyst layers (CLs), which reduces catalyst efficiency and leaves areas of the cell defenseless against radical attacks. Therefore, in order to stabilize Ce and localize it to areas of highest radical generation, it is critical to understand and identify the relative influences of different migration mechanisms. Using a novel elemental analysis technique, Ce migration was characterized due to potential and concentration gradients, water flux, and degradation of Ce-exchanged sulfonic acid groups within the PEM. Additionally, Zr-doped ceria was employed to resist migration due to ionomer degradation which improved cell durability, without reducing performance, resulting in PEM Ce stabilization near its initial concentrations after > 1,400 hours of testing. Ce was

  4. Idaho Chemical Processing Plant Site Development Plan

    International Nuclear Information System (INIS)

    Ferguson, F.G.

    1994-02-01

    The Idaho Chemical Processing Plant (ICPP) mission is to receive and store spent nuclear fuels and radioactive wastes for disposition for Department of Energy (DOE) in a cost-effective manner that protects the safety of Idaho National Engineering Laboratory (INEL) employees, the public, and the environment by: Developing advanced technologies to process spent nuclear fuel for permanent offsite disposition and to achieve waste minimization. Receiving and storing Navy and other DOE assigned spent nuclear fuels. Managing all wastes in compliance with applicable laws and regulations. Identifying and conducting site remediation consistent with facility transition activities. Seeking out and implementing private sector technology transfer and cooperative development agreements. Prior to April 1992, the ICPP mission included fuel reprocessing. With the recent phaseout of fuel reprocessing, some parts of the ICPP mission have changed. Others have remained the same or increased in scope

  5. Roll-to-roll processed polymer tandem solar cells partially processed from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Andreasen, Birgitta

    2012-01-01

    Large area polymer tandem solar cells completely processed using roll-to-roll (R2R) coating and printing techniques are demonstrated. A stable tandem structure was achieved by the use of orthogonal ink solvents for the coating of all layers, including both active layers. Processing solvents...... included water, alcohols and chlorobenzene. Open-circuit voltages close to the expected sum of sub cell voltages were achieved, while the overall efficiency of the tandem cells was found to be limited by the low yielding back cell, which was processed from water based ink. Many of the challenges associated...

  6. Chemical Composition and Fatty Acids of Glodok Fish by High Thermal Processing

    Directory of Open Access Journals (Sweden)

    Sri Purwaningsih

    2014-11-01

    Full Text Available Glodok is an economically underrated fish with a high nutrient content. The research aims to study the changes on chemical composition, fatty acids, omega-6 and omega-3 ratio in glodok muscle after processing with different methods of boiling, steaming, and boiling with addition of salt (3%. The results showed that the treatment (boiling, steaming, and boiling with addition of salt gives a significant effect (α=0.05 in water content, ash, lipid content, nervonat acid, linoleic acid, arachidonic acid, EPA, and DHA. The best processing method was steaming. The ratio of omega-3 and omega-6 in fresh glodok fish was 2,1:1, which is higher than WHO recommendation of 0,6:1,7.Keywords: chemical composition, fatty acid, glodok fish, processing

  7. The Eco Logic gas-phase chemical reduction process

    International Nuclear Information System (INIS)

    Hallett, D.J.; Campbell, K.R.

    1994-01-01

    Since 1986, Eco Logic has conducted research with the aim of developing a new technology for destroying aqueous organic wastes, such as contaminated harbor sediments, landfill soil and leachates, and lagoon sludges. The goal was a commercially-viable chemical process that could deal with these watery wastes and also process stored wastes. The process described in this paper was developed with a view to avoiding the expense and technical drawbacks of incinerators, while still providing high destruction efficiencies and waste volume capabilities. A lab-scale process unit was constructed in 1988 and tested extensively. Based on the results of these tests, it was decided to construct a mobile pilot-scale unit that could be used for further testing and ultimately for small commercial waste processing operations. It was taken through a preliminary round of tests at Hamilton Harbour, Ontario, where the waste processed was coal-tar-contaminated harbor sediment. In 1992, the same unit was taken through a second round of tests in Bay City, Michigan. In this test program, the pilot-scale unit processed PCBs in aqueous, organic and soil matrices. This paper describes the process reactions and the pilot-scale process unit, and presents the results of pilot-scale testing thus far

  8. Cell-assembly coding in several memory processes.

    Science.gov (United States)

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  9. PREMATH: a Precious-Material Holdup Estimator for unit operations and chemical processes

    International Nuclear Information System (INIS)

    Krichinsky, A.M.; Bruns, D.D.

    1982-01-01

    A computer program, PREMATH (Precious Material Holdup Estimator), has been developed to permit inventory estimation in vessels involved in unit operations and chemical processes. This program has been implemented in an operating nuclear fuel processing plant. PREMATH's purpose is to provide steady-state composition estimates for material residing in process vessels until representative samples can be obtained and chemical analyses can be performed. Since these compositions are used for inventory estimation, the results are determined for and cataloged in container-oriented files. The estimated compositions represent material collected in applicable vessels - including consideration for material previously acknowledged in these vessels. The program utilizes process measurements and simple material balance models to estimate material holdups and distribution within unit operations. During simulated run testing, PREMATH-estimated inventories typically produced material balances within 7% of the associated measured material balances for uranium and within 16% of the associated, measured material balances for thorium (a less valuable material than uranium) during steady-state process operation

  10. NUMATH: a nuclear-material-holdup estimator for unit operations and chemical processes

    International Nuclear Information System (INIS)

    Krichinsky, A.M.

    1981-01-01

    A computer program, NUMATH (Nuclear Material Holdup Estimator), has been developed to permit inventory estimation in vessels involved in unit operations and chemical processes. This program has been implemented in an operating nuclear fuel processing plant. NUMATH's purpose is to provide steady-state composition estimates for material residing in process vessels until representative samples can be obtained and chemical analyses can be performed. Since these compositions are used for inventory estimation, the results are determined for and cataloged in container-oriented files. The estimated compositions represent material collected in applicable vessels-including consideration for material previously acknowledged in these vessels. The program utilizes process measurements and simple material balance models to estimate material holdups and distribution within unit operations. During simulated run testing, NUMATH-estimated inventories typically produced material balances within 7% of the associated measured material balances for uranium and within 16% of the associated, measured material balance for thorium during steady-state process operation

  11. STUDY REGARDING THE CORELATION BETWEEN SOMATIC CELLS COUNT AND MAJOR CHEMICAL COMPOUNDS IN RAW MILK

    Directory of Open Access Journals (Sweden)

    S. ACATINCĂI

    2008-10-01

    Full Text Available This study approaches the dynamic of somatic cells number and chemical composition of milk during 13 months of control. The study also investigates the correlations between the number of somatic cells and some chemical parameters in milk. Studies were carried out on Romanian Black and White cows between March 2005 and March 2006 at the Didactical farm of the Banat University of Agricultural Sciences Timisoara. As quality indicator, the number of somatic cells has different values among the controls. Average values for the 13 months of control, with the exception of three controls, were below maximum limit admitted from 1th of January 2007 (600000 SCC/ml milk. There weren’t any significant differences for SCC between the two seasons. Chemical parameters in milk varied in close limits and the differences were not significant, with one exception for fat percent. Fat percent is higher (p<0.05 in the cold season 3.87% compared with 3.55% during the warm season. Somatic cells number is weak correlated with lactose and strong correlated with proteins.

  12. Application of repetitive pulsed power technology to chemical processing

    International Nuclear Information System (INIS)

    Kaye, R.J.; Hamil, R.

    1995-01-01

    The numerous sites of soil and water contaminated with organic chemicals present an urgent environmental concern that continues to grow. Electron and x-ray irradiation have been shown to be effective methods to destroy a wide spectrum of organic chemicals, nitrates, nitrites, and cyanide in water by breaking molecules to non-toxic products or entirely mineralizing the by-products to gas, water, and salts. Sandia National Laboratories is developing Repetitive High Energy Pulsed Power (RHEPP) technology capable of producing high average power, broad area electron or x-ray beams. The 300 kW RHEPP-II facility accelerates electrons to 2.5 MeV at 25 kA over 1,000 cm 2 in 60 ns pulses at repetition rates of over 100 Hz. Linking this modular treatment capability with the rapid optical-sensing diagnostics and neutral network characterization software algorithms will provide a Smart Waste Treatment (SWaT) system. Such a system would also be applicable for chemical manufacture and processing of industrial waste for reuse or disposal. This talk describes both the HREPP treatment capability and sensing technologies. Measurements of the propagated RHEPP-II beam and dose profiles are presented. Sensors and rapid detection software are discussed with application toward chemical treatment

  13. A Generic Life Cycle Assessment Tool for Chemical-biochemical Processes

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Malakul, Pomthong; Siemanond, Kitipat

    2013-01-01

    As environmental impacts and resource depletion are serious concerns for the modern society, they also provide the motivation and need to design processes that are not only economically and operationally feasible, but also environmentally friendly. In this respect, life cycle assessment (LCA......) is a tool for quantifying potential environmental impacts throughout the life cycle of the product or process. It can be used in conjunction with an economic tool to evaluate the design of any existing and/or new chemical-biochemical process and create improvement options in order to arrive at the best...

  14. Wet-process Fabrication of Low-cost All-solid Wire-shaped Solar Cells on Manganese-plated Electrodes

    International Nuclear Information System (INIS)

    Fan, Xing; Zhang, Xiaoying; Zhang, Nannan; Cheng, Li; Du, Jun; Tao, Changyuan

    2015-01-01

    Highlights: • All-solid wire-shaped flexible solar cells are firstly assembled on low-cost Mn-plated fibers. • Energy efficiency improved by >27% after coating a layer of Mn on various substrates. • The cell is fabricated via wet process under low temperature and mild pH conditions. • Stable flexible solar cells are realized on lightweight and low-cost polymer fiber. - Abstract: All-solid wire-shaped flexible solar cells are assembled for the first time on low-cost Mn-plated wires through wet-process fabrication under low temperature and mild pH conditions. With a price cheap as the steel, metal Mn can be easily plated on almost any substrates, and evidently promote the photovoltaic efficiency of wire-shaped solar cells on various traditional metal wire substrates, such as Fe and Ti, by 27% and 65%, respectively. Flexible solar cell with much lower cost and weight is assembled on Mn-plated polymer substrate, and is still capable of giving better performance than that on Fe or Ti substrate. Both its mechanical and chemical stability are good for future weaving applications. Owing to the wire-type structure, such low-cost metals as Mn, which are traditionally regarded as unsuitable for solar cells, may provide new opportunities for highly efficient solar cells

  15. ARTIST process. A novel chemical process for treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Tachimori, Shoichi

    2001-10-01

    A new chemical process, ARTIST process, is proposed for the treatment of spent nuclear fuel. The main concept of the ARTIST process is to recover and stock all actinides (Ans) as two groups, uranium (U) and a mixture of transuranics (TRU), to preserve their resource value and to dispose solely fission products (FPs). The process is composed of two main steps, an U exclusive isolation and a total recovery of TRU; which copes with the nuclear non-proliferation measures, and additionally of Pu separation process and soft N-donor process if requested, and optionally of processes for separation of long-lived FPs. These An products: U-product and TRU-product, are to be solidified by calcination and allowed to the interim stockpile for future utilization. These separations are achieved by use of amidic extractants in accord with the CHON principle. The technical feasibility of the ARTIST process was explained by the performance of both the branched alkyl monoamides in extracting U and suppressing the extraction of tetravalent Ans due to the steric effect and the diglycolic amide (TODGA) in thorough extraction of all TRU by tridentate fashion. When these TRU are requested to put into reactors, LWR or FBR, for power generation or the Accelerator - Driven System (ADS) for transmutation, Pu (Np) or Am-Cm (Np) are to be extracted from the TRU-product. (author)

  16. DNA adducts-chemical addons

    Directory of Open Access Journals (Sweden)

    T R Rajalakshmi

    2015-01-01

    Full Text Available DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde. This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers.

  17. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts for subse...

  18. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    Science.gov (United States)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  19. Kinetics of physico-chemical processes during intensive mechanical processing of ZnO-MnO2 powder mixture

    International Nuclear Information System (INIS)

    Kakazey, M.; Vlasova, M.; Dominguez-Patino, M.; Juarez-Arellano, E.A.; Bykov, A.; Leon, I.; Siqueiros-Diaz, A.

    2011-01-01

    Experimental results of electron paramagnetic resonance spectra, X-ray diffraction, scanning electron microscopy and infrared spectroscopy demonstrate that the kinetic of the physical and chemical processes that takes place during prolonged intensive mechanical processing (MP, 0 MP >3120min) of powder mixtures of 50%wt ZnO+50%wt MnO 2 can be described as a three stage process. (1) 0 MP >30min, particles destruction, formation of superficial defects, fast increment of sample average temperature (from 290 to ∼600K) and annealing of defects with the lowest energy of activation E ac . (2) 30 MP >390min, further particle destruction, slow increment of sample average temperature (from ∼600 to ∼700K), formation and growth of a very disordered layer of β-MnO 2 around ZnO particles, dehydration of MnO 2 , formation of solid solution of Mn 2+ ions in ZnO, formation of nano-quasiamorphous states in the ZnO-MnO 2 mixture and onset of the formation of the ZnMnO 3 phase. (3) 390 MP >3120min, the sample average temperature remains constant (∼700K), the reaction is completed and the spinel ZnMnO 3 phase with a unit cell a=8.431(1) A and space group Fd3-barm is the only phase present in the sample. No ferromagnetism at room temperature was detected in this study. - Highlights: → The kinetics during mechanical processing of ZnO-MnO 2 samples is a three stage process. → First stage, reduction of crystallites size and accumulation of defects. → Second stage, nano-quasiamorphous states formation and onset of the ZnMnO 3 phase. → Third stage, complete reaction to the spinel ZnMnO 3 phase.

  20. Benefits of integrating chemical and mechanical cleaning processes for steam generator sludge removal

    International Nuclear Information System (INIS)

    Varrin, R.D.; Ferriter, A.M.; Oliver, T.W.; Le Surf, J.E.

    1992-01-01

    This paper discusses the benefits of performing in-bundle tubesheet lancing in conjunction with chemical cleaning of PWR and PHWR steam generators in which a hard sludge pile is known to exist. The primary benefits of in-bundle lancing are to: (1) increase the exposed area of the sludge pile by cutting furrows in the surface thereby enhancing dissolution of sludge, (2) reduce the volume of solvents required since material removed by lancing does not have to be dissolved chemically, (3) improve rinsing and removal of residual solvent between iron and copper dissolution steps, and (4) allow for verification of process effectiveness by providing high quality in-bundle visual inspection. The reduction in solvent volumes can lead to a significant reduction in solvent costs and waste processing. A case study which includes an economic evaluation for a combined chemical and mechanical cleaning shows a potential cost saving of up to US$ 300,000 over use of chemical cleaning alone. 14 refs., 2 tabs., 2 figs

  1. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    Science.gov (United States)

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  2. Free radicals in chemical carcinogenesis.

    Science.gov (United States)

    Clemens, M R

    1991-12-15

    During the past decade, remarkable progress has been made in our understanding of cancer-causing agents, mechanisms of cancer formation and the behavior of cancer cells. Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, and lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis). It has been estimated that about 75-80% of all human cancers are environmentally induced, 30-40% of them by diet. Only a small minority, possibly no more than 2% of all cases, result purely from inherent genetic changes. Several lines of evidence confirm that the fundamental molecular event or events that cause a cell to become malignant occur at the level of the DNA and a variety of studies indicate that the critical molecular event in chemical carcinogenesis is the interaction of the chemical agent with DNA. The demonstration that DNA isolated from tumor cells can transfect normal cells and render them neoplastic provides direct proof that an alteration of the DNA is responsible for cancer. The transforming genes, or oncogenes, have been identified by restriction endonuclease mapping. One of the characteristics of tumor cells generated by transformation with viruses, chemicals, or radiation is their reduced requirement for serum growth factors. A critical significance of electrophilic metabolites of carcinogenes in chemical carcinogenesis has been demonstrated. A number of "proximate" and "ultimate" metabolites, especially those of aromatic amines, were described. The "ultimate" forms of carcinogens actually interact with cellular constituents to cause neoplastic transformation and are the final metabolic products in most pathways. Recent evidence indicates that free radical derivatives of chemical carcinogens may be produced both metabolically and nonenzymatically during their metabolism. Free radicals carry no

  3. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Organic substances and pharmaceuticals engineering. Petrochemistry and chemical processing of alternative feedstock

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning organic substances and pharmaceuticals engineering, petrochemistry and chemical processing of alternative feedstock. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  4. Redox Disrupting Potential of ToxCast™Chemicals Ranked by Activity in Mouse Embryonic Stem Cells

    Science.gov (United States)

    Little is known regarding the adverse outcome pathways responsible for developmental toxicity following exposure to chemicals. An evaluation of Toxoast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay revealed a redox sensitive pathway that correlated with...

  5. Chemically different non-thermal plasmas target distinct cell death pathways

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Lunova, M.; Jirsa, M.; Dejneka, Alexandr; Kubinová, Šárka

    2017-01-01

    Roč. 7, č. 1 (2017), s. 1-17, č. článku 600. ISSN 2045-2322 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : chemically different * non-thermal plasmas * target distinct cell death pathways Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.259, year: 2016

  6. Application showcases for a small scale membrane contactor for fine chemical processes

    NARCIS (Netherlands)

    Roelands, C.P.M.; Ngene, I.S.

    2011-01-01

    The transition from batch to continuous processing in fine-chemicals industries offers many advantages; among these are a high volumetric productivity, improved control over reaction conditions resulting in a higher yield and selectivity, a small footprint and a safer process due to a smaller

  7. Polycation-mediated integrated cell death processes

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Wu, Linping

    2014-01-01

    standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design...

  8. Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis.

    Directory of Open Access Journals (Sweden)

    Josephine C Bodle

    Full Text Available Adipose-derived stem cells (ASC are multipotent stem cells that show great potential as a cell source for osteogenic tissue replacements and it is critical to understand the underlying mechanisms of lineage specification. Here we explore the role of primary cilia in human ASC (hASC differentiation. This study focuses on the chemosensitivity of the primary cilium and the action of its associated proteins: polycystin-1 (PC1, polycystin-2 (PC2 and intraflagellar transport protein-88 (IFT88, in hASC osteogenesis. To elucidate cilia-mediated mechanisms of hASC differentiation, siRNA knockdown of PC1, PC2 and IFT88 was performed to disrupt cilia-associated protein function. Immunostaining of the primary cilium structure indicated phenotypic-dependent changes in cilia morphology. hASC cultured in osteogenic differentiation media yielded cilia of a more elongated conformation than those cultured in expansion media, indicating cilia-sensitivity to the chemical environment and a relationship between the cilium structure and phenotypic determination. Abrogation of PC1, PC2 and IFT88 effected changes in both hASC proliferation and differentiation activity, as measured through proliferative activity, expression of osteogenic gene markers, calcium accretion and endogenous alkaline phosphatase activity. Results indicated that IFT88 may be an early mediator of the hASC differentiation process with its knockdown increasing hASC proliferation and decreasing Runx2, alkaline phosphatase and BMP-2 mRNA expression. PC1 and PC2 knockdown affected later osteogenic gene and end-product expression. PC1 knockdown resulted in downregulation of alkaline phosphatase and osteocalcin gene expression, diminished calcium accretion and reduced alkaline phosphatase enzymatic activity. Taken together our results indicate that the structure of the primary cilium is intimately associated with the process of hASC osteogenic differentiation and that its associated proteins are critical

  9. A Rapid Cell Expansion Process for Production of Engineered Autologous CAR-T Cell Therapies.

    Science.gov (United States)

    Lu, Tangying Lily; Pugach, Omar; Somerville, Robert; Rosenberg, Steven A; Kochenderfer, James N; Better, Marc; Feldman, Steven A

    2016-12-01

    The treatment of B-cell malignancies by adoptive cell transfer (ACT) of anti-CD19 chimeric antigen receptor T cells (CD19 CAR-T) has proven to be a highly successful therapeutic modality in several clinical trials. 1-6 The anti-CD19 CAR-T cell production method used to support initial trials relied on numerous manual, open process steps, human serum, and 10 days of cell culture to achieve a clinical dose. 7 This approach limited the ability to support large multicenter clinical trials, as well as scale up for commercial cell production. Therefore, studies were completed to streamline and optimize the original National Cancer Institute production process by removing human serum from the process in order to minimize the risk of viral contamination, moving process steps from an open system to functionally closed system operations in order to minimize the risk of microbial contamination, and standardizing additional process steps in order to maximize process consistency. This study reports a procedure for generating CD19 CAR-T cells in 6 days, using a functionally closed manufacturing process and defined, serum-free medium. This method is able to produce CD19 CAR-T cells that are phenotypically and functionally indistinguishable from cells produced for clinical trials by the previously described production process.

  10. Process development for high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.; Basore, P.A.; Buck, M.E.; Ruby, D.S.; Schubert, W.K.; Silva, B.L.; Tingley, J.W.

    1991-12-31

    Fabrication of high-efficiency silicon solar cells in an industrial environment requires a different optimization than in a laboratory environment. Strategies are presented for process development of high-efficiency silicon solar cells, with a goal of simplifying technology transfer into an industrial setting. The strategies emphasize the use of statistical experimental design for process optimization, and the use of baseline processes and cells for process monitoring and quality control. 8 refs.

  11. Application of the chemical properties of ruthenium to decontamination processes

    International Nuclear Information System (INIS)

    Fontaine, A.; Berger, D.

    1965-01-01

    The chemical properties of ruthenium in the form of an aqueous solution of the nitrate and of organic tributylphosphate solution are reviewed. From this data, some known examples are given: they demonstrate the processes of separation or of elimination of ruthenium from radioactive waste. (authors) [fr

  12. Near miss reporting in the chemical process industry: an overview

    NARCIS (Netherlands)

    Schaaf, van der T.W.

    1995-01-01

    The research programme described in this paper focuses on the human component of system failure in general, and more specifically on the design and implementation of information systems for registration and analysis of so called near misses (or: near accidents) in the chemical process industry. Its

  13. Characterization of p75{sup +} ectomesenchymal stem cells from rat embryonic facial process tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Zhang, Li; Liu, Rui; Xing, Yongjun; Zhou, Xia [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042 (China); Nie, Xin, E-mail: dr.xinnie@gmail.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042 (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Ectomesenchymal stem cells (EMSCs) were found to migrate to rat facial processes at E11.5. Black-Right-Pointing-Pointer We successfully sorted p75NTR positive EMSCs (p75{sup +} EMSCs). Black-Right-Pointing-Pointer p75{sup +} EMSCs up to nine passages showed relative stable proliferative activity. Black-Right-Pointing-Pointer We examined the in vitro multilineage potential of p75{sup +} EMSCs. Black-Right-Pointing-Pointer p75{sup +}EMSCs provide an in vitro model for tooth morphogenesis. -- Abstract: Several populations of stem cells, including those from the dental pulp and periodontal ligament, have been isolated from different parts of the tooth and periodontium. The characteristics of such stem cells have been reported as well. However, as a common progenitor of these cells, ectomesenchymal stem cells (EMSCs), derived from the cranial neural crest have yet to be fully characterized. The aim of this study was to better understand the characteristics of EMSCs isolated from rat embryonic facial processes. Immunohistochemical staining showed that EMSCs had migrated to rat facial processes at E11.5, while the absence of epithelial invagination or tooth-like epithelium suggested that any epithelial-mesenchymal interactions were limited at this stage. The p75 neurotrophin receptor (p75NTR), a typical neural crest marker, was used to select p75NTR-positive EMSCs (p75{sup +} EMSCs), which were found to show a homogeneous fibroblast-like morphology and little change in the growth curve, proliferation capacity, and cell phenotype during cell passage. They also displayed the capacity to differentiate into diverse cell types under chemically defined conditions in vitro. p75{sup +} EMSCs proved to be homogeneous, stable in vitro and potentially capable of multiple lineages, suggesting their potential for application in dental or orofacial tissue engineering.

  14. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Directory of Open Access Journals (Sweden)

    H. V. Lee

    2014-01-01

    Full Text Available Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate’s application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.

  15. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Science.gov (United States)

    Lee, H. V.; Hamid, S. B. A.; Zain, S. K.

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  16. 75 FR 36306 - Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process

    Science.gov (United States)

    2010-06-25

    ... have large industrial uses. Regulated chemical mixtures are not items having common household uses... and others from exposure to the toxic chemicals left behind. Executive Order 12988 This regulation... 1117-AA66 Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process...

  17. The Ames Laboratory Chemical Disposal Site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1995-01-01

    The Ames Laboratory has historically supported the US Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, mixed wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the US Army Corps of Engineers (USACE), OHM Remediation Services Corp. (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  18. Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.

    Science.gov (United States)

    Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C

    2017-05-01

    Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends on the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus PCC 7942. The Min system has established functions in controlling cell division by regulating the assembly of FtsZ, a tubulin-like protein required for defining the bacterial division plane. We show that altering the expression of two FtsZ-regulatory proteins, MinC and Cdv3, enables control over cell morphology by disrupting FtsZ localization and cell division without preventing continued cell growth. By varying the expression of these proteins, we can tune the lengths of cyanobacterial cells across a broad dynamic range, anywhere from an ∼20% increased length (relative to the wild type) to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach toward decreasing harvesting and processing costs associated with mass cyanobacterial cultivation by altering morphology at the cellular level. IMPORTANCE We show that the cell length of a model cyanobacterial species can be programmed by rationally manipulating the expression of protein factors that suppress cell division. In some instances, we can increase the size of these cells to near-millimeter lengths with this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore, cells treated in this

  19. The constitutive distributed parameter model of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    In the literature of distributed parameter modelling of real processes is not considered the class of multicomponent chemical processes in gas, fluid and solid phase. The aim of paper is constitutive distributed parameter physicochemical model, constructed on kinetics and phenomenal analysis of multicomponent chemical processes in gas, fluid and solid phase. The mass, energy and momentum aspects of these multicomponent chemical reactions and adequate phenomena are utilized in balance operations, by conditions of: constitutive invariance for continuous media with space and time memories, reciprocity principle for isotropic and anisotropic nonhomogeneous media with space and time memories, application of definitions of following derivative and equation of continuity, to the construction of systems of partial differential constitutive state equations, in the following derivative forms for gas, fluid and solid phase. Couched in this way all physicochemical conditions of multicomponent chemical processes in gas, fluid and solid phase are new form of constitutive distributed parameter model for automatics and its systems of equations are new form of systems of partial differential constitutive state equations in sense of phenomenal distributed parameter control

  20. A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell.

    Science.gov (United States)

    Pan, Junqing; Sun, Yanzhi; Li, Wei; Knight, James; Manthiram, Arumugam

    2013-01-01

    The automobile industry consumed 9 million metric tons of lead in 2012 for lead-acid batteries. Recycling lead from spent lead-acid batteries is not only related to the sustainable development of the lead industry, but also to the reduction of lead pollution in the environment. The existing lead pyrometallurgical processes have two main issues, toxic lead emission into the environment and high energy consumption; the developing hydrometallurgical processes have the disadvantages of high electricity consumption, use of toxic chemicals and severe corrosion of metallic components. Here we demonstrate a new green hydrometallurgical process to recover lead based on a hydrogen-lead oxide fuel cell. High-purity lead, along with electricity, is produced with only water as the by-product. It has a >99.5% lead yield, which is higher than that of the existing pyrometallurgical processes (95-97%). This greatly reduces lead pollution to the environment.

  1. Posttranscriptional RNA Modifications: playing metabolic games in a cell's chemical Legoland.

    Science.gov (United States)

    Helm, Mark; Alfonzo, Juan D

    2014-02-20

    Nature combines existing biochemical building blocks, at times with subtlety of purpose. RNA modifications are a prime example of this, where standard RNA nucleosides are decorated with chemical groups and building blocks that we recall from our basic biochemistry lectures. The result: a wealth of chemical diversity whose full biological relevance has remained elusive despite being public knowledge for some time. Here, we highlight several modifications that, because of their chemical intricacy, rely on seemingly unrelated pathways to provide cofactors for their synthesis. Besides their immediate role in affecting RNA function, modifications may act as sensors and transducers of information that connect a cell's metabolic state to its translational output, carefully orchestrating a delicate balance between metabolic rate and protein synthesis at a system's level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Advanced-safeguards systems development for chemical-processing plants. Final report for FY 1980

    International Nuclear Information System (INIS)

    Cartan, F.O.

    1981-04-01

    The program is installing a computer system to test and evaluate process monitoring as a new Safeguards function to supplement the usual physical security and accountability functions. Safeguards development sensors and instruments installed in the Idaho Chemical Processing Plant (ICPP) provide information via a data acquisition system to a Safeguards analysis computer. The monitoring function can significantly enhance current material control (accountability) and containment surveillance capabilities for domestic and international Safeguards uses. Installation of sensors and instruments in the ICPP was more than 75% complete in FY-1980. Installation work was halted at the request of ICPP operations near the end of the year to eliminate possible conflict with instrument calibrations prior to plant startup. Some improvements to the computer hardware were made during FY-1980. Sensor and instrument development during FY-1980 emphasized device testing for ICPP monitoring applications. Pressure transducers, pressure switches, a bubble flowmeter, and load cells were tested; an ultrasonic liquid-in-line sensor was developed and tested. Work on the portable, isotope-ratio mass spectrometer led to the comparison of the HP quadrupole instrument with a small magnetic instrument and to the selection of the quadrupole

  3. Field experience with KWU SG chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1989-01-01

    The ingress of corrosion products into PWR steam generators (SG's) their deposition and the subsequent concentration of salt impurities can induce a variety of mechanisms for corrosion attack on SG tubing. Already, some plants have had to replace their steam generators due to severe corrosion damage and others are seriously considering the same costly action in the near future. One of the most effective ways to counteract corrosion mechanisms and thus to reduce the likelihood of SG replacement becoming necessary is to clean the SG's and to keep them clean. For many years, the industry has been involved in developing different types of cleaning techniques. Among these, chemical cleaning has been shown to be especially effective. In this article, the KWU chemical cleaning process, for which there is considerable application experience, is described. The results of field applications will be presented together with material compatibility data and information on cleaning effectiveness. (author)

  4. Chemical-bath ZnO buffer layer for CuInS{sub 2} thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A.; Weber, M.; Scheer, R.; Lewerenz, H.J. [Hahn-Meitner-Institut, Abt. Grenzflaechen, Bereich Physikalische Chemie, Glienicker Strasse 100, D-14109 Berlin (Germany)

    1998-07-13

    ZnO buffer layers were grown by a chemical-bath deposition (CBD) in order to improve the interface quality in p-CuInS{sub 2} based solar cells, to improve the light transmission in the blue wavelength region, but also as an alternative to eliminate the toxic cadmium. The process consists of immersion of different substrates (glass, CIS) in a dilute solution of tetraamminezinc II, [Zn(NH{sub 2}){sub 4}]{sup 2+}, complex at 60-95C. During the growth process, a homogeneous growth mechanism which proceeds by the sedimentation of a mixture of ZnO and Zn(OH){sub 2} clusters formed in solution, competes with the heterogeneous growth mechanism. The mechanism consists of specific adsorption of a complex Zn(II) followed by a chemical reaction. The last process of growth results in thin, hard, adherent and specularly reflecting films. The characterization of the deposited CBD-ZnO layers was performed by X-ray diffraction (XRD), optical transmittance, scanning electron microscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The as-deposited films on glass show hexagonal zincite structure with two preferred orientations (1 0 0) and (1 0 1). High optical transmittance up to 80% in the near-infrared and part of the visible region was observed. The low growth rate of the films on CIS suggests an atomic layer-by-layer growth process.The device parameters and performance are compared to heterojunction with a standard CdS buffer layer

  5. Development of hydraulic analysis code for optimizing thermo-chemical is process reactors

    International Nuclear Information System (INIS)

    Terada, Atsuhiko; Hino, Ryutaro; Hirayama, Toshio; Nakajima, Norihiro; Sugiyama, Hitoshi

    2007-01-01

    The Japan Atomic Energy Agency has been conducting study on thermochemical IS process for water splitting hydrogen production. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h, is being designed conceptually as the next step of the IS process development. In design of the IS pilot plant, it is important to make chemical reactors compact with high performance from the viewpoint of plant cost reduction. A new hydraulic analytical code has been developed for optimizing mixing performance of multi-phase flow involving chemical reactions especially in the Bunsen reactor. Complex flow pattern with gas-liquid chemical interaction involving flow instability will be characterized in the Bunsen reactor. Preliminary analytical results obtained with above mentioned code, especially flow patterns induced by swirling flow agreed well with that measured by water experiments, which showed vortex breakdown pattern in a simplified Bunsen reactor. (author)

  6. Process Optimization for High Efficiency Heterojunction c-Si Solar Cells Fabrication Using Hot-Wire Chemical Vapor Deposition: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Y.; Yuan, H. C.; Page, M.; Nemeth, W.; Roybal, L.; Wang, Q.

    2012-06-01

    The researchers extensively studied the effects of annealing or thermal history of cell process on the minority carrier lifetimes of FZ n-type c-Si wafers with various i-layer thicknesses from 5 to 60 nm, substrate temperatures from 100 to 350 degrees C, doped layers both p- and n-types, and transparent conducting oxide (TCO).

  7. 77 FR 66638 - The Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office...

    Science.gov (United States)

    2012-11-06

    ... Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office of Management...) approval of the information collection requirements specified in the Standard on Process Safety Management...: The Standard on Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). OMB Number...

  8. SPEEDUP modeling of the defense waste processing facility at the SRS

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1997-01-01

    A computer model has been developed for the dynamic simulation of batch process operations within the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). The DWPF chemically treats high level waste materials from the site tank farm and vitrifies the resulting slurry into a borosilicate glass for permanent disposal. The DWPF consists of three major processing areas: Salt Processing Cell (SPC), Chemical Processing Cell (CPC) and the Melt Cell. A fully integrated model of these process units has been developed using the SPEEDUP trademark software from Aspen Technology. Except for glass production in the Melt Cell, all of the chemical operations within DWPF are batch processes. Since SPEEDUP is designed for dynamic modeling of continuous processes, considerable effort was required to device batch process algorithms. This effort was successful and the model is able to simulate batch operations and the dynamic behavior of the process. The model also includes an optimization calculation that maximizes the waste content in the final glass product. In this paper, we will describe the process model in some detail and present preliminary results from a few simulation studies

  9. Effect of maturity stage and processing on chemical composition, in ...

    African Journals Online (AJOL)

    Effect of maturity stage and processing on chemical composition, in vitro gas production and preference of Panicum maximum and Pennisetum purpureum. ... It is concluded that in order to optimize DM intake farmers should consider the type of grasses and their age at harvest particularly for Muturu. Pelleting improves ...

  10. An Intelligent System for Modelling, Design and Analysis of Chemical Processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    ICAS, Integrated Computer Aided System, is a software that consists of a number of intelligent tools, which are very suitable, among others, for computer aided modelling, sustainable design of chemical and biochemical processes, and design-analysis of product-process monitoring systems. Each...... the computer aided modelling tool will illustrate how to generate a desired process model, how to analyze the model equations, how to extract data and identify the model and make it ready for various types of application. In sustainable process design, the example will highlight the issue of integration...

  11. Macrophage migration inhibitory factor triggers chemotaxis of CD74+CXCR2+ NKT cells in chemically induced IFN-γ-mediated skin inflammation.

    Science.gov (United States)

    Hsieh, Chia-Yuan; Chen, Chia-Ling; Lin, Yee-Shin; Yeh, Trai-Ming; Tsai, Tsung-Ting; Hong, Ming-Yuan; Lin, Chiou-Feng

    2014-10-01

    IFN-γ mediates chemically induced skin inflammation; however, the mechanism by which IFN-γ-producing cells are recruited to the sites of inflammation remains undefined. Secretion of macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, from damaged cells may promote immune cell recruitment. We hypothesized that MIF triggers an initial step in the chemotaxis of IFN-γ-producing cells in chemically induced skin inflammation. Using acute and chronic models of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mouse ears, MIF expression was examined, and its role in this process was investigated pharmacologically. The cell populations targeted by MIF, their receptor expression patterns, and the effects of MIF on cell migration were examined. TPA directly caused cytotoxicity accompanied by MIF release in mouse ear epidermal keratinocytes, as well as in human keratinocytic HaCaT cells. Treatment with the MIF antagonist (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester considerably attenuated TPA-induced ear swelling, leukocyte infiltration, epidermal cell proliferation, and dermal angiogenesis. Inhibition of MIF greatly diminished the dermal infiltration of IFN-γ(+) NKT cells, whereas the addition of exogenous TPA and MIF to NKT cells promoted their IFN-γ production and migration, respectively. MIF specifically triggered the chemotaxis of NKT cells via CD74 and CXCR2, and the resulting depletion of NKT cells abolished TPA-induced skin inflammation. In TPA-induced skin inflammation, MIF is released from damaged keratinocytes and then triggers the chemotaxis of CD74(+)CXCR2(+) NKT cells for IFN-γ production. Copyright © 2014 by The American Association of Immunologists, Inc.

  12. The application of nuclear energy to the Canadian chemical process industry

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1976-03-01

    A study has been made to determine what role nuclear energy, either electrical or thermal, could play in the Canadian chemical process industry. The study was restricted to current-scale CANDU type power reactors. It is concluded that the scale of operation of the chemical industry is rarely large enough to use blocks of electrical power (e) of 500 MW or thermal power (t) of 1500 MW. Thus, with a few predictable exceptions, the role of nuclear energy in the Canadian chemical industry will be as a general thermal/electrical utility supplier, serving a variety of customers in a particular geographic area. This picture would change if nuclear steam generators of 20 to 50 MW(t) become available and are economically competitive. (author)

  13. Chemical and mechanical decontamination processes to minimize secondary waste decommissioning

    International Nuclear Information System (INIS)

    Enda, M.; Ichikawa, N.; Yaita, Y.; Kanasaki, T.; Sakai, H.

    2008-01-01

    In the decommissioning of commercial nuclear reactors in Japan, prior to the dismantling of the nuclear power plants, there are plans to use chemical techniques to decontaminate reactor pressure vessels (RPVs), internal parts, primary loop recirculation systems (PLRs), reactor water clean up systems (RWCUs), etc., so as to minimize radiation sources in the materials to be disposed of. After dismantling the nuclear power plants, chemical and mechanical decontamination techniques will then be used to reduce the amounts of radioactive metallic waste. Toshiba Corporation has developed pre-dismantling and post-dismantling decontamination systems. In order to minimize the amounts of secondary waste, the T-OZON process was chosen for decontamination prior to the dismantling of nuclear power plants. Dismantling a nuclear power plant results in large amounts of metallic waste requiring decontamination; for example, about 20,000 tons of such waste is expected to result from the dismantling of a 110 MWe Boiling Water Reactor (BWR). Various decontamination methods have been used on metallic wastes in preparation for disposal in consideration of the complexity of the shapes of the parts and the type of material. The materials in such nuclear power plants are primarily stainless steel and carbon steel. For stainless steel parts having simple shapes, such as plates and pipes, major sources of radioactivity can be removed from the surface of the parts by bipolar electrolysis (electrolyte: H 2 SO 4 ). For stainless steel parts having complicated shapes, such as valves and pumps, major sources of radioactivity can be removed from the surfaces by redox chemical decontamination treatments (chemical agent: Ce(IV)). For carbon steel parts having simple shapes, decontamination by blasting with zirconia grit is effective in removing major sources of radioactivity at the surface, whereas for carbon steel parts having complicated shapes, major sources of radioactivity can be removed from

  14. Simulation codes of chemical separation process of spent fuel reprocessing. Tool for process development and safety research

    International Nuclear Information System (INIS)

    Asakura, Toshihide; Sato, Makoto; Matsumura, Masakazu; Morita, Yasuji

    2005-01-01

    This paper reviews the succeeding development and utilization of Extraction System Simulation Code for Advanced Reprocessing (ESSCAR). From the viewpoint of development, more tests with spent fuel and calculations should be performed with better understanding of the physico-chemical phenomena in a separation process. From the viewpoint of process safety research on fuel cycle facilities, it is important to know the process behavior of a key substance; being highly reactive but existing only trace amount. (author)

  15. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  16. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Fang, Chih-Yeu; Huang, Sheng-Yen; Wu, Chung-Chun; Hsu, Hui-Yu; Chou, Sheng-Ping; Tsai, Ching-Hwa; Chang, Yao; Takada, Kenzo; Chen, Jen-Yang

    2012-01-01

    Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate (SB) in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical carcinogens can

  17. A novel class of chemicals that react with abasic sites in DNA and specifically kill B cell cancers.

    Directory of Open Access Journals (Sweden)

    Shanqiao Wei

    Full Text Available Most B cell cancers overexpress the enzyme activation-induced deaminase at high levels and this enzyme converts cytosines in DNA to uracil. The constitutive expression of this enzyme in these cells greatly increases the uracil content of their genomes. We show here that these genomes also contain high levels of abasic sites presumably created during the repair of uracils through base-excision repair. We further show that three alkoxyamines with an alkyne functional group covalently link to abasic sites in DNA and kill immortalized cell lines created from B cell lymphomas, but not other cancers. They also do not kill normal B cells. Treatment of cancer cells with one of these chemicals causes strand breaks, and the sensitivity of the cells to this chemical depends on the ability of the cells to go through the S phase. However, other alkoxyamines that also link to abasic sites- but lack the alkyne functionality- do not kill cells from B cell lymphomas. This shows that the ability of alkoxyamines to covalently link to abasic sites is insufficient for their cytotoxicity and that the alkyne functionality may play a role in it. These chemicals violate the commonly accepted bioorthogonality of alkynes and are attractive prototypes for anti-B cell cancer agents.

  18. Micromanufacturing Of Hard To Machine Materials By Physical And Chemical Ablation Processes

    International Nuclear Information System (INIS)

    Schubert, A.; Edelmann, J.; Gross, S.; Meichsner, G.; Wolf, N.; Schneider, J.; Zeidler, H.; Hackert, M.

    2011-01-01

    Miniaturization leads to high requirements to the applied manufacturing processes especially in respect to the used hard to machine materials and the aims of structure size and geometrical accuracy. Traditional manufacturing processes reach their limits here. One alternative for these provide thermal and chemical ablation processes. These processes are applied for the production of different microstructures in different materials like hardened steel, carbides and ceramics especially for medical engineering and tribological applications.

  19. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-03-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  20. Evaluation of selected biomarkers for the detection of chemical sensitization in human skin: a comparative study applying THP-1, MUTZ-3 and primary dendritic cells in culture.

    Science.gov (United States)

    Hitzler, Manuel; Bergert, Antje; Luch, Andreas; Peiser, Matthias

    2013-09-01

    Dendritic cells (DCs) exhibit the unique capacity to induce T cell differentiation and proliferation, two processes that are crucially involved in allergic reactions. By combining the exclusive potential of DCs as the only professional antigen-presenting cells of the human body with the well known handling advantages of cell lines, cell-based alternative methods aimed at detecting chemical sensitization in vitro commonly apply DC-like cells derived from myeloid cell lines. Here, we present the new biomarkers programmed death-ligand 1 (PD-L1), DC immunoreceptor (DCIR), IL-16, and neutrophil-activating protein-2 (NAP-2), all of which have been detectable in primary human DCs upon exposure to chemical contact allergens. To evaluate the applicability of DC-like cells in the prediction of a chemical's sensitization potential, the expression of cell surface PD-L1 and DCIR was analyzed. In contrast to primary DCs, only minor subpopulations of MUTZ-3 and THP-1 cells presented PD-L1 or DCIR at their surface. After exposure to increasing concentrations of nickel and cinnamic aldehyde, the expression level of PD-L1 and DCIR revealed much stronger affected on monocyte-derived DCs (MoDCs) or Langerhans cells (MoLCs) when compared to THP-1 and MUTZ-3 cells. Applying protein profiler arrays we further identified the soluble factors NAP-2, IL-16, IL-8 and MIP-1α as sensitive biomarkers showing the capacity to discriminate sensitizing from non-sensitizing chemicals or irritants. An allergen-specific release of IL-8 and MIP-1α could be detected in the supernatants of MoDCs and MoLCs and also in MUTZ-3 and THP-1 cells, though at much lower levels. On the protein and transcriptional level, NAP-2 and IL-16 indicated sensitizers most sensitively and specifically in MoDCs. Altogether, we have proven the reciprocal regulated surface molecules PD-L1 and DCIR and the soluble factors MIP-1α, NAP-2 and IL-16 as reliable biomarkers for chemical sensitization. We further show that primary

  1. Antioxidant properties of chemical extracts and bioaccessible fractions obtained from six Spanish monovarietal extra virgin olive oils: assays in Caco-2 cells.

    Science.gov (United States)

    Borges, Thays H; Cabrera-Vique, Carmen; Seiquer, Isabel

    2015-07-01

    The antioxidant activity and the total phenolic content (TPC) of six Spanish commercial monovarietal extra virgin olive oils (Arbequina, Cornicabra, Hojiblanca, Manzanilla, Picual and Picudo) were evaluated in chemical extracts and in bioaccessible fractions (BF) obtained after in vitro digestion. Moreover, the effects of the BF on cell viability and the generation of reactive oxygen species (ROS) were investigated in Caco-2 cell cultures. The in vitro digestion process increased the TPC and antioxidant activity evaluated by different methods (ABTS, DPPH and FRAP) compared with chemical extracts. After digestion, the Picual variety showed better beneficial effects in preserving cell integrity than the other varieties studied. Significant reductions of ROS production were observed after incubation of Caco-2 cells with the BF of all the varieties and, moreover, a protective effect against the oxidative stress induced by t-BOOH was shown for Arbequina, Cornicabra, Hojiblanca, Manzanilla and Picual. These findings seem to be an additional reason supporting the health benefits of Spanish extra virgin olive oil varieties. Multivariate factor analysis and principal component analysis were applied to assess the contribution of antioxidant activity and TPC, before and after digestion, to the characterization of the different varieties.

  2. Experimental research subject and renovation of chemical processing facility (CPF) for advanced fast reactor fuel reprocessing technology development

    International Nuclear Information System (INIS)

    Koyama, Tomozo; Shinozaki, Tadahiro; Nomura, Kazunori; Koma, Yoshikazu; Miyachi, Shigehiko; Ichige, Yoshiaki; Kobayashi, Tsuguyuki; Nemoto, Shin-ichi

    2002-01-01

    In order to enhance economical efficiency, environmental impact and nuclear nonproliferation resistance, the Advanced Reprocessing Technology, such as simplification and optimization of process, and applicability evaluation of the innovative technology that was not adopted up to now, has been developed for the reprocessing of the irradiated fuel taken out from a fast reactor. Renovation of the hot cell interior equipments, establishment and updating of glove boxes, installation of various analytical equipments, etc. in the Chemical Processing Facility (CPF) was done to utilize the CPF more positivity which is the center of the experimental field, where actual fuel can be used, for research and development towards establishment of the Advanced Reprocessing Technology development. The hot trials using the irradiated fuel pins of the experimental fast reactor 'JOYO' for studies on improved aqueous reprocessing technology, MA separation technology, dry process technology, etc. are scheduled to be carried out with these new equipments. (author)

  3. Continuous, real-time bioimaging of chemical bioavailability and toxicology using autonomously bioluminescent human cell lines

    Science.gov (United States)

    Xu, Tingting; Close, Dan M.; Webb, James D.; Price, Sarah L.; Ripp, Steven A.; Sayler, Gary S.

    2013-05-01

    Bioluminescent imaging is an emerging biomedical surveillance strategy that uses external cameras to detect in vivo light generated in small animal models of human physiology or in vitro light generated in tissue culture or tissue scaffold mimics of human anatomy. The most widely utilized of reporters is the firefly luciferase (luc) gene; however, it generates light only upon addition of a chemical substrate, thus only generating intermittent single time point data snapshots. To overcome this disadvantage, we have demonstrated substrate-independent bioluminescent imaging using an optimized bacterial bioluminescence (lux) system. The lux reporter produces bioluminescence autonomously using components found naturally within the cell, thereby allowing imaging to occur continuously and in real-time over the lifetime of the host. We have validated this technology in human cells with demonstrated chemical toxicological profiling against exotoxin exposures at signal strengths comparable to existing luc systems (~1.33 × 107 photons/second). As a proof-in-principle demonstration, we have engineered breast carcinoma cells to express bioluminescence for real-time screening of endocrine disrupting chemicals and validated detection of 17β-estradiol (EC50 = ~ 10 pM). These and other applications of this new reporter technology will be discussed as potential new pathways towards improved models of target chemical bioavailability, toxicology, efficacy, and human safety.

  4. Formation of a ZnS/Zn(S,O) bilayer buffer on CuInS2 thin film solar cell absorbers by chemical bath deposition

    Science.gov (United States)

    Bär, M.; Ennaoui, A.; Klaer, J.; Kropp, T.; Sáez-Araoz, R.; Allsop, N.; Lauermann, I.; Schock, H.-W.; Lux-Steiner, M. C.

    2006-06-01

    The application of Zn compounds as buffer layers was recently extended to wide-gap CuInS2 (CIS) based thin film solar cells. Using an alternative chemical deposition route for the buffer preparation aiming at the deposition of a single-layer, nominal ZnS buffer without the need for any toxic reactants such as hydrazine has helped us to achieve a similar efficiency as respective CdS-buffered reference devices. In order to shed light on the differences of other Zn-compound buffers deposited in conventional chemical baths [chemical bath deposition (CBD)] compared to the buffer layers deposited by this alternative CBD process, the composition of the deposited buffers was investigated by x-ray excited Auger electron and x-ray photoelectron spectroscopy to potentially clarify their superiority in terms of device performance. We have found that in the early stages of this alternative CBD process a thin ZnS layer is formed on the CIS, whereas in the second half of the CBD the growth rate is greatly increased and Zn(S,O) with a ZnS/(ZnS+ZnO) ratio of ~80% is deposited. Thus, a ZnS/Zn(S,O) bilayer buffer is deposited on the CIS thin film solar cell absorbers by the alternative chemical deposition route used in this investigation. No major changes of these findings after a postannealing of the buffer/CIS sample series and recharacterization could be identified.

  5. IMPROVING THE ENVIRONMENTAL PERFORMANCE OF CHEMICAL PROCESSES THROUGH THE USE OF INFORMATION TECHNOLOGY

    Science.gov (United States)

    Efforts are currently underway at the USEPA to develop information technology applications to improve the environmental performance of the chemical process industry. These efforts include the use of genetic algorithms to optimize different process options for minimal environmenta...

  6. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation.

    Science.gov (United States)

    de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C

    2014-08-14

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their

  7. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation

    International Nuclear Information System (INIS)

    Oliveira, Luciana Renata de; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C.

    2014-01-01

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their “far from equilibrium behavior,” hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative “external vector field” whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the “plasticity property” of biological

  8. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  9. Redox processes in radiation biology and cancer

    International Nuclear Information System (INIS)

    Greenstock, C.L.

    1981-01-01

    Free-radical intermediates, particularly the activated oxygen species OH, O - 2 , and 1 O 2 , are implicated in many types of radiation damage to biological systems. In addition, these same species may be formed, either directly or indirectly through biochemical redox reactions, in both essential and aberrant metabolic processes. Cell survival and adaptation to an environment containing ionizing radiation and other physical and chemical carcinogens ultimately depend upon the cell's ability to maintain optimal function in response to free-radical damage at the chemical level. Many of these feedback control mechanisms are redox controlled. Radiation chemical techniques using selective radical scavengers, such as product analysis and pulse radiolysis, enable us to generate, observe, and characterize individually the nature and reactivity of potentially damaging free radicals. From an analysis of the chemical kinetics of free-radical involvement in biological damage, redox mechanisms are proposed to describe the early processes of radiation damage, redox mechanisms are proposed to describe the early processes of radiation damage, its protection and sensitization, and the role of free radicals in radiation and chemical carcinogenesis

  10. Kinetics of physico-chemical processes during intensive mechanical processing of ZnO-MnO{sub 2} powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kakazey, M.; Vlasova, M.; Dominguez-Patino, M. [CIICAp-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Juarez-Arellano, E.A., E-mail: eajuarez@unpa.edu.mx [Universidad del Papaloapan, Tuxtepec, Oaxaca (Mexico); Bykov, A. [Institute for Problems of Materials Science of NASU, Kyiv (Ukraine); Leon, I. [CIQ-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Siqueiros-Diaz, A. [FCQI-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico)

    2011-10-15

    Experimental results of electron paramagnetic resonance spectra, X-ray diffraction, scanning electron microscopy and infrared spectroscopy demonstrate that the kinetic of the physical and chemical processes that takes place during prolonged intensive mechanical processing (MP, 03120min) of powder mixtures of 50%wt ZnO+50%wt MnO{sub 2} can be described as a three stage process. (1) 030min, particles destruction, formation of superficial defects, fast increment of sample average temperature (from 290 to {approx}600K) and annealing of defects with the lowest energy of activation E{sub ac}. (2) 30390min, further particle destruction, slow increment of sample average temperature (from {approx}600 to {approx}700K), formation and growth of a very disordered layer of {beta}-MnO{sub 2} around ZnO particles, dehydration of MnO{sub 2}, formation of solid solution of Mn{sup 2+} ions in ZnO, formation of nano-quasiamorphous states in the ZnO-MnO{sub 2} mixture and onset of the formation of the ZnMnO{sub 3} phase. (3) 3903120min, the sample average temperature remains constant ({approx}700K), the reaction is completed and the spinel ZnMnO{sub 3} phase with a unit cell a=8.431(1) A and space group Fd3-barm is the only phase present in the sample. No ferromagnetism at room temperature was detected in this study. - Highlights: > The kinetics during mechanical processing of ZnO-MnO{sub 2} samples is a three stage process. > First stage, reduction of crystallites size and accumulation of defects. > Second stage, nano-quasiamorphous states formation and onset of the ZnMnO{sub 3} phase. > Third stage, complete reaction to the spinel ZnMnO{sub 3} phase.

  11. Designing new nuclear chemical processing plants for safeguards accountability

    International Nuclear Information System (INIS)

    Sprouse, K.M.

    1987-01-01

    New nuclear chemical processing plants will be required to develop material accountability control limits from measurement error propagation analysis rather than historical inventory difference data as performed in the past. In order for measurement error propagation methods to be viable alternatives, process designers must ensure that two nondimensional accountability parameters are maintained below 0.1. These parameters are ratios between the material holdup increase and the variance in inventory difference measurement uncertainty. Measurement uncertainty data for use in error propagation analysis is generally available in the open literature or readily derived from instrument calibration data. However, nuclear material holdup data has not been adequately developed for use in the material accountability design process. Long duration development testing on isolated unit operations is required to generate this necessary information

  12. CHALLENGES ENCOUNTERED DURING THE PROCESSING OF THE BNL ERL 5 CELL ACCELERATING CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    BURRILL,A.

    2007-06-25

    One of the key components for the Energy Recovery Linac being built by the Electron cooling group in the Collider Accelerator Department is the 5 cell accelerating cavity which is designed to accelerate 2 MeV electrons from the gun up to 15-20 MeV, allow them to make one pass through the ring and then decelerate them back down to 2 MeV prior to sending them to the dump. This cavity was designed by BNL and fabricated by AES in Medford, NY. Following fabrication it was sent to Thomas Jefferson Lab in VA for chemical processing, testing and assembly into a string assembly suitable for shipment back to BNL for integration into the ERL. The steps involved in this processing sequence will be reviewed and the deviations from processing of similar SRF cavities will be discussed. The lessons learned from this process are documented to help future projects where the scope is different from that normally encountered.

  13. Challenges Encountered during the Processing of the BNL ERL 5 Cell Accelerating Cavity

    Energy Technology Data Exchange (ETDEWEB)

    A. Burrill; I. Ben-Zvi; R. Calaga; H. Hahn; V. Litvinenko; G. T. McIntyre; P. Kneisel; J. Mammosser; J. P. Preble; C. E. Reece; R. A. Rimmer; J. Saunders

    2007-08-01

    One of the key components for the Energy Recovery Linac being built by the Electron cooling group in the Collider Accelerator Department is the 5 cell accelerating cavity which is designed to accelerate 2 MeV electrons from the gun up to 15-20 MeV, allow them to make one pass through the ring and then decelerate them back down to 2 MeV prior to sending them to the dump. This cavity was designed by BNL and fabricated by AES in Medford, NY. Following fabrication it was sent to Thomas Jefferson Lab in VA for chemical processing, testing and assembly into a string assembly suitable for shipment back to BNL and integration into the ERL. The steps involved in this processing sequence will be reviewed and the deviations from processing of similar SRF cavities will be discussed. The lessons learned from this process are documented to help future projects where the scope is different from that normally encountered.

  14. The complete information for phenomenal distributed parameter control of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    A constitutive mathematical model of distributed parameters of multicomponent chemical processes in gas, fluid and solid phase is utilized to the realization of phenomenal distributed parameter control of these processes. Original systems of partial differential constitutive state equations, in the following derivative forms /I/, /II/ and /III/ are solved in this paper from the point of view of information for phenomenal distributed parameter control of considered processes. Obtained in this way for multicomponent chemical processes in gas, fluid and solid phase: -dynamical working space-time characteristics/analytical solutions in working space-time of chemical reactors/, -dynamical phenomenal Green functions as working space-time transfer functions, -statical working space characteristics /analytical solutions in working space of chemical reactors/, -statical phenomenal Green functions as working space transfer functions, are applied, as information for realization of constitutive distributed parameter control of mass, energy and momentum aspects of above processes. Two cases are considered by existence of: A/sup o/ - initial conditions, B/sup o/ - initial and boundary conditions, for multicomponent chemical processes in gas, fluid and solid phase

  15. Simple processing of high efficiency silicon solar cells

    International Nuclear Information System (INIS)

    Hamammu, I.M.; Ibrahim, K.

    2006-01-01

    Cost effective photovoltaic devices have been an area research since the development of the first solar cells, as cost is the major factor in their usage. Silicon solar cells have the biggest share in the photovoltaic market, though silicon os not the optimal material for solar cells. This work introduces a simplified approach for high efficiency silicon solar cell processing, by minimizing the processing steps and thereby reducing cost. The suggested procedure might also allow for the usage of lower quality materials compared to the one used today. The main features of the present work fall into: simplifying the diffusion process, edge shunt isolation and using acidic texturing instead of the standard alkaline processing. Solar cells of 17% efficiency have been produced using this procedure. Investigations on the possibility of improving the efficiency and using less quality material are still underway

  16. Parallel and convergent processing in grid cell, head-direction cell, boundary cell, and place cell networks.

    Science.gov (United States)

    Brandon, Mark P; Koenig, Julie; Leutgeb, Stefan

    2014-03-01

    The brain is able to construct internal representations that correspond to external spatial coordinates. Such brain maps of the external spatial topography may support a number of cognitive functions, including navigation and memory. The neuronal building block of brain maps are place cells, which are found throughout the hippocampus of rodents and, in a lower proportion, primates. Place cells typically fire in one or few restricted areas of space, and each area where a cell fires can range, along the dorsoventral axis of the hippocampus, from 30 cm to at least several meters. The sensory processing streams that give rise to hippocampal place cells are not fully understood, but substantial progress has been made in characterizing the entorhinal cortex, which is the gateway between neocortical areas and the hippocampus. Entorhinal neurons have diverse spatial firing characteristics, and the different entorhinal cell types converge in the hippocampus to give rise to a single, spatially modulated cell type-the place cell. We therefore suggest that parallel information processing in different classes of cells-as is typically observed at lower levels of sensory processing-continues up into higher level association cortices, including those that provide the inputs to hippocampus. WIREs Cogn Sci 2014, 5:207-219. doi: 10.1002/wcs.1272 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. © 2013 John Wiley & Sons, Ltd.

  17. A predictive toxicogenomics signature to classify genotoxic versus non-genotoxic chemicals in human TK6 cells

    Directory of Open Access Journals (Sweden)

    Andrew Williams

    2015-12-01

    Full Text Available Genotoxicity testing is a critical component of chemical assessment. The use of integrated approaches in genetic toxicology, including the incorporation of gene expression data to determine the DNA damage response pathways involved in response, is becoming more common. In companion papers previously published in Environmental and Molecular Mutagenesis, Li et al. (2015 [6] developed a dose optimization protocol that was based on evaluating expression changes in several well-characterized stress-response genes using quantitative real-time PCR in human lymphoblastoid TK6 cells in culture. This optimization approach was applied to the analysis of TK6 cells exposed to one of 14 genotoxic or 14 non-genotoxic agents, with sampling 4 h post-exposure. Microarray-based transcriptomic analyses were then used to develop a classifier for genotoxicity using the nearest shrunken centroids method. A panel of 65 genes was identified that could accurately classify toxicants as genotoxic or non-genotoxic. In Buick et al. (2015 [1], the utility of the biomarker for chemicals that require metabolic activation was evaluated. In this study, TK6 cells were exposed to increasing doses of four chemicals (two genotoxic that require metabolic activation and two non-genotoxic chemicals in the presence of rat liver S9 to demonstrate that S9 does not impair the ability to classify genotoxicity using this genomic biomarker in TK6cells.

  18. A system identification approach for developing model predictive controllers of antibody quality attributes in cell culture processes.

    Science.gov (United States)

    Downey, Brandon; Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey

    2017-11-01

    As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed-batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647-1661, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  19. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  20. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines.

    Science.gov (United States)

    Díaz, Cecilia; Quesada, Silvia; Brenes, Oscar; Aguilar, Gilda; Cicció, José F

    2008-01-01

    The leaf essential oil hydrodistilled from Schinus molle grown in Costa Rica was characterised in terms of its chemical composition, antioxidant activity, ability to induce cytotoxicity and the mechanism of cell death involved in the process. As a result, 42 constituents, accounting for 97.2% of the total oil, were identified. The major constituents of the oil were beta-pinene and alpha-pinene. The antioxidant activity showed an IC(50) of 36.3 microg mL(-1). The essential oil was cytotoxic in several cell lines, showing that it is more effective on breast carcinoma and leukemic cell lines. The LD(50) for cytotoxicity at 48 h in K562 corresponded to 78.7 microg mL(-1), which was very similar to the LD(50) obtained when apoptosis was measured. The essential oil did not induce significant necrosis up to 200 microg mL(-1), which together with the former results indicate that apoptosis is the main mechanism of toxicity induced by S. molle essential oil in this cell line. In conclusion, the essential oil tested was weak antioxidant and induced cytotoxicity in different cell types by a mechanism related to apoptosis. It would be interesting to elucidate the role that different components of the oil play in the effect observed here, since some of them could have potential anti-tumoural effects, either alone or in combination.

  1. Chemically modified tetracyclines stimulate matrix metalloproteinase-s production by periodontal ligament cells

    NARCIS (Netherlands)

    Bildt, M.M.; Snoek-van Beurden, A.M.P.; Groot, J. de; El, B. van; Kuijpers-Jagtman, A.M.; Hoff, J.W. van den

    2006-01-01

    Background and Objective: The purpose of this study was to investigate the effects of chemically modified tetracyclines (CMTs) on the production of gelatinases [matrix metalloproteinase (MMP)-2 and -9] by human periodontal ligament (PDL) cells, and on the activity of recombinant gelatinases.

  2. 324 Facility B-Cell quality process plan

    International Nuclear Information System (INIS)

    Carlson, J.L.

    1998-01-01

    This report documents the quality process plan for the restart of a hot cell in the B Plant, originally a bismuth phosphate processing facility, but later converted to a waste fractionation plant. B-Cell is currently being cleaned out and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/1999. This report describes the major activities that remain for completion of the TPA milestone

  3. From chemical metabolism to life: the origin of the genetic coding process

    Directory of Open Access Journals (Sweden)

    Antoine Danchin

    2017-06-01

    Full Text Available Looking for origins is so much rooted in ideology that most studies reflect opinions that fail to explore the first realistic scenarios. To be sure, trying to understand the origins of life should be based on what we know of current chemistry in the solar system and beyond. There, amino acids and very small compounds such as carbon dioxide, dihydrogen or dinitrogen and their immediate derivatives are ubiquitous. Surface-based chemical metabolism using these basic chemicals is the most likely beginning in which amino acids, coenzymes and phosphate-based small carbon molecules were built up. Nucleotides, and of course RNAs, must have come to being much later. As a consequence, the key question to account for life is to understand how chemical metabolism that began with amino acids progressively shaped into a coding process involving RNAs. Here I explore the role of building up complementarity rules as the first information-based process that allowed for the genetic code to emerge, after RNAs were substituted to surfaces to carry over the basic metabolic pathways that drive the pursuit of life.

  4. Inline chemical process analysis in micro-plants based on thermoelectric flow and impedimetric sensors

    International Nuclear Information System (INIS)

    Jacobs, T; Kutzner, C; Hauptmann, P; Kropp, M; Lang, W; Brokmann, G; Steinke, A; Kienle, A

    2010-01-01

    In micro-plants, as used in chemical micro-process engineering, an integrated inline analytics is regarded as an important factor for the development and optimization of chemical processes. Up to now, there is a lack of sensitive, robust and low-priced micro-sensors for monitoring mixing and chemical conversion in micro-fluidic channels. In this paper a novel sensor system combining an impedimetric sensor and a novel pressure stable thermoelectric flow sensor for monitoring chemical reactions in micro-plants is presented. The CMOS-technology-based impedimetric sensor mainly consists of two capacitively coupled interdigital electrodes on a silicon chip. The thermoelectric flow sensor consists of a heater in between two thermopiles on a perforated membrane. The pulsed and constant current feeds of the heater were analyzed. Both sensors enable the analysis of chemical conversion by means of changes in the thermal and electrical properties of the liquid. The homogeneously catalyzed synthesis of n-butyl acetate as a chemical model system was studied. Experimental results revealed that in an overpressure regime, relative changes of less than 1% in terms of thermal and electrical properties can be detected. Furthermore, the transition from one to two liquid phases accompanied by the change in slug flow conditions could be reproducibly detected

  5. Characterization of the nanosized porous structure of black Si solar cells fabricated via a screen printing process

    Institute of Scientific and Technical Information of China (English)

    Tang Yehua; Fei Jianming; Cao Hongbin; Zhou Chunlan; Wang Wenjing; Zhou Su; Zhao Yan; Zhao Lei; Li Hailing; Yan Baojun; Chen Jingwei

    2012-01-01

    A silicon (Si) surface with a nanosized porous structure was formed via simple wet chemical etching catalyzed by gold (Au) nanoparticles on p-type Cz-Si (100).The average reflectivity from 300 to 1200 nm was less than 1.5%.Black Si solar cells were then fabricated using a conventional production process.The results reflected the output characteristics of the cells fabricated using different etching depths and emitter dopant profiles.Heavier dopants and shallower etching depths should be adopted to optimize the black Si solar cell output characteristics.The efficiency at the optimized etching time and dopant profile was 12.17%.However,surface passivation and electrode contact due to the nanosized porous surface structure are still obstacles to obtaining high conversion efficiency for the black Si solar cells.

  6. Long-Term GABA Administration Induces Alpha Cell-Mediated Beta-like Cell Neogenesis

    DEFF Research Database (Denmark)

    Ben-Othman, Nouha; Vieira, Andhira; Courtney, Monica

    2017-01-01

    , these neo-generated β-like cells are functional and can repeatedly reverse chemically induced diabetes in vivo. Similarly, the treatment of transplanted human islets with GABA results in a loss of α cells and a concomitant increase in β-like cell counts, suggestive of α-to-β-like cell conversion processes...

  7. Indium sulfide thin films as window layer in chemically deposited solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Loredo, S. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Peña-Méndez, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Messina-Fernández, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63190 Tepic, Nayarit (Mexico); Alvarez-Gallegos, A. [Universidad Autónoma del Estado de Morelos, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad 1001, C.P. 62209, Cuernavaca Morelos (Mexico); Vázquez-Dimas, A.; Hernández-García, T. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico)

    2014-01-01

    Indium sulfide (In{sub 2}S{sub 3}) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO{sub 3}){sub 3} as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In{sub 2}S{sub 3}. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In{sub 2}S{sub 3} thin films are photosensitive with an electrical conductivity value in the range of 10{sup −3}–10{sup −7} (Ω cm){sup −1}, depending on the film preparation conditions. We have demonstrated that the In{sub 2}S{sub 3} thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO{sub 2}:F/In{sub 2}S{sub 3}/Sb{sub 2}S{sub 3}/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm{sup 2}. - Highlights: • In{sub 2}S{sub 3} thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In{sub 2}S{sub 3} films. • We made chemically deposited solar cells using the In{sub 2}S{sub 3} thin films.

  8. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    Science.gov (United States)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented

  9. Isotope effects in gas-phase chemical reactions and photodissociation processes: Overview

    International Nuclear Information System (INIS)

    Kaye, J.A.

    1992-01-01

    The origins of isotope effects in equilibrium and non-equilibrium chemical processes are reviewed. In non-equilibrium processes, attention is given to isotope effects in simple bimolecular reactions, symmetry-related reactions, and photodissociation processes. Recent examples of isotope effects in these areas are reviewed. Some indication of other scientific areas for which measurements and/or calculations of isotope effects are used is also given. Examples presented focus on neutral molecule chemistry and in many cases complement examples considered in greater detail in the other chapters of this volume

  10. Mechano-chemical signaling maintains the rapid movement of Dictyostelium cells

    International Nuclear Information System (INIS)

    Lombardi, M.L.; Knecht, D.A.; Lee, J.

    2008-01-01

    The survival of Dictyostelium cells depends on their ability to efficiently chemotax, either towards food or to form multicellular aggregates. Although the involvement of Ca 2+ signaling during chemotaxis is well known, it is not clear how this regulates cell movement. Previously, fish epithelial keratocytes have been shown to display transient increases in intracellular calcium ([Ca 2+ ] i ) that are mediated by stretch-activated calcium channels (SACs), which play a role in retraction of the cell body [J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, Regulation of cell movement is mediated by stretch-activated calcium channels. Nature, 1999. 400(6742): p. 382-6.]. To investigate the involvement of SACs in Dictyostelium movement we performed high resolution calcium imaging in wild-type (NC4A2) Dictyostelium cells to detect changes in [Ca 2+ ] i . We observed small, brief, Ca 2+ transients in randomly moving wild-type cells that were dependent on both intracellular and extracellular sources of calcium. Treatment of cells with the SAC blocker gadolinium (Gd 3+ ) inhibited transients and decreased cell speed, consistent with the involvement of SACs in regulating Dictyostelium motility. Additional support for SAC activity was given by the increase in frequency of Ca 2+ transients when Dictyostelium cells were moving on a more adhesive substratum or when they were mechanically stretched. We conclude that mechano-chemical signaling via SACs plays a major role in maintaining the rapid movement of Dictyostelium cells

  11. Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    Science.gov (United States)

    Curran, Kathleen A; Alper, Hal S

    2012-07-01

    The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers and precursors, pharmaceuticals and nutraceuticals, and commodity and specialty chemicals. Much of this rapid expansion in the field has been, in part, due to synergies and advances in the area of systems biology. Specifically, the availability of functional genomics, metabolomics and transcriptomics data has resulted in the potential to produce a wealth of new products, both natural and non-natural, in cellular factories. The sheer amount and diversity of this data however, means that uncovering and unlocking novel chemistries and insights is a non-obvious exercise. To address this issue, a number of computational tools and experimental approaches have been developed to help expedite the design process to create new cellular factories. This review will highlight many of the systems biology enabling technologies that have reduced the design cycle for engineered hosts, highlight major advances in the expanded diversity of products that can be synthesized, and conclude with future prospects in the field of metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    Science.gov (United States)

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast™ chemical screening and prioritization research project. Metabolites from hES cultur...

  13. Layer-by-layer buildup of polysaccharide-containing films: Physico-chemical properties and mesenchymal stem cells adhesion.

    Science.gov (United States)

    Kulikouskaya, Viktoryia I; Pinchuk, Sergei V; Hileuskaya, Kseniya S; Kraskouski, Aliaksandr N; Vasilevich, Irina B; Matievski, Kirill A; Agabekov, Vladimir E; Volotovski, Igor D

    2018-03-22

    Layer-by-Layer assembled polyelectrolyte films offer the opportunity to control cell attachment and behavior on solid surfaces. In the present study, multilayer films based on negatively charged biopolymers (pectin, dextran sulfate, carboxymethylcellulose) and positively charged polysaccharide chitosan or synthetic polyelectrolyte polyethyleneimine has been prepared and evaluated. Physico-chemical properties of the formed multilayer films, including their growth, morphology, wettability, stability, and mechanical properties, have been studied. We demonstrated that chitosan-containing films are characterized by the linear growth, the defect-free surface, and predominantly viscoelastic properties. When chitosan is substituted for the polyethyleneimine in the multilayer system, the properties of the formed films are significantly altered: the rigidity and surface roughness increases, the film growth acquires the exponential character. The multilayer films were subsequently used for culturing mesenchymal stem cells. It has been determined that stem cells effectively adhered to chitosan-containing films and formed on them the monolayer culture of fibroblast-like cells with high viability. Our results show that cell attachment is a complex process which is not only governed by the surface functionality because one of the key parameter effects on cell adhesion is the stiffness of polyelectrolyte multilayer films. We therefore propose our Layer-by-Layer films for applications in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  14. An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure.

    Science.gov (United States)

    Mingguang, Zhang; Juncheng, Jiang

    2008-10-30

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.

  15. Physico-chemical studies of radiation effects in cells. Progress report, November 15, 1980-February 14, 1984

    International Nuclear Information System (INIS)

    Powers, E.L.

    1983-01-01

    The primary interest is investigating and understanding the chemical mechanisms involved in radiation-induced cellular damage. Most recently the perturbating devices have been metals which increase, in various ways and modes, the radiation sensitivity of several cell types. While the chief cell type has been the bacterial spore, chosen because of its biological inertness and its hardiness, allowing it to survive the unphysiological conditions of the physical chemist and, thus, inquiry into the free radical mechanisms involved very soon after energy absorption, recently vegetative cells have been introduced. A number of metals have been used and practically all of them sensitize - but to varying degrees. Straight biological techniques such as the measurement of cell survival under various conditions in the different cells have been used, as well as parallel experiments in pulse radiolysis to attack the specific leads in a chemical fashion suggested by the biology

  16. Advanced laser processing for industrial solar cell manufacturing (ALPINISM)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Fieret, J. [Exitech Ltd. (United Kingdom)

    2006-05-04

    The study was aimed at improving methods for the manufacture of high efficiency solar cells and thereby increase production rates. The project focused on the laser grooved buried contact solar cell (LGBC) which is produced by high-speed laser machining. The specific objectives were (i) to optimise the laser technology for high speed processing; (ii) to optimise the solar cell process conditions for high speed processing; (iii) to produce a prototype tool and demonstrate high throughput; and (iv) to demonstrate increased cell efficiency using laser processing of rear contact. Essentially, all the objectives were met and Exitech have already sold six production tools and one research tool developed in this study. In addition, it was found that laser processing at the rear cell surface offers the prospect of LGBC solar cells with an efficiency of 20 per cent. BP Solar Limited carried out this work under contract to the DTI.

  17. Management of radioactive liquid waste at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Bendixsen, C.L.

    1992-01-01

    Highly radioactive liquid wastes (HLLW) are routinely produced during spent nuclear fuel processing at the Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL). This paper discusses the processes and safe practices for management of the radioactive process waste streams, which processes include collection, concentration, interim storage, calcination to granular solids, and long-term intermediate storage. Over four million gallons of HLLW have been converted to a recoverable granular solid form through waste liquid injection into a high-temperature, fluidized bed wherein the wastes are converted to their respective solid oxides. The development of a glass ceramic solid for the long-term permanent disposal of the high level waste (HLW) solids is also described

  18. Evidence of Chemical Cloud Processing from In Situ Measurements in the Polluted Marine Environment

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Chemical cloud processing alters activated cloud condensation nuclei (CCN). Aqueous oxidation of trace gases dissolved within cloud droplets adds soluble material. As most cloud droplets evaporate, the residual material produces CCN that are larger and with a different hygroscopicity (κ). This improves the CCN, lowering the critical supersaturation (Sc), making it more easily activated. This process separates the processed (accumulation) and unprocessed (Aitken) modes creating bimodal CCN distributions (Hudson et al., 2015). Various measurements made during the MArine Stratus/stratocumulus Experiment (MASE), including CCN, exhibited aqueous processing signals. Particle size distributions; measured by a differential mobility analyzer; were compared with CCN distributions; measured by the Desert Research Institute CCN spectrometer; by converting size to Sc using κ to overlay concurrent distributions. By tuning each mode to the best agreement, κ for each mode is determined; processed κ (κp), unprocessed κ (κu). In MASE, 59% of bimodal distributions had different κ for the two modes indicating dominance of chemical processing via aqueous oxidation. This is consistent with Hudson et al. (2015). Figure 1A also indicates chemical processing with larger κp between 0.35-0.75. Processed CCN had an influx of soluble material from aqueous oxidation which increased κp versus κu. Above 0.75 κp is lower than κu (Fig. 1A). When κu is high and sulfate material is added, κp tends towards κ of the added material. Thus, κp is reduced by additional material that is less soluble than the original material. Chemistry measurements in MASE also indicate in-cloud aqueous oxidation (Fig. 1B and 1C). Higher fraction of CCN concentrations in the processed mode are also associated with larger amounts of sulfates (Fig. 1B, red) and nitrates (Fig. 1C, orange) while SO2 (Fig. 1B, black) and O3 (Fig. 1C, blue) have lower amounts. This larger amount of sulfate is at the expense of

  19. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  20. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    International Nuclear Information System (INIS)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-01-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  1. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  2. Relation between chemical shift artifact and infiltration on MR imaging of renal cell carcinoma

    International Nuclear Information System (INIS)

    Yoshigoe, Fukuo; Makino, Hideki; Yanada, Syuichi; Ohishi, Yukihiko; Mashima, Yasuoki; Yamada, Hideo.

    1994-01-01

    Retrospective study on the relation between existence of the interruption and disturbance of chemical shift artifact and tumor infiltration at the periphery of the kidney on MR imaging was evaluated in 28 cases with renal cell carcinoma. Judgement was possible in 9 out of the 11 cases with pathological stage below pT2 and 14 cases out of 17 pT3 cases. Judgement was impracticable in 5 cases because the peripheral fat tissue of the kidney was too less to observe chemical shift artifact and the tumor was spreading at the side opposite to the chemical shift artifact. Chemical shift artifact on MRI in this study correlated well with renal tumor infiltration. (author)

  3. Chemical Imaging of the Cell Membrane by NanoSIMS

    International Nuclear Information System (INIS)

    Weber, P.K.; Kraft, M.L.; Frisz, J.F.; Carpenter, K.J.; Hutcheon, I.D.

    2010-01-01

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  4. Chemical compatibility and properties of suspension plasma-sprayed SrTiO3-based anodes for intermediate-temperature solid oxide fuel cells

    Science.gov (United States)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu

    2014-10-01

    La-doped strontium titanate (LST) is a promising, redox-stable perovskite material for direct hydrocarbon oxidation anodes in intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this study, nano-sized LST and Sm-doped ceria (SDC) powders are produced by the sol-gel and glycine-nitrate processes, respectively. The chemical compatibility between LST and electrolyte materials is studied. A LST-SDC composite anode is prepared by suspension plasma spraying (SPS). The effects of annealing conditions on the phase structure, microstructure, and chemical stability of the LST-SDC composite anode are investigated. The results indicate that the suspension plasma-sprayed LST-SDC anode has the same phase structure as the original powders. LST exhibits a good chemical compatibility with SDC and Mg/Sr-doped lanthanum gallate (LSGM). The anode has a porosity of ∼40% with a finely porous structure that provides high gas permeability and a long three-phase boundary for the anode reaction. Single cells assembled with the LST-SDC anode, La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte, and La0.8Sr0.2CoO3-SDC cathode show a good performance at 650-800 °C. The annealing reduces the impedances due to the enhancement in the bonding between the particles in the anode and interface of anode and LSGM electrolyte, thus improving the output performance of the cell.

  5. Chemical Synthesis of Oligosaccharides related to the Cell Walls of Plants and Algae

    DEFF Research Database (Denmark)

    Kinnaert, Christine; Daugaard, Mathilde; Nami, Faranak

    2017-01-01

    in good quantities and with high purity. This review contains an overview of those plant and algal polysaccharides, which have been elucidated to date. The majority of the content is devoted to detailed summaries of the chemical syntheses of oligosaccharide fragments of cellulose, hemicellulose, pectin......Plant cell walls are composed of an intricate network of polysaccharides and proteins that varies during the developmental stages of the cell. This makes it very challenging to address the functions of individual wall components in cells, especially for highly complex glycans. Fortunately...

  6. Impact of environmental chemicals on the thyroid hormone function in pituitary rat GH3 cells

    DEFF Research Database (Denmark)

    Ghisari, Mandana; Bonefeld-Jørgensen, Eva

    2005-01-01

    -nonylphenol, 4-octylphenol), pesticides (prochloraz, iprodion, chlorpyrifos), PCB metabolites (OH-PCB 106, OH-PCB 121, OH-PCB 69) and brominated flame-retardants (tetrabromobisphenol A). The ED potential of a chemical was determined by its effect on the cell proliferation of TH-dependent rat pituitary GH3 cell...

  7. Mechanisms governing the physico-chemical processes of transfer in NPP circuits

    International Nuclear Information System (INIS)

    Brusakov, V.P.; Sedov, V.M.; Khitrov, Yu.A.; Rybalchenko, I.L.

    1983-01-01

    The paper deals with the theoretical physico-chemical processes of corrosion products and their radionuclide transport in NPS circuits by thermoelectromotive and electromotive forces of microgalvanic couples. The laboratory and rig test results as well as the NPP operating experience data confirm the developed theoretical concept validity

  8. FORMULATION OF MATHEMATICAL PROBLEM DESCRIBING PHYSICAL AND CHEMICAL PROCESSES AT CONCRETE CORROSION

    Directory of Open Access Journals (Sweden)

    Sergey V. Fedosov

    2017-06-01

    Full Text Available The article deals with the relevance of new scientific research focused on modeling of physical and chemical processes occurring in the cement concrete at their exploitation. The basic types of concrete corrosion are described. The problem of mass transfer processes in a flat reinforced concrete wall at concrete corrosion of the first and the second types has been mathematically formulated.

  9. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    Science.gov (United States)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  10. Automatic differentiation tools in the dynamic simulation of chemical engineering processes

    Directory of Open Access Journals (Sweden)

    Castro M.C.

    2000-01-01

    Full Text Available Automatic Differentiation is a relatively recent technique developed for the differentiation of functions applicable directly to the source code to compute the function written in standard programming languages. That technique permits the automatization of the differentiation step, crucial for dynamic simulation and optimization of processes. The values for the derivatives obtained with AD are exact (to roundoff. The theoretical exactness of the AD comes from the fact that it uses the same rules of differentiation as in differential calculus, but these rules are applied to an algorithmic specification of the function rather than to a formula. The main purpose of this contribution is to discuss the impact of Automatic Differentiation in the field of dynamic simulation of chemical engineering processes. The influence of the differentiation technique on the behavior of the integration code, the performance of the generated code and the incorporation of AD tools in consistent initialization tools are discussed from the viewpoint of dynamic simulation of typical models in chemical engineering.

  11. The production of fuels and chemicals from food processing wastes & cellulosics. Final research report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Okos, M.; Burgos, N. [and others

    1997-06-15

    High strength food wastes of about 15-20 billion pounds solids are produced annually by US food producers. Low strength food wastes of 5-10 billion pounds/yr. are produced. Estimates of the various components of these waste streams are shown in Table 1. Waste paper/lignocellulosic crops could produce 2 to 5 billion gallons of ethanol per year or other valuable chemicals. Current oil imports cost the US about $60 billion dollars/yr. in out-going balance of trade costs. Many organic chemicals that are currently derived from petroleum can be produced through fermentation processes. Petroleum based processes have been preferred over biotechnology processes because they were typically cheaper, easier, and more efficient. The technologies developed during the course of this project are designed to allow fermentation based chemicals and fuels to compete favorably with petroleum based chemicals. Our goals in this project have been to: (1) develop continuous fermentation processes as compared to batch operations; (2) combine separation of the product with the fermentation, thus accomplishing the twin goals of achieving a purified product from a fermentation broth and speeding the conversion of substrate to product in the fermentation broth; (3) utilize food or cellulosic waste streams which pose a current cost or disposal problem as compared to high cost grains or sugar substrates; (4) develop low energy recovery methods for fermentation products; and finally (5) demonstrate successful lab scale technologies on a pilot/production scale and try to commercialize the processes. The scale of the wastes force consideration of {open_quotes}bulk commodity{close_quotes} type products if a high fraction of the wastes are to be utilized.

  12. Enhanced Carrier Collection from CdS Passivated Grains in Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells.

    Science.gov (United States)

    Werner, Melanie; Keller, Debora; Haass, Stefan G; Gretener, Christina; Bissig, Benjamin; Fuchs, Peter; La Mattina, Fabio; Erni, Rolf; Romanyuk, Yaroslav E; Tiwari, Ayodhya N

    2015-06-10

    Solution processing of Cu2ZnSn(S,Se)4 (CZTSSe)-kesterite solar cells is attractive because of easy manufacturing using readily available metal salts. The solution-processed CZTSSe absorbers, however, often suffer from poor morphology with a bilayer structure, exhibiting a dense top crust and a porous bottom layer, albeit yielding efficiencies of over 10%. To understand whether the cell performance is limited by this porous layer, a systematic compositional study using (scanning) transmission electron microscopy ((S)TEM) and energy-dispersive X-ray spectroscopy of the dimethyl sulfoxide processed CZTSSe absorbers is presented. TEM investigation revealed a thin layer of CdS that is formed around the small CZTSSe grains in the porous bottom layer during the chemical bath deposition step. This CdS passivation is found to be beneficial for the cell performance as it increases the carrier collection and facilitates the electron transport. Electron-beam-induced current measurements reveal an enhanced carrier collection for this buried region as compared to reference cells with evaporated CdS.

  13. Low-cost plasmonic solar cells prepared by chemical spray pyrolysis

    Directory of Open Access Journals (Sweden)

    Erki Kärber

    2014-12-01

    Full Text Available Solar cells consisting of an extremely thin In2S3/CuInS2 buffer/absorber layer uniformly covering planar ZnO were prepared entirely by chemical spray pyrolysis. Au nanoparticles (Au-NPs were formed via thermal decomposition of a gold(III chloride trihydrate (HAuCl4·3H2O precursor by spraying 2 mmol/L of the aqueous precursor solution onto a substrate held at 260 °C. Current–voltage scans and external quantum efficiency spectra were used to evaluate the solar cell performance. This work investigates the effect of the location of the Au-NP layer deposition (front side vs rear side in the solar cell and the effect of varying the volume (2.5–10 mL of the sprayed Au precursor solution. A 63% increase (from 4.6 to 7.5 mA/cm2 of the short-circuit current density was observed when 2.5 mL of the precursor solution was deposited onto the rear side of the solar cell.

  14. Microfluidics for chemical processing

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.

    2006-01-01

    Microfluidic systems, and more specifically, microfluidic chips, have a number of features that make them particularly useful for the study of chemical reactions on-line. The present paper will discuss two examples, the study of fluidic behaviour at high pressures and the excitation and detection of

  15. Chemical synthesis of Cd-free wide band gap materials for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Sartale, S.D.; Ennaoui, A. [Hahn-Meitner-Institut, Berlin (Germany). Department of Solar Energy Research; Lokhande, C.D. [Shivaji University, Kolhapur (India). Department of Physics

    2004-07-01

    Chemical methods are nowadays very attractive, since they are relatively simple, low cost and convenient for larger area deposition of thin films. In this paper, we outline our work related to the synthesis and characterization of some wide band gap semiconducting material thin films prepared by using solution methods, namely, chemical bath deposition and successive ionic layer adsorption and reaction (SILAR). The optimum preparative parameters are given and respective structural, surface morphological, compositional, optical, and electrical properties are described. Some materials we used in solar cells as buffer layers and achieved remarkable results, which are summarized. (author)

  16. Terrestrial photovoltaic cell process testing

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    The paper examines critical test parameters, criteria for selecting appropriate tests, and the use of statistical controls and test patterns to enhance PV-cell process test results. The coverage of critical test parameters is evaluated by examining available test methods and then screening these methods by considering the ability to measure those critical parameters which are most affected by the generic process, the cost of the test equipment and test performance, and the feasibility for process testing.

  17. Splenic B cells and antigen-specific B cells process anti-Ig in a similar manner

    International Nuclear Information System (INIS)

    Myers, C.D.; Vitetta, E.S.

    1989-01-01

    B lymphocytes can process and present antigen to T cells. However, the fate of native antigen after its binding to specific B cells, i.e., the intracellular events involved in the processing and recycling of the antigenic fragments to the cell surface for antigen presentation, are not well understood. In the present study, we demonstrate that murine B cells degrade anti-Ig molecules bound to their surface and release acid soluble fragments into the supernatant. We also demonstrate that the kinetics of this process are identical for anti-mu, anti-delta, and anti-light chain antibodies, indicating that both surface IgM and surface IgD are equally effective in binding antigen and directing its processing. We also describe the effects of azide, chloroquine, and irradiation on this process. To extend these studies to the processing of specifically bound antigen, we demonstrate that highly purified trinitrophenyl antigen-binding cells degrade anti-Ig molecules with the same kinetics as unpurified splenic B cells. Thus, this purified population provides a suitable model system for the analysis of antigen degradation by antigen-specific cells

  18. PROMYS – Programming synthetic networks for bio-based production of value chemicals – FP7 project

    DEFF Research Database (Denmark)

    Sommer, Morten Otto Alexander

    2017-01-01

    ) Synthetic pathway construction 2) Cell factory optimization 3) Control of populations during fermentation Ligand responsive regulation and selection systems will directly couple the presence of a desired chemical product or flux state within a cell, to the survival of the cell. As such, they allow......The global chemical industry is transitioning from petrochemical production processes to bio-based production processes. This transition creates a clear market need for technologies that reduce the development time and cost of cell factories. PROMYS will develop, validate and implement a novel...... will drastically accelerate the construction, optimization and performance of cell factories by enabling industrial users to impose non-natural objectives on the engineered cell factory. PROMYS will address three major challenges in metabolic engineering that limit the development of new cell factories: 1...

  19. FY 2000 study report on the study on technological development of the chemical processes of the next generation; 2000 nendo jisedai kagaku process gijutsu kaihatsu ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The technological development of the innovative chemical reaction processes is studied, in order to accomplish further energy saving, and reduction of resource consumption and environmental loads. Described herein are the FY 2000 study results. The program for systematization of the next-generation chemical processes systematically pigeonholes the undergoing projects and subjects to be studied, based on the principles of simplification, and sets the study fields of organic bulk chemicals, organic fine chemicals, highpolymer materials and inorganic materials. The program for investigation on next-generation chemical processes reviews creation and technological use of tailor-made biocatalysts, polymer materials which utilize wood resources, tailor-made reaction process engineering for handling fine particles in high-temperature reaction fields, production and processing of materials for high-performance polymer batteries, and extreme energy saving process for polyolefins, and proposes the revisions. The newly proposed study themes include novel C1 catalytic processes toward minimal wastes, and high utilization of biotechnology for novel processes to create materials. (NEDO)

  20. Efficient generation of transgene- and feeder-free induced pluripotent stem cells from human dental mesenchymal stem cells and their chemically defined differentiation into cardiomyocytes.

    Science.gov (United States)

    Tan, Xiaobing; Dai, Qingli; Guo, Tao; Xu, Jingshu; Dai, Qingyuan

    2018-01-22

    Advance in stem cell research resulted in several processes to generate induced pluripotent stem cells (iPSCs) from adult somatic cells. In our previous study, the reprogramming of iPSCs from human dental mesenchymal stem cells (MSCs) including SCAP and DPSCs, has been reported. Herein, safe iPSCs were reprogrammed from SCAP and DPSCs using non-integrating RNA virus vector, which is an RNA virus carrying no risk of altering host genome. DPSCs- and SCAP-derived iPSCs exhibited the characteristics of the classical morphology with human embryonic stem cells (hESCs) without integration of foreign genes, indicating the potential of their clinical application. Moreover, induced PSCs showed the capacity of self-renewal and differentiation into cardiac myocytes. We have achieved the differentiation of hiPSCs to cardiomyocytes lineage under serum and feeder-free conditions, using a chemically defined medium CDM3. In CDM3, hiPSCs differentiation is highly generating cardiomyocytes. The results showed this protocol produced contractile sheets of up to 97.2% TNNT2 cardiomyocytes after purification. Furthermore, derived hiPSCs differentiated to mature cells of the three embryonic germ layers in vivo and in vitro of beating cardiomyocytes. The above whole protocol enables the generation of large scale of highly pure cardiomyocytes as needed for cellular therapy. Copyright © 2017. Published by Elsevier Inc.

  1. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  2. Teaching Population Balances for Chemical Engineering Students: Application to Granulation Processes

    Science.gov (United States)

    Bucala, Veronica; Pina, Juliana

    2007-01-01

    The population balance equation (PBE) is a useful tool to predict particle size distributions in granulation processes. When PBE is taught to advanced chemical engineering students, the internal coordinates (particle properties) are particularly hard to understand. In this paper, the flow of particles along different coordinates is carefully…

  3. Chemical processing of liquid effluents in reprocessing plants: experience gained in France

    International Nuclear Information System (INIS)

    Fernandez, N.; Pottier, P.; Taillard, D.

    1977-01-01

    The radionuclides present in radioactive liquid effluents are precipitated for two purposes, viz: 1) to reduce the radioactivity to a level at which the liquids may be discharged; 2) to concentrate the radioactive compounds in the smallest possible volume for storage. The scientific principles of the radionuclide precipitation process are reviewed in the first part, which covers the solubility product, adsorption onto the surface of the precipitates, co-precipitation by isomorphism, ion-exchange on precipitates, etc. The paper goes on to discuss flocculation techniques, flocculation monitoring (zeta potential etc.) and methods of separating the solid and liquid phases. The specific methods for precipitating the main radionuclides are then described, with special reference to Sr, Cs, Ru, Co and Sb. The synergism of certain methods of precipitation is also discussed. The main part of the paper concerns the application of chemical processes for purifying low and medium active effluents in the Marcoule and La Hague centres. Particular emphasis is placed on the development of the processes used and the improvement of performance. Lastly, the paper discusses the possibilities offered in final treatment in such a way as to determine the limits to the effectiveness of the chemical processes. (orig.) [de

  4. The Lyophilization Process Maintains the Chemical and Biological Characteristics of Royal Jelly

    Directory of Open Access Journals (Sweden)

    Andresa Piacezzi Nascimento

    2015-01-01

    Full Text Available The alternative use of natural products, like royal jelly (RJ, may be an important tool for the treatment of infections caused by antibiotic-resistant bacteria. RJ presents a large number of bioactive substances, including antimicrobial compounds. In this study, we carried out the chemical characterization of fresh and lyophilized RJ and investigated their antibacterial effects with the purpose of evaluating if the lyophilization process maintains the chemical and antibacterial properties of RJ. Furthermore, we evaluated the antibacterial efficacy of the main fatty acid found in RJ, the 10-hydroxy-2-decenoic acid (10H2DA. Chromatographic profile of the RJ samples showed similar fingerprints and the presence of 10H2DA in both samples. Furthermore, fresh and lyophilized RJ were effective against all bacteria evaluated; that is, the lyophilization process maintains the antibacterial activity of RJ and the chemical field of 10H2DA. The fatty acid 10H2DA exhibited a good antibacterial activity against Streptococcus pneumoniae. Therefore, it may be used as an alternative and complementary treatment for infections caused by antibiotic-resistant S. pneumoniae.

  5. Chemical track effects in condensed systems and implications for biological damage

    International Nuclear Information System (INIS)

    Magee, J.L.; Chatterjee, A.

    1979-01-01

    The spatial distributions of reactive intermediates, chemical reactions, and products are involved in the chemical interests in particle tracks. Biological systems are considred to be concentrated aqueous solutions, and the reactions of biological molecules can occur at any time including prethermal period. Heavy particles lose approximately equal amounts of energy by two mechanisms which lead to the different patterns of energy deposit; that is, the resonant process with individual losses in the range of 0 - 100 eV, and the knock-on process which creates recoil electrons in spectra from 100 eV to the maximum. The survival of cultured cells after irradiation depends on certain parameters of the radiation. Such theories seem to imply that the deposit of energy in the proper location of a cell can guarantee its death, that is, there is all-or-none effect, dependent solely on the absorption of energy. The initial dissociation of water is assumed to require 17 eV. A weakness regarding heavy particle tracks is the lack of knowledge on the phenomena that occur at extremely high energy deposit, approximately 1000 eV per A. Significantly high temperature must be generated, accompanied by shock waves and bubble formation. In a radical diffusion model for cell survival, it is assumed that a particular type of the lesion of DNA may be formed by a purely chemical process which can provide a certain lethality. The chemical processes following the energy deposit by high energy particles are known at least in approximate way, including most of the phenomena in space and time. (Yamashita, S.)

  6. Effect of chemical mutagens and carcinogens on gene expression profiles in human TK6 cells.

    Directory of Open Access Journals (Sweden)

    Lode Godderis

    Full Text Available Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes, we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose-response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti- apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control.

  7. A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models.

    Science.gov (United States)

    Lizarralde, I; Fernández-Arévalo, T; Brouckaert, C; Vanrolleghem, P; Ikumi, D S; Ekama, G A; Ayesa, E; Grau, P

    2015-05-01

    This paper introduces a new general methodology for incorporating physico-chemical and chemical transformations into multi-phase wastewater treatment process models in a systematic and rigorous way under a Plant-Wide modelling (PWM) framework. The methodology presented in this paper requires the selection of the relevant biochemical, chemical and physico-chemical transformations taking place and the definition of the mass transport for the co-existing phases. As an example a mathematical model has been constructed to describe a system for biological COD, nitrogen and phosphorus removal, liquid-gas transfer, precipitation processes, and chemical reactions. The capability of the model has been tested by comparing simulated and experimental results for a nutrient removal system with sludge digestion. Finally, a scenario analysis has been undertaken to show the potential of the obtained mathematical model to study phosphorus recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The Use of Chemical-Chemical Interaction and Chemical Structure to Identify New Candidate Chemicals Related to Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available Lung cancer causes over one million deaths every year worldwide. However, prevention and treatment methods for this serious disease are limited. The identification of new chemicals related to lung cancer may aid in disease prevention and the design of more effective treatments. This study employed a weighted network, constructed using chemical-chemical interaction information, to identify new chemicals related to two types of lung cancer: non-small lung cancer and small-cell lung cancer. Then, a randomization test as well as chemical-chemical interaction and chemical structure information were utilized to make further selections. A final analysis of these new chemicals in the context of the current literature indicates that several chemicals are strongly linked to lung cancer.

  9. The effects of 'cell age' upon the lethal effects of physical and chemical mutagens in the yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Parry, J.M.

    1976-01-01

    Yeast cultures progressing from the exponential to the stationary phase of growth showed changes in cell sensitivity to physical agents such as UV light, heat shock at 52 0 C and the chemical mutagens ethyl methane sulphonate, nitrous acid and mitomycin C. Exponential phase cells showed maximum resistance to heat shock and the three chemicals. The increased resistance of exponential phase cells to UV light was shown to be dependent upon the functional integrity of the RAD 50 gene. Treatment of growing yeast cultures with radioactively labelled ethyl methane sulphonate indicated the preferential uptake of radioactivity during the sensitive exponential stage of growth. The results indicated that the differential uptake of the chemical mutagens was responsible for at least a fraction of the variations in cell sensitivity observed in yeast cultures at different phases of growth. (orig.) [de

  10. Deposition of yttria stabilized zirconia layer for solid oxide fuel cell by chemical vapor infiltration

    International Nuclear Information System (INIS)

    John, John T.; Dubey, Vivekanand; Kain, Vivekanand; Dey, Gautham Kumar; Prakash, Deep

    2011-01-01

    Free energy associated with a chemical reaction can be converted into electricity, if we can split the reaction into an anodic reaction and a cathodic reaction and carry out the reactions in an electrochemical cell using electrodes that will catalyze the reactions. We also have to use a suitable electrolyte, that serves to isolate the chemical species in the two compartments from getting mixed directly but allow an ion produced in one of the reactions to proceed to the other side and complete the reaction. For this reason cracks and porosity are not tolerated in the electrolyte. First generation solid oxide fuel cell (SOFC) uses yttria stabilized zirconia (YSZ) as the electrolyte. In spite of the fact that several solid electrolytes with higher conductivities at lower temperature are being investigated and developed, 8 mol% yttria stabilized zirconia (8YSZ) is considered to be the most favored electrolyte for the SOFC today. The electrolyte should be present as a thin, impervious layer of uniform thickness with good adherence, chemical and mechanical stability, in between the porous cathode and anode. Efforts to produce the 8YSZ coatings on porous lanthanum strontium manganite tubes by electrochemical vapor deposition (ECVD) have met with unexpected difficulties such as impurity pick up and chemical and mechanical instability of the LSM tubes in the ECVD environment. It was also difficult to keep the chemical composition of the YSZ coating at exactly 8 mol% Yttria in zirconia and to control the coating thickness in tight control. These problems were overcome by a two step deposition process where a YSZ layer of required thickness was produced by electrophoretic coating from an acetyl acetone bath at a voltage of 30-300V DC and sintered at 1300 deg C. The resulting porous YSZ layer was made impervious by chemical vapor infiltration (CVI) by the reaction between a mixture of vapors of YCl 3 and ZrCl 4 and steam at 1300 deg C as in the case of ECVD for a short

  11. A solution process for inverted tandem solar cells

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Bundgaard, Eva; Sylvester-Hvid, Kristian O.

    2011-01-01

    Tandem solar cells with normal and inverted device geometries were prepared by a solution process. Both device types were based on the use of zinc(II)oxide as the electron transporting layer (ETL). The hole transporting layer (HTL) was either PEDOT:PSS for normal geometry tandem solar cells...... or vanadium(V)oxide in the case of inverted tandem cells. It was found that the inverted tandem solar cells performed comparable or better than the normal geometry devices, showing that the connection structure of vanadium(V)oxide, Ag nanoparticles and zinc(II)oxide functions both as a good recombination...... layer, ensuring serial connection, and as a solvent barrier, protecting the first photoactive layer from processing of the second layer. This successfully demonstrates a tandem solar cell fabrication process fully compatible with state-of-the-art solution based automated production procedures....

  12. Electrochemical/chemical oxidation of bisphenol A in a four-electron/two-proton process in aprotic organic solvents

    International Nuclear Information System (INIS)

    Chan, Ya Yun; Yue, Yanni; Li, Yongxin; Webster, Richard D.

    2013-01-01

    Graphical abstract: - Highlights: • Bisphenol A undergoes a chemically irreversible voltammetric oxidation process. • Chemical oxidation was performed to overcome adsorption effects that cause electrode fouling. • A new product was isolated from chemical oxidation with 4 mol equiv. of the one-electron oxidant, NO + . • The oxidative mechanism was proposed to be a four-electron/two-proton process. - Abstract: The electrochemical behavior of bisphenol A (BPA) was examined using cyclic voltammetry, bulk electrolysis and chemical oxidation in aprotic organic solvents. It was found that BPA undergoes a chemically irreversible voltammetric oxidation process to form compounds that cannot be electrochemically converted back to the starting materials on the voltammetric timescale. To overcome the effects of electrode fouling during controlled potential electrolysis experiments, NO + was used as a one-electron chemical oxidant. A new product, hydroxylated bisdienone was isolated from the chemical oxidation of BPA with 4 mol equiv of NO + SbF 6 − in low water content CH 3 CN. The structure of the cation intermediate species was deduced and it was proposed that BPA is oxidized in a four-electron/two-proton process to form a relatively unstable dication which reacts quickly in the presence of water in acetonitrile (in a mechanism that is similar to phenols in general). However, as the water content of the solvent increased it was found that the chemical oxidation mechanism produced a nitration product in high yield. The findings from this study provide useful insights into the reactions that can occur during oxidative metabolism of BPA and highlight the possibility of the role of a bisdienone cation as a reactive metabolite in biological systems

  13. Intelligent process control of fiber chemical vapor deposition

    Science.gov (United States)

    Jones, John Gregory

    Chemical Vapor Deposition (CVD) is a widely used process for the application of thin films. In this case, CVD is being used to apply a thin film interface coating to single crystal monofilament sapphire (Alsb2Osb3) fibers for use in Ceramic Matrix Composites (CMC's). The hot-wall reactor operates at near atmospheric pressure which is maintained using a venturi pump system. Inert gas seals obviate the need for a sealed system. A liquid precursor delivery system has been implemented to provide precise stoichiometry control. Neural networks have been implemented to create real-time process description models trained using data generated based on a Navier-Stokes finite difference model of the process. Automation of the process to include full computer control and data logging capability is also presented. In situ sensors including a quadrupole mass spectrometer, thermocouples, laser scanner, and Raman spectrometer have been implemented to determine the gas phase reactants and coating quality. A fuzzy logic controller has been developed to regulate either the gas phase or the in situ temperature of the reactor using oxygen flow rate as an actuator. Scanning electron microscope (SEM) images of various samples are shown. A hierarchical control structure upon which the control structure is based is also presented.

  14. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  15. Studies on the origin and transformation of selenium and its chemical species along the process of petroleum refining

    Science.gov (United States)

    Stivanin de Almeida, Cibele M.; Ribeiro, Anderson S.; Saint'Pierre, Tatiana D.; Miekeley, Norbert

    2009-06-01

    Inductively coupled plasma optical emission spectrometry and mass spectrometry (ICPMS), the latter hyphenated to flow injection hydride generation, electrothermal vaporization or ion chromatography, have been applied to the chemical characterization of crude oil, aqueous process stream samples and wastewaters from a petroleum refinery, in order to get information on the behavior of selenium and its chemical species along effluent generation and treatment. Multielemental characterization of these effluents by ICPMS revealed a complex composition of most of them, with high salinity and potential spectral and non-spectral interferents present. For this reason, a critical re-assessment of the analytical techniques for the determination of total selenium and its species was performed. Methane was employed as gas in dynamic reaction cell ICPMS and cell parameters were optimized for a simulated brine matrix and for diluted aqueous solutions to match the expected process and treated wastewaters samples. The signal-to-background ratios for 78Se and 80Se were used as criteria in optimization, the first isotope resulting in better detection limits for the simulated brine matrix ( 78Se: 0.07 μg L - 1 , 80Se: 0.31 μg L - 1 ). A large variability in the concentration of selenium (from crude oil samples in the refinery here investigated, which may explain the pronounced concentrations changes of this element measured in aqueous process stream and wastewater samples. Highest concentrations of total selenium were analyzed in samples from the hydrotreater (up to about 1800 μg L - 1 ). The predominance of selenocyanate (SeCN -) was observed in most of the wastewaters so far investigated, but also other species were detected with retention times different from Se(IV), Se(VI) and SeCN -. Colloidal selenium (Se 0) was the only Se-species observed in samples from the atmospheric distillation unit, but was also identified in other samples, most probably formed by the decomposition of

  16. Accident Management ampersand Risk-Based Compliance With 40 CFR 68 for Chemical Process Facilities

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Taylor, R.P. Jr.; Ashbaugh, S.G.

    1995-01-01

    A risk-based logic model is suggested as an appropriate basis for better predicting accident progression and ensuing source terms to the environment from process upset conditions in complex chemical process facilities. Under emergency conditions, decision-makers may use the Accident Progression Event Tree approach to identify the best countermeasure for minimizing deleterious consequences to receptor groups before the atmospheric release has initiated. It is concluded that the chemical process industry may use this methodology as a supplemental information provider to better comply with the Environmental Protection Agency's proposed 40 CFR 68 Risk Management Program rule. An illustration using a benzene-nitric acid potential interaction demonstrates the value of the logic process. The identification of worst-case releases and planning for emergency response are improved through these methods, at minimum. It also provides a systematic basis for prioritizing facility modifications to correct vulnerabilities

  17. Effects of radiation and chemical substances on cells and organism

    International Nuclear Information System (INIS)

    Fremuth, F.

    1981-01-01

    The book treats the radiation chemistry part of biophysics and applied biophysics in the sphere of ionizing radiation. Discussed are the concepts of radiation units and radioactivity units and the relative biological efficiency. The effects of ionizing and UV radiations are analyzed at the level of macromolecular changes. Chapters dealing with genetic radiation effects discuss the effects at the cellular level with respect to cell proliferation. All these problems are used to illustrate the effect on the organism as a whole. The chapters on applied biophysics deal with the indications of radiation and chemical damage, sensitivity of cells and the organism, and the study and influencing of growth at the cellular level. The concluding chapter is devoted to the environmental impact of radiation. (J.P.)

  18. A new cell-based method for assessing the eye irritation potential of chemicals: an alternative to the Draize test.

    Science.gov (United States)

    Cho, Sun-A; An, Susun; Lee, Eunyoung; Shin, Kyeho; Cho, Jun-Cheol; Lee, Tae Ryong

    2012-07-20

    Using a human corneal cell line (HCE-T cells) and 2 evaluation criteria, we developed a new alternative method to assess the eye irritation potential of chemicals. We exposed HCE-T cells to different concentrations of 38 chemicals for 1h and measured relative cell viability (RCV) as an endpoint at each concentration. Using the RCV values, we calculated the RCV50. We also exposed HCE-T cells to 3 fixed concentrations of the 38 chemicals (5%, 0.5%, and 0.05%) for 1h and measured the RCV at each concentration. Using the RCV values at 5%, 0.5%, and 0.05%, we developed a new criterion for eye irritation potential (total eye irritation score, TEIS) and estimated the ocular irritancy. We then assessed the correlation of the results of RCV50 and TEIS with those of the Draize rabbit eye irritation. Both the RCV50 and TEIS results exhibited good positive correlations (sensitivity: 80.77%, specificity: 83.33%, and accuracy: 81.58% for TEIS; sensitivity: 73.08-76.92%, specificity: 75.00%, and accuracy: 73.68-76.32% for RCV50). We conclude that the new in vitro model using HCE-T cells is a good alternative evaluation model for the prediction of the eye irritation potential of chemicals. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. The testing of thermal-mechanical-hydrological-chemical processes using a large block

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.; Blair, S.C.; Buscheck, T.A.; Chesnut, D.A.; Glassley, W.E.; Lee, K.; Roberts, J.J.

    1994-01-01

    The radioactive decay heat from nuclear waste packages may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near-field environment of a repository. A group of tests on a large block (LBT) are planned to provide a timely opportunity to test and calibrate some of the TMHC model concepts. The LBT is advantageous for testing and verifying model concepts because the boundary conditions are controlled, and the block can be characterized before and after the experiment. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m will be sawed and isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block will be collected for laboratory testing of some individual thermal-mechanical, hydrological, and chemical processes. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. The large block will be heated with one heater in each borehole and guard heaters on the sides so that a dry-out zone and a condensate zone will exist simultaneously. Temperature, moisture content, pore pressure, chemical composition, stress and displacement will be measured throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes

  20. An easily sintered, chemically stable, barium zirconate-based proton conductor for high-performance proton-conducting solid oxide fuel cells

    KAUST Repository

    Sun, Wenping

    2014-07-25

    Yttrium and indium co-doped barium zirconate is investigated to develop a chemically stable and sintering active proton conductor for solid oxide fuel cells (SOFCs). BaZr0.8Y0.2-xInxO3- δ possesses a pure cubic perovskite structure. The sintering activity of BaZr0.8Y0.2-xInxO3- δ increases significantly with In concentration. BaZr0.8Y0.15In0.05O3- δ (BZYI5) exhibits the highest total electrical conductivity among the sintered oxides. BZYI5 also retains high chemical stability against CO2, vapor, and reduction of H2. The good sintering activity, high conductivity, and chemical stability of BZYI5 facilitate the fabrication of durable SOFCs based on a highly conductive BZYI5 electrolyte film by cost-effective ceramic processes. Fully dense BZYI5 electrolyte film is successfully prepared on the anode substrate by a facile drop-coating technique followed by co-firing at 1400 °C for 5 h in air. The BZYI5 film exhibits one of the highest conductivity among the BaZrO3-based electrolyte films with various sintering aids. BZYI5-based single cells output very encouraging and by far the highest peak power density for BaZrO3-based proton-conducting SOFCs, reaching as high as 379 mW cm-2 at 700 °C. The results demonstrate that Y and In co-doping is an effective strategy for exploring sintering active and chemically stable BaZrO3-based proton conductors for high performance proton-conducting SOFCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.