Sample records for chemical process operation

  1. MIMO Self-Tuning Control of Chemical Process Operation

    DEFF Research Database (Denmark)

    Hallager, L.; Jørgensen, S. B.; Goldschmidt, L.


    The problem of selecting a feasible model structure for a MIMO self-tuning controller (MIMOSC) is addressed. The dependency of the necessary structure complexity in relation to the specific process operating point is investigated. Experimental results from a fixed-bed chemical reactor are used...

  2. Integration of chemical product development, process design and operation based on a kilo-plant

    Institute of Scientific and Technical Information of China (English)

    QIAN Yu; WU Zhihui; JIANG Yanbin


    Presented in this paper is an integrated approach of computer-aided product development, process design and operation analysis based on a kilo-plant. The implemented kilo-plant, as a research platform to manufacture product in kilogram-scale, was designed especially for fine and specialty chemicals. The characteristics of product synthesis, process operation and product quality control are investigated coupled with computer-aided monitoring, online modeling, simulation and operation process optimization. In this way, chemical product discovery, process design and operation are integrated in a systematic approach, in the aim to respond to rapid changing marketplace demands to new products.

  3. NUMATH: a nuclear-material-holdup estimator for unit operations and chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Krichinsky, A.M.


    A computer program, NUMATH (Nuclear Material Holdup Estimator), has been developed to estimate compositions of materials in vessels involved in unit operations and chemical processes. This program has been implemented in a remotely operated nuclear fuel processing plant. NUMATH provides estimates of the steady-state composition of materials residing in process vessels until representative samples can be obtained and chemical analyses can be performed. Since these compositions are used for inventory estimations, the results are determined for the cataloged in container-oriented files. The estimated compositions represent materials collected in applicable vessels - including consideration for materials previously acknowledged in these vessels. The program utilizes process measurements and simple performance models to estimate material holdup and distribution within unit operations. In simulated run-testing, NUMATH typically produced estimates within 5% of the measured inventories for uranium and within 8% of the measured inventories for thorium during steady-state process operation.

  4. Incorporation of environmental impact criteria in the design and operation of chemical processes

    Directory of Open Access Journals (Sweden)

    P.E. Bauer


    Full Text Available Environmental impact assessment is becoming indispensable for the design and operation of chemical plants. Structured and consistent methods for this purpose have experienced a rapid development. The more rigorous and sophisticated these methods become, the greater is the demand for convenient tools. On the other hand, despite the incredible advances in process simulators, some aspects have still not been sufficiently covered. To date, applications of these programs to quantify environmental impacts have been restricted to straightforward examples of steady-state processes. In this work, a life-cycle assessment implementation with the aim of process design will be described, with a brief discussion of a dynamic simulation for analysis of transient state operations, such as process start-up. A case study shows the importance of this analysis in making possible operation at a high performance level with reduced risks to the environment.

  5. Influence of Design Margin on Operation Optimization and Control Performance of Chemical Processes

    Institute of Scientific and Technical Information of China (English)

    许锋; 蒋慧蓉; 王锐; 罗雄麟


    Operation optimization is an effective method to explore potential economic benefits for existing plants. The maximum potential benefit from operation optimization is determined by the distances between current operat-ing point and process constraints, which is related to the margins of design variables. Because of various distur-bances in chemical processes, some distances must be reserved for fluctuations of process variables and the opti-mum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achieved while that of dynamic optimization can be really achieved. In this study, the steady-state optimization and dynamic optimization are used, and the potential benefit is divided into achievable benefit for profit and un-achievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.

  6. Effects of chemical protective equipment on team process performance in small unit rescue operations. (United States)

    Grugle, Nancy L; Kleiner, Brian M


    In the event of a nuclear, biological, or chemical terrorist attack against civilians, both military and civilian emergency response teams must be able to respond and operate efficiently while wearing protective equipment. Chemical protective equipment protects the user by providing a barrier between the individual and hazardous environment. Unfortunately, the same equipment that is designed to support the user can potentially cause heat stress, reduced task efficiency, and reduced range-of-motion. Targeted Acceptable Responses to Generated Events of Tasks (TARGETS), an event-based team performance measurement methodology was used to investigate the effects of Mission Oriented Protective Posture (MOPP) on the behavioral processes underlying team performance during simulated rescue tasks. In addition, this study determined which team processes were related to team performance outcomes. Results of six primary analyses indicated that team process performance was not degraded by MOPP 4 on any rescue task and that the team processes critical for successful task performance are task-dependent. This article discusses the implications of these results with respect to the study design and the limitations of using an event-based team performance measurement methodology.

  7. Operations variables in the transesterification process of vegetable oil: a review - chemical catalysis

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González


    Full Text Available This article describes the results of a bibliographic review of the effects of operation conditions on process yield in the chemical transesterification of vegetable oil. The parameters studied were: temperature and time reaction, alcohol:oil molar ratio, catalyst and alcohol type, catalyst concentration, mixed intensity and free fatty acid and water concentration. It also reports that this pro- cess has been carried out with basic and acid catalysts using homogeneous and heterogeneous catalytic processes for a wide va- riety of oils. It was found that reaction yield increased when temperature and time reaction increased; however this parameter de- creased at low catalyst concentration ( 1% w/w and water (> 3% w/w concentration in oil.

  8. Chemical Processing Department monthly report, April 1962

    Energy Technology Data Exchange (ETDEWEB)


    This report, from the Chemical Processing Department at HAPO, for April 1962 discusses the following: Production operation; Purex and Redox operation; finished products operation; maintenance; financial operations; facilities engineering; research; employee relations; special separation processing; and auxiliaries operation.

  9. Operating Modes Of Chemical Reactors Of Polymerization

    Directory of Open Access Journals (Sweden)

    Meruyert Berdieva


    Full Text Available In the work the issues of stable technological modes of operation of main devices of producing polysterol reactors have been researched as well as modes of stable operation of a chemical reactor have been presented, which enables to create optimum mode parameters of polymerization process, to prevent emergency situations of chemical reactor operation in industrial conditions.


    Catalytic reforming is an important refinery process for the conversion of low-octane naphtha (mostly paraffins) into high-octane motor fuels (isoparaffins, naphthenes and aromatics), light gases and hydrogen. In this study the catalytic reforming process is analyzed under differ...

  11. Chemical Processing Department monthly report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    Young, J. F.; Johnson, W. E.; Reinker, P. H.; Warren, J. H.; McCullugh, R. W.; Harmon, M. K.; Gartin, W. J.; LaFollette, T. G.; Shaw, H. P.; Frank, W. S.; Grim, K. G.; Warren, J. H.


    This report, for October 1963 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  12. Chemical Processing Department monthly report, December 1964

    Energy Technology Data Exchange (ETDEWEB)


    This report for December 1964, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; and weapons manufacturing operation.

  13. Chemical Processing Division monthly report, September 1966

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.H.


    This report, from the Chemical Processing Department at HAPO for September 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee-relations, and waste management.

  14. Chemical Processing Department monthly report, February 1965

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.H.


    This report, from the Chemical Processing Department at HAPO, discusses the following: production operation; purex and redox operation; finished products operation; maintenance; financial operations; facilities engineering; research; and employee relations.

  15. Chemical Processing Department monthly report, June 1958

    Energy Technology Data Exchange (ETDEWEB)


    This report for June 1958, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  16. Chemical Processing Department monthly report, August 1965

    Energy Technology Data Exchange (ETDEWEB)


    This report, from the Chemical Processing Department at HAPO, August 1965, discusses the following: Production Operation; Purex and Redox Operation; Finished Products Operation; Maintenance; Financial Operations; facilities engineering; research; and employee Relations.

  17. Chemical Processing Division monthly report, April 1966

    Energy Technology Data Exchange (ETDEWEB)

    Reed, P.E.


    This report, from the Chemical Processing Department at HAPO for April 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; and waste management.

  18. Chemical Processing Division monthly report, February 1966

    Energy Technology Data Exchange (ETDEWEB)

    Reed, P.E.


    This report, from the Chemical Processing Department at HAPO for February 1966, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  19. A Guide for Developing Standard Operating Job Procedures for the Tertiary Chemical Treatment - Lime Precipitation Process Wastewater Treatment Facility. SOJP No. 6. (United States)

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary chemical treatment - lime precipitation process of wastewater treatment plants. Step-by-step instructions are given for pre-start up, start-up, continuous operation, and shut-down procedures. In addition, some theoretical material is presented along with some relevant…

  20. Chemical Processing Manual (United States)

    Beyerle, F. J.


    Chemical processes presented in this document include cleaning, pickling, surface finishes, chemical milling, plating, dry film lubricants, and polishing. All types of chemical processes applicable to aluminum, for example, are to be found in the aluminum alloy section. There is a separate section for each category of metallic alloy plus a section for non-metals, such as plastics. The refractories, super-alloys and titanium, are prime candidates for the space shuttle, therefore, the chemical processes applicable to these alloys are contained in individual sections of this manual.

  1. Chemical Processing Department monthly report, May 1957

    Energy Technology Data Exchange (ETDEWEB)


    The May, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation.(MB)

  2. Chemical Processing Department monthly report, September 1957

    Energy Technology Data Exchange (ETDEWEB)


    The September, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation.

  3. Chemical Processing Department monthly report, November 1956

    Energy Technology Data Exchange (ETDEWEB)


    The November 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed was the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)

  4. Chemical Processing Department monthly report, September 1956

    Energy Technology Data Exchange (ETDEWEB)


    The September, 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished products operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)

  5. Operator programs and operator processes

    NARCIS (Netherlands)

    Bergstra, J.A.; Walters, P.


    We define a notion of program which is not a computer program but an operator program: a detailed description of actions performed and decisions taken by a human operator (computer user) performing a task to achieve a goal in a simple setting consisting of that user, one or more computers and a work

  6. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.


    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  7. Chemical Processing Department monthly report for September 1963

    Energy Technology Data Exchange (ETDEWEB)


    This report, from the Chemical Processing Department at HAPO for September 1963, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations, facilities engineering; research; employee relations; weapons manufacturing operation; and power and crafts operation.

  8. Analysis, synthesis and design of chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Turton, R. [West Virginia Univ., Morgantown, WV (United States); Bailie, R.C.; Whiting, W.B.


    The book illustrates key concepts through a running example from the real world: the manufacture of benzene; covers design, economic considerations, troubleshooting and health/environmental safety; and includes exclusive software for estimating chemical manufacturing equipment capital costs. This book will help chemical engineers optimize the efficiency of production processes, by providing both a philosophical framework and detailed information about chemical process design. Design is the focal point of the chemical engineering practice. This book helps engineers and senior-level students hone their design skills through process design rather than simply plant design. It introduces all the basics of process simulation. Learn how to size equipment, optimize flowsheets, evaluate the economics of projects, and plan the operation of processes. Learn how to use Process Flow Diagrams; choose the operating conditions for a process; and evaluate the performance of existing processes and equipment. Finally, understand how chemical process design impacts health, safety, the environment and the community.

  9. Algorithms for a Single Hormone Closed-Loop Artificial Pancreas: Challenges Pertinent to Chemical Process Operations and Control

    Directory of Open Access Journals (Sweden)

    B. Wayne Bequette


    Full Text Available The development of a closed-loop artificial pancreas to regulate the blood glucose concentration of individuals with type 1 diabetes has been a focused area of research for over 50 years, with rapid progress during the past decade. The daily control challenges faced by someone with type 1 diabetes include asymmetric objectives and risks, and one-sided manipulated input action with frequent relatively fast disturbances. The major automation steps toward a closed-loop artificial pancreas include (i monitoring and overnight alarms for hypoglycemia (low blood glucose; (ii overnight low glucose suspend (LGS systems to prevent hypoglycemia; and (iii fully closed-loop systems that adjust insulin (and perhaps glucagon to maintain desired blood glucose levels day and night. We focus on the steps that we used to develop and test a probabilistic, risk-based, model predictive control strategy for a fully closed-loop artificial pancreas. We complete the paper by discussing ramifications of lessons learned for chemical process systems applications.

  10. Conceptualizing operations strategy processes

    DEFF Research Database (Denmark)

    Rytter, Niels Gorm; Boer, Harry; Koch, Christian


    Purpose - The purpose of this paper is to present insights into operations strategy (OS) in practice. It outlines a conceptualization and model of OS processes and, based on findings from an in-depth and longitudinal case study, contributes to further development of extant OS models and methods......; taking place in five dimensions of change - technical-rational, cultural, political, project management, and facilitation; and typically unfolding as a sequential and parallel, ordered and disordered, planned and emergent as well as top-down and bottom-up process. The proposed OS conceptualization...... outcomes for an OS process in practice, change agents may need to moderate their outcome ambitions, manage process dimensions and agendas in a situational manner, balance inherent process paradoxes, strive at bridging both language and reality, as well as mobilizing key stakeholders, especially middle...

  11. Chemical Processing Department monthly report for June 1961

    Energy Technology Data Exchange (ETDEWEB)


    This report, for June 1961 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  12. Molecular Thermodynamics for Chemical Process Design (United States)

    Prausnitz, J. M.


    Discusses that aspect of thermodynamics which is particularly important in chemical process design: the calculation of the equilibrium properties of fluid mixtures, especially as required in phase-separation operations. (MLH)

  13. Performance of on-site pilot static granular bed reactor (SGBR) for treating dairy processing wastewater and chemical oxygen demand balance modeling under different operational conditions. (United States)

    Oh, Jin Hwan; Park, Jaeyoung; Ellis, Timothy G


    The performance and operational stability of a pilot-scale static granular bed reactor (SGBR) for the treatment of dairy processing wastewater were investigated under a wide range of organic and hydraulic loading rates and temperature conditions. The SGBR achieved average chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS)-removal efficiencies higher than 90% even at high loading rates up to 7.3 kg COD/m(3)/day, with an hydraulic retention time (HRT) of 9 h, and at low temperatures of 11 °C. The average methane yield of 0.26 L CH4/g COD(removed) was possibly affected by a high fraction of particulate COD and operation at low temperatures. The COD mass balance indicated that soluble COD was responsible for most of the methane production. The reactor showed the capacity of the methanogens to maintain their activity and withstand organic and hydraulic shock loads.

  14. Idaho Chemical Processing Plant Process Efficiency improvements

    Energy Technology Data Exchange (ETDEWEB)

    Griebenow, B.


    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  15. 一种新型精细化工过程仿真操作培训系统的开发%The development of a novel process simulation operation-training system for fine chemical production processes

    Institute of Scientific and Technical Information of China (English)

    邹志云; 尚桂如; 桂新军; 刘燕军; 郭宁; 吴春华


    精细化工过程工艺复杂、操作繁琐,对操作人员的操作技能要求高,但用实际生产装置培训操作人员受到很多限制,需要开发仿真操作培训系统来培训操作人员.而现有的仿真培训系统开发方法不易做到模块化、通用化,开发不方便,因此需要研究新的更高效的仿真系统开发方法.使用通用监控和数据采集组态软件(Supervisory Control and Data Acquisition,简称SCADA)作为图形用户界面开发平台,综合应用机理建模法和动态补偿建模法建立过程动态模型,提出了一种新的基于通用监控和数据采集组态软件(SCADA)过程仿真系统开发模式.通过设计一种动态链接库函数,经过组态软件的数据库把动态模型计算程序和图形用户界面相连,成功地实现了过程仿真培训系统的集成,开发了一种SCADA模式精细化工生产过程仿真培训系统,其组成更加模块化,开发方法更加通用化,更易开发.一套精细化工生产装置的仿真培训实践表明,该仿真培训系统操作运行效果生动逼真,能较好地满足生产操作培训需要,改善了操作培训效果,提高了操作培训效率.%Fine chemical processes usually are very complex, and their operations are heavy and complicated. The success operations of fine chemical processes require high skill operators. As there are lots of limitations to use real fine chemical production plants to train operators, we need to develop process operation simulation training system to train process operators. However, the traditional development methods of process operation simulation training system are inconvenient due to their poor modularity, so new development strategies of process operation simulation training system with high efficiency should be studied. In this paper, a new Supervisory Control and Data Acquisition (SCADA) simulation-mode is put forward according to the operation training characteristics of fine chemical

  16. Chemical Processing Department monthly report for February 1959

    Energy Technology Data Exchange (ETDEWEB)


    This report for February 1959, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  17. Chemical Processing Department monthly report for July 1957

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F. K.; Johnson, W. E.; MacCready, W. K.; Warren, J. H.; Schroeder, O. C.; Groswith, C. T.; Mobley, W. N.; LaFollette, T. G.; Grim, K. G.; Shaw, H. P.; Richards, R. B.; Roberts, D. S.


    This report, for July 1957 from the Chemical Processing Department at HAPO, discusses the following; Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  18. Chemical Processing Department monthly report for January 1959

    Energy Technology Data Exchange (ETDEWEB)


    This report for January 1959, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance: Financial operations; facilities engineering; research; and employee relations.

  19. Chemical Processing Department monthly report for December 1956

    Energy Technology Data Exchange (ETDEWEB)


    The December, 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)

  20. Chemical Processing Department monthly report for September 1958

    Energy Technology Data Exchange (ETDEWEB)


    The September, 1958 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation. (MB)

  1. The Operations Process (United States)


    particular operation or exercise, place a nickname or code words before the letter, such as BALD EAGLE (D-day) or ANVIL EXPRESS (M-day). EXPRESSING TIME E...York: Vintage Books, 1991. Fuller, J. F. C. Generalship: Its Diseases and Their Cure . Harrisburg, PA: Military Service Publishing Co., 1936

  2. Chemical Processing Department monthly report for June 1963

    Energy Technology Data Exchange (ETDEWEB)


    This report, from the Chemical Processing Department at HAPO for June 1963, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations, facilities engineering; research; and employee relations; weapons manufacturing operation; and power and crafts operation.

  3. A chemical system that mimics decoding operations. (United States)

    Giansante, Carlo; Ceroni, Paola; Venturi, Margherita; Sakamoto, Junji; Schlüter, A Dieter


    The chemical information stored in equilibrium mixtures of molecular species is larger than the sum of information carried by the individual molecules. Protonation equilibria in dilute dichloromethane solution of a shape-persistent macrocycle bearing two 2,2'-bipyridine units and two Coumarin 2 moieties (see figure) can be exploited to mimic decoding operations.

  4. Integrated Process Design, Control and Analysis of Intensified Chemical Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil

    chemical processes; for example, intensified processes such as reactive distillation. Most importantly, it identifies and eliminates potentially promising design alternatives that may have controllability problems later. To date, a number of methodologies have been proposed and applied on various problems......Process design and process control have been considered as independent problems for many years. In this context, a sequential approach is used where the process is designed first, followed by the control design. However, this sequential approach has its limitations related to dynamic constraint...... violations, for example, infeasible operating points, process overdesign or under-performance. Therefore, by using this approach, a robust performance is not always guaranteed. Furthermore, process design decisions can influence process control and operation. To overcome these limitations, an alternative...

  5. Quantum quadratic operators and processes

    CERN Document Server

    Mukhamedov, Farrukh


    Covering both classical and quantum approaches, this unique and self-contained book presents the most recent developments in the theory of quadratic stochastic operators and their Markov and related processes. The asymptotic behavior of dynamical systems generated by classical and quantum quadratic operators is investigated and various properties of quantum quadratic operators are studied, providing an insight into the construction of quantum channels. This book is suitable as a textbook for an advanced undergraduate/graduate level course or summer school in quantum dynamical systems. It can also be used as a reference book by researchers looking for interesting  problems to work on, or useful techniques and discussions of particular problems. Since it includes the latest developments in the fields of quadratic dynamical systems, Markov processes and quantum stochastic processes, researchers at all levels are likely to find the book inspiring and useful.

  6. Multiargument logical operations performed with excitable chemical medium (United States)

    Gorecka, J.; Gorecki, J.


    Assuming that a pulse of excitation corresponds to the logical "true" state one can use a chemical medium for information processing and construct devices that execute the basic binary logical operations. Here we discuss direct chemical realizations of four argument logical functions equivalent to special types of McCulloch-Pitts neuron. We demonstrate that if a proper geometrical arrangement of excitable and nonexcitable areas is used then the construction of the considered devices can be much simpler than in the case where they are composed of chemical binary logical gates.

  7. Personal Simulator of Chemical Process

    Institute of Scientific and Technical Information of China (English)



    The Personal Simulator of chemical process (PS) means that fully simulationsoftware can be run on one personal computer. This paper describes the kinds of PSprograms, its features, the graphic functions and three examples. PS programs are allbased on one object-oriented and real-time simulation software environment. Authordevelops this simulation software environment. An example of the batch reaction kineticsmodel is also described. Up to now a lot of students in technical schools and universitieshave trained on PS. The training results are very successful.

  8. Optimal operation of batch membrane processes

    CERN Document Server

    Paulen, Radoslav


    This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from th...

  9. SAPHYR: A new chemical stabilisation process

    Energy Technology Data Exchange (ETDEWEB)

    Baratto, Gilles; Fernandes, Paulo; Patria; Lucie; Cretenot, Didier


    Odour control and dewaterability are the key criteria during biosolids storage either for use on land or incineration. In the case of use on land, stabilisation/sanitisation are also part of the key criteria. Vivendi Water Systems developed the SAPHYR process to answer those three requirements. The SAPHYR process principle is based on an acidification of biosolids associated to the addition of nitrite. The main results are a noticeable odour control lasting other periods of 6 to 9 months, an improved dewaterability (2 to 4 points of dryness) and depending on chemical dosages a stabilisation or a sanitisation of biosolids. Another characteristic is that biosolids conditioned with the Saphyr process can be used both on land or for incineration. After several demonstrations on more than 5 different plants throughout France on a 10 000 p.e. unit, the first industrial reference of the process was installed on a 50 000 population equivalent wastewater treatment plant in 2002 and has been in operation since december 2002. A close monitoring of the process operation, the biosolids quality and its storage and spreading on land is planned from November 2002 to spring 2003. A comparison with lime addition will take place on the same plant. The present paper will produce a presentation of the SAPHYR process, its operation on a 50 000 pe WWTP and its different applications for biosolids storage.

  10. Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, B.J.


    This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

  11. Stochastic processes in chemical physics

    CERN Document Server

    Shuler, K E


    The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

  12. Experiments To Demonstrate Chemical Process Safety Principles. (United States)

    Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.


    Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…

  13. Reproducibility of operator processing for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sui Shen; DeNardo, Gerald L.; DeNardo, Sally J.; Aina, Yuan; DeNardo, Diane A.; Lamborn, Kathleen R


    Reproducibility of operator processing for radiation dose and biological half-life was assessed for radioimmunotherapy. Mean coefficient of variation for intra-operator consecutive processing and for inter-operator processing was less than 15% for all tissues. The mean coefficient of variation for intra-operator processing over 2 wk or inter-operator processing comparing an experienced and less experienced operator was generally greater, and particularly so for tumors. Satisfactory reproducibility was achievable using visual determination of regions of interests after 80 h of training.

  14. Chemical industrial wastewater treated by combined biological and chemical oxidation process. (United States)

    Guomin, Cao; Guoping, Yang; Mei, Sheng; Yongjian, Wang


    Wastewaters from phenol and rubber synthesis were treated by the activated sludge process in a large-scale chemical factory in Shanghai, but the final effluent quality cannot conform with the local discharge limit without using river water for dilution. Therefore, this chemical factory had to upgrade its wastewater treatment plant. To fully use the present buildings and equipment during upgrading of the chemical factory's wastewater treatment plant and to save operation costs, a sequential biological pre-treatement, chemical oxidation, and biological post-treatment (or BCB for short) process had been proposed and investigated in a pilot trial. The pilot trial results showed that about 80% COD in the chemical wastewater could be removed through anoxic and aerobic degradation in the biological pre-treatement section, and the residual COD in the effluent of the biological pre-treatment section belongs to refractory chemicals which cannot be removed by the normal biological process. The refractory chemicals were partial oxidized using Fenton's reagent in the chemical oxidation section to improve their biodegradability; subsequently the wastewater was treated by the SBR process in the biological post-treatment section. The final effluent COD reached the first grade discharge limit (process, the operation cost of the BCB process increased by about 0.5 yuan (RMB) per cubic metre wastewater, but about 1,240,000 m(3) a(-1) dilution water could be saved and the COD emission could be cut down by 112 tonne each year.

  15. Markov Chains and Chemical Processes (United States)

    Miller, P. J.


    Views as important the relating of abstract ideas of modern mathematics now being taught in the schools to situations encountered in the sciences. Describes use of matrices and Markov chains to study first-order processes. (Author/DF)

  16. The role of chemical engineering in pharmaceutical chemical process development. (United States)

    Landau, R N; Blacklock, T J; Girgis, M J; Tedesco, A


    The task of chemical process development in the pharmaceutical industry has grown into a multidisciplinary endeavor requiring years to complete. Increased competition in the pharmaceutical Additionally, the ever-tightening regulatory environment further compromises the business objective (ultimately, profits). This has required careful analysis of the activities within development. This work discusses the results of this analysis, which shows how a balance between minimal resource utilization and phased development achievements can be reached. The cycle of development, from inception to completion, is examined. Special emphasis is placed upon the role of chemical engineering and its appropriate deployment. Simple examples of the synergies that are possible between chemistry and chemical engineering are also given.

  17. Fluidized-bed reactors processes and operating conditions

    CERN Document Server

    Yates, John G


    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  18. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)


    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown...

  19. Heating a chemical current source which operates at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumata, T.; Khosikhara, N.


    A chamber for catalytic ignition of hydrogen or gasoline is installed in a chemical current source. The isolated heat heats the chemical current source with a low temperature of the environment providing its optimal operational conditions. The fuel is fed into the chamber from a tank or chamber located in the body of the chemical current source.

  20. Chemical sensing in process analysis. (United States)

    Hirschfeld, T; Callis, J B; Kowalski, B R


    Improvements in process control, which determine production efficiency and product quality, are critically dependent upon on-line process analysis. The technology of the required instrumentation will be substantially expanded by advances in sensing devices. In the future, the hardware will consist of sensor arrays and miniaturized instruments fabricated by microlithography and silicon micromachining. Chemometrics will be extensively used in software to provide error detection, selfcalibration, and correction as well as multivariate data analysis for the determination of anticipated and unanticipated species. A number of examples of monolithically fabricated sensors now exist and more will be forthcoming as the new paradigms and new tools are widely adopted. A trend toward not only on-line but even in-product sensors is becoming discernible.

  1. NEP processing, operations, and disposal (United States)

    Stancati, Mike

    Several recent studies by ASAO/NPO staff members at LeRC and by other organizations have highlighted the potential benefits of using Nuclear Electric Propulsion (NEP) as the primary transportation means for some of the proposed missions of the Space Exploration Initiative. These include the potential to reduce initial mass in orbit and Mars transit time. Modular NEP configurations also introduce fully redundant main propulsion to Mars flight systems adding several abort or fall back options not otherwise available. Recent studies have also identified mission operations, such as on orbital assembly, refurbishment, and reactor disposal, as important discriminators for propulsion system evaluation. This study is intended to identify and assess 'end-to-end' operational issues associated with using NEP for transporting crews and cargo between Earth and Mars. We also include some consideration of lunar cargo transfer as well.

  2. Supporting chemical process design under uncertainty


    Wechsung,A.; Oldenburg, J; J. Yu; Polt,A.


    A major challenge in chemical process design is to make design decisions based on partly incomplete or imperfect design input data. Still, process engineers are expected to design safe, dependable and cost-efficient processes under these conditions. The complexity of typical process models limits intuitive engineering estimates to judge the impact of uncertain parameters on the proposed design. In this work, an approach to quantify the effect of uncertainty on a process design in order to enh...

  3. Modeling heterogeneous chemical processes on aerosol surface

    Institute of Scientific and Technical Information of China (English)

    Junjun Deng; Tijian Wang; Li Liu; Fei Jiang


    To explore the possible impact of heterogeneous chemical processes on atmospheric trace components,a coupled box model including gas-phase chemical processes,aerosol thermodynamic equilibrium processes,and heterogeneous chemical processes on the surface of dust,black carbon(BC)and sea salt is set up to simulate the effects of heterogeneous chemistry on the aerosol surface,and analyze the primary factors affecting the heterogeneous processes.Results indicate that heterogeneous chemical processes on the aerosol surface in the atmosphere will affect the concentrations of trace gases such as H2O2,HO2,O3,NO2,NO3,HNO3 and SO2,and aerosols such as SO42-,NO3-and NH4+.Sensitivity tests suggest that the magnitude of the impact of heterogeneous processes strongly depends on aerosol concentration and the surface uptake coefficients used in the box model.However,the impact of temperature on heterogeneous chemical processes is considerably less.The"renoxification"of HNO3 will affect the components of the troposphere such as nitrogen oxide and ozone.

  4. Performing process migration with allreduce operations (United States)

    Archer, Charles Jens; Peters, Amanda; Wallenfelt, Brian Paul


    Compute nodes perform allreduce operations that swap processes at nodes. A first allreduce operation generates a first result and uses a first process from a first compute node, a second process from a second compute node, and zeros from other compute nodes. The first compute node replaces the first process with the first result. A second allreduce operation generates a second result and uses the first result from the first compute node, the second process from the second compute node, and zeros from others. The second compute node replaces the second process with the second result, which is the first process. A third allreduce operation generates a third result and uses the first result from first compute node, the second result from the second compute node, and zeros from others. The first compute node replaces the first result with the third result, which is the second process.

  5. An Extended Algorithm of Flexibility Analysis in Chemical Engineering Processes

    Institute of Scientific and Technical Information of China (English)


    An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibility region of the process system operation. The hyperrectangular flexibility region determined by the extended algorithm is larger than that calculated by the previous algorithms. The limitation of the proposed algorithm due to imperfect convexity and its corresponding verification measure are also discussed. Both numerical and actual chemical process examples are presented to demonstrate the effectiveness of the new algorithm.

  6. Vibration and Stability of 3000-hp, Titanium Chemical Process Blower

    Directory of Open Access Journals (Sweden)

    Les Gutzwiller


    Full Text Available This 74-in-diameter blower had an overhung rotor design of titanium construction, operating at 50 pounds per square inch gauge in a critical chemical plant process. The shaft was supported by oil-film bearings and was directdriven by a 3000-hp electric motor through a metal disk type of coupling. The operating speed was 1780 rpm. The blower shaft and motor shaft motion was monitored by Bently Nevada proximity probes and a Model 3100 monitoring system.

  7. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)



    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  8. Chemicals Industry New Process Chemistry Roadmap

    Energy Technology Data Exchange (ETDEWEB)



    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  9. Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations. (United States)

    Russell, T. W. F.


    Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)

  10. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih


    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  11. Occurrence reporting and processing of operations information

    Energy Technology Data Exchange (ETDEWEB)



    DOE O 232.1A, Occurrence Reporting and Processing of Operations Information, and 10 CFR 830.350, Occurrence Reporting and Processing of Operations Information (when it becomes effective), along with this manual, set forth occurrence reporting requirements for Department of Energy (DOE) Departmental Elements and contractors responsible for the management and operation of DOE-owned and -leased facilities. These requirements include categorization of occurrences related to safety, security, environment, health, or operations (``Reportable Occurrences``); DOE notification of these occurrences; and the development and submission of documented follow-up reports. This Manual provides detailed information for categorizing and reporting occurrences at DOE facilities. Information gathered by the Occurrence Reporting and processing System is used for analysis of the Department`s performance in environmental protection, safeguards and security, and safety and health of its workers and the public. This information is also used to develop lessons learned and document events that significantly impact DOE operations.

  12. New Vistas in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Zhang, Lei; Babi, Deenesh Kavi; Gani, Rafiqul


    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product......, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design....... Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack...

  13. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.


    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  14. Guidelines for safe process operations and maintenance

    CERN Document Server


    First-line managers have to maintain the integrity of facilities, control manufacturing processes, and handle unusual or emergency situations, as well as respond to the pressures of production demand. On a daily basis, they are closest to the operating personnel who may be injured by a process accident, and they are in the best position to spot problem conditions and to act to contain them. This book offers these managers ""how-to"" information on process safety management program execution in the operations and maintenance departments, recommending technical and administrative process safety

  15. Process plant equipment operation, control, and reliability

    CERN Document Server

    Holloway, Michael D; Onyewuenyi, Oliver A


    "Process Plant Equipment Book is another great publication from Wiley as a reference book for final year students as well as those who will work or are working in chemical production plants and refinery…" -Associate Prof. Dr. Ramli Mat, Deputy Dean (Academic), Faculty of Chemical Engineering, Universiti Teknologi Malaysia "…give[s] readers access to both fundamental information on process plant equipment and to practical ideas, best practices and experiences of highly successful engineers from around the world… The book is illustrated throughout with numerous black & white p

  16. Chemical computing with reaction-diffusion processes. (United States)

    Gorecki, J; Gizynski, K; Guzowski, J; Gorecka, J N; Garstecki, P; Gruenert, G; Dittrich, P


    Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction-diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov-Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed.

  17. Multidimensional energy operator for image processing (United States)

    Maragos, Petros; Bovik, Alan C.; Quatieri, Thomas F.


    The 1-D nonlinear differential operator (Psi) (f) equals (f')2 - ff' has been recently introduced to signal processing and has been found very useful for estimating the parameters of sinusoids and the modulating signals of AM-FM signals. It is called an energy operator because it can track the energy of an oscillator source generating a sinusoidal signal. In this paper we introduce the multidimensional extension (Phi) (f) equals (parallel)DELf(parallel)2 - fDEL2f of the 1-D energy operator and briefly outline some of its applications to image processing. We discuss some interesting properties of the multidimensional operator and develop demodulation algorithms to estimate the amplitude envelope and instantaneous frequencies of 2-D spatially-varying AM-FM signals, which can model image texture. The attractive features of the multidimensional operator and the related amplitude/frequency demodulation algorithms are their simplicity, efficiency, and ability to track instantaneously- varying spatial modulation patterns.

  18. Quanwei Copper Processing Base Put Into Operation

    Institute of Scientific and Technical Information of China (English)


    <正>Quanwei (Tongling) Copper Co.,Ltd’s copper processing base in Tongling of Anhui Province has been put into operation at the end of De- cember last year. It is reported that the copper processing project, invested by Zhengwei (Shenzhen) Technology

  19. Utilization of chemical looping strategy in coal gasification processes

    Institute of Scientific and Technical Information of China (English)

    Liangshih Fan; Fanxing Li; Shwetha Ramkumar


    Three chemical looping gasification processes, i. e. Syngas Chemical Looping (SCL) process, Coal Direct Chemical Looping (CDCL) process, and Calcium Looping process (CLP), are being developed at the Ohio State University (OSU). These processes utilize simple reaction schemes to convert carbonaceous fuels into products such as hydrogen, electricity, and synthetic fuels through the transformation of a highly reactive, highly recyclable chemical intermediate. In this paper, these novel chemical looping gasification processes are described and their advantages and potential challenges for commercialization are discussed.

  20. 77 FR 7613 - Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108 (United States)


    ... COMMISSION Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108... renewal of Facility Operating License No. R-108 (``Application''), which currently authorizes the Dow Chemical Company (the licensee) to operate the Dow Chemical TRIGA Research Reactor (DTRR) at a...

  1. Chemical and physicochemical characteristics changes during passion fruit juice processing

    Directory of Open Access Journals (Sweden)

    Aline Gurgel Fernandes


    Full Text Available Passion fruit is widely consumed due to its pleasant flavour and aroma acidity, and it is considered very important a source of minerals and vitamins. It is used in many products such as ice-cream, mousses and, especially, juices. However, the processing of passion fruit juice may modify the composition and biodisponibility of the bioactive compounds. Investigations of the effects of processing on nutritional components in tropical juices are scarce. Frequently, only losses of vitamin C are evaluated. The objective of this paper is to investigate how some operations of passion fruit juice processing (formulation/homogeneization/thermal treatment affect this product's chemical and physicochemical characteristics. The results showed that the chemical and physicochemical characteristics are little affected by the processing although a reduction in vitamin C contents and anthocyanin, large quantities of carotenoids was verified even after the pasteurization stage.

  2. DOE handbook: Guide to good practices for training and qualification of chemical operators

    Energy Technology Data Exchange (ETDEWEB)



    The purpose of this Handbook is to provide contractor training organizations with information that can be used as a reference to refine existing chemical operator training programs, or develop new training programs where no program exists. This guide, used in conjunction with facility-specific job analyses, will provide a framework for training and qualification programs for chemical operators at DOE reactor and nonreactor facilities. Recommendations for qualification are made in four areas: education, experience, physical attributes, and training. Contents include: initial qualification; administrative training; industrial safety training; specialized skills training; on-the-job training; trainee evaluation; continuing training; training effectiveness evaluation; and program records. Two appendices describe Fundamentals training and Process operations. This handbook covers chemical operators in transportation of fuels and wastes, spent fuel receiving and storage, fuel disassembly, fuel reprocessing, and both liquid and solid low-level waste processing.

  3. Risk management of exposure to chemicals under operational conditions

    NARCIS (Netherlands)

    Langenberg, J.P.


    The HFM panel has decided to install an Exploratory Team, ET-078, which should advise whether or not a Technical Group (TG) should be established on the subject of risk management of exposure to chemicals under operational conditions. This paper described the context and approach of ET-078.

  4. Cask Processing Enclosure Specification/Operation - 12231

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Ronald [Transuranic Waste Processing Center, Lenoir City TN, 37771 (United States)


    Following an evaluation of throughput rates in the Hot Cell at the Transuranic Waste Processing Center and considering the variability in the waste with respect to actual dose rates a new approach to processing transuranic waste was necessary. Compounding the issue was the remote equipment poor reliability and high down-time. After considering all the factors, the evaluation resulted in the design and construction of a new waste processing area for handling the concrete casks that predominately contain contact handled transuranic (TRU) waste. The area is called the Cask Processing Enclosure and essentially the Cask Processing Enclosure mimics the projects current process techniques used for processing Contact Handled -TRU waste in the existing Box Breakdown Area and Glovebox. The Cask Processing Enclosure approach was developed based on a review of the RH processing throughput rates in the Hot Cell. As the process was reviewed consideration was given to the variability in the waste with respect to actual dose rates and the lack of equipment reliability and high wear in the Hot Cell. Based on that review, a new contact handled processing area for handling the concrete casks is being constructed and startup is expected shortly following WM2012. The Cask Processing Enclosure essentially mimics the projects current process techniques used for processing Contact Handled waste in the existing Box Breakdown Area and Glovebox and the design takes into consideration six years of operational experience. (authors)

  5. Reactor operating procedures for startup of continuously-operated chemical plants

    NARCIS (Netherlands)

    Verwijs, J.W.; Kösters, P.H.; Berg, van den H.; Westerterp, K.R.


    Rules are presented for the startup of an adiabatic tubular reactor, based on a qualitative analysis of the dynamic behavior of continuously-operated vapor- and liquid-phase processes. The relationships between the process dynamics, operating criteria, and operating constraints are investigated, sin

  6. Chemical Mechanical Planarization of Cu: Nanoscale Processes (United States)

    Arthur, Michael; Fishbeck, Kelly; Muessig, Kara; McDonald, James; Williams, Christine; White, Daniel; Koeck, Deborah; Perry, Scott; Galloway, Heather


    Interconnect lines in state of the art integrated circuits are made of copper in a process that requires the repeated planarization of the copper layer. During this process the material is subjected to an aqueous slurry containing active chemicals, corrosion inhibitors and abrasive particles. A model slurry buffered to pH2, pH4 and pH6, contained nitric acid, silica particles and benzotriazole (BTA) as a corrosion inhibitor. The degree of copper planarization was investigated as a function of slurry composition and pH using atomic force microscopy. Chemical surface changes can be explained by the effect of slurry composition on the charge at the material surface. This surface charge controls the amount of friction between the abrasive and the surface which, in turn, effects the global planarization of the material. Experiments using a macroscopic polishing system with AFM characterization along with the microscopic interaction of the AFM tip and sample provide insights into the fundamental mechanisms of a planarization process.

  7. Supercritical Water Process for the Chemical Recycling of Waste Plastics (United States)

    Goto, Motonobu


    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  8. GREENSCOPE: A Method for Modeling Chemical Process ... (United States)

    Current work within the U.S. Environmental Protection Agency’s National Risk Management Research Laboratory is focused on the development of a method for modeling chemical process sustainability. The GREENSCOPE methodology, defined for the four bases of Environment, Economics, Efficiency, and Energy, can evaluate processes with over a hundred different indicators. These indicators provide a means for realizing the principles of green chemistry and green engineering in the context of sustainability. Development of the methodology has centered around three focal points. One is a taxonomy of impacts that describe the indicators and provide absolute scales for their evaluation. The setting of best and worst limits for the indicators allows the user to know the status of the process under study in relation to understood values. Thus, existing or imagined processes can be evaluated according to their relative indicator scores, and process modifications can strive towards realizable targets. A second area of focus is in advancing definitions of data needs for the many indicators of the taxonomy. Each of the indicators has specific data that is necessary for their calculation. Values needed and data sources have been identified. These needs can be mapped according to the information source (e.g., input stream, output stream, external data, etc.) for each of the bases. The user can visualize data-indicator relationships on the way to choosing selected ones for evalua

  9. 21 CFR 170.19 - Pesticide chemicals in processed foods. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pesticide chemicals in processed foods. 170.19... chemicals in processed foods. When pesticide chemical residues occur in processed foods due to the use of... exemption granted or a tolerance prescribed under section 408 of the Act, the processed food will not...

  10. 21 CFR 570.19 - Pesticide chemicals in processed foods. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pesticide chemicals in processed foods. 570.19... chemicals in processed foods. When pesticide chemical residues occur in processed foods due to the use of... exemption granted or a tolerance prescribed under section 408 of the act, the processed food will not...

  11. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando


    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  12. 一个化工过程运行系统的多层信息集成平台%A Multi-layer Information Integration Platform for Chemical Process Operation Systems

    Institute of Scientific and Technical Information of China (English)

    钱宇; 李荷华; 李秀喜


    In the process industry, automation and process control systems are widely implemented, information integration is however far away from satisfactory. It remains a hard job for senior managers to make decisions based on the plant-wide real-time integrated information. This paper proposes a multi-layer information integration platform. In the data integration level, the standard for the exchange of product (STEP) and the extensible markup language (XML) are used to unify these data of the chemical process. In the model integration level, the models are integrated by using the neutral model repository and CAPE-OPEN. In the integration of process task, the common object request broker architecture (CORBA) is used as the communication mediator. The XML is taken as the data standard. A uniform information platform is thus constructed and realized. The proposed information integration platform is satisfactorily implemented to solve the Tennessee Eastman (TE) problem.

  13. A Systematic Computer-Aided Framework for Integrated Design and Control of Chemical Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted;

    Chemical processes are conventionally designed through a sequential approach. In this sequential approach, first, a steady-state process design is obtained and then, control structure synthesis that, in most of the cases, is based on heuristics is performed. Therefore, process design and process......-defined operational conditions whereas controllability is considered to maintain desired operating points of the process at any kind of imposed disturbance under normal operating conditions. In this work, a systematic hierarchical computer-aided framework for integrated process design and control of chemical...... control and operation considerations have been studied independently. Furthermore, this sequential approach does not adequately answer this question, “How process design decisions influence process control and operation?”. In order to answer this question, it is necessary to consider process...

  14. Chemically optimizing operational efficiency of molecular rotary motors. (United States)

    Conyard, Jamie; Cnossen, Arjen; Browne, Wesley R; Feringa, Ben L; Meech, Stephen R


    Unidirectional molecular rotary motors that harness photoinduced cis-trans (E-Z) isomerization are promising tools for the conversion of light energy to mechanical motion in nanoscale molecular machines. Considerable progress has been made in optimizing the frequency of ground-state rotation, but less attention has been focused on excited-state processes. Here the excited-state dynamics of a molecular motor with electron donor and acceptor substituents located to modify the excited-state reaction coordinate, without altering its stereochemistry, are studied. The substituents are shown to modify the photochemical yield of the isomerization without altering the motor frequency. By combining 50 fs resolution time-resolved fluorescence with ultrafast transient absorption spectroscopy the underlying excited-state dynamics are characterized. The Franck-Condon excited state relaxes in a few hundred femtoseconds to populate a lower energy dark state by a pathway that utilizes a volume conserving structural change. This is assigned to pyramidalization at a carbon atom of the isomerizing bridging double bond. The structure and energy of the dark state thus reached are a function of the substituent, with electron-withdrawing groups yielding a lower energy longer lived dark state. The dark state is coupled to the Franck-Condon state and decays on a picosecond time scale via a coordinate that is sensitive to solvent friction, such as rotation about the bridging bond. Neither subpicosecond nor picosecond dynamics are sensitive to solvent polarity, suggesting that intramolecular charge transfer and solvation are not key driving forces for the rate of the reaction. Instead steric factors and medium friction determine the reaction pathway, with the sterically remote substitution primarily influencing the energetics. Thus, these data indicate a chemical method of optimizing the efficiency of operation of these molecular motors without modifying their overall rotational frequency.

  15. Thermodynamics principles characterizing physical and chemical processes

    CERN Document Server

    Honig, Jurgen M


    This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory''s approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics.The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relat...

  16. Quantum Chemical Strain Analysis For Mechanochemical Processes. (United States)

    Stauch, Tim; Dreuw, Andreas


    The use of mechanical force to initiate a chemical reaction is an efficient alternative to the conventional sources of activation energy, i.e., heat, light, and electricity. Applications of mechanochemistry in academic and industrial laboratories are diverse, ranging from chemical syntheses in ball mills and ultrasound baths to direct activation of covalent bonds using an atomic force microscope. The vectorial nature of force is advantageous because specific covalent bonds can be preconditioned for rupture by selective stretching. However, the influence of mechanical force on single molecules is still not understood at a fundamental level, which limits the applicability of mechanochemistry. As a result, many chemists still resort to rules of thumb when it comes to conducting mechanochemical syntheses. In this Account, we show that comprehension of mechanochemistry at the molecular level can be tremendously advanced by quantum chemistry, in particular by using quantum chemical force analysis tools. One such tool is the JEDI (Judgement of Energy DIstribution) analysis, which provides a convenient approach to analyze the distribution of strain energy in a mechanically deformed molecule. Based on the harmonic approximation, the strain energy contribution is calculated for each bond length, bond angle and dihedral angle, thus providing a comprehensive picture of how force affects molecules. This Account examines the theoretical foundations of quantum chemical force analysis and provides a critical overview of the performance of the JEDI analysis in various mechanochemical applications. We explain in detail how this analysis tool is to be used to identify the "force-bearing scaffold" of a distorted molecule, which allows both the rationalization and the optimization of diverse mechanochemical processes. More precisely, we show that the inclusion of every bond, bending and torsion of a molecule allows a particularly insightful discussion of the distribution of mechanical

  17. New Vistas in Chemical Product and Process Design. (United States)

    Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul


    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates.


    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.


    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  19. PLANCK LFI Level 1 Processing During Operations (United States)

    Morisset, N.; Rohlfs, R.; Türler, M.; Meharga, M.; Binko, P.; Beck, M.; Frailis, M.; Zacchei, A.; Galeotta, S.


    The PLANCK satellite with two on-board instruments, a Low Frequency Instrument (LFI) and a High Frequency Instrument (HFI) is foreseen to be launched in August 2008 with Ariane 5. The Data Processing Centre (DPC) in Trieste, Italy for LFI is responsible for processing the PLANCK LFI data. The ISDC data centre in Switzerland is responsible for developing/installing and maintaining the software for the LFI Level 1 data processing presented here. The main tasks of the Level 1 processing are to retrieve the daily available consolidated scientific and housekeeping (HK) data of the LFI instrument from the Mission Operation Centre in Darmstadt (MOC); to sort them by time and by type (detector, observing mode, etc...); to extract the spacecraft attitude information from auxiliary files; to flag the data according to several criteria; and to archive the resulting Time Ordered Information (TOI). The TOI data generated by the level 1 pipeline are the input for the more scientific LFI level 2 processing. The TOI are first stored in FITS format and then ingested into the Data Management Component (DMC) system, which is the interface to the LFI DPC database. In addition, the ISDC also developed software tools to display and perform a quick look analysis of the data.

  20. A review of operational, regional-scale, chemical weather forecasting models in Europe

    Directory of Open Access Journals (Sweden)

    J. Kukkonen


    Full Text Available Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed in this article include how weather forecasting and atmospheric chemistry models are integrated into chemical weather forecasting systems, how physical processes are incorporated into the models through parameterization schemes, how the model architecture affects the predicted variables, and how air chemistry and aerosol processes are formulated. In addition, we discuss sensitivity analysis and evaluation of the models, user operational requirements, such as model availability and documentation, and output availability and dissemination. In this manner, this article allows for the evaluation of the relative strengths and weaknesses of the various modelling systems and modelling approaches. Finally, this article highlights the most prominent gaps of knowledge for chemical weather forecasting models and suggests potential priorities for future research directions, for the following selected focus areas: emission inventories, the integration of numerical weather prediction and atmospheric chemical transport models, boundary conditions and nesting of models, data assimilation of the various chemical species, improved understanding and parameterization of physical processes, better evaluation of models against data and the construction of model ensembles.

  1. Chemical Processing Department monthly report, October 1957

    Energy Technology Data Exchange (ETDEWEB)


    Record highs were set for Pu output in separations plants and for amount of U processed in Purex. UO{sub 3} production and shipments exceeded schedules. Fabrication of 200 and 250 Model assemblies is reported. Unfabricated Pu production was 8.5% short. Nitric acid recovery in Purex and Redox is reported. Prototype anion exchange system for Pu was tested in Purex. Hinged agitator arms with shear pin feature was installed in UO{sub 3} plant H calciner. Operation of continuous type Task I, II facility improved. DBBP is considered for Recuplex. Methods for Pu in product solutions agreed to within 0. 10%. Purex recycle dock shelter is complete. Other projects are reported.

  2. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes. (United States)


    ... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of...

  3. Microfabricated Instrumentation for Chemical Sensing in Industrial Process Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, J. M.


    The monitoring of chemical constituents in manufacturing processes is of economic importance to most industries. The monitoring and control of chemical constituents may be of importance for product quality control or, in the case of process effluents, of environmental concern. The most common approach now employed for chemical process control is to collect samples which are returned to a conventional chemical analysis laboratory. This project attempts to demonstrate the use of microfabricated structures, referred to as 'lab-on-a-chip' devices, that accomplish chemical measurement tasks that emulate those performed in the conventional laboratory. The devices envisioned could be used as hand portable chemical analysis instruments where samples are analyzed in the field or as emplaced sensors for continuous 'real-time' monitoring. This project focuses on the development of filtration elements and solid phase extraction elements that can be monolithically integrated onto electrophoresis and chromatographic structures pioneered in the laboratory. Successful demonstration of these additional functional elements on integrated microfabricated devices allows lab-on-a-chip technologies to address real world samples that would be encountered in process control environments. The resultant technology has a broad application to industrial environmental monitoring problems. such as monitoring municipal water supplies, waste water effluent from industrial facilities, or monitoring of run-off from agricultural activities. The technology will also be adaptable to manufacturing process control scenarios. Microfabricated devices integrating sample filtration, solid phase extraction, and chromatographic separation with solvent programming were demonstrated. Filtering of the sample was accomplished at the same inlet with an array of seven channels each 1 {micro}m deep and 18 {micro}m wide. Sample concentration and separation were performed on channels 5 {micro}m deep

  4. Physical-chemical processes in a protoplanetary cloud (United States)

    Lavrukhina, Avgusta K.


    Physical-chemical processes in a protoplanetary cloud are discussed. The following subject areas are covered: (1) characteristics of the chemical composition of molecular interstellar clouds; (2) properties and physico-chemical process in the genesis of interstellar dust grains; and (3) the isotope composition of volatiles in bodies of the Solar System.

  5. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process. (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein


    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  6. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    Full Text Available Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard. In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  7. Chemical Analysis of Wastewater from Unconventional Drilling Operations

    Directory of Open Access Journals (Sweden)

    Jonathan B. Thacker


    Full Text Available Trillions of liters of wastewater from oil and gas extraction are generated annually in the US. The contribution from unconventional drilling operations (UDO, such as hydraulic fracturing, to this volume will likely continue to increase in the foreseeable future. The chemical content of wastewater from UDO varies with region, operator, and elapsed time after production begins. Detailed chemical analyses may be used to determine its content, select appropriate treatment options, and identify its source in cases of environmental contamination. In this study, one wastewater sample each from direct effluent, a disposal well, and a waste pit, all in West Texas, were analyzed by gas chromatography-mass spectrometry, inductively coupled plasma-optical emission spectroscopy, high performance liquid chromatography-high resolution mass spectrometry, high performance ion chromatography, total organic carbon/total nitrogen analysis, and pH and conductivity analysis. Several compounds known to compose hydraulic fracturing fluid were detected among two of the wastewater samples including 2-butoxyethanol, alkyl amines, and cocamide diethanolamines, toluene, and o-xylene. Due both to its quantity and quality, proper management of wastewater from UDO will be essential.

  8. Physical and Chemical Processing in Flames (United States)


    than the classical Troe formula, and the development of a Chemical Explosive Mode Analysis ( CEMA ) computation algorithm that allows on-the-fly...6-311++G(d,p) method. 3. Flame Stabilization and Chemical Explosive Mode Analysis ( CEMA ) Flame stabilization is essential in the understanding of

  9. 40 CFR 63.1104 - Process vents from continuous unit operations: applicability assessment procedures and methods. (United States)


    ... vent. (iv) Design analysis based on accepted chemical engineering principles, measurable process... be monitored to ensure the process vent is operated in conformance with its design or process and... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Process vents from continuous...

  10. Textiles and clothing sustainability sustainable textile chemical processes

    CERN Document Server


    This book highlights the challenges in sustainable wet processing of textiles, natural dyes, enzymatic textiles and sustainable textile finishes. Textile industry is known for its chemical processing issues and many NGO’s are behind the textile sector to streamline its chemical processing, which is the black face of clothing and fashion sector. Sustainable textile chemical processes are crucial for attaining sustainability in the clothing sector. Seven comprehensive chapters are aimed to highlight these issues in the book.

  11. Kennedy Space Center Orion Processing Team Planning for Ground Operations (United States)

    Letchworth, Gary; Schlierf, Roland


    Topics in this presentation are: Constellation Ares I/Orion/Ground Ops Elements Orion Ground Operations Flow Orion Operations Planning Process and Toolset Overview, including: 1 Orion Concept of Operations by Phase 2 Ops Analysis Capabilities Overview 3 Operations Planning Evolution 4 Functional Flow Block Diagrams 5 Operations Timeline Development 6 Discrete Event Simulation (DES) Modeling 7 Ground Operations Planning Document Database (GOPDb) Using Operations Planning Tools for Operability Improvements includes: 1 Kaizen/Lean Events 2 Mockups 3 Human Factors Analysis

  12. Unquenched QCD Dirac operator spectra at nonzero baryon chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Akemann, G. [Department of Mathematical Sciences, Brunel University West London, Uxbridge UB8 3PH (United Kingdom); Osborn, J.C. [Physics Department, Boston University, Boston, MA 02215 (United States); Splittorff, K. [Nordita, Blegdamsvej 17, DK-2100, Copenhagen O (Denmark)]. E-mail:; Verbaarschot, J.J.M. [Department of Physics and Astronomy, SUNY, Stony Brook, NY 11794 (United States)


    The microscopic spectral density of the QCD Dirac operator at nonzero baryon chemical potential for an arbitrary number of quark flavors was derived recently from a random matrix model with the global symmetries of QCD. In this paper we show that these results and extensions thereof can be obtained from the replica limit of a Toda lattice equation. This naturally leads to a factorized form into bosonic and fermionic QCD-like partition functions. In the microscopic limit these partition functions are given by the static limit of a chiral Lagrangian that follows from the symmetry breaking pattern. In particular, we elucidate the role of the singularity of the bosonic partition function in the orthogonal polynomials approach. A detailed discussion of the spectral density for one and two flavors is given.

  13. Corrosion study in the chemical air separation (MOLTOX trademark ) process

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Doohee; Wong, Kai P.; Archer, R.A.; Cassano, A.A.


    This report presents the results of studies aimed at solving the corrosion problems encountered during operation of the MOLTOX{trademark} pilot plant. These studies concentrated on the screening of commercial and developmental alloys under conditions simulating operation conditions in this high temperature molten salt process. Process economic studies were preformed in parallel with the laboratory testing to ensure that an economically feasible solution would be achieved. In addition to the above DOE co-funded studies, Air Products and Chemicals pursued proprietary studies aimed at developing a less corrosive salt mixture which would potentially allow the use of chemurgically available alloys such as stainless steels throughout the system. These studies will not be reported here; however, the results of corrosion tests in the new less corrosive salt mixtures are reported. Because our own studies on salt chemistry impacts heavily on the overall process and thereby has an influence on the experimental work conducted under this contract, some of the studies discussed here were impacted by our own proprietary data. Therefore, the reasons behind some of the experiments presented herein will not be explained because that information is proprietary to Air Products. 14 refs., 42 figs., 21 tabs.

  14. Effect of dynamic operation on chemical degradation of a polymer electrolyte membrane fuel cell (United States)

    Jung, Minjae; Williams, Keith A.


    Dynamic operation is known as one of the factors for accelerating chemical degradation of the polymer electrolyte membrane in a polymer electrolyte membrane fuel cell (PEMFC). However, little effort has been made dealing with the quantification of the degradation process. In this investigation, cyclic current operation is carried out on a fuel cell system, and the frequency effect of cyclic operation on chemical degradation is investigated. The dynamic behavior of a fuel cell system is analyzed first with the modified Randles model, where the charge double layer is modeled by three components; a charge transfer resistance (Rct), and two RC cells for the Warburg impedance. After calculating each parameter value through exponential curve fitting, the dynamic behaviors of the three components are simulated using MATLAB Simulink®. Fluoride release as a function of the frequency of cyclic operation is evaluated by measuring the concentration of fluoride ion in effluent from a fuel cell exhaust. The frequency effect on chemical degradation is explained by comparing the simulated results and the fluoride release results. Two possible reasons for the accelerated degradation at cyclic operation are also suggested.

  15. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)


    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  16. A Study and Development of Chemical Process Integrated Operation System Platform%化工过程集成运行系统平台的研究与开发

    Institute of Scientific and Technical Information of China (English)

    李秀喜; 江燕斌; 钱宇


    采用人工智能辅助的研究方法,对于CIPS中工程技术的集成——计算机集成过程运行系统(CIPOS)的体系结构以及信息集成、知识/模型集成、工具集成的策略与技术等问题进行研究。介绍了CIPOS实验平台的结构和开发出的CIPOS原型系统,在Gensym的G2上开发了该原型系统的中央平台,初步实现了系统信息、方法集成和实时故障诊断功能。%Computer Integrated Process Operation System(CIPOS)is the major component of CIPS.In this paper,the strategy and technique of CIPOS is studied using artificial method,including the integration of system structure,information,knowledge/model,and tools.And the structure and prototype system of CIPOS experiment platform is introduced.The center platform of this prototype is developed on G2;the function of system information,integrated method and real-time fault diagnosis is basically implemented.

  17. Chemical dehumidification and thermal regeneration: Applications in industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Longo, G.A.; Piccininni, F.


    Chemical dehumidification may be used in industrial dessiccation treatments operating with new air or closed cycle. The authors suggest a few schemes and analyze operation parameters and performance. Finally, comparisons are made with the most efficient systems that have been used so far: energy savings are between 25 and 40 per cent.

  18. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F


    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  19. Development of Candidate Chemical Simulant List: The Evaluation of Candidate Chemical Simulants Which May Be Used in Chemically Hazardous Operations (United States)


    1975) also reported promoting activity for 80% citrus oil (consisting main-nTy of d-limonene) in Japanese SDDy-strain mice initiated with a single...synthesis of pharmaceuticals , insecticides, fungiciJes, non-ionic detergents and bacteriocides, in synthetic rubber processing and in froth flotation agents...Clayton (1981); Food Chemicals Codex (1981) 63 DIETHYL SEBACATE Diethyl sebacate is a colorless to yellowish liquid. It has been used as a fragrance

  20. Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection

    Energy Technology Data Exchange (ETDEWEB)



    Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include: landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.

  1. Procafd: Computer Aided Tool for Synthesis-Design & Analysis of Chemical Process Flowsheets

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Eden, Mario R.; Gani, Rafiqul


    In practice, chemical process synthesis-design involves identification of the processing route to reach a desired product from a specified set of raw materials, design of the operations involved in the processing route, the calculations of utility requirements, the calculations of waste...... are synthesized to form molecules in computer-aided molecular design (CAMD) techniques [4]. The main idea here was to apply the principle of group-contribution approach from chemical property estimation to the synthesis and design of chemical process flowsheets. That is, use process-groups representing different...... of mathematical programming techniques, (c) hybrid approach which combine two or more approaches. D’Anterroches [3] proposed a group contribution based hybrid approach to solve the synthesis-design problem where, chemical process flowsheets could be synthesized in the same way as atoms or groups of atoms...

  2. Chemical imaging of Fischer-Tropsch catalysts under operating conditions (United States)

    Price, Stephen W. T.; Martin, David J.; Parsons, Aaron D.; Sławiński, Wojciech A.; Vamvakeros, Antonios; Keylock, Stephen J.; Beale, Andrew M.; Mosselmans, J. Frederick W.


    Although we often understand empirically what constitutes an active catalyst, there is still much to be understood fundamentally about how catalytic performance is influenced by formulation. Catalysts are often designed to have a microstructure and nanostructure that can influence performance but that is rarely considered when correlating structure with function. Fischer-Tropsch synthesis (FTS) is a well-known and potentially sustainable technology for converting synthetic natural gas (“syngas”: CO + H2) into functional hydrocarbons, such as sulfur- and aromatic-free fuel and high-value wax products. FTS catalysts typically contain Co or Fe nanoparticles, which are often optimized in terms of size/composition for a particular catalytic performance. We use a novel, “multimodal” tomographic approach to studying active Co-based catalysts under operando conditions, revealing how a simple parameter, such as the order of addition of metal precursors and promoters, affects the spatial distribution of the elements as well as their physicochemical properties, that is, crystalline phase and crystallite size during catalyst activation and operation. We show in particular how the order of addition affects the crystallinity of the TiO2 anatase phase, which in turn leads to the formation of highly intergrown cubic close-packed/hexagonal close-packed Co nanoparticles that are very reactive, exhibiting high CO conversion. This work highlights the importance of operando microtomography to understand the evolution of chemical species and their spatial distribution before any concrete understanding of impact on catalytic performance can be realized. PMID:28345057

  3. Chemical Process Design: An Integrated Teaching Approach. (United States)

    Debelak, Kenneth A.; Roth, John A.


    Reviews a one-semester senior plant design/laboratory course, focusing on course structure, student projects, laboratory assignments, and course evaluation. Includes discussion of laboratory exercises related to process waste water and sludge. (SK)

  4. Quantum Matter-Photonics Framework: Analyses of Chemical Conversion Processes

    CERN Document Server

    Tapia, O


    A quantum Matter-Photonics framework is adapted to help scrutinize chemical reaction mechanisms and used to explore a process mapped from chemical tree topological model. The chemical concept of bond knitting/breaking is reformulated via partitioned base sets leading to an abstract and general quantum presentation. Pivotal roles are assigned to entanglement, coherence,de-coherence and Feshbach resonance quantum states that permit apprehend gating states in conversion processes. A view from above in the state energy eigenvalue ladder, belonging to full system spectra complement the standard view from ground state. A full quantum physical view supporting chemical change obtains.

  5. Chemical Processing Department monthly report, April 1957

    Energy Technology Data Exchange (ETDEWEB)


    Two new production records were set during April, for processed U and Pu production. 0.9 tons sheared NRX fuel were dissolved in Redox. Discrepancies in Pu yield are being studied. Alternate methods of recovering Np are being evaluated. The Purex prototype facility will be converted to the anion exchange process. Alternate designs for a Purex miniature service dissolver were reviewed. The Purex HA column will be replaced.

  6. Modular microcomponents for a flexible chemical process technology (United States)

    Schwesinger, Norbert


    Different types of modular micro components such as pumps, values, reactors, separators, residence structures, extractors have been developed. Silicon was used as basic material. Most external dimensions of all different modules are equal. The components contain deep micro structures like channels or groves produced in dry or in wet chemical etching procedures. Different types of bonding technologies were applied to cover the flow structures. Openings positioned at the surface allow the connection with external standard tubes. These openings are arranged on each module at the same position. Due to this basic design a highly flexible combination of the micro modules is possible. Specific process conditions of chemical reactions can be adapted very easily and cost effective by means of module combinations. Holders for the modules contain the fluidic/electric connectors and allow their flexible combination. They are made of PEEK or PTFE. Fixing and sealing of external tubes to the modules can be realised by simple screwing procedures of standard tubes into the holders. Due to this simple screwing procedure all modules can be exchanged on demand. Operating pressures up to the limitation values of the external tubes can be applied to the modules. Electrical contacts arranged inside the holders allow the electrical connection of the modules to an external power supply, as well as a read out of electrical signals delivered from possibly integrated specific sensors. Stand alone examinations of single modules as well as specific chemical reactions in modular combinations were carried out to verify the performance of the micro devices. Successful and hopeful results were found in all cases.

  7. Operator's Influence on the Safety of the Controlled Process

    Directory of Open Access Journals (Sweden)

    Peter Nagy


    Full Text Available An analysis of risks related to controlled process and related hazards identification is an important activity during the development of the safety related control system (SRCS. The mistake of the operational staff during the execution of the safety relevant operations related to controlled process can be the cause of hazard. Influence of the operator on controlled process safety depends on operation mode of the SRCS and on technical safety of the SRCS. This contribution deals with the issue of the safety assessment of the operator effect on the safety of the controlled process.

  8. Modeling of biopharmaceutical processes. Part 2: Process chromatography unit operation

    DEFF Research Database (Denmark)

    Kaltenbrunner, Oliver; McCue, Justin; Engel, Philip;


    Process modeling can be a useful tool to aid in process development, process optimization, and process scale-up. When modeling a chromatography process, one must first select the appropriate models that describe the mass transfer and adsorption that occurs within the porous adsorbent...

  9. Launch Processing System operations with a future look to Operations Analyst (OPERA) (United States)

    Heard, Astrid E.


    The Launch Processing System architecture and the ground support operations required to provide Shuttle System engineers with the capability to safely process and launch an Orbiter are described. The described ground operations are the culmination of eleven years of experience and redesign. Some of the 'lessons learned' are examined, and problem areas which ground support operations have identified over the years as the Shuttle and Launch Processing Systems continue to grow in complexity are discussed. The Operational Analyst for Distributed Systems (OPERA), a proposed set of expert systems for the Launch Processing System Operational assistance, is discussed along with its extensions to prospective future configurations and components for the Launch Processing System.

  10. Process Analysis of the CV Group's Operation

    CERN Document Server

    Wilhelmsson, M


    This report will give an explanation of the internal reorganization that has been done because of the necessity to optimize operation in the cooling and ventilation group. The basic structure for the group was defined at the end of 1998. We understood then that change was needed to accommodate the increased workload due to the LHC project. In addition, we face a relatively large turnover of personnel (retirements and some recruitment) with related integration issues to consider. We would also like to implement new approaches in the management of both operations and maintenance. After some running-in problems during the first half of 1999, we realized that much more could be gained with the analysis and the definition and documenting of each single function and generic activity within the group. The authors will explain how this analysis was carried out and give some feedback of the outcome, so far.

  11. Sustainability Indicators for Chemical Processes: III. Biodiesel Case Study (United States)

    The chemical industry is one of the most important business sectors, not only economically, but also societally; as it allows humanity to attain higher standards and quality of life. Simultaneously, chemical products and processes can be the origin of potential human health and ...

  12. Membrane Operations for Process Intensification in Desalination

    Directory of Open Access Journals (Sweden)

    Enrico Drioli


    Full Text Available Process intensification strategy (PIS is emerging as an interesting guideline to revolutionize process industry in terms of improved efficiency and sustainability. Membrane engineering has appeared as a strong candidate to implement PIS. The most significant progress has been observed in desalination where substantial reduction in overall energy demand, environmental footprint, and process hazards has already been accomplished. Recent developments in membrane engineering are shaping the desalination industry into raw materials and energy production where fresh water will be produced as a byproduct. The present study discusses the current and perspective role of membrane engineering in achieving the objectives of PIS in the field of desalination.

  13. Accelerating chemical database searching using graphics processing units. (United States)

    Liu, Pu; Agrafiotis, Dimitris K; Rassokhin, Dmitrii N; Yang, Eric


    The utility of chemoinformatics systems depends on the accurate computer representation and efficient manipulation of chemical compounds. In such systems, a small molecule is often digitized as a large fingerprint vector, where each element indicates the presence/absence or the number of occurrences of a particular structural feature. Since in theory the number of unique features can be exceedingly large, these fingerprint vectors are usually folded into much shorter ones using hashing and modulo operations, allowing fast "in-memory" manipulation and comparison of molecules. There is increasing evidence that lossless fingerprints can substantially improve retrieval performance in chemical database searching (substructure or similarity), which have led to the development of several lossless fingerprint compression algorithms. However, any gains in storage and retrieval afforded by compression need to be weighed against the extra computational burden required for decompression before these fingerprints can be compared. Here we demonstrate that graphics processing units (GPU) can greatly alleviate this problem, enabling the practical application of lossless fingerprints on large databases. More specifically, we show that, with the help of a ~$500 ordinary video card, the entire PubChem database of ~32 million compounds can be searched in ~0.2-2 s on average, which is 2 orders of magnitude faster than a conventional CPU. If multiple query patterns are processed in batch, the speedup is even more dramatic (less than 0.02-0.2 s/query for 1000 queries). In the present study, we use the Elias gamma compression algorithm, which results in a compression ratio as high as 0.097.

  14. Evaluation of Chemical Coating Processes for AXAF (United States)

    Engelhaupt, Darell; Ramsey, Brian; Mendrek, Mitchell


    The need existed at MSFC for the development and fabrication of radioisotope calibration sources of cadmium 109 and iron 55 isotopes. This was in urgent response to the AXA-F program. Several issues persisted in creating manufacturing difficulties for the supplier. In order to meet the MSFC requirements very stringent control needed to be maintained for the coating quality, specific activity and thickness. Due to the difficulties in providing the precisely controlled devices for testing, the delivery of the sources was seriously delayed. It became imperative that these fabrication issues be resolved to avoid further delays in this AXA-F observatory key component. The objectives are: 1) Research and provide expert advice on coating materials and procedures. 2) Research and recommend solutions to problems that have been experienced with the coating process. 3) Provide recommendations on the selection and preparation of substrates. 4) Provide consultation on the actual coating process including the results of the qualification and acceptance test programs. 5) Perform independent tests at UAH or MSFC as necessary.

  15. 9 CFR 590.542 - Spray process drying operations. (United States)


    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Spray process drying operations. 590..., Processing, and Facility Requirements § 590.542 Spray process drying operations. (a) The drying room shall be... interrupted. (1) Spray nozzles, orifices, cores, or whizzers shall be cleaned immediately after cessation...

  16. Development of Chemical Process Design and Control for Sustainability (United States)

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy....

  17. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik


    to each other. Similarly, in process design, steady state is always assumed for processes (i.e. production of a given chemical occurs at a constant rate, temperature, pressure and composition; feeds enter the plant at constant rates, etc.). However, in practice, chemical plants need to be carefully......, Process Design provides an opportunity for a comprehensive implementation of CDIO principles in a single course. Already the traditional chemical engineering “capstone” design course has for decades embodied many of the essential features of CDIO (for example the focus on group work, development......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...

  18. Process Design and Evaluation for Chemicals Based on Renewable Resources

    DEFF Research Database (Denmark)

    Fu, Wenjing

    One of the key steps in process design is choosing between alternative technologies, especially for processes producing bulk and commodity chemicals. Recently, driven by the increasing oil prices and diminishing reserves, the production of bulk and commodity chemicals from renewable feedstocks has...... development of chemicals based on renewable feedstocks. As an example, this thesis especially focuses on applying the methodology in process design and evaluation of the synthesis of 5-hydroxymethylfurfural (HMF) from the renewable feedstock glucose/fructose. The selected example is part of the chemoenzymatic...... gained considerable interest. Renewable feedstocks usually cannot be converted into fuels and chemicals with existing process facilities due to the molecular functionality and variety of the most common renewable feedstock (biomass). Therefore new types of catalytic methods as well as new types...

  19. Development of Flexible Software Process Lines with Variability Operations

    DEFF Research Database (Denmark)

    Dohrmann, Patrick; Schramm, Joachim; Kuhrmann, Marco


    the development of flexible software process lines. Method: We conducted a longitudinal study in which we studied 5 variants of the V-Modell XT process line for 2 years. Results: Our results show the variability operation instrument feasible in practice. We analyzed 616 operation exemplars addressing various......Context: A software process line helps to systematically develop and manage families of processes and, as part of this, variability operations provide means to modify and reuse pre-defined process assets. Objective: Our goal is to evaluate the feasibility of variability operations to support...... customization scenarios, and we found 87 different operation types. Conclusions: Although variability operations are only one instrument among others, our results suggest this instrument useful to implement variability in real-life software process lines....

  20. From pulsed power to processing: Plasma initiated chemical process intensification

    NARCIS (Netherlands)

    Heesch, E.J.M. van; Yan, K.; Pemen, A.J.M.; Winands, G.J.J.; Beckers, F.J.C.M.; Hoeben, W.F.L.M.


    Smart electric power for process intensification is a challenging research field that integrates power engineering, chemistry and green technology. Pulsed power technology is offering elegant solutions. This work focuses on backgrounds of matching the power source to the process. Important items are


    Directory of Open Access Journals (Sweden)

    Roxana Both

    Full Text Available Abstract Three phase catalytic hydrogenation reactors are important reactors with complex behavior due to the interaction among gas, solid and liquid phases with the kinetic, mass and heat transfer mechanisms. A nonlinear distributed parameter model was developed based on mass and energy conservation principles. It consists of balance equations for the gas and liquid phases, so that a system of partial differential equations is generated. Because detailed nonlinear mathematical models are not suitable for use in controller design, a simple linear mathematical model of the process, which describes its most important properties, was determined. Both developed mathematical models were validated using plant data. The control strategies proposed in this paper are a multivariable Smith Predictor PID controller and multivariable Smith Predictor structure in which the primary controllers are derived based on Internal Model Control. Set-point tracking and disturbance rejection tests are presented for both methods based on scenarios implemented in Matlab/SIMULINK.

  2. Chemical kinetics, stochastic processes, and irreversible thermodynamics

    CERN Document Server

    Santillán, Moisés


    This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

  3. Using an operator training simulator in the undergraduate chemical engineering curriculim

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.; Turton, R.; Zitney, S.


    An operator training simulator (OTS) is to the chemical engineer what a flight simulator is to the aerospace engineer. The basis of an OTS is a high-fidelity dynamic model of a chemical process that allows an engineer to simulate start-up, shut-down, and normal operation. It can also be used to test the skill and ability of an engineer or operator to respond and control some unforeseen situation(s) through the use of programmed malfunctions. West Virginia University (WVU) is a member of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA). Working through the NETL-RUA, the authors have spent the last four years collaborating on the development of a high-fidelity OTS for an Integrated Gasification Combined Cycle (IGCC) power plant with CO{sub 2} capture that is the cornerstone of the AVESTARTM (Advanced Virtual Energy Simulation Training And Research) Center with sister facilities at NETL and WVU in Morgantown, WV. This OTS is capable of real-time dynamic simulation of IGCC plant operation, including start-up, shut-down, and power demand load following. The dynamic simulator and its human machine interfaces (HMIs) are based on the DYNSIM and InTouch software, respectively, from Invensys Operations Management. The purpose of this presentation is to discuss the authors’ experiences in using this sophisticated dynamic simulation-based OTS as a hands-on teaching tool in the undergraduate chemical engineering curriculum. At present, the OTS has been used in two separate courses: a new process simulation course and a traditional process control course. In the process simulation course, concepts of steady-state and dynamic simulations were covered prior to exposing the students to the OTS. Moreover, digital logic and the concept of equipment requiring one or more permissive states to be enabled prior to successful operation were also covered. Students were briefed about start-up procedures and the importance of following a predetermined

  4. Operation of fixed-bed chemical looping combustion

    NARCIS (Netherlands)

    Kimball, E.; Hamers, H.P.; Cobden, P.D.; Gallucci, F.; Sint Annaland, M. van


    Chemical Looping Combustion is an alternative technology for CO2 capture. While most systems utilize dual circulating fluidized-beds, this work shows that fixed-bed Chemical Looping Combustion is a feasible configuration for this technology. The inherent separation of the CO2 from the depleted air s

  5. Development of Flexible Software Process Lines with Variability Operations

    DEFF Research Database (Denmark)

    Schramm, Joachim; Dohrmann, Patrick; Kuhrmann, Marco


    Context: Software processes evolve over time and several approaches were proposed to support the required flexibility. Yet, little is known whether these approaches sufficiently support the development of large software processes. A software process line helps to systematically develop and manage...... families of processes and, as part of this, variability operations provide means to modify and reuse pre-defined process assets. Objective: Our goal is to evaluate the feasibility of variability operations to support the development of flexible software process lines. Method: We conducted a longitudinal...... study in which we studied 5 variants of the V-Modell XT process line for 2 years. Results: Our results show the variability operation instrument feasible in practice. We analyzed 616 operation exemplars addressing various customization scenarios, and we found 87 different operation types contributed...

  6. New Developments in Thermo-Chemical Diffusion Processes

    Institute of Scientific and Technical Information of China (English)

    Bernd Edenhofer


    Thermo-chemical diffusion processes like carburising, nitriding and boronizing play an important part in modern manufacturing technologies. They exist in many varieties depending on the type of diffusing element used and the respective process procedure. The most important industrial heat treatment process is case-hardening, which consists of thermochemical diffusion process carburising or its variation carbonitriding, followed by a subsequent quench. The latest developments of using different gaseous carburising agents and increasing the carburising temperature are one main area of this paper. The other area is the evolvement of nitriding and especially the ferritic nitrocarburising process by improved process control and newly developed process variations using carbon, nitrogen and oxygen as diffusing elements in various process steps. Also boronizing and special thermo-chemical processes for stainless steels are discussed.

  7. Textual and chemical information processing: different domains but similar algorithms

    Directory of Open Access Journals (Sweden)

    Peter Willett


    Full Text Available This paper discusses the extent to which algorithms developed for the processing of textual databases are also applicable to the processing of chemical structure databases, and vice versa. Applications discussed include: an algorithm for distribution sorting that has been applied to the design of screening systems for rapid chemical substructure searching; the use of measures of inter-molecular structural similarity for the analysis of hypertext graphs; a genetic algorithm for calculating term weights for relevance feedback searching for determining whether a molecule is likely to exhibit biological activity; and the use of data fusion to combine the results of different chemical similarity searches.

  8. Chemical Processes and Thresholds in Hawaiin Soils (United States)

    Chadwick, O.


    The Hawaiian Islands are a useful natural laboratory for studying soil development particularly those that can be understood using a matrix of chonosequences and climosequences. The islands are formed over a stationary mantle plume and then are carried to the northwest on the Pacific Plate. Thus the islands get older with distance from the hotspot; Kauai has remnant shield surfaces whose lavas date to about 4,000 ky. It is possible to sample soils that are developing on different age flows ranging from a few hundred years to a few million years. Additionally, individual volcanoes are impacted by differing amounts of rainfall depending on location with respect to the northeasterly trade winds. Whereas rainfall over the open ocean near Hawaii is about 700 mm, rainfall over the Islands ranges from 150 to 11,000 mm. Hawaii is minimally impacted by mineral aerosol additions compared to continental areas and this has a significant impact on soil development. More than 100 soil profiles have been sampled along the Hawaii time-climate matrix with some surprising results. For example, in arid soils might be expected to develop smectite clays, but they are rich in halloysite and allophane. Importantly, these same soils show a trend from high-Mg calcite to dolomite as carbonates accumulate within the profiles - this is one of the first documented occurrences of pedogenic dolomite that is not associated with high levels of salts. It appears that lack of smectite formation lowers the incorporation of Mg into silicate clays and increases its incorporation into carbonates. This is an unusual pedogenic process that seems to be enhanced by the lack of substantial amounts of mica in the basalt derived soils. The only mica is in surface horizons that receive dust derived from distant continents. Without mica there is no template to allow smectite clay formation under the rapid wetting and drying regimes encountered in the arid soils. At the same time that halloysite is forming, iron

  9. Computer simulation for designing waste reduction in chemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, S.K. [Oak Ridge Inst. for Science and Technology, TN (United States); Cabezas, H.; Bare, J.C. [Environmental Protection Agency, Cincinnati, OH (United States)


    A new methodology has been developed for implementing waste reduction in the design of chemical processes using computer simulation. The methodology is based on a generic pollution balance around a process. For steady state conditions, the pollution balance equation is used as the basis to define a pollution index with units of pounds of pollution per pound of products. The pollution balance has been modified by weighing the mass of each pollutant by a chemical ranking of environmental impact. The chemical ranking expresses the well known fact that all chemicals do not have the same environmental impact, e.g., all chemicals are not equally toxic. Adding the chemical ranking effectively converts the pollutant mass balance into a balance over environmental impact. A modified pollution index or impact index with units of environmental impact per mass of products is derived from the impact balance. The impact index is a measure of the environmental effects due to the waste generated by a process. It is extremely useful when comparing the effect of the pollution generated by alternative processes or process conditions in the manufacture of any given product. The following three different schemes for the chemical ranking have been considered: (i) no ranking, i.e., considering that all chemicals have the same environmental impact, (ii) a simple numerical ranking of wastes from 0 to 3 according to the authors judgement of the impact of each chemical, and (iii) ranking wastes according to a scientifically derived combined index of human health and environmental effects. Use of the methodology has been illustrated with an example of production of synthetic ammonia. 3 refs., 2 figs., 1 tab.

  10. Models and Modelling Tools for Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul


    The design, development and reliability of a chemical product and the process to manufacture it, need to be consistent with the end-use characteristics of the desired product. One of the common ways to match the desired product-process characteristics is through trial and error based experiments......-based framework is that in the design, development and/or manufacturing of a chemical product-process, the knowledge of the applied phenomena together with the product-process design details can be provided with diverse degrees of abstractions and details. This would allow the experimental resources......, are the needed models for such a framework available? Or, are modelling tools that can help to develop the needed models available? Can such a model-based framework provide the needed model-based work-flows matching the requirements of the specific chemical product-process design problems? What types of models...

  11. Helping Students Develop a Critical Attitude towards Chemical Process Calculations. (United States)

    de Nevers, Noel; Seader, J. D.


    Discusses the use of computer-assisted programs that allow chemical engineering students to study textbook thermodynamics problems from different perspectives, including the classical graphical method, while utilizing more than one property correlation and/or operation model so that comparisons can be made and sensitivities determined more…

  12. Information processing in convex operational theories

    Energy Technology Data Exchange (ETDEWEB)

    Barnum, Howard Nelch [Los Alamos National Laboratory; Wilce, Alexander G [SUSQUEHANNA UNIV


    In order to understand the source and extent of the greater-than-classical information processing power of quantum systems, one wants to characterize both classical and quantum mechanics as points in a broader space of possible theories. One approach to doing this, pioneered by Abramsky and Coecke, is to abstract the essential categorical features of classical and quantum mechanics that support various information-theoretic constraints and possibilities, e.g., the impossibility of cloning in the latter, and the possibility of teleportation in both. Another approach, pursued by the authors and various collaborators, is to begin with a very conservative, and in a sense very concrete, generalization of classical probability theory--which is still sufficient to encompass quantum theory--and to ask which 'quantum' informational phenomena can be reproduced in this much looser setting. In this paper, we review the progress to date in this second programme, and offer some suggestions as to how to link it with the categorical semantics for quantum processes developed by Abramsky and Coecke.

  13. Coherent chemical kinetics as quantum walks. I. Reaction operators for radical pairs. (United States)

    Chia, A; Tan, K C; Pawela, Ł; Kurzyński, P; Paterek, T; Kaszlikowski, D


    Classical chemical kinetics uses rate-equation models to describe how a reaction proceeds in time. Such models are sufficient for describing state transitions in a reaction where coherences between different states do not arise, in other words, a reaction that contains only incoherent transitions. A prominent example of a reaction containing coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction operator that determines the radical-pair state as a function of intermediate transition rates. We argue that the well-known concept of quantum walks from quantum information theory is a natural and apt framework for describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair reaction. Our reaction operator predicts the same recombination dephasing rate as the conventional Haberkorn model, which is consistent with recent experiments [K. Maeda et al., J. Chem. Phys. 139, 234309 (2013)], in contrast to previous work by Jones and Hore [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. The standard radical-pair reaction has conventionally been described by either a normalized density operator incorporating both the radical pair and reaction products or a trace-decreasing density operator that considers only the radical pair. We demonstrate a density operator that is both normalized and refers only to radical-pair states. Generalizations to include additional dephasing processes and an arbitrary number of sites are also discussed.

  14. Physical and chemical characterization of bioaerosols - Implications for nucleation processes (United States)

    Ariya, P. A.; Sun, J.; Eltouny, N. A.; Hudson, E. D.; Hayes, C. T.; Kos, G.

    The importance of organic compounds in the oxidative capacity of the atmosphere, and as cloud condensation and ice-forming nuclei, has been recognized for several decades. Organic compounds comprise a significant fraction of the suspended matter mass, leading to local (e.g. toxicity, health hazards) and global (e.g. climate change) impacts. The state of knowledge of the physical chemistry of organic aerosols has increased during the last few decades. However, due to their complex chemistry and the multifaceted processes in which they are involved, the importance of organic aerosols, particularly bioaerosols, in driving physical and chemical atmospheric processes is still very uncertain and poorly understood. Factors such as solubility, surface tension, chemical impurities, volatility, morphology, contact angle, deliquescence, wettability, and the oxidation process are pivotal in the understanding of the activation processes of cloud droplets, and their chemical structures, solubilities and even the molecular configuration of the microbial outer membrane, all impact ice and cloud nucleation processes in the atmosphere. The aim of this review paper is to assess the current state of knowledge regarding chemical and physical characterization of bioaerosols with a focus on those properties important in nucleation processes. We herein discuss the potential importance (or lack thereof) of physical and chemical properties of bioaerosols and illustrate how the knowledge of these properties can be employed to study nucleation processes using a modeling exercise. We also outline a list of major uncertainties due to a lack of understanding of the processes involved or lack of available data. We will also discuss key issues of atmospheric significance deserving future physical chemistry research in the fields of bioaerosol characterization and microphysics, as well as bioaerosol modeling. These fundamental questions are to be addressed prior to any definite conclusions on the

  15. Pseudo-random unitary operators for quantum information processing. (United States)

    Emerson, Joseph; Weinstein, Yaakov S; Saraceno, Marcos; Lloyd, Seth; Cory, David G


    In close analogy to the fundamental role of random numbers in classical information theory, random operators are a basic component of quantum information theory. Unfortunately, the implementation of random unitary operators on a quantum processor is exponentially hard. Here we introduce a method for generating pseudo-random unitary operators that can reproduce those statistical properties of random unitary operators most relevant to quantum information tasks. This method requires exponentially fewer resources, and hence enables the practical application of random unitary operators in quantum communication and information processing protocols. Using a nuclear magnetic resonance quantum processor, we were able to realize pseudorandom unitary operators that reproduce the expected random distribution of matrix elements.

  16. Methods and tools for sustainable chemical process design

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina; Chairakwongsa, Siwanat; Quaglia, Alberto;


    As the pressure on chemical and biochemical processes to achieve a more sustainable performance increases, the need to define a systematic and holistic way to accomplish this is becoming more urgent. In this chapter, a multilevel computer-aided framework for systematic design of more sustainable...... chemical processes is presented. The framework allows the use of appropriate computer-aided methods and tools in a hierarchical manner according to a developed work flow for a multilevel criteria analysis that helps generate competing and more sustainable process design options. The application...

  17. Chemical characterisation of rainwater at Stromboli Island (Italy): The effect of post-depositional processes (United States)

    Cangemi, Marianna; Madonia, Paolo; Favara, Rocco


    Volcanoes emit fluids and solid particles into the atmosphere that modify the chemical composition of natural precipitation. We have investigated the geochemistry of Stromboli's rainfall during the period from November 2014 to March 2016 using a network of a new type of sampler specifically designed for operations on volcanic islands. We found that most of the chemical modifications are due to processes occurring after the storage of rainwater in the sampling bottles. These processes include dissolution of volcanogenic soluble salts encrusting volcanic ash and a variable contribution of sea spray aerosol. Our data showed noticeably less scatter than has previously been achieved with a different sampling system that was more open to the atmosphere. This demonstrates the improved efficacy of the new sampler design. The data showed that post-depositional chemical alteration of rain samples dominates over processes occurring during droplet formation ad precipitation. This has important implications for the calculation of fluxes of chemicals from rainfall in volcanic regions.

  18. Chemical Changes in Carbohydrates Produced by Thermal Processing. (United States)

    Hoseney, R. Carl


    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  19. Dust as interstellar catalyst I. Quantifying the chemical desorption process

    CERN Document Server

    Minissale, M; Cazaux, S; Hocuk, S


    Context. The presence of dust in the interstellar medium has profound consequences on the chemical composition of regions where stars are forming. Recent observations show that many species formed onto dust are populating the gas phase, especially in cold environments where UV and CR induced photons do not account for such processes. Aims. The aim of this paper is to understand and quantify the process that releases solid species into the gas phase, the so-called chemical desorption process, so that an explicit formula can be derived that can be included into astrochemical models. Methods. We present a collection of experimental results of more than 10 reactive systems. For each reaction, different substrates such as oxidized graphite and compact amorphous water ice are used. We derive a formula to reproduce the efficiencies of the chemical desorption process, which considers the equipartition of the energy of newly formed products, followed by classical bounce on the surface. In part II we extend these resul...

  20. Studies on additive properties of some processing operations

    Directory of Open Access Journals (Sweden)

    Jerzy Malewski


    Full Text Available The accuracy of prediction of mineral processing operation by partial effects summation is analyzed. Methodological and practical aspects of the problem are discussed using laboratory studies of selected comminution and classifying operations as examples. Laboratory experiments show that the effects of examined mineral processing operation depend on simultaneously running processes of classification and comminution. The influence rate of interaction between both processes on the final results is significant, but in some cases it may be neglected. The obtained results have preliminary character and needed a further verification.

  1. A New Optimal Control System Design for Chemical Processes

    Institute of Scientific and Technical Information of China (English)

    丛二丁; 胡明慧; 涂善东; 邵惠鹤


    Based on frequency response and convex optimization, a novel optimal control system was developed for chemical processes. The feedforward control is designed to improve the tracking performance of closed loop chemical systems. The parametric model is not required because the system directly utilizes the frequency response of the loop transfer function, which can be measured accurately. In particular, the extremal values of magnitude and phase can be solved according to constrained quadratic programming optimizer and convex optimization. Simula-tion examples show the effectiveness of the method. The design method is simple and easily adopted in chemical industry.

  2. Accelerating the Fourier split operator method via graphics processing units

    CERN Document Server

    Bauke, Heiko


    Current generations of graphics processing units have turned into highly parallel devices with general computing capabilities. Thus, graphics processing units may be utilized, for example, to solve time dependent partial differential equations by the Fourier split operator method. In this contribution, we demonstrate that graphics processing units are capable to calculate fast Fourier transforms much more efficiently than traditional central processing units. Thus, graphics processing units render efficient implementations of the Fourier split operator method possible. Performance gains of more than an order of magnitude as compared to implementations for traditional central processing units are reached in the solution of the time dependent Schr\\"odinger equation and the time dependent Dirac equation.

  3. Method for innovative synthesis-design of chemical process flowsheets

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Gani, Rafiqul

    of chemical processes, where, chemical process flowsheets could be synthesized in the same way as atoms or groups of atoms are synthesized to form molecules in computer aided molecular design (CAMD) techniques [4]. That, from a library of building blocks (functional process-groups) and a set of rules to join......, the implementation of the computer-aided process-group based flowsheet synthesis-design framework is presented together with an extended library of flowsheet property models to predict the environmental impact, safety factors, product recovery and purity, which are employed to screen the generated alternatives. Also...... flowsheet (the well-known Hydrodealkylation of toluene process) and another for a biochemical process flowsheet (production of ethanol from lignocellulose). In both cases, not only the reported designs are found and matched, but also new innovative designs are found, which is possible because...

  4. Global tree network for computing structures enabling global processing operations (United States)

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.


    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  5. The role of chemical engineering in process development and optimization. (United States)

    Dienemann, E; Osifchin, R


    This review focuses on the roles that chemical engineers can play in the development, scale-up and optimization of synthetic processes for the production of active pharmaceutical ingredients. This multidisciplinary endeavor involves close collaboration among chemists and chemical engineers, and, for successful products, involves bridging the R&D and manufacturing enterprises. Balancing these disparate elements in the face of ever-mounting competitive pressures to shorten development timelines and ever-tightening regulatory, safety and environmental constraints, has become a critical business objective for all pharmaceutical companies. The concept of focusing development resources on selected critical process features as a function of phase within the development cycle will be discussed. In addition, several examples of chemical engineering- focused process development and optimization will be presented.

  6. The Influence of Nanoadditives on the Biological Properties and Chemical Composition of Process Fluids

    Directory of Open Access Journals (Sweden)

    Borůvková K.


    Full Text Available In this study process fluids were tested after the addition of nanoparticles. Cooling and lubricating process fluids are used in machining to reduce wear on tools, to increase machine performance and to improve product quality. The use of process fluids leads to their pollution and contamination. Nanoparticles were added to the process fluids in order to increase their antibacterial activity. The selected nanoparticles were nanoparticles of metallic silver. The process fluids were modified by the addition of silver nitrate and ascorbic acid. Reduction of silver nanoparticles in the volume of the fluid was achieved using UV. The modified fluids were tested for their cytotoxicity and changes in chemical composition. The cytotoxicity of process fluids was tested for the purpose of verifying whether the process fluids, which are in direct contact with the skin of the operator, affect the health of the operator. The cytotoxicity of the process fluids was tested on human fibroblast cells. Fibroblasts are the basic cells of fibrous tissue. The cytotoxicity was tested by measuring the cell viability and using XTT. Analysis of chemical composition was performed for the purpose of determining the individual substances in the process fluids and their chemical stability. Qualitative analysis of the process fluids was performed using gas chromatography mass spectrometry (GC - MS.

  7. Optimization of Sinter Plant Operating Conditions Using Advanced Multivariate Statistics: Intelligent Data Processing (United States)

    Fernández-González, Daniel; Martín-Duarte, Ramón; Ruiz-Bustinza, Íñigo; Mochón, Javier; González-Gasca, Carmen; Verdeja, Luis Felipe


    Blast furnace operators expect to get sinter with homogenous and regular properties (chemical and mechanical), necessary to ensure regular blast furnace operation. Blends for sintering also include several iron by-products and other wastes that are obtained in different processes inside the steelworks. Due to their source, the availability of such materials is not always consistent, but their total production should be consumed in the sintering process, to both save money and recycle wastes. The main scope of this paper is to obtain the least expensive iron ore blend for the sintering process, which will provide suitable chemical and mechanical features for the homogeneous and regular operation of the blast furnace. The systematic use of statistical tools was employed to analyze historical data, including linear and partial correlations applied to the data and fuzzy clustering based on the Sugeno Fuzzy Inference System to establish relationships among the available variables.

  8. Treatment Process Requirements for Waters Containing Hydraulic Fracturing Chemicals (United States)

    Stringfellow, W. T.; Camarillo, M. K.; Domen, J. K.; Sandelin, W.; Varadharajan, C.; Cooley, H.; Jordan, P. D.; Heberger, M. G.; Reagan, M. T.; Houseworth, J. E.; Birkholzer, J. T.


    A wide variety of chemical additives are used as part of the hydraulic fracturing (HyF) process. There is concern that HyF chemicals will be released into the environment and contaminate drinking water, agricultural water, or other water used for beneficial purposes. There is also interest in using produced water (water extracted from the subsurface during oil and gas production) for irrigation and other beneficial purposes, especially in the arid Southwest US. Reuse of produced water is not speculative: produced water can be low in salts and is being used in California for irrigation after minimal treatment. In this study, we identified chemicals that are used for hydraulic fracturing in California and conducted an analysis to determine if those chemicals would be removed by a variety of technically available treatment processes, including oil/water separation, air stripping, a variety of sorption media, advanced oxidation, biological treatment, and a variety of membrane treatment systems. The approach taken was to establish major physiochemical properties for individual chemicals (log Koc, Henry's constant, biodegradability, etc.), group chemicals by function (e.g corrosion inhibition, biocides), and use those properties to predict the fate of chemical additives in a treatment process. Results from this analysis is interpreted in the context of what is known about existing systems for the treatment of produced water before beneficial reuse, which includes a range of treatment systems from oil/water separators (the most common treatment) to sophisticated treatment trains used for purifying produced water for groundwater recharge. The results show that most HyF chemical additives will not be removed in existing treatment systems, but that more sophisticated treatment trains can be designed to remove additives before beneficial reuse.

  9. Electrochemistry and green chemical processes: electrochemical ozone production

    Directory of Open Access Journals (Sweden)

    Leonardo M. da Silva


    Full Text Available After an introductory discussion emphasising the importance of electrochemistry for the so-called Green Chemical Processes, the article presents a short discussion of the classical ozone generation technologies. Next a revision of the electrochemical ozone production technology focusing on such aspects as: fundamentals, latest advances, advantages and limitations of this technology is presented. Recent results about fundamentals of electrochemical ozone production obtained in our laboratory, using different electrode materials (e.g. boron doped diamond electrodes, lead dioxide and DSAÒ-based electrodes also are presented. Different chemical processes of interest to the solution of environmental problems involving ozone are discussed.

  10. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie


    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  11. 9 CFR 590.547 - Albumen flake process drying operations. (United States)


    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Albumen flake process drying operations. 590.547 Section 590.547 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.547 Albumen flake process...

  12. Composition and placement process for oil field chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cantu, L.A.; Yost, M.E.


    This patent describes a process for the continuous release of an oil field chemical within a subterranean hydrocarbon bearing formation or wellbore penetrating such formation. It comprises placing the oil field chemical in a polymeric microcapsule; dispersing such polymeric microcapsules; introducing the wellbore fluid containing the microcapsules into a well bore or subterranean formation through a wellbore; then allowing water and temperature at formation conditions to degrade; continuously releasing the chemical from the degraded microcapsules. This patent describes a composition comprising an oil field chemical incorporated in a polymeric microcapsule comprising the condensation product of hydroxyacetic acid monomer or hydroxyacetic acid co-condensed with up to 15 percent by weight of other hydroxy-, carboxylic acid-, or hydroxycarboxylic acid- containing moieties. The product has a number average molecular weight of from about 200 to about 4000.

  13. Development of Chemical Process Design and Control for Sustainability

    Directory of Open Access Journals (Sweden)

    Shuyun Li


    Full Text Available This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation for the optimization of process operations to minimize environmental impacts associated with products, materials and energy. The implemented control strategy combines a biologically-inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. EPA’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady states obtained through the implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose material and energy time variation models are characterized by multiple steady states and oscillatory conditions.

  14. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.


    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  15. The Computer-Aided Analytic Process Model. Operations Handbook for the Analytic Process Model Demonstration Package (United States)


    Research Note 86-06 THE COMPUTER-AIDED ANALYTIC PROCESS MODEL : OPERATIONS HANDBOOK FOR THE ANALYTIC PROCESS MODEL DE ONSTRATION PACKAGE Ronald G...ic Process Model ; Operations Handbook; Tutorial; Apple; Systems Taxonomy Mod--l; Training System; Bradl1ey infantry Fighting * Vehicle; BIFV...8217. . . . . . . .. . . . . . . . . . . . . . . . * - ~ . - - * m- .. . . . . . . item 20. Abstract -continued companion volume-- "The Analytic Process Model for

  16. Material instability hazards in mine-processing operations

    Energy Technology Data Exchange (ETDEWEB)

    Fredland, J.W.; Wu, K.K.; Kirkwood, D.W.


    Many accidents occur in the mining industry as a result of the instability of material during handling and processing operation. Accidents due to dump point instability at stockpiles, and at spoil or waste piles, for example, occur with alarming frequency. Miners must be trained to be better aware of these hazards. Information on safe working procedures at stockpiles and surge piles is provided. Mine operators must review their training and operating procedures regularly to ensure that hazardous conditions are avoided.

  17. Enhanced teaching and student learning through a simulator-based course in chemical unit operations design (United States)

    Ghasem, Nayef


    This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes through simulators. A case study presenting the teaching method was evaluated using student surveys and faculty assessments, which were designed to measure the quality and effectiveness of the teaching method. The results of the questionnaire conclusively demonstrate that this method is an extremely efficient way of teaching a simulator-based course. In addition to that, this teaching method can easily be generalised and used in other courses. A student's final mark is determined by a combination of in-class assessments conducted based on cooperative and peer learning, progress tests and a final exam. Results revealed that peer learning can improve the overall quality of student learning and enhance student understanding.

  18. The comparison of removing plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging for near-well ultrasonic processing technology. (United States)

    Wang, Zhenjun; Xu, Yuanming; Bajracharya, Suman


    Near-well ultrasonic processing technology is characterized by high adaptability, simple operation, low cost and zero pollution. The main plugs of oil production include paraffin deposition plug, polymer plug, and drilling fluid plug etc. Although some good results have been obtained through laboratory experiments and field tests, systematic and intensive studies are absent for certain major aspects, such as: effects of ultrasonic treatment for different kinds of plugs and whether effect of ultrasound-chemicals combination deplugging is better than that of ultrasonic deplugging. In this paper, the experiments of removing drilling fluid plug, paraffin deposition plug and polymer plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging respectively are carried out. Results show that the effect of ultrasound-chemical combination deplugging is clearly better than that of using ultrasonic wave and chemical deplugging agent separately, which indicates that ultrasonic deplugging and chemical deplugging can produce synergetic effects. On the one hand, ultrasonic treatment can boost the activity of chemical deplugging agent and turn chemical deplugging into dynamic chemical process, promoting chemical agent reaction speed and enhancing deplugging effect; on the other hand, chemical agent can reduce the adhesion strength of plugs so that ultrasonic deplugging effect can be improved significantly. Experimental results provide important reference for near-well ultrasonic processing technology.

  19. Chemical Processes Related to Combustion in Fluidised Bed

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Lindqvist, Oliver [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Environmental Inorganic Chemistry


    with evaluation of other biomass ash particles and, as an extension, the speciation of Cu and Zn will be studied as well. Ash fractions from combustion of MSW in a BFB boiler have been investigated regarding composition and leaching properties, i.e. environmental impact risks. The release of salts from the cyclone ash fraction can be minimised by the application of a simple washing process, thus securing that the leaching of soluble substances stays within the regulative limits. The MSW ash - water systems contain some interesting chemical issues, such as the interactions between Cr(VI) and reducing substances like Al-metal. The understanding of such chemical processes is important since it gives a possibility to predict effects of a change in ash composition. An even more detailed understanding of interactions between a solution containing ions and particle surfaces can be gained by theoretical modelling. In this project (and with additional unding from Aangpannefoereningens Forskningsstiftelse) a theoretical description of ion-ion interactions and the solid-liquid-interface has been developed. Some related issues are also included in this report. The publication of a paper on the reactions of ammonia in the presence of a calcining limestone surface is one of them. A review paper on the influence of combustion conditions on the properties of fly ash and its applicability as a cement replacement in concrete is another. The licentiate thesis describing the sampling and measurement of Cd in flue gas is also included since it was finalised during the present period. A co-operation project involving the Geology Dept. at Goeteborg Univ. and our group is briefly discussed. This project concerns the utilisation of granules produced from wood ash and dolomite as nutrient source for forest soil. Finally, the plans for our flue gas simulator facility are discussed.

  20. The kinetics of chemical processes affecting acidity in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pienaar, J.J.; Helas, G. [Potchefstroom University of Christian Higher Education, Potchefstroom (South Africa). Atmospheric Chemistry Research Group


    The dominant chemical reactions affecting atmospheric pollution chemistry and in particular, those leading to the formation of acid rain are outlined. The factors controlling the oxidation rate of atmospheric pollutants as well as the rate laws describing these processes are discussed in the light of our latest results and the current literature.

  1. Portfolio Assessment on Chemical Reactor Analysis and Process Design Courses (United States)

    Alha, Katariina


    Assessment determines what students regard as important: if a teacher wants to change students' learning, he/she should change the methods of assessment. This article describes the use of portfolio assessment on five courses dealing with chemical reactor and process design during the years 1999-2001. Although the use of portfolio was a new…

  2. Model Based Monitoring and Control of Chemical and Biochemical Processes

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted

    This presentation will give an overview of the work performed at the department of Chemical and Biochemical Engineering related to process control. A research vision is formulated and related to a number of active projects at the department. In more detail a project describing model estimation...

  3. An Integrated Course and Design Project in Chemical Process Design. (United States)

    Rockstraw, David A.; And Others


    Describes a chemical engineering course curriculum on process design, analysis, and simulation. Includes information regarding the sequencing of engineering design classes and the location of the classes within the degree program at New Mexico State University. Details of course content are provided. (DDR)

  4. Emergency Management Operations Process Mapping: Public Safety Technical Program Study (United States)


    DRDC CSS CR 2011-09 i Emergency Management Operations Process Mapping : Public Security Technical Program Study Anet Greenley ...processus/outils). DRDC CSS CR 2011-09 iii Executive summary Emergency Management Operations Process Mapping PSTP Study [ Greenley , A...technique de sécurité publique – Etude DSTP [ Greenley , A.; Poursina, S.]; DRDC CSS CR 2011-09 L’objectif principal du Programme technique de sécurité

  5. Mass Casualty Chemical Incident Operational Framework, Assessment and Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Greenwalt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hibbard, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Emergency response agencies in most US communities are organized, sized, and equipped to manage those emergencies normally expected. Hospitals in particular do not typically have significant excess capacity to handle massive numbers of casualties, as hospital space is an expensive luxury if not needed. Unfortunately this means that in the event of a mass casualty chemical incident the emergency response system will be overwhelmed. This document provides a self-assessment means for emergency managers to examine their response system and identify shortfalls. It also includes lessons from a detailed analysis of five communities: Baltimore, Boise, Houston, Nassau County, and New Orleans. These lessons provide a list of potential critical decisions to allow for pre-planning and a library of best practices that may be helpful in reducing casualties in the event of an incident.

  6. Theory of Selection Operators on Hyperspaces and Multivalued Stochastic Processes

    Institute of Scientific and Technical Information of China (English)

    高勇; 张文修


    In this paper, a new concept of selection operators on hyperspaces (subsets spaces) is introduced, and the existence theorems for several kinds of selection operators are proved. Using the methods of selection operators, we give a selection characterization of identically distributed multivalued random variables and completely solve the vector-valued selection problem for sequences of multivalued random variables converging in distribution. The regular selections and Markov selections for multivalued stochastic processes are studied, and a discretization theorem for multivalued Markov processes is established. A theorem on the asymptotic martingale selections for compact and convex multivalued asymptotic martingale is proved.

  7. Chemical measurements with optical fibers for process control. (United States)

    Boisde, G; Blanc, F; Perez, J J


    Several aspects of remote in situ spectrophotometric measurement by means of optical fibers are considered in the context of chemical process control. The technique makes it possible to measure a species in a particular oxidation state, such as plutonium(VI), sequentially, under the stringent conditions of automated analysis. For the control of several species in solution, measurements at discrete wavelengths on the sides of the absorption peaks serve to increase the dynamic range. Examples are given concerning the isotopic separation of uranium in the Chemex process. The chemical control of complex solutions containing numerous mutually interfering species requires a more elaborate spectral scan and real-time processing to determine the chemical kinetics. Photodiode array spectrophotometers are therefore ideal for analysing the uranium and plutonium solutions of the Purex process. Remote on-line control by ultraviolet monitoring exhibits limitations chiefly due to Rayleigh scattering in the optical fibers. The measurement of pH in acidic (0.8-3.2) and basic media (10-13) has also been attempted. Prior calibration, signal processing and optical spectra modeling are also discussed.

  8. Approaches to Chemical and Biochemical Information and Signal Processing (United States)

    Privman, Vladimir


    We outline models and approaches for error control required to prevent buildup of noise when ``gates'' and other ``network elements'' based on (bio)chemical reaction processes are utilized to realize stable, scalable networks for information and signal processing. We also survey challenges and possible future research. [4pt] [1] Control of Noise in Chemical and Biochemical Information Processing, V. Privman, Israel J. Chem. 51, 118-131 (2010).[0pt] [2] Biochemical Filter with Sigmoidal Response: Increasing the Complexity of Biomolecular Logic, V. Privman, J. Halamek, M. A. Arugula, D. Melnikov, V. Bocharova and E. Katz, J. Phys. Chem. B 114, 14103-14109 (2010).[0pt] [3] Towards Biosensing Strategies Based on Biochemical Logic Systems, E. Katz, V. Privman and J. Wang, in: Proc. Conf. ICQNM 2010 (IEEE Comp. Soc. Conf. Publ. Serv., Los Alamitos, California, 2010), pages 1-9.

  9. Sustainability assessment of novel chemical processes at early stage: application to biobased processes

    NARCIS (Netherlands)

    Patel, A.D.; Meesters, K.; Uil, H. den; Jong, E. de; Blok, K.; Patel, M.K.


    Chemical conversions have been a cornerstone of industrial revolution and societal progress. Continuing this progress in a resource constrained world poses a critical challenge which demands the development of innovative chemical processes to meet our energy and material needs in a sustainable way.

  10. Improving a Dental School's Clinic Operations Using Lean Process Improvement. (United States)

    Robinson, Fonda G; Cunningham, Larry L; Turner, Sharon P; Lindroth, John; Ray, Deborah; Khan, Talib; Yates, Audrey


    The term "lean production," also known as "Lean," describes a process of operations management pioneered at the Toyota Motor Company that contributed significantly to the success of the company. Although developed by Toyota, the Lean process has been implemented at many other organizations, including those in health care, and should be considered by dental schools in evaluating their clinical operations. Lean combines engineering principles with operations management and improvement tools to optimize business and operating processes. One of the core concepts is relentless elimination of waste (non-value-added components of a process). Another key concept is utilization of individuals closest to the actual work to analyze and improve the process. When the medical center of the University of Kentucky adopted the Lean process for improving clinical operations, members of the College of Dentistry trained in the process applied the techniques to improve inefficient operations at the Walk-In Dental Clinic. The purpose of this project was to reduce patients' average in-the-door-to-out-the-door time from over four hours to three hours within 90 days. Achievement of this goal was realized by streamlining patient flow and strategically relocating key phases of the process. This initiative resulted in patient benefits such as shortening average in-the-door-to-out-the-door time by over an hour, improving satisfaction by 21%, and reducing negative comments by 24%, as well as providing opportunity to implement the electronic health record, improving teamwork, and enhancing educational experiences for students. These benefits were achieved while maintaining high-quality patient care with zero adverse outcomes during and two years following the process improvement project.

  11. Computer-Aided Multiscale Modelling for Chemical Process Engineering

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Gani, Rafiqul


    T) for model translation, analysis and solution. The integration of ModDev, MoT and ICAS or any other external software or process simulator (using COM-Objects) permits the generation of different models and/or process configurations for purposes of simulation, design and analysis. Consequently, it is possible......Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framework...... for model generation, analysis, solution and implementation is necessary for the development and application of the desired model-based approach for product-centric process design/analysis. This goal is achieved through the combination of a system for model development (ModDev), and a modelling tool (Mo...

  12. Use of the LITEE Lorn Manufacturing Case Study in a Senior Chemical Engineering Unit Operations Laboratory (United States)

    Abraham, Nithin Susan; Abulencia, James Patrick


    This study focuses on the effectiveness of incorporating the Laboratory for Innovative Technology and Engineering Education (LITEE) Lorn Manufacturing case into a senior level chemical engineering unit operations course at Manhattan College. The purpose of using the case study is to demonstrate the relevance of ethics to chemical engineering…

  13. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions

    NARCIS (Netherlands)

    French, H.K.; Zee, van der S.E.A.T.M.


    This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the inf

  14. Compressed Aeronautical Chart Processing Operator’s Manual (United States)


    the processing thread A4A denotes a CAC ODI build for an (A) aeronautical chart at the (4) operational navigation chart (ONC) (1:1M) scale with...builds when both charts are at the same scale. For example, the processing thread A4A denotes a CAC ODI build for an (A) aeronautical chart at the (4

  15. Future electro-optical sensors and processing in urban operations

    NARCIS (Netherlands)

    Grönwall, C.; Schwering, P.B.; Rantakokko, J.; Benoist, K.W.; Kemp, R.A.W.; Steinvall, O.; Letalick, D.; Björkert, S.


    In the electro-optical sensors and processing in urban operations (ESUO) study we pave the way for the European Defence Agency (EDA) group of Electro-Optics experts (IAP03) for a common understanding of the optimal distribution of processing functions between the different platforms. Combinations of

  16. Onboard Processing and Autonomous Operations on the IPEX Cubesat (United States)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Flatley, Tom; Crum, Gary; Geist, Alessandro; Lin, Michael; Williams, Austin; Bellardo, John; Puig-Suari, Jordi; Stanton, Eric; Yee, Edmond


    IPEX is a 1u Cubesat sponsored by NASA Earth Science Technology Office (ESTO), the goals or which are: (1) Flight validate high performance flight computing, (2) Flight validate onboard instrument data processing product generation software, (3) flight validate autonomous operations for instrument processing, (4) enhance NASA outreach and university ties.

  17. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions. (United States)

    French, Helen K; van der Zee, Sjoerd E A T M


    This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated.


    Directory of Open Access Journals (Sweden)

    Lagad C. E.


    Full Text Available Standard operating procedures (SOPs should to be designed, implemented and set for all Ayurvedic drugs one by one for globalization Ayurveda. In this study, an attempt has been made to introduce SOP for preparation of Naag Bhasma [NB] & its analytical study. Study was conducted in the Department of Rasa Shastra under the postgraduate research programme is being presented. The pharmaceutical processing of NB was performed by following Samanya Shodhana, Jarana, Marana of Naag [Pb] & its analytical study. Naga Bhasma was prepared in two batches namely Batch A & B. In this method purified Haratala (Orpiment were taken as media. The percentage loss in the Naga Bhasma in Batch A was 63%, while in case of Batch B was 60.5%. Raw drugs, in process materials and the final products were analyzed physico-chemically and comparison was drawn to lay down pharmacopoeial standards. The average percentage purity of Naga decreased from 99.46% to 86.57% after Shodhana. The percentage of (Pb lead in Naga Bhasma was 58.4% and 57.89% respectively in Batch A and B. Both the Bhasmas were in PbS form chemically with other elements like Ca, Si, Fe, Al, K, As, Mg, Ni, Mn, Cd, Zn in trace amount.

  19. Launch processing system operations with a future look to operations analyst (OPERA) (United States)

    Heard, Astrid E.

    The launch processing system at Kennedy Space Center is used to process a Shuttle vehicle from its initial arrival in an Orbiter processing facility to a launch pad. This paper describes the launch processing system architecture and the ground support operations required to provide Shuttle system engineers with the capability to safely process and launch an Orbiter. The described ground operations are the culmination of 11 years of experience and redesign. In this paper, I examine some of the "lessons learned" and discuss problem areas which ground support operations have identified over the years as the Shuttle and launch processing systems continue to grow in complexity. As we strive to maintain the efficient level of support currently provided, some benefits have been gained through standard information management and automation techniques. However, problems requiring complex correlational analyses of information have defied resolution until artificial intelligence research developed expert system applications technology. The operational analyst for distributed systems (OPERA), a proposed set of expert systems for launch processing system operational assistance, is discussed along with its extensions to prospective future configurations and components for the launch processing system.

  20. The operation technology of realtime image processing system (Datacube)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Lee, Yong Bum; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Park, Jin Seok


    In this project, a Sparc VME-based MaxSparc system, running the solaris operating environment, is selected as the dedicated image processing hardware for robot vision applications. In this report, the operation of Datacube maxSparc system, which is high performance realtime image processing hardware, is systematized. And image flow example programs for running MaxSparc system are studied and analyzed. The state-of-the-arts of Datacube system utilizations are studied and analyzed. For the next phase, advanced realtime image processing platform for robot vision application is going to be developed. (author). 19 refs., 71 figs., 11 tabs.

  1. Chemical Processing Department monthly report for April 1958

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.H.


    The separations plants operated on schedule, and Pu production exceeded commitment. UO{sub 3} production and shipments were also ahead of schedule. Purex operation under pseudo two-cycle conditions (elimination of HS and 1A columns, co-decontamination cycle concentrator HCP) was successful. Final U stream was 3{times} lower in Pu than ever before; {gamma} activity in recovered HNO{sub 3} was also low. Four of 6 special E metal batches were processed through Redox and analyzed. Boric acid is removed from solvent extraction process via aq waste. The filter in Task II hydrofluorinator was changed from carbon to Poroloy. Various modifications to equipment were made.

  2. Microbiology and atmospheric processes: chemical interactions of Primary Biological Aerosols (United States)

    Deguillaume, L.; Leriche, M.; Amato, P.; Ariya, P. A.; Delort, A.-M.; Pöschl, U.; Chaumerliac, N.; Bauer, H.; Flossmann, A. I.; Morris, C. E.


    This paper discusses the influence of bioaerosols on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that biological matter represents a significant fraction of air particulate matter and hence affects the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of primary biological particles in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  3. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume


    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.


    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E; Neil Davis, N; Renee Spires, R


    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store this stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.

  5. Constellation Mission Operation Working Group: ESMO Maneuver Planning Process Review (United States)

    Moyer, Eric


    The Earth Science Mission Operation (ESMO) Project created an Independent Review Board to review our Conjunction Risk evaluation process and Maneuver Planning Process to identify improvements that safely manages mission conjunction risks, maintains ground track science requirements, and minimizes overall hours expended on High Interest Events (HIE). The Review Board is evaluating the current maneuver process which requires support by multiple groups. In the past year, there have been several changes to the processes although many prior and new concerns exist. This presentation will discuss maneuver process reviews and Board comments, ESMO assessment and path foward, ESMO future plans, recent changes and concerns.

  6. Economic model predictive control theory, formulations and chemical process applications

    CERN Document Server

    Ellis, Matthew; Christofides, Panagiotis D


    This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes. In addition to being...

  7. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson


    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  8. A pollution reduction methodology for chemical process simulators

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, S.K.; Cabezas, H.; Bare, J.C.; Sikdar, S.K. [Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.


    A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has been modified by weighing the mass flowrate of each pollutant by its potential environmental impact score. This converts the mass balance into an environmental impact balance. This balance defines an impact index with units of environmental impact per mass of products. The impact index measures the potential environmental effects of process wastes. Three different schemes for chemical ranking were considered: (1) no ranking, (2) simple ranking from 0 to 3, and (3) ranking by a scientifically derived measure of human health and environmental effects. Use of the methodology is illustrated with two examples from the production of (1) methyl ethyl ketone and (2) synthetic ammonia.

  9. Conditioning of sludge produced through chemical treatment of radioactive liquid waste - Operating experiences

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, D. Anji, E-mail: [Centralised Waste Management Facility, Nuclear Recycle Group, BARC Facilities, Kalpakkam 603 102, Tamil Nadu (India); Khandelwal, S.K.; Muthiah, R.; Shanmugamani, A.G.; Paul, Biplob; Rao, S.V.S.; Sinha, P.K. [Centralised Waste Management Facility, Nuclear Recycle Group, BARC Facilities, Kalpakkam 603 102, Tamil Nadu (India)


    At Centralised Waste Management Facility (CWMF) 160 m{sup 3} of radioactive chemical sludge, generated from treatment of several batches of category-II and category-III radioactive liquid wastes by chemical precipitation method was stored in clariflocculator (CF) for downstream processing. The sludge needed conditioning before disposal. The analysis of the sludge samples collected at different radial locations and depths from the CF showed suspended solid content of 2.37-13.07% and radioactive content of gross {beta}-{gamma} 5000-27,000 Bq/g and {alpha} 100-600 Bq/g. After comparing different options available for conditioning of the sludge based on their technological and economical aspects, it was decided to dewater it using centrifuge before fixing in cement matrix with additives. Process Control Laboratory of CWMF studied the process in detail to optimize the relevant parameters for fixation of the concentrate obtained from centrifuge. Based on these results, conditioning of the stored sludge was undertaken. The process consisted of diluting the sludge with low active effluents/water for homogenisation and facilitating the transfer of sludge, dewatering of the slurry utilising decanter centrifuge, fixation of dewatered concentrate in Ordinary Portland Cement (OPC) with vermiculite as an additive using in-drum mixing method, providing sufficient time for hardening of fixed mass, transportation and safe disposal into Near Surface Disposal Facility (NSDF). Total 150 m{sup 3} of conditioned waste was produced (750 numbers of drums containing cement fixed concentrate). The paper includes the results of the studies conducted on cement fixed concentrate blocks for finding out their compressive strength and leaching characteristics. It also describes the experiences gained from the above operations.

  10. Lessons learned from an installation perspective for chemical demilitarization plant start-up at four operating incineration sites.

    Energy Technology Data Exchange (ETDEWEB)

    Motz, L.; Decision and Information Sciences


    This study presents the lessons learned by chemical storage installations as they prepared for the start of chemical demilitarization plant operations at the four current chemical incinerator sites in Alabama, Arkansas, Oregon, and Utah. The study included interviews with persons associated with the process and collection of available documents prepared at each site. The goal was to provide useful information for the chemical weapons storage sites in Colorado and Kentucky that will be going through plant start-up in the next few years. The study is not a compendium of what to do and what not to do. The information has been categorized into ten lessons learned; each is discussed individually. Documents that may be useful to the Colorado and Kentucky sites are included in the appendices. This study should be used as a basis for planning and training.

  11. Operation and design of selected industrial process heat field tests

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, D. W.


    The DOE program of solar industrial process heat field tests has shown solar energy to be compatible with numerous industrial needs. Both the operational projects and the detailed designs of systems that are not yet operational have resulted in valuable insights into design and hardware practice. Typical of these insights are the experiences discussed for the four projects reviewed. Future solar IPH systems should benefit greatly not only from the availability of present information, but also from the wealth of operating experience from projects due to start up in 1981.

  12. Overlap Dirac operator at nonzero chemical potential and random matrix theory. (United States)

    Bloch, Jacques; Wettig, Tilo


    We show how to introduce a quark chemical potential in the overlap Dirac operator. The resulting operator satisfies a Ginsparg-Wilson relation and has exact zero modes. It is no longer gamma5 Hermitian, but its nonreal eigenvalues still occur in pairs. We compute the spectral density of the operator on the lattice and show that, for small eigenvalues, the data agree with analytical predictions of non-Hermitian chiral random matrix theory for both trivial and nontrivial topology. We also explain an observed change in the number of zero modes as a function of chemical potential.

  13. Numerical simulation of chemical processes in atmospheric plasmas

    Institute of Scientific and Technical Information of China (English)

    Ouyang Jian-Ming; Guo Wei; Wang Long; Shao Fu-Qiu


    A model is built to study chemical processes in atmospheric plasmas at low altitude (high pressure) and at high altitude (low pressure). The plasma lifetime and the temporal evolution of the main charged species are presented.The electron number density does not strictly obey the exponential damping law in a long period. The heavy charged species are dominant at low altitude in comparison with the light species at high altitude. Some species of small amount in natural air play an important role in the processes.

  14. Chemical Assessment of White Wine during Fermentation Process

    Directory of Open Access Journals (Sweden)

    Teodora Coldea


    Full Text Available There were investigated chemical properties of indigenous white wine varieties (Fetească albă, Fetească regală and Galbenă de Odobeşti during fermentation. The white wine making process took place at Wine Pilot Station of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. We aimed to monitorize the evolution of fermentation process parameters (temperature, alcohol content, and real extract and the quality of the bottled white wine (total acidity, alcohol content, total sulfur dioxide, total dry extract. The results obtained were in accordance to Romanian Legislation.

  15. The role of chemical interactions in ion-solid processes

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, B.W.


    Computer simulation of low-energy ion-solid processes has greatly broadened in scope in recent years. In particular, realistic descriptions of the ion-solid and solid-solid interactions can now be utilized. The molecular dynamics technique, in which the equations of motion of the interacting atoms are numerically integrated, can now be used to characterize ion-solid interactions in a range of model material systems. Despite practical limitations of this procedure, a number of substantial results have appeared. The available results are examined to investigate the qualitative influence that chemical interactions have on low-energy ion-solid processes. 26 refs., 4 figs.

  16. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney


    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  17. Flux behaviour under different operational conditions in osmosis process

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Zarebska, Agata; Buksek, Hermina;

    the active membrane layer is facing draw solution. Osmosis process can be affected by several factors, such as operating conditions (temperature and cross flow velocity), feed and draw solution properties, and membrane characteristics. These factors can significantly contribute to the efficiency...... of the process itself. In order to implement the osmosis process on an industrial scale, process economy need to be taken into consideration, as well as the desired final product quality. Membrane performance can be evaluated based on the water permeability and the selectivity of the membrane. The permeability...


    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.


    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  19. Influence of surface coverage on the chemical desorption process

    CERN Document Server

    Marco, Minissale


    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O$_2$) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80 $\\%$ at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-...

  20. Demining Dogs in Colombia - A Review of Operational Challenges, Chemical Perspectives, and Practical Implications. (United States)

    Prada, Paola A; Chávez Rodríguez, Mario


    Within the framework of an internal armed conflict in Colombia, the use of antipersonnel mines by revolutionary armed forces represents a strategic factor for these groups. Antipersonnel mines are used by these revolutionary forces as a mean to hinder the advancement of the national armed forces in the recovery of territory and to protect tactical natural resources and illegal economies within a given area. These antipersonnel mines and improvised explosive devices (IEDs) are not of industrial manufacturing, and have a variety of activating mechanisms as well as non-metal materials which make them difficult for successful detection. The Colombian experience strongly represents the current need for advanced research and development of effective field operations within its affected territory. Current efforts are focused on a more operational demining perspective in coca cultivation sites in charge of mobile squadrons of eradication (EMCAR) from the National Police of Colombia working towards a future humanitarian demining upon an eventual peace process. The objectives of this review are not only to highlight already existing mine detection methods, but present a special emphasis on the role of mine detection canine teams in the context of this humanitarian issue in Colombia. This review seeks to bring together a description of chemical interactions of the environment with respect to landmine odor signatures, as well as mine detection dog operational perspectives for this specific detection task. The aim is to highlight that given the limited knowledge on the subject, there is a research gap that needs to be attended in order to efficiently establish optimal operating conditions for the reliable performance of mine detection dogs in Colombian demining field applications.

  1. Improving operational anodising process performance using simulation approach

    Energy Technology Data Exchange (ETDEWEB)

    Liong, Choong-Yeun, E-mail:; Ghazali, Syarah Syahidah, E-mail: [School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE (Malaysia)


    The use of aluminium is very widespread, especially in transportation, electrical and electronics, architectural, automotive and engineering applications sectors. Therefore, the anodizing process is an important process for aluminium in order to make the aluminium durable, attractive and weather resistant. This research is focused on the anodizing process operations in manufacturing and supplying of aluminium extrusion. The data required for the development of the model is collected from the observations and interviews conducted in the study. To study the current system, the processes involved in the anodizing process are modeled by using Arena 14.5 simulation software. Those processes consist of five main processes, namely the degreasing process, the etching process, the desmut process, the anodizing process, the sealing process and 16 other processes. The results obtained were analyzed to identify the problems or bottlenecks that occurred and to propose improvement methods that can be implemented on the original model. Based on the comparisons that have been done between the improvement methods, the productivity could be increased by reallocating the workers and reducing loading time.

  2. Optimalisation of the process for manually operated jacket steam sterilisers

    NARCIS (Netherlands)

    Muis B; Bruijn ACP de; Drongelen AW van; Huys JFFM; LGM


    The aim of the research was to find an optimal process for a manually operated jacketed steam steriliser, which is mainly used in developing countries. The experiments were focussed on the steam penetration into a textile test pack and the drying procedure. The performance of the various test cycles

  3. 19 CFR 10.814 - Direct costs of processing operations. (United States)


    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Direct costs of processing operations. 10.814 Section 10.814 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY... administrative salaries, casualty and liability insurance, advertising, and salesmen's salaries, commissions,...

  4. 19 CFR 10.774 - Direct costs of processing operations. (United States)


    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Direct costs of processing operations. 10.774 Section 10.774 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY... administrative salaries, casualty and liability insurance, advertising, and salesmen's salaries, commissions,...

  5. A Perspective on PSE in Fermentation Process Development and Operation

    DEFF Research Database (Denmark)

    Gernaey, Krist


    Compared to the chemical industry, the use of PSE methods and tools is not as widespread in industrial fermentation processes. This paper gives an overview of some of the main engineering challenges in industrial fermentation processes. Furthermore, a number of mathematical models are highlighted...... as examples of PSE methods and tools that are used in the context of industrial fermentation technology. Finally, it is discussed what could be done to increase the future use of PSE methods and tools within the industrial fermentation technology area....

  6. Property Modelling for Applications in Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    , polymers, mixtures as well as separation processes. The presentation will highlight the framework (ICAS software) for property modeling, the property models and issues such as prediction accuracy, flexibility, maintenance and updating of the database. Also, application issues related to the use of property......, they are not always available. Also, it may be too expensive to measure them or it may take too much time. In these situations and when repetitive calculations are involved (as in process simulation), it is useful to have appropriate models to reliably predict the needed properties. A collection of methods tools...... such as database, property model library, model parameter regression, and, property-model based product-process design will be presented. The database contains pure component and mixture data for a wide range of organic chemicals. The property models are based on the combined group contribution and atom...

  7. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. (United States)

    Banerjee, Jhumur; Singh, Ramkrishna; Vijayaraghavan, R; MacFarlane, Douglas; Patti, Antonio F; Arora, Amit


    Fruit processing industries contribute more than 0.5billion tonnes of waste worldwide. The global availability of this feedstock and its untapped potential has encouraged researchers to perform detailed studies on value-addition potential of fruit processing waste (FPW). Compared to general food or other biomass derived waste, FPW are found to be selective and concentrated in nature. The peels, pomace and seed fractions of FPW could potentially be a good feedstock for recovery of bioactive compounds such as pectin, lipids, flavonoids, dietary fibres etc. A novel bio-refinery approach would aim to produce a wider range of valuable chemicals from FPW. The wastes from majority of the extraction processes may further be used as renewable sources for production of biofuels. The literature on value addition to fruit derived waste is diverse. This paper presents a review of fruit waste derived bioactives. The financial challenges encountered in existing methods are also discussed.

  8. Purex process operation and performance, 1970 Thoria Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.R.; Walser, R.L. (eds.)


    The Hanford Purex Plant fulfilled a 1970 commitment to the Atomic Energy Commission to produce 360 kilograms of high purity /sup 233/U as uranyl nitrate solution. Overall plant performance during both 1970 and 1966 confirmed the suitability of Purex for processing thorium on a campaign basis. The 1970 processing campaign, including flushing operations, is discussed with particular emphasis on problem areas. Background information on the process and equipment used is also presented. The organizations and their designations described are those existing in 1970.

  9. The optimization of operating parameters on microalgae upscaling process planning. (United States)

    Ma, Yu-An; Huang, Hsin-Fu; Yu, Chung-Chyi


    The upscaling process planning developed in this study primarily involved optimizing operating parameters, i.e., dilution ratios, during process designs. Minimal variable cost was used as an indicator for selecting the optimal combination of dilution ratios. The upper and lower mean confidence intervals obtained from the actual cultured cell density data were used as the final cell density stability indicator after the operating parameters or dilution ratios were selected. The process planning method and results were demonstrated through three case studies of batch culture simulation. They are (1) final objective cell densities were adjusted, (2) high and low light intensities were used for intermediate-scale cultures, and (3) the number of culture days was expressed as integers for the intermediate-scale culture.

  10. Relationship between snow microstructure and physical and chemical processes

    Directory of Open Access Journals (Sweden)

    T. Bartels-Rausch


    Full Text Available Ice and snow in the environment are important because they not only act as a host to rich chemistry but also provide a matrix for physical exchanges of contaminants within the ecosystem. This review discusses how the structure of snow influences both chemical reactivity and physical processes, which thereby makes snow a unique medium for study. The focus is placed on impacts of the presence of liquid and surface disorder using many experimental studies, simulations, and field observations from the molecular to the micro-scale.

  11. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin


    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  12. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.


    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  13. The CONSERT operations planning process for the Rosetta mission (United States)

    Rogez, Yves; Puget, Pascal; Zine, Sonia; Hérique, Alain; Kofman, Wlodek; Altobelli, Nicolas; Ashman, Mike; Barthélémy, Maud; Biele, Jens; Blazquez, Alejandro; Casas, Carlos M.; Sitjà, Marc Costa; Delmas, Cédric; Fantinati, Cinzia; Fronton, Jean-François; Geiger, Bernhard; Geurts, Koen; Grieger, Björn; Hahnel, Ronny; Hoofs, Raymond; Hubault, Armelle; Jurado, Eric; Küppers, Michael; Maibaum, Michael; Moussi-Souffys, Aurélie; Muñoz, Pablo; O'Rourke, Laurence; Pätz, Brigitte; Plettemeier, Dirk; Ulamec, Stephan; Vallat, Claire


    The COmet Nucleus Sounding Experiment by Radio wave Transmission (CONSERT / Rosetta) has been designed to sound the interior of the comet 67P/Churyumov-Gerasimenko. This instrument consists of two parts: one onboard Rosetta and the other one onboard Philae. A good CONSERT science measurement sequence requires joint operations of both spacecrafts in a relevant geometry. The geometric constraints to be fulfilled involve the position and the orientation of both Rosetta and Philae. At the moment of planning the post-landing and long-term science operations for Rosetta instruments, the actual comet shape and the landing location remained largely unknown. In addition, the necessity of combining operations of Rosetta spacecraft and Philae spacecraft makes the planning process for CONSERT particularly complex. In this paper, we present the specific methods and tools we developed, in close collaboration with the mission and the science operation teams for both Rosetta and Philae, to identify, rank and plan the operations for CONSERT science measurements. The presented methods could be applied to other missions involving joint operations between two platforms, on a complex shaped object.

  14. On the moments of the Boltzmann's collision operator arising from chemical reactions (United States)

    Sarna, Neeraj; Torrilhon, Manuel


    For any study of microflows it is crucial to understand the collision dynamics of the molecules involved. In the present work we will discuss the collision dynamics of chemically reacting hard spheres(CRHS). The inability of the classical smooth inelastic hard spheres, which have been extensively used in the past to study granular gases, to describe the collision dynamics of chemically reacting hard spheres has been discussed. Using the model of rough inelastic hard spheres as a motivation, a new model has been proposed for chemically reacting hard spheres which has been further used to derive certain useful velocity transformations. A methodology to compute the moments of the Boltzmann's collision operator arising from chemical reactions, using Grad's distribution function, has been discussed in detail. Finally explicit expressions for the rates of the reaction have been obtained which contain contributions from higher order moment and thus can be used for non-equilibrium chemically reacting flows.

  15. Challenges in simulation of chemical processes in combustion furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Kilpinen, P. [Aabo Akademi, Turku (Finland)


    The presentation gives an introduction to some of the present issues and problems in treating the complex chemical processes in combustion. The focus is in the coupling of the hydrocarbon combustion process with nitrogen oxide formation and destruction chemistry in practical furnaces or flames. Detailed kinetic modelling based on schemes of elementary reactions are shown to be a useful novel tool for identifying and studying the key reaction paths for nitrogen oxide formation and destruction in various systems. The great importance of the interaction between turbulent mixing and combustion chemistry is demonstrated by the sensitivity of both methane oxidation chemistry and fuel nitrogen conversion chemistry to the reactor and mixing pattern chosen for the kinetic calculations. The fluidized bed combustion (FBC) nitrogen chemistry involves several important heterogeneous reactions. Particularly the char in the bed plays an essential role. Recent research has advanced rapidly and the presentation proposes an overall picture of the fuel nitrogen reaction routes in circulating FBC conditions. (author)

  16. DYNSYL: a general-purpose dynamic simulator for chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, G.K.; Rozsa, R.B.


    Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simple material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing.

  17. The modelling of dynamic chemical state of paper machine unit operations; Dynaamisen kemiallisen tilan mallintaminen paperikoneen yksikkoeoperaatioissa - MPKT 04

    Energy Technology Data Exchange (ETDEWEB)

    Ylen, J.P.; Jutila, P. [Helsinki Univ. of Technology, Otaniemi (Finland)


    The chemical state of paper mass is considered to be a key factor to the smooth operation of the paper machine. There are simulators that have been developed either for dynamic energy and mass balances or for static chemical phenomena, but the combination of these is not a straight forward task. Control Engineering Laboratory of Helsinki University of Technology has studied the paper machine wet end phenomena with the emphasis on pH-modelling. VTT (Technical Research Centre of Finland) Process Physics has used thermodynamical modelling successfully in e.g. Bleaching processes. In this research the different approaches are combined in order to get reliable dynamical models and modelling procedures for various unit operations. A flexible pilot process will be constructed and different materials will be processed starting from simple inorganic substances (e.g. Calcium carbonate and distilled water) working towards more complex masses (thick pulp with process waters and various reagents). The pilot process is well instrumented with ion selective electrodes, total calcium analysator and all basic measurements. (orig.)

  18. Future electro-optical sensors and processing in urban operations (United States)

    Grönwall, Christina; Schwering, Piet B.; Rantakokko, Jouni; Benoist, Koen W.; Kemp, Rob A. W.; Steinvall, Ove; Letalick, Dietmar; Björkert, Stefan


    In the electro-optical sensors and processing in urban operations (ESUO) study we pave the way for the European Defence Agency (EDA) group of Electro-Optics experts (IAP03) for a common understanding of the optimal distribution of processing functions between the different platforms. Combinations of local, distributed and centralized processing are proposed. In this way one can match processing functionality to the required power, and available communication systems data rates, to obtain the desired reaction times. In the study, three priority scenarios were defined. For these scenarios, present-day and future sensors and signal processing technologies were studied. The priority scenarios were camp protection, patrol and house search. A method for analyzing information quality in single and multi-sensor systems has been applied. A method for estimating reaction times for transmission of data through the chain of command has been proposed and used. These methods are documented and can be used to modify scenarios, or be applied to other scenarios. Present day data processing is organized mainly locally. Very limited exchange of information with other platforms is present; this is performed mainly at a high information level. Main issues that arose from the analysis of present-day systems and methodology are the slow reaction time due to the limited field of view of present-day sensors and the lack of robust automated processing. Efficient handover schemes between wide and narrow field of view sensors may however reduce the delay times. The main effort in the study was in forecasting the signal processing of EO-sensors in the next ten to twenty years. Distributed processing is proposed between hand-held and vehicle based sensors. This can be accompanied by cloud processing on board several vehicles. Additionally, to perform sensor fusion on sensor data originating from different platforms, and making full use of UAV imagery, a combination of distributed and

  19. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Directory of Open Access Journals (Sweden)

    H. V. Lee


    Full Text Available Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate’s application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.

  20. Sustainable Chemical Processes and Products. New Design Methodology and Design Tools


    Korevaar, G.


    The current chemical industry is not sustainable, which leads to the fact that innovation of chemical processes and products is too often hazardous for society in general and the environment in particular. It really is a challenge to implement sustainability considerations in the design activities of chemical engineers. Therefore, the main question of this thesis is: how can a trained chemical engineer develop a conceptual design of a chemical process or a chemical product in such a way that ...

  1. Batch process. Optimum designing and operation of a batch process; Bacchi purosesu

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, S. [Kyoto Univ. (Japan). Faculty of Engineering


    Since the control of a batch process becomes dynamic, it becomes necessary to handle the process differently from a continuous process in terms of the designing, operating and controlling of the process. This paper describes the characteristics and the problems to be solved of a batch process from three points of view, the designing, operation and controlling of the process. A major problem of a batch process is the designing difficulty. In a batch process, the amount of products capable of being manufactured per unit time by each apparatus and that by the whole plant structured by combining apparatuses are different, and therefore the time and apparatus capacity are wasted in some cases. The actual designing of a batch process involves various factors, such as the seasonal fluctuation of demand for products, the possibility of expanding the apparatuses in the future and the easiness of controlling the process, and the shipment of products during consecutive holidays and periodic maintenance, which are not included in the formulation of mathematical programming problems. Regarding the optimum operation of a batch process and the controlling of the same, descriptions of forming of a dynamic optimum operation pattern and verification of the sequence control system are given. 9 refs., 4 figs.

  2. The Defense Waste Processing Facility: Two Years of Radioactive Operation

    Energy Technology Data Exchange (ETDEWEB)

    Marra, S.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Gee, J.T.; Sproull, J.F.


    The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC is currently immobilizing high level radioactive sludge waste in borosilicate glass. The DWPF began vitrification of radioactive waste in May, 1996. Prior to that time, an extensive startup test program was completed with simulated waste. The DWPF is a first of its kind facility. The experience gained and data collected during the startup program and early years of operation can provide valuable information to other similar facilities. This experience involves many areas such as process enhancements, analytical improvements, glass pouring issues, and documentation/data collection and tracking. A summary of this experience and the results of the first two years of operation will be presented.

  3. Operating cost budgeting methods: quantitative methods to improve the process

    Directory of Open Access Journals (Sweden)

    José Olegário Rodrigues da Silva

    Full Text Available Abstract Operating cost forecasts are used in economic feasibility studies of projects and in budgeting process. Studies have pointed out that some companies are not satisfied with the budgeting process and chief executive officers want updates more frequently. In these cases, the main problem lies in the costs versus benefits. Companies seek simple and cheap forecasting methods without, at the same time, conceding in terms of quality of the resulting information. This study aims to compare operating cost forecasting models to identify the ones that are relatively easy to implement and turn out less deviation. For this purpose, we applied ARIMA (autoregressive integrated moving average and distributed dynamic lag models to data from a Brazilian petroleum company. The results suggest that the models have potential application, and that multivariate models fitted better and showed itself a better way to forecast costs than univariate models.

  4. Stream Processing in the Robot Operating System framework


    Hongslo, Anders


    Streams of information rather than static databases are becoming increasingly important with the rapid changes involved in a number of fields such as finance, social media and robotics. DyKnow is a stream-based knowledge processing middleware which has been used in autonomous Unmanned Aerial Vehicle (UAV) research. ROS (Robot Operating System) is an open-source robotics framework providing hardware abstraction, device drivers, communication infrastructure, tools, libraries as well as other fu...

  5. Chemical and biological flocculation process to treat municipal sewage and analysis of biological function

    Institute of Scientific and Technical Information of China (English)

    XIA Si-qing; YANG Dian-hai; XU Bin; ZHAO Jian-fu


    The pilot-scale experimental apparatus and the procedure of the chemical and biological flocculation process to verify the feasibility in treating Shanghai municipal sewage were introduced in this paper. In addition, the biological function of the process was discussed. The results of optimal running showed that in the reaction tank, the concentration of mixed liquor suspended solid(MLSS) was2 g/L, hydraulic retention time(HRT) was 35 min, dosage of liquid polyaluminium chloride(PAC) was 60 mg/L, and the concentration of polyacrylamide(PAM) was 0.5 mg/L. The effluent average concentrations of CODcr, TP, SS and BOD5 were 50 mg/L, 0.62 mg/L, 18mg/L, and 17 mg/L, respectively. These were better than the designed demand. In addition, the existence of biological degradation in this system was proven by several methods. The removal efficiencies of the chemical and biological flocculation process were 20% higher than that of the chemical flocculation process above at the same coagulant dosage. The treatment process under different situations was evaluated on a pilot-scale experiment, and the results provided magnificent parameters and optimal condition for future operation of the plant.


    DEFF Research Database (Denmark)

    Adeyemi, Oluseyi


    and utilizing the best locations for these activities. The trend in the operations of western companies has evolved from domestic market sales and export to offshoring. Export became necessary in order to meet the demand of customers who are willing to pay for a product or service globally. However, export......) with the organization and management of the processes involved (people and organizational innovation) together with the creative recombination of existing techniques, ideas or methods (synthetic innovation) will be adopted in this study to manage the transition processes of manufacturing configurations....

  7. Feasibility study of sulfates as oxygen carriers for chemical looping processes

    Directory of Open Access Journals (Sweden)

    Ganesh Kale


    Full Text Available The operational feasibility temperature range of chemical looping combustion (CLC and chemical looping reforming (CLR of the fuels methane, propane, iso-octane and ethanol was explored using the common sulphates

  8. Replacement of chemical intensive water treatment processes with energy saving membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, M.C.; Goering, S.W.


    The project investigated the use of charged ultrafiltration membranes to treat hard water. More specifically, the work was undertaken to (1) make charged ultrafiltration membranes to demonstrate the technical feasibility of the chemical grafting approach; (2) evaluate the market potential for charged ultrafiltration membranes; and (3) evaluate the cost and energy savings for using charged ultrafiltration as compared to lime-based clarification and other treatment methods. The results suggest that chemical grafting is a relatively simple, reproducible and low-cost way to modify existing substrate materials to give them enhanced transport performance. Process studies lead to the identification of good market potential for membrane processes using charged ultrafiltration membranes. Capital and operating costs relative to lime-based clarification are favorable for low- and medium-sized treatment plants. Finally, substantial energy savings are apparent as compared to lime-based precipitation systems which incur substantial energy consumption in the lime production and transportation steps.

  9. Contactless operating table control based on 3D image processing. (United States)

    Schröder, Stephan; Loftfield, Nina; Langmann, Benjamin; Frank, Klaus; Reithmeier, Eduard


    Interaction with mobile consumer devices leads to a higher acceptance and affinity of persons to natural user interfaces and perceptional interaction possibilities. New interaction modalities become accessible and are capable to improve human machine interaction even in complex and high risk environments, like the operation room. Here, manifold medical disciplines cause a great variety of procedures and thus staff and equipment. One universal challenge is to meet the sterility requirements, for which common contact-afflicted remote interfaces always pose a potential risk causing a hazard for the process. The proposed operating table control system overcomes this process risk and thus improves the system usability significantly. The 3D sensor system, the Microsoft Kinect, captures the motion of the user, allowing a touchless manipulation of an operating table. Three gestures enable the user to select, activate and manipulate all segments of the motorised system in a safe and intuitive way. The gesture dynamics are synchronised with the table movement. In a usability study, 15 participants evaluated the system with a system usability score by Broke of 79. This states a high potential for implementation and acceptance in interventional environments. In the near future, even processes with higher risks could be controlled with the proposed interface, while interfaces become safer and more direct.

  10. Integration of process design and controller design for chemical processes using model-based methodology

    DEFF Research Database (Denmark)

    Abd.Hamid, Mohd-Kamaruddin; Sin, Gürkan; Gani, Rafiqul


    In this paper, a novel systematic model-based methodology for performing integrated process design and controller design (IPDC) for chemical processes is presented. The methodology uses a decomposition method to solve the IPDC typically formulated as a mathematical programming (optimization...... that satisfy design, control and cost criteria. The advantage of the proposed methodology is that it is systematic, makes use of thermodynamic-process knowledge and provides valuable insights to the solution of IPDC problems in chemical engineering practice....... with constraints) problem. Accordingly the optimization problem is decomposed into four sub-problems: (i) pre-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection and verification, which are relatively easier to solve. The methodology makes use of thermodynamic-process...

  11. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, Edward; Spires, Renee; Davis, Neil


    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, a significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full

  12. Heavy oil processing impacts refinery and effluent treatment operations

    Energy Technology Data Exchange (ETDEWEB)

    Thornthwaite, P. [Nalco Champion, Northwich, Cheshire (United Kingdom)


    Heavy oils are becoming more common in Europe. The processing of heavier (opportunity or challenge) crudes, although financially attractive, introduce additional challenges to the refiner. These challenges are similar whether they come from imported crudes or in the future possibly from shale oils (tight oils). Without a strategy for understanding and mitigating the processing issues associated with these crudes, the profit potential may be eroded by decreased equipment reliability and run length. This paper focuses on the impacts at the desalter and how to manage them effectively while reducing the risks to downstream processes. Desalters have to deal with an increased viscosity, density (lower API gravity), higher solids loading, potential conductivity issues, and asphaltene stability concerns. All these factors can lead to operational problems impacting downstream of the desalter, both on the process and the water side. The other area of focus is the effluent from the desalter which can significantly impact waste water operations. This can take the form of increased oil under-carry, solids and other contaminants originating from the crudes. Nalco Champion has experience in working with these challenging crudes, not only, Azeri, Urals and African crudes, but also the Canadian oil sands, US Shale oil, heavy South American crudes and crudes containing metal naphthenates. Best practices will be shared and an outlook on the effects of Shale oil will be given. (orig.)

  13. Quantifying process tradeoffs in the operation of chromatographic sequences. (United States)

    Ngiam, Sheau-Huey; Bracewell, Daniel G; Zhou, Yuhong; Titchener-Hooker, Nigel J


    A method for the rapid representation of key process tradeoffs that need to be made during the analysis of chromatographic sequences has been proposed. It involves the construction of fractionation and maximum purification factor versus yield diagrams, which can be completed easily on the basis of chromatographic data. The output of the framework developed reflects the degree of tradeoff between levels of yield and purity and provides a fast and precise prediction of the sample fraction collection strategy needed to meet a desired process specification. The usefulness of this approach for the purposes of product purification and contaminant removal in a single chromatographic step has been successfully demonstrated in an earlier paper and it is now extended by application to a chromatographic sequence: the separation of a hypothetical three-component protein system by hydrophobic interaction chromatography (HIC) followed by size exclusion chromatography (SEC). The HIC operation has a strong impact upon the subsequent SEC step. The studies show how the analysis of performance in such a chromatographic sequence can be carried out easily and in a straightforward fashion using the fractionation diagram approach. The methodology proposed serves as a useful tool for identifying the process tradeoffs that must be made during operation of a sequence of chromatographic steps and indicates the impact on further processing of the cut-point decisions that are made.

  14. Treatment of dairy manure using the microwave enhanced advanced oxidation process under a continuous mode operation. (United States)

    Yu, Yang; Lo, Ing W; Liao, Ping H; Lo, Kwang V


    The microwave enhanced advanced oxidation process (MW/H(2)O(2)-AOP) was used to treat dairy manure for solubilization of nutrients and organic matters. This study investigated the effectiveness of the MW/H(2)O(2)-AOP under a continuous mode of operation, and compared the results to those of batch operations. The main factors affecting solubilization by the MW/H(2)O(2)-AOP were heating temperature and hydrogen peroxide dosage. Soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) increased with an increase of microwave (MW) heating temperature; very high concentrations were obtained at 90°C. Insignificant amounts of ammonia and reducing sugars were released in all runs. An acidic pH condition was required for phosphorus solubilisation from dairy manure. The best yield was obtained at 90°C with an acid dosage of 1.0 %; about 92 % of total phosphorus and 90 % of total chemical oxygen demand were in the soluble forms. The MW/H(2)O(2)-AOP operated in a continuous operation mode showed pronounced synergistic effects between hydrogen peroxide and microwave irradiation when compared to a batch system under similar operating conditions, resulting in much better yields.

  15. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.


    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  16. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Sebastian, E-mail:; Reiher, Markus, E-mail: [ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Dolfi, Michele, E-mail:; Troyer, Matthias, E-mail: [ETH Zürich, Institute of Theoretical Physics, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)


    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.

  17. Linear nonequilibrium thermodynamics of periodic processes and chemical oscillations

    CERN Document Server

    Heimburg, Thomas


    Onsager's phenomenological equations successfully describe irreversible thermodynamic processes. They assume a symmetric coupling matrix between thermodynamic fluxes and forces. It is easily shown that the antisymmetric part of a coupling matrix does not contribute to dissipation. Therefore, entropy production is exclusively governed by the symmetric matrix even in the presence of antisymmetric terms. In this work we focus on the antisymmetric contributions which describe isentropic oscillations and well-defined equations of motion. The formalism contains variables that are equivalent to momenta, and coefficients that are analogous to an inertial mass. We apply this formalism to simple problems such as an oscillating piston and the oscillation in an electrical LC-circuit. We show that isentropic oscillations are possible even close to equilibrium in the linear limit and one does not require far-from equilibrium situations. One can extend this formalism to other pairs of variables, including chemical systems w...

  18. SDG-based Model Validation in Chemical Process Simulation

    Institute of Scientific and Technical Information of China (English)

    张贝克; 许欣; 马昕; 吴重光


    Signed direct graph (SDG) theory provides algorithms and methods that can be applied directly to chemical process modeling and analysis to validate simulation models, and is a basis for the development of a soft-ware environment that can automate the validation activity. This paper is concentrated on the pretreatment of the model validation. We use the validation scenarios and standard sequences generated by well-established SDG model to validate the trends fitted from the simulation model. The results are helpful to find potential problems, as-sess possible bugs in the simulation model and solve the problem effectively. A case study on a simulation model of boiler is presented to demonstrate the effectiveness of this method.

  19. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts (United States)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.


    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  20. Chemical and Mechanical processes during burial diagenesis of chalk

    DEFF Research Database (Denmark)

    Borre, Mai Kirstine; Lind, Ida


    or larger influence on the textural development. In the chalk interval below, compaction is not the only porosity reducing agent but it has a larger influence on texture than concurrent recrystallization. Below 850 m grain-bridging cementation becomes important resulting in a lithified limestone below 1100......Burial diagenesis of chalk is a combination of mechanical compaction and chemical recrystallization as well as cementation. We have predicted the characteristic trends in specific surface resulting from these processes. The specific surface is normally measured by nitrogen adsorption but is here...... in the Pacific, where a > 1 km thick package of chalk facies sediments accumulated from the Cretaceous to the present. In the upper 200-300 m the sediment is unconsolidated carbonate ooze, throughout this depth interval compaction is the principal porosity reducing agent, but recrystallization has an equal...

  1. Real-time operation guide system for sintering process with artificial intelligence

    Institute of Scientific and Technical Information of China (English)

    FAN Xiao-hui; CHEN Xu-ling; JIANG Tao; LI Tao


    In order to optimize the sintering process, a real-time operation guide system with artificial intelligence was developed, mainly including the data acquisition online subsystem, the sinter chemical composition controller, the sintering process state controller, and the abnormal conditions diagnosis subsystem. Knowledge base of the sintering process controlling was constructed, and inference engine of the system was established. Sinter chemical compositions were controlled by the strategies of self-adaptive prediction, internal optimization and center on basicity. And the state of sintering was stabilized centering on permeability. In order to meet the needs of process change and make the system clear, the system has learning ability and explanation function. The software of the system was developed in Visual C++ programming language. The application of the system shows that the hitting accuracy of sinter compositions and burning through point prediction are more than 85%; the first-grade rate of sinter chemical composition, stability rate of burning through point and stability rate of sintering process are increased by 3%, 9% and 4%, respectively.

  2. Improved Large-Scale Process Cooling Operation through Energy Optimization

    Directory of Open Access Journals (Sweden)

    Kriti Kapoor


    Full Text Available This paper presents a study based on real plant data collected from chiller plants at the University of Texas at Austin. It highlights the advantages of operating the cooling processes based on an optimal strategy. A multi-component model is developed for the entire cooling process network. The model is used to formulate and solve a multi-period optimal chiller loading problem, posed as a mixed-integer nonlinear programming (MINLP problem. The results showed that an average energy savings of 8.57% could be achieved using optimal chiller loading as compared to the historical energy consumption data from the plant. The scope of the optimization problem was expanded by including a chilled water thermal storage in the cooling system. The effect of optimal thermal energy storage operation on the net electric power consumption by the cooling system was studied. The results include a hypothetical scenario where the campus purchases electricity at wholesale market prices and an optimal hour-by-hour operating strategy is computed to use the thermal energy storage tank.

  3. Radioactive decay as a forced nuclear chemical process: Phenomenology (United States)

    Timashev, S. F.


    Concepts regarding the mechanism of radioactive decay of nuclei are developed on the basis of a hypothesis that there is a dynamic relationship between the electronic and nuclear subsystems of an atom, and that fluctuating initiating effects of the electronic subsystem on a nucleus are possible. Such relationship is reflected in experimental findings that show the radioactive decay of nuclei might be determined by a positive difference between the mass of an initial nucleus and the mass of an atom's electronic subsystem, i.e., the mass of the entire atom (rather than that of its nucleus) and the total mass of the decay products. It is established that an intermediate nucleus whose charge is lower by unity than the charge of the initial radioactive nucleus is formed as a result of the above fluctuating stimuli that initiate radioactive decay, and its nuclear matter is thus in an unbalanced metastable state of inner shakeup, affecting the quark subsystem of nucleons. The intermediate nucleus thus experiences radioactive decay with the emission of α or β particles. At the same time, the high energy (with respect to the chemical scale) of electrons in plasma served as a factor initiating the processes in different nuclear chemical transformations and radioactive decays in low-temperature plasma studied earlier, particularly during the laser ablation of metals in aqueous solutions of different compositions and in near-surface cathode layers upon glow discharge. It is shown that a wide variety of nucleosynthesis processes in the Universe can be understood on the same basis, and a great many questions regarding the formation of light elements in the solar atmosphere and some heavy elements (particularly p-nuclei) in the interiors of massive stars at late stages of their evolution can also be resolved.

  4. Chemical Processing and Characterization of Fiber Reinforced Nanocomposite Silica Materials (United States)

    Burnett, Steven Shannon

    Ultrasound techniques, acoustic and electroacoustic spectroscopy, are used to investigate and characterize concentrated fluid phase nanocomposites. In particular, the data obtained from ultrasound methods are used as tools to improve the understanding of the fundamental process chemistry of concentrated, multicomponent, nanomaterial dispersions. Silicon nitride nanofibers embedded in silica are particularly interesting for lightweight nanocomposites, because silicon nitride is isostructural to carbon nitride, a super hard material. However, the major challenge with processing these composites is retarding particle-particle aggregation, to maintain highly dispersed systems. Therefore, a systematic approach was developed to evaluate the affect of process parameters on particle-particle aggregation, and improving the chemical kinetics for gelation. From the acoustic analysis of the nanofibers, this thesis was able to deduce that changes in aspect ratio affects the ultrasound propagation. In particular, higher aspect ratio fibers attenuate the ultrasound wave greater than lower aspect fibers of the same material. Furthermore, our results confirm that changes in attenuation depend on the hydrodynamical interactions between particles, the aspect ratio, and the morphology of the dispersant. The results indicate that the attenuation is greater for fumed silica due to its elastic nature and its size, when compared to silica Ludox. Namely, the larger the size, the greater the attenuation. This attenuation is mostly the result of scattering loss in the higher frequency range. In addition, the silica nanofibers exhibit greater attenuation than their nanoparticle counterparts because of their aspect ratio influences their interaction with the ultrasound wave. In addition, this study observed how 3M NH 4 Cl's acoustic properties changes during the gelation process, and during that change, the frequency dependency deviates from the expected squared of the frequency, until the


    Klein, S. A.


    The Distributed processing Trade-off Model for Electric Utility Operation is based upon a study performed for the California Institute of Technology's Jet Propulsion Laboratory. This study presented a technique that addresses the question of trade-offs between expanding a communications network or expanding the capacity of distributed computers in an electric utility Energy Management System (EMS). The technique resulted in the development of a quantitative assessment model that is presented in a Lotus 1-2-3 worksheet environment. The model gives EMS planners a macroscopic tool for evaluating distributed processing architectures and the major technical and economic tradeoffs as well as interactions within these architectures. The model inputs (which may be varied according to application and need) include geographic parameters, data flow and processing workload parameters, operator staffing parameters, and technology/economic parameters. The model's outputs are total cost in various categories, a number of intermediate cost and technical calculation results, as well as graphical presentation of Costs vs. Percent Distribution for various parameters. The model has been implemented on an IBM PC using the LOTUS 1-2-3 spreadsheet environment and was developed in 1986. Also included with the spreadsheet model are a number of representative but hypothetical utility system examples.

  6. Operating The Central Process Systems At Glenn Research Center (United States)

    Weiler, Carly P.


    As a research facility, the Glenn Research Center (GRC) trusts and expects all the systems, controlling their facilities to run properly and efficiently in order for their research and operations to occur proficiently and on time. While there are many systems necessary for the operations at GRC, one of those most vital systems is the Central Process Systems (CPS). The CPS controls operations used by GRC's wind tunnels, propulsion systems lab, engine components research lab, and compressor, turbine and combustor test cells. Used widely throughout the lab, it operates equipment such as exhausters, chillers, cooling towers, compressors, dehydrators, and other such equipment. Through parameters such as pressure, temperature, speed, flow, etc., it performs its primary operations on the major systems of Electrical Dispatch (ED), Central Air Dispatch (CAD), Central Air Equipment Building (CAEB), and Engine Research Building (ERB). In order for the CPS to continue its operations at Glenn, a new contract must be awarded. Consequently, one of my primary responsibilities was assisting the Source Evaluation Board (SEB) with the process of awarding the recertification contract of the CPS. The job of the SEB was to evaluate the proposals of the contract bidders and then to present their findings to the Source Selecting Official (SSO). Before the evaluations began, the Center Director established the level of the competition. For this contract, the competition was limited to those companies classified as a small, disadvantaged business. After an industry briefing that explained to qualified companies the CPS and type of work required, each of the interested companies then submitted proposals addressing three components: Mission Suitability, Cost, and Past Performance. These proposals were based off the Statement of Work (SOW) written by the SEB. After companies submitted their proposals, the SEB reviewed all three components and then presented their results to the SSO. While the

  7. Automated process flowsheet synthesis for membrane processes using genetic algorithm: role of crossover operators

    KAUST Repository

    Shafiee, Alireza


    In optimization-based process flowsheet synthesis, optimization methods, including genetic algorithms (GA), are used as advantageous tools to select a high performance flowsheet by ‘screening’ large numbers of possible flowsheets. In this study, we expand the role of GA to include flowsheet generation through proposing a modified Greedysub tour crossover operator. Performance of the proposed crossover operator is compared with four other commonly used operators. The proposed GA optimizationbased process synthesis method is applied to generate the optimum process flowsheet for a multicomponent membrane-based CO2 capture process. Within defined constraints and using the random-point crossover, CO2 purity of 0.827 (equivalent to 0.986 on dry basis) is achieved which results in improvement (3.4%) over the simplest crossover operator applied. In addition, the least variability in the converged flowsheet and CO2 purity is observed for random-point crossover operator, which approximately implies closeness of the solution to the global optimum, and hence the consistency of the algorithm. The proposed crossover operator is found to improve the convergence speed of the algorithm by 77.6%.

  8. Operations variables in the transesterification process of vegetable oil: a review - chemical catalysis Variables de operación en el proceso de transesterificación de aceites vegetales: una revisión - catálisis química

    Directory of Open Access Journals (Sweden)

    Torres Castañeda Harlen Gerardo


    Full Text Available This article describes the results of a bibliographic review of the effects of operation conditions on process yield in the chemical transesterification of vegetable oil. The parameters studied were: temperature and time reaction, alcohol:oil molar ratio, catalyst and alcohol type, catalyst concentration, mixed intensity and free fatty acid and water concentration. It also reports that this pro- cess has been carried out with basic and acid catalysts using homogeneous and heterogeneous catalytic processes for a wide va- riety of oils. It was found that reaction yield increased when temperature and time reaction increased; however this parameter de- creased at low catalyst concentration (<0.5 % w/w and high free fatty acid (> 1% w/w and water (> 3% w/w concentration in oil.Este artículo presenta los resultados de una revisión bibliográfica de los efectos de las variables de operación sobre el rendi- miento en la transesterificación química de aceites vegetales. Las variables estudiadas fueron: temperatura y tiempo de reacción, concentración molar alcohol:aceite vegetal, tipo de alcohol, tipo de catalizador, concentración de catalizador, intensidad del mezclado, y concentración de ácidos grasos libre y humedad. También se reporta que este proceso se ha llevado a cabo em- pleando catalizadores ácidos y básicos, a través de procesos catalíticos homogéneos y heterogéneos, para una amplia variedad de aceites. Se encontró que el rendimiento de la reacción se incrementa cuando la temperatura y el tiempo de reacción aumen- ta, pero disminuye a bajas concentraciones de catalizador (< 0,5% w/w y altos contenidos de ácidos grasos libres (> 1% w/w y humedad (> 3% w/w en el aceite.

  9. Remote operation of Defense Waste Processing Facility sampling stations

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, D E; Gunnels, D L


    A full-scale liquid sampling station mockup for the Defense Waste Processing Facility (DWPF) at the Savannah River Laboratory (SRL) demonstrated successful remote operation and replacement of all valves and instruments using master/slave manipulators in a clean atmosphere before similar stations are placed in a radioactive cell. Testing of the sample stations demonstrated the limitations of the manipulators which resulted in minor design changes that were easily accomplished in a clean cell. These same changes would have been difficult and very costly to make in a radioactive environment. 6 figs.

  10. The production of fuels and chemicals from food processing wastes & cellulosics. Final research report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Okos, M.; Burgos, N. [and others


    High strength food wastes of about 15-20 billion pounds solids are produced annually by US food producers. Low strength food wastes of 5-10 billion pounds/yr. are produced. Estimates of the various components of these waste streams are shown in Table 1. Waste paper/lignocellulosic crops could produce 2 to 5 billion gallons of ethanol per year or other valuable chemicals. Current oil imports cost the US about $60 billion dollars/yr. in out-going balance of trade costs. Many organic chemicals that are currently derived from petroleum can be produced through fermentation processes. Petroleum based processes have been preferred over biotechnology processes because they were typically cheaper, easier, and more efficient. The technologies developed during the course of this project are designed to allow fermentation based chemicals and fuels to compete favorably with petroleum based chemicals. Our goals in this project have been to: (1) develop continuous fermentation processes as compared to batch operations; (2) combine separation of the product with the fermentation, thus accomplishing the twin goals of achieving a purified product from a fermentation broth and speeding the conversion of substrate to product in the fermentation broth; (3) utilize food or cellulosic waste streams which pose a current cost or disposal problem as compared to high cost grains or sugar substrates; (4) develop low energy recovery methods for fermentation products; and finally (5) demonstrate successful lab scale technologies on a pilot/production scale and try to commercialize the processes. The scale of the wastes force consideration of {open_quotes}bulk commodity{close_quotes} type products if a high fraction of the wastes are to be utilized.

  11. Parameter Optimization of Nitriding Process Using Chemical Kinetics (United States)

    Özdemir, İ. Bedii; Akar, Firat; Lippmann, Nils


    Using the dynamics of chemical kinetics, an investigation to search for an optimum condition for a gas nitriding process is performed over the solution space spanned by the initial temperature and gas composition of the furnace. For a two-component furnace atmosphere, the results are presented in temporal variations of gas concentrations and the nitrogen coverage on the surface. It seems that the exploitation of the nitriding kinetics can provide important feedback for setting the model-based control algorithms. The present work shows that when the nitrogen gas concentration is not allowed to exceed 6 pct, the Nad coverage can attain maximum values as high as 0.97. The time evolution of the Nad coverage also reveals that, as long as the temperature is above the value where nitrogen poisoning of the surface due to the low-temperature adsorption of excess nitrogen occurs, the initial ammonia content in the furnace atmosphere is much more important in the nitriding process than is the initial temperature.

  12. Algorithm of Dynamic Operation Process of Hydraulic Automatically Operated Canals with Constant-Downstream Level Gates

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-wei; FENG Xiao-bo; WANG Chang-de


    On the basis of analysis the governing process of downstream water level gates AVIO and AVIS, a mathematical model for simulation of dynamic operation process of hydraulically automated irrigation canals installed with AVIO and AVIS gates is presented. the main point of this mathematical model is firstly applying a set of unsteady flow equations (St. Venant equations here) and treating the condition of gate movement as its dynamic boundary, and then decoupling this interaction of gate movement with the change of canal flow. In this process, it is necessary to give the gates' open-loop transfer function whose input is water level deviation and output is gate discharge. The result of this simulation for a practical reach has shown it has satisfactory accuracy.

  13. Hybrid membrane operations in water desalination and industrial process rationalisation. (United States)

    Drioli, E; Di Profio, G; Curcio, E


    Membrane science and technology are recognized today as powerful tools in resolving some important global problems, and developing newer industrial processes, needed from the imperative of sustainable industrial growth. In seawater desalination, for resolving the dramatic increase of freshwater demand in many regions of the world, membrane unitary operations or the combination of some of them in integrated systems are already a real means for producing water from the sea, at lower costs and minimum environmental impact, with a very interesting prospective in particular for poor economy countries. However, membranes are used or are becoming used in some important industrial fields, for developing more efficient productive cycles, with reduced waste of raw-material, reducing the polluting charge by controlling byproduct generation, and reducing overall costs. In the present paper, other than for seawater desalination applications, some industrial applications where membrane technology has led already to match the goal of process intensification are discussed.

  14. Centrifugal contactor operations for UREX process flowsheet. An update

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)


    The uranium extraction (UREX) process separates uranium, technetium, and a fraction of the iodine from the other components of the irradiated fuel in nitric acid solution. In May 2012, the time, material, and footprint requirements for treatment of 260 L batches of a solution containing 130 g-U/L were evaluated for two commercial annular centrifugal contactors from CINC Industries. These calculated values were based on the expected volume and concentration of fuel arising from treatment of a single target solution vessel (TSV). The general conclusions of that report were that a CINC V-2 contactor would occupy a footprint of 3.2 m 2 (0.25 m x 15 m) if each stage required twice the nominal footprint of an individual stage, and approximately 1,131 minutes or nearly 19 hours is required to process all of the feed solution. A CINC V-5 would require approximately 9.9 m 2 (0.4 m x 25 m) of floor space but would require only 182 minutes or ~ 3 hours to process the spent target solution. Subsequent comparison with the Modular Caustic Side Solvent Extraction Unit (MCU) at Savannah River Site (SRS) in October 2013 suggested that a more compact arrangement is feasible, and the linear dimension for the CINC V-5 may be reduced to about 8 m; a comparable reduction for the CINC V-2 yields a length of 5 m. That report also described an intermediate-scale (10 cm) contactor design developed by Argonne in the early 1980s that would better align with the SHINE operations as they stood in May 2012. In this report, we revisit the previous evaluation of contactor operations after discussions with CINC Industries and analysis of the SHINE process flow diagrams for the cleanup of the TSV, which were not available at the time of the first assessment.

  15. Transitioning GONG data processing to NOAA SWPC operations (United States)

    Reinard, Alysha; Marble, Andrew R.; Berger, Thomas


    The NOAA Space Weather Prediction Center (SWPC) is the nation's official source of space weather watches, warnings, and alerts, providing 24x7 forecasting and support to critical infrastructure operators around the world. Observations of the conditions on the Sun are crucial for determining when and if a warning is needed. The Global Oscillation Network Group (GONG) operated by the National Solar Observatory (NSO) consists of six ground stations, allowing continuous observations of the Sun. Of particular interest for space weather purposes are the H-alpha images and magnetograms. The H-alpha data are used to identify filaments and their eruptions, to assess active region evolution and plage extent, and to help localize flare locations. The magnetograms are used to identify neutral lines, to examine potential shearing areas and to characterize the magnetic structure of active regions. GONG magnetograms also provide the initial condition for models of solar wind expansion through the heliosphere such as the WSA-Enlil model. Although beyond the scope of current space weather applications, GONG helioseismology products can be used to assess active region emergence on the far side of the Sun and to indicate the flaring potential of a front-side active region. These products are being examined as future tools in flare prediction.NSO has operated GONG as a science facility since 1995 and has provided processed space weather data products to NOAA via for the past several years. In 2014 the White House Office of Management and Budget (OMB) requested that NOAA transition the GONG network to an operational space weather asset in order to ensure the continued flow of critical data for solar wind models. NSO will continue to operate and manage the instruments and sites, but the H-alpha images and 10 minute averaged magnetogram data will be sent directly to SWPC for processing and use in space weather modeling. SWPC will make these data available to NSO and the public via the

  16. Transitioning GONG data processing to NOAA SWPC operations (United States)

    Reinard, A.; Marble, A.; Hill, F.; Berger, T. E.


    The NOAA Space Weather Prediction Center (SWPC) is the nation's official source of space weather watches, warnings, and alerts, providing 24x7 forecasting and support to critical infrastructure operators around the world. Observations of the conditions on the Sun are crucial for determining when and if a warning is needed. The Global Oscillation Network Group (GONG) operated by the National Solar Observatory (NSO) consists of six ground stations, allowing continuous observations of the Sun. Of particular interest for space weather purposes are the H-alpha images and magnetograms. The H-alpha data are used to identify filaments and their eruptions, to assess active region evolution and plage extent, and to help localize flare locations. The magnetograms are used to identify neutral lines, to examine potential shearing areas and to characterize the magnetic structure of active regions. GONG magnetograms also provide the initial condition for models of solar wind expansion through the heliosphere such as the WSA-Enlil model. Although beyond the scope of current space weather applications, GONG helioseismology products can be used to assess active region emergence on the far side of the Sun and to indicate the flaring potential of a front-side active region. These products are being examined as future tools in flare prediction. NSO has operated GONG as a science facility since 1995 and has provided processed space weather data products to NOAA via public internet connections for the past several years. In 2014 the White House Office of Management and Budget (OMB) requested that NOAA transition the GONG network to an operational space weather asset in order to ensure the continued flow of critical magnetogram data for solar wind models. NSO will continue to operate and manage the instruments and sites, but the H-alpha images and 10 minute averaged magnetogram data will be sent directly to SWPC for processing and use in space weather modeling. SWPC will make these data

  17. Minimally Processed Functional Foods: Technological and Operational Pathways. (United States)

    Rodgers, Svetlana


    This paper offers a concise review of technical and operational concepts underpinning commercialization of minimally processed functional foods (FFs), foods with fresh-like qualities commanding premium prices. The growing number of permitted nutritional content/health claims, many of which relate to well-being, coupled with emerging extraction and food processing technologies offers new exciting opportunities for small and medium size enterprises (SMEs) specializing in fresh produce to play an active role in the health market. Supporting SMEs, governments could benefit from savings in healthcare costs and value creation in the economy. Consumers could benefit from novel FF formats such as refrigerated RTE (ready-to-eat) meals, a variety of fresh-like meat-, fish-, and egg-based products, fresh-cut fruits and vegetables, cereal-based fermented foods and beverages. To preserve these valuable commodities, mild biological (enzymatic treatment, fermentation and, bio-preservation) and engineering solutions are needed. The latter include nonthermal techniques such as high-pressure treatment, cook-chill, sous-vide, mirco-encapsulation, vacuum impregnation and others. "De-constructive" culinary techniques such as 3D food printing and molecular gastronomy as well as developments in nutrigenomics and digital technologies facilitate novel product formats, personalization and access to niche markets. In the operational sense, moving from nourishment to health improvement demands a shift from defensive market-oriented to offensive market-developing strategies including collaborative networks with research organizations.

  18. Energetic analysis of fruit juice processing operations in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Waheed, M.A.; Imeokparia, O.E. [Ladoke Akintola University of Technology, Ogbomoso, Oyo State (Nigeria). Mechanical Engineering Department; Jekayinfa, S.O.; Ojediran, J.O. [Ladoke Akintola University of Technology, Ogbomoso, Oyo State (Nigeria). Agricultural Engineering Department


    Energy and exergy studies were conducted in an orange juice manufacturing industry in Nigeria to determine the energy consumption pattern and methods of energy optimization in the company. An adaptation of the process analysis method of energy accounting was used to evaluate the energy requirement for each of the eight defined unit operations. The types of energy used in the manufacturing of orange juice were electrical, steam and manual with the respective proportions of 18.51%, 80.91% and 0.58% of the total energy. It was estimated that an average energy intensity of 1.12 MJ/kg was required for the manufacturing of orange juice. The most energy intensive operation was identified as the pasteurizer followed by packaging unit with energy intensities of 0.932 and 0.119 MJ/kg, respectively. The exergy analysis revealed that the pasteurizer was responsible for most of the inefficiency (over 90%) followed by packaging (6.60%). It was suggested that the capacity of the pasteurizer be increased to reduce the level of inefficiency of the plant. The suggestion has been limited to equipment modification rather than process alteration, which constitutes additional investment cost and may not be economical from an energy savings perspective. (author)

  19. Operator support and diagnostic reasoning in an industrial process

    Energy Technology Data Exchange (ETDEWEB)

    Aaker, O.


    Efficient use of energy in production plants requires that the various processes are well controlled. The main focus of this doctoral thesis is on detection of errors and malfunctions using analytical redundancy and on state estimation using an open loop nonlinear model. A ``residual`` is present if a system does not behave as expected, or if a certain rule is violated. ``Reasoning`` is the action of finding process malfunctions based on observed residuals. The thesis applies a new formalism for comparing diagnostic reasoning methods both in terms of what knowledge is used and how it is used, and suggests a formal model of what is known about the process. The formalism is used to illustrate the difference between diagnostic reasoning based on physically interconnected process units and streams, and reasoning about goals and functions for finding a diagnosis. As an example of application, results and experiences from a test implementation using an open loop model for operator support in a complex fertilizer factory are reported. 108 refs., 61 figs., 37 tabs.

  20. Operational Implementation of the MARSSIM Process at the Wayne Interim Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    Hays, D. C. Jr.; Trujillo, P. A. IV.; Zoller, S. G.


    This paper describes the methodologies behind the operational implementation of the Multi Agency Radiation Site Survey and Investigation Manual (MARSSIM) process at the Wayne Interim Storage Site (WISS). The United States Army Corps of Engineers (USACE) and Environmental Chemical Corporation (ECC) have implemented the MARSSIM process using various surveys producing raw data. The final remedial status of a survey unit is derived through data reduction, while maintaining a high degree of efficiency in the construction aspects of the remedial action. Data reduction of field measurements is accomplished by merging the data outputs of a Digital Global Positioning System, an exposure rate meter, and laboratory analyses to produce maps which present exposure rates, elevations, survey unit boundaries, direct measurement locations, and sampling locations on a single map. The map serves as a data-posting plot and allows the project team to easily judge the survey unit's remedial status. The operational implementation of the MARSSIM process has been successful in determining the eligibility of survey units for final status surveys at the WISS and also in demonstrating final status radiological and chemical conditions while maintaining an efficient remedial action effort.

  1. Characterization of biomass burning particles: chemical composition and processing (United States)

    Hudson, P. K.; Murphy, D. M.; Cziczo, D. J.; Thomson, D. S.; Degouw, J.; Warneke, C.


    During the Intercontinental Transport and Chemical Transformation (ITCT) mission in April and May of 2002, a forest fire plume was intercepted over Utah on May 19. Gas phase species acetonitrile (CH3CN) (a biomass burning tracer) and carbon monoxide (CO) measured greater than five fold enhancements over background concentrations during this plume crossing. In the 100 sec plume crossing, the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument acquired 202 positive mass spectra of biomass burning particles. Many of these particles contained potassium in addition to organics, carbon, and NO+ (which is a signature for any nitrogen containing compound such as ammonium or nitrate). From characterization of the particle mass spectra obtained during the plume crossing, a qualitative signature has been determined for identifying biomass burning particles. By applying this analysis to the entire ITCT mission, several transport events of smoke plumes have been identified and were confirmed by gas phase measurements. Additional species, such as sulfate, found in the mass spectra of the transported particles indicated processing or aging of the biomass burning particles that had taken place. The analysis has been extended to other field missions (Crystal-Face, ACCENT, and WAM) to identify biomass burning particles without the added benefit of gas phase measurements.

  2. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server


    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  3. The NASA Robotic Conjunction Assessment Process: Overview and Operational Experiences (United States)

    Newman, Lauri Kraft


    Orbital debris poses a significant threat to spacecraft health and safety. Recent events such as China's anti-satellite test and the Breeze-M rocket explosion have led to an even greater awareness and concern in the satellite community. Therefore, the National Aeronautics and Space Administration (NASA) has established requirements that routine conjunction assessment screening shall be performed for all maneuverable spacecraft having perigees less than 2000 km or within 200 km of geosynchronous altitude. NASA s Goddard Space Flight Center (GSFC) has developed an operational collision risk assessment process to protect NASA s high-value unmanned (robotic) assets that has been in use since January 2005. This paper provides an overview of the NASA robotic conjunction assessment process, including descriptions of the new tools developed to analyze close approach data and of the risk mitigation strategies employed. In addition, statistical data describing the number of conjunctions experienced are presented. A debris avoidance maneuver performed by Aura in June of 2008 is described in detail to illustrate the process.

  4. Zero discharge tanning: a shift from chemical to biocatalytic leather processing. (United States)

    Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari


    Beam house processes (Beam house processes generally mean liming-reliming processes, which employ beam.) contribute more than 60% of the total pollution from leather processing. The use of lime and sodium sulfide is of environmental concern (1, 2). Recently, the authors have developed an enzyme-based dehairing assisted with a very low amount of sodium sulfide, which completely avoids the use of lime. However, the dehaired pelt requires opening up of fiber bundles for further processing, where lime is employed to achieve this through osmotic swelling. Huge amounts of lime sludge and total solids are the main drawbacks of lime. An alternative bioprocess, based on alpha-amylase for fiber opening, has been attempted after enzymatic unhairing. This totally eliminates the use of lime in leather processing. This method enables subsequent processes and operations in leather making feasible without a deliming process. A control experiment was run in parallel using conventional liming-reliming processes. It has been found that the extent of opening up of fiber bundles using alpha-amylase is comparable to that of the control. This has been substantiated through scanning electron microscopic, stratigraphic chrome distribution analysis, and softness measurements. Performance of the leathers is shown to be on a par with leathers produced by the conventional process through physical and hand evaluation. Importantly, softness of the leathers is numerically proven to be comparable with that of control. The process also demonstrates reduction in chemical oxygen demand load by 45% and total solids load by 20% compared to the conventional process. The total dry sludge from the beam house processes is brought down from 152 to 8 kg for processing 1 ton of raw hides.

  5. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.


    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  6. Process Improvements to Biomass Pretreatment of Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Teymouri, Farzaneh [Michigan Biotechnology Inst., Lansing, MI (United States)


    MBI, a 501c(3) company focusing on de-risking and scaling up bio-based technologies, has teamed with Michigan State University and the Idaho National Laboratory to develop and demonstrate process improvements to the ammonia fiber expansion (AFEX) pretreatment process. The logistical hurdles of biomass handling are well known, and the regional depot concept - in which small, distributed bioprocessing operations collect, preprocess, and densify biomass before shipping to a centralized refinery - is a promising alternative to centralized collection. AFEXTM (AFEX is a trademark of MBI) has unique features among pretreatments that would make it desirable as a pretreatment prior to densification at the depot scale. MBI has developed a novel design, using a packed bed reactor for the AFEX process that can be scaled down economically to the depot scale at a lower capital cost as compared to the traditional design (Pandia type reactor). Thus, the purpose of this project was to develop, scale-up, demonstrate, and improve this novel design The key challenges are the recovery of ammonia, consistent and complete pretreatment performance, and the overall throughput of the reactor. In this project an engineering scale packed bed AFEX system with 1-ton per day capacity was installed at MBI’s building. The system has been operational since mid-2013. During that time, MBI has demonstrated the robustness, reliability, and consistency of the process. To date, nearly 500 runs have been performed in the reactors. There have been no incidences of plugging (i.e., inability to remove ammonia from biomass after the treatment), nor has there been any instance of a major ammonia release into the atmosphere. Likewise, the sugar released via enzyme hydrolysis has remained consistent throughout these runs. Our economic model shows a 46% reduction in AFEX capital cost at the 100 ton/day scale compared to the traditional design of AFEX (Pandia type reactor). The key performance factors were

  7. Optimization of Process Parameters of Tool Wear in Turning Operation

    Directory of Open Access Journals (Sweden)

    Manik Barman


    Full Text Available Tool Wear is of great apprehension in machining industries since itaffects the surface quality, dimensional accuracy and production cost of the materials / components. In the present study twenty seven experiments were conducted as per 3 parameter 3 level full factorial design for turning operation of a mild steel specimen with high speed steel (HSS cutting tool. An experimental investigation on cutting tool wear and a mathematical model for tool wear estimation is reported in this paper where the model was simulated by computer programming and it has been found that this model is capable of estimating the wear rate of cutting tool and it provides an optimum set of process parameters for minimum tool wear.

  8. Figures of Speech as Semantic Operators in the Innovation Process

    DEFF Research Database (Denmark)

    Dell’Era, Claudio; Buganza, Tommaso; Verganti, Roberto


    , the authors propose the “Rhetorical Innovation Process” as a methodology that foresees the application of figures of speech as semantic operators. First, the authors discuss several product innovations that can be interpreted according to the “Rhetorical Innovation Process”. Then, a brief workshop assignment...... group. Findings – The results obtained by design students demonstrated as figures of speech can stimulate associations with other contexts and modifications to existing architecture. The exploration of the “rhetorical innovation process” in collaboration with eight design student teams has shown...... that this method can support and enrich the concept generation phase. Moreover, four configurations proposed by the “rhetorical innovation process” allow one to generate different alternatives supporting the creative process and allowing the identification of strengths and weaknesses associated to each solution...

  9. Evaluation of Meteorology Data for MOPITT Operational Processing (United States)

    Ziskin, D.; Deeter, M. N.; Worden, H. M.; Mao, D.; Dean, V.


    Measurements Of Pollution In The Troposphere[1] (MOPITT) is an instrument flying aboard NASA's Terra satellite[2]. It measures CO using correlated spectroscopy[3]. As part of its processing it uses surface temperature, an atmospheric temperature profile and a water vapor profile from analysis. Since there are many analysis products on the market (e.g. GMAO, NCEP, ECMWF etc.) that meet MOPITT's operational requirements, the question arises as to which product is most apt? There is a collection of "validation data" that MOPITT compares its CO retrievals against[4]. The validation dataset has been acquired by in situ air samples taken by aircraft at a series of altitudes. We can run our processing system in "validation mode" which processes the satellite data for only the days that validation data exists and for a spatial subset that corresponds to the region where the validation data has been collected. We will run the MOPITT retrievals in validation mode separately using each variety of analysis data. We will create a cost function that will provide a scalar estimate of the retrieved CO profile error relative to the validation dataset which is assumed to be "the truth". The retrieval errors of each of the input datasets will be compared to each other to provide insight into the best choice for use in operational MOPITT processing. [1] Drummond, J.R., "Measurements of Pollution in the Troposphere (MOPITT)," in The Use of EOS for Studies of Atmospheric Physics, J. C. Gille, G. Visconti, eds. (North Holland, Amsterdam), pp. 77-101, 1992. [2] 1999 EOS Reference Handbook: A Guide to NASA's Earth Science Enterprise and the Earth Observing System; Eds. Michael D. King and Reynold Greenstone; NASA, Greenbelt, MD, 1999. [3] Drummond, J.R., G. P. Brasseur, G. R. Davis, J. C. Gille, J. C. McConnell, G. D. Pesket, H. G. Reichle, N. Roulet, MOPITT Mission Description Document (Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7), 1993. [4] Deeter, M. N

  10. An iterative method to compute the overlap Dirac operator at nonzero chemical potential

    CERN Document Server

    Bloch, J; Lang, B; Wettig, T


    The overlap Dirac operator at nonzero quark chemical potential involves the computation of the sign function of a non-Hermitian matrix. In this talk we present an iterative method, first proposed by us in Ref. [1], which allows for an efficient computation of the operator, even on large lattices. The starting point is a Krylov subspace approximation, based on the Arnoldi algorithm, for the evaluation of a generic matrix function. The efficiency of this method is spoiled when the matrix has eigenvalues close to a function discontinuity. To cure this, a small number of critical eigenvectors are added to the Krylov subspace, and two different deflation schemes are proposed in this augmented subspace. The ensuing method is then applied to the sign function of the overlap Dirac operator, for two different lattice sizes. The sign function has a discontinuity along the imaginary axis, and the numerical results show how deflation dramatically improves the efficiency of the method.

  11. Applications of Process Synthesis: Moving from Conventional Chemical Processes towards Biorefinery Processes

    DEFF Research Database (Denmark)

    Yuan, Zhihong; Chen, Bingzhen; Gani, Rafiqul


    Concerns about diminishing petroleum reserves, enhanced worldwide demand for fuels and fluctuations in the global oil market, together with climate change and national security have promoted many initiatives for exploring alternative, non-petroleum based processes. Among these initiatives...... on petroleum-derive fuels....

  12. Minimization of water and chemical usage in the cleaning in place process of a milk pasteurization plant

    Directory of Open Access Journals (Sweden)

    Sathit Niamsuwan


    Full Text Available Cleaning in place (CIP is a method of cleaning inner surfaces of piping, vessel, equipment, and associated fitting withdisassembly. Although, the CIP processes have been studied continually to improve efficiency for chemical and water consumption,the real conventional plant operations of this process still have been considered as a large amount of consumption.The objectives of this work are to study process behaviors and to find out the optimal draining ratio of the CIP cleaningchemicals in a pasteurized milk plant. To achieve these, mathematical models of the CIP process have been developed andvalidated by the actual process data. With these models, simulation study has been carried out to describe the dynamicbehaviors of the process with respect to the concentrations and contaminations in CIP cleaning chemicals. The optimizationproblem has been formulated and solved using written programs based on MATLAB application program.

  13. Experimental investigation of Mars meandering rivers: Chemical precipitation process (United States)

    Kim, W.; Lim, Y.; Cleveland, J.; Reid, E.; Jew, C.


    On Earth, meandering streams occur where the banks are resistant to erosion, which enhances narrow and deep channels. Often this is because the stream banks are held firm by vegetation. The ancient, highly sinuous channels with cutoffs found on Mars are enigmatic because vegetation played no role in providing bank cohesion and enhancing fine sediment deposition. Possible causes of the meandering therefore include ice under permafrost conditions and chemical processes. We conducted carbonate flume experiments to investigate possible mechanisms creating meandering channels other than vegetation. The experiment includes a tank that dissolves limestone by adding CO2 gas and produces artificial spring water, peristaltic pumps to drive water through the system, a heater to control the temperature of the spring water, and a flume where carbonate sediment deposits. Spring water containing dissolved calcium and carbonate ions moves through a heater to increase temperature, and then into the flume. The flume surface is open to the air to allow CO2 degassing, decrease temperature, and increase pH, which promotes carbonate precipitation. A preliminary experiment was done and successfully created a meander pattern that evolved over a 3-day experiment. The experiment showed lateral migration of the bend and avulsion of the stream, similar to a natural meander. The lateral variation in flow speed increased the local residence time of water, thus increasing the degassing of CO2 on the two sides of the flow and promoting more precipitation. This enhanced precipitation on the sides provided a mechanism to build levees along the channel and created a stream confined in a narrow path. This mechanism also potentially applies to Earthly single thread and/or meandering rivers developed and recorded before vegetation appeared on Earth's surface.

  14. Baseline risk assessment for groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)



    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are evaluating conditions in groundwater and springs at the DOE chemical plant area and the DA ordnance works area near Weldon Spring, Missouri. The two areas are located in St. Charles County, about 48 km (30 mi) west of St. Louis. The 88-ha (217-acre) chemical plant area is chemically and radioactively contaminated as a result of uranium-processing activities conducted by the U.S. Atomic Energy Commission in the 1950s and 1960s and explosives-production activities conducted by the U.S. Army (Army) in the 1940s. The 6,974-ha (17,232-acre) ordnance works area is primarily chemically contaminated as a result of trinitrotoluene (TNT) and dinitrotoluene (DNT) manufacturing activities during World War II. This baseline risk assessment (BRA) is being conducted as part of the remedial investigation/feasibility study (RUFS) required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended. The purpose of the BRA is to evaluate potential human health and ecological impacts from contamination associated with the groundwater operable units (GWOUs) of the chemical plant area and ordnance works area. An RI/FS work plan issued jointly in 1995 by the DOE and DA (DOE 1995) analyzed existing conditions at the GWOUs. The work plan included a conceptual hydrogeological model based on data available when the report was prepared; this model indicated that the aquifer of concern is common to both areas. Hence, to optimize further data collection and interpretation efforts, the DOE and DA have decided to conduct a joint RI/BRA. Characterization data obtained from the chemical plant area wells indicate that uranium is present at levels slightly higher than background, with a few concentrations exceeding the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 20 {micro}g/L (EPA 1996c). Concentrations of other radionuclides (e

  15. National toxicology program chemical nomination and selection process

    Energy Technology Data Exchange (ETDEWEB)

    Selkirk, J.K. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)


    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  16. A Biophysicochemical Model for NO Removal by the Chemical Absorption-Biological Reduction Integrated Process. (United States)

    Zhao, Jingkai; Xia, Yinfeng; Li, Meifang; Li, Sujing; Li, Wei; Zhang, Shihan


    The chemical absorption-biological reduction (CABR) integrated process is regarded as a promising technology for NOx removal from flue gas. To advance the scale-up of the CABR process, a mathematic model based on mass transfer with reaction in the gas, liquid, and biofilm was developed to simulate and predict the NOx removal by the CABR system in a biotrickling filter. The developed model was validated by the experimental results and subsequently was used to predict the system performance under different operating conditions, such as NO and O2 concentration and gas and liquid flow rate. NO distribution in the gas phase along the biotrickling filter was also modeled and predicted. On the basis of the modeling results, the liquid flow rate and total iron concentration were optimized to achieve >90% NO removal efficiency. Furthermore, sensitivity analysis of the model revealed that the performance of the CABR process was controlled by the bioreduction activity of Fe(III)EDTA. This work will provide the guideline for the design and operation of the CABR process in the industrial application.

  17. 基于动态响应的变约束迭代优化及其在化工过程操作优化中的应用%Dynamic response based iterative optimization with varying constraints on chemical process operation optimization

    Institute of Scientific and Technical Information of China (English)

    杨斌; 张其方; 许锋; 罗雄麟


    针对化工操作优化过程中稳态优化结果的动态响应可能超出约束的问题,提出了一种基于动态响应的变约束迭代优化方法.在稳态优化算法的基础上,将优化结果施加给动态模型,根据动态模型的动态响应来反馈修正稳态优化的约束,对稳态优化约束修正的过程反复迭代,直至得到的稳态优化结果的动态响应满足原始约束.将基于动态响应的变约束迭代优化方法应用在串联CSTR的操作优化中,并分别就有控制器和无控制器两种情况进行了讨论.优化结果表明,无论有无控制器,利用基于动态响应的变约束迭代优化方法修正约束后得到的稳态优化结果能够满足动态响应不破坏原始约束的要求;由于在有控制器的情况下,被控变量无法出现较大范围的波动,对约束的破坏量更小,因此在有控制器的情况下可以获得更好的优化解,本例中操作优化收益可以提高2.3%.%For the problem that dynamic response of steady optimization of chemical process may exceed its constraints, an iterative optimization with varying constraints method based on dynamic response is presented. The steady optimization results are applied on a dynamic model, according to the amount that dynamic response exceeds the constraints, the constraints of steady optimization are modified. The modification for the constrains of steady optimization is an iterative process until dynamic response of steady optimization can satisfy the original constraints. The method is applied on the operating optimization of CSTR in series running with controllers or no controllers. The result shows that, whether with controllers or with no controllers, the iterative optimization with varying constraints method based on dynamic response can obtain the optimization results whose dynamic response can satisfy the original constraints; and because the controllers restrain the fluctuation of controlled variables, the

  18. New trajectory-driven aerosol and chemical process model Chemical and Aerosol Lagrangian Model (CALM

    Directory of Open Access Journals (Sweden)

    P. Tunved


    Full Text Available A new Chemical and Aerosol Lagrangian Model (CALM has been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61° 51' N, 24° 17' E over a time period of two years, 2000–2001. The model shows good agreement with measurements throughout most of the year, but fails in reproducing the aerosol properties during the winter season, resulting in poor agreement between model and measurements especially during December–January. Nevertheless, through the rest of the year both trends and magnitude of modal concentrations show good agreement with observation, as do the monthly average size distribution properties. The model is also shown to capture individual nucleation events to a certain degree. This indicates that nucleation largely is controlled by the availability of nucleating material (as prescribed by the [H2SO4], availability of condensing material (in this model 15% of primary reactions of monoterpenes (MT are assumed to produce low volatile species and the properties of the size distribution (more specifically, the condensation sink. This is further demonstrated by the fact that the model captures the annual trend in nuclei mode concentration. The model is also used, alongside sensitivity tests, to examine which processes dominate the aerosol size distribution physical properties. It is shown, in agreement with previous studies, that nucleation governs the number concentration during transport from clean areas. It is also shown that primary number emissions almost exclusively govern the CN concentration when air from Central Europe is advected north over Scandinavia. We also show that biogenic emissions have a large influence on the amount of potential CCN observed

  19. Generalized Least Energy of Separation for Desalination and Other Chemical Separation Processes

    Directory of Open Access Journals (Sweden)

    Karan H. Mistry


    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies driven by different combinations of heat, work, and chemical energy. This paper develops a consistent basis for comparing the energy consumption of such technologies using Second Law efficiency. The Second Law efficiency for a chemical separation process is defined in terms of the useful exergy output, which is the minimum least work of separation required to extract a unit of product from a feed stream of a given composition. For a desalination process, this is the minimum least work of separation for producing one kilogram of product water from feed of a given salinity. While definitions in terms of work and heat input have been proposed before, this work generalizes the Second Law efficiency to allow for systems that operate on a combination of energy inputs, including fuel. The generalized equation is then evaluated through a parametric study considering work input, heat inputs at various temperatures, and various chemical fuel inputs. Further, since most modern, large-scale desalination plants operate in cogeneration schemes, a methodology for correctly evaluating Second Law efficiency for the desalination plant based on primary energy inputs is demonstrated. It is shown that, from a strictly energetic point of view and based on currently available technology, cogeneration using electricity to power a reverse osmosis system is energetically superior to thermal systems such as multiple effect distillation and multistage flash distillation, despite the very low grade heat input normally applied in those systems.

  20. Effects of irrigation efficiency on chemical transport processes

    Institute of Scientific and Technical Information of China (English)


    Irrigation practices greatly affect sustainable agriculture development. In this study, we investigated the effects of irrigation efficiency on water flow and chemical transport in soils, which had significant impact on the environment. Field dye staining experiments were conducted at different soils with various irrigation amount. Image analysis was conducted to study the heterogeneous flow patterns and their relationships with the irrigation efficiency. Irrigation efficiency and its environmental effects were evaluated using various indictors, including application efficiency, deep percolation ratio, storage efficiency, and uniformity. Under the same irrigation condition, soil chemical distributions were more heterogeneous than soil water distributions. The distributions were mainly affected by soil texture, initial soil water content, and irrigation amount. Storage efficiency, irrigation uniformity, and deep percolation ratio increased with irrigation amount. Since the chemical distribution uniformity was lower than the water uniformity, the amount of chemical leaching increased sharply with decrease of irrigation uniformity, which resulted in high environmental risks of groundwater pollution.


    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David


    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME) limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry

  2. Flow-Injection Responses of Diffusion Processes and Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov


    The technique of Flow-injection Analysis (FIA), now aged 25 years, offers unique analytical methods that are fast, reliable and consuming an absolute minimum of chemicals. These advantages together with its inherent feasibility for automation warrant the future applications of FIA as an attractive...... be used in the resolution of FIA profiles to obtain information about the content of interference’s, in the study of chemical reaction kinetics and to measure absolute concentrations within the FIA-detector cell....

  3. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.


    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  4. Rapid neutron capture process in supernovae and chemical element formation

    NARCIS (Netherlands)

    Baruah, Rulee; Duorah, Kalpana; Duorah, H. L.


    The rapid neutron capture process (r-process) is one of the major nucleosynthesis processes responsible for the synthesis of heavy nuclei beyond iron. Isotopes beyond Fe are most exclusively formed in neutron capture processes and more heavier ones are produced by the r-process. Approximately half o

  5. Query processing of pre-partitioned data using Sandwich Operators

    NARCIS (Netherlands)

    Baumann, S.; Boncz, P.A.; Sattler, K.-U.


    In this paper we present the Sandwich Operators, an elegant approach to exploit pre-sorting or pre-grouping from clustered storage schemes in operators such as Aggregation/Grouping, HashJoin, and Sort of a database management system. Thereby, each of these operator types is "sandwiched" by two new o

  6. An operational approach for infrasound multi-array processing (United States)

    Vergoz, J.; Le Pichon, A.; Herry, P.; Blanc, E.


    The infrasound network of the International Monitoring Network (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is currently not fully established. However, it has demonstrated its capability for detecting and locating infrasonic sources like meteorites as well as volcanic eruptions on a global scale. Unfortunately, such ground truth events are rare. Therefore, regions with dense infrasound networks have to be considered in order to test and calibrate detection and location procedures (Le Pichon. et al. 2008, J. Geophys. Res., 113, D12115, doi:10.1029/2007JD009509). In Central Europe, several years of continuous infrasound recordings are available for many infrasound arrays, where not all of them are part of the IMS. Infrasound waveforms are routinely processed in the 0.1 to 4 Hz frequency band using PMCC as a real-time detector. After applying a categorization procedure to remove detections associated with environmental noise, a blind fusion provides a list of events to be reviewed by the analyst. In order to check the geophysical consistency of the located events, an interactive tool has been developed. All results of the automatic processing are presented along with a realistic estimate of the network detection capability which incorporates near-real time atmospheric updates. Among the dominant acoustic sources of human origin, peaks in the geographical distribution of infrasound events correspond well with seismically active regions where operational mines have been identified. With the increasing number of IMS and regional cluster infrasound arrays deployed around the globe, conducting consistent analyses on a routine-basis provides an extensive database for discriminating between natural and artificial acoustic sources. Continuing such studies may also help quantifying relationships between infrasonic observables and atmospheric specification problems, thus opening new fields for investigations into inverse problems.

  7. Materials measurement and accounting in an operating plutonium conversion and purification process. Phase I. Process modeling and simulation. [PUCSF code

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.C. Jr.; Ostenak, C.A.; Gutmacher, R.G.; Dayem, H.A.; Kern, E.A.


    A model of an operating conversion and purification process for the production of reactor-grade plutonium dioxide was developed as the first component in the design and evaluation of a nuclear materials measurement and accountability system. The model accurately simulates process operation and can be used to identify process problems and to predict the effect of process modifications.

  8. sl(2) Operators and Markov Processes on Branching Graphs

    CERN Document Server

    Petrov, Leonid


    We present a unified approach to various examples of Markov dynamics on partitions studied by Borodin, Olshanski, Fulman, and the author. Our technique generalizes the Kerov's operators first appeared in [Okounkov, arXiv:math/0002135], and also stems from the study of duality of graded graphs in [Fomin, 1994]. Our main object is a countable branching graph carrying an sl(2,C)-module of a special kind. Using this structure, we introduce distinguished probability measures on the floors of the graph, and define two related types of Markov dynamics associated with these measures. We study spectral properties of the dynamics, and our main result is the explicit description of eigenfunctions of the Markov generator of one of the processes. For the Young graph our approach reconstructs the z-measures on partitions and the associated dynamics studied by Borodin and Olshanski [arXiv:math-ph/0409075, arXiv:0706.1034]. The generator of the dynamics of [arXiv:math-ph/0409075] is diagonal in the basis of the Meixner symme...

  9. The Main Plasma Chemical Process of Nitric Oxide Production by Arc Discharge%The Main Plasma Chemical Process of Nitric Oxide Production by Arc Discharge

    Institute of Scientific and Technical Information of China (English)

    杨旗; 胡辉; 陈卫鹏; 许杰; 张锦丽; 吴双


    By adopting the optical multi-channel analyzer combined with fourier transform infrared (FTIR) spectrometer, the dominant free radicals and products generated by arc discharge were measured and studied, and the main plasma chemical reaction process in the nitric oxide production by arc discharge was identified. Plasma chemical kinetic curves of O, O2, N2, N and NO were simulated by using CHEMKIN and MATLAB. The results show that the main plasma chemical reaction process of nitric oxide production by arc discharge is a replacement reaction between O and N2, where NO can be generated instantaneously when discharging reaches stable.

  10. Laser studies of chemical reaction and collision processes

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, G. [Columbia Univ., New York, NY (United States)


    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  11. Summary of LLNL`s accomplishments for the FY93 Waste Processing Operations Program

    Energy Technology Data Exchange (ETDEWEB)

    Grasz, E.; Domning, E.; Heggins, D.; Huber, L.; Hurd, R.; Martz, H.; Roberson, P.; Wilhelmsen, K.


    Under the US Department of Energy`s (DOE`s) Office of Technology Development (OTD)-Robotic Technology Development Program (RTDP), the Waste Processing Operations (WPO) Program was initiated in FY92 to address the development of automated material handling and automated chemical and physical processing systems for mixed wastes. The Program`s mission was to develop a strategy for the treatment of all DOE mixed, low-level, and transuranic wastes. As part of this mission, DOE`s Mixed Waste Integrated Program (MWIP) was charged with the development of innovative waste treatment technologies to surmount shortcomings of existing baseline systems. Current technology advancements and applications results from cooperation of private industry, educational institutions, and several national laboratories operated for DOE. This summary document presents the LLNL Environmental Restoration and Waste Management (ER and WM) Automation and Robotics Section`s contributions in support of DOE`s FY93 WPO Program. This document further describes the technological developments that were integrated in the 1993 Mixed Waste Operations (MWO) Demonstration held at SRTC in November 1993.

  12. Invited article: physical and chemical analyses of impregnated cathodes operated in a plasma environment. (United States)

    Sengupta, Anita; Kulleck, James; Hill, Norm; Ohlinger, Wayne


    Destructive analyses of impregnated-cathode assemblies from an ion thruster life test were performed to characterize erosion and degradation after 30,472 h of operation. Post-test inspection of each cathode included examination of the emitter (insert), orifice plate, cathode tube, heater, anode assembly, insulator, and propellant isolator. The discharge-cathode assembly experienced significant erosion due to ion sputtering from the discharge plasma. The keeper electrode plate was removed and the heater and orifice plate were heavily eroded at the conclusion of the test. Had the test continued, these processes would likely have led to cathode failure. The discharge cathode insert experienced significant tungsten transport and temperature dependent barium oxide depletion within the matrix. Using barium depletion semiempirical relations developed by Palluel and Shroff, it is estimated that 25,000 h of operation remained in the discharge insert at the conclusion of the test. In contrast, the neutralizer insert exhibited significantly less tungsten transport and barium oxide depletion consistent with its lower current operation. The neutralizer was estimated to have 140,000 h of insert life remaining at the conclusion of the test. Neither insert had evidence of tungstate or oxide layer formation, previously known to have impeded cathode ignition and operation in similar long duration hollow-cathode tests. The neutralizer cathode was in excellent condition at the conclusion of the test with the exception of keeper tube erosion from direct plume-ion impingement, a previously underappreciated life-limiting mechanism. The most critical finding from the test was a power dependent deposition process within the neutralizer-cathode orifice. The process manifested at low-power operation and led to the production of energetic ions in the neutralizer plume, a potential life-limiting process for the neutralizer. Subsequent return of the engine and neutralizer operation to full

  13. Sequential chemical-biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment. (United States)

    Guieysse, Benoit; Norvill, Zane N


    When direct wastewater biological treatment is unfeasible, a cost- and resource-efficient alternative to direct chemical treatment consists of combining biological treatment with a chemical pre-treatment aiming to convert the hazardous pollutants into more biodegradable compounds. Whereas the principles and advantages of sequential treatment have been demonstrated for a broad range of pollutants and process configurations, recent progresses (2011-present) in the field provide the basis for refining assessment of feasibility, costs, and environmental impacts. This paper thus reviews recent real wastewater demonstrations at pilot and full scale as well as new process configurations. It also discusses new insights on the potential impacts of microbial community dynamics on process feasibility, design and operation. Finally, it sheds light on a critical issue that has not yet been properly addressed in the field: integration requires complex and tailored optimization and, of paramount importance to full-scale application, is sensitive to uncertainty and variability in the inputs used for process design and operation. Future research is therefore critically needed to improve process control and better assess the real potential of sequential chemical-biological processes for industrial wastewater treatment.

  14. Effects of irrigation efficiency on chemical transport processes

    Institute of Scientific and Technical Information of China (English)

    WANG Kang; ZHANG RenDuo; SHENG Feng


    Irrigation practices greatly affect sustainable agriculture development.In this study, we investigated the effects of irrigation efficiency on water flow and chemical transport in soils, which had significant impact on the environment.Field dye staining experiments were conducted at different soils with various irrigation amount.Image analysis was conducted to study the heterogeneous flow patterns and their relationships with the irrigation efficiency.Irrigation efficiency and its environmental effects were evaluated using various indictors, including application efficiency, deep percolation ratio, storage effi-ciency, and uniformity.Under the same irrigation condition, soil chemical distributions were more het-erogeneous than soil water distributions.The distributions were mainly affected by soil texture, initial soil water content, and irrigation amount.Storage efficiency, irrigation uniformity, and deep percolation ratio increased with irrigation amount.Since the chemical distribution uniformity was lower than the water uniformity, the amount of chemical leaching increased sharply with decrease of irrigation uni-formity, which resulted in high environmental risks of groundwater pollution.


    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.


    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than


    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.


    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  17. Challenges for process system engineering in infrastructure operation and control

    NARCIS (Netherlands)

    Lukszo, Z.; Weijnen, M.P.C.; Negenborn, R.R.; De Schutter, B.; Ilic, M.


    The need for improving the operation and control of infrastructure systems has created a demand on optimization methods applicable in the area of complex sociotechnical systems operated by a multitude of actors in a setting of decentralized decision making. This paper briefly presents main classes o

  18. Research on chemical vapor deposition processes for advanced ceramic coatings (United States)

    Rosner, Daniel E.


    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  19. The Operational Auditing Handbook Auditing Business and IT Processes

    CERN Document Server

    Chambers, Andrew


    Never out of print since 1997, and substantially updated for this second edition, The Operational Auditing Handbook has earned an international reputation as a hands-on, practical manual for internal auditors and managers to enable them to carry out audits and reviews of a wide range of business activities including: Finance and accountingSarbanes-Oxley compliancePurchasingOperations and productionMarketing and salesDistributionPersonnel and management developmentResearch and developmentInformation technologySecurityEnvironmental responsibilitySubsidiaries and remote operating units The Opera

  20. Liquid electrolyte positioning along the device channel influences the operation of Organic Electro-Chemical Transistors

    KAUST Repository

    D'angelo, Pasquale


    In this work, we show the influence of the liquid electrolyte adsorption by porous films made of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS, on the operation of an Organic Electro-Chemical Transistor with an active channel based on these polymeric films. In particular, the effect of film hydration on device performance is evaluated by studying its electrical response as a function of the spatial position between the electrolyte and the channel electrodes. This is done by depositing a PEDOT:PSS film on a super-hydrophobic surface aimed at controlling the electrolyte confinement next to the electrodes. The device response shows that the confinement of ionic liquids near to the drain electrode results in a worsening of the current modulation. This result has been interpreted in the light of studies dealing with the transport of ions in semiconducting polymers, indicating that the electrolyte adsorption by the polymeric film implies the formation of liquid pathways inside its bulk. These pathways, in particular, affect the device response because they are able to assist the drift of ionic species in the electrolyte towards the drain electrode. The effect of electrolyte adsorption on the device operation is confirmed by means of moving-front measurements, and is related to the reproducibility of the device operation curves by measuring repeatedly its electrical response.

  1. Rapid Neutron Capture Process in Supernovae and Chemical Element Formation

    Indian Academy of Sciences (India)

    Rulee Baruah; Kalpana Duorah; H. L. Duorah


    The rapid neutron capture process (r-process) is one of the major nucleosynthesis processes responsible for the synthesis of heavy nuclei beyond iron. Isotopes beyond Fe are most exclusively formed in neutron capture processes and more heavier ones are produced by the r-process. Approximately half of the heavy elements with mass number ≻ 70 and all of the actinides in the solar system are believed to have been produced in the r-process. We have studied the r-process in supernovae for the production of heavy elements beyond = 40 with the newest mass values available. The supernova envelopes at a temperature ≻ 109 K and neutron density of 1024 cm-3 are considered to be one of the most potential sites for the r-process. The primary goal of the r-process calculations is to fit the global abundance curve for solar system r-process isotopes by varying time dependent parameters such as temperature and neutron density. This method aims at comparing the calculated abundances of the stable isotopes with observation.We have studied the r-process path corresponding to temperatures ranging from 1.0 × 109 K to 3.0 × 109 K and neutron density ranging from 1020 cm-3 to 1030 cm-3. With temperature and density conditions of 3.0 × 109 K and 1020 cm-3 a nucleus of mass 273 was theoretically found corresponding to atomic number 115. The elements obtained along the r-process path are compared with the observed data at all the above temperature and density range.

  2. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  3. Cogeneration handbook for the chemical process industries. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.


    The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  4. On the design of chemical processes with improved controllability characteristics

    NARCIS (Netherlands)

    Meeuse, F.M.


    Traditionally, process design and control system design are carried out sequentially. The premise underlying this sequential approach is that the decisions made in the process design phase do not limit the control design. However, it is generally known that incongruent designs can occur quite easily

  5. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System (United States)

    Rogers, Tom D.


    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  6. Operational experience with the JET impurity processing system during and after DTE1

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, A.; Bell, A.; Hemmerich, J.L.; Bainbridge, N.; Brennan, D.; Grieveson, B.; Lasser, R.; Lupo, J.; Knipe, S.; Stagg, R.; Yorkshades, J. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking


    The hydrogen-containing gases generated during operation and maintenance of a fusion machine need to be detritiated prior their discharge to the environment. The amounts of gaseous impurities with their chemical and isotopic compositions which were decontaminated in the JET impurity processing system during and after deuterium-tritium experiment, DTE1, are presented. Two different techniques for impurities detritiation were tested. The first technique is based on catalytic oxidation of hydrogen-containing species followed by water decomposition in reaction with uranium at elevated temperature. The second technique is based on direct decomposition of impurities with molecular hydrogen liberation in reactions with uranium at elevated temperatures. The results of the impurity detritiation using both techniques are given. (orig.)

  7. Nonradioactive Environmental Emissions Chemical Source Term for the Double Shell Tank (DST) Vapor Space During Waste Retrieval Operations

    Energy Technology Data Exchange (ETDEWEB)

    MAY, T.H.


    A nonradioactive chemical vapor space source term for tanks on the Phase 1 and the extended Phase 1 delivery, storage, and disposal mission was determined. Operations modeled included mixer pump operation and DST waste transfers. Concentrations of ammonia, specific volatile organic compounds, and quantitative volumes of aerosols were estimated.

  8. Smooth-operating point and theoretical analyses of unsmooth operation in pyrological processes

    Directory of Open Access Journals (Sweden)

    Wenqiang Sun, Jiuju Cai, Fangmin Quan, Shizheng Ren


    Full Text Available To emphasize the role of heat loss in energy conservation, this paper introduces smooth operation principle. By least square method, the smooth-operating point (SOP formula of fuel gas with definite composition and temperature is deduced, which is then used to analyze changes in heat effect when injecting heat at unsmooth-operating point (UOP, educe allocation regulations of heat effect in furnace, and study the heat loss resulting from unsmooth operation. It indicates that for fuel gas with definite composition and temperature, the SOP is unique and there is no heat loss if injecting heat at SOP. With regard to unsmooth operation, low UOP is better than a high one.

  9. Sustainable Chemical Process Development through an Integrated Framework

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Kumar Tula, Anjan; Anantpinijwatna, Amata


    This paper describes the development and the application of a general integrated framework based on systematic model-based methods and computer-aided tools with the objective to achieve more sustainable process designs and to improve the process understanding. The developed framework can be applied...... to a wide range of problems, including the design of new processes as well as retrofit of existing batch-continuous production systems. The overview of the framework together with results from two case studies is presented to highlight the key aspects and the applicability of the framework. These case...

  10. Biorefineries to integrate fuel, energy and chemical production processes

    Directory of Open Access Journals (Sweden)

    Enrica Bargiacchi


    Full Text Available The world of renewable energies is in fast evolution and arouses political and public interests, especially as an opportunity to boost environmental sustainability by mitigation of greenhouse gas emissions. This work aims at examining the possibilities related to the development of biorefineries, where biomass conversion processes to produce biofuels, electricity and biochemicals are integrated. Particular interest is given to the production processes of biodiesel, bioethanol and biogas, for which present world situation, problems, and perspectives are drawn. Potential areas for agronomic and biotech researches are also discussed. Producing biomass for biorefinery processing will eventually lead to maximize yields, in the non food agriculture.

  11. Effects of design and operating variables on process characteristics in a methane discharge: a numerical study (United States)

    Bera, K.; Farouk, B.; Lee, Y. H.


    A self-consistent two-dimensional radio frequency capacitively coupled glow discharge model has been developed in cylindrical coordinates for a methane discharge using a fluid model. The objective of the study is to identify the effects of design and operating variables of the reactor on the process characteristics such as the deposition rate, uniformity and the quality of the diamond-like-carbon film. The simulations provide insights to charged species dynamics and investigate their effects on the plasma process for a depositing methane discharge. The model includes continuity equations for electrons and positive and negative ions, and energy equation for electrons. Swarm data as a function of electron energy are provided as input to the model. The model predicts the electron density, ion density, and their fluxes and energies to the cathode. The roles of electrons, dominating ions and radicals in a capacitively coupled discharge are investigated. The radical and neutral densities in the discharge are calculated using a gas phase chemistry model. The diamond-like-carbon thin-film deposition rate is predicted using surface chemistry model. The gas phase chemistry model considers diffusion of radicals and neutrals along with creation and loss terms. The surface deposition/etching process involves adsorption-desorption, adsorption layer reaction, ion stitching, direct ion incorporation, etching and carbon sputtering. A systematic parametric study of plasma processing has been performed to identify process parameters to obtain better film deposition/etching on a wafer. The present work shows how plasma equipment simulation can be used for the practical investigation and optimization of a plasma-assisted chemical vapour deposition process. The simultaneous treatment of plasma dynamics and surface processes enables a very precise prediction of the process characteristics in terms of the film deposition rate, uniformity and the quality as functions of discharge control

  12. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt


    Full Text Available Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1 through validation against AERONET especially in Saharan dust outbreak situations, (2 through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3 through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the


    The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. In this work diff...

  14. [Investigation on chemical constituents of processed products of Eucommiae Cortex]. (United States)

    Tao, Yi; Sheng, Chen; Li, Wei-dong; Cai, Bao-chang; Lu, Tu-lin


    According to the 2010 Chinese pharmacopeia, salt processed and charcoal processed Eucommiae Cortex were pre- pared. HPLC-DAD analysis of the content of the bark and leaf of Eucommiae Cortex showed that the bark of Eucommiae Cortex mainly contained lignans such as pinoresinol glucose and iridoid including genipin, geniposide, geniposidic acid, while the leaf of Eucommiae Cortex consisted of flavonoids such as quercetin and phenolic compound such as chlorogenic acid. The content of pinoresinol diglucoside in the bark of Eucommiae Cortex was about 18 times more than that in the leaf of Eucommiae Cortex. The content of pinoresinol diglucoside in salted and charcoal processed Eucommiae Cortex decreased approximately by 30% and 85%, respectively. The content of genipin, geniposide and geniposidic acid in the bark of Eucommiae Cortex was about 3 times, 23 times, 28 times more than that in the leaf of Eucommiae Cortex. The content of genipin, geniposide and geniposidic acid in salted Eucommiae Cortex were reduced by 25%, 40% and 40%, respectively. The content of genipin, geniposide and geniposidic acid in charcoal processed Eucommiae Cortex were reduced by 98%, 70%, 70%, respectively. The content of caffeic acid in bark of Eucommiae Cortex was about 3 times more than that in the leaf of Eucommiae Cortex. The content of caffeic acid was decreased by about 50% in the salted Eucommiae Cortex. While the content of caffeic acid in charcoal processed Eucommiae Cortex was decreased approximately 75%; the content of chlorogenic acid in bark of Eucommiae Cortex was about 1/6 of that in the leaf of Eucommiae Cortex. The content of chlorogenic acid in salted and charcoal processed Eucommiae Cortex decreased by 40% and 75%, respectively; the content of quercetin in bark of Eucommiae Cortex was only 1/40 of that in the leaf of Eucommiae Cortex. The content of quercetin in salted and charcoal processed Eucommiae Cortex were reduced by 60% and 50%, respectively.

  15. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew


    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  16. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar


    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  17. Process-oriented knowledge-sharing platform for chemical engineering design projects

    Institute of Scientific and Technical Information of China (English)


    A process-oriented knowledge-sharing platform is studied to improve knowledge sharing and project management of chemical engineering design enterprises. First, problems and characteristics of knowledge sharing in multi-projects of chemical engineering design are analyzed. Then based on theories of project management, process management, and knowledge management, a process-oriented knowledge-sharing platform is proposed. The platform has three characteristics: knowledge is divided into professional knowledge...

  18. Treatment of textile dye wastewaters using ferrous sulphate in a chemical coagulation/flocculation process. (United States)

    Rodrigues, Carmen S D; Madeira, Luís M; Boaventura, Rui A R


    The coagulation/flocculation treatment using FeSO4 x 7H2O as a coagulant is evaluated in this work for the removal of organic compounds and colour from synthetic effluents simulating the cotton, acrylic and polyester dyeing wastewaters. The coagulant dose, temperature, pH, stirring speed and stirring time that maximized the removal of dissolved organic carbon (DOC) and colour for each effluent are determined for the coagulation process. The effect of the stirring speed, stirring time and the dose of flocculant (Magnafloc 155 or Superfloc C-573) on the flocculation stage is also evaluated for effluents pretreated by coagulation at the optimal conditions previously determined. The obtained results showed that the optimal operating conditions are different for each effluent, and the process (coagulation/flocculation) as a whole was efficient in terms of colour removal (-91% for cotton, -94% for acrylic effluents; polyester effluent is practically colourless). However, the DOC removal observed is not significant (33% for polyester, -45% for cotton and -28% for acrylic effluents). On the other hand, the remaining dissolved iron content is appropriate for further integrating the treatment with an iron-catalysed Fenton process, thus reducing the consumption of chemicals in the overall treatment.

  19. Rethinking the process of operational research & systems analysis

    CERN Document Server

    Tomlinson, R


    Invited contributions from distinguished practitioners and methodologists of operational research and applied systems analysis which represent a true state-of-the-art and which provide, perhaps for the first time, a coherent, interlocking, set of ideas which may be considered the foundations of the subject as a science in its own right.

  20. Steam boilers: process models for improved operation and design

    NARCIS (Netherlands)

    Ahnert, F.


    Biomass combustion can be an economic way to contribute to the reduction of CO2 emissions, which are a main suspect of the so-called greenhouse effect. In order to promote a widespread utilization of biomass combustion, operational problems like fuel treatment, slagging, fouling and corrosion have t

  1. Unit Operation Experiment Linking Classroom with Industrial Processing (United States)

    Benson, Tracy J.; Richmond, Peyton C.; LeBlanc, Weldon


    An industrial-type distillation column, including appropriate pumps, heat exchangers, and automation, was used as a unit operations experiment to provide a link between classroom teaching and real-world applications. Students were presented with an open-ended experiment where they defined the testing parameters to solve a generalized problem. The…

  2. Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan


    The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.

  3. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón


    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  4. Microwave Field Applicator Design in Small-Scale Chemical Processing

    NARCIS (Netherlands)

    Sturm, G.S.J.


    Ever since the first experiments nearly three decades ago, microwave enhanced chemistry has received incessant scientific attention. Many studies report improved process performance in terms of speed and conversion under microwave exposure and therefore it is recognized as a promising alternative me

  5. Thermo-Chemical Modelling Strategies for the Pultrusion Process

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Tutum, Cem Celal


    In the present study, three dimensional (3D) numerical modeling strategies of a thermosetting pultrusion process are investigated considering both transient and steady state approaches. For the transient solution, an unconditionally stable alternating direction implicit Douglas-Gunn (ADI-DG) sche...

  6. Electrocatalytic processing of renewable biomass-derived compounds for production of chemicals, fuels and electricity (United States)

    Xin, Le

    achieving renewable electricity storage. Meanwhile, ORR that is often coupled in AEMFCs on the cathode was investigated on non-PGM electrocatalyst with comparable activity to commercial Pt/C. The electro-biorefinery process could be coupled with traditional biorefinery operation and will play a significant role in our energy and chemical landscape.

  7. Chemical looping combustion in a rotating bed reactor--finding optimal process conditions for prototype reactor. (United States)

    Håkonsen, Silje Fosse; Blom, Richard


    A lab-scale rotating bed reactor for chemical looping combustion has been designed, constructed, and tested using a CuO/Al(2)O(3) oxygen carrier and methane as fuel. Process parameters such as bed rotating frequency, gas flows, and reactor temperature have been varied to find optimal performance of the prototype reactor. Around 90% CH(4) conversion and >90% CO(2) capture efficiency based on converted methane have been obtained. Stable operation has been accomplished over several hours, and also--stable operation can be regained after intentionally running into unstable conditions. Relatively high gas velocities are used to avoid fully reduced oxygen carrier in part of the bed. Potential CO(2) purity obtained is in the range 30 to 65%--mostly due to air slippage from the air sector--which seems to be the major drawback of the prototype reactor design. Considering the prototype nature of the first version of the rotating reactor setup, it is believed that significant improvements can be made to further avoid gas mixing in future modified and up-scaled reactor versions.

  8. Titan. [physical and chemical processes in satellite atmosphere (United States)

    Hunten, D. M.; Tomasko, M. G.; Flasar, F. M.; Samuelson, R. E.; Strobel, D. F.; Stevenson, D. J.


    It is pointed out that Titan, which is the second largest satellite in the solar system, is considerably larger than Mercury. It is made unique by its dense atmosphere, which consists mainly of nitrogen, although a substantial component of methane is present. The basic properties of Titan are summarized in a table. Many of the data were obtained during the close pass of Voyager 1 in November 1980. The atmospheric temperature decreases from its surface value of 94 K at a pressure of 1500 mbar to a minimum of 71 K at a height of 42 km and a pressure of 128 mbar. Details of atmospheric composition and thermal structure are discussed, taking into account chemical identifications and abundances, the vertical temperature structure, the horizontal temperature and opacity structure, and the radiative equilibrium. The upper atmosphere composition and temperature is considered along with the properties of aerosols, and meteorology and atmospheric dynamics. Titan's interior has an average density of 1.88 g per cu cm. Attention is given to Titan's surface and interior, and its formation.

  9. A systems engineering approach to manage the complexity in sustainable chemical product-process design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    This paper provides a perspective on model-data based solution approaches for chemical product-process design, which consists of finding the identity of the candidate chemical product, designing the process that can sustainably manufacture it and verifying the performance of the product during...... application. The chemical product tree is potentially very large and a wide range of options exist for selecting the product to make, the raw material to use as well as the processing route to employ. It is shown that systematic computer-aided methods and tools integrated within a model-data based design...

  10. An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure. (United States)

    Mingguang, Zhang; Juncheng, Jiang


    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.

  11. Assessing the Structure of Non-Routine Decision Processes in Airline Operations Control

    NARCIS (Netherlands)

    Richters, Floor; Schraagen, Jan Maarten; Heerkens, Hans


    Unfamiliar severe disruptions challenge airline operations control professionals most, as their expertise is stretched to its limits. This study has elicited the structure of airline operations control professionals’ decision process during unfamiliar disruptions by mapping three macrocognitive acti

  12. Assessing the structure of non-routine decision processes in Airline Operations Control

    NARCIS (Netherlands)

    Richters, F.; Schraagen, J.M.C.; Heerkens, H.


    Unfamiliar severe disruptions challenge Airline Operations Control professionals most, as their expertise is stretched to its limits. This study has elicited the structure of Airline Operations Control professionals’ decision process during unfamiliar disruptions by mapping three macrocognitive acti

  13. Professionalising the asphalt construction process: aligning information technologies, operators' knowledge and laboratory practices

    NARCIS (Netherlands)

    Bijleveld, Frank Roland


    This research addresses the need to professionalise the asphalt construction process. A distinctive action research strategy is designed and carried out to progressively improve operational strategies of asphalt teams from technological, human (operator) and laboratory perspectives. Using informatio

  14. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative? (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.


    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  15. Fiscal 1996 investigational research on the chemical process technology using supercritical fluids; 1996 nendo chorinkai ryutai wo riyoshita kagaku process gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)



    Importance was studied of making a research on the chemical process technology using the supercritical fluid. As for its effect on global warming, the amount of CO2 emission was compared during the operation between the conventional process and the process using the supercritical fluid, the CO2 reduction rate and amount were trially calculated, and a CO2 reduction of a several ten thousand ton scale in carbon conversion was predicted. As to hazardous materials and the reaction of waste retrieval, it was made clear that the process using the supercritical fluid was valid also for objects for which the chemical process used to be impossible, which indicates a possibility of the widening field of application. Concerning its effect on the energy conservation, energy reduction of several ten thousand tons in heavy oil conversion was predicted by replacing all the existing processes with supercritical fluids. Relating to the recycling, with the use of supercritical fluids, the process is possible which produces higher quality and yield and fewer unnecessary products such as char than the conventional process. 197 refs., 102 figs., 71 tabs.

  16. 29 CFR 780.518 - Exempt processing operations. (United States)


    ..., PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Employment or..., rebulking, sorting, grading, aging, and baling” of the shade-grown tobacco. As previously noted,...

  17. Quantum Chemical Calculations Using Accelerators: Migrating Matrix Operations to the NVIDIA Kepler GPU and the Intel Xeon Phi. (United States)

    Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S


    Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications.

  18. Swimming Pool Water Treatment Chemicals and/or Processes. Standard No. 22. (United States)

    National Sanitation Foundation, Ann Arbor, MI.

    Chemicals or processes used or intended for use, in the treatment of swimming pool water are covered. Minimum public health limits or acceptability in regard to toxicity, biocidal effectiveness, and chemical behavior and analysis are presented. The appendices give guidelines to the scientific and statistically sound evaluations to determine the…

  19. Sustainable Chemical Processes and Products. New Design Methodology and Design Tools

    NARCIS (Netherlands)

    Korevaar, G.


    The current chemical industry is not sustainable, which leads to the fact that innovation of chemical processes and products is too often hazardous for society in general and the environment in particular. It really is a challenge to implement sustainability considerations in the design activities o

  20. The Technology for Intensification of Chemical Reaction Process Envisaged in the "863" Plan

    Institute of Scientific and Technical Information of China (English)


    @@ It is learned from the Ministry of Science and Technology that in order to promote the shift of China's chemical industry toward an energy efficient and environmentally friendly product mode, the technology for intensification of chemical reaction processes has been included in the National "863" Project of the "Eleventh Five-Year Plan", and the application for research project proposals is to be accepted.

  1. 3D thermo-chemical-mechanical analysis of the pultrusion process

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Tutum, Cem C.


    In the present study, a 3D Eulerian thermo-chemical analysis is sequentially coupled with a 3D Lagrangian quasi static mechanical analysis of the pultrusion process. The temperature and degree of cure profiles at the steady state are first calculated in the thermo-chemical analysis...

  2. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.


    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a

  3. Fuzzy-logic modeling of Fenton's strong chemical oxidation process treating three types of landfill leachates. (United States)

    Sari, Hanife; Yetilmezsoy, Kaan; Ilhan, Fatih; Yazici, Senem; Kurt, Ugur; Apaydin, Omer


    Three multiple input and multiple output-type fuzzy-logic-based models were developed as an artificial intelligence-based approach to model a novel integrated process (UF-IER-EDBM-FO) consisted of ultrafiltration (UF), ion exchange resins (IER), electrodialysis with bipolar membrane (EDBM), and Fenton's oxidation (FO) units treating young, middle-aged, and stabilized landfill leachates. The FO unit was considered as the key process for implementation of the proposed modeling scheme. Four input components such as H(2)O(2)/chemical oxygen demand ratio, H(2)O(2)/Fe(2+) ratio, reaction pH, and reaction time were fuzzified in a Mamdani-type fuzzy inference system to predict the removal efficiencies of chemical oxygen demand, total organic carbon, color, and ammonia nitrogen. A total of 200 rules in the IF-THEN format were established within the framework of a graphical user interface for each fuzzy-logic model. The product (prod) and the center of gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the proposed prognostic models. Fuzzy-logic predicted results were compared to the outputs of multiple regression models by means of various descriptive statistical indicators, and the proposed methodology was tested against the experimental data. The testing results clearly revealed that the proposed prognostic models showed a superior predictive performance with very high determination coefficients (R (2)) between 0.930 and 0.991. This study indicated a simple means of modeling and potential of a knowledge-based approach for capturing complicated inter-relationships in a highly non-linear problem. Clearly, it was shown that the proposed prognostic models provided a well-suited and cost-effective method to predict removal efficiencies of wastewater parameters prior to discharge to receiving streams.

  4. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill


    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  5. On the Use of Variability Operations in the V-Modell XT Software Process Line

    DEFF Research Database (Denmark)

    Kuhrmann, Marco; Méndez Fernández, Daniel; Ternité, Thomas


    Software process lines provide a systematic approach to develop and manage software processes. It defines a reference process containing general process assets, whereas a well-defined customization approach allows process engineers to create new process variants, e.g., by extending or modifying....... In this article, we present a study on the feasibility of variability operations to support the development of software process lines in the context of the V-Modell XT. We analyze which variability operations are defined and practically used. We provide an initial catalog of variability operations...... documentation, and they allow for altering the structure of a process model and its description. Furthermore, we also find that variability operations can help process engineers to compensate process metamodel evolution....

  6. Solar photochemical process engineering for production of fuels and chemicals (United States)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.


    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  7. Active Chemical Sensing With Partially Observable Markov Decision Processes (United States)

    Gosangi, Rakesh; Gutierrez-Osuna, Ricardo


    We present an active-perception strategy to optimize the temperature program of metal-oxide sensors in real time, as the sensor reacts with its environment. We model the problem as a partially observable Markov decision process (POMDP), where actions correspond to measurements at particular temperatures, and the agent is to find a temperature sequence that minimizes the Bayes risk. We validate the method on a binary classification problem with a simulated sensor. Our results show that the method provides a balance between classification rate and sensing costs.

  8. Application of Artificial Neural Networks and Chaos in Chemical Processes (United States)

    Otawara, Kentaro


    An artificial neural network (ANN) and chaos, conceived and developed independently, are beginning to play essential roles in chemical engineering. Nonetheless, the ANN possesses an appreciable number of deficiencies that need be remedied, and the capability of the ANN to explore and tame chaos or an irregularly behaving system is yet to be fully realized. The present dissertation attempts to make substantial progress toward such ends. The problem of controlling the temperature of an industrial reactor carrying out semibatch polymerization has been solved by an innovative adaptive hybrid control system comprising an ANN and fuzzy expert system (FES) complemented by two supervisory ANN's. The system enhances the strength and compensates for the weaknesses of both the ANN and FES. The system, named dual ANN (DANN), has been proposed for characterizing the nonlinear nature of chaotic time -series data. Its capability to approximate the behavior of a chaotic system has been found to far exceed that of a conventional ANN. A novel approach has been devised for training an ANN through the modified interactive training (MIT) mode. This mode of training has been demonstrated to substantially outperform a conventional interactive training (CIT) mode. A method has been established for synchronizing chaos by resorting to an ANN. This method is capable of causing to be coherent the trajectories of systems whose deterministic governing equations are insufficiently known. This requires training the ANN with a time series and a common driving signal or signals. Examples are given for chaos generated by difference as well as differential equations. An alternative to the OGY method has been proposed for controlling chaos; it meticulously perturbs an accessible parameter of the chaotic system. A single, highly precise ANN suffices to render stable any of an infinite number of unstable periodic orbits embedded in a chaotic or strange attractor. A method for estimating sub

  9. Benzene as a Chemical Hazard in Processed Foods (United States)

    Salviano dos Santos, Vânia Paula; Medeiros Salgado, Andréa; Guedes Torres, Alexandre; Signori Pereira, Karen


    This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer) as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1–10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food. PMID:26904662

  10. Benzene as a Chemical Hazard in Processed Foods

    Directory of Open Access Journals (Sweden)

    Vânia Paula Salviano dos Santos


    Full Text Available This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1–10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food.

  11. Data Processing Center of Radioastron Project: 3 years of operation. (United States)

    Shatskaya, Marina

    ASC DATA PROCESSING CENTER (DPC) of Radioastron Project is a fail-safe complex centralized system of interconnected software/ hardware components along with organizational procedures. Tasks facing of the scientific data processing center are organization of service information exchange, collection of scientific data, storage of all of scientific data, data science oriented processing. DPC takes part in the informational exchange with two tracking stations in Pushchino (Russia) and Green Bank (USA), about 30 ground telescopes, ballistic center, tracking headquarters and session scheduling center. Enormous flows of information go to Astro Space Center. For the inquiring of enormous data volumes we develop specialized network infrastructure, Internet channels and storage. The computer complex has been designed at the Astro Space Center (ASC) of Lebedev Physical Institute and includes: - 800 TB on-line storage, - 2000 TB hard drive archive, - backup system on magnetic tapes (2000 TB); - 24 TB redundant storage at Pushchino Radio Astronomy Observatory; - Web and FTP servers, - DPC management and data transmission networks. The structure and functions of ASC Data Processing Center are fully adequate to the data processing requirements of the Radioastron Mission and has been successfully confirmed during Fringe Search, Early Science Program and first year of Key Science Program.

  12. Sex differences in learning processes of classical and operant conditioning. (United States)

    Dalla, Christina; Shors, Tracey J


    Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear-conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear-conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion, males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent in one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them.


    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  14. Operational impact of product variety in the process industry

    DEFF Research Database (Denmark)

    Moseley, Alexandria Lee; Hvam, Lars; Herbert-Hansen, Zaza Nadja Lee


    to quantify the impact of longer runs on productivity . In testing the hypothesis that longer runs lead to higher productivity, the results show that the number of variants in itself is not a sufficient parameter to explain the variation in production performance; rather, the different types of product......The purpose of this research article is to examine the impact of product variety on production performance in the process industry. As the number of product variants sold by a process company typically impacts the run length, production data from a mineral wool insulation manufacturer is analyzed...... variants and their production sequence must also be considered. Based on the findings, a method for quantifying the production cost of product variety in the process industry is developed, add ing to the literature a rich case howcasing factors which influence production performance and the impact...


    The design of chemical processes is normally an interactive process of synthesis and analysis. When one also desires or needs to limit the amount of pollution generated by the process the difficulty of the task can increase substantially. In this work, we show how combining hier...

  16. Closed-loop operation of a solar chemical heat pipe at the Weizmann Institute solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Levitan, R.; Levy, M.; Rosin, H.; Rubin, R. (Materials Research Dept., Weizmann Inst. of Science, Rehovot (Israel))


    The performance of a solar chemical heat pipe was studied using CO{sub 2} reforming of methane as the vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a rhodium catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizmann Institute of Science. The exothermic methanation reaction was run in a tubular reactor filled with the same Rh catalyst and fed with the products from the reformer. Conversions of over 80% were achieved for both reactions. In the closed-loop mode the products from the reformer and from the methanator were compressed into separate storage tanks. The two reactions were run consecutively and the whole process was repeated for nine cycles. The overall performance of the closed loop was according to expectations. (orig.).


    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David; Best, David


    Qualification simulant testing was completed to determine appropriate processing conditions and assumptions for the Sludge Batch 6 (SB6) Shielded Cells demonstration of the DWPF flowsheet using the qualification sample from Tank 51 for SB6 after SRNL washing. It was found that an acid addition window of 105-139% of the DWPF acid equation (100-133% of the Koopman minimum acid equation) gave acceptable Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) results for nitrite destruction and hydrogen generation. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 117%, 133%, and 150% stoichiometry (Koopman) were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 42 hours of boiling in the SRAT. The 150% acid run reached 110% of the DWPF SRAT limit of 0.65 lb H{sub 2}/hr, and the 133% acid run reached 75% of the DWPF SME limit of 0.223 lb H{sub 2}/hr. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 25 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two other processing issues were noted. First, incomplete mercury suspension impacted mercury stripping from the SRAT slurry. This led to higher SRAT product mercury concentrations than targeted (>0.45 wt% in the total solids). Associated with this issue was a general difficulty in quantifying the mass of mercury in the SRAT vessel as a function of time, especially as acid stoichiometry increased. About ten times more mercury was found after drying the 150% acid SME product to powder than was indicated by the SME product sample results. Significantly more mercury was also found in the 133% acid SME product samples than was found during the SRAT cycle sampling. It appears that mercury is segregating from the bulk slurry in the SRAT vessel, as mercury amalgam deposits for example, and is not being resuspended by the agitators. The second processing issue

  18. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora


    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  19. Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Antonio A. Romero


    Full Text Available Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic materials.

  20. Chemicals in the process chain from raw material to product; Kjemikalier i verdikjeden

    Energy Technology Data Exchange (ETDEWEB)

    Nordstad, Ellen N. [Statoil, Stavanger (Norway)


    As described in this presentation, chemicals are added at various points along the physical flow from oil/gas well to sold products. They have several functions and are added in different amounts. The chemicals may have a negative impact on the environment by emission to sea. But they can also reduce the regularity of the processing equipment and the prices of the products. Therefore, Statoil has begun a research project that aims to develop improved methods and tools for the prediction of the distribution of chemicals in the process chain and the unwanted effects they might have on the environment, on downstream installations and on the products. 4 refs., 11 figs.

  1. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons. (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi


    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care.

  2. Systematic Procedure for Integrated Process Operation: Reverse Electro-Enhanced Dialysis (REED) during Lactic Acid Fermentation

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil


    The integration of lactic acid fermentation and Reverse Electro-Enhanced Dialysis (REED) is investigated based upon previously developed mathematical models. A goal driven process and operation design procedure is proposed and partially investigated. The conceptual analysis of the processes...

  3. An automatic modeling system of the reaction mechanisms for chemical vapor deposition processes using real-coded genetic algorithms. (United States)

    Takahashi, Takahiro; Nakai, Hiroyuki; Kinpara, Hiroki; Ema, Yoshinori


    The identification of appropriate reaction models is very helpful for developing chemical vapor deposition (CVD) processes. In this study, we have developed an automatic system to model reaction mechanisms in the CVD processes by analyzing the experimental results, which are cross-sectional shapes of the deposited films on substrates with micrometer- or nanometer-sized trenches. We designed the inference engine to model the reaction mechanism in the system by the use of real-coded genetic algorithms (RCGAs). We studied the dependence of the system performance on two methods using simple genetic algorithms (SGAs) and the RCGAs; the one involves the conventional GA operators and the other involves the blend crossover operator (BLX-alpha). Although we demonstrated that the systems using both the methods could successfully model the reaction mechanisms, the RCGAs showed the better performance with respect to the accuracy and the calculation cost for identifying the models.


    Directory of Open Access Journals (Sweden)

    Ivan Mihajlović


    Full Text Available This paper presents the modeling procedure of one real technological system. In this study, thecopper extraction from the copper flotation waste generated at the Bor Copper Mine (Serbia, werethe object of modeling. Sufficient data base for statistical modeling was constructed using theorthogonal factorial design of the experiments. Mathematical model of investigated system wasdeveloped using the combination of linear and multiple linear statistical analysis approach. Thepurpose of such a model is obtaining optimal states of the system that enable efficient operationsmanagement. Besides technological and economical, ecological parameters of the process wereconsidered as crucial input variables.

  5. [Implementation on the operating level of the nursing process]. (United States)

    Villalobos, N A


    The development of the nursing care attention process guided through the PDCA. (plan, do, check, act), provides a continuous improvement of our actual context. The meaning of PDCA is translated as VIDA for: view, implementation, discernment, at just. For its application it takes in view the change theory of Kurt Lewin. This paper provides the results of the Implementation stage using different approaches as technical care, education, administration and research. These strategies show that people did not express their feelings, beliefs and their own expectations and autonomy in nursing care. They even do not develop their citizenship, right of living and being able to grow.

  6. Flight and Operational Medicine Clinic (FOMC) Task Process Mapping (United States)


    D. Lex Brown, Andrea L. Cooks, Jennifer L. Ward, Shawna K. Graddy SURVIAC 96 TG/OL-AC/SURVIAC 2700 D Street, Bldg 1661 Wright Patterson AFB OH...S) 5d. PROJECT NUMBER DO 324 Tvaryanas, Anthony (LtCol) Brown, D. Lex ; Cooks, Andrea L.; Ward, Jennifer L.; Graddy, Shawna K 5e. TASK NUMBER...Approved for public release, distribution unlimited. Release #88ABW- 2014-1753, dated 16 April 2014. AFI Current IFC Process C iv ili a n A c ti v e D

  7. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.


    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  8. Operator Approach to the Master Equation for the One-Step Process (United States)

    Hnatič, M.; Eferina, E. G.; Korolkova, A. V.; Kulyabov, D. S.; Sevastyanov, L. A.


    Background. Presentation of the probability as an intrinsic property of the nature leads researchers to switch from deterministic to stochastic description of the phenomena. The kinetics of the interaction has recently attracted attention because it often occurs in the physical, chemical, technical, biological, environmental, economic, and sociological systems. However, there are no general methods for the direct study of this equation. The expansion of the equation in a formal Taylor series (the so called Kramers-Moyal's expansion) is used in the procedure of stochastization of one-step processes. Purpose. However, this does not eliminate the need for the study of the master equation. Method. It is proposed to use quantum field perturbation theory for the statistical systems (the so-called Doi method). Results: This work is a methodological material that describes the principles of master equation solution based on quantum field perturbation theory methods. The characteristic property of the work is that it is intelligible for non-specialists in quantum field theory. Conclusions: We show the full equivalence of the operator and combinatorial methods of obtaining and study of the one-step process master equation.

  9. Business Process Re-engineering: A Panacea for Reducing Operational Cost in Service Organizations

    Directory of Open Access Journals (Sweden)

    Joseph Joseph Sungau


    Full Text Available Organizations in today’s business environment struggle on how to reduce operation cost in order to set prices that can be afforded by many customers while obtaining reasonable profit.  In order to reduce Operational Cost, service organizations have been working hard to identify techniques that facilitate business processes improvement for reduced Operational Cost. In so doing, the global literature indicates that service organizations adopt Business Process Re-engineering technique as a panacea of reducing Operational Cost. Despite a documented potentiality of Business Process Re-engineering technique, there are mixed empirical results, findings and conclusions regarding the effect of Business Process Re-engineering on Operational Cost. Therefore, this paper aimed at assessing and explaining effects of BPR on Operational Cost.   The study used cross-sectional survey design to investigate the effect of BPR on Operational Cost. Intensive literature review enabled the construction of structural measurement model, formulation of testable hypotheses and operationalization of constructs. In order to test the model and hypotheses, data were collected from ninety five (95 service organizations in Tanzania. Results of the study reveal that BPR and delivering speed have no direct effects on Operational Cost; they indirectly affect Operational Cost through the mediations of service quality. Therefore, BPR influences first both service quality and delivery speed in affecting Operational Cost of service organizations. It is now recommended that service organizations should use Business Process Re-engineering as panacea of reducing Operational Cost.    

  10. Thermo-chemical process with sewage sludge by using CO2. (United States)

    Kwon, Eilhann E; Yi, Haakrho; Kwon, Hyun-Han


    This work proposed a novel methodology for energy recovery from sewage sludge via the thermo-chemical process. The impact of CO2 co-feed on the thermo-chemical process (pyrolysis and gasification) of sewage sludge was mainly investigated to enhance thermal efficiency and to modify the end products from the pyrolysis and gasification process. The CO2 injected into the pyrolysis and gasification process enhance the generation of CO. As compared to the thermo-chemical process in an inert atmosphere (i.e., N2), the generation of CO in the presence of CO2 was enhanced approximately 200% at the temperature regime from 600 to 900 °C. The introduction of CO2 into the pyrolysis and gasification process enabled the condensable hydrocarbons (tar) to be reduced considerably by expediting thermal cracking (i.e., approximately 30-40%); thus, exploiting CO2 as chemical feedstock and/or reaction medium for the pyrolysis and gasification process leads to higher thermal efficiency, which leads to environmental benefits. This work also showed that sewage sludge could be a very strong candidate for energy recovery and a raw material for chemical feedstock.

  11. Particle size distribution and removal in the chemical-biological flocculation process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; ZHAO Jian-fu; XIA Si-qing; LIU Chang-qing; KANG Xing-sheng


    The particle characterization from the influent and effluent of a chemical-biological flocculation (CBF) process was studied with a laser diffraction device. Water samples from a chemically enhanced primary treatment (CEPT) process and a primary sediment tank process were also analyzed for comparison. The results showed that CBF process was not only effective for both the big size particles and small size particles removal, but also the best particle removal process in the three processes. The results also indicated that CBF process was superior to CEPT process in the heavy metals removal. The high and non-selective removal for heavy metals might be closely related to its strong ability to eliminate small particles. Samples from different locations in CBF reactors showed that small particles were easier to aggregate into big ones and those disrupted flocs could properly flocculate again along CBF reactor because of the biological flocculation.

  12. New FORTRAN computer programs to acquire and process isotopic mass spectrometric data: Operator`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.H.; McKown, H.S.


    This TM is one of a pair that describes ORNL-developed software for acquisition and processing of isotope ratio mass spectral data. This TM is directed at the laboratory analyst. No technical knowledge of the programs and programming is required. It describes how to create and edit files, how to acquire and process data, and how to set up files to obtain the desired results. The aim of this TM is to serve as a utilitarian instruction manual, a {open_quotes}how to{close_quotes} approach rather than a {open_quotes}why?{close_quotes}

  13. Determining the optimum process parameter for grinding operations using robust process

    Energy Technology Data Exchange (ETDEWEB)

    Neseli, Suley Man; Asilturk, Ilhan; Celik, Levent [Univ. of Selcuk, Konya (Turkmenistan)


    We applied combined response surface methodology (RSM) and Taguchi methodology (TM) to determine optimum parameters for minimum surface roughness (Ra) and vibration (Vb) in external cylindrical grinding. First, an experiment was conducted in a CNC cylindrical grinding machine. The TM using L{sup 27} orthogonal array was applied to the design of the experiment. The three input parameters were workpiece revolution, feed rate and depth of cut; the outputs were vibrations and surface roughness. Second, to minimize wheel vibration and surface roughness, two optimized models were developed using computer aided single objective optimization. The experimental and statistical results revealed that the most significant grinding parameter for surface roughness and vibration is workpiece revolution followed by the depth of cut. The predicted values and measured values were fairly close, which indicates 2 ( 94.99 R{sup 2Ra}=and 2 92.73) R{sup 2Vb}=that the developed models can be effectively used to predict surface roughness and vibration in the grinding. The established model for determination of optimal operating conditions shows that a hybrid approach can lead to success of a robust process.

  14. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)



    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  15. Mathematical Modelling of Nonstationary Physico Chemical Processes in Large Sized SPRM Pyrotechnical Ignition System

    Directory of Open Access Journals (Sweden)

    Alexey M. Lipanov


    Full Text Available In this paper, the laws of the unstable wave processes accompanying the combustion abnormal mode in the large-sized solid propellant rocket motor {SPRM pyrotechnical ignition system {IS are investigated by numerical method. The IS contains the main {cylindrical channel (MC having uniform perforation over the lateral surface, The left MC boundary is blocked and the right boundary is uniformly perforated. The whole perforation is hermetically sealed from outside. The additional {cylindrical channel {AC {an initial impulse amplifier with uniform perforation over the lateral surface is installed into the MC cavity, coaxially to MC. The right AC boundary is blocked, and the time-varying high-temperature gas flow, containing incandescent 'particles is supplied from initiator, equipped with a fast burning compound, through AC left perforated boundary. To imitate the exploitation conditions, the IS is placed in cylindrical imitation chamber {imitative SPRM. In a number of cases, before the beginning of the IS operation, a situation can be realised when the pelletised solid propellant {PSP mass is non-uniformly distributed along the IS AC length, and the greater part of the AC lateral perforation is blocked by the PSP inserted in the IS MC. Under these conditions, the effect of abnormal strengthening of the pressure waves at the AC boundaries is possible. For describing the abnormal nonstationary physico-chemical processes, a mathematical model is developed. For the check-up of this complex model, the numerical calculation results have been compared with the results of the fire stand tests for the regular IS and the engine. The numerical analysis of the unstable wave process development in the AC has shown that the rise of the pressure with an ever increasing amplitude is realised at the moment, when a shock wave reflects alternately, on the left and on the right AC boundaries. The effect of the pressure waves' abnormal strengthening can result in the

  16. A systematic synthesis and design methodology to achieve process intensification in (bio) chemical processes

    DEFF Research Database (Denmark)

    Lutze, Philip; Román-Martinez, Alicia; Woodley, John;


    Process intensification (PI) has the potential to improve existing processes or create new process options which are needed in order to produce products using more sustainable methods. PI creates an enormous number of process options. In order to manage the complexity of options in which a feasible...... and optimal process solution may exist, the application of process synthesis tools results in the development of a systematic methodology to implement PI. Starting from an analysis of existing processes, this methodology generates a set of feasible process options and reduces their number through a number...

  17. 9 CFR 318.304 - Operations in the thermal processing area. (United States)


    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Operations in the thermal processing area. 318.304 Section 318.304 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PREPARATION OF PRODUCTS Canning and Canned Products § 318.304 Operations in the thermal processing area....

  18. An In-Process Surface Roughness Recognition System in End Milling Operations (United States)

    Yang, Lieh-Dai; Chen, Joseph C.


    To develop an in-process quality control system, a sensor technique and a decision-making algorithm need to be applied during machining operations. Several sensor techniques have been used in the in-process prediction of quality characteristics in machining operations. For example, an accelerometer sensor can be used to monitor the vibration of…

  19. Program Trainer for Operator of Phosphoric Acid production by Wet-Process

    Directory of Open Access Journals (Sweden)

    Vladimir А. Krivonosov


    Full Text Available This article considers the major problems of operator of phosphoric acid production by wet-process during production control, develops program trainer, enabling to speed up the process of operators training, promote their professional qualifications and the production control

  20. Chemical purification of Gunungpati elephant foot yam flour to improve physical and chemical quality on processed food (United States)

    Paramita, Octavianti; Wahyuningsih, Ansori, Muhammad


    This study was aimed at improving the physicochemical quality of elephant foot yam flour in Gunungpati, Semarang by chemical purification. The utilization of elephant foot yam flour in several processed food was also discussed in this study. The flour purification discussed in this study was expected to become a reference for the manufacturers of elephant foot yam flour and its processed food in Gunungpati. This study modified the elephant foot yam flour using pre - gelatinization method. The physical and chemical quality of each elephant foot yam flour purification sample were assessed using proximate analysis. The likability test was conducted for its processed food. 20 grams of elephant foot yam flour was put into a beaker glass, then 60 ml of water was added. The suspension was then heated at a temperature of 60 ° C and 70 ° C while stirred until it was homogeneous and thickened for 10, 30 and 60 minutes. The flour which had been heated was then cooled at room temperature for 1 hour and then at a temperature of 0 ° C until it was frozen. Furthermore, flour was dried in an oven at a temperature of 60 ° C for 9 hours. The dried flour was sifted with a 80 mesh sieve. Chemical test was conducted after elephant foot yam was pre-gelatinized to determine changes in the quality flour: test levels of protein, fat, crude fiber content, moisture content, ash content and starch content. In addition, color tests and granular test on elephant foot yam flour were also conducted. The pre-gelatinization as chemical treatment on elephant foot yam flour in this study was able to change the functional properties of elephant foot yam flour towards a better processing characterized by a brighter color (L = 70, a = 6 and b = 12), the hydrolysis of polysaccharides flour into shorter chain (flour content decreased to 44%), the expansion of granules in elephant foot yam resulting in a process - ready flour, and better monolayer water content of 9%. The content of protein and fiber

  1. The top 50 commodity chemicals: Impact of catalytic process limitations on energy, environment, and economics

    Energy Technology Data Exchange (ETDEWEB)

    Tonkovich, A.L.Y.; Gerber, M.A.


    The production processes for the top 50 U.S. commodity chemicals waste energy, generate unwanted byproducts, and require more than a stoichiometric amount of feedstocks. Pacific Northwest Laboratory has quantified this impact on energy, environment, and economics for the catalytically produced commodity chemicals. An excess of 0.83 quads of energy per year in combined process and feedstock energy is required. The major component, approximately 54%, results from low per-pass yields and the subsequent separation and recycle of unreacted feedstocks. Furthermore, the production processes, either directly or through downstream waste treatment steps, release more than 20 billion pounds of carbon dioxide per year to the environment. The cost of the wasted feedstock exceeds 2 billion dollars per year. Process limitations resulting from unselective catalysis and unfavorable reaction thermodynamic constraints are the major contributors to this waste. Advanced process concepts that address these problems in an integrated manner are needed to improve process efficiency, which would reduce energy and raw material consumption, and the generation of unwanted byproducts. Many commodity chemicals are used to produce large volume polymer products. Of the energy and feedstock wasted during the production of the commodity chemicals, nearly one-third and one-half, respectively, represents chemicals used as polymer precursors. Approximately 38% of the carbon dioxide emissions are generated producing polymer feedstocks.

  2. A New Extension Theory-based Production Operation Method in Industrial Process

    Institute of Scientific and Technical Information of China (English)

    XU Yuan; ZHU Qunxiong


    To explore the problems of dynamic change in production demand and operating contradiction in production process,a new extension theory-based production operation method is proposed.The core is the demand requisition,contradiction resolution and operation classification.For the demand requisition,the deep and comprehensive demand elements are collected by the conjugating analysis.For the contradiction resolution,the conflict between the demand and operating elements are solved by the extension reasoning,extension transformation and consistency judgment.For the operating classification,the operating importance among the operating elements is calculated by the extension clustering so as to guide the production operation and ensure the production safety.Through the actual application in the cascade reaction process of high-density polyethylene (HDPE) of a chemicalplant,cases study and comparison show that the proposed extension theory-based production operation method is significantly better than the traditional experience-based operation method in actual production process,which exploits a new way to the research on the production operating methods for industrial process.


    Institute of Scientific and Technical Information of China (English)


    Yamamuro in [1] defines strong and weak transience of Markov processes; gives a criterion for strong transience of Feller processes; and further, discusses strong and weak transience of Ornstein-Uhlenbeck type processes. In this article, the authors weaken the Feller property of the result in [1] to weak Feller property and discuss the strong transience of operator-self-similar Markov processes.

  4. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal (United States)

    Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K.

    The intercalation of Li ions in natural graphite that was purified by chemical and thermal processes was investigated. A new chemical process was developed that involved a mixed aqueous solution containing 30% H 2SO 4 and 30% NH xF y heated to 90 °C. The results of this process are compared to those obtained by heating the natural graphite from 1500 to 2400 °C in an inert environment (thermal process). The first-cycle coulombic efficiency of the purified natural graphite obtained by the chemical process is 91 and 84% after the thermal process at 2400 °C. Grinding the natural graphite before or after purification had no significant effect on electrochemical performance at low currents. However, grinding to a very small particle size before purification permitted optimization of the size distribution of the particles, which gives rise to a more homogenous electrode. The impurities in the graphite play a role as microabrasion agents during grinding which enhances its hardness and improves its mechanical properties. Grinding also modifies the particle morphology from a 2- to a 3-D structure (similar in shape to a potato). This potato-shaped natural graphite shows high reversible capacity at high current densities (about 90% at 1 C rate). Our analysis suggests that thermal processing is considerably more expensive than the chemical process to obtain purified natural graphite.

  5. Application showcases for a small scale membrane contactor for fine chemical processes

    NARCIS (Netherlands)

    Roelands, C.P.M.; Ngene, I.S.


    The transition from batch to continuous processing in fine-chemicals industries offers many advantages; among these are a high volumetric productivity, improved control over reaction conditions resulting in a higher yield and selectivity, a small footprint and a safer process due to a smaller reacti

  6. Multivariate Statistical Process Monitoring and Control:Recent Developments and Applications to Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    梁军; 钱积新


    Multivariate statistical process monitoring and control (MSPM& C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper,The four-step procedure of performing MSPM &C for chemical process ,modeling of processes ,detecting abnormal events or faults,identifying the variable(s) responible for the faults and diagnosing the source cause for the abnormal behavior,is analyzed,Several main research directions of MSPM&C reported in the literature are discussed,such as multi-way principal component analysis (MPCA) for batch process ,statistical monitoring and control for nonlinear process,dynamic PCA and dynamic PLS,and on -line quality control by infer-ential models,Industrial applications of MSPM&C to several typical chemical processes ,such as chemical reactor,distillation column,polymeriztion process ,petroleum refinery units,are summarized,Finally,some concluding remarks and future considerations are made.

  7. Physical-chemical hydrodynamics of the processes of sorption-membrane technology of LRW treatment

    Energy Technology Data Exchange (ETDEWEB)

    Alexander D Efanov; Pyotr N Martynov; Yuri D Boltoev; Ivan V Yagodkin; Nataliya G Bogdanovich; Sergey S Skvortsov; Alexander R Sokolovsky; Elena V Ignatova; Gennady V Grigoriev; Vitaly V Grigorov [Institute for Physics and Power Engineering named after A.I. Leypunsky Bondarenko sq. 1, 249033, Obninsk, Kaluga region (Russian Federation)


    Full text of publication follows: Liquid radioactive NPP waste is generated, when radioactive water is collected and mixed from various routine and non-routine process measures being performed in accordance with the operating regulations of reactor units with water coolant. The main sources of LRW are the primary loop water coolant, deactivation, regeneration and rinse waters, waste laundry and showers water producing the initial averaged LRW as well as spent fuel element cooling pond water and water of biological protection tanks. LRW handling can be substantially advanced, in particular, through development and introduction of the non-conventional sorption-membrane technology of NPP LRW treatment, being developed at SSC RF IPPE. This technology makes use of natural inorganic sorbents (tripolite, zeolite, ion-exchange materials) and filtering nano-structured metallic and ceramic membranes (titanium, zirconium, chromium and other or their oxides, carbides and nitrides). The efficiency of the sorption membrane technology is associated just with the investigation of the physical-chemical processes of sorption, coagulation and sedimentation under the conditions of forced and free convection occurring in LRW. Besides, it is necessary to take into consideration that the hydrodynamics of the flows of LRW being decontaminated by membrane filtration depends on the structure and composition of the porous composition pare 'nano-structured membrane-substrate'. Neglecting these peculiarities can result in drastic reduction of the time of stable LRW filtration, reduction of the operability resource of filtration systems or in quick mechanical destruction of porous materials. The paper presents the investigation results on: -the effect of the convection flows being generated by air bubbling or LRW stirring by agitator on the static sorption conditions (sorption time, medium pH, sorbent dispersity, sorbent concentration in liquid medium) and on the efficiency of

  8. A systematic synthesis and design methodology to achieve process intensification in (bio) chemical processes

    DEFF Research Database (Denmark)

    Lutze, Philip; Woodley, John; Gani, Rafiqul

    be intensified for biggest improvement, process synthesis and design tools are applied which results in the development of a systematic methodology incorporating PI. In order to manage the complexity of PI process options in which a feasible and optimal process solution may exist, the solution procedure......Process intensification (PI) has the potential to improve existing processes or create new process options which are needed in order to produce products using more sustainable methods. Potentially, PI creates an enormous number of process options. For identification where and how the process should...... of this methodology is based on the decomposition approach. Starting from an analysis of existing processes, this methodology generates a set of feasible process options and reduces their number through several screening steps until from the remaining feasible options, the optimal is found. In this presentation...

  9. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, Matthew S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Luther, Michelle C. [Auburn Univ., AL (United States); Brandenburg, Clayton H. [Univ.of South Carolina, Columbia, SC (United States)


    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammable gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.

  10. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the defense waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, Matthew S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Luther, Michelle C. [Auburn Univ., AL (United States); Brandenburg, Clayton H. [Univ.of South Carolina, Columbia, SC (United States)


    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammable gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.

  11. Chemical input and I-V output: stepwise chemical information processing in dye-sensitized solar cells. (United States)

    Satoh, Norifusa; Han, Liyuan


    As a complex system, a dye-sensitized solar cell (DSC) exhibits emergent photovoltaics not obvious from the properties of the individual components. The chemical input of 4-tert-butylpyridine (TBP) into DSC improves the open circuit voltage (V(oc)) and reduces the short circuit current (I(sc)) in I-V output through multiple interactions with the components, yet it has been difficult to distinguish the multiple interactions and correlate the interactions with the influences on I-V output due to the complexity of the system. To deal with the multiple interactions, we have adapted a conceptual framework and methodology from coordination chemistry. First, we titrated the photovoltaic interface and electrolyte with TBP to identify the stepwise chemical interaction processes. An isopotential point observed in I-V output indicates that most of the inputted chemicals interact with the electrolyte. Cyclic voltammetric titration of the electrolyte demonstrates asymmetric redox peaks and two different isopotential points, indicating that the two-step coordination-decoordination process inhibits the reduction current of the electrolyte. Second, we set an interaction model bridging the hierarchical gaps between the multiple interactions and the I-V output to address the influences on outputs from the amount of the inputs. From the viewpoint of the interaction model and interactions observed, we are able to comprehend the processes of the complex system and suggest a direction to improve V(oc) without sacrificing I(sc) in DSCs. We conclude that the conceptual framework and methodology adapted from coordination chemistry is beneficial to enhance the emergent outputs of complex systems.

  12. Decontamination Processes for Restorative Operations and as a Precursor to Decommissioning: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J. L.; Divine, J. R.


    Pacific Northwest Laboratory (PNL) conducted an comprehensive literature review of actual reactor decontamination processes that are currently available. In general, any decontamination process should be based on the following criteria: effectiveness, efficiency, safety, and waste production. The information that was collected and analyzed has been divided into three major categories of decontamination: chemical, mechanical, and electrochemical. Chemical methods can be further classified as either low-concentration, singlestep processes or high-concentration, single- or multistep processes. Numerous chemical decontamination methods are detailed. Mechanical decontamination methods are usually restricted to the removal of a contaminated surface layer, whlch limits their versatility; several mechanical decontamination methods are described. Electrochemical decontamination. is both fast and easily controlled, and numerous processes that have been used in industry for many years are discussed. Information obtained from this work is tabulated in Appendix A for easy access, and a bibliography and a glossary have been provided.

  13. Downstream process synthesis for biochemical production of butanol, ethanol, and acetone from grains: generation of optimal and near-optimal flowsheets with conventional operating units. (United States)

    Liu, Jiahong; Fan, L T; Seib, Paul; Friedler, Ferenc; Bertok, Botond


    Manufacturing butanol, ethanol, and acetone through grain fermentation has been attracting increasing research interest. In the production of these chemicals from fermentation, the cost of product recovery constitutes the major portion of the total production cost. Developing cost-effective flowsheets for the downstream processing is, therefore, crucial to enhancing the economic viability of this manufacturing method. The present work is concerned with the synthesis of such a process that minimizes the cost of the downstream processing. At the outset, a wide variety of processing equipment and unit operations, i.e., operating units, is selected for possible inclusion in the process. Subsequently, the exactly defined superstructure with minimal complexity, termed maximal structure, is constructed from these operating units with the rigorous and highly efficient graph-theoretic method for process synthesis based on process graphs (P-graphs). Finally, the optimal and near-optimal flowsheets in terms of cost are identified.

  14. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian L.


    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  15. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions. (United States)

    Zhang, Yang; Piccard, Sarah; Zhou, Wen


    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus.

  16. A process synthesis-intensification framework for the development of sustainable membrane-based operations

    DEFF Research Database (Denmark)

    Babi, Deenesh Kavi; Lutze, Philip; Woodley, John


    In this paper a multi-level, multi-scale framework for process synthesis-intensification that aims to make the process more sustainable than a base-case, which may represent a new process or an existing process, is presented. At the first level (operation-scale) a conceptual base case design...... larger-scale. Those alternatives that are able to address the identified hot-spots therefore give innovative and more sustainable process designs that otherwise could not be found from the larger-scales. In this paper, membrane-based operations identified through this framework are highlighted in terms...... more sustainable process design alternatives....

  17. Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes. (United States)

    Lozano, Pedro; Bernal, Juana M; Nieto, Susana; Gomez, Celia; Garcia-Verdugo, Eduardo; Luis, Santiago V


    The greenness of chemical processes turns around two main axes: the selectivity of catalytic transformations, and the separation of pure products. The transfer of the exquisite catalytic efficiency shown by enzymes in nature to chemical processes is an important challenge. By using appropriate reaction systems, the combination of biopolymers with supercritical carbon dioxide (scCO2) and ionic liquids (ILs) resulted in synergetic and outstanding platforms for developing (multi)catalytic green chemical processes, even under flow conditions. The stabilization of biocatalysts, together with the design of straightforward approaches for separation of pure products including the full recovery and reuse of enzymes/ILs systems, are essential elements for developing clean chemical processes. By understanding structure-function relationships of biopolymers in ILs, as well as for ILs themselves (e.g. sponge-like ionic liquids, SLILs; supported ionic liquids-like phases, SILLPs, etc.), several integral green chemical processes of (bio)catalytic transformation and pure product separation are pointed out (e.g. the biocatalytic production of biodiesel in SLILs, etc.). Other developments based on DNA/ILs systems, as pathfinder studies for further technological applications in the near future, are also considered.

  18. An intelligent factory-wide optimal operation system for continuous production process (United States)

    Ding, Jinliang; Chai, Tianyou; Wang, Hongfeng; Wang, Junwei; Zheng, Xiuping


    In this study, a novel intelligent factory-wide operation system for a continuous production process is designed to optimise the entire production process, which consists of multiple units; furthermore, this system is developed using process operational data to avoid the complexity of mathematical modelling of the continuous production process. The data-driven approach aims to specify the structure of the optimal operation system; in particular, the operational data of the process are used to formulate each part of the system. In this context, the domain knowledge of process engineers is utilised, and a closed-loop dynamic optimisation strategy, which combines feedback, performance prediction, feed-forward, and dynamic tuning schemes into a framework, is employed. The effectiveness of the proposed system has been verified using industrial experimental results.

  19. Development of a Procedure to Apply Detailed Chemical Kinetic Mechanisms to CFD Simulations as Post Processing

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Jensen, Anker;


    It is desired to make detailed chemical kinetic mechanisms applicable to the complex geometries of practical combustion devices simulated with computational fluid dynamics tools. This work presents a novel general approach to combining computational fluid dynamics and a detailed chemical kinetic...... mechanism. It involves post-processing of data extracted from computational fluid dynamics simulations. Application of this approach successfully describes combustion chemistry in a standard swirl burner, the so-called Harwell furnace. Nevertheless, it needs validation against more complex combustion models...

  20. Optimal design of sustainable chemical processes via a combined simulation-optimization approach


    Brunet Solé, Robert


    The society is every day more conscious about the scarce of resources, the global economy, and the environmental changes. Hence, chemical companies have the necessity to be adapted and develop more sustainable processes. There is a clear demanding to the scientific community to develop systematic tools to achieve reductions in the production costs as well as the associated environmental impact in order to develop decision support tools for the design of chemical plants. This thesis introdu...

  1. Spectroscopic analyses of chemical adaptation processes within microalgal biomass in response to changing environments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Frank, E-mail:; White, Lauren


    Highlights: • Microalgae transform large quantities of inorganics into biomass. • Microalgae interact with their growing environment and adapt their chemical composition. • Sequestration capabilities are dependent on cells’ chemical environments. • We develop a chemometric hard-modeling to describe these chemical adaptation dynamics. • This methodology will enable studies of microalgal compound sequestration. - Abstract: Via photosynthesis, marine phytoplankton transforms large quantities of inorganic compounds into biomass. This has considerable environmental impacts as microalgae contribute for instance to counter-balancing anthropogenic releases of the greenhouse gas CO{sub 2}. On the other hand, high concentrations of nitrogen compounds in an ecosystem can lead to harmful algae blooms. In previous investigations it was found that the chemical composition of microalgal biomass is strongly dependent on the nutrient availability. Therefore, it is expected that algae’s sequestration capabilities and productivity are also determined by the cells’ chemical environments. For investigating this hypothesis, novel analytical methodologies are required which are capable of monitoring live cells exposed to chemically shifting environments followed by chemometric modeling of their chemical adaptation dynamics. FTIR-ATR experiments have been developed for acquiring spectroscopic time series of live Dunaliella parva cultures adapting to different nutrient situations. Comparing experimental data from acclimated cultures to those exposed to a chemically shifted nutrient situation reveals insights in which analyte groups participate in modifications of microalgal biomass and on what time scales. For a chemometric description of these processes, a data model has been deduced which explains the chemical adaptation dynamics explicitly rather than empirically. First results show that this approach is feasible and derives information about the chemical biomass

  2. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Mejía, J.E.; Skladanka, J.; Hilger-Delgado, A.; Klíma, M.; Knot, P.; Doležal, P.; Horky, P.


    This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1) without additives, used as a control; 2) with bacterial inoculants; and 3) with chemical preservatives. The results indicated that the year factor (2012-2013) influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA) and acetic acid (AA) in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2%) in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process. (Author)

  3. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Directory of Open Access Journals (Sweden)

    Jhonny E. Alba-Mejía


    Full Text Available This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1 without additives, used as a control; 2 with bacterial inoculants; and 3 with chemical preservatives. The results indicated that the year factor (2012-2013 influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA and acetic acid (AA in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2% in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process.

  4. Integrated Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, T. Alan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jamison, Timothy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    The Massachusetts Institute of Technology (MIT) and Siemens Corporations (SCR) are developing new chemical synthesis processes for commodity chemicals from CO2. The process is assessed as a novel chemical sequestration technology that utilizes CO2 from dilute gas streams generated at industrial carbon emitters as a raw material to produce useful commodity chemicals. Work at Massachusetts Institute of Technology (MIT) commenced on October 1st, 2010, and finished on September 30th, 2013. During this period, we have investigated and accomplished five objectives that mainly focused on converting CO2 into high-value chemicals: 1) Electrochemical assessment of catalytic transformation of CO2 and epoxides to cyclic carbonates; 2) Investigation of organocatalytic routes to convert CO2 and epoxide to cyclic carbonates; 3) Investigation of CO2 Capture and conversion using simple olefins under continuous flow; 4) Microwave assisted synthesis of cyclic carbonates from olefins using sodium bicarbonates in a green pathway; 5) Life cycle analyses of integrated chemical sequestration process. In this final report, we will describe the detailed study performed during the three year period and findings and conclusions drawn from our research.

  5. Soft X-ray imaging and spectromicroscopy: new insights in chemical state and morphology of the key components in operating fuel-cells. (United States)

    Bozzini, Benedetto; Abyaneh, Majid Kazemian; Amati, Matteo; Gianoncelli, Alessandra; Gregoratti, Luca; Kaulich, Burkhard; Kiskinova, Maya


    Fuel cells are one of the most appealing environmentally friendly devices for the effective conversion of chemical energy into electricity and heat, but still there are key barriers to their broad commercialization. In addition to efficiency, a major challenge of fuel-cell technology is the durability of the key components (interconnects, electrodes, and electrolytes) that can be subject to corrosion or undesired morphology and chemical changes occurring under operating conditions. The complementary capabilities of synchrotron-based soft X-ray microscopes in terms of imaging, spectroscopy, spatial and time resolution, and variable probing depths are opening unique opportunities to shed light on the multiple processes occurring in these complex systems at microscopic length scales. This type of information is prerequisite for understanding and controlling the performance and durability of such devices. This paper reviews the most recent efforts in the implementation of these methods for exploring the evolving structure and chemical composition of some key fuel cell components. Recent achievements are illustrated by selected results obtained with simplified versions of proton-exchange fuel-cells (PEFC) and solid-oxide fuel-cells (SOFC), which allow in situ monitoring of the redox reactions resulting in: 1) undesired deposits at interconnects and electrodes (PEFC); 2) material interactions at the electrode-electrolyte interface (PEFC); 3) release of corrosion products to the electrolyte phase (PEFC, and 4) mass-transport processes and structural changes occurring at the high operation temperatures of SOFC and promoted by the polarization.

  6. Determination of reactor operation for the microbial hydroxylation of toluene in a two-liquid phase process

    DEFF Research Database (Denmark)

    Collins, AM; Woodley, John; Liddell, JM


    Application of biotransformations to the synthesis of industrial chemicals is in part limited by a number of process challenges. We discuss the conversion of toxic, poorly water-soluble organic substrates by whole cells, using as an illustrative example the specific hydroxylation of toluene...... to toluene cis-glycol by Pseudomonas putida UV4. Toxic effects may be eliminated through the introduction of tetradecane, to partition toluene away from the biocatalyst, to give product concentrations of 30-60 g L(-1), in a two-liquid-phase reactor. The operational limits of this system have been...

  7. Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties


    Carrasco Alonso, Félix Ángel; Pagès Figueras, Pere; Gamez Pérez, José; Santana Pérez, Orlando Onofre; Maspoch Rulduà, Mª Lluïsa


    The processing of poly(lactic acid) (injection and extrusion/injection) as well as annealing of processed materials were studied in order to analyze the variation of its chemical structure, thermal degradation and mechanical properties. Processing of PLA was responsible for a decrease in molecular weight, as determined by GPC, due to chain scission. The degree of crystallinity was evaluated by means of differential scanning calorimetry and X-ray diffraction. It was found that mech...

  8. Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes. (United States)

    Bagal, Manisha V; Gogate, Parag R


    In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes.

  9. The Computer-Aided Analytic Process Model. Operations Handbook for the APM (Analytic Process Model) Demonstration Package. Appendix (United States)


    The Analytic Process Model for System Design and Measurement: A Computer-Aided Tool for Analyzing Training Systems and Other Human-Machine Systems. A...separate companion volume--The Computer-Aided Analytic Process Model : Operations Handbook for the APM Demonstration Package is also available under

  10. Liquid phase methanol LaPorte Process Development Unit: Modification, operation, and support studies

    Energy Technology Data Exchange (ETDEWEB)


    The LPMEOH process was conceived and patented by Chem Systems Inc. in 1975. Initial research and studies on the process focused on two distinct modes of operation. The first was a liquid fluidized mode with relatively large catalyst pellets suspended in a fluidizing liquid, and the second was an entrained (slurry) mode with fine catalyst particles slurried in an inert liquid. The development of both operating modes progressed in parallel from bench scale reactors, through an intermediate scale lab PDU, and then to the LaPorte PDU in 1984. The slurry mode of operation was ultimately chosen as the operating mode of choice due to its superior performance.

  11. A systematic synthesis and design methodology to achieve process intensification in (bio) chemical processes

    DEFF Research Database (Denmark)

    Lutze, Philip; Roman Martinez, Alicia; Woodley, John


    Process intensification (PI) has the potential to improve existing processes or create new process options, which are needed in order to produce products using more sustainable methods. In principle, an enormous number of process options can be generated but where and how the process should...... be intensified for the biggest improvement is difficult to identify. In this paper the development of a systematic computer aided model-based synthesis and design methodology incorporating PI is presented. In order to manage the complexities involved, the methodology employs a decomposition-based solution...... approach. Starting from an analysis of existing processes, the methodology generates a set of process options and reduces their number through several screening steps until from the remaining options, the optimal is found. The application of the methodology is highlighted through a case study involving...

  12. Method of operating a thermal engine powered by a chemical reaction (United States)

    Ross, J.; Escher, C.


    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  13. Method of operating a thermal engine powered by a chemical reaction (United States)

    Ross, John; Escher, Claus


    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  14. New Coke Oven Facilities at Linhuan Coal Chemical Company Adopt LyondellBasell's Aromatics Extraction Process

    Institute of Scientific and Technical Information of China (English)


    @@ The new 80 kt/a coal chemical unit at the Linhuan Coal Chemical Company in Anhui province will adopt the aro-matics extraction process licensed by LyondellBasell Company. This unit is expected to come on stream by 2009.This technology is suitable for manufacture of high-purity aromatics with broad adaptability and large scale produc-tion capability. In the previous year LyondellBasell was awarded six patents on aromatics extraction process. It is told that the achievements to be adopted by the Linhuan Coal Chemical Company are partly a series of aromatics extrac-tion processes for recovery of coke oven light oil performed by LyondellBasell.


    CERN Multimedia

    Medical Service


    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or Chemistry Service : TIS-GS-GC : 78546

  16. Computer-Aided Model Based Analysis for Design and Operation of a Copolymerization Process

    DEFF Research Database (Denmark)

    Lopez-Arenas, Maria Teresa; Sales-Cruz, Alfonso Mauricio; Gani, Rafiqul


    The advances in computer science and computational algorithms for process modelling, process simulation, numerical methods and design/synthesis algorithms, makes it advantageous and helpful to employ computer-aided modelling systems and tools for integrated process analysis. This is illustrated...... through the study of a copolymerization process, where operational problems due to their complex nonlinear behaviour are usually encountered, indicating thereby, the need for the development of an appropriate process model that can describe the dynamic behaviour over the complete range of conversion....... This will allow analysis of the process behaviour, contribute to a better understanding of the polymerization process, help to avoid unsafe conditions of operation, and to develop operational and optimizing control strategies. In this work, through a computer-aided modeling system ICAS-MoT, two first...

  17. Welcome to Processes—A New Open Access Journal on Chemical and Biological Process Technology

    Directory of Open Access Journals (Sweden)

    Michael A. Henson


    Full Text Available As the result of remarkable technological progress, this past decade has witnessed considerable advances in our ability to manipulate natural and engineered systems, particularly at the molecular level. These advancements offer the potential to revolutionize our world through the development of novel soft and hard materials and the construction of new cellular platforms for chemical and pharmaceutical synthesis. For these technologies to truly impact society, the development of process technology that will enable effective large-scale production is essential. Improved processes are also needed for more established technologies in chemical and biochemical manufacturing, as these industries face ever increasing competitive pressure that mandates continuous improvement. [...

  18. Compensating Operator and Weak Convergence of Semi-Markov Process to the Diffusion Process without Balance Condition

    Directory of Open Access Journals (Sweden)

    Igor V. Malyk


    Full Text Available Weak convergence of semi-Markov processes in the diffusive approximation scheme is studied in the paper. This problem is not new and it is studied in many papers, using convergence of random processes. Unlike other studies, we used in this paper concept of the compensating operator. It enables getting sufficient conditions of weak convergence under the conditions on the local characteristics of output semi-Markov process.

  19. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith


    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  20. A Model-Based Methodology for Integrated Design and Operation of Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted


    Process intensification is a new approach that has the potential to improve existing processes as well as new designs of processes to achieve more profitable and sustainable production. However, many issues with respect to their implementation and operation is not clear; for example, the question...

  1. 40 CFR Table 1 of Subpart Aaaaaaa... - Emission Limits for Asphalt Processing (Refining) Operations (United States)


    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Emission Limits for Asphalt Processing... Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information... of Part 63—Emission Limits for Asphalt Processing (Refining) Operations For * * * You must meet...

  2. Effect of Operating Parameters and Chemical Additives on Crystal Habit and Specific Cake Resistance of Zinc Hydroxide Precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Alwin, Jennifer Louise [New Mexico State Univ., Las Cruces, NM (United States)


    The effect of process parameters and chemical additives on the specific cake resistance of zinc hydroxide precipitates was investigated. The ability of a slurry to be filtered is dependent upon the particle habit of the solid and the particle habit is influenced by certain process variables. The process variables studied include neutralization temperature, agitation type, and alkalinity source used for neutralization. Several commercially available chemical additives advertised to aid in solid/liquid separation were also examined in conjunction with hydroxide precipitation. A statistical analysis revealed that the neutralization temperature and the source of alkalinity were statistically significant in influencing the specific cake resistance of zinc hydroxide precipitates in this study. The type of agitation did not significantly effect the specific cake resistance of zinc hydroxide precipitates. The use of chemical additives in conjunction with hydroxide precipitation had a favorable effect on the filterability. The morphology of the hydroxide precipitates was analyzed using scanning electron microscopy.

  3. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, L.; Kaminski, M.; Bradley, C.; Buchholz, B.A.; Aase, S.B.; Tuazon, H.E.; Vandegrift, G.F. [Argonne National Lab., IL (United States); Landsberger, S. [Univ. of Illinois, Urbana, IL (United States)


    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration.

  4. Modelling Chemical Kinetics of Soybean Oil Transesterification Process for Biodiesel Production: An Analysis of Molar Ratio between Alcohol and Soybean Oil Temperature Changes on the Process Conversion Rate

    Directory of Open Access Journals (Sweden)

    Maicon Tait


    Full Text Available A mathematical model describing chemical kinetics of transesterification of soybean oil for biodiesel production has been developed. The model is based on the reverse mechanism of transesterification reactions and describes dynamics concentration changes of triglycerides, diglycerides, monoglycerides, biodiesel, and glycerol production. Reaction rate constants were written in the Arrhenius form. An analysis of key process variables such as temperature and molar ratio soybean oil- alcohol using response surface analysis was performed to achieve the maximum soybean conversion rate to biodiesel. The predictive power of the developed model was checked for the very wide range of operational conditions and parameters values by fitting different experimental results for homogeneous catalytic and non-catalytic processes published in the literature. A very good correlation between model simulations and experimental data was observed.

  5. A General framework for the Synthesis and Operational Design of Batch Processes

    DEFF Research Database (Denmark)

    The objective of this paper is to present a general problem formulation and a general methodlogy for the synthesis of batch operations and the operational design of individual batch processes, such as mixing, reaction and separation. The general methodology described supplies the batch routes...

  6. A general framework for the synthesis and operational design of batch processes

    DEFF Research Database (Denmark)

    Papaeconomou, Eirini; Gani, Rafiqul; Jørgensen, Sten Bay


    The objective of this paper is to present a general problem formulation and a general methodology for the synthesis of batch operations and the operational design of individual batch processes, such as mixing, reaction and separation. The general methodology described supplies the batch routes...

  7. 76 FR 54528 - Standard Operating Procedures (SOP) of the Aircraft Certification Service (AIR) Process for the... (United States)


    ... Federal Aviation Administration Standard Operating Procedures (SOP) of the Aircraft Certification Service...) standard operating procedure (SOP) describing the process used to sequence certification projects that are... before October 3, 2011. ADDRESSES: Send all comments on the SOP : AIR-100-001; Standard...

  8. Extending In Vitro Conditioning in "Aplysia" to Analyze Operant and Classical Processes in the Same Preparation (United States)

    Brembs, Bjorn; Baxter, Douglas A.; Byrne, John H.


    Operant and classical conditioning are major processes shaping behavioral responses in all animals. Although the understanding of the mechanisms of classical conditioning has expanded significantly, the understanding of the mechanisms of operant conditioning is more limited. Recent developments in "Aplysia" are helping to narrow the gap in the…

  9. The effect of wash cleaning and demagnetization process on the fly ash physico-chemical properties

    Directory of Open Access Journals (Sweden)

    A. Baliński


    Full Text Available Problems related in this study concern the possibility of improving the physico-chemical properties of fly ash used as a base granular material in moulding mixtures. The investigations were carried out mainly to evaluate the process of the fly ash modification performed in order to stabilize its mineralogical and chemical composition. Changes in chemical composition, specific surface and helium density of fly ash after the process of its wash cleaning and demagnetization were examined. The analysis of the data has proved that the process of wash cleaning considerably reduces the content of sodium and potassium. Calcium and magnesium are washed out, too. The wash cleaning process of fly ash reduces also its true density. This fact can be due to the washing out of illite as well as some fractions of haematite (the grains weakly bonded to the glassy phase. The process of demagnetization allows removing about 25.7% of the magnetic phase calculated in terms of Fe2O3. The process of demagnetization is accompanied by a decrease in the content of aluminium, sodium, potassium and calcium, and a reduction in the size of the specific surface by over one half. The possible processes of transformation have also been discussed.

  10. Activities of the Institute of Chemical Processing of Coal at Zabrze

    Energy Technology Data Exchange (ETDEWEB)

    Dreszer, K.


    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  11. Administrative and operational strategies of the coffee processing industry department of Caldas (Colombia

    Directory of Open Access Journals (Sweden)

    Felix Octavio Diaz Arango


    domestic and international markets. Furthermore, it was concluded that quality management depends on operating performance and productivity when it comes to increasing the competitiveness of the coffee processing industries in the Department of Caldas (Colombia.

  12. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    Energy Technology Data Exchange (ETDEWEB)


    The primary focus of this Process Development Unit operating program was to prepare for a confident move to the next scale of operation with a simplified and optimized process. The main purpose of these runs was the evaluation of the alternate commercial catalyst (F21/0E75-43) that had been identified in the laboratory under a different subtask of the program. If the catalyst proved superior to the previous catalyst, then the evaluation run would be continued into a 120-day life run. Also, minor changes were made to the Process Development Unit system to improve operations and reliability. The damaged reactor demister from a previous run was replaced, and a new demister was installed in the intermediate V/L separator. The internal heat exchanger was equipped with an expansion loop to relieve thermal stresses so operation at higher catalyst loadings and gas velocities would be possible. These aggressive conditions are important for improving process economics. (VC)

  13. Integrating Data Sources for Process Sustainability Assessments (presentation) (United States)

    To perform a chemical process sustainability assessment requires significant data about chemicals, process design specifications, and operating conditions. The required information includes the identity of the chemicals used, the quantities of the chemicals within the context of ...

  14. Model-Based Integrated Process Design and Controller Design of Chemical Processes

    DEFF Research Database (Denmark)

    Abd Hamid, Mohd Kamaruddin Bin

    are calculated in Stage 2. Using model analysis, controllability issues are incorporated in Stage 3 to calculate the process sensitivity and to pair the identified manipulated variables with the corresponding controlled variables. From a controller design point of view, at targets defined in Stage 1...... ensure the optimal solution not only for the process design but also for the controller design. From a process design point of view at these targets, the optimal design objectives can be obtained. Then by using the reverse solution approach, values of design-process variables that match those targets......, control and economic criteria. From an optimization point of view, solution targets at the maximum point of the attainable region and driving force diagrams are shown the higher value of the objective function, hence the optimal solution for the IPDC problem is verified. While other optimization methods...

  15. Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bouttemy, M.; Tran-Van, P. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Gerard, I., E-mail: [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Hildebrandt, T.; Causier, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Pelouard, J.L.; Dagher, G. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Jehl, Z.; Naghavi, N. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Voorwinden, G.; Dimmler, B. [Wuerth Elektronik Research GmbH, Industriestr. 4, 70565 Stuttgart (Germany); Powalla, M. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung (ZSW), Industriestr. 6, 70565 Stuttgart (Germany); Guillemoles, J.F. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Lincot, D. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Etcheberry, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France)


    CIGSe absorber was etched in HBr/Br{sub 2}/H{sub 2}O to prepare defined thicknesses of CIGSe between 2.7 and 0.5 {mu}m. We established a reproducible method of reducing the absorber thickness via chemical etching. We determine the dissolution kinetics rate of CIGSe using trace analysis by graphite furnace atomic absorption spectrometry of Ga and Cu. The roughness of the etching surface decreases during the first 500 nm of the etching to a steady state value of the root-mean-square roughness near 50 nm. X-ray photoelectron spectroscopy analyses demonstrate an etching process occurring with a constant chemical composition of the treated surface acidic bromine solutions provide a controlled chemical thinning process resulting in an almost flat surface and a very low superficial Se{sup 0} enrichment.

  16. Assembly, start and operation of an activated sludge reactor for the industrial effluents treatment: physico chemical and biological parameters

    Directory of Open Access Journals (Sweden)

    Márcia Regina Assalin


    Full Text Available Although of the immense available bibliography regarding the activated sludge process, little it is found in relation to the basic procedure to be adopted to implant, to activate and to monitor a reactor of activated sludge in laboratory scales. This article describes the assembly, departure and operation of an activated sludge system, operating in continuous process, at a laboratory scale, to study effluents treatments, using as example, Kraft E1 pulp mill effluent. Factors as biodegradability of the effluent to be treated, stationary state of the reactor, conventional operation parameters as physical chemistry and biological parameters are presented.



    A.Thillaivanan,; P. Asokan,; K.N.Srinivasan,; Saravanan, R.


    In this paper the complexity of electrical discharge machining process which is very difficult to determine optimal cutting parameters for improving cutting performance has been reported. Optimization of operating parameters is an important step in machining, particularly for operating unconventional machiningprocedure like EDM. A suitable selection of machining parameters for the electrical discharge machining process relies heavily on the operators’ technologies and experience because of th...

  18. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Charles; Wilson, Robert


    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of

  19. Accident Management & Risk-Based Compliance With 40 CFR 68 for Chemical Process Facilities

    Energy Technology Data Exchange (ETDEWEB)

    O`Kula, K.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Taylor, R.P. Jr.; Ashbaugh, S.G. [Innovative Technology Solutions, Albuquerque, NM (United States)


    A risk-based logic model is suggested as an appropriate basis for better predicting accident progression and ensuing source terms to the environment from process upset conditions in complex chemical process facilities. Under emergency conditions, decision-makers may use the Accident Progression Event Tree approach to identify the best countermeasure for minimizing deleterious consequences to receptor groups before the atmospheric release has initiated. It is concluded that the chemical process industry may use this methodology as a supplemental information provider to better comply with the Environmental Protection Agency`s proposed 40 CFR 68 Risk Management Program rule. An illustration using a benzene-nitric acid potential interaction demonstrates the value of the logic process. The identification of worst-case releases and planning for emergency response are improved through these methods, at minimum. It also provides a systematic basis for prioritizing facility modifications to correct vulnerabilities.

  20. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  1. Prediction of chemical, physical and sensory data from process parameters for frozen cod using multivariate analysis

    DEFF Research Database (Denmark)

    Bechmann, Iben Ellegaard; Jensen, H.S.; Bøknæs, Niels


    Physical, chemical and sensory quality parameters were determined for 115 cod (Gadus morhua) samples stored under varying frozen storage conditions. Five different process parameters (period of frozen storage, frozen storage. temperature, place of catch, season for catching and state of rigor) were...... varied systematically at two levels. The data obtained were evaluated using the multivariate methods, principal component analysis (PCA) and partial least squares (PLS) regression. The PCA models were used to identify which process parameters were actually most important for the quality of the frozen cod....... PLS models that were able to predict the physical, chemical and sensory quality parameters from the process parameters of the frozen raw material were generated. The prediction abilities of the PLS models were good enough to give reasonable results even when the process parameters were characterised...

  2. Development of the software for energy savings in chemical processes. 3

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.C.; Kim, K.I.; Park, J.K. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)


    Chemical industry is the most energy consuming industry in the nation and the thermal separation processes such as distillation and drying are the major energy consuming processes. Especially, distillation processes consume about 40% of energy in chemical industry. Special interest in energy saving in thermal separation processes is necessary and a software to select appropriate technology is required. On the first year term of this project, energy saving technology was composed. A program for selecting adequate technology was developed based on the algorithm on the second year term of this project. On this year term of the project, soft-wares for optimizing thermal insulation thickness and optimal design of multi-effect mechanical vapor re-compression evaporator were developed. Also, methods to calculate efficiency of distillation feed preheater and optimize feed preheater were introduced. (author). 16 refs., 29 figs., 2 tabs.

  3. Towards the next generation of solid oxide fuel cells operating below 600 °c with chemically stable proton-conducting electrolytes. (United States)

    Fabbri, Emiliana; Bi, Lei; Pergolesi, Daniele; Traversa, Enrico


    The need for reducing the solid oxide fuel cell (SOFC) operating temperature below 600 °C is imposed by cost reduction, which is essential for widespread SOFC use, but might also disclose new applications. To this aim, high-temperature proton-conducting (HTPC) oxides have gained widespread interest as electrolyte materials alternative to oxygen-ion conductors. This Progress Report describes recent developments in electrolyte, anode, and cathode materials for protonic SOFCs, addressing the issue of chemical stability, processability, and good power performance below 600 °C. Different fabrication methods are reported for anode-supported SOFCs, obtained using state-of-the-art, chemically stable proton-conducting electrolyte films. Recent findings show significant improvements in the power density output of cells based on doped barium zirconate electrolytes, pointing out towards the feasibility of the next generation of protonic SOFCs, including a good potential for the development of miniaturized SOFCs as portable power supplies.

  4. Understanding the impacts of allocation approaches during process-based life cycle assessment of water treatment chemicals. (United States)

    Alvarez-Gaitan, Juan P; Peters, Gregory M; Short, Michael D; Schulz, Matthias; Moore, Stephen


    Chemicals are an important component of advanced water treatment operations not only in terms of economics but also from an environmental standpoint. Tools such as life cycle assessment (LCA) are useful for estimating the environmental impacts of water treatment operations. At the same time, LCA analysts must manage several fundamental and as yet unresolved methodological challenges, one of which is the question of how best to "allocate" environmental burdens in multifunctional processes. Using water treatment chemicals as a case study example, this article aims to quantify the variability in greenhouse gas emissions estimates stemming from methodological choices made in respect of allocation during LCA. The chemicals investigated and reported here are those most important to coagulation and disinfection processes, and the outcomes are illustrated on the basis of treating 1000 ML of noncoagulated and nondisinfected water. Recent process and economic data for the production of these chemicals is used and methodological alternatives for solving the multifunctionality problem, including system expansion and mass, exergy, and economic allocation, are applied to data from chlor-alkali plants. In addition, Monte Carlo simulation is included to provide a comprehensive picture of the robustness of economic allocation results to changes in the market price of these industrial commodities. For disinfection, results demonstrate that chlorine gas has a lower global warming potential (GWP) than sodium hypochlorite regardless of the technique used to solve allocation issues. For coagulation, when mass or economic allocation is used to solve the multifunctionality problem in the chlor-alkali facility, ferric chloride was found to have a higher GWP than aluminum sulfate and a slightly lower burden where system expansion or exergy allocation are applied instead. Monte Carlo results demonstrate that when economic allocation is used, GWP results were relatively robust and resilient

  5. An information theory-based approach to modeling the information processing of NPP operators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyun; Seong, Poong Hyun [Korea Advanced Institute, Taejon (Korea, Republic of)


    This paper proposes a quantitative approach to modeling the information processing of NPP operators. The aim of this work is to derive the amount of the information processed during a certain control task. The focus will be on i) developing a model for information processing of NPP operators and ii) quantifying the model. To resolve the problems of the previous approaches based on the information theory, i.e. the problems of single channel approaches, we primarily develop the information processing model having multiple stages, which contains information flows. Then the uncertainty of the information is quantified using the Conant's model, a kind of information theory.

  6. Chemical trimming overcoat: an enhancing composition and process for 193nm lithography (United States)

    Liu, Cong; Rowell, Kevin; Joesten, Lori; Baranowski, Paul; Kaur, Irvinder; Huang, Wanyi; Leonard, JoAnne; Jeong, Hae-Mi; Im, Kwang-Hwyi; Estelle, Tom; Cutler, Charlotte; Pohlers, Gerd; Yin, Wenyan; Fallon, Patricia; Li, Mingqi; Jeon, Hyun; Xu, Cheng Bai; Trefonas, Pete


    As the critical dimension of devices is approaching the resolution limit of 193nm photo lithography, multiple patterning processes have been developed to print smaller CD and pitch. Multiple patterning and other advanced lithographic processes often require the formation of isolated features such as lines or posts by direct lithographic printing. The formation of isolated features with an acceptable process window, however, can pose a challenge as a result of poor aerial image contrast at defocus. Herein we report a novel Chemical Trimming Overcoat (CTO) as an extra step after lithography that allows us to achieve smaller feature size and better process window.

  7. Environmentally Friendly Propylene/Propane Recovery Process Increases Economic Benefits to Daqing Chemical Research Center

    Institute of Scientific and Technical Information of China (English)


    @@ "The process for recovering propylene/propane from Oxo-synthesis purge gas" performed by Daqing Chemical Re-search Center has been granted the Heilongjiang Governor's Special Award. This technology since its application at Daqing Petrochemical Company starting at the end of 2001 has contributed to effective materials utilization and envi-ronmental protection.

  8. Teaching Population Balances for Chemical Engineering Students: Application to Granulation Processes (United States)

    Bucala, Veronica; Pina, Juliana


    The population balance equation (PBE) is a useful tool to predict particle size distributions in granulation processes. When PBE is taught to advanced chemical engineering students, the internal coordinates (particle properties) are particularly hard to understand. In this paper, the flow of particles along different coordinates is carefully…

  9. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants. (United States)

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya


    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.

  10. Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic acid Ester)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sharon Shoemaker


    The development of commercial boi-based processes and products derived from agricultural waste biomass has the potential for significant impact on the economy and security of our nation. Adding value, rather than disposing of the waste of agriculture, can solve an environmental problem and reduce our dependence on foreign sources of fossil fuel for production of chemicals, materials and fuels.

  11. Modelling of the Absorption and Desorption Process of Chemical Heat Pumps

    Institute of Scientific and Technical Information of China (English)

    Gui-PingLin; Xiu-GanYuan


    A simple model for the desorption and absorption process of the chemical heat pump is presented in this paper .It is based on the assumption of a definite reaction front.The results from this model are compared with those obtained by finite difference method and it is observed that there is almost no difference between them.


    We evaluated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in a chromite ore processing solid waste (COPSW). The COPSW is characterized by high pH (8.5 -11.5), high Cr(VI) concentrations in the solid phase (up to 550 mg kg-1) and...

  13. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education (United States)

    Klein, James A.; Davis, Richard A.


    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  14. Synthesis of chemicals and polymers: towards cleaner processes and atom economy, session 5

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, A.; Thivolle-Cazat, J.; Hutchings, G.; Murata, K.; Leininger, S.; Sorokin, A.; Angelis, A. de; Apesteguia, C.I.; Mayoral, J.A.; Hardacre, C.; Jeon, J.; Tominaga, K.; Plasseraud, L.; Kervennal, J.; Souza, R.F. de; Ciardelli, F.; Dominguez, J.M.


    The abstracts of all the presentations (1 plenary session, 2 keynotes, 16 oral communications, 151 posters) of the thematic session 5 'synthesis of chemicals and polymers: towards cleaner processes and atom economy' are gathered in the CD-Rom of the conference. (O.M.)

  15. Using Drawing Technology to Assess Students' Visualizations of Chemical Reaction Processes (United States)

    Chang, Hsin-Yi; Quintana, Chris; Krajcik, Joseph


    In this study, we investigated how students used a drawing tool to visualize their ideas of chemical reaction processes. We interviewed 30 students using thinking-aloud and retrospective methods and provided them with a drawing tool. We identified four types of connections the students made as they used the tool: drawing on existing knowledge,…

  16. A new productivity function and stability criterion in chemical vapor transport processes

    NARCIS (Netherlands)

    Klosse, K.


    The crystal growth rate in a chemical vapor transport process using a closed system is analyzed on the basis of a one-dimensional configuration. A simplified model of vapor transport enables one to obtain a set of equations yielding the rates of reaction without a complete evaluation of the partial

  17. Mechanism for the Environmental Process & Ecological Effects of Typical Chemical Pollutants

    Institute of Scientific and Technical Information of China (English)

    XU Xiaobai; WANG Liansheng; DAI Shugui; HUANG Yuyao


    @@ Principally being engaged in the field of earth sciences, this research project explores the mechanism which governs the environmental process of some typical chemical contaminants and their eco-toxic effects at various levels. The research project features the following achievements:

  18. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions. (United States)

    Nad, Shreya; Gu, Yajun; Asmussen, Jes


    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100-260 Torr pressure range and 1.5-2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η(coup)) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  19. Analysis of physical-chemical processes governing SSME internal fluid flows (United States)

    Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Prakash, C.; Przekwas, A. J.; Kannapel, M.


    The basic issues concerning the physical chemical processes of the Space Shuttle Main Engine are discussed. The objectives being to supply the general purpose CFD code PHOENICS and the associated interactive graphics package - GRAFFIC; to demonstrate code usage on SSME related problems; to perform computations and analyses of problems relevant to current and future SSME's; and to participate in the development of new physical models of various processes present in SSME components. These objectives are discussed in detail.

  20. Investigation of Dynamic Multivariate Chemical Process Monitoring%动态多变量过程监控研究

    Institute of Scientific and Technical Information of China (English)

    谢磊; 张建明; 王树青


    Chemical process variables are always driven by random noise and disturbances. The closed-loop control yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross correlations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.

  1. The role of the chemist/chemical engineer for the trouble-free operation of thermal plants with heat recovery steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Addison, David; Weir, Judy [Thermal Chemistry Limited, Horsham Downs, Hamilton (New Zealand)


    The importance of a chemist/chemical engineer for the reliable and efficient operation of combined cycle gas turbine (CCGT) plants is discussed along with the key differences between routine and strategic chemistry and how these potentially impact on CCGT plant operation. Potential risks and issues with the full outsourcing of cycle chemistry services for a CCGT plant to chemical service providers are outlined. Also discussed are the interactions between a chemist/chemical engineer and plant management, operations, engineering and maintenance personnel. Proposed chemist/chemical engineer staffing levels for a number of hypothetical CCGT plants are also discussed. (orig.)

  2. Improvement on the concentrated grape juice physico-chemical characteristics by an enzymatic treatment and Membrane Separation Processes

    Directory of Open Access Journals (Sweden)



    Full Text Available ABSTRACT In this work, the improvement on the concentrated grape juice physico-chemical characteristics by using an enzymatic treatment followed by Membrane Separation Process (MSP has been investigated. By using Novozym 33095(r and Ultrazym AFP L(r enzymes varying three operating parameters, the best result on the grape pulp characteristics was attained for the Novozym 33095(r performed at 35oC, 15 min. and 50 mgL-1. In micro/ultra filtration processes after enzymatic pretreatment, the best performance of the MSP with high permeate flux value and suitable grape juice characteristics was attained using 0.05 mm membrane pore size, 1 bar pressure and 40 oC treatment temperature. When reverse osmosis process is operated at 40 bar and 40oC, high soluble solid and low turbidity values are attained. An enzymatic treatment along with MSP has shown an alternative and efficient grape juice processing system, being possible to extend to other foods.

  3. Modeling of multiphase flow with solidification and chemical reaction in materials processing (United States)

    Wei, Jiuan

    moving the side insulation layer upward. It is possible to produce high quality crystal with a good combination of heating and cooling. SiC based ceramic materials fabricated by polymer pyrolysis and synthesis becomes a promising candidate for nuclear applications. To obtain high uniformity of microstructure/concentration fuel without crack at high operating temperature, it is important to understand transport phenomena in material processing at different scale levels. In our prior work, a system level model based on reactive porous media theory was developed to account for the pyrolysis process in uranium-ceramic nuclear fabrication In this thesis, a particle level mesoscopic model based on the Smoothed Particle Hydrodynamics (SPH) is developed for modeling the synthesis of filler U3O8 particles and SiC matrix. The system-level model provides the thermal boundary conditions needed in the particle level simulation. The evolution of particle concentration and structure as well as composition of composite produced will be investigated. Since the process temperature and heat flux play the important roles in material quality and uniformity, the effects of heating rate at different directions, filler particle size and distribution on uniformity and microstructure of the final product are investigated. Uncertainty issue is also discussed. For the multiphase flow with directional solidification, a system level based on FVM is established. In this model, melt convection, temperature distribution, phase change and solidification interface can be investigated. For the multiphase flow with chemical reaction, a particle level model based on SPH method is developed to describe the pyrolysis and synthesis process of uranium-ceramic nuclear fuel. Due to its mesh-free nature, SPH can easily handle the problems with multi phases and components, large deformation, chemical reactions and even solidifications. A multi-scale meso-macroscopic approach, which combine a mesoscopic model based

  4. Operational concepts and implementation strategies for the design configuration management process.

    Energy Technology Data Exchange (ETDEWEB)

    Trauth, Sharon Lee


    This report describes operational concepts and implementation strategies for the Design Configuration Management Process (DCMP). It presents a process-based systems engineering model for the successful configuration management of the products generated during the operation of the design organization as a business entity. The DCMP model focuses on Pro/E and associated activities and information. It can serve as the framework for interconnecting all essential aspects of the product design business. A design operation scenario offers a sense of how to do business at a time when DCMP is second nature within the design organization.

  5. Chemical fractionation resulting from the hypervelocity impact process on metallic targets (United States)

    Libourel, Guy; Ganino, Clément; Michel, Patrick; Nakamura, Akiko


    In a regime of hypervelocity impact cratering, the internal energy deposited in target + projectile region is large enough to melt and/or vaporize part of the material involved, which expands rapidly away from the impact site. Fast and energetic impact processes have therefore important chemical consequences on the projectile and target rock transformations during major impact events. Several physical and chemical processes occurred indeed in the short duration of the impact, e.g., melting, coating, mixing, condensation, crystallization, redox reactions, quenching, etc., all concurring to alter both projectile and target composition on the irreversible way.In order to document such hypervelocity impact chemical fractionation, we have started a program of impact experiments by shooting doped (27 trace elements) millimeter–sized basalt projectiles on metallic target using a two stages light gas gun. With impact velocity in the range from 0.25 to 7 km.s-1, these experiments are aimed i) to characterize chemically and texturally all the post-mortem materials (e.g., target, crater, impact melt, condensates, and ejectas), in order ii) to make a chemical mass balance budget of the process, and iii) to relate it to the kinetic energy involved in the hypervelocity impacts for scaling law purpose. Irrespective of the incident velocities, our preliminary results show the importance of redox processes, the significant changes in the ejecta composition (e.g., iron enrichment) and the systematic coating of the crater by the impact melt [1]. On the target side, characterizations of the microstructure of the shocked iron alloys to better constrain the shielding processes. We also show how these results have great implications in our understanding on the current surface properties of small bodies, and chiefly in the case of M-type asteroids. [1] Ganino C, Libourel G, Nakamura AM & Michel P (2015) Goldschmidt Abstracts, 2015 990.

  6. Application of response surface methodology to the chemical cleaning process of ultrafiltration membrane☆

    Institute of Scientific and Technical Information of China (English)

    Caihong Wang; Aishu Wei; Hao Wu; Fangshu Qu; Weixiong Chen; Heng Liang; Guibai Li


    A numerical model was established to predict and optimise the chemical cleaning process of Polyvinylidene Fluo-ride (PVDF) Ultrafiltration (UF) membranes with the results from the experiment that applied the Response Sur-face Method (RSM) and Central Composite Design (CCD). The factors considered in the experimental design were sodium hydroxide (NaOH) concentration, sodium hypochlorite concentration (NaClO), citric acid concentration and cleaning duration. The interactions between the factors were investigated with the numerical model. Humic acid (20 mg·L−1) was used as the model foulant, and chemical enhanced backflush (CEB) was employed to sim-ulate the chemical cleaning process. The concentrations of sodium hydroxide, sodium hypochlorite, citric acid and cleaning duration tested during the experiments were in the range of 0.1%–0.3%, 100–300 mg·L−1, 1%–3%and 0.5–1.5 h, respectively. Among the variables, the sodium hypochlorite concentration and the cleaning dura-tion showed a positive relationship involving the increased efficiency of the chemical cleaning. The chemical cleaning efficiency was hardly improved with increasing concentrations of sodium hydroxide. However, the data was sharply decreased when at a low level of sodium hydroxide concentration. In total, 54 sets of cleaning schemes with 80%to 100%cleaning efficiency were observed with the RSM model after calibration.

  7. Biologically inspired large scale chemical sensor arrays and embedded data processing (United States)

    Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J. P.; Beccherelli, R.; Perera, A.; Pearce, T.; Vershure, P.; Persaud, K.


    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: the olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes

  8. High Throughput Atomic Layer Deposition Processes: High Pressure Operations, New Reactor Designs, and Novel Metal Processing (United States)

    Mousa, MoatazBellah Mahmoud

    Atomic Layer Deposition (ALD) is a vapor phase nano-coating process that deposits very uniform and conformal thin film materials with sub-angstrom level thickness control on various substrates. These unique properties made ALD a platform technology for numerous products and applications. However, most of these applications are limited to the lab scale due to the low process throughput relative to the other deposition techniques, which hinders its industrial adoption. In addition to the low throughput, the process development for certain applications usually faces other obstacles, such as: a required new processing mode (e.g., batch vs continuous) or process conditions (e.g., low temperature), absence of an appropriate reactor design for a specific substrate and sometimes the lack of a suitable chemistry. This dissertation studies different aspects of ALD process development for prospect applications in the semiconductor, textiles, and battery industries, as well as novel organic-inorganic hybrid materials. The investigation of a high pressure, low temperature ALD process for metal oxides deposition using multiple process chemistry revealed the vital importance of the gas velocity over the substrate to achieve fast depositions at these challenging processing conditions. Also in this work, two unique high throughput ALD reactor designs are reported. The first is a continuous roll-to-roll ALD reactor for ultra-fast coatings on porous, flexible substrates with very high surface area. While the second reactor is an ALD delivery head that allows for in loco ALD coatings that can be executed under ambient conditions (even outdoors) on large surfaces while still maintaining very high deposition rates. As a proof of concept, part of a parked automobile window was coated using the ALD delivery head. Another process development shown herein is the improvement achieved in the selective synthesis of organic-inorganic materials using an ALD based process called sequential vapor

  9. Problems with Cash and Other Non-Operating Assets Value in the Process of Valuing Company

    Directory of Open Access Journals (Sweden)

    Piotr Szczepankowski


    Full Text Available In economic practice the process of valuing enterprises is based on potential earnings from companies operating assets ñ operating fixed assets and operating working capital. Cash and other non-operating assets (mainly financial are treated as unproductive, non-income assets. Eventually, in process of pricing their current, accounting value is added to income value of enterprise or cash is treated as source for quick covering the debts of firm, what of course indirectly improve for better value of equity (the lower financial risk. Not taking into account the profitable influence of cash value and other non-operating assets can negatively affect on result of final value of enterprise, reducing it. In the article two alternative approaches (separate and inclusive of cash value is presented. Also main determinants of estimating value of cash are described as well as potential threats of its valuation.

  10. In vitro perturbations of targets in cancer hallmark processes predict rodent chemical carcinogenesis. (United States)

    Kleinstreuer, Nicole C; Dix, David J; Houck, Keith A; Kavlock, Robert J; Knudsen, Thomas B; Martin, Matthew T; Paul, Katie B; Reif, David M; Crofton, Kevin M; Hamilton, Kerry; Hunter, Ronald; Shah, Imran; Judson, Richard S


    Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes to build models for priority setting and further testing. We describe a model for predicting rodent carcinogenicity based on HTS data from 292 chemicals tested in 672 assays mapping to 455 genes. All data come from the EPA ToxCast project. The model was trained on a subset of 232 chemicals with in vivo rodent carcinogenicity data in the Toxicity Reference Database (ToxRefDB). Individual HTS assays strongly associated with rodent cancers in ToxRefDB were linked to genes, pathways, and hallmark processes documented to be involved in tumor biology and cancer progression. Rodent liver cancer endpoints were linked to well-documented pathways such as peroxisome proliferator-activated receptor signaling and TP53 and novel targets such as PDE5A and PLAUR. Cancer hallmark genes associated with rodent thyroid tumors were found to be linked to human thyroid tumors and autoimmune thyroid disease. A model was developed in which these genes/pathways function as hypothetical enhancers or promoters of rat thyroid tumors, acting secondary to the key initiating event of thyroid hormone disruption. A simple scoring function was generated to identify chemicals with significant in vitro evidence that was predictive of in vivo carcinogenicity in different rat tissues and organs. This scoring function was applied to an external test set of 33 compounds with carcinogenicity classifications from the EPA's Office of Pesticide Programs and successfully (p = 0.024) differentiated between chemicals classified as "possible"/"probable"/"likely" carcinogens and those designated as "not likely" or with "evidence of noncarcinogenicity." This model represents a chemical carcinogenicity prioritization tool supporting targeted

  11. Chemical process research and development in the 21st century: challenges, strategies, and solutions from a pharmaceutical industry perspective. (United States)

    Federsel, Hans-Jürgen


    In process research and development (PR&D), the generation and manipulation of small-molecule drugs ranges from bench-scale (laboratory) chemistry to pilot plant manufacture to commercial production. A broad range of disciplines, including process chemistry (organic synthesis), analytical chemistry, process engineering (mass and heat transfer, unit operations), process safety (chemical risk assessment), regulatory compliance, and plant operation, must be effectively applied. In the critical handover between medicinal chemistry and PR&D, compound production is typically scaled up from a few hundred grams to several kilograms. Can the methodologies applied to the former also satisfy the technical, safety, and scalability aspects that come into play in the latter? Occasionally, the transition might occur smoothly, but more often the situation is the opposite: much work and resources must be invested to design a process that is feasible for manufacturing on pilot scale and, eventually, for commercial production. Authentic examples provide enlightening illustrations of dos and don'ts for developing syntheses designed for round-flask operation into production-scale processes. Factors that are easily underestimated or even neglected in the laboratory, such as method robustness, chemical hazards, safety concerns, environmental impact, availability of starting materials and building blocks in bulk quantities, intellectual property (IP) issues, and the final cost of the product, will come into play and need to be addressed appropriately. The decision on which route will be the best for further development is a crucial event and should come into focus early on the R&D timeline. In addition to scientific and technical concerns, the parameter of speed has come to the forefront in the pharmaceutical arena. Although historically the drug industry has tolerated a total time investment of far more than 10 years from idea to market, the current worldwide paradigm requires a

  12. Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas

    Directory of Open Access Journals (Sweden)

    J. Moldanová


    Full Text Available Emissions of particulate matter (PM from shipping contribute significantly to the anthropogenic burden of PM. The environmental effects of PM from shipping include negative impact on human health through increased concentrations of particles in many coastal areas and harbour cities and the climate impact. The PM emitted by ship engines consists of organic carbon (OC, elemental or black carbon (EC/BC, sulphate, inorganic compounds containing V, Ni, Ca, Zn and other metals and associated water. The chemical composition and physical properties of PM vary with type of fuel burned, type of engine and engine operation mode. While primary PM emissions of species like V, Ni and Ca are supposed to be determined by composition of fuel and lubricant oil, emissions of particulate OC, EC and sulphate are affected both by fuel quality and by operation mode of the engine. In this paper a number of parameters describing emission factors (EFs of gases and of particulate matter from ship engines were investigated during 2 on-board measurement campaigns for 3 different engines and 3 different types of fuels. The measured EFs for PM mass were in the range 0.3 to 2.7 g/kg-fuel with lowest values for emissions from combustion of marine gas oil (MGO and the highest for heavy fuel oil (HFO. Emission factors for particle numbers EF(PN in the range 5 × 1015–1 × 1017 #/kg-fuel were found, the number concentration was dominated by particles in the ultrafine mode and ca. 2/3 of particles were non-volatile. The PM mass was dominated by particles in accumulation mode. Main metal elements in case of HFO exhaust PM were V, Ni, Fe, Ca and Zn, in case of MGO Ca, Zn and P. V and Ni were typical tracers of HFO while Ca, Zn and P are tracers of the lubricant oil. EC makes up 10–38% of the PM mass, there were not found large differences between HFO and MGO fuels. EC and ash elements make up 23–40% of the PM mass. Organic matter makes up 25–60% of the PM. The measured EF

  13. Benefits to blood banks of a sales and operations planning process. (United States)

    Keal, Donald A; Hebert, Phil


    A formal sales and operations planning (S&OP) process is a decision making and communication process that balances supply and demand while integrating all business operational components with customer-focused business plans that links high level strategic plans to day-to-day operations. Furthermore, S&OP can assist in managing change across the organization as it provides the opportunity to be proactive in the face of problems and opportunities while establishing a plan for everyone to follow. Some of the key outcomes from a robust S&OP process in blood banking would include: higher customer satisfaction (donors and health care providers), balanced inventory across product lines and customers, more stable production rates and higher productivity, more cooperation across the entire operation, and timely updates to the business plan resulting in better forecasting and fewer surprises that negatively impact the bottom line.

  14. Practical aspects of steam injection processes: A handbook for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Sarathi, P.S.; Olsen, D.K.


    More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

  15. An Approach to Realizing Process Control for Underground Mining Operations of Mobile Machines.

    Directory of Open Access Journals (Sweden)

    Zhen Song

    Full Text Available The excavation and production in underground mines are complicated processes which consist of many different operations. The process of underground mining is considerably constrained by the geometry and geology of the mine. The various mining operations are normally performed in series at each working face. The delay of a single operation will lead to a domino effect, thus delay the starting time for the next process and the completion time of the entire process. This paper presents a new approach to the process control for underground mining operations, e.g. drilling, bolting, mucking. This approach can estimate the working time and its probability for each operation more efficiently and objectively by improving the existing PERT (Program Evaluation and Review Technique and CPM (Critical Path Method. If the delay of the critical operation (which is on a critical path inevitably affects the productivity of mined ore, the approach can rapidly assign mucking machines new jobs to increase this amount at a maximum level by using a new mucking algorithm under external constraints.

  16. Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis. (United States)

    Bajracharya, Suman; Yuliasni, Rustiana; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak


    In microbial electrosynthesis (MES), CO2 can be reduced preferably to multi-carbon chemicals by a biocathode-based process which uses electrochemically active bacteria as catalysts. A mixed anaerobic consortium from biological origin typically produces methane from CO2 reduction which circumvents production of multi-carbon compounds. This study aimed to develop a stable and robust CO2 reducing biocathode from a mixed culture inoculum avoiding the methane generation. An effective approach was demonstrated based on (i) an enrichment procedure involving inoculum pre-treatment and several culture transfers in H2:CO2 media, (ii) a transfer from heterotrophic to autotrophic growth and (iii) a sequential batch operation. Biomass growth and gradual acclimation to CO2 electro-reduction accomplished a maximum acetate production rate of 400mgLcatholyte(-1)d(-1) at -1V (vs. Ag/AgCl). Methane was never detected in more than 300days of operation. Accumulation of acetate up to 7-10gL(-1) was repeatedly attained by supplying (80:20) CO2:N2 mixture at -0.9 to -1V (vs. Ag/AgCl). In addition, ethanol and butyrate were also produced from CO2 reduction. Thus, a robust CO2 reducing biocathode can be developed from a mixed culture avoiding methane generation by adopting the specific culture enrichment and operation procedures without the direct addition of chemical inhibitor.

  17. Selected bibliography for the extraction of uranium from seawater: chemical process and plant design feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Binney, S.E.; Polkinghorne, S.T.; Jante, R.R.; Rodman, M.R.; Chen, A.C.T.; Gordon, L.I.


    A selected annotated bibliography of 521 references was prepared as a part of a feasibility study of the extraction of uranium from seawater. For the most part, these references are related to the chemical processes whereby the uranium is removed from the seawater. A companion docment contains a similar bibliography of 471 references related to oceanographic and uranium extraction plant siting considerations, although some of the references are in common. The bibliography was prepared by computer retrieval from Chemical Abstracts, Nuclear Science Abstracts, Energy Data Base, NTIS, and Oceanic Abstracts. References are listed by author, country of author, and selected keywords.

  18. Quantum-chemical approach to defect formation processes in non-metallic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kotomin, E.A.; Shluger, A.L. (Latvijskij Gosudarstvennyj Univ., Riga (USSR))


    Results of the quantum-chemical simulation of the formation of structural and radiation defects are reviewed, using ice, silicon, and silicon dioxide as examples. The relationship between the structural elements of these crystals and the structural defects is analysed. Models of the main defects, their optical characteristics, and the activation energy of their migration are discussed. The relationship between the characteristics obtained by quantum-chemical calculations and the parameters of the macroscopic kinetics of the processes induced by defects in dielectric crystals is considered. (author).

  19. Synthesis of magnetic tunnel junctions with full in situ atomic layer and chemical vapor deposition processes

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Vangelista, S.; Kutrzeba-Kotowska, B.; Cocco, S.; Lamperti, A.; Tallarida, G. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mameli, D. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienze Chimiche, Universita di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, Universita degli studi Milano-Bicocca, Via R Cozzi 53, 20125 Milano (Italy)


    Magnetic tunnel junctions, i.e. the combination of two ferromagnetic electrodes separated by an ultrathin tunnel oxide barrier, are core elements in a large variety of spin-based devices. We report on the use of combined chemical vapor and atomic layer deposition processes for the synthesis of magnetic tunnel junctions with no vacuum break. Structural, chemical and morphological characterizations of selected ferromagnetic and oxide layers are reported, together with the evidence of tunnel magnetoresistance effect in patterned Fe/MgO/Co junctions.

  20. First-principles calculation of core-level binding energy shift in surface chemical processes

    Institute of Scientific and Technical Information of China (English)


    Combined with third generation synchrotron radiation light sources, X-ray photoelectron spectroscopy (XPS) with higher energy resolution, brilliance, enhanced surface sensitivity and photoemission cross section in real time found extensive applications in solid-gas interface chemistry. This paper reports the calculation of the core-level binding energy shifts (CLS) using the first-principles density functional theory. The interplay between the CLS calculations and XPS measurements to uncover the structures, adsorption sites and chemical reactions in complex surface chemical processes are highlight. Its application on clean low index (111) and vicinal transition metal surfaces, molecular adsorption in terms of sites and configuration, and reaction kinetics are domonstrated.