WorldWideScience

Sample records for chemical processing cell

  1. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  2. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-06

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.

  3. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    International Nuclear Information System (INIS)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-01-01

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  4. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  5. Revealing chemical processes and kinetics of drug action within single living cells via plasmonic Raman probes.

    Science.gov (United States)

    Li, Shan-Shan; Guan, Qi-Yuan; Meng, Gang; Chang, Xiao-Feng; Wei, Ji-Wu; Wang, Peng; Kang, Bin; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-05-23

    Better understanding the drug action within cells may extend our knowledge on drug action mechanisms and promote new drugs discovery. Herein, we studied the processes of drug induced chemical changes on proteins and nucleic acids in human breast adenocarcinoma (MCF-7) cells via time-resolved plasmonic-enhanced Raman spectroscopy (PERS) in combination with principal component analysis (PCA). Using three popular chemotherapy drugs (fluorouracil, cisplatin and camptothecin) as models, chemical changes during drug action process were clearly discriminated. Reaction kinetics related to protein denaturation, conformational modification, DNA damage and their associated biomolecular events were calculated. Through rate constants and reaction delay times, the different action modes of these drugs could be distinguished. These results may provide vital insights into understanding the chemical reactions associated with drug-cell interactions.

  6. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    Science.gov (United States)

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  7. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  8. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-08

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components, antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).

  9. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  10. Chemical radwaste solidification processes

    International Nuclear Information System (INIS)

    Malloy, C.W.

    1979-01-01

    Some of these processes and their problems are briefly reviewed: early cement systems; urea-formaldehyde; Dow solidification process; low-viscosity chemical agents (POLYPAC); and water-extensible polyester. 9 refs

  11. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  12. Ultrasound in chemical processes

    International Nuclear Information System (INIS)

    Baig, S.; Farooq, R.; Malik, A.H.

    2009-01-01

    The use of ultrasound to promote chemical reactions or sono chemistry is a field of chemistry which involves the process of acoustic cavitations i.e. the collapse of microscopic bubbles in liquid. There are two essential components for the application of sono chemistry, a liquid medium and a source of high-energy vibrations. The liquid medium is necessary because sono chemistry is driven by acoustic cavitations that can only occur in liquids. The source of the vibrational energy is the transducer. The chemical effects of ultrasound include the enhancement of reaction rates at ambient temperatures and striking advancements in stoichiometric and catalytic reactions In some cases, ultrasonic irradiation can increase reactivities by nearly million fold. The ultrasound has large number of applications not only in emending old chemical processes but also in developing new synthetic strategies. Ultrasound enhances all chemical and physical processes e.g., crystallization, vitamin synthesis, preparation of catalysts, dissolution of chemicals, organometallic reactions, electrochemical processes, etc. High-power ultrasonics is a new powerful technology that is not only safe and environmentally friendly in its application but is also efficient and economical. It can be applied to existing processes to eliminate the need for chemicals and/or heat application in a variety of industrial processes. (author)

  13. Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bouttemy, M.; Tran-Van, P. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Gerard, I., E-mail: gerard@chimie.uvsq.fr [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Hildebrandt, T.; Causier, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Pelouard, J.L.; Dagher, G. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Jehl, Z.; Naghavi, N. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Voorwinden, G.; Dimmler, B. [Wuerth Elektronik Research GmbH, Industriestr. 4, 70565 Stuttgart (Germany); Powalla, M. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung (ZSW), Industriestr. 6, 70565 Stuttgart (Germany); Guillemoles, J.F. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Lincot, D. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Etcheberry, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France)

    2011-08-31

    CIGSe absorber was etched in HBr/Br{sub 2}/H{sub 2}O to prepare defined thicknesses of CIGSe between 2.7 and 0.5 {mu}m. We established a reproducible method of reducing the absorber thickness via chemical etching. We determine the dissolution kinetics rate of CIGSe using trace analysis by graphite furnace atomic absorption spectrometry of Ga and Cu. The roughness of the etching surface decreases during the first 500 nm of the etching to a steady state value of the root-mean-square roughness near 50 nm. X-ray photoelectron spectroscopy analyses demonstrate an etching process occurring with a constant chemical composition of the treated surface acidic bromine solutions provide a controlled chemical thinning process resulting in an almost flat surface and a very low superficial Se{sup 0} enrichment.

  14. Lasers in chemical processing

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-01-01

    The high cost of laser energy is the crucial issue in any potential laser-processing application. It is expensive relative to other forms of energy and to most bulk chemicals. We show those factors that have previously frustrated attempts to find commercially viable laser-induced processes for the production of materials. Having identified the general criteria to be satisfied by an economically successful laser process and shown how these imply the laser-system requirements, we present a status report on the uranium laser isotope separation (LIS) program at the Lawrence Livermore National Laboratory

  15. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Greil, Stefanie M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Lauermann, Iver, E-mail: Iver.lauermann@helmholtz-berlin.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Aziz, Emad F., E-mail: Emad.Aziz@helmholtz-berlin.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany)

    2010-02-15

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  16. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    International Nuclear Information System (INIS)

    Greil, Stefanie M.; Lauermann, Iver; Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu; Aziz, Emad F.

    2010-01-01

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  17. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    Science.gov (United States)

    Greil, Stefanie M.; Lauermann, Iver; Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu; Aziz, Emad F.

    2010-02-01

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  18. Applications of Neutron Scattering in the Chemical Industry: Proton Dynamics of Highly Dispersed Materials, Characterization of Fuel Cell Catalysts, and Catalysts from Large-Scale Chemical Processes

    Science.gov (United States)

    Albers, Peter W.; Parker, Stewart F.

    The attractiveness of neutron scattering techniques for the detailed characterization of materials of high degrees of dispersity and structural complexity as encountered in the chemical industry is discussed. Neutron scattering picks up where other analytical methods leave off because of the physico-chemical properties of finely divided products and materials whose absorption behavior toward electromagnetic radiation and electrical conductivity causes serious problems. This is demonstrated by presenting typical applications from large-scale production technology and industrial catalysis. These include the determination of the proton-related surface chemistry of advanced materials that are used as reinforcing fillers in the manufacture of tires, where interrelations between surface chemistry, rheological properties, improved safety, and significant reduction of fuel consumption are the focus of recent developments. Neutron scattering allows surface science studies of the dissociative adsorption of hydrogen on nanodispersed, supported precious metal particles of fuel cell catalysts under in situ loading at realistic gas pressures of about 1 bar. Insight into the occupation of catalytically relevant surface sites provides valuable information about the catalyst in the working state and supplies essential scientific input for tailoring better catalysts by technologists. The impact of deactivation phenomena on industrial catalysts by coke deposition, chemical transformation of carbonaceous deposits, and other processes in catalytic hydrogenation processes that result in significant shortening of the time of useful operation in large-scale plants can often be traced back in detail to surface or bulk properties of catalysts or materials of catalytic relevance. A better understanding of avoidable or unavoidable aspects of catalyst deactivation phenomena under certain in-process conditions and the development of effective means for reducing deactivation leads to more energy

  19. Selection of chemically defined media for CHO cell fed-batch culture processes

    NARCIS (Netherlands)

    Pan, X.; Streefland, M.; Dalm, C.; Wijffels, R.H.; Martens, D.E.

    2017-01-01

    Two CHO cell clones derived from the same parental CHOBC cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures.
    Higher

  20. Decontamination and decommissioning of the Chemical Process Cell (CPC): Topical report for the period January 1985-March 1987

    International Nuclear Information System (INIS)

    Meigs, R.A.

    1987-07-01

    To support interim storage of vitrified High-Level Waste (HLW) at the West Valley Demonstration Project, the shielded, remotely operated Chemical Process Cell (CPC) was decommissioned and decontaminated. All equipment was removed, packaged and stored for future size reduction and decontamination. Floor debris was sampled, characterized, and vacuumed into remotely handled containers. The cell walls, ceiling, and floor were decontaminated. Three 20 Mg (22.5 ton) concrete neutron absorber cores were cut with a high-pressure water/abrasive jet cutting system and packaged for disposal. All operations were performed remotely using two overhead bridge cranes which included two 1.8 Mg (2 ton) hoists, one 14.5 Mg (16 ton) hoist, and an electromechanical manipulator or an industrial robot mounted on a mobile platform. Initial general area dose rates in the cell ranged from 1 to 50 R/h. Target levels of less than 10 mR/h general area readings were established before decontamination and decommissioning was initiated; general area dose rates between 200 mR/h and 1200 mR/h were obtained at the completion of the decontamination work. 4 refs., 11 figs., 8 tabs

  1. Microfluidics for chemical processing

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.

    2006-01-01

    Microfluidic systems, and more specifically, microfluidic chips, have a number of features that make them particularly useful for the study of chemical reactions on-line. The present paper will discuss two examples, the study of fluidic behaviour at high pressures and the excitation and detection of

  2. Film thickness and chemical processing effects on the stability of cadmium telluride solar cells

    International Nuclear Information System (INIS)

    Albin, D.S.; Demtsu, S.H.; McMahon, T.J.

    2006-01-01

    The performance and stability of CdS/CdTe solar cells as a function of layer thickness, back contact etch, and oxygen during the CdCl 2 anneal was determined. Multiple linear regression models were used to analyze the statistical significance of various first order effects and interactions. With stress, all devices showed a reduction in open-circuit voltage (V oc ) and fill factor (FF) characteristic of increased recombination. Devices using thinner CdS were vulnerable to shunt formation. Oxygen during the CdCl 2 anneal minimizes this effect. A thermodynamic model involving the formation of Cu-oxide is presented to explain the latter

  3. Gas-discharge plasma processes for surface modification and conversion of chemical substances. Application for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, K.; Meyer, D.; Rohland, B.; Heintze, M.; Zahn, R.J.; Hannemann, M.; Meusinger, J.; Ohl, A. [Institute of Non-Thermal Plasma Physics, Greifswald (Germany)]|[Gesellschaft fuer Angewandte Technik mbH Greifswald (Germany)]|[GAPC, Adam Opel AG, IPC, Ruesselsheim (Germany)

    2001-07-01

    The potential of plasma processes towards hydrogen and fuel cell technology will be demonstrated by two examples with preliminary results: 1. plasma modification of polymer electrolyte membranes for direct methanol fuel cells, and 2. plasma supported steam reforming.

  4. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  5. Reactive chemicals and process hazards

    International Nuclear Information System (INIS)

    Surianarayanan, M.

    2016-01-01

    Exothermic chemical reactions are often accompanied by significant heat release, and therefore, need a thorough investigation before they are taken to a plant scale. Sudden thermal energy releases from exothermic decompositions and runaway reactions have contributed to serious fire and explosions in several chemical process plants. Similarly, thermal runaway had also occurred in storage and transportation of reactive chemicals. The secondary events of thermal runaway reactions can be rupture of process vessel, toxic spills and release of explosive vapor clouds or combination of these also. The explosion hazards are governed by the system thermodynamics and kinetics of the thermal process. Theoretical prediction of limiting temperature is difficult due to process complexities. Further, the kinetic data obtained through classical techniques, at conditions far away from runaway situation, is often not valid for assessing the runaway behavior of exothermic processes. The main focus of this lecture is to discuss the causes and several contributing factors for thermal runaway and instability and present analyses of the methodologies of the new instrumental techniques for assessing the thermal hazards of reactive chemicals during processing, storage and transportation. (author)

  6. Exergy analysis of the biogas sorption-enhanced chemical looping reforming process integrated with a high-temperature proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kasemanand, Sarunyou; Im-orb, Karittha; Tippawan, Phanicha; Wiyaratn, Wisitsree; Arpornwichanop, Amornchai

    2017-01-01

    Highlights: • A biogas reforming and fuel cell integrated process is considered. • Energy and exergy analyses of the integrated process are performed. • Increasing the nickel oxide-to-biogas ratio decreases the exergy efficiency. • The exergy destruction of the fuel cell increases with increasing cell temperature. • The exergy efficiency of the process is improved when heat integration is applied. - Abstract: A biogas sorption-enhanced chemical looping reforming process integrated with a high-temperature proton exchange membrane fuel cell is analyzed. Modeling of such an integrated process is performed by using a flowsheet simulator (Aspen plus). The exergy analysis is performed to evaluate the energy utilization efficiency of each unit and that of the integrated process. The effect of steam and nickel oxide to biogas ratios on the exergetic performance of the stand-alone biogas sorption-enhanced chemical looping reforming process is investigated. The total exergy destruction increases as the steam or nickel oxide to biogas ratio increases. The main exergy destruction is found at the air reactor. For the high-temperature proton exchange membrane fuel cell, the main exergy destruction is found at the cathode. The total exergy destruction increases when cell temperature increases, whereas the inverse effect is found when the current density is considered as a key parameter. Regarding the exergy efficiency, the results show opposite trend to the exergy destruction. The heat integration analysis is performed to improve the exergetic performance. It is found that the integrated process including the heat integration system can improve the exergy destruction and exergy efficiency of 48% and 60%, respectively.

  7. Process Optimization for High Efficiency Heterojunction c-Si Solar Cells Fabrication Using Hot-Wire Chemical Vapor Deposition: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Y.; Yuan, H. C.; Page, M.; Nemeth, W.; Roybal, L.; Wang, Q.

    2012-06-01

    The researchers extensively studied the effects of annealing or thermal history of cell process on the minority carrier lifetimes of FZ n-type c-Si wafers with various i-layer thicknesses from 5 to 60 nm, substrate temperatures from 100 to 350 degrees C, doped layers both p- and n-types, and transparent conducting oxide (TCO).

  8. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  9. Idaho Chemical Processing Plant Process Efficiency improvements

    International Nuclear Information System (INIS)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

  10. MRI of chemical reactions and processes.

    Science.gov (United States)

    Britton, Melanie M

    2017-08-01

    As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Outline of the Chemical Processing Facility (CPF)

    International Nuclear Information System (INIS)

    Arita, Katsuhiko

    1978-01-01

    Concerning the Chemical Processing Facility (CPF), a high level radioactive material research facility, to be installed in Tokai Works of Power Reactor and Nuclear Fuel Development Corporation (PNC), the detailed design and the governmental safety inspection were finished. The construction has been already started, and it will be completed in 1980. Under the national policy of establishing a nuclear fuel cycle, PNC is now carrying out the development of its downstream technology. The objects of the Chemical Processing Facility are the researches of the treatment techniques of high level radioactive liquid wastes from fuel reprocessing and of the reprocessing of fast reactor fuel. The following matters are described: purpose of the CPF, i.e. fast reactor fuel reprocessing and high-level liquid waste treatment; construction of the CPF, i.e. buildings, cells and an exhaust stack; test systems, i.e. fuel reprocessing and liquid waste vitrification; and facility safety. (Mori, K.)

  12. Stochastic processes in chemical physics

    CERN Document Server

    Shuler, K E

    2009-01-01

    The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

  13. Cell behaviour on chemically microstructured surfaces

    International Nuclear Information System (INIS)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-01-01

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 μm) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions

  14. Chemical reagent and process for refuse disposal

    International Nuclear Information System (INIS)

    Somerville, R.B.; Fan, L.T.

    1989-01-01

    A process for treating refuse by mixing them with a reactive chemical and a puzzolana-type material. Said chemical includes a retarding agent which modifies the viscosity and an accelerating agent. (author)

  15. Conceptual Chemical Process Design for Sustainability.

    Science.gov (United States)

    This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyse...

  16. Determination of uranium in the red blood cells of the workers in the chemical processing of uranium ore

    International Nuclear Information System (INIS)

    Nosek, J.; Simkova, M.; Kukula, F.; Musil, K.

    1975-04-01

    Neutron activation analysis was used in determining uranium in the venous blood erythrocytes of controls and of workers exposed to occupational hazards in a uranium chemical treatment plant. While 4.1 +- 2.6 ppb of uranium was found in dry matter of the erythrocytes in controls, 6.5 +- 2.1 ppb of uranium was ascertained in dry matter of the erythrocytes in occupationally exposed workers of a wet preparation plant, and 37.2 +- 20.2 ppb of uranium in the erythrocytes in workers of a dry cleaning plant. (author)

  17. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  18. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  19. CATALYSIS OF CHEMICAL PROCESSES: PARTICULAR ...

    African Journals Online (AJOL)

    IICBA01

    secondary/high schools and universities, the inhibition of the chemical reactions is frequently ... As a result, the lesson catalysis is frequently included in chemistry education curricula at ... Misinterpretations in teaching and perception of catalysis ... profile is shown as a dependence of energy on reaction progress, without ...

  20. Modular Chemical Process Intensification: A Review.

    Science.gov (United States)

    Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas

    2017-06-07

    Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.

  1. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESSING CELL WITH MATRIX SIMULANTS AND SUPERNATE

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.

    2012-05-07

    Savannah River Remediation (SRR) is evaluating changes to its current DWPF flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the CPC since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT and QAP). The details regarding the simulant preparation and analysis have been documented previously.

  2. Processing of CuInSe2-Based Solar Cells: Characterization of Deposition Processes in Terms of Chemical Reaction Analyses. Final Report, 6 May 1995 - 31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.J.; Stanbery, B.J.

    2001-07-16

    This project describes a novel rotating-disc reactor has been designed and built to enable modulated flux deposition of CuInSe2 and its related binary compounds. The reactor incorporates both a thermally activated source and a novel plasma-activated source of selenium vapor, which have been used for the growth of epitaxial and polycrystalline thin-film layers of CuInSe2. A comparison of the different selenium reactant sources has shown evidence of increases in its incorporation when using the plasma source, but no measurable change when the thermally activated source was used. We concluded that the chemical reactivity of selenium vapor from the plasma source is significantly greater than that provided by the other sources studied. Epitaxially grown CuInSe2 layers on GaAs, ZnTe, and SrF2 demonstrate the importance of nucleation effects on the morphology and crystallographic structure of the resulting materials. These studies have resulted in the first reported growth of the CuAu type-I crystallographic polytype of CuInSe2, and the first reported epitaxial growth of CuInSe2 on ZnTe. Polycrystalline binary (Cu,Se) and (In,Se) thin films have been grown, and the molar flux ratio of selenium to metals was varied. It is shown that all of the reported binary compounds in each of the corresponding binary phase fields can be synthesized by the modulated flux deposition technique implemented in the reactor by controlling this ratio and the substrate temperature. These results were employed to deposit bilayer thin films of specific (Cu,Se) and (In,Se) compounds with low melting-point temperature, which were used to verify the feasibility of synthesizing CuInSe2 by subsequent rapid-thermal processing. The studies of the influence of sodium during the initial stages of epitaxy have led to a new model to explain its influences based on the hypothesis that it behaves as a surfactant in the Cu-In-Se material system. This represents the first unified theory on the role of sodium

  3. Chemical process control using Mat lab

    International Nuclear Information System (INIS)

    Kang, Sin Chun; Kim, Raeh Yeon; Kim, Yang Su; Oh, Min; Yeo, Yeong Gu; Jung, Yeon Su

    2001-07-01

    This book is about chemical process control, which includes the basis of process control with conception, function, composition of system and summary, change of laplace and linearization, modeling of chemical process, transfer function and block diagram, the first dynamic property of process, the second dynamic property of process, the dynamic property of combined process, control structure of feedback on component of control system, the dynamic property of feedback control loop, stability of closed loop control structure, expression of process, modification and composition of controller, analysis of vibration response and adjustment controller using vibration response.

  4. Plasma-chemical processes and systems

    International Nuclear Information System (INIS)

    Castro B, J.

    1987-01-01

    The direct applications of plasma technology on chemistry and metallurgy are presented. The physical fundaments of chemically active non-equilibrium plasma, the reaction kinetics, and the physical chemical transformations occuring in the electrical discharges, which are applied in the industry, are analysed. Some plasma chemical systems and processes related to the energy of hydrogen, with the chemical technology and with the metallurgy are described. Emphasis is given to the optimization of the energy effectiveness of these processes to obtain reducers and artificial energetic carriers. (M.C.K.) [pt

  5. Processing of CuInSe{sub 2}-based solar cells: Characterization of deposition processes in terms of chemical reaction analyses. Phase 2 Annual Report, 6 May 1996--5 May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.

    1999-10-20

    This report describes research performed by the University of Florida during Phase 2 of this subcontract. First, to study CIGS, researchers adapted a contactless, nondestructive technique previously developed for measuring photogenerated excess carrier lifetimes in SOI wafers. This dual-beam optical modulation (DBOM) technique was used to investigate the differences between three alternative methods of depositing CdS (conventional chemical-bath deposition [CBD], metal-organic chemical vapor deposition [MOCVD], and sputtering). Second, a critical assessment of the Cu-In-Se thermochemical and phase diagram data using standard CALPHAD procedures is being performed. The outcome of this research will produce useful information on equilibrium vapor compositions (required annealing ambients, Sex fluxes from effusion cells), phase diagrams (conditions for melt-assisted growth), chemical potentials (driving forces for diffusion and chemical reactions), and consistent solution models (extents of solid solutions and extending phase diagrams). Third, an integrated facility to fabricate CIS PV devices was established that includes migration-enhanced epitaxy (MEE) for deposition of CIS, a rapid thermal processing furnace for absorber film formation, sputtering of ZnO, CBD or MOCVD of CdS, metallization, and pattern definition.

  6. Chemical Processing Department monthly report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    Young, J. F.; Johnson, W. E.; Reinker, P. H.; Warren, J. H.; McCullugh, R. W.; Harmon, M. K.; Gartin, W. J.; LaFollette, T. G.; Shaw, H. P.; Frank, W. S.; Grim, K. G.; Warren, J. H.

    1963-11-21

    This report, for October 1963 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  7. Chemical Processing Department monthly report, June 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-07-22

    This report for June 1958, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  8. Chemical Processing Division monthly report, November 1966

    Energy Technology Data Exchange (ETDEWEB)

    Reed, P.E.

    1966-12-21

    This report, from the Chemical Processing Department at HAPO for November 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee-relations, and waste management.

  9. Chemical Processing Department monthly report, March 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-04-21

    This report for March 1961, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  10. Chemical Processing Division monthly report, January 1966

    Energy Technology Data Exchange (ETDEWEB)

    Reed, P.E.

    1966-02-21

    This report, from the Chemical Processing Department at HAPO for January 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  11. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  12. The Extracellular Environment's Effect on Cellular Processes: An In Vitro Study of Mechanical and Chemical Cues on Human Mesenchymal Stem Cells and C17.2 Neural Stem Cells

    Science.gov (United States)

    Casey, Meghan E.

    Stem cells are widely used in the area of tissue engineering. The ability of cells to interact with materials on the nano- and micro- level is important in the success of the biomaterial. It is well-known that cells respond to their micro- and nano-environments through a process termed chemo-mechanotransduction. It is important to establish standard protocols for cellular experiments, as chemical modifications to maintenance environments can alter long-term research results. In this work, the effects of different media compositions on human mesenchymal stem cells (hMSCs) throughout normal in vitro maintenance are investigated. Changes in RNA regulation, protein expression and proliferation are studied via quantitative polymerase chain reaction (qPCR), immunocytochemistry (ICC) and cell counts, respectively. Morphological differences are also observed throughout the experiment. Results of this study illustrate the dynamic response of hMSC maintenance to differences in growth medium and passage number. These experiments highlight the effect growth medium has on in vitro experiments and the need of consistent protocols in hMSC research. A substantial opportunity exists in neuronal research to develop a material platform that allows for both the proliferation and differentiation of stem cells into neurons and the ability to quantify the secretome of neuronal cells. Anodic aluminum oxide (AAO) membranes are fabricated in a two-step anodization procedure where voltage is varied to control the pore size and morphology of the membranes. C17.2 neural stem cells are differentiated on the membranes via serum-withdrawal. Cellular growth is characterized by scanning electron microscopy (SEM), ICC and qPCR. ImageJ software is used to obtain phenotypic cell counts and neurite outgrowth lengths. Results indicate a highly tunable correlation between AAO nanopore sizes and differentiated cell populations. By selecting AAO membranes with specific pore size ranges, control of neuronal

  13. Process Security in Chemical Engineering Education

    Science.gov (United States)

    Piluso, Cristina; Uygun, Korkut; Huang, Yinlun; Lou, Helen H.

    2005-01-01

    The threats of terrorism have greatly alerted the chemical process industries to assure plant security at all levels: infrastructure-improvement-focused physical security, information-protection-focused cyber security, and design-and-operation-improvement-focused process security. While developing effective plant security methods and technologies…

  14. Chemical kinetics and oil shale process design

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  15. Chemical Processing Department monthly report, May 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-06-21

    The May, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation.(MB)

  16. Chemical Processing Department monthly report, September 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-10-22

    The September, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation.

  17. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  18. Chemicals Industry New Process Chemistry Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  19. Chemical decontamination process and device therefor

    International Nuclear Information System (INIS)

    Takahashi, Ryota; Sakai, Hitoshi

    1998-01-01

    The present invention provides a process and a device for chemical decontamination, which can suppress corrosion of low corrosion resistant materials, keep decontamination properties substantially as same as before and further, reduce the volume of secondary wastes. In a step of reductively melting oxide membranes on an objective material to be decontaminated, a mixture of oxalic acid and a salt thereof is used as a reducing agent, and the reductive melting is conducted while suppressing hydrogen ion concentration of an aqueous liquid system. In order to enhance the reducibility of the oxalic acid ions, it is desirable to add a cyclic hetero compound thereto. The device of the present invention comprises, a decontamination loop including a member to be decontaminated, a heater and a pH meter, a medical injection pump for injecting a reducing agent to the decontamination loop, a metal ion recovering loop including an ion exchange resin tower, a reducing agent decomposing loop including an electrolytic vessel and/or a UV ray irradiation cell, a circulation pump for circulating the decontamination liquid to each of the loops and a plurality of opening/closing valves for switching the loop in which the decontamination liquid is circulated. (T.M.)

  20. Chemical strategies for modifications of the solar cell process, from wafering to emitter diffusion; Chemische Ansaetze zur Neuordnung des Solarzellenprozesses ausgehend vom Wafering bis hin zur Emitterdiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Kuno

    2009-11-06

    The paper describes the classic standard industrial solar cell based on monocrystalline silicon and describes new methods of fabrication. The first is an alternative wafering concept using laser microjet cutting instead of multiwire cutting. This method originally uses pure, deionized water; it was modified so that the liquid jet will not only be a liquid light conductor but also a transport medium for etching fluids supporting thermal abrasion of silicon by the laser jet. Two etching fluids were tested experimentally; it was found that water-free fluids based on perfluorinated solvents with very slight additions of gaseous chlorine are superior to all other options. In the second section, the wet chemical process steps between wafering and emitter diffusion (i.e. the first high-temperature step) was to be modified. Alternatives to 2-propanol were to be found in the experimental part. Purification after texturing was to be rationalized in order to reduce the process cost, either by using less chemical substances or by achieving shorter process times. 1-pentanol and p-toluolsulfonic acid were identified as two potential alternatives to 2-propanol as texture additives. Finally, it could be shown that wire-cut substrates processed with the new texturing agents have higher mechanical stabilities than substrates used with the classic texturing agent 2-propanol. [German] Im ersten Kapitel wird die klassische Standard-Industrie-Solarzelle auf der Basis monokristallinen Siliziums vorgestellt. Der bisherige Herstellungsprozess der Standard-Industrie-Solarzelle, der in wesentlichen Teilen darauf abzielt, diese Verluste zu minimieren, dient als Referenz fuer die Entwicklung neuer Fertigungsverfahren, wie sie in dieser Arbeit vorgestellt werden. Den ersten thematischen Schwerpunkt bildet die Entwicklung eines alternativen Wafering-Konzeptes zum Multi-Drahtsaegen. Die Basis des neuen, hier vorgestellten Wafering-Prozesses bildet das Laser-Micro-Jet-Verfahren. Dieses System

  1. Environmentally benign chemical synthesis and processing

    International Nuclear Information System (INIS)

    Hancock, K.G.

    1992-01-01

    A new era of university-industry-government partnership is required to address the intertwined problems of industrial economic competitiveness and environmental quality. Chemicals that go up the stacks and down the drains are simultaneously a serious detriment to the environment, a waste of natural resources, and a threat to industrial profitability. Recently, the NSF Divisions of Chemistry and chemical and Thermal Systems have joined with the Council for Chemical research in a new grant program to reduce pollution at the source by underwriting research aimed at environmentally benign chemical synthesis and processing. Part of a broader NSF initiative on environmental science research, this new program serves as a model for university-industry-government joint action and technology transfer. Other features of this program and related activities will be described in this paper

  2. Historical events of the Chemical Processing Department

    Energy Technology Data Exchange (ETDEWEB)

    Lane, W.A.

    1965-11-12

    The purpose of this report is to summarize and document the significant historical events pertinent to the operation of the Chemical Processing facilities at Hanford. The report covers, in chronological order, the major construction activities and historical events from 1944 to September, 1965. Also included are the production records achieved and a history of the department`s unit cost performance.

  3. Life cycle sustainability assessment of chemical processes

    DEFF Research Database (Denmark)

    Xu, Di; Lv, Liping; Ren, Jingzheng

    2017-01-01

    In this study, an integrated vector-based three-dimensional (3D) methodology for the life cycle sustainability assessment (LCSA) of chemical process alternatives is proposed. In the methodology, a 3D criteria assessment system is first established by using the life cycle assessment, the life cycl...

  4. Safety Considerations in the Chemical Process Industries

    Science.gov (United States)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  5. Chemical aspects of nuclear fuel fabrication processes

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, A; Ellis, J F; Watson, R H

    1986-04-01

    Processes used by British Nuclear Fuels plc for the conversion of uranium ore concentrates to uranium metal and uranium hexafluoride, are reviewed. Means of converting the latter compound, after enrichment, to sintered UO/sub 2/ fuel bodies are also described. An overview is given of the associated chemical engineering technology.

  6. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  7. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  8. Intelligent Controller Design for a Chemical Process

    OpenAIRE

    Mr. Glan Devadhas G; Dr.Pushpakumar S.

    2010-01-01

    Chemical process control is a challenging problem due to the strong on*line non*linearity and extreme sensitivity to disturbances of the process. Ziegler – Nichols tuned PI and PID controllers are found to provide poor performances for higher*order and non–linear systems. This paper presents an application of one*step*ahead fuzzy as well as ANFIS (adaptive*network*based fuzzy inference system) tuning scheme for an Continuous Stirred Tank Reactor CSTR process. The controller is designed based ...

  9. Chemicals as the Sole Transformers of Cell Fate.

    Science.gov (United States)

    Ebrahimi, Behnam

    2016-05-30

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes.

  10. Reflow process stabilization by chemical characteristics and process conditions

    Science.gov (United States)

    Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho

    2002-07-01

    With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.

  11. A ''master key'' to chemical separation processes

    International Nuclear Information System (INIS)

    Madic, Ch.; Hill, C.

    2002-01-01

    One of the keys to sorting nuclear waste is extracting minor actinides - the most troublesome long-lived elements - from the flow of waste by separating them from lanthanides, which have very similar chemical properties to actinides, for possible transmutation into shorter-lived elements. Thanks to a European initiative coordinated by CEA, this key is now available: its name is Sanex. There now remains to develop tough, straightforward industrial processes to integrate it into a new nuclear waste management approach by 2005. Sanex joins the Diamex process, used for the combined separation of lanthanides and minor actinides from fission products. A third process, Sesame, designed to separate americium, completes the list of available separation processes. (authors)

  12. Chemical processes in neutron capture therapy

    International Nuclear Information System (INIS)

    Brown, B.J.

    1975-01-01

    Research into the radiation chemical effects of neutron capture therapy are described. In the use of neutron capture therapy for the treatment of brain tumours, compounds containing an activatable nuclide are selectively concentrated within tumour tissue and irradiated with neutrons. Target compounds for use in therapy must accumulate selectively in high concentrations in the tumour and must be non toxic to the patient. The most suitable of these are the boron hydrides. Radiation dosages, resulting from neutron capture in normal tissue constituents are tabulated. As part of the program to study the radiation-induced chemical processes undergone by boron target compounds, the radiolytic degredation of boron hydride and phenyl boric acid system was investigated. No direct dependence between the yield of the transient radiolytic species and the concentration of the B-compound was observed. (author)

  13. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  14. Intracellular renin disrupts chemical communication between heart cells. Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Walmor eDe Mello

    2015-01-01

    Full Text Available The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; 1 under normal conditions, Lucifer Yellow flows from cell-to-cell through gap junctions; 2 the intracellular dialysis of renin (100nM disrupts chemical communication-an effect enhanced by simultaneous administration of angiotensinogen (100nM; 3 enalaprilat (10-9M administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; 4 aliskiren (10-8M inhibited the effect of renin on chemical communication;5 the possible role of intracellular renin independently of angiotensin II (Ang II was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; 6 the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed;7 the present results indicate that intracellular renin due to internalization or in situ synthesis, causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  15. Idaho Chemical Processing Plant Site Development Plan

    International Nuclear Information System (INIS)

    Ferguson, F.G.

    1994-02-01

    The Idaho Chemical Processing Plant (ICPP) mission is to receive and store spent nuclear fuels and radioactive wastes for disposition for Department of Energy (DOE) in a cost-effective manner that protects the safety of Idaho National Engineering Laboratory (INEL) employees, the public, and the environment by: Developing advanced technologies to process spent nuclear fuel for permanent offsite disposition and to achieve waste minimization. Receiving and storing Navy and other DOE assigned spent nuclear fuels. Managing all wastes in compliance with applicable laws and regulations. Identifying and conducting site remediation consistent with facility transition activities. Seeking out and implementing private sector technology transfer and cooperative development agreements. Prior to April 1992, the ICPP mission included fuel reprocessing. With the recent phaseout of fuel reprocessing, some parts of the ICPP mission have changed. Others have remained the same or increased in scope

  16. Integrated Process Design, Control and Analysis of Intensified Chemical Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil

    chemical processes; for example, intensified processes such as reactive distillation. Most importantly, it identifies and eliminates potentially promising design alternatives that may have controllability problems later. To date, a number of methodologies have been proposed and applied on various problems......, that the same principles that apply to a binary non-reactive compound system are valid also for a binary-element or a multi-element system. Therefore, it is advantageous to employ the element based method for multicomponent reaction-separation systems. It is shown that the same design-control principles...

  17. A nucleic acid dependent chemical photocatalysis in live human cells

    DEFF Research Database (Denmark)

    Arian, Dumitru; Cló, Emiliano; Gothelf, Kurt V

    2010-01-01

    Only two nucleic acid directed chemical reactions that are compatible with live cells have been reported to date. Neither of these processes generate toxic species from nontoxic starting materials. Reactions of the latter type could be applied as gene-specific drugs, for example, in the treatment...

  18. Chemical process and plant design bibliography 1959-1989

    International Nuclear Information System (INIS)

    Ray, M.S.

    1991-01-01

    This book is concerned specifically with chemical process in formation and plant equipment design data. It is a source for chemical engineers, students and academics involved in process and design evaluation. Over 500 chemical categories are included, from Acetaldehyde to zirconium Dioxide, with cross-referencing within the book to appropriate associated chemicals

  19. Thermodynamics principles characterizing physical and chemical processes

    CERN Document Server

    Honig, Jurgen M

    1999-01-01

    This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory''s approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics.The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relat...

  20. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development.

    Science.gov (United States)

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-10-16

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAF(V600E) melanomas.

  1. Applications of Process Synthesis: Moving from Conventional Chemical Processes towards Biorefinery Processes

    DEFF Research Database (Denmark)

    Yuan, Zhihong; Chen, Bingzhen; Gani, Rafiqul

    2013-01-01

    Concerns about diminishing petroleum reserves, enhanced worldwide demand for fuels and fluctuations in the global oil market, together with climate change and national security have promoted many initiatives for exploring alternative, non-petroleum based processes. Among these initiatives......, biorefinery processes for converting biomass-derived carbohydrates into transportation fuels and chemicals are now gaining more and more attention from both academia and industry. Process synthesis, which has played a vital role for the development, design and operation of (petro) chemical processes, can...

  2. Speleothems as Examples of Chemical Equilibrium Processes.

    Science.gov (United States)

    Wilson, James R.

    1984-01-01

    The chemical formation of speleothems such as stalactites and stalagmites is poorly understood by introductory geology instructors and misrepresented in most textbooks. Although evaporation may be a controlling factor in some caves, it is necessary to consider chemical precipitation as more important in controlling the diagenesis of calcium…

  3. Textiles and clothing sustainability sustainable textile chemical processes

    CERN Document Server

    2017-01-01

    This book highlights the challenges in sustainable wet processing of textiles, natural dyes, enzymatic textiles and sustainable textile finishes. Textile industry is known for its chemical processing issues and many NGO’s are behind the textile sector to streamline its chemical processing, which is the black face of clothing and fashion sector. Sustainable textile chemical processes are crucial for attaining sustainability in the clothing sector. Seven comprehensive chapters are aimed to highlight these issues in the book.

  4. Chemical aspects of radiation damage processes: radiolysis

    International Nuclear Information System (INIS)

    Asmus, K.D.

    1975-01-01

    The formation of primary species and radiation chemical yields are discussed. In a section on chemical scavenging of primary species the author considers scavenging kinetics and competition reactions and gives a brief outline of some experimental methods. The radiation chemistry of aqueous solutions is discussed as an example for polar solvents. Cyclohexane is used as an example for non-polar solvents. The importance of excited states and energy transfer is considered. Reactions in the solid state are discussed and results on linear energy transfer and average ion pair formation for various kinds of radiation are surveyed. (B.R.H.)

  5. Low temperature radio-chemical energy conversion processes

    International Nuclear Information System (INIS)

    Gomberg, H.J.

    1986-01-01

    This patent describes a radio-chemical method of converting radiated energy into chemical energy form comprising the steps of: (a) establishing a starting chemical compound in the liquid phase that chemically reacts endothermically to radiation and heat energy to produce a gaseous and a solid constituent of the compound, (b) irradiating the compound in its liquid phase free of solvents to chemically release therefrom in response to the radiation the gaseous and solid constituents, (c) physically separating the solid and gaseous phase constituents from the liquid, and (d) chemically processing the constituents to recover therefrom energy stored therein by the irradiation step (b)

  6. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    Science.gov (United States)

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  7. Automated Physico-Chemical Cell Model Development through Information Theory

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Ortoleva

    2005-11-29

    The objective of this project was to develop predictive models of the chemical responses of microbial cells to variations in their surroundings. The application of these models is optimization of environmental remediation and energy-producing biotechnical processes.The principles on which our project is based are as follows: chemical thermodynamics and kinetics; automation of calibration through information theory; integration of multiplex data (e.g. cDNA microarrays, NMR, proteomics), cell modeling, and bifurcation theory to overcome cellular complexity; and the use of multiplex data and information theory to calibrate and run an incomplete model. In this report we review four papers summarizing key findings and a web-enabled, multiple module workflow we have implemented that consists of a set of interoperable systems biology computational modules.

  8. Cell-in-Shell Hybrids: Chemical Nanoencapsulation of Individual Cells.

    Science.gov (United States)

    Park, Ji Hun; Hong, Daewha; Lee, Juno; Choi, Insung S

    2016-05-17

    Nature has developed a fascinating strategy of cryptobiosis ("secret life") for counteracting the stressful, and often lethal, environmental conditions that fluctuate sporadically over time. For example, certain bacteria sporulate to transform from a metabolically active, vegetative state to an ametabolic endospore state. The bacterial endospores, encased within tough biomolecular shells, withstand the extremes of harmful stressors, such as radiation, desiccation, and malnutrition, for extended periods of time and return to a vegetative state by breaking their protective shells apart when their environment becomes hospitable for living. Certain ciliates and even higher organisms, for example, tardigrades, and others are also found to adopt a cryptobiotic strategy for survival. A common feature of cryptobiosis is the structural presence of tough sheaths on cellular structures. However, most cells and cellular assemblies are not "spore-forming" and are vulnerable to the outside threats. In particular, mammalian cells, enclosed with labile lipid bilayers, are highly susceptible to in vitro conditions in the laboratory and daily life settings, making manipulation and preservation difficult outside of specialized conditions. The instability of living cells has been a main bottleneck to the advanced development of cell-based applications, such as cell therapy and cell-based sensors. A judicious question arises: can cellular tolerance against harmful stresses be enhanced by simply forming cell-in-shell hybrid structures? Experimental results suggest that the answer is yes. A micrometer-sized "Iron Man" can be generated by chemically forming an ultrathin (cell. Since the report on silica nanoencapsulation of yeast cells, in which cytoprotective yeast-in-silica hybrids were formed, several synthetic strategies have been developed to encapsulate individual cells in a cytocompatible fashion, mimicking the cryptobiotic cell-in-shell structures found in nature, for example

  9. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  10. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  11. Chemical process safety management within the Department of Energy

    International Nuclear Information System (INIS)

    Piatt, J.A.

    1995-07-01

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA's Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites

  12. Terrestrial photovoltaic cell process testing

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    The paper examines critical test parameters, criteria for selecting appropriate tests, and the use of statistical controls and test patterns to enhance PV-cell process test results. The coverage of critical test parameters is evaluated by examining available test methods and then screening these methods by considering the ability to measure those critical parameters which are most affected by the generic process, the cost of the test equipment and test performance, and the feasibility for process testing.

  13. Chemical process engineering in the transuranium processing plant

    International Nuclear Information System (INIS)

    Collins, E.D.; Bigelow, J.E.

    1976-01-01

    Since operation of the Transuranium Processing Plant began, process changes have been made to counteract problems caused by equipment corrosion, to satisfy new processing requirements, and to utilize improved processes. The new processes, equipment, and techniques have been incorporated into a sequence of steps which satisfies all required processing functions

  14. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F

    1995-01-01

    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  15. Modelling the collective response of heterogeneous cell populations to stationary gradients and chemical signal relay

    Science.gov (United States)

    Pineda, M.; Eftimie, R.

    2017-12-01

    The directed motion of cell aggregates toward a chemical source occurs in many relevant biological processes. Understanding the mechanisms that control this complex behavior is of great relevance for our understanding of developmental biological processes and many diseases. In this paper, we consider a self-propelled particle model for the movement of heterogeneous subpopulations of chemically interacting cells towards an imposed stable chemical gradient. Our simulations show explicitly how self-organisation of cell populations (which could lead to engulfment or complete cell segregation) can arise from the heterogeneity of chemotactic responses alone. This new result complements current theoretical and experimental studies that emphasise the role of differential cell-cell adhesion on self-organisation and spatial structure of cellular aggregates. We also investigate how the speed of individual cell aggregations increases with the chemotactic sensitivity of the cells, and decreases with the number of cells inside the aggregates

  16. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    Science.gov (United States)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  17. Process Design and Evaluation for Chemicals Based on Renewable Resources

    DEFF Research Database (Denmark)

    Fu, Wenjing

    . In addition, another characteristic of chemicals based on renewable feedstocks is that many alternative technologies and possible routes exist, resulting in many possible process flowsheets. The challenge for process engineers is then to choose between possible process routes and alternative technologies...... development of chemicals based on renewable feedstocks. As an example, this thesis especially focuses on applying the methodology in process design and evaluation of the synthesis of 5-hydroxymethylfurfural (HMF) from the renewable feedstock glucose/fructose. The selected example is part of the chemoenzymatic......One of the key steps in process design is choosing between alternative technologies, especially for processes producing bulk and commodity chemicals. Recently, driven by the increasing oil prices and diminishing reserves, the production of bulk and commodity chemicals from renewable feedstocks has...

  18. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role

  19. Development of chemical process for synthesis of polyunsaturated esters

    OpenAIRE

    Vera LÃcia Viana do Nascimento

    2014-01-01

    This work aimed to develop refining processes, chemical alcoholysis followed by separation of fatty acids using the complexation with urea technique for the synthesis of poly-unsaturated esters from waste of fish oils. The special crude fish oil was purchased from Company Campestre - SÃo Paulo. Initially this oil has undergone a process of physical and chemical refining. From the refined oil, an alcoholysis process was carried out to obtain the mixture of free fatty acids. From the hydrolyzed...

  20. Integrated biological, chemical and physical processes kinetic ...

    African Journals Online (AJOL)

    ... for C and N removal, only gas and liquid phase processes were considered for this integrated model. ... kLA value for the aeration system, which affects the pH in the anoxic and aerobic reactors through CO2 gas exchange. ... Water SA Vol.

  1. Microwave plasma emerging technologies for chemical processes

    NARCIS (Netherlands)

    de la Fuente, Javier F.; Kiss, Anton A.; Radoiu, Marilena T.; Stefanidis, Georgios D.

    2017-01-01

    Microwave plasma (MWP) technology is currently being used in application fields such as semiconductor and material processing, diamond film deposition and waste remediation. Specific advantages of the technology include the enablement of a high energy density source and a highly reactive medium,

  2. Modelling of chemical reactions in metallurgical processes

    OpenAIRE

    Kinaci, M. Efe; Lichtenegger, Thomas; Schneiderbauer, Simon

    2017-01-01

    Iron-ore reduction has attracted much interest in the last three decades since it can be considered as a core process in steel industry. The iron-ore is reduced to iron with the use of blast furnace and fluidized bed technologies. To investigate the harsh conditions inside fluidized bed reactors, computational tools can be utilized. One such tool is the CFD-DEM method, in which the gas phase reactions and governing equations are calculated in the Eulerian (CFD) side, whereas the particle reac...

  3. Biomimetic chemical sensors using bioengineered olfactory and taste cells.

    Science.gov (United States)

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.

  4. Chemical Processing Department monthly report for July 1957

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F. K.; Johnson, W. E.; MacCready, W. K.; Warren, J. H.; Schroeder, O. C.; Groswith, C. T.; Mobley, W. N.; LaFollette, T. G.; Grim, K. G.; Shaw, H. P.; Richards, R. B.; Roberts, D. S.

    1957-08-22

    This report, for July 1957 from the Chemical Processing Department at HAPO, discusses the following; Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  5. Chemical Processing Department monthly report for December 1958

    Energy Technology Data Exchange (ETDEWEB)

    1959-01-21

    This report for December 1958, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  6. Chemical Processing Department monthly report for February 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-03-21

    This report from the Chemical Processing Department at HAPO, discusses the following: Production operation, purex operation, redox operation, finished products operation, power and general maintenance operation, financial operation, facilities engineering operation, research and engineering operation, and employee relations operation.

  7. Chemical Processing Department monthly report for September 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-10-21

    This report, from the Chemical Processing Department at HAPO for September 1963, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations, facilities engineering; research; employee relations; weapons manufacturing operation; and power and crafts operation.

  8. Chemical Processing Department monthly report for February 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-03-20

    This report for February 1959, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  9. Chemical Processing Department monthly report, October 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-11-22

    Record highs were set for Pu output in separations plants and for amount of U processed in Purex. UO{sub 3} production and shipments exceeded schedules. Fabrication of 200 and 250 Model assemblies is reported. Unfabricated Pu production was 8.5% short. Nitric acid recovery in Purex and Redox is reported. Prototype anion exchange system for Pu was tested in Purex. Hinged agitator arms with shear pin feature was installed in UO{sub 3} plant H calciner. Operation of continuous type Task I, II facility improved. DBBP is considered for Recuplex. Methods for Pu in product solutions agreed to within 0. 10%. Purex recycle dock shelter is complete. Other projects are reported.

  10. Chemical kinetics, stochastic processes, and irreversible thermodynamics

    CERN Document Server

    Santillán, Moisés

    2014-01-01

    This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

  11. Computer-Aided Multiscale Modelling for Chemical Process Engineering

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Gani, Rafiqul

    2007-01-01

    Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framework...

  12. Method for innovative synthesis-design of chemical process flowsheets

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Gani, Rafiqul

    Chemical process synthesis-design involve the identification of the processing route to reach a desired product from a specified set of raw materials, design of the operations involved in the processing route, the calculations of utility requirements, the calculations of waste and emission...... to the surrounding and many more. Different methods (knowledge-based [1], mathematical programming [2], hybrid, etc.) have been proposed and are also currently employed to solve these synthesis-design problems. D’ Anterroches [3] proposed a group contribution based approach to solve the synthesis-design problem...... of chemical processes, where, chemical process flowsheets could be synthesized in the same way as atoms or groups of atoms are synthesized to form molecules in computer aided molecular design (CAMD) techniques [4]. That, from a library of building blocks (functional process-groups) and a set of rules to join...

  13. Textual and chemical information processing: different domains but similar algorithms

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2000-01-01

    Full Text Available This paper discusses the extent to which algorithms developed for the processing of textual databases are also applicable to the processing of chemical structure databases, and vice versa. Applications discussed include: an algorithm for distribution sorting that has been applied to the design of screening systems for rapid chemical substructure searching; the use of measures of inter-molecular structural similarity for the analysis of hypertext graphs; a genetic algorithm for calculating term weights for relevance feedback searching for determining whether a molecule is likely to exhibit biological activity; and the use of data fusion to combine the results of different chemical similarity searches.

  14. High temperature nuclear process heat systems for chemical processes

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1976-01-01

    The development planning and status of the very high temperature gas cooled reactor as a source of industrial process heat is presented. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system offers a unique combination of the two that is environmentally and economically attractive and technically sound. Conceptual studies of several energy-intensive processes coupled to a nuclear heat source are presented

  15. ACToR Chemical Structure processing using Open Source ...

    Science.gov (United States)

    ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d

  16. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.

    Science.gov (United States)

    Ayuyan, Artem G; Cohen, Fredric S

    2018-02-27

    Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways. Copyright © 2018. Published by

  17. Cell-mediated mutagenesis and cell transformation of mammalian cells by chemical carcinogens

    International Nuclear Information System (INIS)

    Huberman, E.; Langenbach, R.

    1977-01-01

    We have developed a cell-mediated mutagenesis assay in which cells with the appropriate markers for mutagenesis are co-cultivated with either lethally irradiated rodent embryonic cells that can metabolize carcinogenic hydrocarbons or with primary rat liver cells that can metabolize chemicals carcinogenic to the liver. During co-cultivation, the reactive metabolites of the procarcinogen appear to be transmitted to the mutable cells and induce mutations in them. Assays of this type make it possible to demonstrate a relationship between carcinogenic potency of the chemicals and their ability to induce mutations in mammalian cells. In addition, by simultaneously comparing the frequencies of transformation and mutation induced in normal diploid hamster cells by benzo(a)pyrene (BP) and one of its metabolites, it is possible to estimate the genetic target size for cell transformation in vitro

  18. Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells

    International Nuclear Information System (INIS)

    Avellaneda, David; Delgado, Guadalupe; Nair, M.T.S.; Nair, P.K.

    2007-01-01

    Chemically deposited SnS thin films possess p-type electrical conductivity. We report a photovoltaic structure: SnO 2 :F-CdS-SnS-(CuS)-silver print, with V oc > 300 mV and J sc up to 5 mA/cm 2 under 850 W/m 2 tungsten halogen illumination. Here, SnO 2 :F is a commercial spray-CVD (Pilkington TEC-8) coating, and the rest deposited from different chemical baths: CdS (80 nm) at 333 K, SnS (450 nm) and CuS (80 nm) at 293-303 K. The structure may be heated in nitrogen at 573 K, before applying the silver print. The photovoltaic behavior of the structure varies with heating: V oc ∼ 400 mV and J sc 2 , when heated at 423 K in air, but V oc decreases and J sc increases when heated at higher temperatures. These photovoltaic structures have been found to be stable over a period extending over one year by now. The overall cost of materials, simplicity of the deposition process, and possibility of easily varying the parameters to improve the cell characteristics inspire further work. Here we report two different baths for the deposition of SnS thin films of about 500 nm by chemical deposition. There is a considerable difference in the nature of growth, crystalline structure and chemical stability of these films under air-heating at 623-823 K or while heating SnS-CuS layers, evidenced in XRF and grazing incidence angle XRD studies. Heating of SnS-CuS films results in the formation of SnS-Cu x SnS y . 'All-chemically deposited photovoltaic structures' involving these materials are presented

  19. Physical and chemical characterization of bioaerosols - Implications for nucleation processes

    Science.gov (United States)

    Ariya, P. A.; Sun, J.; Eltouny, N. A.; Hudson, E. D.; Hayes, C. T.; Kos, G.

    The importance of organic compounds in the oxidative capacity of the atmosphere, and as cloud condensation and ice-forming nuclei, has been recognized for several decades. Organic compounds comprise a significant fraction of the suspended matter mass, leading to local (e.g. toxicity, health hazards) and global (e.g. climate change) impacts. The state of knowledge of the physical chemistry of organic aerosols has increased during the last few decades. However, due to their complex chemistry and the multifaceted processes in which they are involved, the importance of organic aerosols, particularly bioaerosols, in driving physical and chemical atmospheric processes is still very uncertain and poorly understood. Factors such as solubility, surface tension, chemical impurities, volatility, morphology, contact angle, deliquescence, wettability, and the oxidation process are pivotal in the understanding of the activation processes of cloud droplets, and their chemical structures, solubilities and even the molecular configuration of the microbial outer membrane, all impact ice and cloud nucleation processes in the atmosphere. The aim of this review paper is to assess the current state of knowledge regarding chemical and physical characterization of bioaerosols with a focus on those properties important in nucleation processes. We herein discuss the potential importance (or lack thereof) of physical and chemical properties of bioaerosols and illustrate how the knowledge of these properties can be employed to study nucleation processes using a modeling exercise. We also outline a list of major uncertainties due to a lack of understanding of the processes involved or lack of available data. We will also discuss key issues of atmospheric significance deserving future physical chemistry research in the fields of bioaerosol characterization and microphysics, as well as bioaerosol modeling. These fundamental questions are to be addressed prior to any definite conclusions on the

  20. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    Science.gov (United States)

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  1. Chemical sensors and gas sensors for process control in biotechnology

    International Nuclear Information System (INIS)

    Williams, D.E.

    1988-04-01

    This paper is concerned with the possibilities for chemical measurement of the progress of biotechnological processes which are offered by devices already developed for other demanding applications. It considers the potential use of ultrasonic instrumentation originally developed for the nuclear industry, gas measurement methods from the fields of environmental monitoring and combustion control, nuclear instruments developed for the oil, mining and chemical industries, robotic systems and advanced control techniques. (author)

  2. The new risk paradigm for chemical process security and safety.

    Science.gov (United States)

    Moore, David A

    2004-11-11

    The world of safety and security in the chemical process industries has certainly changed since 11 September, but the biggest challenges may be yet to come. This paper will explain that there is a new risk management paradigm for chemical security, discuss the differences in interpreting this risk versus accidental risk, and identify the challenges we can anticipate will occur in the future on this issue. Companies need to be ready to manage the new chemical security responsibilities and to exceed the expectations of the public and regulators. This paper will outline the challenge and a suggested course of action.

  3. Advances in chemical engineering in nuclear and process industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  4. Advances in chemical engineering in nuclear and process industries

    International Nuclear Information System (INIS)

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  5. New Vistas in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Zhang, Lei; Babi, Deenesh Kavi; Gani, Rafiqul

    2016-01-01

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product......, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design....... Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack...

  6. TWF process cell throughput study

    International Nuclear Information System (INIS)

    Fisher, D.L.

    1992-01-01

    The TWF will prepare transuranic (TRU) waste for permanent disposal at the Waste Isolation Pilot Plant (WIPP). WH ampersand MP's early participation in the TWF project included the installation and testing of a WPC mockup (using the conceptual design). Operating experience indicated significant improvements could be made in the WPC scheme, so we conducted a process cell equipment study with Equipment Engineering to identify better equipment and methods (ref. 4). The results of that study were used to construct the WPC computer simulation model

  7. Gold processing residue from Jacobina Basin: chemical and physical properties

    OpenAIRE

    Lima, Luiz Rogério Pinho de Andrade; Bernardez, Letícia Alonso; Barbosa, Luís Alberto Dantas

    2007-01-01

    p. 848-852 Gold processing residues or tailings are found in several areas in the Itapicuru River region (Bahia, Brazil), and previous studies indicated significant heavy metals content in the river sediments. The present work focused on an artisanal gold processing residue found in a site from this region. Samples were taken from the processing residue heaps and used to perform a physical and chemical characterization study using X-ray diffraction, scanning electron microscopy, neutron...

  8. Chemical-cleaning process evaluation: Westinghouse steam generators. Final report

    International Nuclear Information System (INIS)

    Cleary, W.F.; Gockley, G.B.

    1983-04-01

    The Steam Generator Owners Group (SGOG)/Electric Power Research Institute (EPRI) Steam Generator Secondary Side Chemical Cleaning Program, under develpment since 1978, has resulted in a generic process for the removal of accumulated corrosion products and tube deposits in the tube support plate crevices. The SGOG/EPRI Project S150-3 was established to obtain an evaluation of the generic process in regard to its applicability to Westinghouse steam generators. The results of the evaluation form the basis for recommendations for transferring the generic process to a plant specific application and identify chemical cleaning corrosion guidelines for the materials in Westinghouse Steam Generators. The results of the evaluation, recommendations for plant-specific applications and corrosion guidelines for chemical cleaning are presented in this report

  9. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    1992-01-01

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  10. Plant cell tissue culture: A potential source of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and development opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.

  11. Influence of chemical processing on the imaging properties of microlenses

    International Nuclear Information System (INIS)

    Vasiljevic, Darko; Muric, Branka; Pantelic, Dejan; Panic, Bratimir

    2009-01-01

    Microlenses are produced by irradiation of a layer of tot'hema and eosin sensitized gelatin (TESG) by using a laser beam (Nd:YAG 2nd harmonic; 532 nm). All the microlenses obtained are concave with a parabolic profile. After the production, the microlenses are chemically processed with various concentrations of alum. The following imaging properties of microlenses were calculated and analyzed: the root mean square (rms) wavefront aberration, the geometric encircled energy and the spot diagram. The microlenses with higher concentrations of alum in solution had a greater effective focal length and better image quality. The microlenses chemically processed with 10% alum solution had near-diffraction-limited performance.

  12. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.

    Science.gov (United States)

    Biswas, Dhruba; Jiang, Peng

    2016-02-06

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming.

  13. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  14. Hierarchical optimal control of large-scale nonlinear chemical processes.

    Science.gov (United States)

    Ramezani, Mohammad Hossein; Sadati, Nasser

    2009-01-01

    In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.

  15. Flow-Injection Responses of Diffusion Processes and Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    tool of automated analytical chemistry. The need for an even lower consumption of chemicals and for computer analysis has motivated a study of the FIA peak itself, that is, a theoretical model was developed, that provides detailed knowledge of the FIA profile. It was shown that the flow in a FIA...... manifold may be characterised by a diffusion coefficient that depends on flow rate, denoted as the kinematic diffusion coefficient. The description was applied to systems involving species of chromium, both in the case of simple diffusion and in the case of chemical reactions. It is suggested that it may...... be used in the resolution of FIA profiles to obtain information about the content of interference’s, in the study of chemical reaction kinetics and to measure absolute concentrations within the FIA-detector cell....

  16. Quality Assessment of Film Processing Chemicals in Dentistry

    International Nuclear Information System (INIS)

    Han, Mi Ra; Kang, Byung Chul

    1999-01-01

    The purpose of this study was to compare the qualities of the four different processing chemicals (solutions). With EP 21 films (Ektaspeed plus film, Kodak Co., USA), nine unexposed and nine exposed films of a step wedge were processed utilizing automatic film processor (XR 24, Durr Co., Germany) for 5 days. During 5 days, the total number of processed films including out-patient's intraoral films were about 400-500 for each brand. Base plus fog density, film density, contrast of processed films were measured with densitometer (model 07-443 digital densitometer, Victoreen Co., USA). These measurements were analyzed for comparison. The results were as follows,1. For the base plus fog density, there was significant difference among the four chemicals (p<0.05). The sequence of the base plus fog densities was in ascending order by Kodak, X-dol 90, Agfa and Konica. 2. For the film density, all chemicals showed useful range of photographic densities (0.25-2.5). The sequence of the film densities was in ascending order by Kodak, X-dol 90, Konica and Agfa. But there was no statistically significant difference of film density between X-dol and Kodak (p<0.05). 3. The sequence of the contrasts was in ascending order by Konica, X-dol 90, Kodak and Agfa. But there was no statistically significant difference of contrast between X-dol and Konica (p<0.05). These results indicated that the four processing chemicals had the clinically useful film density and contrast, but only Kodak processing chemical had useful base plus fog density.

  17. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik

    2010-01-01

    Reaction Engineering. In order to incorporate reactor design into process design in a meaningful way, the teachers of the respective courses need to collaborate (Standard 9 – Enhancement of Faculty CDIO skills). The students also see that different components of the chemical engineering curriculum relate......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...... of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B...

  18. Models and Modelling Tools for Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    2016-01-01

    The design, development and reliability of a chemical product and the process to manufacture it, need to be consistent with the end-use characteristics of the desired product. One of the common ways to match the desired product-process characteristics is through trial and error based experiments......-based framework is that in the design, development and/or manufacturing of a chemical product-process, the knowledge of the applied phenomena together with the product-process design details can be provided with diverse degrees of abstractions and details. This would allow the experimental resources...... to be employed for validation and fine-tuning of the solutions from the model-based framework, thereby, removing the need for trial and error experimental steps. Also, questions related to economic feasibility, operability and sustainability, among others, can be considered in the early stages of design. However...

  19. Chemical and physicochemical characteristics changes during passion fruit juice processing

    Directory of Open Access Journals (Sweden)

    Aline Gurgel Fernandes

    2011-09-01

    Full Text Available Passion fruit is widely consumed due to its pleasant flavour and aroma acidity, and it is considered very important a source of minerals and vitamins. It is used in many products such as ice-cream, mousses and, especially, juices. However, the processing of passion fruit juice may modify the composition and biodisponibility of the bioactive compounds. Investigations of the effects of processing on nutritional components in tropical juices are scarce. Frequently, only losses of vitamin C are evaluated. The objective of this paper is to investigate how some operations of passion fruit juice processing (formulation/homogeneization/thermal treatment affect this product's chemical and physicochemical characteristics. The results showed that the chemical and physicochemical characteristics are little affected by the processing although a reduction in vitamin C contents and anthocyanin, large quantities of carotenoids was verified even after the pasteurization stage.

  20. Methods and tools for sustainable chemical process design

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina; Chairakwongsa, Siwanat; Quaglia, Alberto

    2015-01-01

    As the pressure on chemical and biochemical processes to achieve a more sustainable performance increases, the need to define a systematic and holistic way to accomplish this is becoming more urgent. In this chapter, a multilevel computer-aided framework for systematic design of more sustainable...

  1. Application of the chemical properties of ruthenium to decontamination processes

    International Nuclear Information System (INIS)

    Fontaine, A.; Berger, D.

    1965-01-01

    The chemical properties of ruthenium in the form of an aqueous solution of the nitrate and of organic tributylphosphate solution are reviewed. From this data, some known examples are given: they demonstrate the processes of separation or of elimination of ruthenium from radioactive waste. (authors) [fr

  2. Effect of maturity stage and processing on chemical composition, in ...

    African Journals Online (AJOL)

    Effect of maturity stage and processing on chemical composition, in vitro gas production and preference of Panicum maximum and Pennisetum purpureum. ... It is concluded that in order to optimize DM intake farmers should consider the type of grasses and their age at harvest particularly for Muturu. Pelleting improves ...

  3. Physico-chemical, functional and processing attributes of some ...

    African Journals Online (AJOL)

    A study was generated from six commercial potato varieties and studied for their physical, chemical, functional and processing attributes. Lady Rosetta followed by Hermes was the most appreciable varieties concerning their physical attributes. A positive correlation (R = 0.765) existed between tuber firmness and specific ...

  4. MIMO Self-Tuning Control of Chemical Process Operation

    DEFF Research Database (Denmark)

    Hallager, L.; Jørgensen, S. B.; Goldschmidt, L.

    1984-01-01

    The problem of selecting a feasible model structure for a MIMO self-tuning controller (MIMOSC) is addressed. The dependency of the necessary structure complexity in relation to the specific process operating point is investigated. Experimental results from a fixed-bed chemical reactor are used...

  5. Near miss reporting in the chemical process industry: an overview

    NARCIS (Netherlands)

    Schaaf, van der T.W.

    1995-01-01

    The research programme described in this paper focuses on the human component of system failure in general, and more specifically on the design and implementation of information systems for registration and analysis of so called near misses (or: near accidents) in the chemical process industry. Its

  6. Secondary cleanup of Idaho Chemical Processing Plant solvent

    International Nuclear Information System (INIS)

    Mailen, J.C.

    1985-01-01

    Solvent from the Idaho Chemical Processing Plant (ICPP) (operated by Westinghouse Idaho Nuclear Company, Inc.) has been tested to determine the ability of activated alumina to remove secondary degradation products - those degradation products which are not removed by scrubbing with sodium carbonate

  7. Enzymatic cell disruption of microalgae biomass in biorefinery processes.

    Science.gov (United States)

    Demuez, Marie; Mahdy, Ahmed; Tomás-Pejó, Elia; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-10-01

    When employing biotechnological processes for the procurement of biofuels and bio-products from microalgae, one of the most critical steps affecting economy and yields is the "cell disruption" stage. Currently, enzymatic cell disruption has delivered effective and cost competitive results when compared to mechanical and chemical cell disruption methods. However, the introduction of enzymes implies additional associated cost within the overall process. In order to reduce this cost, autolysis of microalgae is proposed as alternative enzymatic cell disruption method. This review aims to provide the state of the art of enzymatic cell disruption treatments employed in biorefinery processes and highlights the use of endopeptidases. During the enzymatic processes of microalgae life cycle, some lytic enzymes involved in cell division and programmed cell death have been proven useful in performing cell lysis. In this context, the role of endopeptidases is emphasized. Mirroring these natural events, an alternative cell disruption approach is proposed and described with the potential to induce the autolysis process using intrinsic cell enzymes. Integrating induced autolysis within biofuel production processes offers a promising approach to reduce overall global costs and energetic input associated with those of current cell disruption methods. A number of options for further inquiry are also discussed. © 2015 Wiley Periodicals, Inc.

  8. Influence of surface coverage on the chemical desorption process

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr [LERMA, Université de Cergy Pontoise et Observatoire de Paris, UMR 8112 du CNRS. 5, mail Gay Lussac, 95031 Cergy Pontoise (France)

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  9. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    Science.gov (United States)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  10. DYNSIR; A dynamic simulator for the chemical process

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Yoo, Jae Hyung; Byeon, Kee Hoh; Park, Jeong Hwa; Park, Seong Won

    1990-03-01

    A program code for dynamic simulation of arbitrary chemical process, called DYNSIR, is developed. The code can simulate rather arbitrary arrangements of individual chemical processing units whose models are described by ordinary differential equations. The code structure to handle input/output, memory and data management, numerical interactive or predetermined changes in parameter values during the simulation. Individual model is easy to maintain since the modular approach is used. The integration routine is highly effective because of the development of algorithm for modular integration method using the cubic spline. DYNSIR's data structures are not the index but the pointer structure. This pointer structure allows the dynamic memory allocation for the memory management. The dynamic memory allocation methods is to minimize the amount of memories and to overcome the limitation of the number of variables to be used. Finally, it includes various functions, such as the input preprocessor, the effective error processing, and plotting and reporting routines. (author)

  11. Laser isotope separation - a new class of chemical process

    International Nuclear Information System (INIS)

    Woodall, K.B.; Mannik, L.; O'Neill, J.A.; Mader, D.L.; Nickerson, S.B.; Robins, J.R.; Bartoszek, F.E.; Gratton, D.

    1983-01-01

    Lasers may soon find several applications in chemical processing. The applications that have attracted the most research funding to date involve isotope separation for the nuclear industry. These isotopes have an unusually high value (≥$1000/kg) compared to bulk chemicals (∼$1/kg) and are generally required in very large quantities. In a laser isotope separation process, light is used to convert a separation that is very difficult or even impossible by conventional chemical engineering techniques to one that is readily handled by conventional separation technology. For some isotopes this can result in substantial capital and energy savings. A uranium enrichment process developed at the Lawrence Livermore National Laboratory is the closest to commercialization of the large scale laser isotope separation processes. Of particular interest to the Canadian nuclear industry are the laser separation of deuterium, tritium, zirconium-90 and carbon-14. In this paper, the basic principles behind laser isotope separation are reviewed and brief dscriptions of the more developed processes are given

  12. original article the use of morphological and cell wall chemical

    African Journals Online (AJOL)

    boaz

    THE USE OF MORPHOLOGICAL AND CELL WALL CHEMICAL MARKERS IN. THE IDENTIFICATION OF ... aerial hyphae, with or without diffusible pigments on medium surface (7, 14). Cell wall components of Actinomycetes enable rapid qualitative identification of certain .... Alexander von Humboldt Foundation and the.

  13. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  14. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  15. Sustainability assessment of novel chemical processes at early stage: application to biobased processes

    NARCIS (Netherlands)

    Patel, A.D.; Meesters, K.; Uil, H. den; Jong, E. de; Blok, K.; Patel, M.K.

    2012-01-01

    Chemical conversions have been a cornerstone of industrial revolution and societal progress. Continuing this progress in a resource constrained world poses a critical challenge which demands the development of innovative chemical processes to meet our energy and material needs in a sustainable way.

  16. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Norman K. [Iowa State Univ., Ames, IA (United States)

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect to the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”

  17. Study on microwave assisted process in chemical extraction

    International Nuclear Information System (INIS)

    Amer Ali; Rosli Mohd Yunus; Ramlan Abd Aziz

    2001-01-01

    The microwave assisted process is a revolutionary method of extraction that reduces the extraction time to as little as a few seconds, with up to a ten-fold decrease in the use of solvents. The target material is immersed in solvent that is transparent to microwaves, so only the target material is heated, and because of the microwaves tend to heat the inside of the material quickly, the target chemical are expelled in a few seconds. benefits from this process include significant reductions in the amount of energy required and substantial reductions in the cost and dispose of hazardous solvents. A thorough review has been displayed on: using the microwave in extraction, applications of microwave in industry, process flow diagram, mechanism of the process and comparison between microwave process and other extraction techniques (soxhlet, steam distillation and supercritical fluid). This review attempts to summarize the studies about microwave assisted process as a very promising technique. (Author)

  18. Feeder cells support the culture of induced pluripotent stem cells even after chemical fixation.

    Directory of Open Access Journals (Sweden)

    Xiao-Shan Yue

    Full Text Available Chemically fixed mouse embryonic fibroblasts (MEFs, instead of live feeder cells, were applied to the maintenance of mouse induced pluripotent stem (miPS cells. Formaldehyde and glutaraldehyde were used for chemical fixation. The chemically fixed MEF feeders maintained the pluripotency of miPS cells, as well as their undifferentiated state. Furthermore, the chemically fixed MEF feeders were reused several times without affecting their functions. These results indicate that chemical fixation can be applied to modify biological feeders chemically, without losing their original functions. Chemically fixed MEF feeders will be applicable to other stem cell cultures as a reusable extracellular matrix candidate that can be preserved on a long-term basis.

  19. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  20. Property Modelling for Applications in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    such as database, property model library, model parameter regression, and, property-model based product-process design will be presented. The database contains pure component and mixture data for a wide range of organic chemicals. The property models are based on the combined group contribution and atom...... is missing, the atom connectivity based model is employed to predict the missing group interaction. In this way, a wide application range of the property modeling tool is ensured. Based on the property models, targeted computer-aided techniques have been developed for design and analysis of organic chemicals......, polymers, mixtures as well as separation processes. The presentation will highlight the framework (ICAS software) for property modeling, the property models and issues such as prediction accuracy, flexibility, maintenance and updating of the database. Also, application issues related to the use of property...

  1. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  2. Economic model predictive control theory, formulations and chemical process applications

    CERN Document Server

    Ellis, Matthew; Christofides, Panagiotis D

    2017-01-01

    This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes. In addition to being...

  3. Chemical process measurements in PWR-type nuclear power plants

    International Nuclear Information System (INIS)

    Glaeser, E.

    1978-01-01

    In order to achieve high levels of availability of nuclear power plants equipped with pressurized water reactors, strict standards have to be applied to the purity of coolant and of other media. Chemical process measurements can meet these requirements only if programmes are established giving maximum information with minimum expenditure and if these programmes are realized with effective analytical methods. Analysis programmes known from literature are proved for their usefulness, and hints are given for establishing rational programmes. Analytical techniques are compared with each other taking into consideration both methods which have already been introduced into nuclear power plant practice and methods not yet generally used in practice, such as atomic absorption spectrophotometry, gas chromatography, etc. Finally, based on the state of the art of chemical process measurements in nuclear power plants, the trends of future development are pointed out. (author)

  4. New Vistas in Chemical Product and Process Design.

    Science.gov (United States)

    Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul

    2016-06-07

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates.

  5. Vibration and Stability of 3000-hp, Titanium Chemical Process Blower

    Directory of Open Access Journals (Sweden)

    Les Gutzwiller

    2003-01-01

    Full Text Available This 74-in-diameter blower had an overhung rotor design of titanium construction, operating at 50 pounds per square inch gauge in a critical chemical plant process. The shaft was supported by oil-film bearings and was directdriven by a 3000-hp electric motor through a metal disk type of coupling. The operating speed was 1780 rpm. The blower shaft and motor shaft motion was monitored by Bently Nevada proximity probes and a Model 3100 monitoring system.

  6. Incidents of chemical reactions in cell equipment

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, N.M.; Barlow, C.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  7. Chemical Conversion of Human Fibroblasts into Functional Schwann Cells

    Directory of Open Access Journals (Sweden)

    Eva C. Thoma

    2014-10-01

    Full Text Available Direct transdifferentiation of somatic cells is a promising approach to obtain patient-specific cells for numerous applications. However, conversion across germ-layer borders often requires ectopic gene expression with unpredictable side effects. Here, we present a gene-free approach that allows efficient conversion of human fibroblasts via a transient progenitor stage into Schwann cells, the major glial cell type of peripheral nerves. Using a multikinase inhibitor, we transdifferentiated fibroblasts into transient neural precursors that were subsequently further differentiated into Schwann cells. The resulting induced Schwann cells (iSCs expressed numerous Schwann cell-specific proteins and displayed neurosupportive and myelination capacity in vitro. Thus, we established a strategy to obtain mature Schwann cells from human postnatal fibroblasts under chemically defined conditions without the introduction of ectopic genes.

  8. Chemical and mechanical decontamination processes to minimize secondary waste decommissioning

    International Nuclear Information System (INIS)

    Enda, M.; Ichikawa, N.; Yaita, Y.; Kanasaki, T.; Sakai, H.

    2008-01-01

    In the decommissioning of commercial nuclear reactors in Japan, prior to the dismantling of the nuclear power plants, there are plans to use chemical techniques to decontaminate reactor pressure vessels (RPVs), internal parts, primary loop recirculation systems (PLRs), reactor water clean up systems (RWCUs), etc., so as to minimize radiation sources in the materials to be disposed of. After dismantling the nuclear power plants, chemical and mechanical decontamination techniques will then be used to reduce the amounts of radioactive metallic waste. Toshiba Corporation has developed pre-dismantling and post-dismantling decontamination systems. In order to minimize the amounts of secondary waste, the T-OZON process was chosen for decontamination prior to the dismantling of nuclear power plants. Dismantling a nuclear power plant results in large amounts of metallic waste requiring decontamination; for example, about 20,000 tons of such waste is expected to result from the dismantling of a 110 MWe Boiling Water Reactor (BWR). Various decontamination methods have been used on metallic wastes in preparation for disposal in consideration of the complexity of the shapes of the parts and the type of material. The materials in such nuclear power plants are primarily stainless steel and carbon steel. For stainless steel parts having simple shapes, such as plates and pipes, major sources of radioactivity can be removed from the surface of the parts by bipolar electrolysis (electrolyte: H 2 SO 4 ). For stainless steel parts having complicated shapes, such as valves and pumps, major sources of radioactivity can be removed from the surfaces by redox chemical decontamination treatments (chemical agent: Ce(IV)). For carbon steel parts having simple shapes, decontamination by blasting with zirconia grit is effective in removing major sources of radioactivity at the surface, whereas for carbon steel parts having complicated shapes, major sources of radioactivity can be removed from

  9. Chemical Assessment of White Wine during Fermentation Process

    Directory of Open Access Journals (Sweden)

    Teodora Coldea

    2014-05-01

    Full Text Available There were investigated chemical properties of indigenous white wine varieties (Fetească albă, Fetească regală and Galbenă de Odobeşti during fermentation. The white wine making process took place at Wine Pilot Station of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. We aimed to monitorize the evolution of fermentation process parameters (temperature, alcohol content, and real extract and the quality of the bottled white wine (total acidity, alcohol content, total sulfur dioxide, total dry extract. The results obtained were in accordance to Romanian Legislation.

  10. Metallurgical engineering and inspection practices in the chemical process industries

    International Nuclear Information System (INIS)

    Moller, G.E.

    1987-01-01

    The process industries, in particular the petroleum refining industry, adopted materials engineering and inspection (ME and I) practices years ago and regularly updated them because they were faced with the handling and refining of flammable, toxic, and corrosive feed stocks. These industries have a number of nonproprietary techniques and procedures, some of which may be applicable in the nuclear power generation field. Some specific inspection and engineering techniques used by the process industries within the framework of the guidelines for inspections and worthy of detailed description include the following: (1) sentry drilling or safety drilling of piping subject to relatively uniform corrosion, such as feedwater heater piping, steam piping, and extraction steam piping; (2) on-stream radiography for thickness measurement and detection of unusual conditions - damaged equipment such as valve blockage; (3) critical analysis of the chemical and refining processes for the relative probability of corrosion; (4) communication of valuable experience within the industry; (5) on-stream ultrasonic thickness testing; and (6) on-stream and off-stream crack and flaw detection. The author, trained in the petroleum refining industry but versed in electric utilities, pulp and paper, chemical process, marine, mining, water handling, waste treatment, and geothermal processes, discusses individual practices of these various industries in the paper

  11. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  12. The Eco Logic gas-phase chemical reduction process

    International Nuclear Information System (INIS)

    Hallett, D.J.; Campbell, K.R.

    1994-01-01

    Since 1986, Eco Logic has conducted research with the aim of developing a new technology for destroying aqueous organic wastes, such as contaminated harbor sediments, landfill soil and leachates, and lagoon sludges. The goal was a commercially-viable chemical process that could deal with these watery wastes and also process stored wastes. The process described in this paper was developed with a view to avoiding the expense and technical drawbacks of incinerators, while still providing high destruction efficiencies and waste volume capabilities. A lab-scale process unit was constructed in 1988 and tested extensively. Based on the results of these tests, it was decided to construct a mobile pilot-scale unit that could be used for further testing and ultimately for small commercial waste processing operations. It was taken through a preliminary round of tests at Hamilton Harbour, Ontario, where the waste processed was coal-tar-contaminated harbor sediment. In 1992, the same unit was taken through a second round of tests in Bay City, Michigan. In this test program, the pilot-scale unit processed PCBs in aqueous, organic and soil matrices. This paper describes the process reactions and the pilot-scale process unit, and presents the results of pilot-scale testing thus far

  13. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  14. Application of repetitive pulsed power technology to chemical processing

    International Nuclear Information System (INIS)

    Kaye, R.J.; Hamil, R.

    1995-01-01

    The numerous sites of soil and water contaminated with organic chemicals present an urgent environmental concern that continues to grow. Electron and x-ray irradiation have been shown to be effective methods to destroy a wide spectrum of organic chemicals, nitrates, nitrites, and cyanide in water by breaking molecules to non-toxic products or entirely mineralizing the by-products to gas, water, and salts. Sandia National Laboratories is developing Repetitive High Energy Pulsed Power (RHEPP) technology capable of producing high average power, broad area electron or x-ray beams. The 300 kW RHEPP-II facility accelerates electrons to 2.5 MeV at 25 kA over 1,000 cm 2 in 60 ns pulses at repetition rates of over 100 Hz. Linking this modular treatment capability with the rapid optical-sensing diagnostics and neutral network characterization software algorithms will provide a Smart Waste Treatment (SWaT) system. Such a system would also be applicable for chemical manufacture and processing of industrial waste for reuse or disposal. This talk describes both the HREPP treatment capability and sensing technologies. Measurements of the propagated RHEPP-II beam and dose profiles are presented. Sensors and rapid detection software are discussed with application toward chemical treatment

  15. Spectroscopic analyses of chemical adaptation processes within microalgal biomass in response to changing environments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Frank, E-mail: fvogt@utk.edu; White, Lauren

    2015-03-31

    Highlights: • Microalgae transform large quantities of inorganics into biomass. • Microalgae interact with their growing environment and adapt their chemical composition. • Sequestration capabilities are dependent on cells’ chemical environments. • We develop a chemometric hard-modeling to describe these chemical adaptation dynamics. • This methodology will enable studies of microalgal compound sequestration. - Abstract: Via photosynthesis, marine phytoplankton transforms large quantities of inorganic compounds into biomass. This has considerable environmental impacts as microalgae contribute for instance to counter-balancing anthropogenic releases of the greenhouse gas CO{sub 2}. On the other hand, high concentrations of nitrogen compounds in an ecosystem can lead to harmful algae blooms. In previous investigations it was found that the chemical composition of microalgal biomass is strongly dependent on the nutrient availability. Therefore, it is expected that algae’s sequestration capabilities and productivity are also determined by the cells’ chemical environments. For investigating this hypothesis, novel analytical methodologies are required which are capable of monitoring live cells exposed to chemically shifting environments followed by chemometric modeling of their chemical adaptation dynamics. FTIR-ATR experiments have been developed for acquiring spectroscopic time series of live Dunaliella parva cultures adapting to different nutrient situations. Comparing experimental data from acclimated cultures to those exposed to a chemically shifted nutrient situation reveals insights in which analyte groups participate in modifications of microalgal biomass and on what time scales. For a chemometric description of these processes, a data model has been deduced which explains the chemical adaptation dynamics explicitly rather than empirically. First results show that this approach is feasible and derives information about the chemical biomass

  16. Spectroscopic analyses of chemical adaptation processes within microalgal biomass in response to changing environments

    International Nuclear Information System (INIS)

    Vogt, Frank; White, Lauren

    2015-01-01

    Highlights: • Microalgae transform large quantities of inorganics into biomass. • Microalgae interact with their growing environment and adapt their chemical composition. • Sequestration capabilities are dependent on cells’ chemical environments. • We develop a chemometric hard-modeling to describe these chemical adaptation dynamics. • This methodology will enable studies of microalgal compound sequestration. - Abstract: Via photosynthesis, marine phytoplankton transforms large quantities of inorganic compounds into biomass. This has considerable environmental impacts as microalgae contribute for instance to counter-balancing anthropogenic releases of the greenhouse gas CO 2 . On the other hand, high concentrations of nitrogen compounds in an ecosystem can lead to harmful algae blooms. In previous investigations it was found that the chemical composition of microalgal biomass is strongly dependent on the nutrient availability. Therefore, it is expected that algae’s sequestration capabilities and productivity are also determined by the cells’ chemical environments. For investigating this hypothesis, novel analytical methodologies are required which are capable of monitoring live cells exposed to chemically shifting environments followed by chemometric modeling of their chemical adaptation dynamics. FTIR-ATR experiments have been developed for acquiring spectroscopic time series of live Dunaliella parva cultures adapting to different nutrient situations. Comparing experimental data from acclimated cultures to those exposed to a chemically shifted nutrient situation reveals insights in which analyte groups participate in modifications of microalgal biomass and on what time scales. For a chemometric description of these processes, a data model has been deduced which explains the chemical adaptation dynamics explicitly rather than empirically. First results show that this approach is feasible and derives information about the chemical biomass adaptations

  17. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  18. Chemical Cell Lysis System Applicable to Lab-on-a-Disc.

    Science.gov (United States)

    Lim, Dayeseul; Yoo, Jae Chern

    2017-09-01

    The design and fabrication of a heating system has been a significant challenge in implementing chemical lysis on a lab-on-a-disc (LOD). The proposed system contains a sample inlet, phase change material (PCM) array, heating chamber, and valve in a single disc, providing cost-effective, rapid, and fully automated chemical cell lysis. Compared to the conventional cell lysis system, our cell lysis system has many advantages, such as a compact structure that is easily integrated into the LOD and reduced processing time and labor. The experiments are conducted with Salmonella typhimurium strains to demonstrate the performance. The experimental results show that the proposed approach is greatly effective in realizing a chemical cell lysis system on an LOD with higher throughput in terms of purity and yield of DNA.

  19. Influence of chemical sprinkle on the processes in activated tank of wastewater treatment

    Directory of Open Access Journals (Sweden)

    Milan Búgel

    2012-12-01

    Full Text Available The research deals with processes occurring in the activation tank during the snow-melt inflow of chemical component of roadsalt. Chemical composition of the suspension in the activation tank is changing following the metabolism of organisms and chemicalcomposition of the influent wastewater. Sludge and wastewater in nitrification tail of the activation tank has higher conductivity, highercontents of chloride, higher sludge index and other characteristics are changing during snow – melt. The amount of the inflow road saltis a determining factor of lyses of microorganism cells.

  20. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  1. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  2. Catechol-Based Hydrogel for Chemical Information Processing

    Directory of Open Access Journals (Sweden)

    Eunkyoung Kim

    2017-07-01

    Full Text Available Catechols offer diverse properties and are used in biology to perform various functions that range from adhesion (e.g., mussel proteins to neurotransmission (e.g., dopamine, and mimicking the capabilities of biological catechols have yielded important new materials (e.g., polydopamine. It is well known that catechols are also redox-active and we have observed that biomimetic catechol-modified chitosan films are redox-active and possess interesting molecular electronic properties. In particular, these films can accept, store and donate electrons, and thus offer redox-capacitor capabilities. We are enlisting these capabilities to bridge communication between biology and electronics. Specifically, we are investigating an interactive redox-probing approach to access redox-based chemical information and convert this information into an electrical modality that facilitates analysis by methods from signal processing. In this review, we describe the broad vision and then cite recent examples in which the catechol–chitosan redox-capacitor can assist in accessing and understanding chemical information. Further, this redox-capacitor can be coupled with synthetic biology to enhance the power of chemical information processing. Potentially, the progress with this biomimetic catechol–chitosan film may even help in understanding how biology uses the redox properties of catechols for redox signaling.

  3. Chemical evolution of the Earth: Equilibrium or disequilibrium process?

    Science.gov (United States)

    Sato, M.

    1985-01-01

    To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.

  4. Incorporation of chemical kinetic models into process control

    International Nuclear Information System (INIS)

    Herget, C.J.; Frazer, J.W.

    1981-01-01

    An important consideration in chemical process control is to determine the precise rationing of reactant streams, particularly when a large time delay exists between the mixing of the reactants and the measurement of the product. In this paper, a method is described for incorporating chemical kinetic models into the control strategy in order to achieve optimum operating conditions. The system is first characterized by determining a reaction rate surface as a function of all input reactant concentrations over a feasible range. A nonlinear constrained optimization program is then used to determine the combination of reactants which produces the specified yield at minimum cost. This operating condition is then used to establish the nominal concentrations of the reactants. The actual operation is determined through a feedback control system employing a Smith predictor. The method is demonstrated on a laboratory bench scale enzyme reactor

  5. Field experience with KWU SG chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1989-01-01

    The ingress of corrosion products into PWR steam generators (SG's) their deposition and the subsequent concentration of salt impurities can induce a variety of mechanisms for corrosion attack on SG tubing. Already, some plants have had to replace their steam generators due to severe corrosion damage and others are seriously considering the same costly action in the near future. One of the most effective ways to counteract corrosion mechanisms and thus to reduce the likelihood of SG replacement becoming necessary is to clean the SG's and to keep them clean. For many years, the industry has been involved in developing different types of cleaning techniques. Among these, chemical cleaning has been shown to be especially effective. In this article, the KWU chemical cleaning process, for which there is considerable application experience, is described. The results of field applications will be presented together with material compatibility data and information on cleaning effectiveness. (author)

  6. Cell patterning without chemical surface modification: Cell cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel

    Science.gov (United States)

    Chen, C. Y.; Barron, J. A.; Ringeisen, B. R.

    2006-10-01

    Cell printing offers the unique ability to directly deposit one or multiple cell types directly onto a surface without the need to chemically pre-treat the surface with lithographic methods. We utilize biological laser printing (BioLP ™) to form patterns of bovine aortic endothelial cells (BAECs) onto a homogeneous cell adherent hydrogel surface. These normal cells are shown to retain near-100% viability post-printing. In order to determine whether BAECs encountered shear and/or heat stress during printing, immunocytochemical staining experiments were performed to detect potential expression of heat shock proteins (HSP) by the deposited cells. Printed BAECs expressed HSP at levels similar to negative control cells, indicating that the BioLP process does not expose cells to damaging levels of stress. However, HSP expression was slightly higher at the highest laser energy studied, suggesting more stress was present under these extreme conditions. Printed BAECs also showed preferential asymmetric growth and migration towards each other and away from the originally printed pattern, demonstrating a retained ability for the cells to communicate post-printing.

  7. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    Science.gov (United States)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented

  8. Designing new nuclear chemical processing plants for safeguards accountability

    International Nuclear Information System (INIS)

    Sprouse, K.M.

    1987-01-01

    New nuclear chemical processing plants will be required to develop material accountability control limits from measurement error propagation analysis rather than historical inventory difference data as performed in the past. In order for measurement error propagation methods to be viable alternatives, process designers must ensure that two nondimensional accountability parameters are maintained below 0.1. These parameters are ratios between the material holdup increase and the variance in inventory difference measurement uncertainty. Measurement uncertainty data for use in error propagation analysis is generally available in the open literature or readily derived from instrument calibration data. However, nuclear material holdup data has not been adequately developed for use in the material accountability design process. Long duration development testing on isolated unit operations is required to generate this necessary information

  9. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Subfemtosecond directional control of chemical processes in molecules

    Science.gov (United States)

    Alnaser, Ali S.; Litvinyuk, Igor V.

    2017-02-01

    Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.

  11. Renal cell carcinoma and occupational exposure to chemicals in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Mao, Y.; White, K. [Health Canada, Ottawa, ON (Canada). Population & Public Health Branch

    2002-05-01

    This study assesses the effect of occupational exposure to specific chemicals on the risk of renal cell carcinoma in people in Canada. Mailed questionnaires were used to obtain data on 1279 (691 male and 588 female) newly diagnosed, histologically confirmed renal cell carcinoma cases and 5370 population controls in eight Canadian provinces, between 1994 and 1997. Data were collected on socio-economic status, smoking habit, alcohol use, diet, residential and occupational histories, and years of exposure to any of 17 chemicals. Odds ratios (ORs) and 95% confidence intervals (CIs) were derived using unconditional logistic regression. The study found an increased risk of renal cell carcinoma in males only, which was associated with occupational exposure to benzene; benzidine; coal tar, soot, pitch, creosote or asphalt; herbicides; mineral, cutting or lubricating oil; mustard gas; pesticides; and vinyl chloride. Very few females were exposed to specific chemicals in this study; further research is needed to clarify the association between occupational exposure to chemicals and renal cell carcinoma in females.

  12. Repair of human DNA: radiation and chemical damage in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Setlow, R.B.

    1976-01-01

    We present the experimental evidence we have gathered, using a particular assay for DNA repair in human cells, the photolysis of bromodeoxyuridine (BrdUrd) incorporated during repair. This assay characterizes the sequence of repair events that occur in human cells after radiation, both ultraviolet and ionizing, and permits an estimation of the size of the average repaired region after these physical insults to DNA. We will discuss chemical insults to DNA and attempt to liken the repair processes after chemical damages of various kinds to those repair processes that occur in human DNA after damage from physical agents. We will also show results indicating that, under certain conditions, repair events resembling those seen after uv-irradiation can be observed in normal human cells after ionizing radiation. Furthermore the XP cells, defective in the repair of uv-induced DNA damage, show defective repair of these uv-like DNA lesions induced by ionizing radiation

  13. Chemical elements dynamic in the fermentation process of ethanol producing

    International Nuclear Information System (INIS)

    Nepomuceno, N.; Nadai Fernandes, E.A. de; Bacchi, M.A.

    1994-01-01

    This paper provides useful information about the dynamics of chemical elements analysed by instrumental neutron activation analysis (INAA) and, found in the various segments of the fermentation process of producing ethanol from sugar cane. For this, a mass balance of Ce, Co, Cs, Eu, Fe, Hf, La, Sc, Sm, and Th, terrigenous elements, as well as Br, K, Rb, and Zn, sugar cane plant elements, has been demonstrated for the fermentation vats in industrial conditions of ethanol production. (author). 10 refs, 4 figs, 1 tab

  14. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  15. An integrated biotechnology platform for developing sustainable chemical processes.

    Science.gov (United States)

    Barton, Nelson R; Burgard, Anthony P; Burk, Mark J; Crater, Jason S; Osterhout, Robin E; Pharkya, Priti; Steer, Brian A; Sun, Jun; Trawick, John D; Van Dien, Stephen J; Yang, Tae Hoon; Yim, Harry

    2015-03-01

    Genomatica has established an integrated computational/experimental metabolic engineering platform to design, create, and optimize novel high performance organisms and bioprocesses. Here we present our platform and its use to develop E. coli strains for production of the industrial chemical 1,4-butanediol (BDO) from sugars. A series of examples are given to demonstrate how a rational approach to strain engineering, including carefully designed diagnostic experiments, provided critical insights about pathway bottlenecks, byproducts, expression balancing, and commercial robustness, leading to a superior BDO production strain and process.

  16. Polycation-mediated integrated cell death processes

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Wu, Linping

    2014-01-01

    standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design...

  17. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S P; Waitz, I A [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R C; Brown, R C; Anderson, M R [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W N [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1998-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  18. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  19. Hybrid bio-photo-electro-chemical cells for solar water splitting

    OpenAIRE

    Pinhassi, Roy I.; Kallmann, Dan; Saper, Gadiel; Dotan, Hen; Linkov, Artyom; Kay, Asaf; Liveanu, Varda; Schuster, Gadi; Adir, Noam; Rothschild, Avner

    2016-01-01

    Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox...

  20. Wet-chemical approach for the cell-adhesive modification of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Gabriel, Matthias; Dahm, Manfred; Vahl, Christian-F

    2011-01-01

    Polytetrafluoroethylene (PTFE), a frequently utilized polymer for the fabrication of synthetic vascular grafts, was surface-modified by means of a wet-chemical process. The inherently non-cell-adhesive polymer does not support cellular attachment, a prerequisite for the endothelialization of luminal surface grafts in small diameter applications. To impart the material with cell-adhesive properties a treatment with sodium-naphthalene provided a basis for the subsequent immobilization of the adhesion promoting RGD-peptide using a hydroxy- and amine-reactive crosslinker. Successful conjugation was shown with cell culture experiments which demonstrated excellent endothelial cell growth on the modified surfaces.

  1. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Kilpinen, P. [Aabo Akademi, Turku (Finland)

    1996-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  2. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M; Kilpinen, P [Aabo Akademi, Turku (Finland)

    1997-12-31

    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  3. Combined Noncyclic Scheduling and Advanced Control for Continuous Chemical Processes

    Directory of Open Access Journals (Sweden)

    Damon Petersen

    2017-12-01

    Full Text Available A novel formulation for combined scheduling and control of multi-product, continuous chemical processes is introduced in which nonlinear model predictive control (NMPC and noncyclic continuous-time scheduling are efficiently combined. A decomposition into nonlinear programming (NLP dynamic optimization problems and mixed-integer linear programming (MILP problems, without iterative alternation, allows for computationally light solution. An iterative method is introduced to determine the number of production slots for a noncyclic schedule during a prediction horizon. A filter method is introduced to reduce the number of MILP problems required. The formulation’s closed-loop performance with both process disturbances and updated market conditions is demonstrated through multiple scenarios on a benchmark continuously stirred tank reactor (CSTR application with fluctuations in market demand and price for multiple products. Economic performance surpasses cyclic scheduling in all scenarios presented. Computational performance is sufficiently light to enable online operation in a dual-loop feedback structure.

  4. DYNSYL: a general-purpose dynamic simulator for chemical processes

    International Nuclear Information System (INIS)

    Patterson, G.K.; Rozsa, R.B.

    1978-01-01

    Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simple material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing

  5. Chemical process for improved oil recovery from Bakken shale

    Energy Technology Data Exchange (ETDEWEB)

    Shuler, Patrick; Tang, Hongxin; Lu, Zayne [ChemEOR Inc (United States); Tang, Youngchun [Power Environmental Energy Research Institute (United States)

    2011-07-01

    This paper presents the new chemically-improved oil recovery process (IOR) process for Bakken formation reservoirs. A custom surfactant agent can be used in standard hydraulic fracturing treatments in the Bakken to increase oil recovery. The rock formation consists of three members: the lower shale, middle dolostone and the upper shale. The dolostone was deposited as a coastal carbonate during shallower water and the shales were deposited in a relatively deep marine condition. With the widespread advent of horizontal well drilling and large-volume hydraulic fracturing treatments, production from the Bakken has become very active. The experimental results exhibited that specialized surfactant formulations will interact with this mixed oil-wet low permeability middle member to produce more oil. It was also observed that oil recovery by spontaneous imbibition was fast and significant. The best surfactant found in this study is compatible with a common fracture fluid system.

  6. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Directory of Open Access Journals (Sweden)

    H. V. Lee

    2014-01-01

    Full Text Available Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate’s application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.

  7. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Science.gov (United States)

    Lee, H. V.; Hamid, S. B. A.; Zain, S. K.

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  8. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buyck, N.; Thomas, S.

    2001-01-01

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) at the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.

  9. A Cell Model to Evaluate Chemical Effects on Adult Human Cardiac Progenitor Cell Differentiation and Function

    Science.gov (United States)

    Adult cardiac stem cells (CSC) and progenitor cells (CPC) represent a population of cells in the heart critical for its regeneration and function over a lifetime. The impact of chemicals on adult human CSC/CPC differentiation and function is unknown. Research was conducted to dev...

  10. Sustainable Chemical Processes and Products. New Design Methodology and Design Tools

    OpenAIRE

    Korevaar, G.

    2004-01-01

    The current chemical industry is not sustainable, which leads to the fact that innovation of chemical processes and products is too often hazardous for society in general and the environment in particular. It really is a challenge to implement sustainability considerations in the design activities of chemical engineers. Therefore, the main question of this thesis is: how can a trained chemical engineer develop a conceptual design of a chemical process or a chemical product in such a way that ...

  11. Chemical Imaging of the Cell Membrane by NanoSIMS

    International Nuclear Information System (INIS)

    Weber, P.K.; Kraft, M.L.; Frisz, J.F.; Carpenter, K.J.; Hutcheon, I.D.

    2010-01-01

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  12. Process Equipment Failure Mode Analysis in a Chemical Industry

    Directory of Open Access Journals (Sweden)

    J. Nasl Seraji

    2008-04-01

    Full Text Available Background and aims   Prevention of potential accidents and safety promotion in chemical processes requires systematic safety management in them. The main objective of this study was analysis of important process equipment components failure modes and effects in H2S and CO2  isolation from extracted natural gas process.   Methods   This study was done in sweetening unit of an Iranian gas refinery. Failure Mode and Effect Analysis (FMEA used for identification of process equipments failures.   Results   Totally 30 failures identified and evaluated using FMEA. P-1 blower's blade breaking and sour gas pressure control valve bearing tight moving had maximum risk Priority number (RPN, P-1 body corrosion and increasing plug lower side angle of reach DEAlevel control valve  in tower - 1 were minimum calculated RPN.   Conclusion   By providing a reliable documentation system for equipment failures and  incidents recording, maintaining of basic information for later safety assessments would be  possible. Also, the probability of failures and effects could be minimized by conducting preventive maintenance.

  13. Intelligent process control of fiber chemical vapor deposition

    Science.gov (United States)

    Jones, John Gregory

    Chemical Vapor Deposition (CVD) is a widely used process for the application of thin films. In this case, CVD is being used to apply a thin film interface coating to single crystal monofilament sapphire (Alsb2Osb3) fibers for use in Ceramic Matrix Composites (CMC's). The hot-wall reactor operates at near atmospheric pressure which is maintained using a venturi pump system. Inert gas seals obviate the need for a sealed system. A liquid precursor delivery system has been implemented to provide precise stoichiometry control. Neural networks have been implemented to create real-time process description models trained using data generated based on a Navier-Stokes finite difference model of the process. Automation of the process to include full computer control and data logging capability is also presented. In situ sensors including a quadrupole mass spectrometer, thermocouples, laser scanner, and Raman spectrometer have been implemented to determine the gas phase reactants and coating quality. A fuzzy logic controller has been developed to regulate either the gas phase or the in situ temperature of the reactor using oxygen flow rate as an actuator. Scanning electron microscope (SEM) images of various samples are shown. A hierarchical control structure upon which the control structure is based is also presented.

  14. The Characterization of Cognitive Processes Involved in Chemical Kinetics Using a Blended Processing Framework

    Science.gov (United States)

    Bain, Kinsey; Rodriguez, Jon-Marc G.; Moon, Alena; Towns, Marcy H.

    2018-01-01

    Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical…

  15. Al-induced root cell wall chemical components differences of wheat ...

    African Journals Online (AJOL)

    Root growth is different in plants with different levels of Al-tolerance under Al stress. Cell wall chemical components of root tip cell are related to root growth. The aim of this study was to explore the relationship between root growth difference and cell wall chemical components. For this purpose, the cell wall chemical ...

  16. Radiation induced processes in moss cells

    International Nuclear Information System (INIS)

    Doehren, R. v.

    1975-01-01

    The moss F.h. shows apical growth in the protonema cells which spread radially from the spor. Every apical daughter cell during the state of 'Caulonema' and just before in the state of 'Caulonema Primanen' initiates cell division as soon as more than twice the length of the mother cell is reached. All this allows to follow radiation effects in single cells conveniently. UV irradiation on the range of 254 nm and 280 nm delivered at different parts of the cell area delays cell division markedly may suppress it, and is able to stop the process of growing in relation to the delivered dose and to the irradiated area as well. In case of irradiation of the area next to where the membrane is just being formed - that is to say next to the phragmoplast - the new membrane will be wrongly oriented. In particular giant cells are occurring in the case of nucleus irradiation during early prophase. (orig./GSE) [de

  17. Features of radiation chemical processes in ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Leshchenko, S.S.; Mal'tseva, A.P.; Iskakov, L.I.; Karpov, V.L.

    1976-01-01

    A study was made of statistical copolymers of ethylene with styrene to determine their structure and properties and radio-chemical transformations. The styrene content of the copolymers ranged from 1 to 85 mole%. The investigation covered non-irradiated copolymers and those irradiated with doses of 1-1000Mrad at room temperature and at liquid nitrogen temperature. It is shown that styrene units present in the CES inhibited all radio-chemical processes compared with PE irradiated under similar conditions. It is suggested that the radiation resistance of CES with styrene contents up to 10 mole % increases in the course of irradiation as a result of the formation of structures with a high degree of conjugation which are more capable of scattering absorbed energy than in the case of phenyl rings by themselves. The most promising of the CES examined is the one with a styrene content of 5 mole %. The mechanical properties of this copolymer are similar to those of PE, and its radiation resistance rises under service conditions in the presence of ionizing radiation

  18. Chemical and radiolytical solvent degradation in the Purex process

    International Nuclear Information System (INIS)

    Stieglitz, L.; Becker, R.

    1985-01-01

    The state of the art of chemical and radiolytical solvent degradation is described. For the hydrolysis of tributylphosphate TBP->HDBP->H 2 MBP->H 3 PO 4 values are given for the individual constants in a temperature range from 23 to 90 0 C. Radiolytic yields were measured for HDBP as 80 mg/Wh, for H 2 MBP as 2 mg/Wh, and for H 3 PO 4 as 5 mg/Wh. Experimental results on the degradation products of the diluent are summarized and their influence on the process is discussed. Long chain acid phosphates and acid TBP oligomeres were identified as responsible for the retention of fission products. Techniques such as polarography, infrared spectrometry and electrolytic conductometry are applied to estimate concentrations of degradation products down to 10 -5 mol/l. (orig.) [de

  19. Chemical and radiolytical solvent degradation in the Purex process

    Energy Technology Data Exchange (ETDEWEB)

    Stieglitz, L; Becker, R

    1985-01-01

    The state of the art of chemical and radiolytical solvent degradation is described. For the hydrolysis of tributylphosphate TBP->HDBP->H/sub 2/MBP->H/sub 3/PO/sub 4/ values are given for the individual constants in a temperature range from 23 to 90/sup 0/C. Radiolytic yields were measured for HDBP as 80 mg/Wh, for H/sub 2/MBP as 2 mg/Wh, and for H/sub 3/PO/sub 4/ as 5 mg/Wh. Experimental results on the degradation products of the diluent are summarized and their influence on the process is discussed. Long chain acid phosphates and acid TBP oligomeres were identified as responsible for the retention of fission products. Techniques such as polarography, infrared spectrometry and electrolytic conductometry are applied to estimate concentrations of degradation products down to 10/sup -5/ mol/l.

  20. Application of large radiation sources in chemical processing industry

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1977-01-01

    Large radiation sources and their application in chemical processing industry are described. A reference has also been made to the present developments in this field in India. Radioactive sources, notably 60 Co, are employed in production of wood-plastic and concrete-polymer composites, vulcanised rubbers, polymers, sulfochlorinated paraffin hydrocarbons and in a number of other applications which require deep penetration and high reliability of source. Machine sources of electrons are used in production of heat shrinkable plastics, insulation materials for cables, curing of paints etc. Radiation sources have also been used for sewage hygienisation. As for the scene in India, 60 Co sources, gamma chambers and batch irradiators are manufactured. A list of the on-going R and D projects and organisations engaged in research in this field is given. (M.G.B.)

  1. ICPP [Idaho Chemical Processing Plant] environmental monitoring report, CY-1988

    International Nuclear Information System (INIS)

    Krivanek, K.R.

    1989-08-01

    Summarized in this report are the data collected through Environmental Monitoring programs conducted at the Idaho Chemical Processing Plant (ICPP) by the Environmental Engineering (EE) Section of the Nuclear and Industrial Safety (N and IS) Department. The ICPP is responsible for complying with all applicable Federal, State, Local and DOE Rules, Regulations and Orders. Radiological effluent and emissions are regulated by the DOE. The Environmental Protection Agency (EPA) regulates all nonradiological waste resulting from the ICPP operations including all airborne, liquid, and solid waste. The EE subsection completed a Quality Assurance (QA) Plan for Environmental Monitoring activities during the third quarter of 1986. QA activities have resulted in the ICPP's implementation of the Environmental Protection Agency rules and guidelines pertaining to the collection, analyses, and reporting of environmentally related samples. Where no approved methods for analyses existed for radionuclides, currently used methods were submitted for the EPA approval. 33 figs., 14 tabs

  2. Radon: Chemical and physical processes associated with its distribution

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1992-01-01

    Assessing the mechanisms which govern the distribution, fate, and pathways of entry into biological systems, as well as the ultimate hazards associated with the radon progeny and their secondary reaction products, depends on knowledge of their chemistry. Our studies are directed toward developing fundamental information which will provide a basis for modeling studies that are requisite in obtaining a complete picture of growth, attachment to aerosols, and transport to the bioreceptor and ultimate incorporation within. Our program is divided into three major areas of research. These include measurement of the determination of their mobilities, study of the role of radon progeny ions in affecting reactions, including study of the influence of the degree of solvation (clustering), and examination of the important secondary reaction products, with particular attention to processes leading to chemical conversion of either the core ions or the ligands as a function of the degree of clustering

  3. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater

    Science.gov (United States)

    Li, Zhenchen; Yang, Ping

    2018-02-01

    Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.

  4. Safety aspects in a chemical exchange process plant

    International Nuclear Information System (INIS)

    Sharma, B.K.

    2016-01-01

    Based on a chemical exchange process involving solid liquid exchange, studies have been undertaken to enrich 10 B isotope of boron using ion exchange chromatography in which a strong base anion exchange resin in hydroxyl form is equilibrated with boric acid solution in presence of mannitol (a complexing reagent to boric acid) to enhance the acidity and hence the isotopic exchange separation factor for 10 B = 11 B exchange reaction. Using the electrochemical techniques such as pH-metry and conductimetry, the choice of a suitable complexing reagent was made amongst ethylene glycol, propylene glycol, dextrose and mannitol for cost-effective separation of isotopes of boron and monitoring of band movements using these electrochemical techniques. The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. This process is an industrially viable process. The various safety aspects followed during operation of this plant are described in this paper. (author)

  5. Bubble Jet agent release cartridge for chemical single cell stimulation.

    Science.gov (United States)

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  6. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  7. Lunasin-aspirin combination against NIH/3T3 cells transformation induced by chemical carcinogens.

    Science.gov (United States)

    Hsieh, Chia-Chien; Hernández-Ledesma, Blanca; de Lumen, Ben O

    2011-06-01

    Carcinogenesis is a multistage process involving a number of molecular pathways sensitive to intervention. Chemoprevention is defined as the use of natural and/or synthetic substances to block, reverse, or retard the process of carcinogenesis. To achieve greater inhibitory effects on cancer cells, combination of two or more chemopreventive agents is commonly considered as a better preventive and/or therapeutic strategy. Lunasin is a promising cancer preventive peptide identified in soybean and other seeds. Its efficacy has been demonstrated by both in vitro and in vivo models. This peptide has been found to inhibit human breast cancer MDA-MB-231 cells proliferation, suppressing cell cycle progress and inducing cell apoptosis. Moreover, lunasin potentiates the effects on these cells of different synthetic and natural compounds, such as aspirin and anacardic acid. This study explored the role of lunasin, alone and in combination with aspirin and anacardic acid on cell proliferation and foci formation of transformed NIH/3T3 cells induced by chemical carcinogens 7,12-dimethylbenz[a]anthracene or 3-methylcholanthrene. The results revealed that lunasin, acting as a single agent, inhibits cell proliferation and foci formation. When combined with aspirin, these effects were significantly increased, indicating that this combination might be a promising strategy to prevent/treat cancer induced by chemical carcinogens.

  8. Chemical catalysis in biodiesel production (I): enzymatic catalysis processes

    International Nuclear Information System (INIS)

    Jachmarian, I.; Dobroyan, M.; Veira, J.; Vieitez, I.; Mottini, M.; Segura, N.; Grompone, M.

    2009-01-01

    There are some well known advantages related with the substitution of chemical catalysis by enzymatic catalysis processes.Some commercial immobilized lipases are useful for the catalysis of bio diesel reaction, which permits the achievement of high conversions and the recovery of high purity products, like a high quality glycerine. The main disadvantage of this alternative method is related with the last inactivation of the enzyme (by both the effect of the alcohol and the absorption of glycerol on catalyst surface), which added to the high cost of the catalyst, produces an unfavourable economical balance of the entire process. In the work the efficiency of two commercial immobilized lipases (Lipozyme TL IM y Novozyme 435 NNovozymes-Dinamarca) in the catalysis of the continuous transesterification of sunflower oil with different alcohols was studied. The intersolubility of the different mixturesinvolving reactans (S oil/alkyl esters/alcohol) and products (P mixtures with a higher content of 1% of glycerol,while for ethanol homogeneous mixtures were obtained at 12% of glycerol (44.44 12).Using and ethanolic substrate at the proportion S=19:75:6 and Lipozyme TL IM, it was possible to achieve a 98% of convertion to the corresponding biodiesel.When Novozymes 435 catalyzed the process it was possible to increase the oil concentration in the substrateaccording to proportion S=35:30:35, and a 78% conversion was obtained. The productivity shown by the firt enzyme was 70mg biodiesel g enzime-1, hora-1 while with the second one the productivity increased to 230. Results suggested that the convenient adjustement of substrate composition with the addition of biodiesel to reactants offers an efficient method for maximizing the enzyme productivity, hence improving the profitability of the enzymatic catalyzed process. (author)

  9. Automation of 3D cell culture using chemically defined hydrogels.

    Science.gov (United States)

    Rimann, Markus; Angres, Brigitte; Patocchi-Tenzer, Isabel; Braum, Susanne; Graf-Hausner, Ursula

    2014-04-01

    Drug development relies on high-throughput screening involving cell-based assays. Most of the assays are still based on cells grown in monolayer rather than in three-dimensional (3D) formats, although cells behave more in vivo-like in 3D. To exemplify the adoption of 3D techniques in drug development, this project investigated the automation of a hydrogel-based 3D cell culture system using a liquid-handling robot. The hydrogel technology used offers high flexibility of gel design due to a modular composition of a polymer network and bioactive components. The cell inert degradation of the gel at the end of the culture period guaranteed the harmless isolation of live cells for further downstream processing. Human colon carcinoma cells HCT-116 were encapsulated and grown in these dextran-based hydrogels, thereby forming 3D multicellular spheroids. Viability and DNA content of the cells were shown to be similar in automated and manually produced hydrogels. Furthermore, cell treatment with toxic Taxol concentrations (100 nM) had the same effect on HCT-116 cell viability in manually and automated hydrogel preparations. Finally, a fully automated dose-response curve with the reference compound Taxol showed the potential of this hydrogel-based 3D cell culture system in advanced drug development.

  10. Laser Process for Selective Emitter Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    G. Poulain

    2012-01-01

    Full Text Available Selective emitter solar cells can provide a significant increase in conversion efficiency. However current approaches need many technological steps and alignment procedures. This paper reports on a preliminary attempt to reduce the number of processing steps and therefore the cost of selective emitter cells. In the developed procedure, a phosphorous glass covered with silicon nitride acts as the doping source. A laser is used to open locally the antireflection coating and at the same time achieve local phosphorus diffusion. In this process the standard chemical etching of the phosphorous glass is avoided. Sheet resistance variation from 100 Ω/sq to 40 Ω/sq is demonstrated with a nanosecond UV laser. Numerical simulation of the laser-matter interaction is discussed to understand the dopant diffusion efficiency. Preliminary solar cells results show a 0.5% improvement compared with a homogeneous emitter structure.

  11. Systematic methods for synthesis and design of sustainable chemical and biochemical processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    Chemical and biochemical process design consists of designing the process that can sustainably manufacture an identified chemical product through a chemical or biochemical route. The chemical product tree is potentially very large; starting from a set of basic raw materials (such as petroleum...... for process intensification, sustainable process design, identification of optimal biorefinery models as well as integrated process-control design, and chemical product design. The lecture will present the main concepts, the decomposition based solution approach, the developed methods and tools together...

  12. Three-dimensional chemical structure of the INEL aquifer system near the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    McCurry, M.; Estes, M.; Fromm, J.; Welhan, J.; Barrash, W.

    1994-01-01

    Sampling and analysis from the Snake River Plain aquifer using a stainless-steel and teflon constructed straddle-packer system has established detailed vertical profiles of aquifer chemistry from three wells near a major source of low-level waste injection at the Idaho Chemical Processing Plant. Multiple intervals, varying from 4.6 to 6.1 m in length, were sampled between the water table (140.5 mbls - meters below land surface), and approximately 200 mbls to obtain a wide spectrum of metals, anions, radiological and organic components analyses. Measurements were also made at the well sites of important transient parameters (T, Eh, Fe 3+ , Fe 2+ , DO and SC). The principal purpose of this ongoing work is to improve our understanding of the third (i.e. vertical) dimension of aquifer chemistry at the INEL as a basis for critically evaluating site-wide monitoring procedures, and, ultimately, for improving fate and transport models for aquifer contaminants within basalt-hosted aquifers. Chemical and radiological data indicates that substantial systematic vertical and lateral variations occur in the aquifer hydrochemistry - in particular for conservative radiological nuclide concentrations. Radiological data define a three-layered zonation. Ground water within upper and lower zones contain up to 10 times higher concentrations of H-3 and I-129 than in the middle zone. Sr-90 activity is decoupled from H-3 and I-129-relatively high activity was detected within the upper zone nearest the ICPP, but activities elsewhere are very low. 27 refs., 4 figs., 1 tab

  13. Physical and chemical processes for the generation of 1-μm-structures

    International Nuclear Information System (INIS)

    Mader, L.

    1979-01-01

    The following processes for the realization of fine structures in isolator and metal layers on silicon wafers have been studied: Wet chemical etching of silicon dioxide and aluminum layers; plasma etching of polysilicon layers; ion beam etching of silicon dioxide and polysilicon layers, lift-off technique for metal pattern generation. Test structures and functioning integrated circuits (memory cells, CCDs) with minimum dimensions of 1.5 μm were realized using these methods of pattern generation. (orig.) 891 ORU/orig. 892 MB [de

  14. Process Analysis in Chemical Plant by Means of Radioactive Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, T.; Hamada, K.; Osada, K. [Showa Denko K.K., Tokyo (Japan)

    1967-06-15

    Following the movement of solids and fluids is important in chemical processes to determine mixing efficiency and residence time. Since it is necessary to follow many complex substances such as raw materials, intermediates and reactants in plant investigations, it is often necessary to ascertain whether the behaviour of the radioisotope tracer and the substance to be traced are identical. The most difficult problem is to determine the best method of labelling, a factor which is a substantial key to the success of an experiment. Usually, there are three labelling techniques: radioisotope labelling, pre-.activation of the material and post-activation of the material. This paper deals with practical examples of the double-tracer technique, a combination of conventional radioisotope labelling and post-activation methods by means of activation analysis. In process analysis by means of tracers, a practical measurement method should also be devised and developed for each experiment. Phosphorus-32 and gold (non-radioactive) were used to measure retention time in a carbon-black plant. The radioisotope was pumped into a feed-stock pipe positioned before the reactor and samples were taken from each process of the plant, including the bag filter, mixer and product tank. After sampling from each step of the process, {sup 32}P in a semi-infinite powder sample was measured in situ by beta counting, and the gold was measured by gamma counting after activating the sample in a reactor. The experiment showed that both tracers had the same residence time, which was shorter than expected. Useful data were also obtained from the dispersion pattern of the material flow for future operation controls, including the time required to change from one grade of product to another. Practical tracer techniques to measure mixing characteristics in high-speed gas flows using {sup 85}Kr have been developed. A study of the measurement method was conducted by calculating the differential values of

  15. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  16. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Chemical engineering of nanomaterials. Energy- and resource-saving chemical-engineering processes and problems of their intensification. Processes and apparatuses of chemical engineering, chemical cybernetics. Ecological problems of chemical engineering and related fields

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning chemical engineering of nanomaterials, energy- and resource-saving chemical-engineering processes, processes and apparatuses of chemical engineering, chemical cybernetics, ecological problems of chemical engineering and related fields. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  17. The AMES Laboratory chemical disposal site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1996-01-01

    The Ames Laboratory has historically supported the U.S. Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, chemical wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the U.S. Army Corps of Engineers (USACE), OHM Remediation Services Corp (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  18. Process engineering of ceramic composite coatings for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Kim, H.; Chen, M.; Yang, Q.; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering

    2003-07-01

    Researchers at UBCeram at the Department of Metals and Materials Engineering at the University of British Columbia have developed a technology to chemically bond composite sol-gel (CB-CSG) coating onto metallic surfaces of complex or concave shapes. The process has been optimized for electrically resistive coatings and corrosion-resistant coatings. The CSG is sprayed onto metallic surfaces and is heat-treated at 300 degrees C to partially dehydrate the hydroxides. The CSG film is then chemically bonded through reaction of active alumina with metal phosphates, such as aluminium phosphate. A new chromate-free process is being developed to address the issue of coatings porosity. The electrodeposition technique involves polymer particles mixed with suspended fine alumina particles which are co-deposited by electrophoretic means or by electrocoagulation. The composite e-coatings have excellent mechanical properties and are being considered as a protective coating for various components of fuel cell systems. 9 refs., 7 figs.

  19. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Science.gov (United States)

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of ozone treatment on chemical and physical properties of wheat (Triticum aestivum L.) gluten, glutenin and gliadin. Methods: Wheat proteins isolated from wheat flour were treated with ozone gas. The physical and chemical properties of gluten proteins were investigated after treatment ...

  1. Modeling operators' emergency response time for chemical processing operations.

    Science.gov (United States)

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  2. ARTIST process. A novel chemical process for treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Tachimori, Shoichi

    2001-10-01

    A new chemical process, ARTIST process, is proposed for the treatment of spent nuclear fuel. The main concept of the ARTIST process is to recover and stock all actinides (Ans) as two groups, uranium (U) and a mixture of transuranics (TRU), to preserve their resource value and to dispose solely fission products (FPs). The process is composed of two main steps, an U exclusive isolation and a total recovery of TRU; which copes with the nuclear non-proliferation measures, and additionally of Pu separation process and soft N-donor process if requested, and optionally of processes for separation of long-lived FPs. These An products: U-product and TRU-product, are to be solidified by calcination and allowed to the interim stockpile for future utilization. These separations are achieved by use of amidic extractants in accord with the CHON principle. The technical feasibility of the ARTIST process was explained by the performance of both the branched alkyl monoamides in extracting U and suppressing the extraction of tetravalent Ans due to the steric effect and the diglycolic amide (TODGA) in thorough extraction of all TRU by tridentate fashion. When these TRU are requested to put into reactors, LWR or FBR, for power generation or the Accelerator - Driven System (ADS) for transmutation, Pu (Np) or Am-Cm (Np) are to be extracted from the TRU-product. (author)

  3. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  4. Effects of radiation and chemical substances on cells and organism

    International Nuclear Information System (INIS)

    Fremuth, F.

    1981-01-01

    The book treats the radiation chemistry part of biophysics and applied biophysics in the sphere of ionizing radiation. Discussed are the concepts of radiation units and radioactivity units and the relative biological efficiency. The effects of ionizing and UV radiations are analyzed at the level of macromolecular changes. Chapters dealing with genetic radiation effects discuss the effects at the cellular level with respect to cell proliferation. All these problems are used to illustrate the effect on the organism as a whole. The chapters on applied biophysics deal with the indications of radiation and chemical damage, sensitivity of cells and the organism, and the study and influencing of growth at the cellular level. The concluding chapter is devoted to the environmental impact of radiation. (J.P.)

  5. In vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis

    Science.gov (United States)

    Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes ...

  6. Solar cells elaborated by chemical methods: examples of research and development at CIE-UNAM

    International Nuclear Information System (INIS)

    Rincon, Marina E.

    2008-01-01

    one year by now. The overall cost of the materials explored at CIE-UNAM, the simplicity of the chemical deposition process, and the possibility of optimizing the parameters to improve the cell characteristics inspires further work around chemically deposited films for solar cell technologies

  7. Chemical Processes Related to Combustion in Fluidised Bed

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Lindqvist, Oliver [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Environmental Inorganic Chemistry

    2002-12-01

    with evaluation of other biomass ash particles and, as an extension, the speciation of Cu and Zn will be studied as well. Ash fractions from combustion of MSW in a BFB boiler have been investigated regarding composition and leaching properties, i.e. environmental impact risks. The release of salts from the cyclone ash fraction can be minimised by the application of a simple washing process, thus securing that the leaching of soluble substances stays within the regulative limits. The MSW ash - water systems contain some interesting chemical issues, such as the interactions between Cr(VI) and reducing substances like Al-metal. The understanding of such chemical processes is important since it gives a possibility to predict effects of a change in ash composition. An even more detailed understanding of interactions between a solution containing ions and particle surfaces can be gained by theoretical modelling. In this project (and with additional unding from Aangpannefoereningens Forskningsstiftelse) a theoretical description of ion-ion interactions and the solid-liquid-interface has been developed. Some related issues are also included in this report. The publication of a paper on the reactions of ammonia in the presence of a calcining limestone surface is one of them. A review paper on the influence of combustion conditions on the properties of fly ash and its applicability as a cement replacement in concrete is another. The licentiate thesis describing the sampling and measurement of Cd in flue gas is also included since it was finalised during the present period. A co-operation project involving the Geology Dept. at Goeteborg Univ. and our group is briefly discussed. This project concerns the utilisation of granules produced from wood ash and dolomite as nutrient source for forest soil. Finally, the plans for our flue gas simulator facility are discussed.

  8. Technical safety appraisal of the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    1992-05-01

    On June 27, 1989, Secretary of Energy, Admiral James D. Watkins, US Navy (Retired), announced a 10-point initiative to strengthen environment, safety, and health (ES ampersand H) programs and waste management operations in the Department of Energy (DOE). One of the initiatives involved conducting independent Tiger Team Assessments (TTA) at DOE operating facilities. A TTA of the Idaho National Engineering Laboratory (INEL) was performed during June and July 1991. Technical Safety Appraisals (TSA) were conducted in conjunction with the TTA as its Safety and Health portion. However, because of operational constraints the the Idaho Chemical Processing Plant (ICPP), operated for the DOE by Westinghouse Idaho Nuclear Company, Inc. (WINCO), was not included in the Safety and Health Subteam assessment at that time. This TSA, conducted April 12 - May 8, 1992, was performed by the DOE Office of Performance Assessment to complete the normal scope of the Safety and Health portion of the Tiger Team Assessment of the Idaho National Engineering Laboratory. The purpose of TSAs is to evaluate and strengthen DOE operations by verifying contractor compliance with DOE Orders, to assure that lessons learned from commercial operations are incorporated into facility operations, and to stimulate and encourage pursuit of excellence; thus, the appraisal addresses more issues than would be addressed in a strictly compliance-oriented appraisal. A total of 139 Performance Objectives have been addressed by this appraisal in 19 subject areas. These 19 areas are: organization and administration, quality verification, operations, maintenance, training and certification, auxiliary systems, emergency preparedness, technical support, packaging and transportation, nuclear criticality safety, safety/security interface, experimental activities, site/facility safety review, radiological protection, worker safety and health compliance, personnel protection, fire protection, medical services and natural

  9. The main chemical safety problems in main process of nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Song Fengli; Zhao Shangui; Liu Xinhua; Zhang Chunlong; Lu Dan; Liu Yuntao; Yang Xiaowei; Wang Shijun

    2014-01-01

    There are many chemical reactions in the aqueous process of nuclear fuel reprocessing. The reaction conditions and the products are different so that the chemical safety problems are different. In the paper the chemical reactions in the aqueous process of nuclear fuel reprocessing are described and the main chemical safety problems are analyzed. The reference is offered to the design and accident analysis of the nuclear fuel reprocessing plant. (authors)

  10. National toxicology program chemical nomination and selection process

    Energy Technology Data Exchange (ETDEWEB)

    Selkirk, J.K. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)

    1990-12-31

    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  11. Model-Based Integrated Process Design and Controller Design of Chemical Processes

    DEFF Research Database (Denmark)

    Abd Hamid, Mohd Kamaruddin Bin

    that is typically formulated as a mathematical programming (optimization with constraints) problem is solved by the so-called reverse approach by decomposing it into four sequential hierarchical sub-problems: (i) pre-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection......This thesis describes the development and application of a new systematic modelbased methodology for performing integrated process design and controller design (IPDC) of chemical processes. The new methodology is simple to apply, easy to visualize and efficient to solve. Here, the IPDC problem...... are ordered according to the defined performance criteria (objective function). The final selected design is then verified through rigorous simulation. In the pre-analysis sub-problem, the concepts of attainable region and driving force are used to locate the optimal process-controller design solution...

  12. A survey of process control computers at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Dahl, C.A.

    1989-01-01

    The Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory is charged with the safe processing of spent nuclear fuel elements for the United States Department of Energy. The ICPP was originally constructed in the late 1950s and used state-of-the-art technology for process control at that time. The state of process control instrumentation at the ICPP has steadily improved to keep pace with emerging technology. Today, the ICPP is a college of emerging computer technology in process control with some systems as simple as standalone measurement computers while others are state-of-the-art distributed control systems controlling the operations in an entire facility within the plant. The ICPP has made maximal use of process computer technology aimed at increasing surety, safety, and efficiency of the process operations. Many benefits have been derived from the use of the computers for minimal costs, including decreased misoperations in the facility, and more benefits are expected in the future

  13. New trajectory-driven aerosol and chemical process model Chemical and Aerosol Lagrangian Model (CALM

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2010-11-01

    Full Text Available A new Chemical and Aerosol Lagrangian Model (CALM has been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61° 51' N, 24° 17' E over a time period of two years, 2000–2001. The model shows good agreement with measurements throughout most of the year, but fails in reproducing the aerosol properties during the winter season, resulting in poor agreement between model and measurements especially during December–January. Nevertheless, through the rest of the year both trends and magnitude of modal concentrations show good agreement with observation, as do the monthly average size distribution properties. The model is also shown to capture individual nucleation events to a certain degree. This indicates that nucleation largely is controlled by the availability of nucleating material (as prescribed by the [H2SO4], availability of condensing material (in this model 15% of primary reactions of monoterpenes (MT are assumed to produce low volatile species and the properties of the size distribution (more specifically, the condensation sink. This is further demonstrated by the fact that the model captures the annual trend in nuclei mode concentration. The model is also used, alongside sensitivity tests, to examine which processes dominate the aerosol size distribution physical properties. It is shown, in agreement with previous studies, that nucleation governs the number concentration during transport from clean areas. It is also shown that primary number emissions almost exclusively govern the CN concentration when air from Central Europe is advected north over Scandinavia. We also show that biogenic emissions have a large influence on the amount of potential CCN observed

  14. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    chemical properties of gluten proteins were investigated after treatment with .... differences in most of the visible bands among all samples. Figure 1: SDS-PAGE analysis of protein patterns in wheat gluten and glutenin, with and without ozone.

  15. Institute of Chemical Process Fundamentals of the ASCR: Expectation

    Czech Academy of Sciences Publication Activity Database

    Punčochář, Miroslav

    2013-01-01

    Roč. 62, 5-6 (2013), s. 214-215 ISSN 0022-9830 Institutional support: RVO:67985858 Keywords : laboratory investigation * large-scale applications * novel instrumentation and technology . Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  16. The Role of Chemical Processes in the Transition to Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stucki, S.; Palumbo, R.; Baltensperger, U.; Boulouchos, K.; Haas, O.; Scherer, G.G.; Siegwolf, R.; Wokaun, A

    2002-01-01

    Chemical science and engineering play a central role in improving the eco- efficiency of energy services, be it by optimizing fossil fuel utilization from the source to the sinks, be it by exploring new ways of replacing fossil fuels with renewable ones. Catalytic fuel processing is required for providing clean and easy to convert inputs from contaminated and/or high molecular weight primary resources into efficient energy conversion systems such as advanced combustion engines and fuel cells. The switch from conventional fossil fuel resources to renewables such as solar or biomass requires new approaches in chemical engineering. Efficiency vs. emissions trade-offs for improving the eco-performance of combustion engines need to be optimized with improved understanding of the complex chemistry taking place in flames. New materials for fuel cells and batteries provide a means of making these devices applicable, thereby drastically cutting down on emissions from energy systems. Chemistry is not only involved in fuel processing and conversion, but it is also important at the end of the pipe, i.e. in catalytic emission control devices, in the treatment of hazardous residues from the incineration of waste materials, and in the complex interactions of air pollutants with the biosphere. (author)

  17. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    International Nuclear Information System (INIS)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research

  18. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  19. An investigation of changes in element distribution and chemical states during differentiation of embryonic stem cells

    International Nuclear Information System (INIS)

    Sugimoto, T.; Ide-Ektessabi, A.; Ishihara, R.; Tanigaki, M.

    2004-01-01

    Metallic elements and their organic compounds have dynamic regulatory functions in cells. In this study, we implemented a new approach to investigate the mechanism of differentiation of embryonic stem cells, by measuring and analyzing the change in distribution and chemical states of intracellular trace elements. We anticipate that trace metal elements and metalloproteins play important roles in the direction of differentiation, both as active centers, and as factors in the death of neural cells in neurodegenerative disorders. The aim of this study is to analyze the distribution and chemical states of trace elements during the process of differentiation of mouse embryonic stem cells, and to understand how these factors relate to the differentiation process. Using the experimental results, some previously unexplained points are considered, namely (1) how the intracellular elements change during the process of neuronal differentiation, and (2) what the optimal conditions of such elements are for neuronal differentiation. The information obtained during this study is relevant to nervous system development and evolution

  20. An investigation of changes in element distribution and chemical states during differentiation of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, T.; Ide-Ektessabi, A. E-mail: h51167@sakura.kudpc.kyoto-u.ac.jp; Ishihara, R.; Tanigaki, M

    2004-07-01

    Metallic elements and their organic compounds have dynamic regulatory functions in cells. In this study, we implemented a new approach to investigate the mechanism of differentiation of embryonic stem cells, by measuring and analyzing the change in distribution and chemical states of intracellular trace elements. We anticipate that trace metal elements and metalloproteins play important roles in the direction of differentiation, both as active centers, and as factors in the death of neural cells in neurodegenerative disorders. The aim of this study is to analyze the distribution and chemical states of trace elements during the process of differentiation of mouse embryonic stem cells, and to understand how these factors relate to the differentiation process. Using the experimental results, some previously unexplained points are considered, namely (1) how the intracellular elements change during the process of neuronal differentiation, and (2) what the optimal conditions of such elements are for neuronal differentiation. The information obtained during this study is relevant to nervous system development and evolution.

  1. Chemical engineering aspect of solvent extraction in mineral processing

    International Nuclear Information System (INIS)

    Dara, S.S.; Jakkikar, M.S.

    1975-01-01

    Solvent extraction process, types of solvents used, types of extraction, distribution isotherm and McCabe-Thiele diagram for process design, equipment for the process, operating parameters and applications are described. (M.G.B.)

  2. Mockup testing of remote systems for zirconium fuel dissolution process at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Paige, D.M.

    1979-01-01

    A facility is being constructed at the Idaho National Engineering Laboratory for storage and dissolution of spent zirconium reactor fuels. The dissolution is carried out in chemical type equipment contained in a large shielded cell. The design provides for remote operations and maintenance as required. Equipment predicted to fail within 5 years is designed for remote maintenance. Each system was fabricated for mockup testing using readily available materials. The mockups were tested, redesigned, and retested until satisfactory remote designs were achieved. Records were made of all the work. All design changes were then incorporated into the ongoing detailed design for the actual equipment. Several of these systems are discussed and they include valve replacement, pump replacement, waste solids handling, mechanism operations and others. The mockup program has saved time and money by eliminating many future problems. In addition, the mockup program will continue through construction, cold startup, and hot operations

  3. Modeling of an improved chemical vapor infiltration process for ceramic composites fabrication

    International Nuclear Information System (INIS)

    Tai, N.H.; Chou, T.W.

    1990-01-01

    A quasi-steady-state approach is applied to model the pressure-driven, temperature-gradient chemical vapor infiltration (improved CVI process) for ceramic matrix composites fabrication. The deposited matrix in this study is SiC which is converted from the thermal decomposition of methyltrichlorosilane gas under excess hydrogen. A three-dimensional unit cell is adopted to simulate the spatial arrangements of reinforcements in discontinuous fiber mats and three-dimensionally woven fabrics. The objectives of this paper are to predict the temperature and density distributions in a fibrous preform during processing, the advancement of the solidified front, the total fabrication period, and the vapor inlet pressure variation for maintaining a constant flow rate

  4. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    Energy Technology Data Exchange (ETDEWEB)

    Biemann, Ronald, E-mail: ronald.biemann@medizin.uni-halle.de [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Navarrete Santos, Anne [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Navarrete Santos, Alexander [Department of Cardiothoracic Surgery, Martin Luther University, Faculty of Medicine, Halle (Germany); Riemann, Dagmar [Department of Immunology, Martin Luther University, Faculty of Medicine, Halle (Germany); Knelangen, Julia [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Blueher, Matthias [Department of Medicine, University of Leipzig, Leipzig (Germany); Koch, Holger [Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Ruhr-University Bochum, Bochum (Germany); Fischer, Bernd [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  5. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    International Nuclear Information System (INIS)

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blüher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-01

    Highlights: ► Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). ► The adipogenic impact depends strongly on the window of exposure. ► Bisphenol A reduces the potential of MSC to differentiate into adipocytes. ► DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. ► BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPARγ2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 μM) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 μM) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  6. Chemical analysis of cyanide in cyanidation process: review of methods

    International Nuclear Information System (INIS)

    Nova-Alonso, F.; Elorza-Rodriguez, E.; Uribe-Salas, A.; Perez-Garibay, R.

    2007-01-01

    Cyanidation, the world wide method for precious metals recovery, the chemical analysis of cyanide, is a very important, but complex operation. Cyanide can be present forming different species, each of them with different stability, toxicity, analysis method and elimination technique. For cyanide analysis, there exists a wide selection of analytical methods but most of them present difficulties because of the interference of species present in the solution. This paper presents the different available methods for chemical analysis of cyanide: titration, specific electrode and distillation, giving special emphasis on the interferences problem, with the aim of helping in the interpretation of the results. (Author)

  7. Laser studies of chemical reaction and collision processes

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, G. [Columbia Univ., New York, NY (United States)

    1993-12-01

    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  8. 75 FR 36306 - Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process

    Science.gov (United States)

    2010-06-25

    ... have large industrial uses. Regulated chemical mixtures are not items having common household uses... and others from exposure to the toxic chemicals left behind. Executive Order 12988 This regulation... 1117-AA66 Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process...

  9. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    Science.gov (United States)

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  10. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  11. Thermodynamic and chemical engineering problems arising with hybride processes

    International Nuclear Information System (INIS)

    Hunsaenger, K.

    1981-01-01

    Marginal parameters and definitions are set up for the NaK-NaKH cyclic process, the vapour-phase electrolysis on the basis of carbonates, high-temperature electrolysis using borax, the HCl/NaLiNO 3 cyclic process and the methane/methanol cyclic process. Such parameters and definitions are to create uniform conditions for the process design. (DG) [de

  12. Study of process technology for GaAlAs/GaAs heteroface solar cells

    Science.gov (United States)

    Conway, E. J.; Walker, G. H.; Byvik, C. E.; Almgren, D. W.

    1980-01-01

    Two processes were considered: the infinite melt process and the finite melt process. The only technique that is developed to the point that 10,000 cells could be produced in one year is the infinite melt liquid phase epitaxy process. The lowest cost per cell was achieved with the advanced metal organic chemical vapor deposition process. Molecular beam epitaxy was limited by the slow growth rate. The lowest cost, an 18 percent efficient cell at air mass zero, was approximately $70 per watt.

  13. Colloidal quantum dot solids for solution-processed solar cells

    KAUST Repository

    Yuan, Mingjian

    2016-02-29

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally tuneable infrared bandgap, which enables use in multi-junction cells, as well as the benefit of generating and harvesting multiple charge carrier pairs per absorbed photon. Here we review recent progress in colloidal quantum dot photovoltaics, focusing on three fronts. First, we examine strategies to manage the abundant surfaces of quantum dots, strategies that have led to progress in the removal of electronic trap states. Second, we consider new device architectures that have improved device performance to certified efficiencies of 10.6%. Third, we focus on progress in solution-phase chemical processing, such as spray-coating and centrifugal casting, which has led to the demonstration of manufacturing-ready process technologies.

  14. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  15. Treatment Tank Corrosion Studies For The Enhanced Chemical Cleaning Process

    International Nuclear Information System (INIS)

    Wiersma, B.

    2011-01-01

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  16. Role of environmental chemicals, processed food derivatives, and nutrients in the induction of carcinogenesis.

    Science.gov (United States)

    Persano, Luca; Zagoura, Dimitra; Louisse, Jochem; Pistollato, Francesca

    2015-10-15

    In recent years it has been hypothesized that cancer stem cells (CSCs) are the actual driving force of tumor formation, highlighting the need to specifically target CSCs to successfully eradicate cancer growth and recurrence. Particularly, the deregulation of physiological signaling pathways controlling stem cell proliferation, self-renewal, differentiation, and metabolism is currently considered as one of the leading determinants of cancer formation. Given their peculiar, slow-dividing phenotype and their ability to respond to multiple microenvironmental stimuli, stem cells appear to be more susceptible to genetic and epigenetic carcinogens, possibly undergoing mutations resulting in tumor formation. In particular, some animal-derived bioactive nutrients and metabolites known to affect the hormonal milieu, and also chemicals derived from food processing and cooking, have been described as possible carcinogenic factors. Here, we review most recent literature in this field, highlighting how some environmental toxicants, some specific nutrients and their secondary products can induce carcinogenesis, possibly impacting stem cells and their niches, thus causing tumor growth.

  17. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

    Directory of Open Access Journals (Sweden)

    Rezende Camila

    2011-11-01

    Full Text Available Abstract Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process, the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between

  18. Development of Chemical Process Design and Control for Sustainability

    Science.gov (United States)

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy....

  19. Mechanisms of chemical modification of neoplastic cell transformation by ionizing radiation

    International Nuclear Information System (INIS)

    Yang, T.C.; Tobias, C.A.

    1985-01-01

    During space travel, astronauts will be continuously exposed to ionizing radiation; therefore, it is necessary to minimize the radiation damage by all possible means. The authors' studies show that DMSO (when present during irradiation) can protect cells from being killed and transformed by X rays and that low concentration of DMSO can reduce the transformation frequency significantly when it is applied to cells, even many days after irradiation. The process of neoplastic cell transformation is a complicated one and includes at least two different stages: induction and expression. DMSO apparently can modify the radiation damage during both stages. There are several possible mechanisms for the DMSO effect: (1) changing the cell membrane structure and properties; (2) inducing cell differentiation by acting on DNA; and (3) scavanging free radicals in the cell. Recent studies with various chemical agents, e.g., 5-azacytidine, dexamethane, rhodamin-123, etc., indicate that the induction of cell differentiation by acting on DNA may be an important mechanism for the suppression of expression of neoplastic cell transformation by DMSO

  20. Special study for the manual transfer of process samples from CPP [Chemical Processing Plant] 601 to RAL [Remote Analytical Laboratory

    International Nuclear Information System (INIS)

    Marts, D.J.

    1987-05-01

    A study of alternate methods to manually transport radioactive samples from their glove boxes to the Remote Analytical Laboratory (RAL) was conducted at the Idaho National Engineering Laboratory. The study was performed to mitigate the effects of a potential loss of sampling capabilities that could take place if a malfunction in the Pneumatic Transfer System (PTS) occurred. Samples are required to be taken from the cell glove boxes and analyzed at the RAL regardless of the operational status of the PTS. This paper documents the conclusions of the study and how a decision was reached that determined the best handling scenarios for manually transporting 15 mL vials of liquid process samples from the K, W, U, WG, or WH cell glove boxes in the Chemical Processing Plant (CPP) 601 to the RAL. This study of methods to manually remove the samples from the glove boxes, package them for safe shipment, transport them by the safest route, receive them at the RAL, and safely unload them was conducted by EG and G Idaho, Inc., for Westinghouse Idaho Nuclear Company as part of the Glove Box Sampling and Transfer System Project for the Fuel Processing Facilities Upgrade, Task 10, Subtask 2. The study focused on the safest and most reliable scenarios that could be implemented using existing equipment. Hardware modifications and new hardware proposals were identified, and their impact on the handling scenario has been evaluated. A conclusion was reached that by utilizing the existing facility hardware, these samples can be safely transported manually from the sample stations in CPP 601 to the RAL, and that additional hardware could facilitate the transportation process even further

  1. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  2. Nonlinear processes in laser heating of chemically active media

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, F V; Kirichenko, N A; Luk' yanchuk, B S

    1984-08-01

    After it had been discovered and in due measure physically comprehended that numerous nontrivial phenomena observed during laser heating of chemically active media are caused primarily by self-stress of laser radiation due to the chemical intertial nonlinearity of the medium, an approach was found for solving problems of laser thermochemistry that is most adequate from the mathematical (and physical) standpoint: the approach of the theory of nonlinear oscillations in point systems and distributed systems. This approach has provided a uniform viewpoint for examination of a variety of phenomena of spatiotemporal self-organization of chemically active media under the effect of laser radiation, qualitative, and in some cases quantitative description of such phenomena as the onset of thermochemical instability, self-oscillations, various spatial structures and the like. Evidently it can be rightly considered that at this juncture a definite stage has been completed in the development of laser thermochemistry marked by the creation of an ideology, method and overall approach to interpretation of the most diverse phenomena under conditions of actual physical experiments. References to the numerous studies that make up the content of this stage of development of laser thermochemistry are to be found in survey papers. 48 references, 10 figures.

  3. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO x , CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed

  4. IMPROVING THE ENVIRONMENTAL PERFORMANCE OF CHEMICAL PROCESSES THROUGH THE USE OF INFORMATION TECHNOLOGY

    Science.gov (United States)

    Efforts are currently underway at the USEPA to develop information technology applications to improve the environmental performance of the chemical process industry. These efforts include the use of genetic algorithms to optimize different process options for minimal environmenta...

  5. Materials control and accountability at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Denning, G.E.; Britschgi, J.J.; Spraktes, F.W.

    1985-01-01

    The ICPP high enriched uranium recovery process has historically been operated as a single Material Balance Area (MBA), with input and output measurement capabilities. Safeguards initiated changes in the last five years have resulted in significant materials control and accountability improvements. Those changes include semi-automation of process accountability measurement, data collection and recording; definition of Sub-MBAs; standard plant cleanouts; and, bimonthly inventory estimates. Process monitoring capabilities are also being installed to provide independent operational procedural compliance verification, process anomaly detection, and enhanced materials traceability. Development of a sensitivity analysis approach to defining process measurement requirements is in progress

  6. Comprehensive Mass Analysis for Chemical Processes, a Case Study on L-Dopa Manufacture

    Science.gov (United States)

    To evaluate the “greenness” of chemical processes in route selection and process development, we propose a comprehensive mass analysis to inform the stakeholders from different fields. This is carried out by characterizing the mass intensity for each contributing chemical or wast...

  7. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... framework can manage the complexity associated with product-process problems very efficiently. Three specific computer-aided tools (ICAS, Sustain-Pro and VPPDLab) have been presented and their applications to product-process design, highlighted....

  8. Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure-induced endothermic chemical reactions

    International Nuclear Information System (INIS)

    Antillon, Edwin; Banlusan, Kiettipong; Strachan, Alejandro

    2014-01-01

    We extend a thermally accurate model for coarse grain dynamics (Strachan and Holian 2005 Phys. Rev. Lett. 94 014301) to enable the description of stress-induced chemical reactions in the degrees of freedom internal to the mesoparticles. Similar to the breathing sphere model, we introduce an additional variable that describes the internal state of the particles and whose dynamics is governed both by an internal potential energy function and by interparticle forces. The equations of motion of these new variables are derived from a Hamiltonian and the model exhibits two desired features: total energy conservation and Galilean invariance. We use a simple model material with pairwise interactions between particles and study pressure-induced chemical reactions induced by hydrostatic and uniaxial compression. These examples demonstrate the ability of the model to capture non-trivial processes including the interplay between mechanical, thermal and chemical processes of interest in many applications. (paper)

  9. Static analysis of the thermochemical hydrogen production IS process for assessment of the operation parameters and the chemical properties

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Onuki, Kaoru; Nomura, Mikihiro; Nakao, Shin-ichi

    2006-01-01

    A sensitivity analysis of the operation parameters and the chemical properties in the thermochemical hydrogen production IS process (iodine-sulfur process) was carried out for a static flow sheet. These parameters were evaluated by hydrogen production thermal efficiency, the mass flow rate or heat exchange based on the heat/mass balance. The most important parameters were the concentration of HI after electro-electrodialysis (EED) and the apparent transport number of protons of the cation exchange membrane in the EED cell. HI concentration operation should be operated carefully because the parameters for optimum thermal efficiency and for the optimum flow rate and heat exchange were different. For the chemical properties, composition at the inlet of the HI decomposition procedure and HI x pseudo-azeotropic composition had great effects. The HI concentration after the EED should be optimized for each composition. The order of priority for the assessment of the operation parameters and chemical properties was determined by the evaluation. (author)

  10. Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here,...

  11. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Science.gov (United States)

    2010-04-01

    ... the concentration of the residue in the processed food when ready to eat is not greater than the... processed food when ready to eat is higher than the tolerance prescribed for the raw agricultural commodity... authorized by the regulations in this part. Food that is itself ready to eat, and which contains a higher...

  12. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Science.gov (United States)

    2010-04-01

    ... the concentration of the residue in the processed food when ready to eat is not greater than the... processed food when ready to eat is higher than the tolerance prescribed for the raw agricultural commodity... authorized by the regulations in this part. Food that is itself ready to eat, and which contains a higher...

  13. Sustainable Chemical Process Development through an Integrated Framework

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Kumar Tula, Anjan; Anantpinijwatna, Amata

    2016-01-01

    This paper describes the development and the application of a general integrated framework based on systematic model-based methods and computer-aided tools with the objective to achieve more sustainable process designs and to improve the process understanding. The developed framework can be appli...... studies involve multiphase reaction systems for the synthesis of active pharmaceutical ingredients....

  14. Rapid Neutron Capture Process in Supernovae and Chemical ...

    Indian Academy of Sciences (India)

    A ≻ 70 and all of the actinides in the solar system are believed to have been produced in the r-process. ... mass type II supernovae being the r-process sites. In the usual picture the r- .... critically on the ambient neutron flux. λn > λβ(τn < τβ). (1).

  15. Chemical Changes in Proteins Produced by Thermal Processing.

    Science.gov (United States)

    Dutson, T. R.; Orcutt, M. W.

    1984-01-01

    Discusses effects of thermal processing on proteins, focusing on (1) the Maillard reaction; (2) heat denaturation of proteins; (3) aggregation, precipitation, gelation, and degradation; and (4) other thermally induced protein reactions. Also discusses effects of thermal processing on muscle foods, egg proteins, fruits and vegetables, and cereal…

  16. The Ames Laboratory Chemical Disposal Site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1995-01-01

    The Ames Laboratory has historically supported the US Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, mixed wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the US Army Corps of Engineers (USACE), OHM Remediation Services Corp. (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  17. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    Science.gov (United States)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  18. Development of Chemical Process Design and Control for Sustainability

    Directory of Open Access Journals (Sweden)

    Shuyun Li

    2016-07-01

    Full Text Available This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation for the optimization of process operations to minimize environmental impacts associated with products, materials and energy. The implemented control strategy combines a biologically-inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. EPA’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady states obtained through the implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose material and energy time variation models are characterized by multiple steady states and oscillatory conditions.

  19. Development of Chemical Process Design and Control for ...

    Science.gov (United States)

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy. The implemented control strategy combines a biologically inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. E.P.A.’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE) tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady-states obtained through implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose materi

  20. Biorefineries to integrate fuel, energy and chemical production processes

    Directory of Open Access Journals (Sweden)

    Enrica Bargiacchi

    2007-12-01

    Full Text Available The world of renewable energies is in fast evolution and arouses political and public interests, especially as an opportunity to boost environmental sustainability by mitigation of greenhouse gas emissions. This work aims at examining the possibilities related to the development of biorefineries, where biomass conversion processes to produce biofuels, electricity and biochemicals are integrated. Particular interest is given to the production processes of biodiesel, bioethanol and biogas, for which present world situation, problems, and perspectives are drawn. Potential areas for agronomic and biotech researches are also discussed. Producing biomass for biorefinery processing will eventually lead to maximize yields, in the non food agriculture.

  1. Kinetics of physico-chemical processes during intensive mechanical processing of ZnO-MnO{sub 2} powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kakazey, M.; Vlasova, M.; Dominguez-Patino, M. [CIICAp-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Juarez-Arellano, E.A., E-mail: eajuarez@unpa.edu.mx [Universidad del Papaloapan, Tuxtepec, Oaxaca (Mexico); Bykov, A. [Institute for Problems of Materials Science of NASU, Kyiv (Ukraine); Leon, I. [CIQ-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Siqueiros-Diaz, A. [FCQI-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico)

    2011-10-15

    Experimental results of electron paramagnetic resonance spectra, X-ray diffraction, scanning electron microscopy and infrared spectroscopy demonstrate that the kinetic of the physical and chemical processes that takes place during prolonged intensive mechanical processing (MP, 03120min) of powder mixtures of 50%wt ZnO+50%wt MnO{sub 2} can be described as a three stage process. (1) 030min, particles destruction, formation of superficial defects, fast increment of sample average temperature (from 290 to {approx}600K) and annealing of defects with the lowest energy of activation E{sub ac}. (2) 30390min, further particle destruction, slow increment of sample average temperature (from {approx}600 to {approx}700K), formation and growth of a very disordered layer of {beta}-MnO{sub 2} around ZnO particles, dehydration of MnO{sub 2}, formation of solid solution of Mn{sup 2+} ions in ZnO, formation of nano-quasiamorphous states in the ZnO-MnO{sub 2} mixture and onset of the formation of the ZnMnO{sub 3} phase. (3) 3903120min, the sample average temperature remains constant ({approx}700K), the reaction is completed and the spinel ZnMnO{sub 3} phase with a unit cell a=8.431(1) A and space group Fd3-barm is the only phase present in the sample. No ferromagnetism at room temperature was detected in this study. - Highlights: > The kinetics during mechanical processing of ZnO-MnO{sub 2} samples is a three stage process. > First stage, reduction of crystallites size and accumulation of defects. > Second stage, nano-quasiamorphous states formation and onset of the ZnMnO{sub 3} phase. > Third stage, complete reaction to the spinel ZnMnO{sub 3} phase.

  2. Kinetics of physico-chemical processes during intensive mechanical processing of ZnO-MnO2 powder mixture

    International Nuclear Information System (INIS)

    Kakazey, M.; Vlasova, M.; Dominguez-Patino, M.; Juarez-Arellano, E.A.; Bykov, A.; Leon, I.; Siqueiros-Diaz, A.

    2011-01-01

    Experimental results of electron paramagnetic resonance spectra, X-ray diffraction, scanning electron microscopy and infrared spectroscopy demonstrate that the kinetic of the physical and chemical processes that takes place during prolonged intensive mechanical processing (MP, 0 MP >3120min) of powder mixtures of 50%wt ZnO+50%wt MnO 2 can be described as a three stage process. (1) 0 MP >30min, particles destruction, formation of superficial defects, fast increment of sample average temperature (from 290 to ∼600K) and annealing of defects with the lowest energy of activation E ac . (2) 30 MP >390min, further particle destruction, slow increment of sample average temperature (from ∼600 to ∼700K), formation and growth of a very disordered layer of β-MnO 2 around ZnO particles, dehydration of MnO 2 , formation of solid solution of Mn 2+ ions in ZnO, formation of nano-quasiamorphous states in the ZnO-MnO 2 mixture and onset of the formation of the ZnMnO 3 phase. (3) 390 MP >3120min, the sample average temperature remains constant (∼700K), the reaction is completed and the spinel ZnMnO 3 phase with a unit cell a=8.431(1) A and space group Fd3-barm is the only phase present in the sample. No ferromagnetism at room temperature was detected in this study. - Highlights: → The kinetics during mechanical processing of ZnO-MnO 2 samples is a three stage process. → First stage, reduction of crystallites size and accumulation of defects. → Second stage, nano-quasiamorphous states formation and onset of the ZnMnO 3 phase. → Third stage, complete reaction to the spinel ZnMnO 3 phase.

  3. Isotope separation by chemical exchange process: Final technical report

    International Nuclear Information System (INIS)

    Schneider, A.

    1987-02-01

    The feasibility of a chemical exchange method for the separation of the isotopes of europium was demonstrated in the system EuCl 2 -EuCl 3 . The single stage separation factor, α, in this system is 1.001 or 1.0005 per mass unit. This value of α is comparable to the separation factors reported for the U 4+ - U 6 and U 3+ - Y 4+ systems. The separation of the ionic species was done by precipitation of the Eu 2+ ions or by extraction of the Eu 3+ ions with HDEHP. Conceptual schemes were developed for a countercurrent reflux cascades consisting of solvent extraction contractors. A regenerative electrocel, combining simultaneous europium reduction, europium oxidation with energy generation, and europium stripping from the organic phase is described. 32 refs., 22 figs., 6 tabs

  4. Nonlinear model predictive control for chemical looping process

    Science.gov (United States)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    2017-08-22

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.

  5. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H_2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N_2H"+, ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N_2H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N_2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N_2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH_3 and NH_3/N_2 mixtures)

  6. Novel Chemical Process for Producing Chrome Coated Metal

    Directory of Open Access Journals (Sweden)

    Christopher Pelar

    2018-01-01

    Full Text Available This work demonstrates that a version of the Reduction Expansion Synthesis (RES process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM. SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed.

  7. Novel Chemical Process for Producing Chrome Coated Metal.

    Science.gov (United States)

    Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien; Luhrs, Claudia C; Phillips, Jonathan

    2018-01-05

    This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed.

  8. Dynamics of chemical elements in the fermentation process of ethanol production

    International Nuclear Information System (INIS)

    Nepomuceno, N.; Fernandes, E.A.N.; Bacchi, M.A.

    1997-01-01

    Brazil has become the largest producer of biomass ethanol derived from sugar cane. The industrial production is based on the fermentation of sugar cane juice by yeast, inside of large volume vats, in a fed-batch process that recycles yeast cells. To study the dynamics of chemical elements in each operating cycle, five stages of the fermentation process were considered: must, yeast suspension, wine, non-yeast wine and yeast cream. For this, a mass balance of the terrigenous elements, Ce, Co, Cs, Eu, Fe, Hf, La, Na, Sc, Sm, and Th, and the sugar cane plant elements, Br, K, Rb, and Zn, were established in fermentation vats of an industrial scale unit, with sampling undertaken during different climatic conditions (dry and rainy periods). A similar distribution of the sugar cane characteristics elements was found for the stages analysed, while for the terrigenous elements a trend of accumulation in the yeast cream was observed. Preferential absorption of Br, K, Rb, and Zn by yeast cells was indicated by the smaller concentrations observed in yeast suspension than in yeast cream. (author)

  9. Three-Dimensional Optical Trapping for Cell Isolation Using Tapered Fiber Probe by Dynamic Chemical Etching

    International Nuclear Information System (INIS)

    Taguchi, K; Okada, J; Nomura, Y; Tamura, K

    2012-01-01

    In this paper, chemically etched fiber probe was proposed for laser trapping and manipulation of cells. We fabricated tapered fiber probe by dynamic chemical etching technique. Three-Dimensional optical trap of a yeast cell dispersed in water solution could be formed by the fiber tip with 17deg tip. Optical forces were sufficient to move the yeast cell for trapping and manipulation. From these experimental results, it was found that our proposed tapered fiber tip was a promising tool for cell isolation.

  10. DNA Charge Transport: From Chemical Principles to the Cell

    Science.gov (United States)

    Arnold, Anna R.; Grodick, Michael A.; Barton, Jacqueline K.

    2016-01-01

    The DNA double helix has captured the imagination of many, bringing it to the forefront of biological research. DNA has unique features that extend our interest into areas of chemistry, physics, material science and engineering. Our laboratory has focused on studies of DNA charge transport (CT), wherein charges can efficiently travel long molecular distances through the DNA helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this review, we describe this evolution of DNA CT chemistry from the discovery of fundamental chemical principles to applications in diagnostic strategies and possible roles in biology. PMID:26933744

  11. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  12. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2018-04-17

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  13. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2017-05-23

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  14. Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application

    Science.gov (United States)

    Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.

    2008-04-01

    Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.

  15. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2004-05-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  16. Novel Chemical Process for Producing Chrome Coated Metal

    OpenAIRE

    Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien; Luhrs, Claudia C.; Phillips, Jonathan

    2018-01-01

    The article of record as published may be found at http://dx.doi.org/10.3390/ma11010078 This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 ◦C for 10 min in a tube fu...

  17. Chemical Processing Department monthly report for April 1958

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.H.

    1958-05-21

    The separations plants operated on schedule, and Pu production exceeded commitment. UO{sub 3} production and shipments were also ahead of schedule. Purex operation under pseudo two-cycle conditions (elimination of HS and 1A columns, co-decontamination cycle concentrator HCP) was successful. Final U stream was 3{times} lower in Pu than ever before; {gamma} activity in recovered HNO{sub 3} was also low. Four of 6 special E metal batches were processed through Redox and analyzed. Boric acid is removed from solvent extraction process via aq waste. The filter in Task II hydrofluorinator was changed from carbon to Poroloy. Various modifications to equipment were made.

  18. Thermo-Chemical Modelling Strategies for the Pultrusion Process

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Tutum, Cem Celal

    2013-01-01

    In the present study, three dimensional (3D) numerical modeling strategies of a thermosetting pultrusion process are investigated considering both transient and steady state approaches. For the transient solution, an unconditionally stable alternating direction implicit Douglas-Gunn (ADI-DG) sche...

  19. Physico-chemical, functional and processing attributes of some ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-26

    Dec 26, 2011 ... commercial processing and marketing chain is generally inevitable and ... was measured by a digital caliper (0 to 150 mm, China) with an accuracy of .... Spectrophotometer (GBC-932 Australlia), whereas Na and .... era ls (m g. /1. 0. 0 g. ) Figure 4. Correlation between ash (%) and total minerals (mg/100 g).

  20. Development of chemical conversion process of long-lived radionuclides

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho

    2001-05-01

    The objective of this project is to develop a conversion technology of long-lived radionuclides so that it can be a suitable form as a fuel or target in the nuclear transmutation system. During the first stage of the project (Apr 1997∼Mar 2001), the fundamental studies were performed with a focus on non-radioactive experiments as well as theoretical analyses in such areas as follows : fluorination of metals or metal oxides, electrorefining and electrowinning of actinides and lanthanides, pyro hydrolysis and regeneration of used molten salt. Since the chemical form of transuranium fuel in the transmutation system was assumed to be a molten fluoride, the electrolysis experiments of molten fluoride were conducted to study on the recovery of unused transuranium from the LiF-BeF 2 salt that was chosen as a basic salt medium. Fluorination of metals or metal oxides were also tested in this work by applying the method of three-phase (gas-liquid-solid) reaction. In the electrowinning experiments, the depositions of uranium, zirconium and niobium on the cathode were tested and analyzed. The electrorefining of lanthanides was studied with the salt media of FLINAK and FLICA and their behaviors were compared. In addition, the regeneration of used salts was examined by applying the method of electrolysis of molten salt, where alkali and alkali earth metals were found to be removed into the liquid lead cathode

  1. Ozone from fireworks: Chemical processes or measurement interference?

    Science.gov (United States)

    Xu, Zheng; Nie, Wei; Chi, Xuguang; Huang, Xin; Zheng, Longfei; Xu, Zhengning; Wang, Jiaping; Xie, Yuning; Qi, Ximeng; Wang, Xinfeng; Xue, Likun; Ding, Aijun

    2018-08-15

    Fireworks have been identified as one ozone source by photolyzing NO 2 or O 2 and are believed to potentially be important for the nighttime ozone during firework events. In this study, we conducted both lab and field experiments to test two types of fireworks with low and high energy with the goal to distinguish whether the visible ozone signal during firework displays is real. The results suggest that previous understanding of the ozone formation mechanism during fireworks is misunderstood. Ultraviolet ray (UV)-based ozone monitors are interfered by aerosols and some specific VOCs. High-energy fireworks emit high concentrations of particular matters and low VOCs that the artificial ozone can be easily removed by an aerosol filter. Low-energy fireworks emit large amounts of VOCs mostly from the combustion of the cardboard from fireworks that largely interferes with the ozone monitor. Benzene and phenol might be major contributors to the artificial ozone signal. We further checked the nighttime ozone concentration in Jinan and Beijing, China, during Chinese New Year, a period with intense fireworks. A signal of 3-8ppbv ozone was detected and positively correlated to NO and SO 2 , suggesting a considerable influence of these chemicals in interfering with ambient ozone monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Security risk assessment and protection in the chemical and process industry

    OpenAIRE

    Reniers, Genserik; van Lerberghe, Paul; van Gulijk, Coen

    2014-01-01

    This article describes a security risk assessment and protection methodology that was developed for use in the chemical- and process industry in Belgium. The approach of the method follows a risk-based approach that follows desing principles for chemical safety. That approach is beneficial for workers in the chemical industry because they recognize the steps in this model from familiar safety models .The model combines the rings-of-protection approach with generic security practices including...

  3. Leaching properties and chemical compositions of calcines produced at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Staples, B.A.; Paige, B.E.; Rhodes, D.W.; Wilding, M.W.

    1980-01-01

    No significant chemical differences were determined between retrieved and fresh calcine based on chemical and spectrochemical analyses. Little can be derived from the amounts of the radioisotopes present in the retrieved calcine samples other than the ratios of strontium-90 to cesium-137 are typical of aged fission product. The variations in concentrations of radionuclides within the composite samples of each bin also reflect the differences in compositions of waste solutions calcined. In general the leaching characteristics of both calcines by distilled water are similar. In both materials the radionuclides of cesium and strontium were selectively leached at significant rates, although cesium leached much more completely from the alumina calcine than from the zirconia calcine. Cesium and strontium are probably contained in both calcines as nitrate salts and also as fluoride salts in zirconia calcine, all of which are at least slightly soluble in water. Radionuclides of cerium, ruthenium, and plutonium in both calcines were highly resistant to leaching and leached at rates similar to or less than those of the matrix elements. These elements exist as polyvalent metal ions in the waste solutions before calcination and they probably form insoluble oxides and fluorides in the calcine. The relatively slow leaching of nitrate ion from zirconia calcine and radiocesium from both calcines suggests that the calcine matrix in some manner prevents complete or immediate contact of the soluble ions with water. Whether radiostrontium forms slightly fluoride salts or forms nitrate salts which are protected in the same manner as radiocesium is unknown. Nevertheless, selective leaching of cesium and strontim is retarded in some manner by the calcine matrix

  4. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... application. The chemical product tree is potentially very large and a wide range of options exist for selecting the product to make, the raw material to use as well as the processing route to employ. It is shown that systematic computer-aided methods and tools integrated within a model-data based design...

  5. An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure.

    Science.gov (United States)

    Mingguang, Zhang; Juncheng, Jiang

    2008-10-30

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.

  6. Sustainable chemical processing and energy-carbon dioxide management: review of challenges and opportunities

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Vooradi, Ramsagar; Bertran, Maria-Ona

    2018-01-01

    This paper presents a brief review of the available energy sources for consumption, their effects in terms of CO2-emission and its management, and sustainable chemical processing where energy-consumption, CO2-emission, as well as economics and environmental impacts are considered. Not all available...... energy sources are being utilized efficiently, while, the energy source causing the largest emission of CO2 is being used in the largest amount. The CO2 management is therefore looking at "curing" the problem rather than "preventing" it. Examples highlighting the synthesis, design and analysis...... of sustainable chemical processing in the utilization of biomass-based energy-chemicals production, carbon-capture and utilization with zero or negative CO2-emission to produce value added chemicals as well as retrofit design of energy intensive chemical processes with significant reduction of energy consumption...

  7. Effects of chemical sensitizers on gamma radiation processing of ...

    African Journals Online (AJOL)

    The potential of gamma radiation processing in cross-linking natural rubber latex (NRL) for production of dipped goods has been studied. NRL produced in Ghana was irradiated to 10, 20, 30, 40 and 50 kGy, respectively, in a Gamma Chamber of dose rate 0.65 kGy/h. Irradiation of the NRL was also carried out in the ...

  8. Chemical modification of straw by alkaline treatment. [Trolmen process

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    In straw from 9 Swedish cereal cultivars of barley, oats, wheat, and rye, low molecular weight carbohydrates constituted only 0.3-1.4% of the straw with sucrose, glucose, fructose, and the sugar alcohols arabinitol and mannitol as main constituents. Hemicellulose (18-24%), cellulose (27-37%) and Klason-lignin (19-24%) were the main constituents. The ash (3-12%) and silica (0.5-3%) values showed rather high variations. After the Trolmen process, a wet closed NaOH treatment method, there was a slight enrichment of carbohydrates and ash and a decrease of Klason-lignin in the treated straw. About 1% of phenolic acids, mainly alpha ..beta.. -dihydro-p-coumatic, trans-p-coumaric, alpha ..beta.. -dihydroferulic and trans-ferulic acids, were quantified in the black liquid from the Trolmen process. These acids were probably ester-linked to the hemicellulose in the native straw and released during alkali treatment.HOAc, probably from Ac groups in xylan, and some of the silica were also released during the process. Although the amount of dissolved lignin was small, linkages between lignin and hemicellulosic polymers, perhaps also to cellulose, may be broken during the treatment. Linkages of these types may block the carbohydrates from enzymic action and reduce the digestibility. The higher digestibility of alkali-treated straw is probably due both to breaking of such linkages and to swelling of the polysaccharides rather than removal of any large amounts of undigestible components as lignin and silica.

  9. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  10. Non-Chemical Distant Cellular Interactions as a potential confounder of Cell Biology Experiments

    Directory of Open Access Journals (Sweden)

    Ashkan eFarhadi

    2014-10-01

    Full Text Available Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.

  11. Evaluating exposures to complex mixtures of chemicals during a new production process in the plastics industry

    NARCIS (Netherlands)

    Meijster, T.; Burstyn, I.; Wendel de Joode, B. van; Posthumus, M.A.; Kromhout, H.

    2004-01-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations.

  12. Evaluating Exposures to Complex Mixtures of Chemicals During a New Production Process in the Plastics Industry

    NARCIS (Netherlands)

    Meijster, T.; Burstyn, I.; Wendel de Joode, van B.; Posthumus, M.A.; Kromhout, H.

    2004-01-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations.

  13. Sustainable Chemical Processes and Products. New Design Methodology and Design Tools

    NARCIS (Netherlands)

    Korevaar, G.

    2004-01-01

    The current chemical industry is not sustainable, which leads to the fact that innovation of chemical processes and products is too often hazardous for society in general and the environment in particular. It really is a challenge to implement sustainability considerations in the design activities

  14. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  15. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  16. Chemical processing of liquid lithium fusion reactor blankets

    International Nuclear Information System (INIS)

    Weston, J.R.; Calaway, W.F.; Yonco, R.M.; Hines, J.B.; Maroni, V.A.

    1979-01-01

    A 50-gallon-capacity lithium loop constructed mostly from 304L stainless steel has been operated for over 6000 hours at temperatures in the range from 360 to 480 0 C. This facility, the Lithium Processing Test Loop (LPTL), is being used to develop processing and monitoring technology for liquid lithium fusion reactor blankets. Results of tests of a molten-salt extraction method for removing impurities from liquid lithium have yielded remarkably good distribution coefficients for several of the more common nonmetallic elements found in lithium systems. In particular, the equilibrium volumetric distribution coefficients, D/sub v/ (concentration per unit volume of impurity in salt/concentration per unit volume of impurity in lithium), for hydrogen, deuterium, nitrogen and carbon are approx. 3, approx. 4, > 10, approx. 2, respectively. Other studies conducted with a smaller loop system, the Lithium Mini-Test Loop (LMTL), have shown that zirconium getter-trapping can be effectively used to remove selected impurities from flowing lithium

  17. Process Improvements to Biomass Pretreatment of Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Teymouri, Farzaneh [Michigan Biotechnology Inst., Lansing, MI (United States)

    2015-05-30

    MBI, a 501c(3) company focusing on de-risking and scaling up bio-based technologies, has teamed with Michigan State University and the Idaho National Laboratory to develop and demonstrate process improvements to the ammonia fiber expansion (AFEX) pretreatment process. The logistical hurdles of biomass handling are well known, and the regional depot concept - in which small, distributed bioprocessing operations collect, preprocess, and densify biomass before shipping to a centralized refinery - is a promising alternative to centralized collection. AFEXTM (AFEX is a trademark of MBI) has unique features among pretreatments that would make it desirable as a pretreatment prior to densification at the depot scale. MBI has developed a novel design, using a packed bed reactor for the AFEX process that can be scaled down economically to the depot scale at a lower capital cost as compared to the traditional design (Pandia type reactor). Thus, the purpose of this project was to develop, scale-up, demonstrate, and improve this novel design The key challenges are the recovery of ammonia, consistent and complete pretreatment performance, and the overall throughput of the reactor. In this project an engineering scale packed bed AFEX system with 1-ton per day capacity was installed at MBI’s building. The system has been operational since mid-2013. During that time, MBI has demonstrated the robustness, reliability, and consistency of the process. To date, nearly 500 runs have been performed in the reactors. There have been no incidences of plugging (i.e., inability to remove ammonia from biomass after the treatment), nor has there been any instance of a major ammonia release into the atmosphere. Likewise, the sugar released via enzyme hydrolysis has remained consistent throughout these runs. Our economic model shows a 46% reduction in AFEX capital cost at the 100 ton/day scale compared to the traditional design of AFEX (Pandia type reactor). The key performance factors were

  18. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    Science.gov (United States)

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  19. Using Green Chemistry and Engineering Principles to Design, Assess, and Retrofit Chemical Processes for Sustainability

    Science.gov (United States)

    The concepts of green chemistry and engineering (GC&E) have been promoted as an effective qualitative framework for developing more sustainable chemical syntheses, processes, and material management techniques. This has been demonstrated by many theoretical and practical cases. I...

  20. Study on the chemical treatment processes of the uranium pyrochlore of Araxa

    International Nuclear Information System (INIS)

    Batista, H.F.; Fernandes, M.D.

    Several processes are presented for the chemical treatment, in laboratory scale, of the uranium pyrochlore concentrates found in Araxa (Minas Gerais, Brazil), aiming to the extraction of uranium, thorium and rare earths, besides the recovery of niobium pentoxide [pt

  1. High-energy chemical processes: Laser irradiation of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Liu, A.D.; Loffredo, D.M.

    1994-01-01

    Recent studies of the high-energy photochemical degradation of polycyclic aromatic hydrocarbons (PAHs) in solution have furthered our fundamental understanding of the way in which radiation interacts with matter. A new comprehensive mechanism that unifies many of the seemingly contradictory observations in radiation and photochemistry has been proposed on basis of evidence gathered using specialized techniques such as transient optical spectroscopy and transient dc conductivity. The PAH molecules were activated by two-photon ionization, and behavior of the transient ions were monitored as a function of photon energy. It was found that a greater percentage of ions retain sufficient energy to decompose when higher energy light was used. When these cations decompose they leave a trail of products that establish a ''high-energy'' decomposition pathway that involves proton transfer from the ion, a mechanism hitherto not considered in photoionization processes

  2. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  3. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering.

    Science.gov (United States)

    Lee, Bora; Jiao, Alex; Yu, Seungjung; You, Jae Bem; Kim, Deok-Ho; Im, Sung Gap

    2013-08-01

    Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer known to be nontoxic, water soluble and biocompatible. Here, PNVCL homopolymer was successfully synthesized for the first time by use of a one-step vapor-phase process, termed initiated chemical vapor deposition (iCVD). Fourier transform infrared spectroscopy results showed that radical polymerization took place from N-vinylcaprolactam monomers without damaging the functional caprolactam ring. A sharp lower critical solution temperature transition was observed at 31°C from the iCVD poly(N-vinylcaprolactam) (PNVCL) film. The thermoresponsive PNVCL surface exhibited a hydrophilic/hydrophobic alteration with external temperature change, which enabled the thermally modulated attachment and detachment of cells. The conformal coverage of PNVCL film on various substrates with complex topography, including fabrics and nanopatterns, was successfully demonstrated, which can further be utilized to fabricate cell sheets with aligned cell morphology. The advantage of this system is that cells cultured on such thermoresponsive surfaces could be recovered as an intact cell sheet by simply lowering the temperature, eliminating the need for conventional enzymatic treatments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Hybrid bio-photo-electro-chemical cells for solar water splitting.

    Science.gov (United States)

    Pinhassi, Roy I; Kallmann, Dan; Saper, Gadiel; Dotan, Hen; Linkov, Artyom; Kay, Asaf; Liveanu, Varda; Schuster, Gadi; Adir, Noam; Rothschild, Avner

    2016-08-23

    Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox couple from the thylakoids to a transparent electrode serving as the anode, yielding a photocurrent density of 0.5 mA cm(-2). Hydrogen evolution occurs at the cathode at a bias as low as 0.8 V. A tandem cell comprising the BPEC cell and a Si photovoltaic module achieves overall water splitting with solar to hydrogen efficiency of 0.3%. These results demonstrate the promise of combining natural photosynthetic membranes and man-made photovoltaic cells in order to convert solar power into hydrogen fuel.

  5. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines.

    Science.gov (United States)

    Díaz, Cecilia; Quesada, Silvia; Brenes, Oscar; Aguilar, Gilda; Cicció, José F

    2008-01-01

    The leaf essential oil hydrodistilled from Schinus molle grown in Costa Rica was characterised in terms of its chemical composition, antioxidant activity, ability to induce cytotoxicity and the mechanism of cell death involved in the process. As a result, 42 constituents, accounting for 97.2% of the total oil, were identified. The major constituents of the oil were beta-pinene and alpha-pinene. The antioxidant activity showed an IC(50) of 36.3 microg mL(-1). The essential oil was cytotoxic in several cell lines, showing that it is more effective on breast carcinoma and leukemic cell lines. The LD(50) for cytotoxicity at 48 h in K562 corresponded to 78.7 microg mL(-1), which was very similar to the LD(50) obtained when apoptosis was measured. The essential oil did not induce significant necrosis up to 200 microg mL(-1), which together with the former results indicate that apoptosis is the main mechanism of toxicity induced by S. molle essential oil in this cell line. In conclusion, the essential oil tested was weak antioxidant and induced cytotoxicity in different cell types by a mechanism related to apoptosis. It would be interesting to elucidate the role that different components of the oil play in the effect observed here, since some of them could have potential anti-tumoural effects, either alone or in combination.

  6. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  7. Spin-locking vs. chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2010-01-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of non-equivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolites with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: i) On-resonance SL is most sensitive to chemical exchanges in the intermediate exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. ii) Offset frequency-dependent SL and CEST spectra are very similar, and can be explained well with an SL model recently developed by Trott and Palmer. iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. iv) The asymmetry of the magnetization transfer ratio (MTRasym) is highly dependent on the choice of saturation pulse power. In the intermediate exchange regime, MTRasym becomes complicated and should be interpreted with care. PMID:21500270

  8. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care. Copyright © 2010 Wiley-Liss, Inc.

  9. Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Antonio A. Romero

    2012-07-01

    Full Text Available Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic materials.

  10. Effect of channel aspect ratio on chemical recuperation process in advanced aeroengines

    International Nuclear Information System (INIS)

    Zhang, Silong; Cui, Naigang; Xiong, Yuefei; Feng, Yu; Qin, Jiang; Bao, Wen

    2017-01-01

    The working process of an advanced aeroengine such as scramjet with endothermic hydrocarbon fuel cooling is a chemical recuperative cycle. The design of cooling channel in terms of engine real working conditions is very important for the chemical recuperation process. To study the effects of channel aspect ratio (AR) on chemical recuperation process of advanced aeroengines, three dimensional model of pyrolysis coolant flow inside asymmetrical rectangular cooling channels with fins is introduced and validated through experiments. Cases when AR varies from 1 to 8 are carried out. In the pyrolysis zone of the cooling channel, decreasing the channel aspect ratio can reduce the temperature difference and non-uniformity of fuel conversion in the channel cross section, and it can also increase the final conversion and corresponding chemical heat absorption. A small channel aspect ratio is beneficial for the chemical recuperation process and can guarantee the engine cooling performance in the pyrolysis zone of the cooling channel. - Highlights: • Large non-uniformity of conversion is bad for the chemical recuperation. • Small channel aspect ratio is beneficial for improving the chemical recuperation effectiveness. • Small channel aspect ratio is also beneficial for reducing the engine wall temperature.

  11. Simulation codes of chemical separation process of spent fuel reprocessing. Tool for process development and safety research

    International Nuclear Information System (INIS)

    Asakura, Toshihide; Sato, Makoto; Matsumura, Masakazu; Morita, Yasuji

    2005-01-01

    This paper reviews the succeeding development and utilization of Extraction System Simulation Code for Advanced Reprocessing (ESSCAR). From the viewpoint of development, more tests with spent fuel and calculations should be performed with better understanding of the physico-chemical phenomena in a separation process. From the viewpoint of process safety research on fuel cycle facilities, it is important to know the process behavior of a key substance; being highly reactive but existing only trace amount. (author)

  12. In-can melting demonstration of wastes from the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Bjorklund, W.J.; Chick, L.A.; Hollis, H.H.; Mellinger, G.B.; Nelson, T.A.; Petkus, L.L.

    1980-07-01

    The immobilization of Idaho Chemical Processing Plant (ICPP) zirconia calcine using Idaho glass composition (ICPP-127) was evaluated at Pacific Northwest Laboratory (PNL) in two engineering-scale in-can melter tests. The glass was initially characterized in the laboratory to verify processing parameters. Glass was then produced in a pilot-scale melter and then in a full-scale melter to evaluate the processing and the resultant product. Potential corrosion problems were identified with the glass and some processing problems were encountered, but neither is insurmountable. The product is a durable leach-resistant glass. The glass appears to be nonhomogeneous, but chemically it is quite uniform

  13. Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration.

    Science.gov (United States)

    Ma, Xiaojie; Zhu, Saiyong

    2017-04-01

    Generation of unlimited functional pancreatic β cells is critical for the study of pancreatic biology and treatment of diabetes mellitus. Recent advances have suggested several promising directions, including directed differentiation of pancreatic β cells from pluripotent stem cells, reprogramming of pancreatic β cells from other types of somatic cells, and stimulated proliferation and enhanced functions of existing pancreatic β cells. Small molecules are useful in generating unlimited numbers of functional pancreatic cells in vitro and could be further developed as drugs to stimulate endogenous pancreatic regeneration. Here, we provide an updated summary of recent major achievements in pancreatic β cell differentiation, reprogramming, proliferation, and function. These studies will eventually lead to significant advances in the field of pancreatic biology and regeneration. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Advanced-safeguards systems development for chemical-processing plants. Final report for FY 1980

    International Nuclear Information System (INIS)

    Cartan, F.O.

    1981-04-01

    The program is installing a computer system to test and evaluate process monitoring as a new Safeguards function to supplement the usual physical security and accountability functions. Safeguards development sensors and instruments installed in the Idaho Chemical Processing Plant (ICPP) provide information via a data acquisition system to a Safeguards analysis computer. The monitoring function can significantly enhance current material control (accountability) and containment surveillance capabilities for domestic and international Safeguards uses. Installation of sensors and instruments in the ICPP was more than 75% complete in FY-1980. Installation work was halted at the request of ICPP operations near the end of the year to eliminate possible conflict with instrument calibrations prior to plant startup. Some improvements to the computer hardware were made during FY-1980. Sensor and instrument development during FY-1980 emphasized device testing for ICPP monitoring applications. Pressure transducers, pressure switches, a bubble flowmeter, and load cells were tested; an ultrasonic liquid-in-line sensor was developed and tested. Work on the portable, isotope-ratio mass spectrometer led to the comparison of the HP quadrupole instrument with a small magnetic instrument and to the selection of the quadrupole

  15. Material compatibility and corrosion control of the KWU chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1994-01-01

    The concentrations of salt impurities within the deposits on the tube sheet and in the tube to tube-support-plate crevices can induce a variety of corrosion mechanisms on steam generator tubes. One of the most effective ways of counteracting corrosion mechanisms and thus of improving steam generator performance is to clean the steam generators and keep them in a clean condition. As shown by field results chemical cleaning is a way of removing hazardous deposits from steam generators. All available chemical cleaning processes use inhibitors to control the corrosion except the KWU chemical cleaning process. In this article the corrosion control technique of KWU Chemical Cleaning Process without using conventional inhibitors will be explained and the state of the field experience with respect to material compatibility will be presented. (author). 4 figs., 1 tab., 8 refs

  16. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  17. Steam generators secondary side chemical cleaning at Point Lepreau using the Siemen's high temperature process

    International Nuclear Information System (INIS)

    Verma, K.; MacNeil, C.; Odar, S.

    1996-01-01

    The secondary sides of all four steam generators at the Point Lepreau Nuclear Generating Stations were cleaned during the 1995 annual outage run-down using the Siemens high temperature chemical cleaning process. Traditionally all secondary side chemical cleaning exercises in CANDU as well as the other nuclear power stations in North America have been conducted using a process developed in conjunction with the Electric Power Research Institute (EPRI). The Siemens high temperature process was applied for the first time in North America at the Point Lepreau Nuclear Generating Station (PLGS). The paper discusses experiences related to the pre and post award chemical cleaning activities, chemical cleaning application, post cleaning inspection results and waste handling activities. (author)

  18. Nano-hydroxyapatite colloid suspension coated on chemically modified porous silicon by cathodic bias: a suitable surface for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Alejandra [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Gonzalez, Jerson [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Garcia-Pineres, Alfonso [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Investigacion en Biologia Celular y Molecular (CIBCM), Universidad de Costa Rica, 2060 (Costa Rica); Montero, Mavis L. [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Centro de Ciencia e Ingenieria en Materiales (CICIMA), Universidad de Costa Rica, 2060 (Costa Rica)

    2011-06-15

    The properties of porous silicon make it an interesting material for biological applications. However, porous silicon is not an appropriate surface for cell growth. Surface modification is an alternative that could afford a bioactive material. In this work, we report a method to yield materials by modification of the porous silicon surface with hydroxyapatite of nanometric dimensions, produced using an electrochemical process and coated on macroporous silicon substrates by cathodic bias. The chemical nature of the calcium phosphate deposited on the substrates after the experimental process and the amount of cell growth on these surfaces were characterized. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Method of manipulating the chemical properties of water to improve the effectiveness of a desired chemical process

    Science.gov (United States)

    Hawthorne, Steven B.; Miller, David J.; Yang, Yu; Lagadec, Arnaud Jean-Marie

    1999-01-01

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired chemical process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from nonaqueous liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, and removing organics from water using activated carbon or other suitable sorbents.

  20. Chemical and Biological Defense: DOD Needs Consistent Policies and Clear Processes to Address the Survivability of Weapon Systems Against Chemical and Biological Threats

    National Research Council Canada - National Science Library

    2006-01-01

    DOD, joint, and military service weapon system acquisition policies inconsistently address and do not establish a clear process for considering and testing system chemical and biological survivability...

  1. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  2. Deposition of yttria stabilized zirconia layer for solid oxide fuel cell by chemical vapor infiltration

    International Nuclear Information System (INIS)

    John, John T.; Dubey, Vivekanand; Kain, Vivekanand; Dey, Gautham Kumar; Prakash, Deep

    2011-01-01

    Free energy associated with a chemical reaction can be converted into electricity, if we can split the reaction into an anodic reaction and a cathodic reaction and carry out the reactions in an electrochemical cell using electrodes that will catalyze the reactions. We also have to use a suitable electrolyte, that serves to isolate the chemical species in the two compartments from getting mixed directly but allow an ion produced in one of the reactions to proceed to the other side and complete the reaction. For this reason cracks and porosity are not tolerated in the electrolyte. First generation solid oxide fuel cell (SOFC) uses yttria stabilized zirconia (YSZ) as the electrolyte. In spite of the fact that several solid electrolytes with higher conductivities at lower temperature are being investigated and developed, 8 mol% yttria stabilized zirconia (8YSZ) is considered to be the most favored electrolyte for the SOFC today. The electrolyte should be present as a thin, impervious layer of uniform thickness with good adherence, chemical and mechanical stability, in between the porous cathode and anode. Efforts to produce the 8YSZ coatings on porous lanthanum strontium manganite tubes by electrochemical vapor deposition (ECVD) have met with unexpected difficulties such as impurity pick up and chemical and mechanical instability of the LSM tubes in the ECVD environment. It was also difficult to keep the chemical composition of the YSZ coating at exactly 8 mol% Yttria in zirconia and to control the coating thickness in tight control. These problems were overcome by a two step deposition process where a YSZ layer of required thickness was produced by electrophoretic coating from an acetyl acetone bath at a voltage of 30-300V DC and sintered at 1300 deg C. The resulting porous YSZ layer was made impervious by chemical vapor infiltration (CVI) by the reaction between a mixture of vapors of YCl 3 and ZrCl 4 and steam at 1300 deg C as in the case of ECVD for a short

  3. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  4. Characterization of microcrystalline I-layer for solar cells prepared in low temperature - plastic compatible process

    KAUST Repository

    Sliz, Rafal; Ahnood, Arman; Nathan, Arokia; Myllyla, Risto; Jabbour, Ghassan E.

    2012-01-01

    Microcrystalline silicon (mc-Si) lms deposited using a Plasma Enhanced Chemical Vapour Deposition (PECVD) process constitute an important material for manufacturing low-cost, large-area thin-lm devices, such as solar cells or thin-lm transistors

  5. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis.

    Science.gov (United States)

    Seo, Moo-Jung; Yoo, Jae-Chern

    2018-02-26

    Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD) platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS)-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  6. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis

    Directory of Open Access Journals (Sweden)

    Moo-Jung Seo

    2018-02-01

    Full Text Available Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  7. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application.

    Science.gov (United States)

    Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long

    2018-02-28

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.

  8. Thermocouple-based Temperature Sensing System for Chemical Cell Inside Micro UAV Device

    Science.gov (United States)

    Han, Yanhui; Feng, Yue; Lou, Haozhe; Zhang, Xinzhao

    2018-03-01

    Environmental temperature of UAV system is crucial for chemical cell component inside. Once the temperature of this chemical cell is over 259 °C and keeps more than 20 min, the high thermal accumulation would result in an explosion, which seriously damage the whole UAV system. Therefore, we develop a micro temperature sensing system for monitoring the temperature of chemical cell thermally influenced by UAV device deployed in a 300 °C temperature environment, which is quite useful for insensitive munitions and UAV safety enhancement technologies.

  9. A systematic synthesis and design methodology to achieve process intensification in (bio) chemical processes

    DEFF Research Database (Denmark)

    Lutze, Philip; Roman Martinez, Alicia; Woodley, John

    2012-01-01

    Process intensification (PI) has the potential to improve existing processes or create new process options, which are needed in order to produce products using more sustainable methods. In principle, an enormous number of process options can be generated but where and how the process should be in...

  10. Chemical purification of Gunungpati elephant foot yam flour to improve physical and chemical quality on processed food

    Science.gov (United States)

    Paramita, Octavianti; Wahyuningsih, Ansori, Muhammad

    2017-03-01

    This study was aimed at improving the physicochemical quality of elephant foot yam flour in Gunungpati, Semarang by chemical purification. The utilization of elephant foot yam flour in several processed food was also discussed in this study. The flour purification discussed in this study was expected to become a reference for the manufacturers of elephant foot yam flour and its processed food in Gunungpati. This study modified the elephant foot yam flour using pre - gelatinization method. The physical and chemical quality of each elephant foot yam flour purification sample were assessed using proximate analysis. The likability test was conducted for its processed food. 20 grams of elephant foot yam flour was put into a beaker glass, then 60 ml of water was added. The suspension was then heated at a temperature of 60 ° C and 70 ° C while stirred until it was homogeneous and thickened for 10, 30 and 60 minutes. The flour which had been heated was then cooled at room temperature for 1 hour and then at a temperature of 0 ° C until it was frozen. Furthermore, flour was dried in an oven at a temperature of 60 ° C for 9 hours. The dried flour was sifted with a 80 mesh sieve. Chemical test was conducted after elephant foot yam was pre-gelatinized to determine changes in the quality flour: test levels of protein, fat, crude fiber content, moisture content, ash content and starch content. In addition, color tests and granular test on elephant foot yam flour were also conducted. The pre-gelatinization as chemical treatment on elephant foot yam flour in this study was able to change the functional properties of elephant foot yam flour towards a better processing characterized by a brighter color (L = 70, a = 6 and b = 12), the hydrolysis of polysaccharides flour into shorter chain (flour content decreased to 44%), the expansion of granules in elephant foot yam resulting in a process - ready flour, and better monolayer water content of 9%. The content of protein and fiber

  11. Micromanufacturing Of Hard To Machine Materials By Physical And Chemical Ablation Processes

    International Nuclear Information System (INIS)

    Schubert, A.; Edelmann, J.; Gross, S.; Meichsner, G.; Wolf, N.; Schneider, J.; Zeidler, H.; Hackert, M.

    2011-01-01

    Miniaturization leads to high requirements to the applied manufacturing processes especially in respect to the used hard to machine materials and the aims of structure size and geometrical accuracy. Traditional manufacturing processes reach their limits here. One alternative for these provide thermal and chemical ablation processes. These processes are applied for the production of different microstructures in different materials like hardened steel, carbides and ceramics especially for medical engineering and tribological applications.

  12. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Science.gov (United States)

    2010-07-01

    ... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of this... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL...

  13. Renovation of CPF (Chemical Processing Facility) for Development of Advanced Fast Reactor Fuel Cycle System

    International Nuclear Information System (INIS)

    Shinichi Aose; Takafumi Kitajima; Kouji Ogasawara; Kazunori Nomura; Shigehiko Miyachi; Yoshiaki Ichige; Tadahiro Shinozaki; Shinichi Ohuchi

    2008-01-01

    CPF (Chemical Processing Facility) was constructed at Nuclear Fuel Cycle Engineering Laboratories of JAEA (Japan Atomic Energy Agency) in 1980 as a basic research field where spent fuel pins from fast reactor (FR) and high level liquid waste can be dealt with. The renovation consists of remodeling of the CA-3 cell and the laboratory A, installation of globe boxes, hoods and analytical equipments to the laboratory C and the analytical laboratory. Also maintenance equipments in the CA-5 cell which had been out of order were repaired. The CA-3 cell is the main cell in which important equipments such as a dissolver, a clarifier and extractors are installed for carrying out the hot test using the irradiated FR fuel. Since the CPF had specialized originally in the research function for the Purex process, it was desired to execute the research and development of such new, various reprocessing processes. Formerly, equipments were arranged in wide space and connected with not only each other but also with utility supply system mainly by fixed stainless steel pipes. It caused shortage of operation space in flexibility for basic experimental study. Old equipments in the CA-3 cell including vessels and pipes were removed after successful decontamination, and new equipments were installed conformably to the new design. For the purpose of easy installation and rearranging the experimental equipments, equipments are basically connected by flexible pipes. Since dissolver is able to be easily replaced, various dissolution experiments is conducted. Insoluble residue generated by dissolution of spent fuel is clarified by centrifugal. This small apparatus is effective to space-saving. Mini mixer settlers or centrifugal contactors are put on to the prescribed limited space in front of the backside wall. Fresh reagents such as solvent, scrubbing and stripping solution are continuously fed from the laboratory A to the extractor by the reagent supply system with semi-automatic observation

  14. A comparison of two different processing chemicals for mammography: Repercussion on dose to patients

    International Nuclear Information System (INIS)

    Sendra-Portero, F.; Ristori-Bogajo, E.; Buch-Tome, P.; Martinez-Morillo, M.; Nava-Baro, E.

    2001-01-01

    The main technical objective of screen-film mammography is to reach the best image quality with the lowest dose to the breast. Sensitometric gradient and speed are factors related to both subjects respectively. For a given choice of film, these factors are affected by processing variables. For this reason, manufacturers have developed different types of films that are recommended for particular processing conditions. The purpose of this work is to compare the variations of both sensitometric characteristics of mammographic screen and film systems induced by two different manufactured chemicals: RPX-Omat EX/LO (Kodak) and G139/G334 (Agfa). A comparison of thirteen mammographic films by means of light sensitometry was performed at different processing conditions: 90s/Kodak, 120s/Kodak, 180s/Kodak, 90s/Agfa, 120s/Agfa and 180s/Agfa. Secondly, 99 combinations of screens and films were evaluated by X-ray sensitometry at 120s/Kodak and 120s/Agfa processing. At light sensitometry, variations in processing time led to different modifications in film speed, depending on the chemicals used. At X-Ray sensitometry, Agfa chemicals induced higher values of sensitivity for almost all combinations, while Kodak chemicals gave higher gradient/speed quotient. The results show that dose to patients in mammography and image contrast are highly dependent on the chemicals selected at medium cycle (120s) processing. (author)

  15. Chemical Processing effects on the radiation doses measured by Film Dosimeter System

    International Nuclear Information System (INIS)

    Mihai, F.

    2009-01-01

    Halide film dosimetry is a quantitative method of measurement of the radiation doses. The fog density and chemical processing of the dosimeter film affect the radiation dose measurement accuracy. This work presents the effect of the developer solution concentration on the response of the dosimetric film which different fog densities. Thus, three batches of film, dosimeters with following fog density 0.312 ± 1.31 %, 0.71 ± 0.59% and 0.77 ± 0.81 %, were irradiated to 137 Cs standard source to dose value of 1mSv. The halide films have been chemical processed at different concentrations of the developer solution: 20 %; 14.29 %; 11.11%; all other physics-chemical conditions in baths of development have been kept constants. Concentration of 20% is considered to be chemical processed standard conditions of the films. In case of the films exposed to 1 mSv dose, optical density recorded on the low fog films processed at 20% developer solution is rather closed of high fog film optical densities processed at 11.11% developer solution concentration. Also, the chemical processing effect on the image contrast was taken into consideration

  16. Process development for high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.; Basore, P.A.; Buck, M.E.; Ruby, D.S.; Schubert, W.K.; Silva, B.L.; Tingley, J.W.

    1991-12-31

    Fabrication of high-efficiency silicon solar cells in an industrial environment requires a different optimization than in a laboratory environment. Strategies are presented for process development of high-efficiency silicon solar cells, with a goal of simplifying technology transfer into an industrial setting. The strategies emphasize the use of statistical experimental design for process optimization, and the use of baseline processes and cells for process monitoring and quality control. 8 refs.

  17. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping

    2013-06-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions representative of seawater and river water). A bipolar membrane (BPM) was placed next to the anode to prevent Cl- contamination and acidification of the anolyte, and to produce protons for HCl recovery. A 5-cell paired reverse-electrodialysis (RED) stack provided the electrical energy required to overcome the BPM over-potential (0.3-0.6 V), making the overall process spontaneous. The MRCC reactor produced electricity (908 mW/m2) as well as concentrated acidic and alkaline solutions, and therefore did not require an external power supply. After a fed-batch cycle, the pHs of the chemical product solutions were 1.65 ± 0.04 and 11.98 ± 0.10, due to the production of 1.35 ± 0.13 mmol of acid, and 0.59 ± 0.14 mmol of alkali. The acid- and alkali-production efficiencies based on generated current were 58 ± 3% and 25 ± 3%. These results demonstrated proof-of-concept acid and alkali production using only renewable energy sources. © 2013 Elsevier B.V.

  18. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  19. FORMULATION OF MATHEMATICAL PROBLEM DESCRIBING PHYSICAL AND CHEMICAL PROCESSES AT CONCRETE CORROSION

    Directory of Open Access Journals (Sweden)

    Sergey V. Fedosov

    2017-06-01

    Full Text Available The article deals with the relevance of new scientific research focused on modeling of physical and chemical processes occurring in the cement concrete at their exploitation. The basic types of concrete corrosion are described. The problem of mass transfer processes in a flat reinforced concrete wall at concrete corrosion of the first and the second types has been mathematically formulated.

  20. Process for carrying out a chemical reaction with ionic liquid and carbon dioxide under pressure

    NARCIS (Netherlands)

    Kroon, M.C.; Shariati, A.; Florusse, L.J.; Peters, C.J.; Van Spronsen, J.; Witkamp, G.J.; Sheldon, R.A.; Gutkowski, K.I.

    2006-01-01

    The invention is directed to a process for carrying out a chemical reaction in an ionic liquid as solvent and CO2 as cosolvent, in which process reactants are reacted in a homogeneous phase at selected pressure and temperature to generate a reaction product at least containing an end-product of the

  1. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal

    Science.gov (United States)

    Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K.

    The intercalation of Li ions in natural graphite that was purified by chemical and thermal processes was investigated. A new chemical process was developed that involved a mixed aqueous solution containing 30% H 2SO 4 and 30% NH xF y heated to 90 °C. The results of this process are compared to those obtained by heating the natural graphite from 1500 to 2400 °C in an inert environment (thermal process). The first-cycle coulombic efficiency of the purified natural graphite obtained by the chemical process is 91 and 84% after the thermal process at 2400 °C. Grinding the natural graphite before or after purification had no significant effect on electrochemical performance at low currents. However, grinding to a very small particle size before purification permitted optimization of the size distribution of the particles, which gives rise to a more homogenous electrode. The impurities in the graphite play a role as microabrasion agents during grinding which enhances its hardness and improves its mechanical properties. Grinding also modifies the particle morphology from a 2- to a 3-D structure (similar in shape to a potato). This potato-shaped natural graphite shows high reversible capacity at high current densities (about 90% at 1 C rate). Our analysis suggests that thermal processing is considerably more expensive than the chemical process to obtain purified natural graphite.

  2. Surface preparation process of a uranium titanium alloy, in particular for chemical nickel plating

    International Nuclear Information System (INIS)

    Henri, A.; Lefevre, D.; Massicot, P.

    1987-01-01

    In this process the uranium alloy surface is attacked with a solution of lithium chloride and hydrochloric acid. Dissolved uranium can be recovered from the solution by an ion exchange resin. Treated alloy can be nickel plated by a chemical process [fr

  3. Model Reduction in Chemical Engineering : Case studies applied to process analysis, design and operation

    NARCIS (Netherlands)

    Dorneanu, B.

    2011-01-01

    During the last decades, models have become widely used for supporting a broad range of chemical engineering activities, such as product and process design and development, process monitoring and control, real time optimization of plant operation or supply chain management. Although tremendous

  4. Application showcases for a small scale membrane contactor for fine chemical processes

    NARCIS (Netherlands)

    Roelands, C.P.M.; Ngene, I.S.

    2011-01-01

    The transition from batch to continuous processing in fine-chemicals industries offers many advantages; among these are a high volumetric productivity, improved control over reaction conditions resulting in a higher yield and selectivity, a small footprint and a safer process due to a smaller

  5. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts for subse...

  6. Magnetic manipulation device for the optimization of cell processing conditions.

    Science.gov (United States)

    Ito, Hiroshi; Kato, Ryuji; Ino, Kosuke; Honda, Hiroyuki

    2010-02-01

    Variability in human cell phenotypes make it's advancements in optimized cell processing necessary for personalized cell therapy. Here we propose a strategy of palm-top sized device to assist physically manipulating cells for optimizing cell preparations. For the design of such a device, we combined two conventional approaches: multi-well plate formatting and magnetic cell handling using magnetite cationic liposomes (MCLs). From our previous works, we showed the labeling applications of MCL on adhesive cells for various tissue engineering approaches. To feasibly transfer cells in multi-well plate, we here evaluated the magnetic response of MCL-labeled suspension type cells. The cell handling performance of Jurkat cells proved to be faster and more robust compared to MACS (Magnetic Cell Sorting) bead methods. To further confirm our strategy, prototype palm-top sized device "magnetic manipulation device (MMD)" was designed. In the device, the actual cell transportation efficacy of Jurkat cells was satisfying. Moreover, as a model of the most distributed clinical cell processing, primary peripheral blood mononuclear cells (PBMCs) from different volunteers were evaluated. By MMD, individual PBMCs indicated to have optimum Interleukin-2 (IL-2) concentrations for the expansion. Such huge differences of individual cells indicated that MMD, our proposing efficient and self-contained support tool, could assist the feasible and cost-effective optimization of cell processing in clinical facilities. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay.

    Directory of Open Access Journals (Sweden)

    Kelly J Chandler

    Full Text Available The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES cells provide an in vitro model of embryonic development and an alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use pesticides, from the ToxCast™ chemical library using a mouse ES cell platform. ES cells were cultured in the absence of pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (α,β myosin heavy chain; MYH6/MYH7 and cytotoxicity (DRAQ5™/Sapphire700™ were measured by In-Cell Western™ analysis. Half-maximal activity concentration (AC₅₀ values for differentiation and cytotoxicity endpoints were determined, with 18% of the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays (∼500 revealed significant associations for a subset of chemicals (26 that perturbed transcription-based activities and impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2, PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A were strongly associated with decreased ES cell differentiation as well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation.

  8. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application

    Science.gov (United States)

    2018-01-01

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972

  9. DESIGN, SYNTHESIS, AND APPLICATION OF THE TRIMETHOPRIM-BASED CHEMICAL TAG FOR LIVE CELL IMAGING

    Science.gov (United States)

    Jing, Chaoran; Cornish, Virginia W.

    2013-01-01

    Over the past decade chemical tags have been developed to complement the use of fluorescent proteins in live cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon-output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E.coli dihydrofolatereductase and the antibiotic trimethoprim and subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live cell imaging. Alternative protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. PMID:23839994

  10. Reverse engineering life: physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes.

    Science.gov (United States)

    Skuse, Gary R; Lamkin-Kennard, Kathleen A

    2013-01-01

    Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate differentiation. However, there has also been a realization that stem cell differentiation is not regulated only by chemical signals but also by the physical milieu in which a particular stem cell exists. In this regard we are challenged to mimic both chemical and physical environments. Herein we describe a method to induce stem cell differentiation into cardiomyocytes using a combination of chemical and physical cues. This method can be applied to produce differentiated cells for research and potentially for cell-based therapy of cardiomyopathies.

  11. Assessment of impacts at the advanced test reactor as a result of chemical releases at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Rood, A.S.

    1991-02-01

    This report provides an assessment of potential impacts at the Advanced Test Reactor Facility (ATR) resulting from accidental chemical spill at the Idaho Chemical Processing Plant (ICPP). Spills postulated to occur at the Lincoln Blvd turnoff to ICPP were also evaluated. Peak and time weighted average concentrations were calculated for receptors at the ATR facility and the Test Reactor Area guard station at a height above ground level of 1.0 m. Calculated concentrations were then compared to the 15 minute averaged Threshold Limit Value - Short Term Exposure Limit (TLV-STEL) and the 30 minute averaged Immediately Dangerous to Life and Health (IDLH) limit. Several different methodologies were used to estimate source strength and dispersion. Fifteen minute time weighted averaged concentrations of hydrofluoric acid and anhydrous ammonia exceeded TLV-STEL values for the cases considered. The IDLH value for these chemicals was not exceeded. Calculated concentrations of ammonium hydroxide, hexone, nitric acid, propane, gasoline, chlorine and liquid nitrogen were all below the TLV-STEL value

  12. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  13. A systematic synthesis and design methodology to achieve process intensification in (bio) chemical processes

    DEFF Research Database (Denmark)

    Lutze, Philip; Román-Martinez, Alicia; Woodley, John

    2010-01-01

    Process intensification (PI) has the potential to improve existing processes or create new process options which are needed in order to produce products using more sustainable methods. PI creates an enormous number of process options. In order to manage the complexity of options in which a feasib...

  14. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    International Nuclear Information System (INIS)

    Kado, T.; Hidaka, T.; Aita, H.; Endo, K.; Furuichi, Y.

    2012-01-01

    Highlights: ► Cell-adhesive molecules were covalently immobilized on a Ti surface. ► Immobilized cell-adhesive molecules maintained native function on the Ti surface. ► Immobilized collagen enhanced adhesion of periodontal ligament cells to the Ti. - Abstract: A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface

  15. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    Science.gov (United States)

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Artisanal Sonoran cheese (Cocido cheese): an exploration of its production process, chemical composition and microbiological quality.

    Science.gov (United States)

    Cuevas-González, Paúl F; Heredia-Castro, Priscilia Y; Méndez-Romero, José I; Hernández-Mendoza, Adrián; Reyes-Díaz, Ricardo; Vallejo-Cordoba, Belinda; González-Córdova, Aarón F

    2017-10-01

    The objective of this study was to explore and document the production process of artisanal Cocido cheese and to determine its chemical composition and microbiological quality, considering samples from six dairies and four retailers. Cocido cheese is a semi-hard (506-555 g kg -1 of moisture), medium fat (178.3-219.1 g kg -1 ), pasta filata-type cheese made from raw whole cow's milk. The production process is not standardized and therefore the chemical and microbiological components of the sampled cheeses varied. Indicator microorganisms significantly decreased (P pasteurize milk. Nevertheless, since Cocido cheese is a non-ripened, high-moisture product, it is a highly perishable product that could present a health risk if not properly handled. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  18. Cell cycle controls: potential targets for chemical carcinogens?

    OpenAIRE

    Afshari, C A; Barrett, J C

    1993-01-01

    The progression of the cell cycle is controlled by the action of both positive and negative growth regulators. The key players in this activity include a family of cyclins and cyclin-dependent kinases, which are themselves regulated by other kinases and phosphatases. Maintenance of balanced cell cycle controls may be directly linked to genomic stability. Loss of the check-points involved in cell cycle control may result in unrepaired DNA damage during DNA synthesis or mitosis leading to genet...

  19. Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering.

    Science.gov (United States)

    Bi, Xiaobao; Yin, Juan; Chen Guanbang, Ashley; Liu, Chuan-Fa

    2018-06-07

    The cell surface serves important functions such as the regulation of cell-cell and cell-environment interactions. The understanding and manipulation of the cell surface is important for a wide range of fundamental studies of cellular behavior and for biotechnological and medical applications. With the rapid advance of biology, chemistry and materials science, many strategies have been developed for the functionalization of bacterial and mammalian cell surfaces. Here, we review the recent development of chemical and enzymatic approaches to cell surface engineering with particular emphasis on discussing the advantages and limitations of each of these strategies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Preliminary viability studies of fibroblastic cells cultured on microcrystalline and nanocrystalline diamonds produced by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    Ana Amélia Rodrigues

    2013-02-01

    Full Text Available Implant materials used in orthopedics surgery have demonstrated some disadvantages, such as metallic corrosion processes, generation of wear particles, inflammation reactions and bone reabsorption in the implant region. The diamond produced through hot-filament chemical vapour deposition method is a new potential biomedical material due to its chemical inertness, extreme hardness and low coefficient of friction. In the present study we analysis two samples: the microcrystalline diamond and the nanocrystalline diamond. The aim of this study was to evaluate the surface properties of the diamond samples by scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Cell viability and morphology were assessed using thiazolyl blue tetrazolium bromide, cytochemical assay and scanning electron microscopy, respectively. The results revealed that the two samples did not interfere in the cell viability, however the proliferation of fibroblasts cells observed was comparatively higher with the nanocrystalline diamond.

  1. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Directory of Open Access Journals (Sweden)

    Jhonny E. Alba-Mejía

    2016-06-01

    Full Text Available This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1 without additives, used as a control; 2 with bacterial inoculants; and 3 with chemical preservatives. The results indicated that the year factor (2012-2013 influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA and acetic acid (AA in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2% in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process.

  2. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Mejía, J.E.; Skladanka, J.; Hilger-Delgado, A.; Klíma, M.; Knot, P.; Doležal, P.; Horky, P.

    2016-11-01

    This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1) without additives, used as a control; 2) with bacterial inoculants; and 3) with chemical preservatives. The results indicated that the year factor (2012-2013) influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA) and acetic acid (AA) in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2%) in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process. (Author)

  3. An endothermic chemical process facility coupled to a high temperature reactor. Part I: Proposed accident scenarios within the chemical plant

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Seker, Volkan; Revankar, Shripad T.; Downar, Thomas J.

    2012-01-01

    Highlights: ► The paper identifies possible transient and accident scenarios in a coupled PBMR and thermochemical sulfur cycle based hydrogen plant. ► Key accidents scenarios were investigated through qualitative reasoning. ► The accidents were found to constitute loss of heat sink event for the nuclear reactor. - Abstract: Hydrogen generation using a high temperature nuclear reactor as a thermal driving vector is a promising future option for energy carrier production. In this scheme, the heat from the nuclear reactor drives an endothermic water-splitting plant, via coupling, through an intermediate heat exchanger. Quantitative study of the possible operational or accident events within the coupled plant is largely absent from the literature. In this paper, seven unique case studies are proposed based on a thorough review of possible events. The case studies are: (1) feed flow failure from one section of the chemical plant to another with an accompanying parametric study of the temperature in an individual reaction chamber, (2) product flow failure (recycle) within the chemical plant, (3) rupture or explosion within the chemical plant, (4) nuclear reactor helium inlet overcooling due to a process holding tank failure, (5) helium inlet overcooling as an anticipated transient without emergency nuclear reactor shutdown, (6) total failure of the chemical plant, (7) control rod insertion in the nuclear reactor. The qualitative parameters of each case study are outlined as well as the basis in literature. A previously published modeling scheme is described and adapted for application as a simulation platform for these transient events. The results of the quantitative case studies are described within part II of this paper.

  4. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  5. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve

  6. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2013-01-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions

  7. Influence of chemical inhibitors on cell recovery after exposure to different LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Evstratova, Ekaterina S.; Petin, Vladislav G. [Medical Radiological Research Center, Obninsk (Russian Federation); Kim, Jin Kyu; KIm, Jin Hong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-12-15

    Chemical radiosensitizers are often used to increase cell radiosensitivity. It is known that the ability of chemical drugs to increase cell radiosensitivity is related with inhibition of cell recovery from damage induced by ionizing radiation. However, there are little comparative investigations of cell sensitivity modification after exposure to radiation with high linear energy transfer (LET). Therefore, we studied the anticancer drugs cisplatin and endoxan and their impact on the ability of yeast cells to recover after cell exposure to radiations with different LET. The ability of cell recovery from radiation damage was less effective after exposure to high-LET radiation, when cells were irradiated without drug, with the increase in cisplatin concentration resulting in the disappearance of this difference. The increase of cisplatin concentration results in progressive increase in the fraction of irreversible damage independently of radiation quality.

  8. Influence of chemical inhibitors on cell recovery after exposure to different LET radiation

    International Nuclear Information System (INIS)

    Evstratova, Ekaterina S.; Petin, Vladislav G.; Kim, Jin Kyu; KIm, Jin Hong

    2016-01-01

    Chemical radiosensitizers are often used to increase cell radiosensitivity. It is known that the ability of chemical drugs to increase cell radiosensitivity is related with inhibition of cell recovery from damage induced by ionizing radiation. However, there are little comparative investigations of cell sensitivity modification after exposure to radiation with high linear energy transfer (LET). Therefore, we studied the anticancer drugs cisplatin and endoxan and their impact on the ability of yeast cells to recover after cell exposure to radiations with different LET. The ability of cell recovery from radiation damage was less effective after exposure to high-LET radiation, when cells were irradiated without drug, with the increase in cisplatin concentration resulting in the disappearance of this difference. The increase of cisplatin concentration results in progressive increase in the fraction of irreversible damage independently of radiation quality.

  9. Redox Disrupting Potential of ToxCast™Chemicals Ranked by Activity in Mouse Embryonic Stem Cells

    Science.gov (United States)

    Little is known regarding the adverse outcome pathways responsible for developmental toxicity following exposure to chemicals. An evaluation of Toxoast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay revealed a redox sensitive pathway that correlated with...

  10. REDOX DISRUPTING POTENTIAL OF TOXCAST CHEMICALS RANKED BY ACTIVITY IN MOUSE EMBRYONIC STEM CELLS

    Science.gov (United States)

    To gain insight regarding the adverse outcome pathways leading to developmental toxicity following exposure to chemicals, we evaluated ToxCast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay and identified a redox sensitive pathway that correlated with al...

  11. Integrated Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, T. Alan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jamison, Timothy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The Massachusetts Institute of Technology (MIT) and Siemens Corporations (SCR) are developing new chemical synthesis processes for commodity chemicals from CO2. The process is assessed as a novel chemical sequestration technology that utilizes CO2 from dilute gas streams generated at industrial carbon emitters as a raw material to produce useful commodity chemicals. Work at Massachusetts Institute of Technology (MIT) commenced on October 1st, 2010, and finished on September 30th, 2013. During this period, we have investigated and accomplished five objectives that mainly focused on converting CO2 into high-value chemicals: 1) Electrochemical assessment of catalytic transformation of CO2 and epoxides to cyclic carbonates; 2) Investigation of organocatalytic routes to convert CO2 and epoxide to cyclic carbonates; 3) Investigation of CO2 Capture and conversion using simple olefins under continuous flow; 4) Microwave assisted synthesis of cyclic carbonates from olefins using sodium bicarbonates in a green pathway; 5) Life cycle analyses of integrated chemical sequestration process. In this final report, we will describe the detailed study performed during the three year period and findings and conclusions drawn from our research.

  12. Fuel Cell Stations Automate Processes, Catalyst Testing

    Science.gov (United States)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  13. Development of Functional Inorganic Materials by Soft Chemical Process Using Ion-Exchange Reactions

    Science.gov (United States)

    Feng, Qi

    Our study on soft chemical process using the metal oxide and metal hydroxide nanosheets obtained by exfoliation their layered compounds were reviewed. Ni(OH)2⁄MnO2 sandwich layered nanostructure can be prepared by layer by-layer stacking of exfoliated manganese oxide nanosheets and nickel hydroxide layers. Manganese oxide nanotubes can be obtained by curling the manganese oxide nanosheets using the cationic surfactants as the template. The layered titanate oriented thin film can be prepared by restacking the titanate nanosheets on a polycrystalline substrate, and transformed to the oriented BaTiO3 and TiO2 thin films by the topotactic structural transformation reactions, respectively. The titanate nanosheets can be transformed anatase-type TiO2 nanocrystals under hydrothermal conditions. The TiO2 nanocrystals are formed by a topotactic structural transformation reaction. The TiO2 nanocrystals prepared by this method expose specific crystal plane on their surfaces, and show high photocatalytic activity and high dye adsorption capacity for high performance dye-sensitized solar cell. A series of layered basic metal salt (LBMS) compounds were prepared by hydrothermal reactions of transition metal hydroxides and organic acids. We succeeded in the exfoliation of these LBMS compounds in alcohol solvents, and obtained the transition metal hydroxide nanosheets for the first time.

  14. Radiation equivalence of genotoxic chemicals - Validation in cultered mammalian cell lines

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1982-01-01

    Published data on mutations induced by ionizing radiation and 6 monofunctional alkylating agents, namely EMS, MMS, ENNG, MNNG, ENU and MNU, in different cell lines (Chinese hamster ovary, Chinese hamster lung V79, mouse lymphoma L5178 and human cells) were analysed so that radiation-equivalent chemical (REC) values could be calculated. REC values thus obtained for a given alkylating agent with different cell lines fall within a narrow range suggesting its validation in cultured mammalian cell systems including human. (orig.)

  15. In vitro cytotoxicity of chemical preservatives on human fibroblast cells

    Directory of Open Access Journals (Sweden)

    Daniel Gonsales Spindola

    2018-05-01

    Full Text Available ABSTRACT Preservatives are widely used substances that are commonly added to various cosmetic and pharmaceutical products to prevent or inhibit microbial growth. In this study, we compared the in vitro cytotoxicity of different types of currently used preservatives, including methylparaben, imidazolidinyl urea (IMU, and sodium benzoate, using the human newborn fibroblast cell line CCD1072Sk. Of the tested preservatives, only IMU induced a reduction in cell viability, as shown using the MTT assay and propidium iodide staining (IMU>methylparaben>sodium benzoate. IMU was shown to promote homeostatic alterations potentially related to the initiation of programed cell death, such as decreased mitochondrial membrane potential and caspase-3 activation, in the treated cells. Methylparaben and sodium benzoate were shown to have a very low cytotoxic activity. Taken together, our results suggest that IMU induces programed cell death in human fibroblasts by a canonical intrinsic pathway via mitochondrial perturbation and subsequent release of proapoptotic factors.

  16. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  17. [Revealing the chemical changes of tea cell wall induced by anthracnose with confocal Raman microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Hu, Xiao-qian; Lou, Bing-gan; He, Yong

    2014-06-01

    Healthy tea and tea infected by anthracnose were first studied by confocal Raman microscopy to illustrate chemical changes of cell wall in the present paper. Firstly, Raman spectra of both healthy and infected sample tissues were collected with spatial resolution at micron-level, and ultrastructure of healthy and infected tea cells was got from scanning electron microscope. These results showed that there were significant changes in Raman shift and Raman intensity between healthy and infected cell walls, indicating that great differences occurred in chemical compositions of cell walls between healthy and infected samples. In details, intensities at many Raman bands which were closely associated with cellulose, pectin, esters were reduced after infection, revealing that the content of chemical compounds such as cellulose, pectin, esters was decreased after infection. Subsequently, chemical imaging of both healthy and infected tea cell walls were realized based on Raman fingerprint spectra of cellulose and microscopic spatial structure. It was found that not only the content of cellulose was reduced greatly after infection, but also the ordered structure of cellulose was destroyed by anthracnose infection. Thus, confocal Raman microscopy was shown to be a powerful tool to detect the chemical changes in cell wall of tea caused by anthracnose without any chemical treatment or staining. This research firstly applied confocal Raman microscopy in phytopathology for the study of interactive relationship between host and pathogen, and it will also open a new way for intensive study of host-pathogen at cellular level.

  18. Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Giovanni De Filpo

    2018-06-01

    Full Text Available The chemical binding of photocatalytic materials, such as TiO2 and ZnO nanoparticles, onto porous polymer membranes requires a series of chemical reactions and long purification processes, which often result in small amounts of trapped nanoparticles with reduced photocatalytic activity. In this work, a chemical vapor deposition technique was investigated in order to allow the nucleation and growth of ZnO and TiO2 nanoparticles onto polyvinylidene difluoride (PVDF porous membranes for application in advanced oxidation processes. The thickness of obtained surface coatings by sputtered nanoparticles was found to depend on process conditions. The photocatalytic efficiency of sputtered membranes was tested against both a model drug and a model organic pollutant in a small continuous flow reactor.

  19. A chemically inert drug can stimulate T cells in vitro by their T cell receptor in non-sensitised individuals

    International Nuclear Information System (INIS)

    Engler, Olivier B.; Strasser, Ingrid; Naisbitt, Dean J.; Cerny, Andreas; Pichler, Werner J.

    2004-01-01

    Drugs can interact with T cell receptors (TCR) after binding to peptide-MHC structures. This binding may involve the formation of a stable, covalent bond between a chemically reactive drug and MHC or the peptide embedded within. Alternatively, if the drug is chemically inert, the binding may be non-covalent and readily reversible. Both types of drug presentation account for a substantial number of adverse side effects to drugs. Presently no tests are available to predict the ability of chemically inert drugs to stimulate an immune response. Here we present data on the successful induction of a primary T cell immune response in vitro against a chemically inert drug using blood from healthy individuals, previously not exposed to the drug. Blood lymphocytes were stimulated by the chemically inert drug sulfamethoxazole and the protein-reactive drug-metabolite sulfamethoxazole-nitroso in the presence of IL-2. 9/10 individuals reacted in response to sulfamethoxazole-nitroso, but only three reacted to the chemically inert compound sulfamethoxazole. Drug reactive T cells could be detected after 14-35 days of cell culture by drug-specific proliferation or cytotoxicity, which was MHC-restricted. These cells were CD4, CD8 positive or CD4/CD8 double positive and T cell clones generated secreted Th0 type cytokines. Drug interaction lead to down-regulation of specific TCR. These data confirm the ability of chemically inert drugs to stimulate certain T cells by their TCR and may provide the opportunity to screen new drugs for their ability to interact with TCRs

  20. Application of nonliner reduction techniques in chemical process modeling: a review

    International Nuclear Information System (INIS)

    Muhaimin, Z; Aziz, N.; Abd Shukor, S.R.

    2006-01-01

    Model reduction techniques have been used widely in engineering fields for electrical, mechanical as well as chemical engineering. The basic idea of reduction technique is to replace the original system by an approximating system with much smaller state-space dimension. A reduced order model is more beneficial to process and industrial field in terms of control purposes. This paper is to provide a review on application of nonlinear reduction techniques in chemical processes. The advantages and disadvantages of each technique reviewed are also highlighted

  1. Welcome to Processes—A New Open Access Journal on Chemical and Biological Process Technology

    Directory of Open Access Journals (Sweden)

    Michael A. Henson

    2012-11-01

    Full Text Available As the result of remarkable technological progress, this past decade has witnessed considerable advances in our ability to manipulate natural and engineered systems, particularly at the molecular level. These advancements offer the potential to revolutionize our world through the development of novel soft and hard materials and the construction of new cellular platforms for chemical and pharmaceutical synthesis. For these technologies to truly impact society, the development of process technology that will enable effective large-scale production is essential. Improved processes are also needed for more established technologies in chemical and biochemical manufacturing, as these industries face ever increasing competitive pressure that mandates continuous improvement. [...

  2. NUMATH: a nuclear-material-holdup estimator for unit operations and chemical processes

    International Nuclear Information System (INIS)

    Krichinsky, A.M.

    1981-01-01

    A computer program, NUMATH (Nuclear Material Holdup Estimator), has been developed to permit inventory estimation in vessels involved in unit operations and chemical processes. This program has been implemented in an operating nuclear fuel processing plant. NUMATH's purpose is to provide steady-state composition estimates for material residing in process vessels until representative samples can be obtained and chemical analyses can be performed. Since these compositions are used for inventory estimation, the results are determined for and cataloged in container-oriented files. The estimated compositions represent material collected in applicable vessels-including consideration for material previously acknowledged in these vessels. The program utilizes process measurements and simple material balance models to estimate material holdups and distribution within unit operations. During simulated run testing, NUMATH-estimated inventories typically produced material balances within 7% of the associated measured material balances for uranium and within 16% of the associated, measured material balance for thorium during steady-state process operation

  3. Inline chemical process analysis in micro-plants based on thermoelectric flow and impedimetric sensors

    International Nuclear Information System (INIS)

    Jacobs, T; Kutzner, C; Hauptmann, P; Kropp, M; Lang, W; Brokmann, G; Steinke, A; Kienle, A

    2010-01-01

    In micro-plants, as used in chemical micro-process engineering, an integrated inline analytics is regarded as an important factor for the development and optimization of chemical processes. Up to now, there is a lack of sensitive, robust and low-priced micro-sensors for monitoring mixing and chemical conversion in micro-fluidic channels. In this paper a novel sensor system combining an impedimetric sensor and a novel pressure stable thermoelectric flow sensor for monitoring chemical reactions in micro-plants is presented. The CMOS-technology-based impedimetric sensor mainly consists of two capacitively coupled interdigital electrodes on a silicon chip. The thermoelectric flow sensor consists of a heater in between two thermopiles on a perforated membrane. The pulsed and constant current feeds of the heater were analyzed. Both sensors enable the analysis of chemical conversion by means of changes in the thermal and electrical properties of the liquid. The homogeneously catalyzed synthesis of n-butyl acetate as a chemical model system was studied. Experimental results revealed that in an overpressure regime, relative changes of less than 1% in terms of thermal and electrical properties can be detected. Furthermore, the transition from one to two liquid phases accompanied by the change in slug flow conditions could be reproducibly detected

  4. Investigation of physico-chemical processes in lithium-ion batteries by deconvolution of electrochemical impedance spectra

    Science.gov (United States)

    Manikandan, Balasundaram; Ramar, Vishwanathan; Yap, Christopher; Balaya, Palani

    2017-09-01

    The individual physico-chemical processes in lithium-ion batteries namely solid-state diffusion and charge transfer polarization are difficult to be tracked by impedance spectroscopy due to simultaneous contributions from cathode and anode. A deeper understanding of various polarization processes in lithium-ion batteries is important to enhance storage performance and cycle life. In this context, the polarization processes occurring in cylindrical 18650 cells comprising different cathodes against graphite anode (LiNi0.2Mn0.2Co0.6O2vs. graphite; LiNi0.6Mn0.2Co0.2O2vs. graphite; LiNi0.8Co0.15Al0.05O2vs. graphite and LiFePO4vs. graphite) are investigated by deconvolution of impedance spectra across various states of charge. Further, cathodes and anodes are extracted from the investigated 18650-type cells and tested in half-cells against Li-metal as well as in symmetric cell configurations to understand the contribution of cathode and anode to the full cells of various battery chemistries studied. Except for the LiFePO4vs. graphite cell, the polarization resistance in graphite of other cells are found to be higher than those of the investigated cathodes, proving that the polarization in lithium-ion battery is largely influenced by the graphitic anode. Furthermore, the charge transfer polarization resistance encountered by the cathodes investigated in this work is found to be a strong function of the states of charge.

  5. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts.

    Science.gov (United States)

    Yang, Lifei; Yu, Xuegong; Hu, Weidan; Wu, Xiaolei; Zhao, Yan; Yang, Deren

    2015-02-25

    Graphene-silicon (Gr-Si) heterojunction solar cells have been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the high sheet resistance of chemical vapor deposited (CVD) Gr films is still the most important limiting factor for the improvement of the power conversion efficiency of Gr-Si solar cells, especially in the case of large device-active area. In this work, we have fabricated a novel transparent conductive film by hybriding a monolayer Gr film with silver nanowires (AgNWs) network soldered by the graphene oxide (GO) flakes. This Gr-AgNWs hybrid film exhibits low sheet resistance and larger direct-current to optical conductivity ratio, quite suitable for solar cell fabrication. An efficiency of 8.68% has been achieved for the Gr-AgNWs-Si solar cell, in which the AgNWs network acts as buried contacts. Meanwhile, the Gr-AgNWs-Si solar cells have much better stability than the chemically doped Gr-Si solar cells. These results show a new route for the fabrication of high efficient and stable Gr-Si solar cells.

  6. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  7. Advanced laser processing for industrial solar cell manufacturing (ALPINISM)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Fieret, J. [Exitech Ltd. (United Kingdom)

    2006-05-04

    The study was aimed at improving methods for the manufacture of high efficiency solar cells and thereby increase production rates. The project focused on the laser grooved buried contact solar cell (LGBC) which is produced by high-speed laser machining. The specific objectives were (i) to optimise the laser technology for high speed processing; (ii) to optimise the solar cell process conditions for high speed processing; (iii) to produce a prototype tool and demonstrate high throughput; and (iv) to demonstrate increased cell efficiency using laser processing of rear contact. Essentially, all the objectives were met and Exitech have already sold six production tools and one research tool developed in this study. In addition, it was found that laser processing at the rear cell surface offers the prospect of LGBC solar cells with an efficiency of 20 per cent. BP Solar Limited carried out this work under contract to the DTI.

  8. Numerical simulation study on rolling-chemical milling process of aluminum-lithium alloy skin panel

    Science.gov (United States)

    Huang, Z. B.; Sun, Z. G.; Sun, X. F.; Li, X. Q.

    2017-09-01

    Single curvature parts such as aircraft fuselage skin panels are usually manufactured by rolling-chemical milling process, which is usually faced with the problem of geometric accuracy caused by springback. In most cases, the methods of manual adjustment and multiple roll bending are used to control or eliminate the springback. However, these methods can cause the increase of product cost and cycle, and lead to material performance degradation. Therefore, it is of significance to precisely control the springback of rolling-chemical milling process. In this paper, using the method of experiment and numerical simulation on rolling-chemical milling process, the simulation model for rolling-chemical milling process of 2060-T8 aluminum-lithium alloy skin was established and testified by the comparison between numerical simulation and experiment results for the validity. Then, based on the numerical simulation model, the relative technological parameters which influence on the curvature of the skin panel were analyzed. Finally, the prediction of springback and the compensation can be realized by controlling the process parameters.

  9. Determinants of job stress in chemical process industry: A factor analysis approach.

    Science.gov (United States)

    Menon, Balagopal G; Praveensal, C J; Madhu, G

    2015-01-01

    Job stress is one of the active research domains in industrial safety research. The job stress can result in accidents and health related issues in workers in chemical process industries. Hence it is important to measure the level of job stress in workers so as to mitigate the same to avoid the worker's safety related problems in the industries. The objective of this study is to determine the job stress factors in the chemical process industry in Kerala state, India. This study also aims to propose a comprehensive model and an instrument framework for measuring job stress levels in the chemical process industries in Kerala, India. The data is collected through a questionnaire survey conducted in chemical process industries in Kerala. The collected data out of 1197 surveys is subjected to principal component and confirmatory factor analysis to develop the job stress factor structure. The factor analysis revealed 8 factors that influence the job stress in process industries. It is also found that the job stress in employees is most influenced by role ambiguity and the least by work environment. The study has developed an instrument framework towards measuring job stress utilizing exploratory factor analysis and structural equation modeling.

  10. Integration of solid oxide fuel cell (SOFC) and chemical looping combustion (CLC) for ultra-high efficiency power generation and CO2 production

    NARCIS (Netherlands)

    Spallina, Vincenzo; Nocerino, Pasquale; Romano, Matteo C.; van Sint Annaland, Martin; Campanari, Stefano; Gallucci, Fausto

    2018-01-01

    This work presents a thermodynamic analysis of the integration of solid oxide fuel cells (SOFCs) with chemical looping combustion (CLC) in natural gas power plants. The fundamental idea of the proposed process integration is to use a dual fluidized-bed CLC process to complete the oxidation of the

  11. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    International Nuclear Information System (INIS)

    Nunez, L.; Kaminski, M.; Bradley, C.; Buchholz, B.A.; Aase, S.B.; Tuazon, H.E.; Vandegrift, G.F.; Landsberger, S.

    1995-05-01

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration

  12. Experimental research subject and renovation of chemical processing facility (CPF) for advanced fast reactor fuel reprocessing technology development

    International Nuclear Information System (INIS)

    Koyama, Tomozo; Shinozaki, Tadahiro; Nomura, Kazunori; Koma, Yoshikazu; Miyachi, Shigehiko; Ichige, Yoshiaki; Kobayashi, Tsuguyuki; Nemoto, Shin-ichi

    2002-01-01

    In order to enhance economical efficiency, environmental impact and nuclear nonproliferation resistance, the Advanced Reprocessing Technology, such as simplification and optimization of process, and applicability evaluation of the innovative technology that was not adopted up to now, has been developed for the reprocessing of the irradiated fuel taken out from a fast reactor. Renovation of the hot cell interior equipments, establishment and updating of glove boxes, installation of various analytical equipments, etc. in the Chemical Processing Facility (CPF) was done to utilize the CPF more positivity which is the center of the experimental field, where actual fuel can be used, for research and development towards establishment of the Advanced Reprocessing Technology development. The hot trials using the irradiated fuel pins of the experimental fast reactor 'JOYO' for studies on improved aqueous reprocessing technology, MA separation technology, dry process technology, etc. are scheduled to be carried out with these new equipments. (author)

  13. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Impact of environmental chemicals on the thyroid hormone function in pituitary rat GH3 cells

    DEFF Research Database (Denmark)

    Ghisari, Mandana; Bonefeld-Jørgensen, Eva

    2005-01-01

    -nonylphenol, 4-octylphenol), pesticides (prochloraz, iprodion, chlorpyrifos), PCB metabolites (OH-PCB 106, OH-PCB 121, OH-PCB 69) and brominated flame-retardants (tetrabromobisphenol A). The ED potential of a chemical was determined by its effect on the cell proliferation of TH-dependent rat pituitary GH3 cell...

  15. Chemical UV Filters Mimic the Effect of Progesterone on Ca(2+) Signaling in Human Sperm Cells

    DEFF Research Database (Denmark)

    Rehfeld, A; Dissing, S; Skakkebæk, N E

    2016-01-01

    Progesterone released by cumulus cells surrounding the egg induces a Ca(2+) influx into human sperm cells via the cationic channel of sperm (CatSper) Ca(2+) channel and controls multiple Ca(2+)-dependent responses essential for fertilization. We hypothesized that chemical UV filters may mimic...

  16. Activities of the Institute of Chemical Processing of Coal at Zabrze

    Energy Technology Data Exchange (ETDEWEB)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  17. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  18. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    International Nuclear Information System (INIS)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira; Shigeno, Keiji; Nakamura, Tatsuo

    2012-01-01

    Highlights: ► Very rapid generation of human iPS cells under optimized conditions. ► Five chemical inhibitors under hypoxia boosted reprogramming. ► We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of i

  19. Synchronization and Arrest of the Budding Yeast Cell Cycle Using Chemical and Genetic Methods.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    The cell cycle of budding yeast can be arrested at specific positions by different genetic and chemical methods. These arrests enable study of cell cycle phase-specific phenotypes that would be missed during examination of asynchronous cultures. Some methods for arrest are reversible, with kinetics that enable release of cells back into a synchronous cycling state. Benefits of chemical and genetic methods include scalability across a large range of culture sizes from a few milliliters to many liters, ease of execution, the absence of specific equipment requirements, and synchronization and release of the entire culture. Of note, cell growth and division are decoupled during arrest and block-release experiments. Cells will continue transcription, translation, and accumulation of protein while arrested. If allowed to reenter the cell cycle, cells will do so as a population of mixed, larger-than-normal cells. Despite this important caveat, many aspects of budding yeast physiology are accessible using these simple chemical and genetic tools. Described here are methods for the block and release of cells in G 1 phase and at the M/G 1 transition using α-factor mating pheromone and the temperature-sensitive cdc15-2 allele, respectively, in addition to methods for arresting the cell cycle in early S phase and at G 2 /M by using hydroxyurea and nocodazole, respectively. © 2017 Cold Spring Harbor Laboratory Press.

  20. Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    Science.gov (United States)

    Curran, Kathleen A; Alper, Hal S

    2012-07-01

    The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers and precursors, pharmaceuticals and nutraceuticals, and commodity and specialty chemicals. Much of this rapid expansion in the field has been, in part, due to synergies and advances in the area of systems biology. Specifically, the availability of functional genomics, metabolomics and transcriptomics data has resulted in the potential to produce a wealth of new products, both natural and non-natural, in cellular factories. The sheer amount and diversity of this data however, means that uncovering and unlocking novel chemistries and insights is a non-obvious exercise. To address this issue, a number of computational tools and experimental approaches have been developed to help expedite the design process to create new cellular factories. This review will highlight many of the systems biology enabling technologies that have reduced the design cycle for engineered hosts, highlight major advances in the expanded diversity of products that can be synthesized, and conclude with future prospects in the field of metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    Science.gov (United States)

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  2. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Qingchao; Yan, Xuefeng; Lv, Zhaomin; Guo, Meijin [East China University of Science and Technology, Shanghai (China)

    2013-06-15

    Considering that kernel entropy component analysis (KECA) is a promising new method of nonlinear data transformation and dimensionality reduction, a KECA based method is proposed for nonlinear chemical process monitoring. In this method, an angle-based statistic is designed because KECA reveals structure related to the Renyi entropy of input space data set, and the transformed data sets are produced with a distinct angle-based structure. Based on the angle difference between normal status and current sample data, the current status can be monitored effectively. And, the confidence limit of the angle-based statistics is determined by kernel density estimation based on sample data of the normal status. The effectiveness of the proposed method is demonstrated by case studies on both a numerical process and a simulated continuous stirred tank reactor (CSTR) process. The KECA based method can be an effective method for nonlinear chemical process monitoring.

  3. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure

    International Nuclear Information System (INIS)

    Jiang, Qingchao; Yan, Xuefeng; Lv, Zhaomin; Guo, Meijin

    2013-01-01

    Considering that kernel entropy component analysis (KECA) is a promising new method of nonlinear data transformation and dimensionality reduction, a KECA based method is proposed for nonlinear chemical process monitoring. In this method, an angle-based statistic is designed because KECA reveals structure related to the Renyi entropy of input space data set, and the transformed data sets are produced with a distinct angle-based structure. Based on the angle difference between normal status and current sample data, the current status can be monitored effectively. And, the confidence limit of the angle-based statistics is determined by kernel density estimation based on sample data of the normal status. The effectiveness of the proposed method is demonstrated by case studies on both a numerical process and a simulated continuous stirred tank reactor (CSTR) process. The KECA based method can be an effective method for nonlinear chemical process monitoring

  4. Accident Management ampersand Risk-Based Compliance With 40 CFR 68 for Chemical Process Facilities

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Taylor, R.P. Jr.; Ashbaugh, S.G.

    1995-01-01

    A risk-based logic model is suggested as an appropriate basis for better predicting accident progression and ensuing source terms to the environment from process upset conditions in complex chemical process facilities. Under emergency conditions, decision-makers may use the Accident Progression Event Tree approach to identify the best countermeasure for minimizing deleterious consequences to receptor groups before the atmospheric release has initiated. It is concluded that the chemical process industry may use this methodology as a supplemental information provider to better comply with the Environmental Protection Agency's proposed 40 CFR 68 Risk Management Program rule. An illustration using a benzene-nitric acid potential interaction demonstrates the value of the logic process. The identification of worst-case releases and planning for emergency response are improved through these methods, at minimum. It also provides a systematic basis for prioritizing facility modifications to correct vulnerabilities

  5. Prediction of chemical, physical and sensory data from process parameters for frozen cod using multivariate analysis

    DEFF Research Database (Denmark)

    Bechmann, Iben Ellegaard; Jensen, H.S.; Bøknæs, Niels

    1998-01-01

    Physical, chemical and sensory quality parameters were determined for 115 cod (Gadus morhua) samples stored under varying frozen storage conditions. Five different process parameters (period of frozen storage, frozen storage. temperature, place of catch, season for catching and state of rigor) were...... varied systematically at two levels. The data obtained were evaluated using the multivariate methods, principal component analysis (PCA) and partial least squares (PLS) regression. The PCA models were used to identify which process parameters were actually most important for the quality of the frozen cod....... PLS models that were able to predict the physical, chemical and sensory quality parameters from the process parameters of the frozen raw material were generated. The prediction abilities of the PLS models were good enough to give reasonable results even when the process parameters were characterised...

  6. Transient processes in cell proliferation kinetics

    CERN Document Server

    Yakovlev, Andrej Yu

    1989-01-01

    A mathematician who has taken the romantic decision to devote himself to biology will doubtlessly look upon cell kinetics as the most simple and natural field of application for his knowledge and skills. Indeed, the thesaurus he is to master is not so complicated as, say, in molecular biology, the structural elements of the system, i. e. ceils, have been segregated by Nature itself, simple considerations of balance may be used for deducing basic equations, and numerous analogies in other areas of science also superficial add to one"s confidence. Generally speaking, this number of impression is correct, as evidenced by the very great theoretical studies on population kinetics, unmatched in other branches of mathematical biology. This, however, does not mean that mathematical theory of cell systems has traversed in its development a pathway free of difficulties or errors. The seeming ease of formalizing the phenomena of cell kinetics not infrequently led to the appearance of mathematical models lacking in adequ...

  7. Probing the bacterial cell wall with chemical biology tools

    NARCIS (Netherlands)

    Sminia, Tjerk J.

    2017-01-01

    After DNA and proteins, carbohydrates are the third language of life. Chapter 1 introduces the reader to this class of biomolecules, also called sugars or glycans, that can be found on the outer surface of almost all cells and plays a critical role as the social messengers of a

  8. An Intelligent System for Modelling, Design and Analysis of Chemical Processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    ICAS, Integrated Computer Aided System, is a software that consists of a number of intelligent tools, which are very suitable, among others, for computer aided modelling, sustainable design of chemical and biochemical processes, and design-analysis of product-process monitoring systems. Each...... the computer aided modelling tool will illustrate how to generate a desired process model, how to analyze the model equations, how to extract data and identify the model and make it ready for various types of application. In sustainable process design, the example will highlight the issue of integration...

  9. The Virtual Product-Process Design Laboratory for Structured Chemical Product Design and Analysis

    DEFF Research Database (Denmark)

    Mattei, Michele; Yunus, Nor Alafiza Binti; Kalakul, Sawitree

    2014-01-01

    The objective of this paper is to present new methods for design of chemicals based formulated products and their implementation in the software, the Virtual Product-Process Design Laboratory. The new products are tailor-made blended liquid products and emulsion-based products. The new software...

  10. Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic acid Ester)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sharon Shoemaker

    2004-09-03

    The development of commercial boi-based processes and products derived from agricultural waste biomass has the potential for significant impact on the economy and security of our nation. Adding value, rather than disposing of the waste of agriculture, can solve an environmental problem and reduce our dependence on foreign sources of fossil fuel for production of chemicals, materials and fuels.

  11. Fixation and utilization of CO2 by biological and/or chemical processes

    International Nuclear Information System (INIS)

    Hiromichi, N.

    1994-01-01

    This paper presents the carbon dioxide fixation and utilisation by biological and/or chemical processes. It presents research objectives and program contents for the effective fixation of carbon dioxide by micro-organism and its hydrogenation. (TEC). 5 figs., 2 tabs

  12. Teaching Population Balances for Chemical Engineering Students: Application to Granulation Processes

    Science.gov (United States)

    Bucala, Veronica; Pina, Juliana

    2007-01-01

    The population balance equation (PBE) is a useful tool to predict particle size distributions in granulation processes. When PBE is taught to advanced chemical engineering students, the internal coordinates (particle properties) are particularly hard to understand. In this paper, the flow of particles along different coordinates is carefully…

  13. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    Science.gov (United States)

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  14. The constitutive distributed parameter model of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    In the literature of distributed parameter modelling of real processes is not considered the class of multicomponent chemical processes in gas, fluid and solid phase. The aim of paper is constitutive distributed parameter physicochemical model, constructed on kinetics and phenomenal analysis of multicomponent chemical processes in gas, fluid and solid phase. The mass, energy and momentum aspects of these multicomponent chemical reactions and adequate phenomena are utilized in balance operations, by conditions of: constitutive invariance for continuous media with space and time memories, reciprocity principle for isotropic and anisotropic nonhomogeneous media with space and time memories, application of definitions of following derivative and equation of continuity, to the construction of systems of partial differential constitutive state equations, in the following derivative forms for gas, fluid and solid phase. Couched in this way all physicochemical conditions of multicomponent chemical processes in gas, fluid and solid phase are new form of constitutive distributed parameter model for automatics and its systems of equations are new form of systems of partial differential constitutive state equations in sense of phenomenal distributed parameter control

  15. Self-catalytic growth of tin oxide nanowires by chemical vapor deposition process

    CSIR Research Space (South Africa)

    Thabethe, BS

    2013-01-01

    Full Text Available The authors report on the synthesis of tin oxide (SnO(sub2)) nanowires by a chemical vapor deposition (CVD) process. Commercially bought SnO nanopowders were vaporized at 1050°C for 30 minutes with argon gas continuously passing through the system...

  16. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE REACTOR SYSTEM - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    The ELI Eco Logic International Inc. (Eco Logic) process thermally separates organics, then chemically reduces them in a hydrogen atmosphere, converting them to a reformed gas that consists of light hydrocarbons and water. A scrubber treats the reformed gas to remove hydrogen chl...

  17. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  18. Enrichment of {sup 15}N and {sup 10}B isotopes by chemical exchange process

    Energy Technology Data Exchange (ETDEWEB)

    D` Souza, A B; Sonwalkar, A S; Subrahmanyam, B V; Valladares, B A [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Many processes are available for separation of stable isotopes like distillation, chemical exchange, thermal diffusion, gaseous diffusion, centrifuge etc. Chemical exchange process is eminently suitable for separation of isotopes of light elements. Work done on separation and enrichment of two of the stable isotopes viz. {sup 15}N and {sup 10}B in Chemical Engineering Division is presented. {sup 15}N is widely used as a tracer in agricultural research and {sup 10}B is used in nuclear industry as control rod material, soluble reactor poison, neutron detector etc. The work on {sup 15}N isotope resulted in a pilot plant, which was the only source of this material in the country for many years and later it was translated into a production plant as M/s. RCF Ltd. The work done on the ion-exchange process for enrichment of {sup 10}B isotope which is basically a chemical exchange process, is now being updated into a pilot plant to produce enriched {sup 10}B to be used as soluble reactor poison. (author). 5 refs., 2 figs., 3 tabs.

  19. Efficient process intensification of fine chemical production: a new classification tool for flow chemistry technologies

    NARCIS (Netherlands)

    Lexmond, A.S.; Roelands, C.P.M.; Graaff, M.P. de; Bassett, J.M.

    2010-01-01

    The fine chemicals and pharmaceuticals industry needs to innovate to beat international competition and resolve environmental issues. Process intensification by flow chemistry is the most promising route for this change, as it can reduce raw material and energy consumption, waste production, lead

  20. Mechanisms governing the physico-chemical processes of transfer in NPP circuits

    International Nuclear Information System (INIS)

    Brusakov, V.P.; Sedov, V.M.; Khitrov, Yu.A.; Rybalchenko, I.L.

    1983-01-01

    The paper deals with the theoretical physico-chemical processes of corrosion products and their radionuclide transport in NPS circuits by thermoelectromotive and electromotive forces of microgalvanic couples. The laboratory and rig test results as well as the NPP operating experience data confirm the developed theoretical concept validity

  1. XPERT DESIGN AND DIAGNOSTICS' (XDD) IN-SITU CHEMICAL OXIDATION PROCESS USING POTASSIUM PERMANGANATE (KMNO4)

    Science.gov (United States)

    Xpert Design and Diagnostic's (XDD)potassium permanganate in situ chemical oxidation (ISCO) process was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program at the former MEC Building site located in Hudson, New Hampshire. At this site, both soil and ...

  2. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications

    Science.gov (United States)

    Weiss, Charles J.

    2017-01-01

    An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…

  3. Semi-annual report of the chemical process division of CDTN - July to December 1988

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de.

    1989-01-01

    The main activities developed by the Chemical Process Division of CDTN are described, including the reconversion of UF 6 to UO 2 , the separation and purification of rare earths and the solvent extraction with pulse column. (C.G.C.) [pt

  4. Enrichment of 15N and 10B isotopes by chemical exchange process

    International Nuclear Information System (INIS)

    D'Souza, A.B.; Sonwalkar, A.S.; Subrahmanyam, B.V.; Valladares, B.A.

    1994-01-01

    Many processes are available for separation of stable isotopes like distillation, chemical exchange, thermal diffusion, gaseous diffusion, centrifuge etc. Chemical exchange process is eminently suitable for separation of isotopes of light elements. Work done on separation and enrichment of two of the stable isotopes viz. 15 N and 10 B in Chemical Engineering Division is presented. 15 N is widely used as a tracer in agricultural research and 10 B is used in nuclear industry as control rod material, soluble reactor poison, neutron detector etc. The work on 15 N isotope resulted in a pilot plant, which was the only source of this material in the country for many years and later it was translated into a production plant as M/s. RCF Ltd. The work done on the ion-exchange process for enrichment of 10 B isotope which is basically a chemical exchange process, is now being updated into a pilot plant to produce enriched 10 B to be used as soluble reactor poison. (author)

  5. Chemical contamination of groundwater at gas processing plants - the past, the present and the future

    International Nuclear Information System (INIS)

    Wrubleski, R.M.; Drury, C.R.

    1997-01-01

    The chemicals used to remove the sour gas components (primarily H 2 S) from raw gas in the sour gas sweetening processes were discussed. The chemicals, mainly amines and physical absorbents, have been found as contaminants in soil and groundwater at several sites. Studies have been conducted to evaluate the behaviour of some of these chemicals. In particular, the contamination by sulfolane and diisopropanolamine (DIPA) which originate from the Sulfinol R sweetening process, was discussed. Prior to the mid 1970s wastes from these processes were disposed of on site in landfills that were not engineered for groundwater protection. By the mid 1970s the landfills were closed by capping. Many of the gas plant sites were located on elevated terrain where hydraulic gradient was available for downward movement of groundwater and any chemicals contained within. Contaminant movement in fractured bedrock has also affected drinking water. Ground water monitoring began in the mid 1980s to address environmental concerns, focusing on monitoring for potability, metals and organics. It was discovered that most of the plants using the Sulfinol process had groundwater contaminated with sulfolane levels ranging from 1 ppm to over 800 ppm. A research project was developed to determine the soil interaction parameters and biodegradation behaviour of pure sulfolane and DIPA to provide data in order to predict plume migration. Ecotoxicity tests were also performed to verify toxicity effects of sulfolane, DIPA, reclaimer bottoms and observed biodegradation metabolites to bio-organisms and aquatic life in aquatic receptors. 3 refs., 1 tab., 1 fig

  6. On improved understanding of plasma-chemical processes in complex low-temperature plasmas

    Science.gov (United States)

    Röpcke, Jürgen; Loffhagen, Detlef; von Wahl, Eric; Nave, Andy S. C.; Hamann, Stephan; van Helden, Jean-Piere H.; Lang, Norbert; Kersten, Holger

    2018-05-01

    Over the last years, chemical sensing using optical emission spectroscopy (OES) in the visible spectral range has been combined with methods of mid infrared laser absorption spectroscopy (MIR-LAS) in the molecular fingerprint region from 3 to 20 μm, which contains strong rotational-vibrational absorption bands of a large variety of gaseous species. This optical approach established powerful in situ diagnostic tools to study plasma-chemical processes of complex low-temperature plasmas. The methods of MIR-LAS enable to detect stable and transient molecular species in ground and excited states and to measure the concentrations and temperatures of reactive species in plasmas. Since kinetic processes are inherent to discharges ignited in molecular gases, high time resolution on sub-second timescales is frequently desired for fundamental studies as well as for process monitoring in applied research and industry. In addition to high sensitivity and good temporal resolution, the capacity for broad spectral coverage enabling multicomponent detection is further expanding the use of OES and MIR-LAS techniques. Based on selected examples, this paper reports on recent achievements in the understanding of complex low-temperature plasmas. Recently, a link with chemical modeling of the plasma has been provided, which is the ultimate objective for a better understanding of the chemical and reaction kinetic processes occurring in the plasma. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  7. Using Drawing Technology to Assess Students' Visualizations of Chemical Reaction Processes

    Science.gov (United States)

    Chang, Hsin-Yi; Quintana, Chris; Krajcik, Joseph

    2014-01-01

    In this study, we investigated how students used a drawing tool to visualize their ideas of chemical reaction processes. We interviewed 30 students using thinking-aloud and retrospective methods and provided them with a drawing tool. We identified four types of connections the students made as they used the tool: drawing on existing knowledge,…

  8. Design, manufacturing and commissioning of mobile unit for EDF (Dow Chemical process)

    International Nuclear Information System (INIS)

    Cangini, D.; Cordier, J.P.; PEC Engineering, Osny, France)

    1985-01-01

    To process their spent ion exchange resins and the liquid wastes, EDF has ordered from PEC a mobile unit using the DOW CHEMICAL binder. This paper presents the EDF's design requirements as well as the new French regulation for waste embedding. The mobile unit was started in January 1983 and commissioned successfully in January 1985 in the TRICASTIN EDF's power plant

  9. The material balance of process of plasma-chemical conversion of polymer wastes into synthesis gas

    International Nuclear Information System (INIS)

    Tazmeev, A Kh; Tazmeeva, R N

    2017-01-01

    The process of conversion of polymer wastes in the flow of water-steam plasma which are created by the liquid electrodes plasma generators was experimentally studied. The material balance was calculated. The regularities of the participating of hydrogen and oxygen which contained in the water-steam plasma, in formation of chemical compounds in the final products were revealed. (paper)

  10. The material balance of process of plasma-chemical conversion of polymer wastes into synthesis gas

    Science.gov (United States)

    Tazmeev, A. Kh; Tazmeeva, R. N.

    2017-01-01

    The process of conversion of polymer wastes in the flow of water-steam plasma which are created by the liquid electrodes plasma generators was experimentally studied. The material balance was calculated. The regularities of the participating of hydrogen and oxygen which contained in the water-steam plasma, in formation of chemical compounds in the final products were revealed.

  11. Relativistic thermodynamics of irreversible processes I. Heat conduction, diffusion, viscous flow and chemical reactions; formal part

    NARCIS (Netherlands)

    Kluitenberg, G.A.; Groot, S.R. de; Mazur, P.

    1953-01-01

    The relativistic thermodynamics of irreversible processes is developed for an isotropic mixture in which heat conduction, diffusion, viscous flow, chemical reactions and their cross-phenomena may occur. The four-vectors, representing the relative flows of matter, are defined in such a way that, in

  12. Influences of in-fuel physical-chemical processes on serviceability of energy reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Bibilashvili, Yu K; Nekrasova, G A; Sukhanov, G I

    1989-01-01

    In-fuel physico-chemical processes and their effect on stress corrosion cracking of fuel element zirconium cladding are considered in the review. The mechanism of fission product release from the fuel is studied and the negative role of primarily iodine on the cladding corrosion process is demonstrated. Directions for improving the fuel element claddings and fuel to increase the fuel element serviceability are specified.

  13. Influences of in-fuel physical-chemical processes on serviceability of energy reactor fuel elements

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Nekrasova, G.A.; Sukhanov, G.I.

    1989-01-01

    In-fuel physico-chemical processes and their effect on stress corrosion cracking of fuel element zirconium cladding are considered in the review. The mechanism of fission product release from the fuel is studied and the negative role of primarily iodine on the cladding corrosion process is demonstrated. Directions for improving the fuel element claddings and fuel to increase the fuel element serviceability are specified

  14. Chemical analysis of isolated cell walls of Gram-positive bacteria and the determination of the cell wall to cell mass ratio.

    NARCIS (Netherlands)

    Wal, van der A.; Norde, W.; Bendinger, B.; Zehnder, A.J.B.; Lyklema, J.

    1997-01-01

    Cell walls of five Gram-positive bacterial strains, including four coryneforms and a Bacillus brevis strain were isolated and subsequently chemically analysed. The wall contribution to the total cell mass is calculated from a comparison of D-Lactate concentrations in hydrolysates of whole cells and

  15. Chemical Activation of the Hypoxia-Inducible Factor Reversibly Reduces Tendon Stem Cell Proliferation, Inhibits Their Differentiation, and Maintains Cell Undifferentiation.

    Science.gov (United States)

    Menon, Alessandra; Creo, Pasquale; Piccoli, Marco; Bergante, Sonia; Conforti, Erika; Banfi, Giuseppe; Randelli, Pietro; Anastasia, Luigi

    2018-01-01

    Adult stem cell-based therapeutic approaches for tissue regeneration have been proposed for several years. However, adult stem cells are usually limited in number and difficult to be expanded in vitro, and they usually tend to quickly lose their potency with passages, as they differentiate and become senescent. Culturing stem cells under reduced oxygen tensions (below 21%) has been proposed as a tool to increase cell proliferation, but many studies reported opposite effects. In particular, cell response to hypoxia seems to be very stem cell type specific. Nonetheless, it is clear that a major role in this process is played by the hypoxia inducible factor (HIF), the master regulator of cell response to oxygen deprivation, which affects cell metabolism and differentiation. Herein, we report that a chemical activation of HIF in human tendon stem cells reduces their proliferation and inhibits their differentiation in a reversible and dose-dependent manner. These results support the notion that hypoxia, by activating HIF, plays a crucial role in preserving stem cells in an undifferentiated state in the "hypoxic niches" present in the tissue in which they reside before migrating in more oxygenated areas to heal a damaged tissue.

  16. Chemical Activation of the Hypoxia-Inducible Factor Reversibly Reduces Tendon Stem Cell Proliferation, Inhibits Their Differentiation, and Maintains Cell Undifferentiation

    Directory of Open Access Journals (Sweden)

    Alessandra Menon

    2018-01-01

    Full Text Available Adult stem cell-based therapeutic approaches for tissue regeneration have been proposed for several years. However, adult stem cells are usually limited in number and difficult to be expanded in vitro, and they usually tend to quickly lose their potency with passages, as they differentiate and become senescent. Culturing stem cells under reduced oxygen tensions (below 21% has been proposed as a tool to increase cell proliferation, but many studies reported opposite effects. In particular, cell response to hypoxia seems to be very stem cell type specific. Nonetheless, it is clear that a major role in this process is played by the hypoxia inducible factor (HIF, the master regulator of cell response to oxygen deprivation, which affects cell metabolism and differentiation. Herein, we report that a chemical activation of HIF in human tendon stem cells reduces their proliferation and inhibits their differentiation in a reversible and dose-dependent manner. These results support the notion that hypoxia, by activating HIF, plays a crucial role in preserving stem cells in an undifferentiated state in the “hypoxic niches” present in the tissue in which they reside before migrating in more oxygenated areas to heal a damaged tissue.

  17. Detoxifying of high strength textile effluent through chemical and bio-oxidation processes.

    Science.gov (United States)

    Manekar, Pravin; Patkar, Guarav; Aswale, Pawan; Mahure, Manisha; Nandy, Tapas

    2014-04-01

    Small-scale textile industries (SSTIs) in India struggled for the economic and environmental race. A full-scale common treatment plant (CETP) working on the principle of destabilising negative charge colloidal particles and bio-oxidation of dissolved organic failed to comply with Inland Surface Waters (ISW) standards. Thus, presence of intense colour and organics with elevated temperature inhibited the process stability. Bench scale treatability studies were conducted on chemical and biological processes for its full-scale apps to detoxify a high strength textile process effluent. Colour, SS and COD removals from the optimised chemical process were 88%, 70% and 40%, respectively. Heterotrophic bacteria oxidised COD and BOD more than 84% and 90% at a loading rate 0.0108kgm(-3)d(-1) at 3h HRT. The combined chemical and bio-oxidation processes showed a great promise for detoxifying the toxic process effluent, and implemented in full-scale CETP. The post-assessment of the CETP resulted in detoxify the toxic effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    International Nuclear Information System (INIS)

    Janecky, D.R.

    1988-01-01

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs

  19. Impact of cell culture process changes on endogenous retrovirus expression.

    Science.gov (United States)

    Brorson, Kurt; De Wit, Christina; Hamilton, Elizabeth; Mustafa, Mehnaz; Swann, Patrick G; Kiss, Robert; Taticek, Ron; Polastri, Gian; Stein, Kathryn E; Xu, Yuan

    2002-11-05

    Cell culture process changes (e.g., changes in scale, medium formulation, operational conditions) and cell line changes are common during the development life cycle of a therapeutic protein. To ensure that the impact of such process changes on product quality and safety is minimal, it is standard practice to compare critical product quality and safety attributes before and after the changes. One potential concern introduced by cell culture process improvements is the possibility of increased endogenous retrovirus expression to a level above the clearance capability of the subsequent purification process. To address this, retrovirus expression was measured in scaled down and full production scaled Chinese hamster ovary (CHO) cell cultures of four monoclonal antibodies and one recombinant protein before and after process changes. Two highly sensitive, quantitative (Q)-PCR-based assays were used to measure endogenous retroviruses. It is shown that cell culture process changes that primarily alter media components, nutrient feed volume, seed density, cell bank source (i.e., master cell bank vs. working cell bank), and vial size, or culture scale, singly or in combination, do not impact the rate of retrovirus expression to an extent greater than the variability of the Q-PCR assays (0.2-0.5 log(10)). Cell culture changes that significantly alter the metabolic state of the cells and/or rates of protein expression (e.g., pH and temperature shifts, NaButyrate addition) measurably impact the rate of retrovirus synthesis (up to 2 log(10)). The greatest degree of variation in endogenous retrovirus expression was observed between individual cell lines (up to 3 log(10)). These data support the practice of measuring endogenous retrovirus output for each new cell line introduced into manufacturing or after process changes that significantly increase product-specific productivity or alter the metabolic state, but suggest that reassessment of retrovirus expression after other

  20. 324 Facility B-Cell quality process plan

    International Nuclear Information System (INIS)

    Carlson, J.L.

    1998-01-01

    This report documents the quality process plan for the restart of a hot cell in the B Plant, originally a bismuth phosphate processing facility, but later converted to a waste fractionation plant. B-Cell is currently being cleaned out and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/1999. This report describes the major activities that remain for completion of the TPA milestone

  1. High content screening of defined chemical libraries using normal and glioma-derived neural stem cell lines.

    Science.gov (United States)

    Danovi, Davide; Folarin, Amos A; Baranowski, Bart; Pollard, Steven M

    2012-01-01

    Small molecules with potent biological effects on the fate of normal and cancer-derived stem cells represent both useful research tools and new drug leads for regenerative medicine and oncology. Long-term expansion of mouse and human neural stem cells is possible using adherent monolayer culture. These cultures represent a useful cellular resource to carry out image-based high content screening of small chemical libraries. Improvements in automated microscopy, desktop computational power, and freely available image processing tools, now means that such chemical screens are realistic to undertake in individual academic laboratories. Here we outline a cost effective and versatile time lapse imaging strategy suitable for chemical screening. Protocols are described for the handling and screening of human fetal Neural Stem (NS) cell lines and their malignant counterparts, Glioblastoma-derived neural stem cells (GNS). We focus on identification of cytostatic and cytotoxic "hits" and discuss future possibilities and challenges for extending this approach to assay lineage commitment and differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A document processing pipeline for annotating chemical entities in scientific documents.

    Science.gov (United States)

    Campos, David; Matos, Sérgio; Oliveira, José L

    2015-01-01

    The recognition of drugs and chemical entities in text is a very important task within the field of biomedical information extraction, given the rapid growth in the amount of published texts (scientific papers, patents, patient records) and the relevance of these and other related concepts. If done effectively, this could allow exploiting such textual resources to automatically extract or infer relevant information, such as drug profiles, relations and similarities between drugs, or associations between drugs and potential drug targets. The objective of this work was to develop and validate a document processing and information extraction pipeline for the identification of chemical entity mentions in text. We used the BioCreative IV CHEMDNER task data to train and evaluate a machine-learning based entity recognition system. Using a combination of two conditional random field models, a selected set of features, and a post-processing stage, we achieved F-measure results of 87.48% in the chemical entity mention recognition task and 87.75% in the chemical document indexing task. We present a machine learning-based solution for automatic recognition of chemical and drug names in scientific documents. The proposed approach applies a rich feature set, including linguistic, orthographic, morphological, dictionary matching and local context features. Post-processing modules are also integrated, performing parentheses correction, abbreviation resolution and filtering erroneous mentions using an exclusion list derived from the training data. The developed methods were implemented as a document annotation tool and web service, freely available at http://bioinformatics.ua.pt/becas-chemicals/.

  3. Significance of fundamental processes of radiation chemistry in hot atom chemical processes: electron thermalization

    International Nuclear Information System (INIS)

    Nishikawa, M.

    1984-01-01

    The author briefly reviews the current understanding of the course of electron thermalization. An outline is given of the physical picture without going into mathematical details. The analogy of electron thermalization with hot atom processes is taken as guiding principle in this paper. Content: secondary electrons (generation, track structure, yields); thermalization (mechanism, time, spatial distribution); behaviour of hot electrons. (Auth.)

  4. Modeling of multiphase flow with solidification and chemical reaction in materials processing

    Science.gov (United States)

    Wei, Jiuan

    Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and

  5. Development of waste minimization and decontamination technologies at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Ferguson, R.L.; Archibald, K.E.; Demmer, R.L.

    1995-01-01

    Emphasis on the minimization of decontamination secondary waste has increased because of restrictions on the use of hazardous chemicals and Idaho Chemical Processing Plant (ICPP) waste handling issues. The Lockheed Idaho Technologies Co. (LITCO) Decontamination Development Subunit has worked to evaluate and introduce new performed testing, evaluations, development and on-site demonstrations for a number of novel decontamination techniques that have not yet previously been used at the ICPP. This report will include information on decontamination techniques that have recently been evaluated by the Decontamination Development Subunit

  6. Selected bibliography for the extraction of uranium from seawater: chemical process and plant design feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Binney, S.E.; Polkinghorne, S.T.; Jante, R.R.; Rodman, M.R.; Chen, A.C.T.; Gordon, L.I.

    1979-02-01

    A selected annotated bibliography of 521 references was prepared as a part of a feasibility study of the extraction of uranium from seawater. For the most part, these references are related to the chemical processes whereby the uranium is removed from the seawater. A companion docment contains a similar bibliography of 471 references related to oceanographic and uranium extraction plant siting considerations, although some of the references are in common. The bibliography was prepared by computer retrieval from Chemical Abstracts, Nuclear Science Abstracts, Energy Data Base, NTIS, and Oceanic Abstracts. References are listed by author, country of author, and selected keywords.

  7. Selected bibliography for the extraction of uranium from seawater: chemical process and plant design feasibility study

    International Nuclear Information System (INIS)

    Binney, S.E.; Polkinghorne, S.T.; Jante, R.R.; Rodman, M.R.; Chen, A.C.T.; Gordon, L.I.

    1979-02-01

    A selected annotated bibliography of 521 references was prepared as a part of a feasibility study of the extraction of uranium from seawater. For the most part, these references are related to the chemical processes whereby the uranium is removed from the seawater. A companion docment contains a similar bibliography of 471 references related to oceanographic and uranium extraction plant siting considerations, although some of the references are in common. The bibliography was prepared by computer retrieval from Chemical Abstracts, Nuclear Science Abstracts, Energy Data Base, NTIS, and Oceanic Abstracts. References are listed by author, country of author, and selected keywords

  8. Development of a Procedure to Apply Detailed Chemical Kinetic Mechanisms to CFD Simulations as Post Processing

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Jensen, Anker

    2003-01-01

    mechanism. It involves post-processing of data extracted from computational fluid dynamics simulations. Application of this approach successfully describes combustion chemistry in a standard swirl burner, the so-called Harwell furnace. Nevertheless, it needs validation against more complex combustion models......It is desired to make detailed chemical kinetic mechanisms applicable to the complex geometries of practical combustion devices simulated with computational fluid dynamics tools. This work presents a novel general approach to combining computational fluid dynamics and a detailed chemical kinetic...

  9. Current efficiency in the chlorate cell process

    Directory of Open Access Journals (Sweden)

    Spasojević Miroslav D.

    2014-01-01

    Full Text Available A mathematical model has been set up for current efficiency in a chlorate cell acting as an ideal electrochemical tubular reactor with a linear increase in hypochlorite concentration from the entrance to the exit. Good agreement was found between the results on current efficiency experimentally obtained under simulated industrial chlorate production conditions and the theoretical values provided by the mathematical model. [Projekat Ministarstva nauke Republike Srbije, br. 172057 i br. 172062

  10. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  11. Chemical Composition and Fatty Acids of Glodok Fish by High Thermal Processing

    Directory of Open Access Journals (Sweden)

    Sri Purwaningsih

    2014-11-01

    Full Text Available Glodok is an economically underrated fish with a high nutrient content. The research aims to study the changes on chemical composition, fatty acids, omega-6 and omega-3 ratio in glodok muscle after processing with different methods of boiling, steaming, and boiling with addition of salt (3%. The results showed that the treatment (boiling, steaming, and boiling with addition of salt gives a significant effect (α=0.05 in water content, ash, lipid content, nervonat acid, linoleic acid, arachidonic acid, EPA, and DHA. The best processing method was steaming. The ratio of omega-3 and omega-6 in fresh glodok fish was 2,1:1, which is higher than WHO recommendation of 0,6:1,7.Keywords: chemical composition, fatty acid, glodok fish, processing

  12. Effect of UHT processing and storage conditions on physico-chemical characteristics of buffalo skim milk

    International Nuclear Information System (INIS)

    Hussain, I.

    2011-01-01

    The obtained results indicated that physico-chemical and nutritional changes in UHT processed buffalo skimmed milk were more pronounced at 45 deg. C than 25 deg. C and 10 deg. C. Duration of storage adversely affected the chemical and nutritional quality of processed milk. A slight decrease in pH, total ash and lactose contents, was observed, whereas acidity was increased on the mentioned storage conditions. Total nitrogen and casein nitrogen contents gradually decreased during storage, whereas non-casein nitrogen (NCN) and non-protein nitrogen (NPN) increased to a great extent in samples stored at higher temperatures. A significant increase in hydroxyl methyl furfural (HMF) values occurred in UHT processed buffalo skim milk at 25 deg. C and 45 deg. C after of 90 days storage. Storage at high temperature (45 deg. C) caused undesirable effects on sensory properties, general quality characteristics and acceptability of UHT buffalo skimmed milk. (author)

  13. The question of chemical processing of drilling muds when drilling wells at the Bulla Sea site

    Energy Technology Data Exchange (ETDEWEB)

    Ismaylov, A P; Avanesova, A M; Noven' kov, Yu P

    1979-01-01

    Based on the experience in the sinking of a number of deep wells in the Bulla Sea site, an integral chemical processing of drilling muds is recommended. The experience is shown of using inhibited gypsum systems in drilling in the deposits of the Akchagyl'sk stage and the PT to the roof of the V level instead of the previously used KSSB with viscosity reducers. From the roof of the V level because of the increased content of sandstone material the type of chemical processing is changed - instead of gypsum solutions, solutions are recommended, which are processed by KSSB in combination with oxyl with additives of bentonite clay because of their low content in the section.

  14. Status summary of chemical processing development in plutonium-238 supply program

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wham, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DePaoli, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sherman, Steven R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    This document summarizes the status of development of chemical processing in the Plutonium-238 Supply Program (PSP) near the end of Demonstration 1. The objective of the PSP is “to develop, demonstrate, and document a production process that meets program objectives and to prepare for its operation” (Frazier et al. 2016). Success in the effort includes establishing capability using the current infrastructure to produce Np targets for irradiation in Department of Energy research reactors, chemically processing the irradiated targets to separate and purify the produced Pu and transferring the PuO2 product to Los Alamos National Laboratory (LANL) at an average rate of 1.5 kg/y.

  15. 77 FR 66638 - The Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office...

    Science.gov (United States)

    2012-11-06

    ... Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office of Management...) approval of the information collection requirements specified in the Standard on Process Safety Management...: The Standard on Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). OMB Number...

  16. PWR steam generator chemical cleaning. Phase I: solvent and process development. Volume II

    International Nuclear Information System (INIS)

    Larrick, A.P.; Paasch, R.A.; Hall, T.M.; Schneidmiller, D.

    1979-01-01

    A program to demonstrate chemical cleaning methods for removing magnetite corrosion products from the annuli between steam generator tubes and the tube support plates in vertical U-tube steam generators is described. These corrosion products have caused steam generator tube ''denting'' and in some cases have caused tube failures and support plate cracking in several PWR generating plants. Laboratory studies were performed to develop a chemical cleaning solvent and application process for demonstration cleaning of the Indian Point Unit 2 steam generators. The chemical cleaning solvent and application process were successfully pilot-tested by cleaning the secondary side of one of the Indian Point Unit 1 steam generators. Although the Indian Point Unit 1 steam generators do not have a tube denting problem, the pilot test provided for testing of the solvent and process using much of the same equipment and facilities that would be used for the Indian Point Unit 2 demonstration cleaning. The chemical solvent selected for the pilot test was an inhibited 3% citric acid-3% ascorbic acid solution. The application process, injection into the steam generator through the boiler blowdown system and agitation by nitrogen sparging, was tested in a nuclear environment and with corrosion products formed during years of steam generator operation at power. The test demonstrated that the magnetite corrosion products in simulated tube-to-tube support plate annuli can be removed by chemical cleaning; that corrosion resulting from the cleaning is not excessive; and that steam generator cleaning can be accomplished with acceptable levels of radiation exposure to personnel

  17. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals

    International Nuclear Information System (INIS)

    Boyd, Jessica M.; Huang, Li; Xie Li; Moe, Birget; Gabos, Stephan; Li Xingfang

    2008-01-01

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC 50 ) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC 50 values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC 50 concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC 50 . Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPhA causing cell

  18. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Jessica M [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Huang, Li [Environmental Health Sciences, Department of Public Health Sciences, School of Public Health, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Li, Xie; Moe, Birget [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Gabos, Stephan [Public Health Surveillance and Environmental Health, Alberta Health and Wellness, 10025 Jasper Avenue, Box 1360, Edmonton, Alberta, T5J 2N3 (Canada); Xingfang, Li [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Environmental Health Sciences, Department of Public Health Sciences, School of Public Health, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada)], E-mail: xingfang.li@ualberta.ca

    2008-05-12

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC{sub 50}) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC{sub 50} values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC{sub 50} concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC{sub 50}. Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPh

  19. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface.

    Science.gov (United States)

    Lee, Sangmin; Yoon, Hwa In; Na, Jin Hee; Jeon, Sangmin; Lim, Seungho; Koo, Heebeom; Han, Sang-Soo; Kang, Sun-Woong; Park, Soon-Jung; Moon, Sung-Hwan; Park, Jae Hyung; Cho, Yong Woo; Kim, Byung-Soo; Kim, Sang Kyoon; Lee, Taekwan; Kim, Dongkyu; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-09-01

    It is urgently necessary to develop reliable non-invasive stem cell imaging technology for tracking the in vivo fate of transplanted stem cells in living subjects. Herein, we developed a simple and well controlled stem cell imaging method through a combination of metabolic glycoengineering and bioorthogonal copper-free click chemistry. Firstly, the exogenous chemical receptors containing azide (-N 3 ) groups were generated on the surfaces of stem cells through metabolic glycoengineering using metabolic precursor, tetra-acetylated N-azidoacetyl-d-mannosamine(Ac 4 ManNAz). Next, bicyclo[6.1.0]nonyne-modified glycol chitosan nanoparticles (BCN-CNPs) were prepared as imageable nanoparticles to deliver different imaging agents. Cy5.5, iron oxide nanoparticles and gold nanoparticles were conjugated or encapsulated to BCN-CNPs for optical, MR and CT imaging, respectively. These imageable nanoparticles bound chemical receptors on the Ac 4 ManNAz-treated stem cell surface specifically via bioorthogonal copper-free click chemistry. Then they were rapidly taken up by the cell membrane turn-over mechanism resulting in higher endocytic capacity compared non-specific uptake of nanoparticles. During in vivo animal test, BCN-CNP-Cy5.5-labeled stem cells could be continuously tracked by non-invasive optical imaging over 15 days. Furthermore, BCN-CNP-IRON- and BCN-CNP-GOLD-labeled stem cells could be efficiently visualized using in vivo MR and CT imaging demonstrating utility of our stem cell labeling method using chemical receptors. These results conclude that our method based on metabolic glycoengineering and bioorthogonal copper-free click chemistry can stably label stem cells with diverse imageable nanoparticles representing great potential as new stem cell imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Generic Life Cycle Assessment Tool for Chemical-biochemical Processes

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Malakul, Pomthong; Siemanond, Kitipat

    2013-01-01

    As environmental impacts and resource depletion are serious concerns for the modern society, they also provide the motivation and need to design processes that are not only economically and operationally feasible, but also environmentally friendly. In this respect, life cycle assessment (LCA......) is a tool for quantifying potential environmental impacts throughout the life cycle of the product or process. It can be used in conjunction with an economic tool to evaluate the design of any existing and/or new chemical-biochemical process and create improvement options in order to arrive at the best...