WorldWideScience

Sample records for chemical precipitation method

  1. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    International Nuclear Information System (INIS)

    Chongad, L S; Sharma, A; Banerjee, M; Jain, A

    2016-01-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H 2 S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD. (paper)

  2. Research of chemical structure of atmospheric precipitation

    International Nuclear Information System (INIS)

    Korenyak, D.

    2001-01-01

    The structure of atmospheric precipitation changes in its passing through the air medium. Thus, the atmospheric precipitation is one of the ecological factors, acting regularly. The research of chemical structure of atmospheric precipitation is closely connected with the problems of turnover of elements, with sanitary - ecological conditions of regions, with the matters of agricultural equipment and of salt balance of the soils. In paper the author for the first time represents the data on chemical structure of precipitation in the town. The data of chemical analysis of 18 samples are given. Obtained results permitted, to a certain extent, to determine the mechanisms of formation of atmospheric precipitation in the region investigated and its genesis. (authors)

  3. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method

    International Nuclear Information System (INIS)

    Petcharoen, K.; Sirivat, A.

    2012-01-01

    Highlights: ► Size-controlled magnetite nanoparticles were prepared via the chemical co-precipitation method in the range of 10–40 nm. ► The electrical conductivity of the smallest particle size is 1.3 × 10 −3 S/cm which belongs to the semiconductor material group. ► The surface modification of magnetite nanoparticles can provide the suspension stability over 1 week. - Abstract: Magnetite nanoparticles were synthesized via the chemical co-precipitation method using ammonium hydroxide as the precipitating agent. The size of the magnetite nanoparticles was carefully controlled by varying the reaction temperature and through the surface modification. Herein, the hexanoic acid and oleic acid were introduced as the coating agents during the initial crystallization phase of the magnetite. Their structure and morphology were characterized by the Fourier transform infrared spectroscopy (FTIR), the X-ray diffraction (XRD) and the field-emission scanning electron microscopy (FE-SEM). Moreover, the electrical and magnetic properties were studied by using a conductivity meter and a vibrating sample magnetometer (VSM), respectively. Both of the bare magnetite and the coated magnetite were of the cubic spinel structure and the spherical-shaped morphology. The reaction temperature and the surface modification critically affected the particle size, the electrical conductivity, and the magnetic properties of these particles. The particle size of the magnetite was increased through the surface modification and reaction temperature. In this study, the particle size of the magnetite nanoparticles was successfully controlled to be in the range of 10–40 nm, suitable for various biomedical applications. The electrical conductivity of the smallest particle size was 1.3 × 10 −3 S/cm, within the semi-conductive materials range, which was higher than that of the largest particle by about 5 times. All of the magnetite nanoparticles showed the superparamagnetic behavior with

  4. Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method

    Science.gov (United States)

    Thu Trang Pham, Thi; Phuong Nguyen, Thu; Pham, Thi Nam; Phuong Vu, Thi; Tran, Dai Lam; Thai, Hoang; Thanh Dinh, Thi Mai

    2013-09-01

    In this paper, the synthesis of hydroxyapatite (HAp) nanopowder was studied by chemical precipitation method at different values of reaction temperature, settling time, Ca/P ratio, calcination temperature, (NH4)2HPO4 addition rate, initial concentration of Ca(NO3)2 and (NH4)2HPO4. Analysis results of properties, morphology, structure of HAp powder from infrared (IR) spectra, x-ray diffraction (XRD), energy dispersive x-ray (EDX) spectra and scanning electron microscopy (SEM) indicated that the synthesized HAp powder had cylinder crystal shape with size less than 100 nm, single-phase structure. The variation of the synthesis conditions did not affect the morphology but affected the size of HAp crystals.

  5. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    1992-01-01

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  6. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Samberg, Joshua P. [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Engineering Building I, Raleigh, NC 27695-7907 (United States); Kajbafvala, Amir, E-mail: amir.kajbafvala@gmail.com [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Engineering Building I, Raleigh, NC 27695-7907 (United States); Koolivand, Amir [Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695 (United States)

    2014-03-01

    Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction.

  7. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method

    International Nuclear Information System (INIS)

    Samberg, Joshua P.; Kajbafvala, Amir; Koolivand, Amir

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction

  8. Post-Digestion Liquor Treatment in the Method Combining Chemical Precipitation with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    Kuglarz Mariusz

    2014-12-01

    Full Text Available The aim of the study was to develop an effective treatment of post-digestion liquors highly-loaded with biogenic and organic substances. The scope of the research project encompassed: mesophilic anaerobic digestion of waste activated sludge (WAS as well as the treatment of post-digestion liquors, coming from the most appropriate HRT value of 25 days, in the process of ammonium magnesium phosphate (struvite precipitation targeted at ammonia nitrogen binding and a subsequent reverse osmosis (RO process. It was established that the method combining chemical precipitation and high-pressure filtration ensures a high degree of contaminants removal allowing for a direct release of treated liquors into the natural reservoir. However, in order to decrease the residual NH4+ concentration (6.1 mg NH4+/dm3 in the purified post-digestion liquors below the level allowing for a direct release to the natural reservoir, it turned out to be necessary to apply increased molar ratio of magnesium and phosphates (Mg:NH4+: PO43-= 1.5:1:1.5.

  9. The Influence of Conditions on Synthesis Hydroxyapatite By Chemical Precipitation Method

    Science.gov (United States)

    Zhu, Jianping; Kong, Deshuang; Zhang, Yin; Yao, Nengjian; Tao, Yaqiu; Qiu, Tai

    2011-10-01

    Particles of Hydroxyapatite (HAp) were synthesized by means of chemical precipitation method, under atmosphere pressure. The starting solution with the Ca/P ratio of 1.67 was prepared by mixing 0.167 mol·dm-3 Ca(NO3)2·4H2O, 0.100 mol·dm-3 (NH4)2HPO4, 0.500 mol·dm-3 (NH2)2CO and 0.10 mol·dm-3 HNO3 aqueous solutions. The hydroxyapatite were prepared by heating the solution at 80 °C for 24 hour and then at 90°C for 72 hour. Then followed, the dry powers were heat treatment at 660°C temperatures for 8 hour. The obtained powder was analyzed using XRD, XRF, FT-IR, SEM, TG-DTA. The results showed that obtained HAp powers were greatly influenced by synthetic conditions. HAp powders with various morphologies, such as sphere, rod, layered, dumbbell, fibre, scaly, were obtained by controlling the synthetic conditions.

  10. The Influence of Conditions on Synthesis Hydroxyapatite By Chemical Precipitation Method

    International Nuclear Information System (INIS)

    Zhu Jianping; Zhang Yin; Yao Nengjian; Tao Yaqiu; Qiu Tai; Kong Deshuang

    2011-01-01

    Particles of Hydroxyapatite (HAp) were synthesized by means of chemical precipitation method, under atmosphere pressure. The starting solution with the Ca/P ratio of 1.67 was prepared by mixing 0.167 mol·dm −3 Ca(NO 3 ) 2 ·4H 2 O, 0.100 mol·dm −3 (NH 4 ) 2 HPO 4 , 0.500 mol·dm −3 (NH 2 ) 2 CO and 0.10 mol·dm −3 HNO3 aqueous solutions. The hydroxyapatite were prepared by heating the solution at 80 °C for 24 hour and then at 90°C for 72 hour. Then followed, the dry powers were heat treatment at 660°C temperatures for 8 hour. The obtained powder was analyzed using XRD, XRF, FT-IR, SEM, TG-DTA. The results showed that obtained HAp powers were greatly influenced by synthetic conditions. HAp powders with various morphologies, such as sphere, rod, layered, dumbbell, fibre, scaly, were obtained by controlling the synthetic conditions.

  11. Tailoring particle size and morphology of colloidal Ag particles via chemical precipitation for Ag-BSCCO composites

    International Nuclear Information System (INIS)

    Medendorp, N.W. Jr.; Bowman, K.J.; Trumble, K.P.

    1996-01-01

    The chemical precipitation of silver particles is an effective method for tailoring the particle size and morphology. This article investigates a chemical precipitation method for producing silver colloids, and how processing parameters affected particle size, morphology and adherence. Decreasing the silver nitrate concentration during precipitation with sodium borohydride decreased the colloidal silver particle size. Decreasing the addition rate of the reducing agent produced faceted particles. Reversing the reactant addition order also changed the particle size and the morphology. Precipitated colloids demonstrated a difference between the growth-dominated and the equilibrium structures. Co-dispersing Bi-based superconducting platelets during precipitation allowed Ag colloids to preferentially nucleate on the platelets and to remain adhered even after the additional processing. (orig.)

  12. Synthesis and performance of cerium oxide as anode materials for lithium ion batteries by a chemical precipitation method

    International Nuclear Information System (INIS)

    Liu, Haowen; Le, Qi

    2016-01-01

    In this present work, chemical precipitation method was employed for preparing cerium oxide. XRD, SEM, TEM, TGA/DTA and BET were used to investigate the structure, shape and formation mechanism, respectively. No impurities were detected. It was found that alcohol had obvious effection on the growth of the final sample. The shape of the precursor was retained after calcined at 500 °C. This result led to the possibility of an easy scale up to a commercial process. EIS and charge–discharge tests were carried out by using the as-prepared CeO_2 as an anode material for lithium ion batteries. Specially, the initial discharge specific capacity of the rhombus CeO_2 was about 529 mAh g"−"1 and stabilized reversibly at about 374 mAh g"−"1 after 50 cycles. It showed a promising usage as anode materials in lithium ion battery. - Highlights: • Chemical precipitation method was employed for the synthesis of cerium oxide. • Alcohol has obvious effection on the growth of the final sample. • The rhombus CeO_2 showed the better electrochemical properties as anode of lithium ion batteries.

  13. Synthesis and performance of cerium oxide as anode materials for lithium ion batteries by a chemical precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haowen, E-mail: liuhwchem@hotmail.com; Le, Qi

    2016-06-05

    In this present work, chemical precipitation method was employed for preparing cerium oxide. XRD, SEM, TEM, TGA/DTA and BET were used to investigate the structure, shape and formation mechanism, respectively. No impurities were detected. It was found that alcohol had obvious effection on the growth of the final sample. The shape of the precursor was retained after calcined at 500 °C. This result led to the possibility of an easy scale up to a commercial process. EIS and charge–discharge tests were carried out by using the as-prepared CeO{sub 2} as an anode material for lithium ion batteries. Specially, the initial discharge specific capacity of the rhombus CeO{sub 2} was about 529 mAh g{sup −1} and stabilized reversibly at about 374 mAh g{sup −1} after 50 cycles. It showed a promising usage as anode materials in lithium ion battery. - Highlights: • Chemical precipitation method was employed for the synthesis of cerium oxide. • Alcohol has obvious effection on the growth of the final sample. • The rhombus CeO{sub 2} showed the better electrochemical properties as anode of lithium ion batteries.

  14. PEG capped CaS nanoparticles synthesized by wet chemical co-precipitation method

    Science.gov (United States)

    Rekha, S.; Anila, E. I.

    2018-04-01

    Calcium sulfide (CaS) nanoparticles capped with polyethyleneglycol (PEG) were synthesized using wet chemical co-precipitation method. The structural and optical properties of the prepared sample were studied by X-ray diffractogram (XRD), transmission electron microscopy (TEM), diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectrum. The structure of CaS nanoparticles is cubic as demonstrated by the X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) analysis. TEMimage revealed the spherical morphology of the particles with diameter in the range 15-20 nm. The optical band gap of the prepared sample was determined from the DRS and its value was found to be 4.1 eV. The PL studies showed that the relative intensity of the PEG capped CaS nanoparticles was higher than that of uncapped CaS nanoparticles. The presence of various functional groups in the capped samples were examined by Fourier Transform Infrared (FTIR) spectroscopy.

  15. Wastewater parameters after the process of phosphorus compounds removal by the metal dissolution method in comparison with precipitation and electrocoagulation methods

    Directory of Open Access Journals (Sweden)

    Wysocka Izabela

    2017-03-01

    Full Text Available Precipitation methods are commonly used for removing phosphorus compounds from wastewater. Chemical precipitation method, based on adding iron, aluminium or calcium salts to the treated wastewater, is often used. Another possible way of precipitating phosphates is metal dissolution method, which is presented in this paper. The main difference between these two methods is how the phosphate precipitating ions are introduced to the wastewater.

  16. Evaluation of precipitates used in strainer head loss testing. Part I. Chemically generated precipitates

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2009-01-01

    The purpose of the current program was to evaluate the properties of chemical precipitates proposed by industry that have been used in sump strainer head loss testing. Specific precipitates that were evaluated included aluminum oxyhydroxide (AlOOH) and sodium aluminum silicate (SAS) prepared according to the procedures in WCAP-16530-NP, along with precipitates formed from injecting chemicals into the test loop according to the procedure used by one sump strainer test vendor for U.S. pressurized water reactors. The settling rates of the surrogate precipitates are strongly dependent on their particle size and are reasonably consistent with those expected from Stokes' Law or colloid aggregation models. Head loss tests showed that AlOOH and SAS surrogates are quite effective in increasing the head loss across a perforated pump inlet strainer that has an accumulated fibrous debris bed. The characteristics of aluminum hydroxide precipitate using sodium aluminate were dependent on whether it was formed in high-purity or ordinary tap water and whether excess silicate was present or not.

  17. A long-term variation of chemical composition in precipitation

    International Nuclear Information System (INIS)

    Yoshioka, Ryuma; Okimura, Takashi; Okumura, Takenobu

    1991-01-01

    Precipitation samples are collected at the six localities in the southwestern Japan weekly or monthly over a long period of time (1978-1989) in order to estimate chemical weathering rates and amount of weathered materials through chemical composition in natural waters. Major chemical composition is determined for the precipitation samples. Together with the data available in the literature, the following characteristics are recognized : 1) Most pH values fall in the narrow range of 4.4 to 5.4, 2) Systematic variations in pH values are observed among the precipitation samples of different geologic environments, 3) pH values become almost constant from 1984 to 1989, 4) NO 3 - concentrations gradually decrease to an almost constant value with time, and 5) ΔSO 4 2- concentrations gradually have a tendency to decrease from 1978 to 1985. The mechanism of phenomena described above is also presented. (author)

  18. The use of simultaneous chemical precipitation in modified activated ...

    African Journals Online (AJOL)

    The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal: Part 6: Modelling of simultaneous chemical-biological P removal - review of existing models.

  19. Calcium phosphate bioceramics prepared from wet chemically precipitated powders

    Directory of Open Access Journals (Sweden)

    Kristine Salma

    2010-03-01

    Full Text Available In this work calcium phosphates were synthesized by modified wet chemical precipitation route. Contrary to the conventional chemical precipitation route calcium hydroxide was homogenized with planetary mill. Milling calcium oxide and water in planetary ball mill as a first step of synthesis provides a highly dispersed calcium hydroxide suspension. The aim of this work was to study the influence of main processing parameters of wet chemical precipitation synthesis product and to control the morphology, phase and functional group composition and, consequently, thermal stability and microstructure of calcium phosphate bioceramics after thermal treatment. The results showed that it is possible to obtain calcium phosphates with different and reproducible phase compositions after thermal processing (hydroxyapatite [HAp], β-tricalcium phosphate [β-TCP] and HAp/β-TCP by modified wet-chemical precipitation route. The β-TCP phase content in sintered bioceramics samples is found to be highly dependent on the changes in technological parameters and it can be controlled with ending pH, synthesis temperature and thermal treatment. Pure, crystalline and highly thermally stable (up to 1300°C HAp bioceramics with homogenous grainy microstructure, grain size up to 200–250 nm and high open porosity can be successfully obtained by powder synthesized at elevated synthesis temperature of 70°C and stabilizing ending pH at 9.

  20. Fabrication and Characterization of Zinc Sulfide Nanoparticles and Nanocomposites Prepared via a Simple Chemical Precipitation Method

    Directory of Open Access Journals (Sweden)

    Kambiz Hedayati

    2016-07-01

    Full Text Available In this research zinc sulfide (ZnS nanoparticles and nanocomposites powders were prepared by chemical precipitation method using zinc acetate and various sulfur sources. The ZnS nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible and fourier transform infra-red. The structure of nanoparticles was studied using X-ray diffraction pattern. The crystallite size of ZnS nanoparticles was calculated by Debye–Scherrer formula. Morphology of nano-crystals was observed and investigated using the scanning electron microscopy. The grain size of zinc sulfide nanoparticles were in suitable agreement with the crystalline size calculated by X-ray diffraction results. The optical properties of particles were studied with ultraviolet-visible absorption spectrum.

  1. Lecithin-based wet chemical precipitation of hydroxyapatite nanoparticles.

    Science.gov (United States)

    Michał, Wojasiński; Ewa, Duszyńska; Tomasz, Ciach

    Hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 nanoparticles have been successfully synthesized by the wet chemical precipitation method at 60 °C in the presence of biocompatible natural surfactant-lecithin. The composition and morphology of nanoparticles of hydroxyapatite synthesized with lecithin (nHAp-PC) was studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Size distribution for nanoparticles was measured by nanoparticle tracking analysis in NanoSight system. We discuss in details influence of lecithin concentration in reaction system on nHAp-PC morphology, as well as on size distributions and suspendability of nanoparticles. Product exhibits crystalline structure and chemical composition of hydroxyapatite, with visible traces of lecithin. Difference in surfactant amounts results in changes in particles morphology and their average size.

  2. Synthesis and Characterization of Cadmium Sulfide Nanoparticles by Chemical Precipitation Method.

    Science.gov (United States)

    Devi, R Aruna; Latha, M; Velumani, S; Oza, Goldie; Reyes-Figueroa, P; Rohini, M; Becerril-Juarez, I G; Lee, Jae-Hyeong; Yi, Junsin

    2015-11-01

    Cadmium sulfide (CdS) nanoparticles were synthesized by chemical precipitation method using cadmium chloride (CdCl2), sodium sulfide (Na2S) and water as a solvent by varying temperatures from 20-80 degrees C. The nanoparticles were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), High-resolution transmission electron microscopy (HR-TEM) and UV-Visible spectroscopy. XRD pattern revealed cubic crystal structure for all the synthesized CdS nanoparticles. Raman spectra showed first and second order longitudinal optical (LO) phonon vibrational modes of CdS. The size of CdS nanoparticles was found to be in the range of 15-80 nm by FE-SEM analysis, in all cases. The atomic percentage of cadmium and sulfur was confirmed to be 1:1 from EDS analysis. TEM micrograph depicts the spherical shape of the particles and the size is in the range of 15-85 nm while HR-TEM images of CdS nanoparticles exhibit well-resolved lattice fringes of the cubic structure of CdS. The optical properties of CdS were examined by UV-Visible spectroscopy which showed variation in absorption band from 460-480 nm. The band gap was calculated from the absorption edge and found to be in the range of 3.2-3.5 eV which is greater than the bulk CdS.

  3. Synthesis and Characterization of Anatase TiO_2 Powder using a Homogeneous Precipitation Method

    International Nuclear Information System (INIS)

    Choi, Soon Ok; Cho, Jee Hee; Lim, Sung Hwan; Chung, Eun Young

    2011-01-01

    This paper studies the experimental method that uses the homogeneous precipitation method to prepare mica flakes coated with anatase-type titania pearlescent pigment with urea as precipitant. The optimum technology parameters, the chemical composition, the microstructure, and the color property of resulting pigments are discussed. The coating principle of mica coated titania with various coating thickness is analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy(TEM) and tested by spectrophotometer analysis. The colored nanocrystalline pigments with different morphology and coating thickness 45-170 nm were prepared by homogeneous precipitation treatment of TiOSO_4(titanum oxysulfate) aqueous solutions. Characterizations on the pigments show that the pearlescent effects of the pigments depend mainly on mica size, thickness of the metal oxide deposit, its chemical composition, and crystal structure.

  4. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Van Stan, John T., E-mail: jvanstan@georgiasouthern.edu [Dept. of Geology and Geography, Georgia Southern University, Statesboro, GA 30460 (United States); Pypker, Thomas G. [Dept. of Natural Resource Sciences, Thompson Rivers University, Kamloops, BC (Canada)

    2015-12-01

    Interactions between precipitation and forest canopy elements (bark, leaves, and epiphytes) control the quantity, spatiotemporal patterning, and the chemical concentration, character and constituency of precipitation to soils. Canopy epiphytes exert a range of hydrological and biogeochemical effects due to their diversity of morphological traits and nutrient acquisition mechanisms. We reviewed and evaluated the state of knowledge regarding epiphyte interactions with precipitation partitioning (into interception loss, throughfall, and stemflow) and the chemical alteration of net precipitation fluxes (throughfall and stemflow). As epiphyte species are quite diverse, this review categorized findings by common paraphyletic groups: lichens, bryophytes, and vascular epiphytes. Of these groups, vascular epiphytes have received the least attention and lichens the most. In general, epiphytes decrease throughfall and stemflow and increase interception loss. Epiphytes alter the spatiotemporal pattern of throughfall and increase overall latent heat fluxes from the canopy. Epiphytes alter biogeochemical processes by impacting the transfer of solutes through the canopy; however, the change in solute concentration varies with epiphyte type and chemical species. We discuss several important knowledge gaps across all epiphyte groups. We also explore innovative methods that currently exist to confront these knowledge gaps and past techniques applied to gain our current understanding. Future research addressing the listed deficiencies will improve our knowledge of epiphyte roles in water and biogeochemical processes coupled within forest canopies—processes crucial to supporting microbe, plant, vertebrate and invertebrate communities within individual epiphytes, epiphyte assemblages, host trees, and even the forest ecosystem as a whole. - Highlights: • Reviews > 100 studies on epiphyte effects on throughfall, stemflow, & interception • Identifies shared hydro

  5. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation

    International Nuclear Information System (INIS)

    Van Stan, John T.; Pypker, Thomas G.

    2015-01-01

    Interactions between precipitation and forest canopy elements (bark, leaves, and epiphytes) control the quantity, spatiotemporal patterning, and the chemical concentration, character and constituency of precipitation to soils. Canopy epiphytes exert a range of hydrological and biogeochemical effects due to their diversity of morphological traits and nutrient acquisition mechanisms. We reviewed and evaluated the state of knowledge regarding epiphyte interactions with precipitation partitioning (into interception loss, throughfall, and stemflow) and the chemical alteration of net precipitation fluxes (throughfall and stemflow). As epiphyte species are quite diverse, this review categorized findings by common paraphyletic groups: lichens, bryophytes, and vascular epiphytes. Of these groups, vascular epiphytes have received the least attention and lichens the most. In general, epiphytes decrease throughfall and stemflow and increase interception loss. Epiphytes alter the spatiotemporal pattern of throughfall and increase overall latent heat fluxes from the canopy. Epiphytes alter biogeochemical processes by impacting the transfer of solutes through the canopy; however, the change in solute concentration varies with epiphyte type and chemical species. We discuss several important knowledge gaps across all epiphyte groups. We also explore innovative methods that currently exist to confront these knowledge gaps and past techniques applied to gain our current understanding. Future research addressing the listed deficiencies will improve our knowledge of epiphyte roles in water and biogeochemical processes coupled within forest canopies—processes crucial to supporting microbe, plant, vertebrate and invertebrate communities within individual epiphytes, epiphyte assemblages, host trees, and even the forest ecosystem as a whole. - Highlights: • Reviews > 100 studies on epiphyte effects on throughfall, stemflow, & interception • Identifies shared hydro

  6. Influence of chemical composition of precipitation on migration of radioactive caesium in natural soils

    International Nuclear Information System (INIS)

    Thørring, H.; Skuterud, L.; Steinnes, E.

    2014-01-01

    The aim of the present work was to study the impact of the chemical composition of precipitation on radiocaesium mobility in natural soil. This was done through column studies. Three types of precipitation regimes were studied, representing a natural range found in Norway: Acidic precipitation (southernmost part of the country); precipitation rich in marine cations (highly oceanic coastal areas); and low concentrations of sea salts (slightly continental inland areas). After 50 weeks and a total precipitation supply of ∼10 000 L m −2 per column, results indicate that acidic precipitation increased the mobility of 134 Cs added during the experiment. However, depth distribution of already present Chernobyl fallout 137 Cs was not significantly affected by the chemical composition of precipitation. - Highlights: • Mobility of freshly added Cs-134 was higher in soil receiving acidic precipitation. • Depth penetration of Cs-134 was higher in soil profiles with a thicker humus layer. • Depth distribution of Chernobyl Cs-137 was not affected by precipitation type

  7. Treatment of low and intermediate aqueous waste containing Cs-137 by chemical precipitation

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Alamares, A.L.; Junio, J.B.; Dela Cruz, J.M.

    1996-01-01

    The use of radioactive materials in various applications has been increasing since its introduction in the early sixties. The Philippine Nuclear Research Institute has established a centralized facility for treating radioactive wastes i.e. aqueous wastes with assistance from the International Atomic Energy Agency - Technical Cooperation Programme. Liquid wastes containing Cs-137 are generated from aqueous wastes containing Cs-137 by nickel ferrocyanide precipitation will be presented. The aim of this study is to investigate the efficiency treatment in removing Cs-137 from an aqueous effluent. Actual aqueous wastes known to contain Cs-137 were used in the experiments. Low cost and simple nickel ferrocyanide precipitation method with the aid of a flocculant has been selected for the separation of Cs-137 from low and intermediate aqueous waste. By varying the chemical dosage added into the aqueous waste, different decontamination factors were obtained. Hence, the optimum dosage of the chemicals that give the highest decontamination factor can be determined. (author)

  8. Obtaining ZnO nanocrystalline through methods of combustion and precipitation

    International Nuclear Information System (INIS)

    Garcia, A.P.; Guaglianoni, W.C.; Cunha, M.A.; Basegio, T.M.; Bergmann, C.P.

    2012-01-01

    Zinc oxide is important technological applications in rubber and industrial paints. The chemical properties and microstructure of ZnO powder depends on the synthesis method employed. In this work, it was obtained nanosized ZnO using different synthesis processes, such as solution combustion and precipitation, varying the concentrations of reactants and the working temperature. The obtained powders were characterized by SEM, BET, XRD, crystallite size determination and thermal analysis (TGA and DTA). It was possible to obtain nanosized ZnO with the methods used. (author)

  9. Chemical composition of precipitation in adjacent forest and open plots

    Energy Technology Data Exchange (ETDEWEB)

    Madgwick, H A.I.; Ovington, J D

    1959-01-01

    The chemical composition of the precipitation in three open plots and under thirteen different forest canopies is compared for a 2-year period at an experimental forest in south-east England. The average contents of sodium, potassium, calcium, and magnesium in the precipitation in the open are 19, 3, 11, and less than 4 kg./ha./annum respectively, compared with 33, 24, 24, and 10 under the forest canopies. Only very small quantities of phosphorus were present in the precipitation. The data are discussed with particular reference to the nutrient cycles of forest stands, the removal of nutrients by logging, and the maintenance of soil fertility.

  10. The use of simultaneous chemical precipitation in modified activated ...

    African Journals Online (AJOL)

    The IAWQ Activated Sludge Model (ASM) No. 2 is a kinetic-based model and incorporates two simple processes for chemical precipitation and redissolution that are readily integrated with biological processes for carbon, nitrogen and phosphorus removal. This model was applied to experimental data collected as part of this ...

  11. Chemical ore genesis models for the precipitation of carnotite in calcrete

    International Nuclear Information System (INIS)

    Mann, A.W.

    1974-10-01

    An investigation was carried out on the chemical mechanism responsible for the precipitation of carnotite in calcrete. The correct interpretation of uranium and vanadium movement in groundwater may only be possible after a careful and detailed evaluation of the occurrence (or non-occurrence) of many other uranium-vanadium complex salts, particularly those of calcium. It is concluded that a redox controlled mechanism for the precipitation of carnotite from groundwaters seem most likely. (R.L.)

  12. [Chemical characteristics of precipitation in South China Sea].

    Science.gov (United States)

    Xiao, Hong-Wei; Long, Ai-Min; Xie, Lu-Hua; Xiao, Hua-Yun; Liu, Cong-Qiang

    2014-02-01

    Rainwater samples were collected in the summer on "Shiyan 3" during the 2012 South China Sea Sectional Scientific Survey. The concentrations of anion and cation, and pH in precipitation were determined and backward trajectories of air mass were simulated to analyze the chemical characteristics of ions and examine the source of ions. The results indicated that the mean pH value of precipitation was 6.3, with 5.6 of minimal value in summer in South China Sea. The order of anion and cation abundance was Cl(-) > S04(2-) > NO3(-) and Na(+) > Mg(2+) > Ca(2+) > K(+). Cl(-) was the major anion and Na(+) was the major cation, with concentrations of 2 637.5 microeq x L(-1) and 2095.5 microeq x L(-1), respectively, showing that they were the characteristics of marine atmospheric precipitation. There was a good linear relationship between each pair of 7 ions, with correlation coefficient above 0.9, suggesting that they may have a common source. However, the correlation coefficients were lower between NO3(-) and other ions than the others, suggesting that NO3(-) had more complex sources. The concentrations of Ca(2+) and K(+) in precipitation may be related to coral environment in South China Sea. The backward trajectories in 6 stations showed that the air mass was from south and southwest of South China Sea, without passing through above the continent. These results suggested that precipitation affected by human ion source can be ignored in summer in South China Sea.

  13. Investigation of discharged aerosol nanoparticles during chemical precipitation and spray pyrolysis for developing safety measures in the nano research laboratory.

    Science.gov (United States)

    Kolesnikov, Еvgeny; Karunakaran, Gopalu; Godymchuk, Anna; Vera, Levina; Yudin, Andrey Grigorjevich; Gusev, Alexander; Kuznetsov, Denis

    2017-05-01

    Nowadays, the demands for the nanoparticles are increasing due to their tremendous applications in various fields. As a consequence, the discharge of nanoparticles into the atmosphere and environment is also increasing, posing a health threat and environmental damage in terms of pollution. Thus, an extensive research is essential to evaluate the discharge of these nanoparticles into the environment. Keeping this in mind, the present investigation aimed to analyze the discharge of aerosol nanoparticles that are synthesized in the laboratory via chemical precipitation and spray pyrolysis methods. The results indicated that the chemical precipitation method discharges a higher concentration of nanoparticles in the work site when compared to the spray pyrolysis method. The aerosol concentration also varied with the different steps involved during the synthesis of nanoparticles. The average particle's concentration in air for chemical precipitation and spray pyrolysis methods was around 1,037,476 and 883,421particles/cm 3 . In addition, the average total discharge of nanoparticles in the entire laboratory was also examined. A significant variation in the concentration of nanoparticles was noticed, during the processing of materials and the concentration of particles (14-723nm) exceeding the daily allowed concentration to about 70-170 times was observed over a period of 6 months. Thus, the results of the present study will be very useful in developing safety measures and would help in organizing the rules for people working in nanotechnology laboratories to minimize the hazardous effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Improved CO sub 2 enhanced oil recovery -- Mobility control by in-situ chemical precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, S.; Aminian, K.; Wasson, J.A.; Durham, D.L.

    1991-06-01

    The overall objective of this study has been to evaluate the feasibility of chemical precipitation to improve CO{sub 2} sweep efficiency and mobility control. The laboratory experiments have indicated that carbonate precipitation can alter the permeability of the core samples under reservoir conditions. Furthermore, the relative permeability measurements have revealed that precipitation reduces the gas permeability in favor of liquid permeability. This indicates that precipitation is occurring preferentially in the larger pores. Additional experimental work with a series of connected cores have indicated that the permeability profile can be successfully modified. However, Ph control plays a critical role in propagation of the chemical precipitation reaction. A numerical reservoir model has been utilized to evaluate the effects of permeability heterogeneity and permeability modification on the CO{sub 2} sweep efficiency. The computer simulation results indicate that the permeability profile modification can significantly enhance CO{sub 2} vertical and horizontal sweep efficiencies. The scoping studies with the model have further revealed that only a fraction of high permeability zones need to be altered to achieve sweep efficiency enhancement. 64 refs., 30 figs., 16 tabs.

  15. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2008-01-01

    13 meteoric stations were selected in syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the syrian or local meteoric line (SMWL) was estimated with a slope of 6.63 and that of both syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude was determined by 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14% and - 0.84%/100 m elevation respectively). The spatial variability of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content of precipitation, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern mediterranean climate type over this region. (author)

  16. Synthesis and characterization of ZrO2-CuO co-doped ceria nanoparticles via chemical precipitation method.

    Science.gov (United States)

    Viruthagiri, G; Gopinathan, E; Shanmugam, N; Gobi, R

    2014-10-15

    In the present study, the fluorite cubic phase of bare and ZrO2-CuO co-doped ceria (CeO2) nanoparticles have been synthesized through a simple chemical precipitation method. X-ray diffraction results revealed that average grain sizes of the samples are within 5-6nm range. The functional groups present in the samples were identified by Fourier Transform Infrared Spectroscopy (FTIR) study. Surface area measurement was carried out for the ceria nanoparticles to characterize the surface properties of the synthesized samples. The direct optical cutoff wavelength from DRS analysis was blue-shifted evidently with respect to the bulk material and indicated quantum-size confinement effect in the nanocrystallites. PL spectra revealed the strong and sharp UV emission at 401nm. The surface morphology and the element constitution of the pure and doped nanoparticles were studied by scanning electron microscope fitted with energy dispersive X-ray spectrometer arrangement. The thermal decomposition course was followed using thermo gravimetric and differential thermal analyses (TG-DTA). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of hydroxyapatite nanoparticles by chemical precipitation method for potential application in water treatment

    Science.gov (United States)

    Joshi, Parth; Patel, Chirag; Vyas, Meet

    2018-05-01

    Hydroxyapatite (HA) is a unique material having high adsorption capacity of heavy metals, high ion exchange capacity, high biological compatibility, low water solubility, high stability under reducing and oxidizing conditions, availability and low cost. As the starting reagents, analytical grade Ca(NO3)2.4H2O, (NH4)2HPO4 and NaOH were used. In order to study the factors that have an important influence on the chemical precipitation process a experimental platform has been designed for hydroxyapatite synthesis. The addition of Phosphorus pentaoxide to Calcium hydroxide was carried out slowly with simultaneous stirring. After addition, solution was aged for maturation. The precipitate was dried at 80°C overnight and further heat treated at 600°C for 2 hours. The dried and calcined particles were characterized by Fourier transform infra-red spectroscopy and Thermo gravimetric analysis. The particle size and morphology were studied using transmission electron microscopy. TEM examination of the treated powders displayed particles of polygon morphology with dimensions 30-70 nm in length. The FT-IR spectra for sample confirmed the formation of hydroxyapatite. Purity of the prepared Hydroxyapatite has been confirmed by XRD analysis.

  18. Preparation of palladium nanoparticles on alumina surface by chemical co-precipitation method and catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avvaru Praveen; Kumar, B. Prem; Kumar, A.B.V. Kiran; Huy, Bui The [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Lee, Yong-Ill, E-mail: yilee@changwon.ac.kr [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Facile synthesis of palladium nanoparticles on alumina surface. Black-Right-Pointing-Pointer The surface morphology and properties of the nanocrystalline powders were characterized. Black-Right-Pointing-Pointer The catalytic activities of palladium nanoparticles were investigated. - Abstract: The present work reports a chemical co-precipitation process to synthesize palladium (Pd) nanoparticles using alumina as a supporting material. The optimized temperature for the formation of nanocrystalline palladium was found to be 600 Degree-Sign C. The X-ray diffraction (XRD) and Raman spectroscopy were used to study the chemical nature of the Pd in alumina matrix. The surface morphology and properties of the nanocrystalline powders were examined using thermogravimetric analysis (TG-DTA), XRD, Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The calcinations in different atmospheres including in the inert medium forms the pure nano Pd{sup 0} while in the atmospheric air indicates the existence pure Pd{sup 0} along with PdO nanoparticles. The catalytic activities of the as-synthesized nanocrystalline Pd nanoparticles in the alumina matrix were investigated in Suzuki coupling, Hiyama cross-coupling, alkene and alkyne hydrogenation, and aerobic oxidation reactions.

  19. Removal of some Fission Products from Low Level Liquid Radioactive Waste by Chemical Precipitation liquid/Co-precipitation / Phosphate Coagulant

    International Nuclear Information System (INIS)

    Borai, E.H.; Attallah, M.F.; Hilal, M.A.; Abo-Aly, M.M.; Shehata, F.A.

    2008-01-01

    In Egypt radioactive waste has been generated from various uses of radioactive materials. Presence of cesium demonstrated a major problem from the removal point of view even by conventional and advanced technologies. Selective chemical precipitation has been oriented for removal of some fission products including 137 Cs from low level liquid radioactive waste (LLLRW). The aim of the present study was focused to investigate the effectiveness of various phosphate compounds that improved the precipitation process and hence the decontamination factor. The results showed that, maximum removal of 137 Cs reaching 46.4 % using di-sodium hydrogen phosphate as a selective coagulant. It was found that significant enhancement of co-precipitation of 137 Cs (62.5 %) was obtained due to presence of Nd 3+ in the LLLRW

  20. Application of a precipitation method for uranium recovery from abu-zaabal phosphoric acid plant, Egypt

    International Nuclear Information System (INIS)

    El-hazek, N.M.T.; Hussein, E.M.

    1995-01-01

    Current industrial recovery of uranium from 30% phosphoric acid-produced by the dihydrate process-is based on solvent extraction method. Uranium recovery from concentrated phosphoric acid (45-52% p o5 ) produced by evaporation of the 30% acid or directly produced by the hemihydrate process, by solvent extraction is difficult to apply in practice. In addition to possible contamination of the acid by the organic solvents and/or their deterioration. This paper investigates the possibility of applying a precipitation method (Weterings and Janssen, 1985) for uranium recovery from both low (28% P 2 O 5 ) and high (48% P 2 O 5 ) concentration phosphoric acids produced by abu-zaabal phosphoric acid plant (Abuzaabal fertilizers and chemicals Co., Egypt). The 28% acid produced by H 2 SO 4 dihydrate method and the 48% acid produced by evaporation of the 28% acid The applied precipitation method depends on using NH 4 F as a uranium precipitant from both low and high concentration phosphoric acids in presence of acetone as a dispersing agent. All the relevant factors have been studied

  1. Laboratory-scale evaluations of alternative plutonium precipitation methods

    International Nuclear Information System (INIS)

    Martella, L.L.; Saba, M.T.; Campbell, G.K.

    1984-01-01

    Plutonium(III), (IV), and (VI) carbonate; plutonium(III) fluoride; plutonium(III) and (IV) oxalate; and plutonium(IV) and (VI) hydroxide precipitation methods were evaluated for conversion of plutonium nitrate anion-exchange eluate to a solid, and compared with the current plutonium peroxide precipitation method used at Rocky Flats. Plutonium(III) and (IV) oxalate, plutonium(III) fluoride, and plutonium(IV) hydroxide precipitations were the most effective of the alternative conversion methods tested because of the larger particle-size formation, faster filtration rates, and the low plutonium loss to the filtrate. These were found to be as efficient as, and in some cases more efficient than, the peroxide method. 18 references, 14 figures, 3 tables

  2. Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate.

    Science.gov (United States)

    Kolb, Marit; Bahadir, Müfit; Teichgräber, Burkhard

    2017-10-01

    Worldwide, the standard methods for the determination of the important wastewater parameter chemical oxygen demand (COD) are still based on the use of the hazardous chemicals, mercury sulfate and chromium(VI). However, due to their properties they are meanwhile classified as "priority pollutants" and shall be phased out or banned in the frame of REACH (current European Chemical Law: Registration, Evaluation, Authorization and restriction of Chemicals) by the European Union. Hence, a new wet-chemical method free of mercury and chromium(VI) was developed. Manganese(III) was used as oxidant and silver nitrate for the removal of chloride ions. The quantification was performed by back titration of manganese(III) with iron(II) as done in the standard method. In order to minimize losses of organic substances during the precipitation of silver chloride, suspended and colloid organic matter had to be separated by precipitation of aluminum hydroxide in a first step. In these cases, two fractions, one of the suspended and colloid matters and a second of the dissolved organic substances, are prepared and oxidized separately. The method was tested with potassium hydrogen phthalate (KHP) as conventional COD reference substance and different types of wastewater samples. The oxidation of KHP was reproducible in a COD range of 20-500 mg/L with a mean recovery rate of 88.7% in comparison to the standard COD method (DIN 38409-41). Also in presence of 1000 mg/L chloride a recovery rate of 84.1% was reached. For a series of industrial and municipal wastewater samples a high correlation (R 2  = 0.9935) to the standard method with a mean recovery rate of 78.1% (±5.2%) was determined. Even though the results of the new method are not 100% of the standard method, its high correlation to the standard method and reproducibility offers an environmentally benign alternative method with no need to purchase new laboratory equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. CO2 (carbon dioxide) fixation by applying new chemical absorption-precipitation methods

    International Nuclear Information System (INIS)

    Park, Sangwon; Lee, Min-Gu; Park, Jinwon

    2013-01-01

    CO 2 (carbon dioxide) is the most common greenhouse gas and most of it is emitted from human activities. The methods for CO 2 emission reduction can be divided into physical, chemical, and biochemical methods. Among the physical and chemical methods, CCS (carbon capture and storage) is a well-known reducing technology. However, this method has many disadvantages including the required storage area. In general, CCS requires capture and storage processes. In this study, we propose a method for reusing the absorbed CO 2 either in nature or in industry. The emitted CO 2 was converted into CO 3 2− using a conversion solution, and then made into a carbonate by combining the conversion solution with metal ions at normal temperature and pressure. The resulting carbonate was analyzed using FT-IR (Fourier transform infrared spectroscopy) and XRD (X-ray diffraction). We verified the formation of a solid consisting of calcite and vaterite. In addition, the conversion solution that was used could be reused in the same process of CCS technology. Our study demonstrates a successful method of reducing and reusing emitted CO 2 , thereby making CO 2 a potential future resource. - Highlights: • This study focused on a new CO 2 fixation process method. • In CCS technology, the desorption process requires high thermal energy consumption. • This new method does not require a desorption process because the CO 2 is accomplished through CaCO 3 crystallization. • A new absorption method is possible instead of the conventional absorption-desorption process. • This is not only a rapid reaction for fixing CO 2 , but also economically feasible

  4. Synthesis and characterization of nano ZnO rods via microwave assisted chemical precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Uma Sangari, N., E-mail: umasangariselvakumar@gmail.com [Department of Chemistry, S.F.R. College for Women, Sivakasi 626123 (India); Chitra Devi, S. [Department of Chemistry, S.F.R. College for Women, Sivakasi 626123 (India)

    2013-01-15

    A microwave assisted chemical precipitation method has been employed for the synthesis of nano zinc oxide rods by reacting zinc nitrate and potassium hydroxide. The amount of potassium hydroxide was adjusted for three different pHs to achieve ZnO nano rods with varying aspect ratio. The mechanism of growth of nano rods is explained briefly. The average crystallite size of the as synthesized samples was analyzed by means of powder XRD pattern and estimated to vary from 25.6 nm to 43.1 nm. The existence of rods was confirmed using scanning electron microscopy (SEM). The samples were also analyzed using FT-IR. The optical properties of the samples were also studied by means of UV-visible spectra and Room Temperature Photo Luminescence studies. The band gap of the samples was determined from the DRS spectrum. A strong near band emission peaks due to surface defects are observed in the PL spectrum. - Graphical abstract: At the solution pH of 11 and 9, tetrapod-like and flower-like ZnO nano rods were formed along with separated rods respectively due to the formation of activated nuclei of different sizes. Highlights: Black-Right-Pointing-Pointer Increase in alkalinity of the precursor solution results in longer rods. Black-Right-Pointing-Pointer Beyond a saturation limit, the excess of added OH{sup -} ions inhibited the growth of rods. Black-Right-Pointing-Pointer Keeping all parameters the same, the alkalinity can only modify the aspect ratio of the rods and not their morphology.

  5. Synthesis and characterization of superparamagnetic nanoparticles obtained by precipitation in inverse microemulsion for biomedical applications

    International Nuclear Information System (INIS)

    Puca Pacheco, Mercedes; Guerrero Aquino, Marco; Tacuri Calanchi, Enrique; Lopez Campos, Raul G.

    2013-01-01

    In this work the preparation of nanoparticles of magnetite by methods of precipitation in inverse microemulsions and the conventional method 'Chemical Co-precipitation' is reported. Magnetite nanoparticles were characterized by X-ray diffraction, Moessbauer spectroscopy and vibrating sample magnetometer (VSM). The results showed that the nanoparticles obtained by the method of precipitation in inverse microemulsion showed a superparamagnetic behavior and had a particle average diameter of 9 nm, while by the conventional method 'Chemical Co-precipitation' were 17 nm. In addition, other benefits observed in the application of the method of precipitation in inverse microemulsion with regard to the conventional method is that it allowed obtaining spheroidal magnetite nanoparticles, monodisperse and with magnetic and chemical properties which might have better results in medical applications. (author)

  6. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2007-05-01

    The objective of this study is to determine isotopic characteristics of precipitation, the climatic and geographical conditions affecting isotopic composition in order to obtain the input function of groundwater to evaluate the water resources.13 meteoric stations were selected in Syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the Syrian meteoric line (SMWL) was estimated with a slope of 6.62 and that of both Syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude of 18 O was about 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14 % and -0.84% /100m respectively). The spatial distribution of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern Mediterranean climate type over this region.(author)

  7. Synthesis, properties and space applications of chemically precipitated YBa/sub 2/Cu/sub 3/O/sub 7-x/ superconducting powders

    International Nuclear Information System (INIS)

    Trivedi, A.; Sundahl, R.C.; Olson, W.L.; Welsh, L.B.; Polak, A.J.; Dolgin, B.P.; Barder, T.J.; Karasek, K.R.; Parker, C.A.

    1988-01-01

    Processing properties of and chemically precipitated YBa/sub 2/Cu/sub 3/O/sub 7-x/ powders were evaluated. The authors have successfully developed a method for precipitating stoichiometric oxalate precursors for YBa/sub 2/Cu/sub 3/O/sub 7-x/ powders. Precipitation and calcination conditions were found to dramatically impact upon key powder characteristics such as particle size, morphology, phase composition and microscopic homogeneity. Four space applications were identified: a superconducting motor/generator, a magnetic bearing, an electromagnetic coupling, and a motor commutator. The primary device, a motor, would make use of superconducting windings and a superconducting flux bottle to improve efficiency

  8. Pharmaceuticals and other anthropogenic chemicals in atmospheric particulates and precipitation.

    Science.gov (United States)

    Ferrey, Mark L; Coreen Hamilton, M; Backe, Will J; Anderson, Kurt E

    2018-01-15

    Air and precipitation samples were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) for pharmaceuticals, personal care products, and other commercial chemicals within the St. Paul/Minneapolis metropolitan area of Minnesota, U.S. Of the 126 chemicals analyzed, 17 were detected at least once. Bisphenol A, N,N-diethyl-meta-toluamide (DEET), and cocaine were the most frequently detected; their maximum concentrations in snow were 3.80, 9.49, and 0.171ng/L and in air were 0.137, 0.370, and 0.033ng/m 3 , respectively. DEET and cocaine were present in samples of rain up to 14.5 and 0.806ng/L, respectively. Four antibiotics - ofloxacin, ciprofloxacin, enrofloxacin, and sulfamethoxazole - were detected at concentrations up to 10.3ng/L in precipitation, while ofloxacin was the sole antibiotic detected in air at 0.013ng/m 3 . The X-ray contrast agent iopamidol and the non-steroidal anti-inflammatory drug naproxen were detected in snow up to 228ng/L and 3.74ng/L, respectively, while caffeine was detected only in air at 0.069 and 0.111ng/m 3 . Benzothiazole was present in rain up to 70ng/L, while derivatives of benzotriazole - 4-methylbenzotriazole, 5-methylbenzotriazole, and 5-chlorobenzotriazole - were detected at concentrations up to 1.5ng/L in rain and 3.4ng/L in snow. Nonylphenol and nonylphenol monoethoxylate were detected once in air at 0.165 and 0.032ng/m 3 , respectively. Although the sources of these chemicals to atmosphere are not known, fugacity analysis suggests that wastewater may be a source of nonylphenol, nonylphenol monoethoxylate, DEET, and caffeine to atmosphere. The land-spreading of biosolids is known to generate PM10 that could also account for the presence of these contaminants in air. Micro-pollutant detections in air and precipitation are similar to the profile of contaminants reported previously for surface water. This proof of concept study suggests that atmospheric transport of

  9. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application

    International Nuclear Information System (INIS)

    Gnana Sundara Raj, Balasubramaniam; Asiri, Abdullah M.; Wu, Jerry J.; Anandan, Sambandam

    2015-01-01

    Highlights: • Facile synthesis of Mn 3 O 4 nanoparticles at room temperature via simple chemical precipitation method. • Fabricated supercapacitor device shows maximum specific capacitance in 1 M Na 2 SO 4 . • 77% of specific capacitance is retained even after 1000 cycles. - Abstract: A simple chemical precipitation method has been used for the preparation of Mn 3 O 4 nanoparticles at room temperature. The crystal structure and morphology studies of the resulting Mn 3 O 4 nanoparticles were characterized by powder X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), N 2 adsorption and desorption and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of the Mn 3 O 4 nanoparticles were then investigated using cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS) analysis. The supercapacitive properties of Mn 3 O 4 nanoparticles in the presence of 1 M Na 2 SO 4 exhibited a high specific capacitance of 322 F g −1 at a current density of 0.5 mA cm −2 in the potential range from −0.1 to +0.9 V and about 77% of the initial capacitance was retained after 1000 cycles, indicating that the Mn 3 O 4 electrode owns a good electrochemical stability and capacitance retention capability. The results suggest that the obtained Mn 3 O 4 nanoparticles is a promising electrode material for supercapacitor applications

  10. Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors

    International Nuclear Information System (INIS)

    Wu, M.-S.; Hsieh, H.-H.

    2008-01-01

    Nickel hydroxide powder prepared by directly chemical precipitation method at room temperature has a nanoplatelet-like morphology and could be converted into nickel oxide at annealing temperature higher than 300 deg. C, confirmed by the thermal gravimetric analysis and X-ray diffraction. Annealing temperature influences significantly both the electrical conductivity and the specific surface area of nickel oxide/hydroxide powder, and consequently determines the capacitor behavior. Electrochemical capacitive behavior of the synthesized nickel hydroxide/oxide film is investigated by cyclic voltammetry and electrochemical impedance spectroscope methods. After 300 deg. C annealing, the highest specific capacitance of 108 F g -1 is obtained at scan rate of 10 mV s -1 . When annealing temperature is lower than 300 deg. C, the electrical conductivity of nickel hydroxide dominates primarily the capacitive behavior. When annealing temperature is higher than 300 deg. C, both electrical conductivity and specific surface area of the nickel oxide dominate the capacitive behavior

  11. Attenuation of Chemical Reactivity of Shale Matrixes following Scale Precipitation

    Science.gov (United States)

    Li, Q.; Jew, A. D.; Kohli, A. H.; Alalli, G.; Kiss, A. M.; Kovscek, A. R.; Zoback, M. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2017-12-01

    Introduction of fracture fluids into shales initiates a myriad of fluid-rock reactions that can strongly influence migration of fluid and hydrocarbon through shale/fracture interfaces. Due to the extremely low permeability of shale matrixes, studies on chemical reactivity of shales have mostly focused on shale surfaces. Shale-fluid interactions inside within shale matrixes have not been examined, yet the matrix is the primary conduit through which hydrocarbons and potential contaminants are transmitted. To characterize changes in matrix mineralogy, porosity, diffusivity, and permeability during hydraulic stimulation, we reacted Marcellus (high clay and low carbonate) and Eagle Ford (low clay and high carbonate) shale cores with fracture fluids for 3 weeks at elevated pressure and temperature (80 oC, and 77 bars). In the carbonate-poor Marcellus system, fluid pH increased from 2 to 4, and secondary Fe(OH)3 precipitates were observed in the fluid. Sulfur X-ray fluorescence maps show that fluids had saturated and reacted with the entire 1-cm-diameter core. In the carbonate-rich Eagle Ford system, pH increased from 2 to 6 due to calcite dissolution. When additional Ba2+ and SO42- were present (log10(Q/K)=1.3), extensive barite precipitation was observed in the matrix of the Eagle Ford core (and on the surface). Barite precipitation was also observed on the surface of the Marcellus core, although to a lesser extent. In the Marcellus system, the presence of barite scale attenuated diffusivity in the matrix, as demonstrated by sharply reduced Fe leaching and much less sulfide oxidation. Systematic studies in homogeneous solution show that barite scale precipitation rates are highly sensitive to pH, salinity, and the presence of organic compounds. These findings imply that chemical reactions are not confined to shale/fluid interfaces but can penetrate into shale matrices, and that barite scale formation can clog diffusion pathways for both fluid and hydrocarbon.

  12. Chemical and environmental isotopes study of precipitation in Syria

    International Nuclear Information System (INIS)

    Al-Charideh, A.; Abou Zakhem, B.

    2009-02-01

    Chemical and isotopic compositions of monthly precipitation were monitored at 12 stations distributed over the entire region in Syria for a period of 4 years from December 1999 to April 2003. Amount of precipitation and mean air temperature of rain monthly were also recorded. The conductivity of rain waters varies between 35 μ/cm in the mountainous stations and 336 μ/cm at Deir Az-Zor station. Excepted Tartous station, the mean value of Cl in the rainfall in all station is 3.8 mg/l. The seasonal variations in δ 18 O are smaller at west stations than to the east stations due to low seasonal temperature variations. All stations are characterized by water lines with slopes significantly lower than GMWL, except Bloudan, suggesting the influence of local factors on the isotopic composition of the precipitation. d-excess values decrease from 19% in the western part to 13% in the eastern part of Syria, indicating the influence of the precipitation generated by the air masses coming from the Mediterranean Sea over Syria. A reliable altitude effect represent by depletion of heavy stable isotopes of about -0.21, and -1.47, per 100 m elevation of 18 O and δ 2 H, respectively. Monthly tritium activity and seasonal variations pattern are low in the west stations than at the east stations. The weighted mean tritium values are between 3 to 9 TU during 2000-2003, and it is increasing with distance from the Syrian coast by 1 TU /100 Km. (author)

  13. Characterization of ZnS nanoparticles synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Iranmanesh Parvaneh; Nourzpoor Mohsen; Saeednia Samira

    2015-01-01

    ZnS nanoparticles are prepared by homogeneous chemical co-precipitation method using EDTA as a stabilizer and capping agent. The structural, morphological, and optical properties of as-synthesized nanoparticles are investigated using x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible (UV-Vis) absorption, and photoluminescence spectroscopy. The x-ray diffraction pattern exhibits a zinc-blended crystal structure at room temperature. The average particle size of the nanoparticles from the scanning electron microscopy image is about 50 nm. The ultraviolet absorption spectrum shows the blue shift in the band gap due to the quantum confinement effect. The photoluminescence spectrum of ZnS nanoparticles shows a blue visible spectrum. (paper)

  14. Chemical characteristics, deposition fluxes and source apportionment of precipitation components in the Jiaozhou Bay, North China

    Science.gov (United States)

    Xing, Jianwei; Song, Jinming; Yuan, Huamao; Li, Xuegang; Li, Ning; Duan, Liqin; Qu, Baoxiao; Wang, Qidong; Kang, Xuming

    2017-07-01

    To systematically illustrate the chemical characteristics, deposition fluxes and potential sources of the major components in precipitation, 49 rainwater and snow water samples were collected in the Jiaozhou Bay from June 2015 to May 2016. We determined the pH, electric conductivity (EC) and the concentrations of main ions (Na+, K+, Ca2 +, Mg2 +, NH4+, SO42 -, NO3-, Cl- and F-) as well as analyzed their source contributions and atmospheric transport. The results showed that the precipitation samples were severely acidified with an annual volume-weighted mean (VWM) pH of 4.77. The frequency of acid precipitation (pH pollution level over the Jiaozhou Bay. Surprisingly, NH4+ (40.4%), which is higher than Ca2 + (29.3%), is the dominant species of cations, which is different from that in most areas of China. SO42 - was the most abundant anions, and accounted for 41.6% of the total anions. The wet deposition fluxes of sulfur (S) was 12.98 kg ha- 1 yr- 1. Rainfall, emission intensity and long-range transport of natural and anthropogenic pollutants together control the concentrations and wet deposition fluxes of chemical components in the precipitation. Non-sea-salt SO42 - and NO3- were the primary acid components while NH4+ and non-sea-salt Ca2 + were the dominating neutralizing constituents. The comparatively lower rainwater concentration of Ca2 + in the Jiaozhou Bay than that in other regions in Northern China likely to be a cause for the strong acidity of precipitation. Based on the combined enrichment factor and correlation analysis, the integrated contributions of sea-salt, crustal and anthropogenic sources to the total ions of precipitation were estimated to be 28.7%, 14.5% and 56.8%, respectively. However, the marine source fraction of SO42 - may be underestimated as the contribution from marine phytoplankton was neglected. Therefore, the precipitation components in the Jiaozhou Bay present complex chemical characteristics under the combined effects of natural

  15. The Synthesis of Calcium Salt from Brine Water by Partial Evaporation and Chemical Precipitation

    Science.gov (United States)

    Lalasari, L. H.; Widowati, M. K.; Natasha, N. C.; Sulistiyono, E.; Prasetyo, A. B.

    2017-02-01

    In this study would be investigated the effects of partial evaporation and chemical precipitation in the formation of calcium salt from brine water resources. The chemical reagents used in the study was oxalate acid (C2H2O4), ammonium carbonate (NH4)2CO3) and ammonium hydroxide (NH4OH) with reagent concentration of 2 N, respectively. The procedure was 10 liters brine water evaporated until 20% volume and continued with filtration process to separate brine water filtrate from residue (salt). Salt resulted from evaporation process was characterized by Scanning Electron Microscopy (SEM), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) techniques. Filtrate then was reacted with C2H2O4, (NH4)2CO3 and NH4OH reagents to get salt products in atmospheric condition and variation ratio volume brine water/chemicals (v/v) [10/1; 10/5; 10/10; 10/20; 10/30; 10:50; 20/1; 20/5; 20/10; 20/20; 20/30; 20:50]. The salt product than were filtered, dried, measured weights and finally characterized by SEM/EDS and XRD techniques. The result of experiment showed the chemical composition of brine water from Tirta Sanita, Bogor was 28.87% Na, 9.17% Mg, 2.94% Ca, 22.33% O, 0.71% Sr, 30.02% Cl, 1.51% Si, 1.23% K, 0.55% S, 1.31% Al. The chemical composition of salt resulted by partial evaporation was 53.02% Ca, 28.93%O, 9.50% Na, 2.10% Mg, 1.53% Sr, 1.20% Cl, 1.10% Si, 0.63% K, 0.40% S, 0.39% Al. The salt resulted by total evaporation was indicated namely as NaCl. Whereas salt resulted by partial evaporation was CaCO3 with a purity of 90 % from High Score Plus analysis. In the experiment by chemical precipitation was reported that the reagents of ammonium carbonate were more reactive for synthesizing calcium salt from brine water compared to reagents of oxalate acid and ammonium hydroxide. The salts precipitated by NH4OH, (NH4)2CO3, and H2C2O4 reagents were indicated as NaCl, CaCO3 and CaC2O4.H2O, respectively. The techniques of partial evaporation until 20% volume sample of brine water and

  16. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications.

    Science.gov (United States)

    Anbarasu, M; Anandan, M; Chinnasamy, E; Gopinath, V; Balamurugan, K

    2015-01-25

    Polyethylene glycol (PEG) coated Fe3O4 nanoparticles were synthesized by chemical co-precipitation method. With polyethylene glycol (PEG) as a stabilizer and dispersant. The X-ray diffraction and selected area electron diffraction (SAED) results show that the cubic inverse spinel structure of pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and field emission transmission electron microscopy (FE-TEM) results exhibited that the resulted Fe3O4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FT-IR) results suggested that PEG indicated with Fe3O4 via its carbonyl groups. Results of vibrating sample magnetometer (VSM) indicated that the prepared Fe3O4 nanoparticles exhibit superparamagnetic behavior and high saturation magnetization at room temperature. Such Fe3O4 nanoparticles with favorable size and tunable magnetic properties are promising biomedical applications. Copyright © 2014. Published by Elsevier B.V.

  17. Synthesis and characterization of M-type barium hexferrite by ultrasonic inter-dispersion of chemical precipitate

    International Nuclear Information System (INIS)

    Garcia Junior, E.S.; Gomes Junior, G.G.; Ogasawara, T.

    2010-01-01

    This work is concerned with the study the synthesis and characterization of M-type barium hexaferrite powder by chemical precipitation type and ultrasonic interdispersion of precursor materials Fe(OH) 3 and Ba(OH) 2 ,separately and ultrasonic inter-dispersion, followed by drying and calcining. In order to guide the experimental work was carried out a preliminary thermodynamic analysis of the system Ba-Fe-H 2 O at 25 deg C. The study shows that the phase formation of M-type barium hexaferrite is obtained at a calcination at 1000 deg C, characterized by X-ray diffraction, the grain growth of the final product of synthesis depending on the calcination temperature is visible by SEM. The synthesis method developed in this research is an option to achieve the results that would be obtained if the co-precipitation of ferric and barium hydroxide was thermodynamically possible, where you can get crystallization of barium hexaferrite in a calcination at 1000 deg C. (author)

  18. Synthesis of CuO-NiO core-shell nanoparticles by homogeneous precipitation method

    International Nuclear Information System (INIS)

    Bayal, Nisha; Jeevanandam, P.

    2012-01-01

    Highlights: ► CuO-NiO core-shell nanoparticles have been synthesized using a simple homogeneous precipitation method for the first time. ► Mechanism of the formation of core-shell nanoparticles has been investigated. ► The synthesis route may be extended for the synthesis of other mixed metal oxide core-shell nanoparticles. - Abstract: Core-shell CuO–NiO mixed metal oxide nanoparticles in which CuO is the core and NiO is the shell have been successfully synthesized using homogeneous precipitation method. This is a simple synthetic method which produces first a layered double hydroxide precursor with core-shell morphology which on calcination at 350 °C yields the mixed metal oxide nanoparticles with the retention of core-shell morphology. The CuO–NiO mixed metal oxide precursor and the core-shell nanoparticles were characterized by powder X-ray diffraction, FT-IR spectroscopy, thermal gravimetric analysis, elemental analysis, scanning electron microscopy, transmission electron microscopy, and diffuse reflectance spectroscopy. The chemical reactivity of the core-shell nanoparticles was tested using catalytic reduction of 4-nitrophenol with NaBH 4 . The possible growth mechanism of the particles with core-shell morphology has also been investigated.

  19. Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method.

    Science.gov (United States)

    Sivakumar, S; Venkatesan, A; Soundhirarajan, P; Khatiwada, Chandra Prasad

    2015-02-05

    In the present study, synthesized pure and Ag (1%, 2%, and 3%) doped Cadmium Oxide (CdO) nanoparticles by chemical precipitation method. Then, the synthesized products were characterized by thermo gravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, Ultra violet-Vis diffused reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscopy (SEM), Energy dispersive X-rays (EDX) spectroscopy, and anti-bacterial activities, respectively. The transition temperatures and phase transitions of Cd(OH)2 to CdO at 400°C was confirmed by TG-DTA analysis. The XRD patterns show the cubic shape and average particle sizes are 21, 40, 34, and 37nm, respectively for pure and Ag doped samples. FT-IR study confirmed the presence of CdO and Ag at 677 and 459cm(-1), respectively. UV-Vis-DRS study shows the variation on direct and indirect band gaps. The surface morphologies and elemental analysis have been confirmed from SEM and with EDX. In addition, the synthesized products have been characterized by antibacterial activities against Gram-positive and negative bacteria. Further, the present investigation suggests that CdO nanoparticles have the great potential applications on various industrial and medical fields of research. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Apparatus and methods for regeneration of precipitating solvent

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang; Bonsu, Alexander

    2015-08-25

    A regenerator that can handle rich loaded chemical solvent containing precipitated absorption reaction products is disclosed. The invention is particularly suitable for separating CO.sub.2 from large gas streams that are typical of power plant processes. The internally circulating liquid stream in the regenerator (ICLS regenerator) rapidly heats-up the in-coming rich solvent stream in a downcomer standpipe as well as decreases the overall concentration of CO.sub.2 in the mixed stream. Both these actions lead to dissolution of precipitates. Any remaining precipitate further dissolves as heat is transferred to the mixed solution with an inverted bayonet tube heat exchanger in the riser portion of the regenerator. The evolving CO.sub.2 bubbles in the riser portion of the regenerator lead to substantial gas hold-up and the large density difference between the solutions in the downcomer standpipe and riser portions promotes internal circulation of the liquid stream in the regenerator. As minor amounts of solvent components present in the exit gas stream are condensed and returned back to the regenerator, pure CO.sub.2 gas stream exits the disclosed regenerator and condenser system.

  1. Comparison of direct and precipitation methods for the estimation of ...

    African Journals Online (AJOL)

    Background: There is increase in use of direct assays for analysis of high and low density lipoprotein cholesterol by clinical laboratories despite differences in performance characteristics with conventional precipitation methods. Calculation of low density lipoprotein cholesterol in precipitation methods is based on total ...

  2. The synthesis of hydroxyapatite through the precipitation method.

    Science.gov (United States)

    Shah, Rizal K; Fahmi, M N; Mat, Akil H; Zainal, Arifin A

    2004-05-01

    Hydroxyapatite (HA) has been earmarked as suitable for implantation within the human of its chemical makeup to human bone. In this paper, HA powders were synthesized via the precipitation method where phosphoric acid (H3PO4) was titrated into calcium hydroxide solution [Ca(OH)2]. Two parameters such as temperature and stirring rate were identified as factors that influenced the amount and purity of HA powder. Phase identification of the synthesized powder was done using X-Ray Diffraction (XRD). The results show that HA phase can be synthesized from this titration process of Ca(OH)2 and H3PO4 with yield amount of HA powder around 45 - 61 grams but with less than hundred percent purity. In order to study the effect of heat treatment to HA crystals structure, HA powder was calcined at 850 degrees C for 2 hours. It's found that the degree of crystallinity increases after calcination because of lattice expansion when the materials were heated at higher temperature

  3. Hydroxyapatite, a biomaterial: Its chemical synthesis ...

    Indian Academy of Sciences (India)

    The surface area and particle size of HAP powder prepared by chemical precipitation route, were also ... chemical precipitation method (Jarcho 1978). The powders .... den snail shell, Helix aspersa, was done by taking tris-HCl buffer solution.

  4. Method of precipitating uranium from an aqueous solution and/or sediment

    Science.gov (United States)

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  5. Comparison of the properties of simulated synroc synthesized by sol-gel and a novel co - precipitation method

    International Nuclear Information System (INIS)

    Potdar, H.S.; Vijayanand, S.; Khaja Mohaideen, K.; Joy, P.A.; Raja Madhavan, R.; Kutty, K.V.G.; Ambashta, R.D.; Wattal, P.K.

    2009-01-01

    Synroc is a multiphase dense titanate based ceramic designed for the incorporation of high-level waste (HLW) from the reprocessing of spent nuclear fuel. Synroc or synthetic rock consists of four main titanate phases - zirconolite (CaZrTi 2 O 7 ), hollandite (BaAlO 2 Ti 6 O 16 ), perovskite (CaTiO 3 ) and rutile (TiO 2 ), with the matrix composition as shown in Table 1. It is known that these phases have the capacity to incorporate most of the elements into their crystal structures which are present in the HLW derived from the reprocessing of spent nuclear fuel from power reactors. Synroc is considered as the most effective and durable means of immobilising various forms of high-level radioactive wastes for disposal. Synroc is also considered as a low-risk, tailored waste form, offering higher waste loading and over all cost savings. Simulated synroc precursor powders are typically produced by advanced wet chemical methods such as alkoxide hydrolysis and sol-gel routes. These routes were developed to produce powders with well defined physical and chemical characteristics such as correct chemical composition, high degree of homogeneity, reactivity and readily densifiable material to 99% of theoretical density during hot isostatic pressing. However, the reported alkoxide hydrolysis and hydroxide routes suffer from several disadvantages such as use of large quantities of organic solvents and their disposal as effluent, difficulty in maintaining exact chemical composition, use of costly alkoxide precursors which are moisture sensitive and require critical processing conditions to control their rate of hydrolysis, etc. In the present work we report a comparative study the characteristics of synroc-C (14% waste loading) powders and sintered pellets synthesized by the known alkoxide hydrolysis method and a simple chemical co-precipitation route developed by us. The advantages of the co-precipitation route are its simplicity, ease of handling and utilization of cheaper raw

  6. A study of precipitation from pure solutions of uranyl nitrate

    International Nuclear Information System (INIS)

    Decrop, J.; Holder, J.; Sauteron, J.

    1961-01-01

    After its purification by extraction of the uranyl nitrate from the organic solvent, uranium has to be converted into solid form again: uranium trioxide (UO 3 ). It can be done either by thermal decomposition of uranyl nitrate or by precipitation of uranium, followed by filtration and calcination. Only the second method has been studied for now at the Bouchet plant. This paper reports the bench-scale and pilot-scale experiments of the studies of the precipitation of pure solutions of uranyl nitrate using ammonia (gaseous or in solution) or ammonium carbonate. These have been carried out at the Bouchet plant. It investigates the chemical aspect (pH, precipitates chemical composition) and the technical aspect of the different ways of precipitation (conditions of precipitation, decantation and filtration of precipitates). (M.P.)

  7. Sonochemical preparation of magnetite nanoparticles by reverse precipitation method

    OpenAIRE

    Shuto, Tatsuya; Nakagoe, Osamu; Tanabe, Shuji

    2008-01-01

    Magnetic iron oxide nanoparticles were successfully prepared by reverse precipitation method with the assistance of ultrasound. Obtained nanoparticles were identified as magnetite (Fe_3O_4) by XRD measurement. It was found that obtained magnetite nanoparticles have small sizes (about 10.7 ±2.9 nm in diameter) and spherical shape by TEM observations. In reverse precipitation method, the dropping conditions of aqueous FeSO_4 solution affect on the sizes and uniformity of the products.

  8. Geographically weighted regression based methods for merging satellite and gauge precipitation

    Science.gov (United States)

    Chao, Lijun; Zhang, Ke; Li, Zhijia; Zhu, Yuelong; Wang, Jingfeng; Yu, Zhongbo

    2018-03-01

    Real-time precipitation data with high spatiotemporal resolutions are crucial for accurate hydrological forecasting. To improve the spatial resolution and quality of satellite precipitation, a three-step satellite and gauge precipitation merging method was formulated in this study: (1) bilinear interpolation is first applied to downscale coarser satellite precipitation to a finer resolution (PS); (2) the (mixed) geographically weighted regression methods coupled with a weighting function are then used to estimate biases of PS as functions of gauge observations (PO) and PS; and (3) biases of PS are finally corrected to produce a merged precipitation product. Based on the above framework, eight algorithms, a combination of two geographically weighted regression methods and four weighting functions, are developed to merge CMORPH (CPC MORPHing technique) precipitation with station observations on a daily scale in the Ziwuhe Basin of China. The geographical variables (elevation, slope, aspect, surface roughness, and distance to the coastline) and a meteorological variable (wind speed) were used for merging precipitation to avoid the artificial spatial autocorrelation resulting from traditional interpolation methods. The results show that the combination of the MGWR and BI-square function (MGWR-BI) has the best performance (R = 0.863 and RMSE = 7.273 mm/day) among the eight algorithms. The MGWR-BI algorithm was then applied to produce hourly merged precipitation product. Compared to the original CMORPH product (R = 0.208 and RMSE = 1.208 mm/hr), the quality of the merged data is significantly higher (R = 0.724 and RMSE = 0.706 mm/hr). The developed merging method not only improves the spatial resolution and quality of the satellite product but also is easy to implement, which is valuable for hydrological modeling and other applications.

  9. Laboratory evaluation of the potential for in situ treatment of chromate-contaminated groundwater by chemical precipitation

    International Nuclear Information System (INIS)

    Thornton, E.C.; Beck, M.A.; Jurgensmeier, C.A.

    1995-03-01

    The objective of this paper is to present the results of a series of small-scale batch tests performed to assess the effectiveness of chemical precipitation in the remediation of chromate-contaminated groundwater. These tests involved treatment of chromate solutions with ferrous and sulfide ions. In addition, tests were conducted that involved treatment of mixtures of chromate-contaminated groundwater and uncontaminated soil with the ferrous ion. A combination of ferrous sulfate and sodium sulfide was also tested in the groundwater treatment tests, since this approach has been shown to be an efficient method for treating electroplating wastewaters

  10. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    Science.gov (United States)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  11. Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms

    Science.gov (United States)

    Marlot, Caroline; Barraud, Elodie; Le Gallet, Sophie; Eichhorn, Marc; Bernard, Frédéric

    2012-07-01

    YAG nanopowders with an average grain size of 30 nm have been successfully synthesized by the co-precipitation method using nitrates with precipitant of ammonium hydrogen carbonate. The influence of precipitation conditions such as pH, aging time and calcination temperature on the formation of secondary phases has been studied. The accurate control of pH value at every stage of precipitation process is crucial to avoid the presence of YAM (Yttrium Aluminium Monoclinic, Y4Al2O9) and yttrium oxide (Y2O3) after calcination. The reaction mechanisms have been investigated using different techniques such as infrared spectroscopy, x-ray diffraction and thermal analyses. The YAG phase is formed around 1050 °C passing through an intermediate phase called YAP (Yttrium Aluminium Perovskite, YAlO3). Local chemical heterogeneities are responsible for the deviation of the Y:Al ratio and the formation of YAP during heat treatment.

  12. Wet milling versus co-precipitation in magnetite ferrofluid preparation

    Directory of Open Access Journals (Sweden)

    Almásy László

    2015-01-01

    Full Text Available Various uses of ferrofluids for technical applications continuously raise the interest in improvement and optimization of preparation methods. This paper deals with preparation of finely granulated magnetite particles coated with oleic acid in hydrocarbon suspensions following either chemical co-precipitation from iron salt precursors or wet milling of micron size magnetite powder with the goal to compare the benefits and disadvantages of each method. Microstructural measurements showed that both methods gave similar magnetite particle size of 10-15 nm. Higher saturation magnetization was achieved for the wet-milled magnetite suspension compared to relatively rapid co-precipitation synthesis. Different efficacies of ferrophase incorporation into kerosene could be related to the different mechanisms of oleic acid bonding to nanoparticle surface. The comparative data show that wet milling represents a practicable alternative to the traditional co-precipitation since despite of longer processing time, chemicals impact on environment can be avoided as well as the remnant water in the final product.

  13. Chemical composition of precipitation in a Mexican Maya region

    Science.gov (United States)

    Bravo, H. A.; Saavedra, M. I. R.; Sánchez, P. A.; Torres, R. J.; Granada, L. M. M.

    The chemical characteristics of wet precipitation in Puerto Morelos, Quintana Roo State, Mexico, were measured from April 1994 to December 1995. Puerto Morelos is located in the Caribbean Mayan coastal region of the Peninsula of Yucatan, and is normally exposed to winds from the Caribbean region. Wetfall was analyzed for pH, conductivity and Cl -, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+ ion concentrations. Volume-weighted mean pH for the whole sampling period was 5.35, although values as low as 4.6 were measured in several rain samples. Concentrations of all species correlated negatively with rain volume. Sea-salt aerosols contributed with most of the Na +, Cl -, Mg 2+, K + and SO 42- found in wet precipitation. The mean [SO 42-excess] was 9.7 μEq l -1, which agrees with the background hemispheric values of ≈10 μEq l -1 reported elsewhere. The mean [NO 3-] was 11.4 μEq l -1, almost four times higher than the background hemispheric value of ≈2.5 μEq l -1 reported elsewhere. However, a major component causing the slight acidity character of rain in Puerto Morelos seems to be H 2SO 4.

  14. The synthesis of hydroxyapatite through the precipitation method

    International Nuclear Information System (INIS)

    Shah Rizal, K.; Fahmi, M.N.; Mat Akil, H.; Zainal Arifin, A.

    2004-01-01

    Hydroxyapatite (HA) has been earmarked as suitable for implantation within the human body due to the similarity of its chemical makeup to human bone, In this paper, HA powders were synthesized via the precipitation method where phosphoric acid (H 3 PO 4 ) was titrated into calcium hydroxide solution [Ca(OH) 2 ]. Two parameters such as temperature and stirring rate were identified as factors that influenced the amount and purity of HA powder, Phase identification of the synthesized powder was done using X-Ray Diffraction (XRD). The results show that HA phase can be synthesized from this titration process of Ca(OH) 2 and H 3 PO 4 with yield amount of HA powder around 45-61 grams but with less than hundred percent purity. In order to study the effect of heat treatment to RA crystals structure, HA powder was calcined at 850 degree C for 2 hours. Its found that the degree of crystallinity increases after calcination because of lattice expansion when the materials were heated at higher temperature. (Author)

  15. Chemical composition of precipitation in a forest area of Chongqing, southwest China

    International Nuclear Information System (INIS)

    Zhang, F.; Zhang, J.; Zhang, H.; Ogura, N.; Ushikubo, A.

    1996-01-01

    Experiments were carried out in Chongqing - a city seriously damaged by acid precipitation in southwest China - to explore chemical compositions of open bulk precipitation, throughfall and stemflow in a Masson pine (Pinus massoniana) forest. The results showed that annual mean pH values of and annual ion depositions in the three types of rain water were 4.47 and 50.6 g m -2 , 3.82 and 69.7 g m -2 m and 2.92 and 0.215 g m -2 respectively. pH values demonstrated an obvious seasonal variation; they were lower in winter than in the rest of the year. Ca 2+ and NH 4 + together made up more than 80% of the total cation, while SO 4 2- alone contributed over 90% to the total anion. This high level of SO 4 2- in rain water in Congqing, which outran those found in other cities in China, was closely related to the combustion of locally produced coal that contains 3 to 5% sulphur. Thus, acid precipitation in Chongqing is of a typical sulphuric-acid type. 6 refs., 3 figs., 6 tabs

  16. Calcite precipitates in Slovenian bottled waters.

    Science.gov (United States)

    Stanič, Tamara Ferjan; Miler, Miloš; Brenčič, Mihael; Gosar, Mateja

    2017-06-01

    Storage of bottled waters in varying ambient conditions affects its characteristics. Different storage conditions cause changes in the initial chemical composition of bottled water which lead to the occurrence of precipitates with various morphologies. In order to assess the relationship between water composition, storage conditions and precipitate morphology, a study of four brands of Slovenian bottled water stored in PET bottles was carried out. Chemical analyses of the main ions and measurements of the physical properties of water samples were performed before and after storage of water samples at different ambient conditions. SEM/EDS analysis of precipitates was performed after elapsed storage time. The results show that the presence of Mg 2+ , SO 4 2- , SiO 2 , Al, Mn and other impurities such as K + , Na + , Ba and Sr in the water controlled precipitate morphology by inhibiting crystal growth and leading to elongated rhombohedral calcite crystal forms which exhibit furrowed surfaces and calcite rosettes. Different storage conditions, however, affected the number of crystallization nuclei and size of calcite crystals. Hollow calcite spheres composed of cleavage rhombohedrons formed in the water with variable storage conditions by a combination of evaporation and precipitation of water droplets during high temperatures or by the bubble templating method.

  17. Control of the shape and size of iron oxide (α-Fe2O3 nanoparticles synthesized through the chemical precipitation method

    Directory of Open Access Journals (Sweden)

    Abdelmajid Lassoued

    Full Text Available Hematite (α-Fe2O3 nanoparticles were synthesized via a simple chemical precipitation method. The impact of varying the concentration of precursor on the crystalline phase, size and morphology of α-Fe2O3 products was explored. The characteristic of the synthesized hematite nanoparticles were evaluated by X-ray diffraction (XRD, Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Fourier Transform Infra-Red (FT-IR spectroscopy, Raman spectroscopy, Differential Thermal Analysis (DTA, Thermo Gravimetric Analysis (TGA, Ultraviolet–Visible (UV–Vis analysis and Photoluminescence (PL. XRD data revealed a rhombohedral (hexagonal structure with the space group R-3c in all samples. Uniform spherical like morphology was confirmed by TEM and SEM. The result revealed that the particle sizes were varied between 21 and 82 nm and that the increase in precursor concentration (FeCl3, 6H2O is accompanied by an increase in the particle size of 21 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.05 M at 82 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.4 M. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure hematite but also to identify their phonon modes. The thermal behavior of compound was studied by using TGA/DTA results: The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. Besides, the optical investigation revealed that samples have an optical gap of about 2.1 eV and that this value varies as a function of the precursor concentration. Keywords: Nanoparticles, Hematite (α-Fe2O3, Precipitation, Precursor, Size, Band gap

  18. The characterisation of precipitated magnetites

    International Nuclear Information System (INIS)

    Rush, D.F.; Segal, D.L.

    1982-06-01

    Methods are described for the preparation of magnetite by precipitation from aqueous solutions of iron(II) and iron(III) salts. The magnetites have been characterised by transmission electron microscopy, chemical analysis and X-ray diffraction. Transmission Moessbauer spectroscopy has also been used to characterise precipitated magnetites and a comparison of the spectra has been made with those obtained from nickel ferrite and hydrated ferric oxides. The hydrothermal stability of magnetite at 573 K has also been investigated. This work is relevant to corrosion processes that can occur in the water coolant circuits of nuclear reactors. (author)

  19. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Science.gov (United States)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  20. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Directory of Open Access Journals (Sweden)

    C. Zhou

    2016-01-01

    Full Text Available A comprehensive aerosol–cloud–precipitation interaction (ACI scheme has been developed under a China Meteorological Administration (CMA chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme – WDM6 and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  1. The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitate method in various sintering temperature.

    Science.gov (United States)

    Khiri, Mohammad Zulhasif Ahmad; Matori, Khamirul Amin; Zainuddin, Norhazlin; Abdullah, Che Azurahanim Che; Alassan, Zarifah Nadakkavil; Baharuddin, Nur Fadilah; Zaid, Mohd Hafiz Mohd

    2016-01-01

    This paper reported the uses of ark clam shell calcium precursor in order to form hydroxyapatite (HA) via the wet chemical precipitation method. The main objective of this research is to acquire better understanding regarding the effect of sintering temperature in the fabrication of HA. Throughout experiment, the ratio of Ca:P were constantly controlled, between 1.67 and 2.00. The formation of HA at these ratio was confirmed by means of energy-dispersive X-ray spectroscopy analysis. In addition, the effect of sintering temperature on the formation of HA was observed using X-ray diffraction analysis, while the structural and morphology was determined by means of field emission scanning electron microscopy. The formation of HA nanoparticle was recorded (~35-69 nm) in the form of as-synthesize HA powder. The bonding compound appeared in the formation of HA was carried out using Fourier transform infrared spectroscopy such as biomaterials that are expected to find potential applications in orthopedic and biomedical industries .

  2. Three-decade changes in chemical composition of precipitation in Guangzhou city, southern China: has precipitation recovered from acidification following sulphur dioxide emission control?

    Directory of Open Access Journals (Sweden)

    Yunting Fang

    2013-09-01

    Full Text Available We examined if precipitation had recovered from acidification in Guangzhou, the third biggest city in China, and if sulphur deposition in precipitation had decreased, and to what extent if yes, following abatement strategies in sulphur dioxide (SO2 emission and energy use implemented since 2001. SO2 emissions were decreasing steadily since 2001, but a marked recovery of precipitation acidity occurred only since 2005; precipitation pH values decreased from 4.65 in 2001 to 4.34 in 2005 and then increased to 5.08 in 2010, while in the same period acid rain (pH<5.6 frequency increased from 70% to 81% and then decreased to 48%. During this period, the change in pH value and sulphate concentration more reflected the patterns of SO2 emission at provincial and national scales than at the local scale, suggesting that precipitation chemical composition was largely controlled by the emissions of pollutants from surrounding areas of the study city. Since 2001, sulphate deposition in precipitation decreased significantly (by 40% but nitrogen deposition remained unaltered. More importantly, the current sulphur (43 kg S ha−1 yr−1 as sulphate and nitrogen depositions (35 kg N ha−1 yr−1 as ammonium plus nitrate in 2010 were still among the highest in China. These results highlight the fact that ambient sulphur and nitrogen deposition still pose a threat to the health of both terrestrial and aquatic ecosystems. Precipitation may become more acidified in the future because the deposition of alkaline dusts containing calcium is also likely to decrease with stricter SO2 emission control policy and reduced construction activities. Additionally, we recommend that a reduction of emissions of nitrogen and chlorine bearing pollutants is urgently required for complete control on acid deposition.

  3. Precipitation and ultimate pH effect on chemical and gelation properties of protein prepared by isoelectric solubilization/precipitation process from pale, soft, exudative (PSE)-like chicken breast meat1.

    Science.gov (United States)

    Zhao, X; Xing, T; Chen, X; Han, M-Y; Li, X; Xu, X-L; Zhou, G-H

    2017-05-01

    Pale, soft, exudative (PSE)-like chicken breast is considered deteriorated raw material in the poultry meat industry that has inferior processing ability. The chemical and gelation properties of PSE-like chicken breast meat paste were studied. These pastes were prepared by the pH adjustment method and protein isolation using the isoelectric solubilization/precipitation (ISP) process from PSE-like chicken meat. The ISP-isolated samples were solubilized at pH 11.0 and recovered at pH 5.5 and 6.2. The ultimate pH of the ISP-isolated protein and meat paste was adjusted to 6.2 and 7.0. The ultimate pH in this article referred to the final pH of the extracted protein and meat paste. Higher reactive sulfhydryl content and surface hydrophobicity were found in the precipitation at pH 6.2 than at pH 5.5. However, various ultimate pH values showed no significant influence on the surface hydrophobicity. The hardness of gel, as measured by textural profile analysis, was improved using 6.2 as the precipitation pH compared with pH 5.5. The viscoelastic modulus (G΄) of gel pastes prior to the thermal gelation was higher with ISP treatment. However, lower G΄ was seen after thermal gelation compared with the control. Dynamic rheological measurement demonstrated a different gel-forming mechanism for protein precipitated at pH values of 5.5 and 6.2 compared with the meat paste. The cooking loss showed that the recovered protein failed to form a gel with good water-retention capacity unless the ultimate pH was adjusted to 7.0. Gels made from protein extracted by the ISP method had higher yellowness and lower redness values, probably due to protein denaturation. Precipitation at pH 6.2 formed a harder gel with lower water-retention ability than that at pH 5.5, and this result was possibly due to higher surface hydrophobicity and S-S bridge formation. Overall, network characteristics of ISP-treated protein gels were strongly dependent on precipitation pH and ultimate pH. © 2016

  4. Peristalticity-driven banded chemical garden

    Science.gov (United States)

    Pópity-Tóth, É.; Schuszter, G.; Horváth, D.; Tóth, Á.

    2018-05-01

    Complex structures in nature are often formed by self-assembly. In order to mimic the formation, to enhance the production, or to modify the structures, easy-to-use methods are sought to couple engineering and self-assembly. Chemical-garden-like precipitation reactions are frequently used to study such couplings because of the intrinsic chemical and hydrodynamic interplays. In this work, we present a simple method of applying periodic pressure fluctuations given by a peristaltic pump which can be used to achieve regularly banded precipitate membranes in the copper-phosphate system.

  5. Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Muhammad Faizan Shareef

    2017-10-01

    Full Text Available This paper presents the effect of a synthesis method for cobalt catalyst supported on hydrotalcite material for Fischer-Tropsch synthesis. The hydrotalcite supported cobalt (HT-Co catalysts were synthesized by co-precipitation and hydrothermal method. The prepared catalysts were characterized by using various techniques like BET (Brunauer–Emmett–Teller, SEM (Scanning Electron Microscopy, TGA (Thermal Gravimetric Analysis, XRD (X-ray diffraction spectroscopy, and FTIR (Fourier Transform Infrared Spectroscopy. Fixed bed micro reactor was used to test the catalytic activity of prepared catalysts. The catalytic testing results demonstrated the performance of hydrotalcite based cobalt catalyst in Fischer-Tropsch synthesis with high selectivity for liquid products. The effect of synthesis method on the activity and selectivity of catalyst was also discussed. Copyright © 2017 BCREC Group. All rights reserved Received: 3rd November 2016; Revised: 26th February 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Sharif, M.S., Arslan, M., Iqbal, N., Ahmad, N., Noor, T. (2017. Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3: 357-363 (doi:10.9767/bcrec.12.3.762.357-363

  6. A new computational method for studies of 3-D dislocation-precipitate interactions in reactor steels

    International Nuclear Information System (INIS)

    Takahashi, A.; Gohniem, N.M.

    2008-01-01

    To enable computational design of advanced steels for reactor pressure vessels and core structural components, we present a new computational method for studies of the interaction between dislocations and precipitates. The method is based on three-dimensional parametric dislocation dynamics, Eshelby's inclusion and inhomogeneity solutions, and boundary and volume element numerical models. Results from this new method are successfully compared to recent molecular dynamics (MD) simulation results, and show good agreement with atomistic simulations. Then the method is first applied to the investigation of the critical shear stress (CSS) of precipitates sheared by successive dislocation cuttings. The simulations reveal that the CSS is reduced when dislocations cut precipitates, and that it can be as low as half the original value for a completely sheared precipitate. The influence of precipitate geometry and the ratio of precipitate-to-matrix elastic shear modulus on the CSS is presented, and the dependence of the interaction stress between dislocations and precipitates on their relative geometry is discussed. Finally an extension of the method to incorporate the dislocation core contribution to the CSS is highlighted. (author)

  7. Chemical state analysis of iron(III) compounds precipitated homogeneously from solutions containing urea by means of Moessbauer spectrometry and x-ray diffractometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Ohyabu, Matashige; Murakami, Tetsuro; Horie, Tsuyoshi.

    1978-01-01

    Chemical states of iron(III) compounds, precipitated homogeneously by heating the iron(III) salt solution at 363 K in the presence of urea, was studied by means of Moessbauer spectrometry and X-ray diffractometry. The pH-time relation of urea hydrolysis revealed that the precipitation process from homogeneous solution is identical to the hydrolysis of iron(III) ion at pH around 2 under the homogeneous supply of OH - ion, which is generated by hydrolysis of urea. Accordingly, iron(III) oxide hydroxide or similar compounds to the hydrolysis products of iron(III) ion was precipitated by the precipitation from homogeneous solution methods. Akaganeite (β-FeOOH) was crystallized from 0.1 M iron(III) chloride solution. Goethite(α-FeOOH) and hematite(α-Fe 2 O 3 ) was precipitated from 0.1 M iron(III) nitrate solution, vigorous liberation of OH - ion favoring the crystallization of hematite. The addition of chloride ion to the solution resulted in the formation of akaganeite. Basic salt of iron sulfate[NH 4 Fe 3 (OH) 6 (SO 4 ) 2 ] and goethite were formed from 0.1 M iron(III) sulfate solution, the former being obtained in the more moderate condition of the urea hydrolysis ( 363 K). (author)

  8. THE CHEMICAL TECHNOLOGIES OF SOIL’S DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Roxana – Gabriela POPA

    2017-12-01

    Full Text Available The chemical soil degradation technologies are based on the pollutant conversion and immobilisation, or the mobilization, extraction and washing of pollutants. They use chemical agents that oxidize or reduce pollutants to less toxic or non-toxic forms and immobilize them in the underground environment in order to diminish their migration and the extent of pollution. Classification of chemical methods of depollution is based on the dominant reaction criterion: oxidation, reduction, neutralization, precipitation, chemical extraction, hydrolysis, dehalogenation, precipitation.

  9. H-O isotopic and chemical characteristics of a precipitation-lake water-groundwater system in a desert area

    Science.gov (United States)

    Jin, Ke; Rao, Wenbo; Tan, Hongbing; Song, Yinxian; Yong, Bin; Zheng, Fangwen; Chen, Tangqing; Han, Liangfeng

    2018-04-01

    The recharge mechanism of groundwater in the Badain Jaran Desert, North China has been a focus of research and still disputable in the past two decades. In this study, the chemical and hydrogen (H) and oxygen (O) isotopic characteristics of shallow groundwater, lake water and local precipitation in the Badain Jaran Desert and neighboring areas were investigated to reveal the relationships between various water bodies and the recharge source of shallow groundwater. Isotopic and hydrogeochemical results show that (1) shallow groundwater was associated with local precipitation in the Ayouqi and Yabulai regions, (2) lake water was mainly recharged by groundwater in the desert hinterland, (3) shallow groundwater of the desert hinterland, Yabulai Mountain and Gurinai Grassland had a common recharge source. Shallow groundwater of the desert hinterland had a mean recharge elevation of 1869 m a.s.l. on the basis of the isotope-altitude relationship and thus originated chiefly from lateral infiltration of precipitation in the Yabulai Mountain. It is further concluded that shallow groundwater flowed towards the Gurinai Grassland according to the groundwater table contour map. Along the flow pathway, the H-O isotopic variations were primarily caused by the evaporation effect but chemical variations of shallow groundwater were affected by multiple factors, e.g., evaporation effect, dilution effect of occasional heavy-precipitation and dissolution of aquifer evaporites. Our findings provide new insight into the groundwater cycle and benefit the management of the limited water resources in the arid desert area.

  10. Gravimetric determination of thorium (a study of precipitates with the aid of the Chevenard thermobalance)

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, T; Duval, C

    1949-01-31

    A comparative study was made of numerous methods of the quantitative determination of thorium, with the view to fix the optimal temperature conditions of the calcination of the precipitates. The results are presented in a table giving, for each precipitating reagent, the chemical nature of the precipitate and the recommended temperature limits for the drying and the calcination. Critical remarks are made on many of the known methods of thorium dosage.

  11. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Hundecha, Y.; Lawrence, D.

    2015-01-01

    Information on extreme precipitation for future climate is needed to assess the changes in the frequency and intensity of flooding. The primary source of information in climate change impact studies is climate model projections. However, due to the coarse resolution and biases of these models......), three are bias correction (BC) methods, and one is a perfect prognosis method. The eight methods are used to downscale precipitation output from 15 regional climate models (RCMs) from the ENSEMBLES project for 11 catchments in Europe. The overall results point to an increase in extreme precipitation...... that at least 30% and up to approximately half of the total variance is derived from the SDMs. This study illustrates the large variability in the expected changes in extreme precipitation and highlights the need for considering an ensemble of both SDMs and climate models. Recommendations are provided...

  12. Mass Spectrometry of Intact Proteins Reveals +98 u Chemical Artifacts Following Precipitation in Acetone.

    Science.gov (United States)

    Güray, Melda Z; Zheng, Shi; Doucette, Alan A

    2017-02-03

    Protein precipitation in acetone is frequently employed ahead of mass spectrometry for sample preconcentration and purification. Unfortunately, acetone is not chemically inert; mass artifacts have previously been observed on glycine-containing peptides when exposed to acetone under acidic conditions. We herein report a distinct chemical modification occurring at the level of intact proteins when incubated in acetone. This artifact manifests as one or more satellite peaks in the MS spectrum of intact protein, spaced 98 u above the mass of the unmodified protein. Other artifacts (+84, +112 u) also appear upon incubation of proteins or peptides in acetone. The reaction is pH-sensitive, being suppressed when proteins are exposed to acetone under acidic conditions. The +98 u artifact is speculated to originate through an intermediate product of aldol condensation of acetone to form diacetone alcohol and mesityl oxide. A +98 u product could originate from nucleophilic attack on mesityl oxide or through condensation with diacetone alcohol. Given the extent of modification possible upon exposure of proteins to acetone, particularly following overnight solvent exposure or incubation at room temperature, an awareness of the variables influencing this novel modification is valued by proteomics researchers who employ acetone precipitation for protein purification.

  13. Application of a precipitation method for uranium recovery from Abu-Zaabal phosphoric acid plant, egypt

    International Nuclear Information System (INIS)

    El-Hazek, N.M.T.; Hussein, E.M.

    1997-01-01

    Current industrial recovery of uranium from 30% phosphoric acid-produced by the dihydrate process-is based on solvent extraction method. Uranium recovery from concentrated phosphoric acid (45-52% P 2 O 5 ) produced by evaporation of the 30% acid or directly produced by the hemihydrate process, by solvent extraction is difficult to apply in practice. In addition to possible contamination of the acid by the organic solvents and/or their deterioration. This paper investigates the possibility of applying a precipitation method (Weterings and Janssen, 1985) for uranium recovery from both low (28% P 2 O 2 ) and high (48% P 2 O 5 ) concentration phosphoric acids produced by abu-Zaabal phosphoric acid plant (abu-Zaabal fertilizers and chemicals Co., Egypt). The 28% acid produced by H 2 SO 4 dihydrate method and the 48% acid produced by evaporation of the 28% acid

  14. Tests for improvement of decontamination factors on RWTP technological line of precipitation

    International Nuclear Information System (INIS)

    Popovici, C.

    1998-01-01

    Low and intermediate level radioactive wastes are produced from diverse applications of radionuclides and radioactive materials in industry, medicine, agriculture and research. Many of the liquid wastes need treatment for safe management. Chemical precipitation process is well established for the removal of radioactive from LLW and ILW. The precipitation of insoluble compounds is one of the oldest and most used process for the treatment of aqueous waste. The precipitation can be performed either in a simple step or by combined chemical treatment which mainly includes as radioactive carries iron oxo-hydroxides, iron phosphate, calcium phosphate and cooper ferrocyanide. The contaminants are removed from LLW and ILW during precipitation by different mechanisms such as: coagulation and flocculation process, precipitation and co-precipitation, adsorption on the coagulant aid, ion exchange and physical enmeshment by coagulant aid. All these processes are directly dependent on the precipitate properties and its structure which are connected with the initial system composition and the precipitation procedure. Chemical precipitation method for treatment of LLW and ILW by co-precipitation of caesium with cooper ferrocyanide was employed on the real radioactive wastes where the volumes were 3 m 3 , 24 m 3 and 30 m 3 . The percentage removals of Cs-137 from 2285 Bq, 1310 Bq and 1232 Bq per litre of real effluents were 98.8%, 98.9% and 99.1%, respectively. Test runs for removal of Cs-137 from the wastes varied from 90% to 95%. High decontamination factors were observed in the pH range of 9 to 10.5. (author)

  15. Miniaturized and green method for determination of chemical oxygen demand using UV-induced oxidation with hydrogen peroxide and single drop microextraction

    International Nuclear Information System (INIS)

    Akhoundzadeh, Jeyran; Chamsaz, Mahmoud; Costas, Marta; Lavilla, Isela; Bendicho, Carlos

    2013-01-01

    We report on a green method for the determination of low levels of chemical oxygen demand. It is based on the combination of (a) UV-induced oxidation with hydrogen peroxide, (b) headspace single-drop microextraction with in-drop precipitation, and (c) micro-turbidimetry. The generation of CO 2 after photolytic oxidation followed by its sequestration onto a microdrop of barium hydroxide gives rise to a precipitate of barium carbonate which is quantified by turbidimetry. UV-light induced oxidation was studied in the absence and presence of H 2 O 2 , ultrasound, and ferrous ion. Determinations of chemical oxygen demand were performed using potassium hydrogen phthalate as a model compound. The optimized method gives a calibration curve that is linear between 3.4 and 20 mg L −1 oxygen. The detection limit was 1.2 mg L −1 of oxygen, and the repeatability (as relative standard deviation) was around 5 %. The method was successfully applied to the determination of chemical oxygen demand in different natural waters and a synthetic wastewater. (author)

  16. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Hundecha, Y.; Lawrence, D.

    impact studies. Four methods are based on change factors and four are bias correction methods. The change factor methods perturb the observations according to changes in precipitation properties estimated from the Regional Climate Models (RCMs). The bias correction methods correct the output from...... the RCMs. The eight methods are used to downscale precipitation output from fifteen RCMs from the ENSEMBLES project for eleven catchments in Europe. The performance of the bias correction methods depends on the catchment, but in all cases they represent an improvement compared to RCM output. The overall...... results point to an increase in extreme precipitation in all the catchments in winter and in most catchments in summer. For each catchment, the results tend to agree on the direction of the change but differ in the magnitude. These differences can be mainly explained due to differences in the RCMs....

  17. Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods.

    Science.gov (United States)

    Arroyo, Fátima; Font, Oriol; Fernández-Pereira, Constantino; Querol, Xavier; Juan, Roberto; Ruiz, Carmen; Coca, Pilar

    2009-08-15

    In this study the purity of the germanium end-products obtained by two different precipitation methods carried out on germanium-bearing solutions was evaluated as a last step of a hydrometallurgy process for the recovery of this valuable element from the Puertollano Integrated Gasification Combined Cycle (IGCC) fly ash. Since H(2)S is produced as a by-product in the gas cleaning system of the Puertollano IGCC plant, precipitation of germanium as GeS(2) was tested by sulfiding the Ge-bearing solutions. The technological and hazardous issues that surround H(2)S handling conducted to investigate a novel precipitation procedure: precipitation as an organic complex by adding 1,2-dihydroxy benzene pyrocatechol (CAT) and cetyltrimethylammonium bromide (CTAB) to the Ge-bearing solutions. Relatively high purity Ge end-products (90 and 93% hexagonal-GeO(2) purity, respectively) were obtained by precipitating Ge from enriched solutions, as GeS(2) sulfiding the solutions with H(2)S, or as organic complex with CAT/CTAB mixtures and subsequent roasting of the precipitates. Both methods showed high efficiency (>99%) to precipitate selectively Ge using a single precipitation stage from germanium-bearing solutions.

  18. Understanding Single-Thread Meandering Rivers with High Sinuosity on Mars through Chemical Precipitation Experiments

    Science.gov (United States)

    Lim, Y.; Kim, W.

    2015-12-01

    Meandering rivers are extremely ubiquitous on Earth, yet it is only recently that single-thread experimental channels with low sinuosity have been created. In these recent experiments, as well as in natural rivers, vegetation plays a crucial role in maintaining a meandering pattern by adding cohesion to the bank and inhibiting erosion. The ancient, highly sinuous channels found on Mars are enigmatic because presumably vegetation did not exist on ancient Mars. Under the hypothesis that Martian meandering rivers formed by chemical precipitation on levees and flood plain deposits, we conducted carbonate flume experiments to investigate the formation and evolution of a single-thread meander pattern without vegetation. The flow recirculating in the flume is designed to accelerate chemical reactions - dissolution of limestone using CO2 gas to produce artificial spring water and precipitation of carbonates to increase cohesion- with precise control of water discharge, sediment discharge, and temperature. Preliminary experiments successfully created a single-thread meandering pattern through chemical processes. Carbonate deposits focused along the channel sides improved the bank stability and made them resistant to erosion, which led to a stream confined in a narrow path. The experimental channels showed lateral migration of the bend through cut bank and point bar deposits; intermittent floods created overbank flow and encouraged cut bank erosion, which enhanced lateral migration of the channel, while increase in sediment supply improved lateral point bar deposition, which balanced erosion and deposition rates. This mechanism may be applied to terrestrial single-thread and/or meandering rivers with little to no vegetation or before its introduction to Earth and also provide the link between meandering river records on Mars to changes in Martian surface conditions.

  19. Synthesis of nanocrystalline hydroxyapatite by using precipitation method

    International Nuclear Information System (INIS)

    Mobasherpour, I.; Heshajin, M. Soulati; Kazemzadeh, A.; Zakeri, M.

    2007-01-01

    In this investigation, hydroxyapatite powder has been synthesized from the calcium nitrate hydrated and di-ammonium hydrogen phosphate solution by precipitation method and heat treatment of hydroxyapatite powders. In order to study the structural evolution, the Fourier transform infrared spectroscopy (FTIR), the X-ray diffraction (XRD) and simultaneous thermal analysis (STA) were used. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to estimate the particle size of the powder and observe the morphology and agglomeration state of the powder. Results show that hydroxyapatite nanocrystalline can successfully be produced by precipitation technique from raw materials. Hydroxyapatite grain gradually increased in size when temperature increased from 100 to 1200 o C, and the hydroxyapatite hexagonal-dipyramidal phase was not transformed to the other calcium phosphates phases up to 1200 o C

  20. Effect of the precipitation interpolation method on the performance of a snowmelt runoff model

    Science.gov (United States)

    Jacquin, Alexandra

    2014-05-01

    Uncertainties on the spatial distribution of precipitation seriously affect the reliability of the discharge estimates produced by watershed models. Although there is abundant research evaluating the goodness of fit of precipitation estimates obtained with different gauge interpolation methods, few studies have focused on the influence of the interpolation strategy on the response of watershed models. The relevance of this choice may be even greater in the case of mountain catchments, because of the influence of orography on precipitation. This study evaluates the effect of the precipitation interpolation method on the performance of conceptual type snowmelt runoff models. The HBV Light model version 4.0.0.2, operating at daily time steps, is used as a case study. The model is applied in Aconcagua at Chacabuquito catchment, located in the Andes Mountains of Central Chile. The catchment's area is 2110[Km2] and elevation ranges from 950[m.a.s.l.] to 5930[m.a.s.l.] The local meteorological network is sparse, with all precipitation gauges located below 3000[m.a.s.l.] Precipitation amounts corresponding to different elevation zones are estimated through areal averaging of precipitation fields interpolated from gauge data. Interpolation methods applied include kriging with external drift (KED), optimal interpolation method (OIM), Thiessen polygons (TP), multiquadratic functions fitting (MFF) and inverse distance weighting (IDW). Both KED and OIM are able to account for the existence of a spatial trend in the expectation of precipitation. By contrast, TP, MFF and IDW, traditional methods widely used in engineering hydrology, cannot explicitly incorporate this information. Preliminary analysis confirmed that these methods notably underestimate precipitation in the study catchment, while KED and OIM are able to reduce the bias; this analysis also revealed that OIM provides more reliable estimations than KED in this region. Using input precipitation obtained by each method

  1. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN from a Geostationary Satellite.

    Directory of Open Access Journals (Sweden)

    Yu Liu

    Full Text Available The prediction of the short-term quantitative precipitation nowcasting (QPN from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC; the Horn-Schunck optical-flow scheme (PHS; and the Pyramid Lucas-Kanade Optical Flow method (PPLK, which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6. The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  2. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.

    Science.gov (United States)

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  3. Transferability in the future climate of a statistical downscaling method for precipitation in France

    Science.gov (United States)

    Dayon, G.; Boé, J.; Martin, E.

    2015-02-01

    A statistical downscaling approach for precipitation in France based on the analog method and its evaluation for different combinations of predictors is described, with focus on the transferability of the method to the future climate. First, the realism of downscaled present-day precipitation climatology and interannual variability for different combinations of predictors from four reanalyses is assessed. Satisfactory results are obtained, but elaborated predictors do not lead to major and consistent across-reanalyses improvements. The downscaling method is then evaluated on its capacity to capture precipitation trends in the last decades. As uncertainties in downscaled trends due to the choice of the reanalysis are large and observed trends are weak, this analysis does not lead to strong conclusions on the applicability of the method to a changing climate. The temporal transferability is then assessed thanks to a perfect model framework. The statistical downscaling relationship is built using present-day predictors and precipitation simulated by 12 regional climate models. The entire projections are then downscaled, and future downscaled and simulated precipitation changes are compared. A good temporal transferability is obtained only with a specific combination of predictors. Finally, the regional climate models are downscaled, thanks to the relationship built with reanalyses and observations, for the best combination of predictors. Results are similar to the changes simulated by the models, which reinforces our confidence in the realism of the models and of the downscaling method. Uncertainties in precipitation change due to reanalyses are found to be limited compared to those due to regional simulations.

  4. Precipitation of plutonium oxalate from homogeneous solutions

    International Nuclear Information System (INIS)

    Rao, V.K.; Pius, I.C.; Subbarao, M.; Chinnusamy, A.; Natarajan, P.R.

    1986-01-01

    A method for the precipitation of plutonium(IV) oxalate from homogeneous solutions using diethyl oxalate is reported. The precipitate obtained is crystalline and easily filterable with yields in the range of 92-98% for precipitations involving a few mg to g quantities of plutonium. Decontamination factors for common impurities such as U(VI), Am(III) and Fe(III) were determined. TGA and chemical analysis of the compound indicate its composition as Pu(Csub(2)Osub(4))sub(2).6Hsub(2)O. Data are obtained on the solubility of the oxalate in nitric acid and in mixtures of nitric acid and oxalic acid of varying concentrations. Green PuOsub(2) obtained by calcination of the oxalate has specifications within the recommended values for trace foreign substances such as chlorine, fluorine, carbon and nitrogen. (author)

  5. Long-Term Precipitation Analysis and Estimation of Precipitation Concentration Index Using Three Support Vector Machine Methods

    Directory of Open Access Journals (Sweden)

    Milan Gocic

    2016-01-01

    Full Text Available The monthly precipitation data from 29 stations in Serbia during the period of 1946–2012 were considered. Precipitation trends were calculated using linear regression method. Three CLINO periods (1961–1990, 1971–2000, and 1981–2010 in three subregions were analysed. The CLINO 1981–2010 period had a significant increasing trend. Spatial pattern of the precipitation concentration index (PCI was presented. For the purpose of PCI prediction, three Support Vector Machine (SVM models, namely, SVM coupled with the discrete wavelet transform (SVM-Wavelet, the firefly algorithm (SVM-FFA, and using the radial basis function (SVM-RBF, were developed and used. The estimation and prediction results of these models were compared with each other using three statistical indicators, that is, root mean square error, coefficient of determination, and coefficient of efficiency. The experimental results showed that an improvement in predictive accuracy and capability of generalization can be achieved by the SVM-Wavelet approach. Moreover, the results indicated the proposed SVM-Wavelet model can adequately predict the PCI.

  6. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  7. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    FU Jie; WU HuaJie; LIU YangChun; KANG YongLin

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength Iow carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in Iow carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have obvious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  8. Comparative study between bioapatite and synthetic hydroxyapatite obtained by chemical precipitation and mechanochemical synthesis

    International Nuclear Information System (INIS)

    Quispe M, J.; Moreno, M.; Montano, J.; Pillaca, M.; Guzman, A.; Cavero, A.; Arce, M.

    2009-01-01

    A comparative study between the inorganic component of a human bone tissue with respect of apatite synthesized by chemical precipitation, mechanochemical synthesis and a sample of commercial hidroxyapatite are shown. The samples were studied by X-ray diffraction, atomic absorption spectroscopy and Fourier transform infrared spectroscopy. The results show similar structural characteristics among all samples identifying that sample prepared by mechanochemical synthesis is a kind of hydroxyapatite which has substitutions of carbonate in its crystalline structure, similar to the inorganic component of bone tissue. (author).

  9. Precipitation behaviors of X70 acicular ferrite pipeline steel

    Institute of Scientific and Technical Information of China (English)

    Hao Yu; Yi Sun; Qixiang Chen; Haitao Jiang; Lihong Zhang

    2006-01-01

    The morphology, structure, and chemical composition of precipitates in the final microstructure of Nb-V-Ti microalloyed X70 acicular ferrite pipeline steel were investigated using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Precipitates observed by TEM can be classified into two groups. The large precipitates are complex compounds that comprise square-shaped TiN precipitate as core with fine Nb-containing precipitate nucleated on pre-existing TiN precipitate as caps on one or more faces at high temperature. In contrast, the fine and spherical Nb carbides and/or carbonitrides precipitate heterogeneously on dislocations and sub-boundaries at low temperature. From the analysis in terms of thermodynamics, EDS and chemical composition of the steel, NbC precipitation is considered to be the predominant precipitation behavior in the tested steel under the processing conditions of this research.

  10. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  11. Violet emission from Fe doped ZnO nanoparticles synthesized by precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Kanchana, S., E-mail: skanchana09@gmail.com [PG & Research Department of Physics, Urumu Dhanalaksmi College, Tiruchirapalli 620019 (India); Chithra, M. Jay [Nanomaterials Research Laboratory, Department of Physics, Government Arts College, Karur 639005 (India); Ernest, Suhashini [PG & Research Department of Physics, Urumu Dhanalaksmi College, Tiruchirapalli 620019 (India); Pushpanathan, K. [Nanomaterials Research Laboratory, Department of Physics, Government Arts College, Karur 639005 (India)

    2016-08-15

    In this article we have reported the synthesis of Fe doped zinc oxide nanoparticles by the chemical precipitation method. The structural, compositional and optical properties have been examined by powder X-ray diffractometer, scanning electron microscope, transmission electron microscope, ultraviolet–visible and spectrophotometer. X-ray diffraction analysis confirmed the crystallites are in nanometer size and the sample contains polycrystals with hexagonal wurtzite structure. The average crystallite size has been found to increase from 25 nm to 36 nm with increase in Fe concentration. Scanning electron microscope result also confirmed the nanosize of the particles. Ultraviolet–visible spectrum of Fe doped zinc oxide shows a red shift with respect to undoped zinc oxide. The band gap of the samples was calculated from ultraviolet–visible spectrum and it is narrow from 3.30 eV to 3.23 eV with increasing Fe dopant upto 6%. The stretching bonds in Zn– Fe–O have been observed in FTIR spectra.

  12. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    Directory of Open Access Journals (Sweden)

    H. Kokes

    2014-03-01

    Full Text Available The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III hydroxide was precipitated by adjusting the pH level of the solution. Subsequently, copper sulfate pentahydrate was obtained by using various precipitants (i.e. ethanol, methanol and sulfuric acid.

  13. Optical investigations on indium oxide nano-particles prepared through precipitation method

    International Nuclear Information System (INIS)

    Seetha, M.; Bharathi, S.; Dhayal Raj, A.; Mangalaraj, D.; Nataraj, D.

    2009-01-01

    Visible light emitting indium oxide nanoparticles were synthesized by precipitation method. Sodium hydroxide dissolved in ethanol was used as a precipitating agent to obtain indium hydroxide precipitates. Precipitates, thus formed were calcined at 600 deg. C for 1 h to obtain indium oxide nanoparticles. The structure of the particles as determined from the X-Ray diffraction pattern was found to be body centered cubic. The phase transformation of the prepared nanoparticles was analyzed using thermogravimetry. Surface morphology of the prepared nanoparticles was analyzed using high resolution-scanning electron microscopy and transmission electron microscopy. The results of the analysis show cube-like aggregates of size around 50 nm. It was found that the nanoparticles have a strong emission at 427 nm and a weak emission at 530 nm. These emissions were due to the presence of singly ionized oxygen vacancies and the nature of the defect was confirmed through Electron paramagnetic resonance analysis.

  14. Preparation and Sintering Behaviour of Alumina Powder by Ammonia Precipitation Method

    Directory of Open Access Journals (Sweden)

    Wang Liuyan

    2017-01-01

    Full Text Available In this paper, alumina precursor was prepared by the ammonia precipitation method which used Al (NO3 3 9H2O as aluminum source and NH4OH as a precipitator, adding a small amount of PEG4000 as the surface active agent. Finally γ-Al2O3 was obtained at 900° for 2h. The stable alumina crystal form of α-Al2O3 was got at 1100° for 2h. The influence of precipitation agent on the precursor was studied by means of TG / DTA and Tem, XRD etc. The effects of the synthesis temperature and time on the phase composition and morphology of the alumina powder were also analysed.

  15. Nanostructured barium titanate thin films from nanoparticles obtained by an emulsion precipitation method

    NARCIS (Netherlands)

    Woudenberg, F.C.M.; Sager, W.F.C.; ten Elshof, Johan E.; Verweij, H.

    2005-01-01

    Spherical non-agglomerated BaTiO3 precursor particles of 3–5 nm size were prepared by an emulsion precipitation method that consisted of the complexation of Ba- and Ti-precursors in separate water-in-decane emulsions, followed by mixing and controlled precipitation upon reactive decomposition of

  16. Joint distribution of temperature and precipitation in the Mediterranean, using the Copula method

    Science.gov (United States)

    Lazoglou, Georgia; Anagnostopoulou, Christina

    2018-03-01

    This study analyses the temperature and precipitation dependence among stations in the Mediterranean. The first station group is located in the eastern Mediterranean (EM) and includes two stations, Athens and Thessaloniki, while the western (WM) one includes Malaga and Barcelona. The data was organized in two time periods, the hot-dry period and the cold-wet one, composed of 5 months, respectively. The analysis is based on a new statistical technique in climatology: the Copula method. Firstly, the calculation of the Kendall tau correlation index showed that temperatures among stations are dependant during both time periods whereas precipitation presents dependency only between the stations located in EM or WM and only during the cold-wet period. Accordingly, the marginal distributions were calculated for each studied station, as they are further used by the copula method. Finally, several copula families, both Archimedean and Elliptical, were tested in order to choose the most appropriate one to model the relation of the studied data sets. Consequently, this study achieves to model the dependence of the main climate parameters (temperature and precipitation) with the Copula method. The Frank copula was identified as the best family to describe the joint distribution of temperature, for the majority of station groups. For precipitation, the best copula families are BB1 and Survival Gumbel. Using the probability distribution diagrams, the probability of a combination of temperature and precipitation values between stations is estimated.

  17. Observation of the movement of the precipitation by using tritium tracer

    International Nuclear Information System (INIS)

    Jiao, Yurong; Ishida, Sayuri; Takada, Kayoko; Imaizumi, Hiroshi; Kano, Naoki; Saito, Masaaki

    2011-01-01

    Tracer techniques have proven to be one of the most powerful tools to characterize the movement of air mass and pollutant transport in hydrological systems. In order to clarify the behavior of low-level tritium in the rain water, we have employed the measuring method of tritium applying a distillation process and an electrolytic enrichment process. The activity of tritium (T specific activity) in the obtained water was measured by liquid scintillation counter. This procedure was applied to bulk precipitation, imitative ground infiltrated precipitation and short term precipitation collected in Niigata City. Moreover, we investigated the concentrations of cations (Na + , K + , Ca 2+ , and Mg 2+ ) in the precipitation to associate with air mass transport patterns arriving at the place. From the above mentioned, next matters have been clarified: (1) T specific activity in precipitation was found to have a strong dependence on location and season. (2) The chemical components in precipitation during typhoon have notable character of marine air mass. (3) Associated ions in monthly precipitation showed seasonal variation, in fact, the seasonal variation of Ca 2+ and tritium were very similar. (4) Backward trajectory analysis method is useful for the analysis of the behavior of T specific activity and several ions in short-term precipitation. (author)

  18. Production of zirconia - hydroxyapatite (Z Ha) by using the co-precipitation method and studies of densification

    International Nuclear Information System (INIS)

    Silva, Viviane V.; Domingues, Rosana Z.

    1997-01-01

    Hydroxyapatite (Ha) is one of the materials most bio compatible with human bones and teeth, but its mechanical properties, especially toughness, are insufficient for hard tissue. Recent studies demonstrated that ceramics can be toughened by zirconium particles disperse in them, due to transformation, microcracking, and/or crack diffraction toughening mechanisms. The objective of this study is to characterize zirconia-toughened hydroxy apatite powders prepared by precipitation method by XRD, IR spectroscopy, TEM, TAG, DTA and BET analysis. The density of their ceramics was determined by mercury picnometry method. It was discussed the influence of addition of zirconium in different compositions and phases (Zr O 2 or Zr(OH) 4 ), compacting pressure and sintering temperature on zirconia - hydroxyapatite composites (ZHA). The results show that there is not any kind of reaction or chemical interaction between both phases of the composite materials. (author)

  19. Precipitation of stoichiometric hydroxyapatite by a continuous method

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Morales, J.; Boix, T.; Fraile, J.; Rodriguez-Clemente, R. [Consejo Superior de Investigaciones Cientificas, Barcelona (Spain). Inst. de Ciencia de Materiales; Torrent-Burgues, J. [UPC, Barcelona (Spain). Dept. d' Enginyeria Quimica

    2001-07-01

    In this paper we present the precipitation of hydroxyapatite (HA), Ca{sub 5}(OH)(PO{sub 4}){sub 3}, from highly concentrated CaCl{sub 2} and K{sub 2}HPO{sub 4} solutions, carried out by a continuous method in a MSMPR reactor. The procedure consists of adding the reagents in a ratio Ca to P equal to 1.67, maintaining a temperature of 85 C, inert N{sub 2} atmosphere inside the reactor, and monitoring and adjusting automatically the pH by means of a pH-stat system (pH = 9.0 {+-} 0.1). Under these conditions HA with a Ca to P ratio equal or close to the stoichiometric composition (Ca/P=1.667), with a high yield (up to 99%) and a high production rate (up to 1.17 g/l.min) is obtained at steady state. The CSD, morphology, crystallinity of the precipitates and impurities present fit the requirement for its biomedical applications. (orig.)

  20. Size-controlled Synthesis and Characterization of Fe3O4 Nanoparticles by Chemical Coprecipitation Method

    International Nuclear Information System (INIS)

    Chia Chin Hua; Sarani Zakaria; Farahiyan, R.; Liew Tze Khong; Mustaffa Abdullah; Sahrim Ahmad; Nguyen, K.L.

    2008-01-01

    Magnetite (Fe 3 O 4 ) nanoparticles have been synthesized using the chemical coprecipitation method. The Fe 3 O 4 nanoparticles were likely formed via dissolution-recrystallization process. During the precipitation process, ferrihydrite and Fe(OH) 2 particles formed aggregates and followed by the formation of spherical Fe 3 O 4 particles. The synthesized Fe 3 O 4 nanoparticles exhibited superparamagnetic behavior and in single crystal form. The synthesis temperature and the degree of agitation during the precipitation were found to be decisive in controlling the crystallite and particle size of the produced Fe 3 O 4 nanoparticles. Lower temperature and higher degree of agitation were the favorable conditions for producing smaller particle. The magnetic properties (saturation magnetization and coercivity) of the Fe 3 O 4 nanoparticles increased with the particle size. (author)

  1. Improvement of humidity resistance of water soluble core by precipitation method

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2011-05-01

    Full Text Available Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels; however, the soluble core can absorb water easily from the air at room temperature. To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core, a precipitation method and a two-level-three-full factorial central composite design were used, respectively. The properties of the cores treated by the precipitation method were compared with that without any treatment. Through a systematical study by means of both an environmental scanning electron microscope (ESEM and an energy dispersive X-ray (EDX analyzer, the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration, 4% water concentration and 0 min ignition time. The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity.

  2. Study of UO2-10WT%Gd2O3 fuel pellets obtained by seeding method using AUC co-precipitation and mechanical mixing processes

    International Nuclear Information System (INIS)

    Lima, M.M.F.; Ferraz, W.B.A.; Santos, M.M. dos; Pinto, L.C.M.; Santos, A.

    2008-01-01

    The use of gadolinium and uranium mixed oxide as a nuclear fuel aims to obtain a fuel with a performance better than that of UO 2 fuel. In this work, seeding method was used to improve ionic diffusivity during sintering to produce high density pellets containing coarse grains by co-precipitation and mechanical mixing processes. Sintered UO 2 -10 wt% Gd 2 O 3 pellets were obtained using the reference processes with 2 wt% and 5 wt% UO 2 seeds with two granulometries, less than 20 μm and between 20 and 38 μm. Characterisation was carried out by chemical analysis, surface area, X-ray diffraction, SEM, WDS, image analysis, and densitometry. The seeding method using mechanical mixing process was more effective than the co-precipitation method. Furthermore, mechanical mixing process resulted in an increase in density of UO 2 -10wt% Gd 2 O 3 with seeds in relation to that of UO 2 -10wt% Gd 2 O 3 without seeds. (author)

  3. Predictability of monthly temperature and precipitation using automatic time series forecasting methods

    Science.gov (United States)

    Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris

    2018-02-01

    We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.

  4. Synthesis of Sr- and Mg- doped lanthanum gallate by carbonate co-precipitation

    International Nuclear Information System (INIS)

    Sunitha, Y.; Narasimham, K.V.N.S.V.P.L.; Raju, V.S.; Kumar, Sanjiv

    2010-01-01

    Sr- and Mg- doped lanthanum gallate (LSGM) are promising electrolytes for low temperature solid oxide fuel cells (SOFCs) in view of their high ionic conductivity and stability over a wide range of oxygen partial pressures. LSGM powders are usually prepared by solid-state reactions. However high sintering temperature (∼ 1500 deg C) required for densification and the formation of secondary phases are the major drawbacks of the method. Wet-chemical method is a suitable alternative to solid-state synthesis with the prospect of the realisation of phase pure material with good sinterability at comparatively lower temperatures. In this paper we present the results of our investigation on the synthesis of LaGaO 3 and LSGM by a wet-chemical method through carbonate co-precipitation using ammonium carbonate and ammonium bicarbonate as precipitants. Phase and microstructural evolution of the material have been studied by XRD and SEM respectively, while compositional analysis has been performed by ion beam analysis (IBA) techniques. In addition we have also investigated the incorporation of Sr and Mg in the lattice of LaGaO 3 by (a) solid-state reaction route and (b) wet-chemical approach

  5. Characterization and comparison of iron oxyhydroxide precipitates from biotic and abiotic groundwater treatments

    DEFF Research Database (Denmark)

    Arturi, Katarzyna R.; Bender Koch, Christian; Søgaard, Erik G.

    2017-01-01

    Removal of iron is an important step in groundwater treatment for drinking water production. It is performed to prevent organoleptic issues and clogging in water supply systems. Iron can be eliminated with a purely physico-chemical (abiotic) method or biotically with the help of iron......-oxidizing bacteria (FeOB). Each of the purification methods requires different operating conditions and results in formation of iron oxyhydroxide (FeOOH) precipitates. Knowledge about the differences in composition and properties of the biotic and abiotic precipitates is desirable from a technical, but also...

  6. Rough Precipitation Forecasts based on Analogue Method: an Operational System

    Science.gov (United States)

    Raffa, Mario; Mercogliano, Paola; Lacressonnière, Gwendoline; Guillaume, Bruno; Deandreis, Céline; Castanier, Pierre

    2017-04-01

    In the framework of the Climate KIC partnership, has been funded the project Wat-Ener-Cast (WEC), coordinated by ARIA Technologies, having the goal to adapt, through tailored weather-related forecast, the water and energy operations to the increased weather fluctuation and to climate change. The WEC products allow providing high quality forecast suited in risk and opportunities assessment dashboard for water and energy operational decisions and addressing the needs of sewage/water distribution operators, energy transport & distribution system operators, energy manager and wind energy producers. A common "energy water" web platform, able to interface with newest smart water-energy IT network have been developed. The main benefit by sharing resources through the "WEC platform" is the possibility to optimize the cost and the procedures of safety and maintenance team, in case of alerts and, finally to reduce overflows. Among the different services implemented on the WEC platform, ARIA have developed a product having the goal to support sewage/water distribution operators, based on a gradual forecast information system ( at 48hrs/24hrs/12hrs horizons) of heavy precipitation. For each fixed deadline different type of operation are implemented: 1) 48hour horizon, organisation of "on call team", 2) 24 hour horizon, update and confirm the "on call team", 3) 12 hour horizon, secure human resources and equipment (emptying storage basins, pipes manipulations …). More specifically CMCC have provided a statistical downscaling method in order to provide a "rough" daily local precipitation at 24 hours, especially when high precipitation values are expected. This statistical technique consists of an adaptation of analogue method based on ECMWF data (analysis and forecast at 24 hours). One of the most advantages of this technique concerns a lower computational burden and budget compared to running a Numerical Weather Prediction (NWP) model, also if, of course it provides only this

  7. A simple and effective method for detecting precipitated proteins in MALDI-TOF MS.

    Science.gov (United States)

    Oshikane, Hiroyuki; Watabe, Masahiko; Nakaki, Toshio

    2018-04-01

    MALDI-TOF MS has developed rapidly into an essential analytical tool for the life sciences. Cinnamic acid derivatives are generally employed in routine molecular weight determinations of intact proteins using MALDI-TOF MS. However, a protein of interest may precipitate when mixed with matrix solution, perhaps preventing MS detection. We herein provide a simple approach to enable the MS detection of such precipitated protein species by means of a "direct deposition method" -- loading the precipitant directly onto the sample plate. It is thus expected to improve routine MS analysis of intact proteins. Copyright © 2018. Published by Elsevier Inc.

  8. Structural characterization of FeVO{sub 4} synthesized by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Ganesh; Sinha, Sourav; Rambabu, P.; Das, P.; Gupta, A. K.; Turpu, G. R., E-mail: dr.tgreddy@gmail.com [Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur 495 009 (India)

    2016-05-06

    A Low temperature method for synthesizing triclinic FeVO{sub 4} nanoparticles is manifested through co-precipitation method. Three precursor materials taken for the synthesis are Iron Nitrate, Ammonium Metavanadate and NaOH along with DI water. The attained precipitate was dried at 100°C for overnight and calcined at different temperatures ranging from 400°C - 650°C. The achieved powdered materials are studied through X-ray diffraction and found to be in pure single phase of P-1 space group symmetry. The crystallite size measured through Scherrer’s method is in found to be in the range of 40-60 nm. Raman spectroscopic studies were carried out at room temperature. Raman spectra is in agreement with the reported structural data of FeVO{sub 4}.

  9. Development, evaluation and optimization of superparamagnetite nanoparticles prepared by co-precipitation method.

    Science.gov (United States)

    Montaseri, Hashem; Alipour, Shohreh; Vakilinezhad, Molood Alsadat

    2017-08-01

    Magnetic nanoparticles (MNPs) are of high interest due to their application in medical fields, in particular for theranostics. Specific properties required for such particles include high magnetization, appropriate size and stability. Biocompatible magnetically soft magnetite particles (Fe 3 O 4 ) have been investigated for biological purposes. The intrinsic instability of these nanoparticles and their susceptibility to the oxidization in air, are limitations for their applications. Various methods have been described for synthesis of these nanoparticles among which co-precipitation method is widely experimented. In order to illustrate the synthesis of MNPs elaborately, the effect of different factors on particle formation were studied. The particles morphology, stability, paramagnetic effect, chemical structure and cytotoxicity were evaluated. Particles of 58 and 60 nm obtained by oleic acid coated (OMNPs) and citric acid coated (CMNPs) magnetite nanoparticles respectively. Transmission electron microscopy images exhibited the real sizes are 15 and 13 nm. Magnetic saturations of these nanoparticles were 72 and 68 emu/g which is suitable for medical applications. Both OMNPs and CMNPs were non-toxic to the SK-Br-3 and MCF-7 cells in the concentrations of <2.5 μg/mL. Since these particles exhibit relatively high magnetic saturation, low dose of such material would be required; therefore, these NPs seem to be suitable for theranostics.

  10. Chemical processing of liquid effluents in reprocessing plants: experience gained in France

    International Nuclear Information System (INIS)

    Fernandez, N.; Pottier, P.; Taillard, D.

    1977-01-01

    The radionuclides present in radioactive liquid effluents are precipitated for two purposes, viz: 1) to reduce the radioactivity to a level at which the liquids may be discharged; 2) to concentrate the radioactive compounds in the smallest possible volume for storage. The scientific principles of the radionuclide precipitation process are reviewed in the first part, which covers the solubility product, adsorption onto the surface of the precipitates, co-precipitation by isomorphism, ion-exchange on precipitates, etc. The paper goes on to discuss flocculation techniques, flocculation monitoring (zeta potential etc.) and methods of separating the solid and liquid phases. The specific methods for precipitating the main radionuclides are then described, with special reference to Sr, Cs, Ru, Co and Sb. The synergism of certain methods of precipitation is also discussed. The main part of the paper concerns the application of chemical processes for purifying low and medium active effluents in the Marcoule and La Hague centres. Particular emphasis is placed on the development of the processes used and the improvement of performance. Lastly, the paper discusses the possibilities offered in final treatment in such a way as to determine the limits to the effectiveness of the chemical processes. (orig.) [de

  11. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Science.gov (United States)

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  12. A study of precipitation from pure solutions of uranyl nitrate; Etude de la precipitaion de solutions pures de nitrate d'uranyle

    Energy Technology Data Exchange (ETDEWEB)

    Decrop, J; Holder, J; Sauteron, J [Commissariat a l' Energie Atomique, Usine du Bouchet, Service des Lab. de Recherches et de Controle, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    After its purification by extraction of the uranyl nitrate from the organic solvent, uranium has to be converted into solid form again: uranium trioxide (UO{sub 3}). It can be done either by thermal decomposition of uranyl nitrate or by precipitation of uranium, followed by filtration and calcination. Only the second method has been studied for now at the Bouchet plant. This paper reports the bench-scale and pilot-scale experiments of the studies of the precipitation of pure solutions of uranyl nitrate using ammonia (gaseous or in solution) or ammonium carbonate. These have been carried out at the Bouchet plant. It investigates the chemical aspect (pH, precipitates chemical composition) and the technical aspect of the different ways of precipitation (conditions of precipitation, decantation and filtration of precipitates). (M.P.)

  13. Methods of industrial waste water cleaning

    Directory of Open Access Journals (Sweden)

    Ján Brehuv

    2005-11-01

    Full Text Available The issue of „acid mine water“ (or AMD is well known in the world for some centuries. In the Eastern Slovakia, the most acid surface water occurs in the area of the old mine Smolník, which is closed and submerged for 15 years. The submitted contribution deals with the sulphateelimination at this locality. Recently, several methods of the sulphate-elimination from the mine water are applied. The best-known methods are the biological and physical-chemical oness and the chemical precipitation. The method described in this contribution deals with the chemical precipitation by polyaluminium chloride and calcium hydrate. By appliying of this method, very interesting results were obtained. The amount of SO42- anions decreased to almost zero-value, using optimal doses of the chemical reagents.

  14. Precipitation of uranium concentrates by hydrogen peroxide

    International Nuclear Information System (INIS)

    Barbosa Filho, O.

    1986-12-01

    An experimental study on the (UO 4 .xH 2 ) uranyl peroxide precipitation from a uranium process strip solution is presented. The runs were performed in a batch reactor, in laboratory scale. The main objective was to assess the possibility of the peroxide route as an alternative to a conventional ammonium diuranate process. The chemical composition of process solution was obtained. The experiments were conducted according to a factorial design, aiming to evaluate the effects of initial pH, precipitation pH and H 2 O 2 /UO 2 2+ ratio upon the process. The responses were measured in terms of the efficiency of U precipitation, the content of U in the precipitates and the distribution of impurities in the precipitates. The results indicated that the process works is satisfactory on the studied conditions and depending on conditions, it is possible to achieve levels of U precipitation efficiency greater than 99.9% in reaction times of 2 hours. The precipitates reach grades around 99% U 3 O 8 after calcination (900 0 C) and impurities fall below the limit for penalties established by the ASTM and the Allied Chemical Standards. The precipitates are composed of large aggregates of crystals of 1-4 μm, are fast settling and filtering, and are free-flowing when dry. (Author) [pt

  15. Gridded precipitation dataset for the Rhine basin made with the genRE interpolation method

    NARCIS (Netherlands)

    Osnabrugge, van B.; Uijlenhoet, R.

    2017-01-01

    A high resolution (1.2x1.2km) gridded precipitation dataset with hourly time step that covers the whole Rhine basin for the period 1997-2015. Made from gauge data with the genRE interpolation scheme. See "genRE: A method to extend gridded precipitation climatology datasets in near real-time for

  16. Electrochemical performance of multi-element doped α-nickel hydroxide prepared by supersonic co-precipitation method

    International Nuclear Information System (INIS)

    Zhang, Z.J.; Zhu, Y.J.; Bao, J.; Lin, X.R.; Zheng, H.Z.

    2011-01-01

    Highlights: → The α-nickel hydroxides doped with several elements were prepared by supersonic co-precipitation method. → Cyclic voltammetry and electrochemical impedance spectroscopy show sample C has the best electrochemical performance. → The charge/discharge tests show that the 0.5 C discharge capacity (346 mAh/g) of sample C is even larger than that (337 mAh/g) at 0.1 C rate, while the discharge capacity at 0.5 C rate is much lower than that at 0.1 C rate for samples A and B. - Abstract: The multi-element doped α-nickel hydroxides have been prepared by supersonic co-precipitation method. Three kinds of samples A, B, C were prepared by chemically coprecipitating Ni, Al, Co, Y, Zn. It was found that sample C produced better performance than the others. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements indicated that sample C has better electrochemical performance, such as better reaction reversibility, higher proton diffusion coefficient and lower charge-transfer resistance, than those of samples A and B. The charge-discharge tests showed that the discharge capacity (346 mA h/g) of sample C is even larger at 0.5 C rate than that (337mAh/g) at 0.1 C rate, while the discharge capacity at 0.5 C rate is much lower than that at 0.1 C rate for samples A and B. It indicates that all doped elements can produce the synergic effect and further improve the electrochemical properties of the active materials.

  17. Treatment of radioactive wastewaters by chemical precipitation and ion exchange

    International Nuclear Information System (INIS)

    Robinson, S.M.; Begovich, J.M.; Brown, C.H. Jr.; Campbell, D.O.; Collins, E.D.

    1987-01-01

    Precipitation and ion exchange methods are being developed at Oak Ridge National Laboratory to decontaminate wastewaters containing small amounts of 90 Sr and 137 Cs while minimizing waste generation. Distribution coefficients have been determined for strontium and cesium as functions of Ca, Na, and Mg concentrations from bench- and pilot-scale data for ion exchange resins and zeolites using actual wastewaters. Models have been used to estimate the total amount of waste that would be generated at full-scale operation. Based on these data, four process flowsheets are being tested at full-scale. 14 refs., 8 figs., 7 tabs

  18. Evaluation of the treatability of a winery distillery (vinasse) wastewater by UASB, anoxic-aerobic UF-MBR and chemical precipitation/adsorption.

    Science.gov (United States)

    Petta, Luigi; De Gisi, Sabino; Casella, Patrizia; Farina, Roberto; Notarnicola, Michele

    2017-10-01

    A multi-stage pilot-scale treatment cycle consisting of an Upflow Anaerobic Sludge Blanket reactor (UASB) followed by an anoxic-aerobic Ultra Filtration Membrane Bio Reactor (UF-MBR) and a post treatment based on chemical precipitation with lime or adsorption on Granular Activated Carbons (GAC), was applied in order to evaluate the treatment feasibility of a real winery distillery wastewater at laboratory and bench scale. The wastewater was classified as high strength with acidic pH (3.8), and concentrations of 44,600, 254, 604 and 660 mg/l for COD tot , total nitrogen, total phosphorous and phenols, respectively. The UASB reactor was operated at Organic Loading Rates (OLR) in the range 3.0-11.5 kgCOD tot /m 3 /d achieving treatment efficiency up to 97%, with an observed methane production of 340 L of CH 4 /kgCOD. The MBR system was operated with an organic load in the range 0.070-0.185 kgCOD/kgVSS/d, achieving a removal up to 48%, 67% and 65% of the influent COD, total nitrogen and phenols, respectively. The combination of UASB and UF-MBR treatment units was not effective in phosphate and colour removal assigning to further chemical precipitation and adsorption processes, respectively, their complete removal in order to comply with legal standards for wastewater discharge. Subsequently, the optimization of the investigated treatment chain was assessed by applying a chemical precipitation step upstream and downstream the UASB reactor, and a related treatment unit cost assessment is presented in view of a further technological scale-up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis of nanoparticles of magnetite by sol-gel and precipitation methods: study of chemical composition and structure

    International Nuclear Information System (INIS)

    Picasso, Gino; Vega, Jaime; Uzuriaga, Rosario; Ruiz, Gean Pieer

    2012-01-01

    In this work, nanoparticles based on magnetite have been prepared by sol-gel and precipitation methods. In the first case two variants have been applied: by growing of sol starting from nitrate precursor and ethylene glycol as solvent and to control the reduction process and force hydrolysis and steric control prepared from ferrum sulfate precursor and sodium citrate. In the second case the starting material was sulfate precursor, ammonium hydroxide as precipitaing agent and ethylene glycol as surfactant. The samples have been characterized by X-ray diffraction technique (XRD), adsorption-desorption of N 2 (BET equation model) and Moessbauer spectroscopy. XRD patterns of all samples showed typical peaks of magnetite which were detected in the following positions: 30,06 o , 35,42 o , 62,55 o . Average specific surface quantified by BET method was ranging from 40 to 50 m 2 /g with isotherm type IV corresponding to mesoporous surface. Moessbauer spectra of sample prepared from sol-gel (gel growing) carried out at home temperature detected the presence of 2 sextets consisting in 2 type of sites: first one due to octahedral positions (Fe 2+ , Fe 3+ ) and the second one due to tetrahedral positions (Fe 3+ ). Grain size of magnetite samples, evaluated by Scherrer equation and specific surface area, was ranging from 2 to 20 nm. (author).

  20. Topography and Data Mining Based Methods for Improving Satellite Precipitation in Mountainous Areas of China

    Directory of Open Access Journals (Sweden)

    Ting Xia

    2015-07-01

    Full Text Available Topography is a significant factor influencing the spatial distribution of precipitation. This study developed a new methodology to evaluate and calibrate the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA products by merging geographic and topographic information. In the proposed method, firstly, the consistency rule was introduced to evaluate the fitness of satellite rainfall with measurements on the grids with and without ground gauges. Secondly, in order to improve the consistency rate of satellite rainfall, genetic programming was introduced to mine the relationship between the gauge rainfall and location, elevation and TMPA rainfall. The proof experiment and analysis for the mean annual satellite precipitation from 2001–2012, 3B43 (V7 of TMPA rainfall product, was carried out in eight mountainous areas of China. The result shows that the proposed method is significant and efficient both for the assessment and improvement of satellite precipitation. It is found that the satellite rainfall consistency rates in the gauged and ungauged grids are different in the study area. In addition, the mined correlation of location-elevation-TMPA rainfall can noticeably improve the satellite precipitation, both in the context of the new criterion of the consistency rate and the existing criteria such as Bias and RMSD. The proposed method is also efficient for correcting the monthly and mean monthly rainfall of 3B43 and 3B42RT.

  1. Struvite Precipitation and Phosphorous Removal from Urine Synthetic Solution: Reaction Kinetic Study

    Directory of Open Access Journals (Sweden)

    Marwa Saied Shalaby

    2015-03-01

    Full Text Available Phosphorus, like oil, is a non-renewable resource that must be harvested from finite resources in the earth’s crust. An essential element for life, phosphorus is becoming increasingly scarce, contaminated, and difficult to extract. Struvite or magnesium ammonium phosphate (MgNH4PO4.6H2O is a white, crystalline phosphate mineral that can be used as a bio-available fertilizer. The main objective of this research is to indicate the most important operating parameters affecting struvite precipitation by means of chemical reaction kinetics. The present study explores struvite precipitation by chemical method under different starting molar ratios, pH and SSR. It is shown that an increase of starting Mg: PO4: NH4 with respect to magnesium (1.6:1:1 strongly influences the growth rate of struvite and so the efficiency of the phosphate removal. This was attributed to the effect of magnesium on the struvite solubility product and on the reached supersaturation Super Saturation Ratio at optimum starting molar ratio and pH. It was also shown, by using chemical precipitation method that the determined Super Saturation Ratio (SSR values of struvite, at 8, 8.5, 9, 9.5 and 10 are 1.314, 4.29, 8.89, 9.87 and 14.89 respectively are close to those presented in the literature for different origins of wastewater streams. The results show that SSR , pH, and starting molar ratio strongly influences the kinetics of precipitation and so phosphorous removal to reach 93% removal percent , 5.95 mg/lit as a minimum PO4 remained in solution, and 7.9 gm precipitated struvite from feed synthetic solution of 750 ml . The product was subjected to chemical analysis by means of EDIX-FTIR, SEM and XRD showing conformity with published literature. First-order kinetics was found to be sufficient to describe the rate data. The rates increased with increasing pH and so SSR and the apparent rate constants for the reaction were determined. © 2015 BCREC UNDIP. All rights reserved

  2. Inhibition of precipitation of carbonate apatite by trisodium citrate analysed in base of the formation of chemical complexes in growth solution

    Energy Technology Data Exchange (ETDEWEB)

    Prywer, Jolanta, E-mail: jolanta.prywer@p.lodz.pl [Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 93-005 Łódź (Poland); Olszynski, Marcin [Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 93-005 Łódź (Poland); Mielniczek-Brzóska, Ewa [Institute of Chemistry, Environment Protection and Biotechnology, Jan Długosz University of Częstochowa, ul. Armii Krajowej 13/15, 42-200 Częstochowa (Poland)

    2015-11-15

    Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation of carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca{sup 2+} ions and causes the formation of CaCit{sup −} and Ca{sub 10}(PO{sub 4}){sub 6}CO{sub 3} complexes. Trisodium citrate binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed. - Highlights: • Trisodium citrate (TC) increases induction time of carbonate apatite (CA) formation. • TC decreases the efficiency of CA precipitation. • The inhibitory effect of TC is explained in base of chemical speciation analysis. • The inhibitory effect is mainly related with the fact that TC binds Ca{sup 2+} ions. • TC binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which CA is formed.

  3. Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?

    Science.gov (United States)

    Manzanas, R.; Lucero, A.; Weisheimer, A.; Gutiérrez, J. M.

    2018-02-01

    Statistical downscaling methods are popular post-processing tools which are widely used in many sectors to adapt the coarse-resolution biased outputs from global climate simulations to the regional-to-local scale typically required by users. They range from simple and pragmatic Bias Correction (BC) methods, which directly adjust the model outputs of interest (e.g. precipitation) according to the available local observations, to more complex Perfect Prognosis (PP) ones, which indirectly derive local predictions (e.g. precipitation) from appropriate upper-air large-scale model variables (predictors). Statistical downscaling methods have been extensively used and critically assessed in climate change applications; however, their advantages and limitations in seasonal forecasting are not well understood yet. In particular, a key problem in this context is whether they serve to improve the forecast quality/skill of raw model outputs beyond the adjustment of their systematic biases. In this paper we analyze this issue by applying two state-of-the-art BC and two PP methods to downscale precipitation from a multimodel seasonal hindcast in a challenging tropical region, the Philippines. To properly assess the potential added value beyond the reduction of model biases, we consider two validation scores which are not sensitive to changes in the mean (correlation and reliability categories). Our results show that, whereas BC methods maintain or worsen the skill of the raw model forecasts, PP methods can yield significant skill improvement (worsening) in cases for which the large-scale predictor variables considered are better (worse) predicted by the model than precipitation. For instance, PP methods are found to increase (decrease) model reliability in nearly 40% of the stations considered in boreal summer (autumn). Therefore, the choice of a convenient downscaling approach (either BC or PP) depends on the region and the season.

  4. Preparation of Fe3O4/Bentonite Nanocomposite from Natural Iron Sand by Co-precipitation Method for Adsorbents Materials

    Science.gov (United States)

    Sebayang, Perdamean; Kurniawan, Candra; Aryanto, Didik; Arief Setiadi, Eko; Tamba, Konni; Djuhana; Sudiro, Toto

    2018-03-01

    An adsorption method is one of the effective ways to filter the heavy metals wastes in aqueous system. In this paper, the Fe3O4/bentonite nanocomposites were successfully prepared from natural iron sand by co-precipitation method. The chemical process was carried out by dissolving and hot stirring the milled iron sand and bentonite in acid solution and precipitating it by NH4OH. The sediment was then washed using distilled water to neutralize pH and dried at 100 °C for 5 hours to produce Fe3O4/bentonite powders. The samples were characterized by XRD, FTIR, BET, TEM, VSM and AAS. All samples were composed by Fe3O4 single phase with a spinnel structure and lattice parameter of 8.373 Å. The transmittance peak of FTIR curve proved that the Fe3O4 particles and bentonite had a molecular bonding. The addition of bentonite to Fe3O4 nanoparticles generally reduced the magnetic properties of Fe3O4/bentonite nanocomposites. The optimum condition of 30 wt% bentonite resulted 105.9 m2/g in surface area, 14 nm in an average particle size and 3.2 nm in pore size. It can be used as Cu and Pb adsorbent materials.

  5. Emergency core cooling system sump chemical effects on strainer head loss

    International Nuclear Information System (INIS)

    Edwards, M.K.; Qiu, L.; Guzonas, D.A.

    2010-01-01

    Chemical precipitates formed in the recovery water following a Loss of Coolant Accident (LOCA) have the potential to increase head loss across the Emergency Core Cooling System (ECCS) strainer, and could lead to cavitation of the ECCS pumps, pump failure and loss of core cooling. AECL, as a strainer vendor and research organization, has been involved in the investigation of chemical effects on head loss for its CANDU® and Pressurized Water Reactor (PWR) customers. The chemical constituents of the recovery sump water depend on the combination of chemistry control additives and the corrosion and dissolution products from metals, concrete, and insulation materials. Some of these dissolution and corrosion products (e.g., aluminum and calcium) may form significant quantities of precipitates. The presence of chemistry control additives such as sodium hydroxide, trisodium phosphate and boric acid can significantly influence the precipitates formed. While a number of compounds may be shown to be thermodynamically possible under the conditions assumed for precipitation, kinetic factors play a large role in the morphology of precipitates. Precipitation is also influenced by insulation debris, which can trap precipitates and act as nucleation sites for heterogeneous precipitation. This paper outlines the AECL approach to resolving the issue of chemical effects on ECCS strainer head loss, which included modeling, bench top testing and reduced-scale testing; the latter conducted using a temperature-controlled variable-flow closed-loop test rig that included an AECL Finned Strainer® test section equipped with a differential pressure transmitter. Models of corrosion product release and the effects of precipitates on head loss will also be presented. Finally, this paper discusses the precipitates found in test debris beds and presents a possible method for chemical effects head loss modeling. (author)

  6. Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems

    Science.gov (United States)

    Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William

    2016-01-01

    Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.

  7. Effect of humic substances on the precipitation of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    SONG Yong-hui; Hermann H. HAHN; Erhard HOFFMANN; Peter G. WEIDLER

    2006-01-01

    For phosphorus (P) recovery from wastewater, the effect of humic substances (HS) on the precipitation of calcium phosphate was studied. Batch experiments of calcium phosphate precipitation were undertaken with synthetic water that contained 20 mg/L phosphate (as P) and 20 mg/L HS (as dissolved organic carbon, DOC) at a constant pH value in the range of 8.0-10.0. The concentration variations of phosphate, calcium (Ca) and HS were measured in the precipitation process; the crystalline state and compositions of the precipitates were analysed by powder X-ray diffraction (XRD) and chemical methods, respectively. It showed that at solution pH 8.0, the precipitation rate and removal efficiency of phosphate were greatly reduced by HS, but at solution pH ≥9.0,the effect of HS was very small. The Ca consumption for the precipitation of phosphate increased when HS was added; HS was also removed from solution with the precipitation of calcium phosphate. At solution pH 8.0 and HS concentrations ≤ 3.5 mg/L, and at pH ≥ 9.0 and HS concentrations ≤ 10 mg/L, the final precipitates were proved to be hydroxyapatite (HAP) by XRD. The increases of solution pH value and initial Ca/P ratio helped reduce the influence of HS on the precipitation of phosphate.

  8. Facile Synthesis and Characterization of ZrO₂ Nanoparticles via Modified Co-Precipitation Method.

    Science.gov (United States)

    Ramachandran, M; Subadevi, R; Liu, Wei-Ren; Sivakumar, M

    2018-01-01

    The crystalline Zirconium oxide (ZrO2) nano particles were synthesized using optimized content of Zirconium nitrate (Zr(NO3)2·3H2O) with varying KOH concentration (0.5, 1 and 1.5 M) by co-precipitation method. The thermal history of the precursor was carefully analyzed through Thermogravimetric (TG/DTA) measurement. The as prepared samples were characterized to ensure structural, functional, morphological, compositional, chemical composition and band gap by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Laser Raman, scanning electron microscopy (SEM), High resolution Transverse Electron Microscopy (HR-TEM), X-ray photo electron spectroscopy (XPS), EDX, Photo luminescence spectroscopy (PL). The monoclinic structure with space group P21/c has been confirmed from XRD (JCPDS 89-9066). The Zr-O stretching vibration and Zr-O2-Zr bending vibrations were confirmed through FTIR analysis. The well dispersed particles with spherical morphology were confirmed through SEM and TEM analysis. The oxidation states of Zr, O and C were confirmed through XPS analysis. The oxygen vacancies and band gap of the particles were investigated through PL analysis.

  9. Scale-up of precipitation processes

    OpenAIRE

    Zauner, R.

    1999-01-01

    This thesis concerns the scale-up of precipitation processes aimed at predicting product particle characteristics. Although precipitation is widely used in the chemical and pharmaceutical industry, successful scale-up is difficult due to the absence of a validated methodology. It is found that none of the conventional scale-up criteria reported in the literature (equal power input per unit mass, equal tip speed, equal stirring rate) is capable of predicting the experimentally o...

  10. Synthesis of highly sinterable YAG nanopowders by a modified co-precipitation method

    International Nuclear Information System (INIS)

    Chen, Zhi-Hui; Yang, Yun; Hu, Zhang-Gui; Li, Jiang-Tao; He, Shu-Li

    2007-01-01

    A hydrate precursor of yttrium aluminum garnet (YAG) was synthesized by a modified co-precipitation method, in which n-butanol was employed as a low-cost recyclable dehydration solvent. A mixed solution of ethanol and ammonia were used as precipitant. Pure YAG phase appeared after the as-prepared precursors being calcined at 850 o C for 2 h. The nanocrystalline YAG particles calcined at 1100 o C were well dispersed with average diameter of about 40 nm, which can be densified to transparency under vacuum sintering at 1700 o C for 5 h with TEOS as sintering additive

  11. Characterization and photo-chemical applications of nano-ZnO prepared by wet chemical and thermal decomposition methods

    International Nuclear Information System (INIS)

    Mousa, M.A.; Bayoumy, W.A.A.; Khairy, M.

    2013-01-01

    Graphical abstract: - Highlights: • Nano-ZnO particles were synthesized by soft-wet precipitation and dry methods. • ZnO nanoparticle with different morphologies was obtained. • Nano ZnO samples showed a high photocatalytic activity. • ZnO nanoparticle showed strong ultraviolet emission at room temperature. • The samples showed high biological activity depending on their synthetic method. - Abstract: Nano-crystalline ZnO particles were synthesized using two different routes: soft-wet and dry methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to identify the particles structures and morphologies, while X-ray diffraction (XRD) was used for verifying the particles crystal structure. The thermal stabilities of the particles were examined through thermal gravimetric analysis technique and their surface areas were calculated using BET method. Moreover, the photocatalytic activities were evaluated using UV–vis spectroscopy and photoluminescence (PL) characterization. The results showed that all the prepared ZnO samples possess a hexagonal wurtzite structure with high purity. Different particle sizes and morphologies of spheres, rods and wires were obtained depending on the preparation method used. Particle sizes obtained by the dry method are smaller than that found by the wet chemical method. The effects of both particle size and morphology on each of surface as well as optical properties, photocatalytic activity, dye/ZnO solar cell efficiency and biological activity have been studied and discussed

  12. Investigation of Neptunium Precipitator Cleanout Options

    International Nuclear Information System (INIS)

    Hill, B.C.

    2003-01-01

    Oxalate precipitation followed by filtration is used to prepare plutonium oxalate. Historically, plutonium oxalate has tended to accumulate in the precipitation tanks. These solids are periodically removed by flushing with concentrated (64 percent) nitric acid. The same precipitation tanks will now be used in the processing of neptunium. Literature values indicate that neptunium oxalate may not be as soluble as plutonium oxalate in nitric acid. Although a wide variety of options is available to improve neptunium oxalate solubility for precipitator flushing, most of these options are not practical for use. Many of these options require the use of incompatible or difficult to handle chemicals. Other options would require expensive equipment modifications or are likely to lead to product contamination. Based on review of literature and experimental results, the two best options for flushing the precipitator are (1) 64 percent nitric acid and (2) addition of sodium permanganate follow ed by sodium nitrite. Nitric acid is the easiest option to implement. It is already used in the facility and will not lead to product contamination. Experimental results indicate that neptunium oxalate can be dissolved in concentrated nitric acid (64 percent) at 60 degree C to a concentration of 2.6 to 5.6 grams of Np/liter after at least three hours of heating. A lower concentration (1.1 grams of Np/liter) was measured at 60 degree C after less than two hours of heating. These concentrations are acceptable for flushing if precipitator holdup is low (approximately 100-250 grams), but a second method is required for effective flushing if precipitator holdup is high (approximately 2 kilograms). The most effective method for obtaining higher neptunium concentrations is the use of sodium permanganate followed by the addition of sodium nitrite. There is concern that residual manganese from these flushes could impact product purity. Gas generation during permanganate addition is also a concern

  13. Precipitates and boundaries interaction in ferritic ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Sallez, Nicolas, E-mail: nicolas.sallez@simap.grenoble-inp.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); Hatzoglou, Constantinos [Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, Normandie Université (France); Delabrouille, Fredéric [EDF–EDF R& D, Les Renardières, 77818 Moret-sur-Loing (France); Sornin, Denis; Chaffron, Laurent [CEA, DEN, Service de Recherches Métallurgiques Appliqué, 91191 Gif-sur-Yvette (France); Blat-Yrieix, Martine [EDF–EDF R& D, Les Renardières, 77818 Moret-sur-Loing (France); Radiguet, Bertrand; Pareige, Philippe [Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, Normandie Université (France); Donnadieu, Patricia; Bréchet, Yves [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France)

    2016-04-15

    In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels. - Highlights: • To study the microstructural evolution of a ferritic ODS steel during its extrusion, observations have been carried on samples resulting from a voluntarily interrupted extrusion and extruded materials. • A highly heterogeneous precipitate population have been observed. Nanosized coherent precipitates (2–5 nm) on both sides of the grain boundaries despite grain boundary migration after precipitation due to further thermo-mechanical processing as well as coarse precipitates (10–40 nm) alignments are observed on the grain boundaries and within the grains, parallel to the grain boundaries. • Asymmetrical PFZs can be observed around precipitates alignments and grain boundaries. Using TEM with EDX and APT we have been able to ensure that the PFZs are chemically depleted.

  14. An Assessment of Mean Areal Precipitation Methods on Simulated Stream Flow: A SWAT Model Performance Assessment

    Directory of Open Access Journals (Sweden)

    Sean Zeiger

    2017-06-01

    Full Text Available Accurate mean areal precipitation (MAP estimates are essential input forcings for hydrologic models. However, the selection of the most accurate method to estimate MAP can be daunting because there are numerous methods to choose from (e.g., proximate gauge, direct weighted average, surface-fitting, and remotely sensed methods. Multiple methods (n = 19 were used to estimate MAP with precipitation data from 11 distributed monitoring sites, and 4 remotely sensed data sets. Each method was validated against the hydrologic model simulated stream flow using the Soil and Water Assessment Tool (SWAT. SWAT was validated using a split-site method and the observed stream flow data from five nested-scale gauging sites in a mixed-land-use watershed of the central USA. Cross-validation results showed the error associated with surface-fitting and remotely sensed methods ranging from −4.5 to −5.1%, and −9.8 to −14.7%, respectively. Split-site validation results showed the percent bias (PBIAS values that ranged from −4.5 to −160%. Second order polynomial functions especially overestimated precipitation and subsequent stream flow simulations (PBIAS = −160 in the headwaters. The results indicated that using an inverse-distance weighted, linear polynomial interpolation or multiquadric function method to estimate MAP may improve SWAT model simulations. Collectively, the results highlight the importance of spatially distributed observed hydroclimate data for precipitation and subsequent steam flow estimations. The MAP methods demonstrated in the current work can be used to reduce hydrologic model uncertainty caused by watershed physiographic differences.

  15. CHMTRNS, Non-Equilibrium Chemical Transport Code

    International Nuclear Information System (INIS)

    Noorishad, J.; Carnahan, C.L.; Benson, L.V.

    1998-01-01

    1 - Description of program or function: CHMTRNS simulates solute transport for steady one-dimensional fluid flow by convection and diffusion or dispersion in a saturated porous medium based on the assumption of local chemical equilibrium. The chemical interactions included in the model are aqueous-phase complexation, solid-phase ion exchange of bare ions and complexes using the surface complexation model, and precipitation or dissolution of solids. The program can simulate the kinetic dissolution or precipitation for calcite and silica as well as irreversible dissolution of glass. Thermodynamic parameters are temperature dependent and are coupled to a companion heat transport simulator; thus, the effects of transient temperature conditions can be considered. Options for oxidation-reduction (redox) and C-13 fractionation as well as non-isothermal conditions are included. 2 - Method of solution: The governing equations for both reactive chemical and heat transport are discretized in time and space. For heat transport, the Crank-Nicolson approximation is used in conjunction with a LU decomposition and backward substitution solution procedure. To deal with the strong nonlinearity of the chemical transport equations, a generalized Newton-Raphson method is used

  16. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    OpenAIRE

    H. Kokes; M.H. Morcali; E. Acma

    2014-01-01

    The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III) hydroxide was precipitated by...

  17. Comparison of Chemical and Physical-chemical Wastewater Discoloring Methods

    Directory of Open Access Journals (Sweden)

    Durašević, V.

    2007-11-01

    Full Text Available Today's chemical and physical-chemical wastewater discoloration methods do not completely meet demands regarding degree of discoloration. In this paper discoloration was performed using Fenton (FeSO4 . 7 H2O + H2O2 + H2SO4 and Fenton-like (FeCl3 . 6 H2O + H2O2 + HCOOH chemical methods and physical-chemical method of coagulation/flocculation (using poly-electrolyte (POEL combining anion active coagulant (modified poly-acrylamides and cationic flocculant (product of nitrogen compounds in combination with adsorption on activated carbon. Suitability of aforementioned methods was investigated on reactive and acid dyes, regarding their most common use in the textile industry. Also, investigations on dyes of different chromogen (anthraquinone, phthalocyanine, azo and xanthene were carried out in order to determine the importance of molecular spatial structure. Oxidative effect of Fenton and Fenton-like reagents resulted in decomposition of colored chromogen and high degree of discoloration. However, the problem is the inability of adding POEL in stechiometrical ratio (also present in physical-chemical methods, when the phenomenon of overdosing coagulants occurs in order to obtain a higher degree of discoloration, creating a potential danger of burdening water with POEL. Input and output water quality was controlled through spectrophotometric measurements and standard biological parameters. In addition, part of the investigations concerned industrial wastewaters obtained from dyeing cotton materials using reactive dye (C. I. Reactive Blue 19, a process that demands the use of vast amounts of electrolytes. Also, investigations of industrial wastewaters was labeled as a crucial step carried out in order to avoid serious misassumptions and false conclusions, which may arise if dyeing processes are only simulated in the laboratory.

  18. Engineering analysis of the two-stage trifluoride precipitation process

    International Nuclear Information System (INIS)

    Luerkens, D.w.W.

    1984-06-01

    An engineering analysis of two-stage trifluoride precipitation processes is developed. Precipitation kinetics are modeled using consecutive reactions to represent fluoride complexation. Material balances across the precipitators are used to model the time dependent concentration profiles of the main chemical species. The results of the engineering analysis are correlated with previous experimental work on plutonium trifluoride and cerium trifluoride

  19. A Guide for Developing Standard Operating Job Procedures for the Tertiary Chemical Treatment - Lime Precipitation Process Wastewater Treatment Facility. SOJP No. 6.

    Science.gov (United States)

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary chemical treatment - lime precipitation process of wastewater treatment plants. Step-by-step instructions are given for pre-start up, start-up, continuous operation, and shut-down procedures. In addition, some theoretical material is presented along with some relevant…

  20. Gas sensing properties of magnesium ferrite prepared by co-precipitation method

    International Nuclear Information System (INIS)

    Hankare, P.P.; Jadhav, S.D.; Sankpal, U.B.; Patil, R.P.; Sasikala, R.; Mulla, I.S.

    2009-01-01

    Polycrystalline magnesium ferrite (MgFe 2 O 4 ) was prepared by the co-precipitation method. The synthesized compound was characterized for their phase and morphology by X-ray diffraction and scanning electron microscopy, respectively. Conductance responses of the (MgFe 2 O 4 ) were measured towards gases like hydrogen sulfide (H 2 S), liquefied petroleum gas (LPG), ethanol vapors (C 2 H 5 OH), SO x , H 2 , NO x , NH 3, methanol, acetone and petrol. The gas sensing characterstics were obtained by measuring the sensitivity as a function of various controlling factors like operating temperatures and concentrations of gases. It was found that the sensor exhibited various responses towards these gases at different operating temperatures. Furthermore; the MgFe 2 O 4 based sensor exhibited a fast response and a good recovery towards petrol at temperature 250 deg. C. The results of the response towards petrol reveal that (MgFe 2 O 4 ) synthesized by a simple co-precipitation method, would be a suitable material for the fabrication of the petrol sensor.

  1. Salts-based size-selective precipitation: toward mass precipitation of aqueous nanoparticles.

    Science.gov (United States)

    Wang, Chun-Lei; Fang, Min; Xu, Shu-Hong; Cui, Yi-Ping

    2010-01-19

    Purification is a necessary step before the application of nanocrystals (NCs), since the excess matter in nanoparticles solution usually causes a disadvantage to their subsequent coupling or assembling with other materials. In this work, a novel salts-based precipitation technique is originally developed for the precipitation and size-selective precipitation of aqueous NCs. Simply by addition of salts, NCs can be precipitated from the solution. After decantation of the supernatant solution, the precipitates can be dispersed in water again. By means of adjusting the addition amount of salt, size-selective precipitation of aqueous NCs can be achieved. Namely, the NCs with large size are precipitated preferentially, leaving small NCs in solution. Compared with the traditional nonsolvents-based precipitation technique, the current one is simpler and more rapid due to the avoidance of condensation and heating manipulations used in the traditional precipitation process. Moreover, the salts-based precipitation technique was generally available for the precipitation of aqueous nanoparticles, no matter if there were semiconductor NCs or metal nanoparticles. Simultaneously, the cost of the current method is also much lower than that of the traditional nonsolvents-based precipitation technique, making it applicable for mass purification of aqueous NCs.

  2. Precipitation patterns during channel flow

    Science.gov (United States)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  3. Characterization of the precipitates formed during the denitration of simulated HRLW

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1989-01-01

    The denitration of several chemical compositions of simulated highly radioactive liquid waste (HRLW) was performed using formic acid as reducing agent. Precipitates formed during the denitration of simulated HRLW were analyzed using x-ray diffraction and 57 Fe Moessbauer spectroscopy. Goethite and amorphous fractions were the principal phases in these precipitates. It was found that the chemical composition of HRLW and the experimental conditions of denitration had more influence on the crystal formation and the particle size than on the phase composition of the precipitates. (author) 27 refs.; 6 figs.; 6 tabs

  4. A new method for the homogeneous precipitative separation of trace level lanthanides as oxalates: application to different types of geological samples

    International Nuclear Information System (INIS)

    Premadas, A.; Cyriac, Bincy; Kesavan, V.S.

    2013-01-01

    Oxalate precipitation of lanthanides in acidic medium is a widely used selective group separation method at percentage to trace level in different types of geological samples. Most of the procedures are based on the heterogeneous oxalate precipitation of lanthanides using calcium as carrier. In the heterogeneous precipitation, the co-precipitated impurities from the matrix elements are more, besides if the pH at the time of precipitation is not monitored carefully there is a chance of losing some of the lanthanides. In this report, we present a new homogeneous oxalate precipitation of trace level lanthanides from different types of geological samples using calcium as carrier. In the present method pH is getting adjusted (pH ∼1) on its own, after the hydrolysis of urea added to the sample solution. This acidic pH is essential for the complete precipitation of the lanthanides. Therefore, no critical parameter adjustment for the precipitation is involved in the proposed method. The oxalate precipitate obtained was in crystalline nature which facilitates the fast settlement, easy filtration; besides the co-precipitated matrix elements are very less as compared to normal heterogeneous oxalate precipitation of lanthanides. Another advantage is more quantity of the sample can be taken for the separation of lanthanides which is a limitation for other separation methods reported. Accuracy of the method was checked by analyzing nine international reference materials comprising different types of geological samples obtained from Canadian Certified Reference Project Materials such as syenite samples SY-2, SY-3 and SY-4; gabro sample MRG-1; soil samples SO-1 and SO-2; iron formation sample FeR-2; lake sediments LKSD-2 and LKSD-4. The values of the lanthanides obtained for these reference materials are comparable with recommended values, indicating that the method is accurate. The reproducibility is characterized by a relative standard deviation (RSD) of 1 to 6% (n=4). (author)

  5. Bioceramics synthesis of hydroxyapatite from red snapper fish scales biowaste using wet chemical precipitation route

    Science.gov (United States)

    Ulfyana, D.; Anugroho, F.; Sumarlan, S. H.; Wibisono, Y.

    2018-03-01

    Fish scales biowaste contain high collagens and calcium phosphates, therefore have considerable potential as raw material for value-added biomaterial such as hydroxyapatite (HAp). HAp is the main constituent component of hard tissue such as bone and teeth in the human body and is known as bioceramic materials. In this work, wet chemical precipitation method was used to syntesize HAp from Red Snapper Fish (Lutjanus campechanus) Scales. Two variations of calcination temperatures of 600°C (FHAp1) and 800°C (FHAp2) were conducted for 5 hours. The results showed calcium content from biowaste of red snapper fish scale was 83.62%. FTIR result shows that PO4 3-, OH-, and CO3 2- functional groups presence as indicates the formation of HAp. XRD result showed the degree of crystallinity for FHAp1 and FHAp2 were 75.52% and 79.20%, respectively. The degree of crystallinity is in accordance with ISO 13779-2:2000 standard in which the minimum degree of crystallinity of hydroxyapatite used for biomedical materials is 45%. Finally, Particle Size Analyzer (PSA) results show that the particle size distribution is evenly distributed, with the size of micro-scale hydroxyapatite particles, ranging from 5.76 μm to 132.64 μm.

  6. A method for deterministic statistical downscaling of daily precipitation at a monsoonal site in Eastern China

    Science.gov (United States)

    Liu, Yonghe; Feng, Jinming; Liu, Xiu; Zhao, Yadi

    2017-12-01

    Statistical downscaling (SD) is a method that acquires the local information required for hydrological impact assessment from large-scale atmospheric variables. Very few statistical and deterministic downscaling models for daily precipitation have been conducted for local sites influenced by the East Asian monsoon. In this study, SD models were constructed by selecting the best predictors and using generalized linear models (GLMs) for Feixian, a site in the Yishu River Basin and Shandong Province. By calculating and mapping Spearman rank correlation coefficients between the gridded standardized values of five large-scale variables and daily observed precipitation, different cyclonic circulation patterns were found for monsoonal precipitation in summer (June-September) and winter (November-December and January-March); the values of the gridded boxes with the highest absolute correlations for observed precipitation were selected as predictors. Data for predictors and predictands covered the period 1979-2015, and different calibration and validation periods were divided when fitting and validating the models. Meanwhile, the bootstrap method was also used to fit the GLM. All the above thorough validations indicated that the models were robust and not sensitive to different samples or different periods. Pearson's correlations between downscaled and observed precipitation (logarithmically transformed) on a daily scale reached 0.54-0.57 in summer and 0.56-0.61 in winter, and the Nash-Sutcliffe efficiency between downscaled and observed precipitation reached 0.1 in summer and 0.41 in winter. The downscaled precipitation partially reflected exact variations in winter and main trends in summer for total interannual precipitation. For the number of wet days, both winter and summer models were able to reflect interannual variations. Other comparisons were also made in this study. These results demonstrated that when downscaling, it is appropriate to combine a correlation

  7. Micro-precipitation of Americium by Cerium Hydroxide for alpha spectrometry

    International Nuclear Information System (INIS)

    Wankhede, Sonal M.; Kumar, Suja A.; Sawant, Pramilla D.

    2018-01-01

    Estimation of trace amount of actinides in any biological and/or environmental sample is done by radiochemical separation followed by alpha spectrometry. Alpha-spectrometric determination of actinides requires thin, homogeneous and nearly weightless sample sources. The most widely used method for preparation of actinides for alpha spectrometry involves electro deposition of the alpha emitters using stainless steel planchetts (cathode) and platinum rod (anode). This procedure is time consuming, requires relatively elaborate equipment, and is expensive. Micro-precipitation technique using hydrofluoric acid (HF) is also reliable and already standardized at Bioassay Laboratory (Wankhede, 2016). However, it uses hazardous chemical such as HF, hence, in the present study, cerium hydroxide micro-precipitation technique was standardized

  8. Synthesis of assembled ZnO structures by precipitation method in aqueous media

    International Nuclear Information System (INIS)

    Sepulveda-Guzman, S.; Reeja-Jayan, B.; Rosa, E. de la; Torres-Castro, A.; Gonzalez-Gonzalez, V.; Jose-Yacaman, M.

    2009-01-01

    In this work, arrays of submicron ZnO structures were successfully synthesized using a one-step aqueous precipitation method. Snowflake-like and flower-like morphologies were obtained by changing the reaction temperature. X-ray diffraction (XRD) patterns indicated that the ZnO arrays have a wurtzite crystal structure. A possible growth mechanism based on the analysis done by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and high-angle annular dark field (HAADF) is proposed. Our findings suggest that the growth mechanism of the ZnO arrays is by self-aggregation, and that such an oriented aggregation is enhanced by increasing the reaction temperature. The results also revealed that the aggregation process introduces several structural defects such as differences in mass distribution and crystalline structure. In order to study the surface chemical composition the samples were also characterized by XPS. The results showed the presence of Zn(OH) 2 and absorbed carbon species on the ZnO surface. In addition, the photoluminescence characterization showed that on UV excitation (λ = 360 nm) all samples present the characteristic UV emission centered at 390 nm, and for the sample synthesized at 60 deg. C, a visible emission was also observed

  9. Synthesis of assembled ZnO structures by precipitation method in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Guzman, S. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, UANL Km. 10 de la nueva carretera al Aeropuerto Internacional de Monterrey, PIIT Monterrey, Apodaca NL (Mexico); Facultad de Ingenieria Mecanica y Electrica de la UANL, Ciudad Universitaria San Nicolas de los Garza, Nuevo Leon C.P. 66451 (Mexico)], E-mail: ssepulveda@mail.uanl.mx; Reeja-Jayan, B. [Texas Materials Institute, University of Texas at Austin, 1 University Station C0803 (United States); Rosa, E. de la [Centro de Investigaciones en Optica, A.C. Loma del Bosque 115 Col. Lomas del Campestre, Leon Gto. C.P. 37150 (Mexico); Torres-Castro, A.; Gonzalez-Gonzalez, V. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, UANL Km. 10 de la nueva carretera al Aeropuerto Internacional de Monterrey, PIIT Monterrey, Apodaca NL (Mexico); Facultad de Ingenieria Mecanica y Electrica de la UANL, Ciudad Universitaria San Nicolas de los Garza, Nuevo Leon C.P. 66451 (Mexico); Jose-Yacaman, M. [Physics and Astronomy Department, University of Texas at San Antonio, 1604 Campus San Antonio, TX 78249 (United States)

    2009-05-15

    In this work, arrays of submicron ZnO structures were successfully synthesized using a one-step aqueous precipitation method. Snowflake-like and flower-like morphologies were obtained by changing the reaction temperature. X-ray diffraction (XRD) patterns indicated that the ZnO arrays have a wurtzite crystal structure. A possible growth mechanism based on the analysis done by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and high-angle annular dark field (HAADF) is proposed. Our findings suggest that the growth mechanism of the ZnO arrays is by self-aggregation, and that such an oriented aggregation is enhanced by increasing the reaction temperature. The results also revealed that the aggregation process introduces several structural defects such as differences in mass distribution and crystalline structure. In order to study the surface chemical composition the samples were also characterized by XPS. The results showed the presence of Zn(OH){sub 2} and absorbed carbon species on the ZnO surface. In addition, the photoluminescence characterization showed that on UV excitation ({lambda} = 360 nm) all samples present the characteristic UV emission centered at 390 nm, and for the sample synthesized at 60 deg. C, a visible emission was also observed.

  10. Mathematical modeling and simulation of nanopore blocking by precipitation

    KAUST Repository

    Wolfram, M-T

    2010-10-29

    High surface charges of polymer pore walls and applied electric fields can lead to the formation and subsequent dissolution of precipitates in nanopores. These precipitates block the pore, leading to current fluctuations. We present an extended Poisson-Nernst-Planck system which includes chemical reactions of precipitation and dissolution. We discuss the mathematical modeling and present 2D numerical simulations. © 2010 IOP Publishing Ltd.

  11. Chemical Data for Rock, Sediment, Biological, Precipitate, and Water Samples from Abandoned Copper Mines in Prince William Sound, Alaska

    Science.gov (United States)

    Koski, Randolph A.; Munk, LeeAnn

    2007-01-01

    In the early 20th century, approximately 6 million metric tons of copper ore were mined from numerous deposits located along the shorelines of fjords and islands in Prince William Sound, Alaska. At the Beatson, Ellamar, and Threeman mine sites (fig. 1), rocks containing Fe, Cu, Zn, and Pb sulfide minerals are exposed to chemical weathering in abandoned mine workings and remnant waste piles that extend into the littoral zone. Field investigations in 2003 and 2005 as well as analytical data for rock, sediment, precipitate, water, and biological samples reveal that the oxidation of sulfides at these sites is resulting in the generation of acid mine drainage and the transport of metals into the marine environment (Koski and others, 2008; Stillings and others, 2008). At the Ellamar and Threeman sites, plumes of acidic and metal-enriched water are flowing through beach gravels into the shallow offshore environment. Interstitial water samples collected from beach sediment at Ellamar have low pH levels (to ~3) and high concentrations of metals including iron, copper, zinc, cobalt, lead, and mercury. The abundant precipitation of the iron sulfate mineral jarosite in the Ellamar gravels also signifies a low-pH environment. At the Beatson mine site (the largest copper mine in the region) seeps containing iron-rich microbial precipitates drain into the intertidal zone below mine dumps (Foster and others, 2008). A stream flowing down to the shoreline from underground mine workings at Beatson has near-neutral pH, but elevated levels of zinc, copper, and lead (Stillings and others, 2008). Offshore sediment samples at Beatson are enriched in these metals. Preliminary chemical data for tissue from marine mussels collected near the Ellamar, Threeman, and Beatson sites reveal elevated levels of copper, zinc, and lead compared to tissue in mussels from other locations in Prince William Sound (Koski and others, 2008). Three papers presenting results of this ongoing investigation of

  12. A test for Improvement of high resolution Quantitative Precipitation Estimation for localized heavy precipitation events

    Science.gov (United States)

    Lee, Jung-Hoon; Roh, Joon-Woo; Park, Jeong-Gyun

    2017-04-01

    Accurate estimation of precipitation is one of the most difficult and significant tasks in the area of weather diagnostic and forecasting. In the Korean Peninsula, heavy precipitations are caused by various physical mechanisms, which are affected by shortwave trough, quasi-stationary moisture convergence zone among varying air masses, and a direct/indirect effect of tropical cyclone. In addition to, various geographical and topographical elements make production of temporal and spatial distribution of precipitation is very complicated. Especially, localized heavy rainfall events in South Korea generally arise from mesoscale convective systems embedded in these synoptic scale disturbances. In weather radar data with high temporal and spatial resolution, accurate estimation of rain rate from radar reflectivity data is too difficult. Z-R relationship (Marshal and Palmer 1948) have adapted representatively. In addition to, several methods such as support vector machine (SVM), neural network, Fuzzy logic, Kriging were utilized in order to improve the accuracy of rain rate. These methods show the different quantitative precipitation estimation (QPE) and the performances of accuracy are different for heavy precipitation cases. In this study, in order to improve the accuracy of QPE for localized heavy precipitation, ensemble method for Z-R relationship and various techniques was tested. This QPE ensemble method was developed by a concept based on utilizing each advantage of precipitation calibration methods. The ensemble members were produced for a combination of different Z-R coefficient and calibration method.

  13. Elimination of ammonium from waste water by means of chemical precipitation. Summary

    International Nuclear Information System (INIS)

    Boehnke, B.; Schulze-Rettmer, R.

    1990-07-01

    In the course of this research project, a process for precipitating ammonium salts contained in waste water was developed. The precipitate can be used as fertilizer. The purification process was tested in a pilot plant. (EF) [de

  14. Precipitation process for supernate decontamination

    International Nuclear Information System (INIS)

    Lee, L.M.; Kilpatrick, L.L.

    1982-11-01

    A precipitation and adsorption process has been developed to remove cesium, strontium, and plutonium from water-soluble, high-level radioactive waste. An existing waste tank serves as the reaction vessel and the process begins with the addition of a solution of sodium tetraphenylborate and a slurry of sodium titanate to the contained waste salt solution. Sodium tetraphenylborate precipitates the cesium and sodium titanate adsorbs the strontium and plutonium. The precipitate/adsorbate is then separated from the decontaminated salt solution by crossflow filtration. This new process offers significant capital savings over an earlier ion exchange process for salt decontamination. Chemical and small-scale engineering studies with actual waste are reported. The effect of many variables on the decontamination factors and filter performance are defined

  15. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.

    Science.gov (United States)

    Balcha, Abebe; Yadav, Om Prakash; Dey, Tania

    2016-12-01

    Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10 -3 and 12.4 × 10 -3  min -1 , respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).

  16. Composition of atmospheric precipitation. I. Nitrogen compounds

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, E

    1952-01-01

    The purpose of this paper is to present a survey of published data on chemical analysis of atmospheric precipitation to discuss different cycles proposed for inorganic compounds in atmospheric precipitation and, finally, to assess the importance of these compounds from different points of view. Investigations of rainwater with a view to determine atmospheric pollution in industrial areas are mentioned incidentally but no results are detailed.

  17. Precipitation kinetics in binary Fe–Cu and ternary Fe–Cu–Ni alloys via kMC method

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-08-01

    Full Text Available The precipitation kinetics of coherent Cu rich precipitates (CRPs in binary Fe–Cu and ternary Fe–Cu–Ni alloys during thermal aging was modelled by the kinetic Monte Carlo method (kMC. A good agreement of the precipitation kinetics of Fe–Cu was found between the simulation and experimental results, as observed by means of advancement factor and cluster number density. This agreement was obtained owing to the correct description of the fast cluster mobility. The simulation results indicate that the effects of Ni are two-fold: Ni promotes the nucleation of Cu clusters; while the precipitation kinetics appears to be delayed by Ni addition during the coarsening stage. The apparent delayed precipitation kinetics is revealed to be related with the cluster mobility, which are reduced by Ni addition. The reduction effect of the cluster mobility weakens when the CRPs sizes increase. The results provide a view angle on the effects of solute elements upon Cu precipitation kinetics through the consideration of the non-conventional cluster growth mechanism, and kMC is verified to be a powerful approach on that.

  18. A simple chemical method for the separation of phosphorus interfering the trace element determinations by neutron activation analysis in high doped silicon wafers

    International Nuclear Information System (INIS)

    Wagler, H.; Flachowsky, J.

    1986-01-01

    Neutron activation analysis is one of the most available method for the determination of trace elements, but in the case of P-doped silicon wafers the 32 P-activity interferes the gamma spectrometry. It is not possible to determine the trace elements without chemical manipulations. On the other hand, time consuming chemical separations should be avoided. Therefore, a simple and rapid P-separation method has to be developed, in which the following twelve trace elements should be taken into consideration: Ag, As, Au, Co, Cr, Cu, Fe, Mo, Na, Sb, W, and Zn. After acid oxidative dissolution of the activated sample, P is present as phosphate ion. The phosphate ion is removed by precipitation as BiPO 4 . (author)

  19. Aluminum precipitation from Hanford DSSF

    International Nuclear Information System (INIS)

    Borgen, D.; Frazier, P.; Staton, G.

    1994-01-01

    A series of pilot scale tests using simulated Double Shell Slurry Feed (DSSF) showed that well-settled aluminum precipitate can be produced in Hanford double shell tank (DST) high level waste by slow neutralization with carbon dioxide. This pretreatment could provide an early grout feed and free tank space, as well as facilitate downstream processes such as ion exchange by providing a less caustic feed. A total of eight test runs were completed using a 10-ft tall 3-in i.d. glass column. The 10-ft height corresponds to about one third of the vertical height of a DST, hence providing a reasonable basis for extrapolating the observed precipitate settling and compaction to the actual waste tank environment. Four runs (three with a simplified simulant and one with a chemically complete simulant) produced well settled precipitates averaging 1.5 to 2 feet high. Aluminum gel rather than settled precipitate resulted from one test where neutralization was too rapid

  20. A Numerical Method to Generate High Temporal Resolution Precipitation Time Series by Combining Weather Radar Measurements with a Nowcast Model

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    The topic of this paper is temporal interpolation of precipitation observed by weather radars. Precipitation measurements with high spatial and temporal resolution are, in general, desired for urban drainage applications. An advection-based interpolation method is developed which uses methods...

  1. FIA-FAAS method for tannin determination based on a precipitation reaction with hemoglobin

    Directory of Open Access Journals (Sweden)

    Ferreira Edilene C.

    2003-01-01

    Full Text Available A flow system, coupled with flame atomic absorption spectrometry (FIA-FAAS, was developed for tannin determination in pigeon pea samples, exploring the precipitation reaction between tannins and proteins. Sample extracts obtained by sonication with a 50% (v/v methanol solution were introduced into the system and induced to react with a hemoglobin solution. The precipitate produced was retained on a filter located in the analytical flow. A reversed flow of 1% (w/v sodium dodecyl sulfate solution was used for solubilization of the precipitate from the filter and to conduct the tannin-hemoglobin complex to the FAAS, to quantify the iron ions present in the hemoglobin structure. A tannic acid solution was used to prepare the analytical curve. The proposed method allowed determination of 30 samples per hour, a standard deviation of 9.7% (n=10, and a quantification limit of 0.27 mg L-1 for tannic acid.

  2. Chemical characteristics of surface systems in the Forsmark area. Visualisation and statistical evaluation of data from shallow groundwater, precipitation, and regolith

    International Nuclear Information System (INIS)

    Troejbom, Mats; Soederbaeck, Bjoern

    2006-02-01

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Forsmark area during the period November 2002 - March 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. Results from surface waters are not presented in this report since these were treated in a recently published report. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams, coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells, sampled up to four times per year. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data; Analysis of time trends and seasonal variation (for shallow groundwater); Exploration of relationships among the various chemical parameters. For all investigated parameters, the

  3. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  4. Chemical microreactor and method thereof

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA

    2011-08-09

    A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.

  5. Rock fracture grouting with microbially induced carbonate precipitation

    Science.gov (United States)

    Minto, James M.; MacLachlan, Erica; El Mountassir, Gráinne; Lunn, Rebecca J.

    2016-11-01

    Microbially induced carbonate precipitation has been proposed for soil stabilization, soil strengthening, and permeability reduction as an alternative to traditional cement and chemical grouts. In this paper, we evaluate the grouting of fine aperture rock fractures with calcium carbonate, precipitated through urea hydrolysis, by the bacteria Sporosarcina pasteurii. Calcium carbonate was precipitated within a small-scale and a near field-scale (3.1 m2) artificial fracture consisting of a rough rock lower surfaces and clear polycarbonate upper surfaces. The spatial distribution of the calcium carbonate precipitation was imaged using time-lapse photography and the influence on flow pathways revealed from tracer transport imaging. In the large-scale experiment, hydraulic aperture was reduced from 276 to 22 μm, corresponding to a transmissivity reduction of 1.71 × 10-5 to 8.75 × 10-9 m2/s, over a period of 12 days under constantly flowing conditions. With a modified injection strategy a similar three orders of magnitude reduction in transmissivity was achieved over a period of 3 days. Calcium carbonate precipitated over the entire artificial fracture with strong adhesion to both upper and lower surfaces and precipitation was controlled to prevent clogging of the injection well by manipulating the injection fluid velocity. These experiments demonstrate that microbially induced carbonate precipitation can successfully be used to grout a fracture under constantly flowing conditions and may be a viable alternative to cement based grouts when a high level of hydraulic sealing is required and chemical grouts when a more durable grout is required.

  6. Precipitous Birth

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the management of a precipitous birth in the emergency department (ED. The case is also appropriate for teaching of medical students and advanced practice providers, as well as reviewing the principles of crisis resource management, teamwork, and communication. Introduction: Patients with precipitous birth require providers to manage two patients simultaneously with limited time and resources. Crisis resource management skills will be tested once baby is delivered, and the neonate will require assessment for potential neonatal resuscitation. Objectives: At the conclusion of the simulation session, learners will be able to manage women who have precipitous deliveries, as well as perform neonatal assessment and management. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on precipitous birth management and neonatal evaluation.

  7. Precipitation of uranium peroxide from the leach liquor of uranium ores

    International Nuclear Information System (INIS)

    Gao Xizhen; Lin Sirong; Guo Erhua; Lu Shijie

    1995-06-01

    A chemical precipitation process of recovering uranium from the leach liquor of uranium ores was investigated. The process primarily includes the precipitation of iron with lime, the preprocessing of the slurry of iron hydroxides and the precipitation of uranium with H 2 O 2 . The leach liquor is neutralized by lime milk to pH 3.7 to precipitate the iron hydroxides which after flocculation and settle is separated out and preprocessed at 170 degree C in an autoclave. H 2 O 2 is then used to precipitate uranium in the leach liquor free of iron, and the pH of process for uranium precipitation adjusted by adding MgO slurry to 3.5. The barren solution can be used to wash the filter cakes of leach tailing. The precipitated slurry of iron hydroxides after being preprocessed is recycled to leaching processes for recovering uranium in it. This treatment can not only avoid the filtering of the slurry of iron hydroxides, but also prevent the iron precipitate from redissolving and consequently the increase of iron concentration in the leach liquor. The results of the investigation indicate that lime, H 2 O 2 and MgO are the main chemical reagents used to obtain the uranium peroxide product containing over 65% uranium from the leach liquor, and they also do not cause environmental pollution. In accordance with the uranium content in the liquor, the consumption of chemical reagent for H 2 O 2 (30%) and MgO are 0.95 kg/kgU and 0.169 kg/kgU, respectively. (1 fig., 8 tabs., 7 refs.)

  8. A statistical method to get surface level air-temperature from satellite observations of precipitable water

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Shikauchi, A; Sugimori, Y.; Kubota, M.

    -T a and precipitable water. The rms errors of the SSMI-T a , in this case are found to be reduced to 1.0°C. 1. Introduction Satellite derived surface-level meteorological parameters are considered to be a better alternative to sparse ship... Vol. 49, pp. 551 to 558. 1993 A Statistical Method to Get Surface Level Air-Temperature from Satellite Observations of Precipitable Water PANKAJAKSHAN THADATHIL*, AKIRA SHIKAUCHI, YASUHIRO SUGIMORI and MASAHISA KUBOTA School of Marine Science...

  9. MEASUREMENTS OF STRAIN FIELDS DUE TO NANOSCALE PRECIPITATES USING THE PHASE IMAGE METHOD

    Directory of Open Access Journals (Sweden)

    Patricia Donnadieu

    2011-05-01

    Full Text Available Owing the phase image method (Hytch, 1998, strain fields can be derived from HREM images. The method is here applied to the nanoscale precipitates responsible for hardening in Aluminum alloys. Since the method is a very sensitive one, we have examined the impact of several aspects of the image quality (noise, fluctuations, distortion. The strain field information derived from the HREM image analysis is further introduced in a simulation of the dislocation motion in the matrix.

  10. Rainfall estimation in SWAT: An alternative method to simulate orographic precipitation

    Science.gov (United States)

    Galván, L.; Olías, M.; Izquierdo, T.; Cerón, J. C.; Fernández de Villarán, R.

    2014-02-01

    The input of water from precipitation is one of the most important aspects of a hydrologic model because it controls the basin's water budget. The model should reproduce the amount and distribution of rainfall in the basin, spatially and temporally. SWAT (Soil and Water Assessment Tool) is one of the most widely used hydrologic models. In this paper the rainfall estimation in SWAT is revised, focusing on the treatment of orographic precipitation. SWAT was applied to the Odiel river basin (SW Spain), with a surface of 2300 km2. Results show that SWAT does not reflect reallisticaly the spatial distribution of rainfall in the basin. In relation to orographic precipitation, SWAT estimates the daily precipitation in elevation bands by adding a constant amount to the recorded precipitation in the rain gauge, which depends on the increase in precipitation with altitude and the difference between the mean elevation of each band and the elevation of the recording gauge. This does not reflect rainfall in the subbasin because the increase in precipitation with altitude actually it is not constant, but depends on the amount of rainfall. An alternative methodology to represent the temporal distribution of orographic precipitation is proposed. After simulation, the deviation of runoff volume using the SWAT elevation bands was appreciably higher than that obtained with the proposed methodology.

  11. Tracking the path of dislocations across ordered Al3Zr nano-precipitates in three dimensions

    International Nuclear Information System (INIS)

    Lefebvre, W.; Masquelier, N.; Houard, J.; Patte, R.; Zapolsky, H.

    2014-01-01

    Graphical abstract: -- We report on the shear–bypassing transition of chemically ordered Al 3 Zr nanoprecipitates. Observation of complex combinations of lattice translations, revealed by scanning transmission electron microscopy, is used as the signature of precipitate shearing during cold deformation. A method is proposed to build a three-dimensional atomic model of sheared particles from a set of three atomic scale projections. An estimation of the antiphase boundary energy of the Al 3 Zr structure is achieved via the comparison of experimental findings to a model of precipitation hardening

  12. Chemical control methods and tools

    Science.gov (United States)

    Steven Manning; James. Miller

    2011-01-01

    After determining the best course of action for control of an invasive plant population, it is important to understand the variety of methods available to the integrated pest management professional. A variety of methods are now widely used in managing invasive plants in natural areas, including chemical, mechanical, and cultural control methods. Once the preferred...

  13. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Plutonium by Controlled-Potential Coulometry Plutonium by Amperometric Titration with Iron(II) Plutonium by Diode Array Spectrophotometry Free Acid by Titration in an Oxalate Solution 8 to 15 Free Acid by Iodate Precipitation-Potentiometric Titration Test Method 16 to 22 Uranium by Arsenazo I Spectrophotometric Test Method 23 to 33 Thorium by Thorin Spectrophotometric Test Method 34 to 42 Iron by 1,10-Phenanthroline Spectrophotometric Test Method 43 to 50 Impurities by ICP-AES Chloride by Thiocyanate Spectrophotometric Test Method 51 to 58 Fluoride by Distillation-Spectrophotometric Test Method 59 to 66 Sulfate by Barium Sulfate Turbidimetric Test Method 67 to 74 Isotopic Composition by Mass Spectrom...

  14. New method for the determination of precipitation kinetics using a laminar jet reactor

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.; Heesink, Albertus B.M.; Versteeg, Geert

    2005-01-01

    In this paper a new experimental method for determining the kinetics of fast precipitation reactions is introduced. Use is made of a laminar jet reactor, which is also frequently applied to determine the kinetics of homogeneous gas–liquid reactions. The liquid containing one or more of the

  15. New method for the determination of precipitation kinetics using a laminar jet reactor

    NARCIS (Netherlands)

    Al-Tarazi, Mousa; Heesink, A. Bert M.; Versteeg, Geert F.

    2005-01-01

    In this paper a new experimental method for determining the kinetics of fast precipitation reactions is introduced. Use is made of a laminar jet reactor, which is also frequently applied to determine the kinetics of homogeneous gas-liquid reactions. The liquid containing one or more of the

  16. Device for collecting chemical compounds and related methods

    Science.gov (United States)

    Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

    2013-01-01

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  17. Carbonate Precipitates During Heat Evolution in FP-Type Cells

    International Nuclear Information System (INIS)

    Bruce L. Cain

    2000-01-01

    In previous work, we reported measurement of large amounts of heat generated during experiments using an FP-type open cell with concentrated LiOH/D 2 O electrolytes and thin-film Pd cathodes. During the heat evolution in several runs, which produced >100 W for more than 20 h, we consistently observed the concomitant evolution of gases from the electrolyte and the precipitation of large amounts of lithium carbonate. The carbonate production was clearly visible during production of heat, creating an opaque electrolyte even during long periods with no electrolysis current. These results indicated an unusual chemical reaction, either catalyzed by the heating process or possibly creating the heat itself. The total energy released during the earlier experiments was ∼7 MJ, while the heat of formation for the lithium carbonate in the cell was only 0.8 MJ. Hence, only ∼10% of the heat signatures from these experiments can be attributed to the precipitate formation, the balance of the heat presumably arising from nonchemical sources in the cells. The earlier experiments that produced heat also suffered from problems of reproducibility, with only 5 of 38 runs producing any heat at all. The unsuccessful runs also did not produce precipitates, and the only gas produced in these cells was due to the normal electrolysis of D 2 O to produce oxygen and deuterium in the electrodes. Recent work has focused on recreating the chemical precipitation reaction, in efforts to understand and/or trigger the heat production process. With findings from these experiments, new experiments were conducted using larger (1 L LiOH/D 2 O) cells with Pt anodes and Pd film cathodes immersed but left open-circuited. After the addition of H 2 O 2 , and subsequent heating and cooling, these cells visually reproduced the precipitation and gas evolution of the earlier heat-producing runs. However, these new runs only produced a few watts of power for several minutes, consistent with the normal exothermal

  18. Identification and root cause analysis of cell culture media precipitates in the viral deactivation treatment with high-temperature/short-time method.

    Science.gov (United States)

    Cao, Xiaolin; Stimpfl, Gregory; Wen, Zai-Qing; Frank, Gregory; Hunter, Glenn

    2013-01-01

    High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the biopharmaceutical manufacturing industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating and pumping the media continuously through the preset high-temperature holding tubes to achieve a specified period of time at a specific temperature. Recently, during the evaluation and implementation of HTST method in multiple Amgen, Inc. manufacturing facilities, media precipitates were observed in the tests of HTST treatments. The media precipitates may have adverse consequences such as clogging the HTST system, altering operating conditions and compromising the efficacy of viral deactivation, and ultimately affecting the media composition and cell growth. In this study, we report the identification of the composition of media precipitates from multiple media HTST runs using combined microspectroscopic methods including Raman, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The major composition in the precipitates was determined to be metal phosphates, including calcium phosphate, magnesium phosphate, and iron (III) phosphate. Based on the composition, stoichiometry, and root-cause study of media precipitations, methods were implemented for the mitigation and prevention of the occurrence of the media precipitation. Viral contamination in cell culture media is an important issue in the biopharmaceutical manufacturing industry and may have serious consequences on product quality, efficacy, and safety. High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating at preset conditions. This

  19. Precipitates/Salts Model Sensitivity Calculation

    International Nuclear Information System (INIS)

    Mariner, P.

    2001-01-01

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO 2 ) on the chemical evolution of water in the drift

  20. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals.

    Science.gov (United States)

    Zhang, Y; Huang, S L; Wang, S; Zhao, W

    2016-05-01

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of wave detection signals.

  1. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: thuzhangyu@foxmail.com; Huang, S. L., E-mail: huangsling@tsinghua.edu.cn; Wang, S.; Zhao, W. [State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2016-05-15

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.

  2. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals

    International Nuclear Information System (INIS)

    Zhang, Y.; Huang, S. L.; Wang, S.; Zhao, W.

    2016-01-01

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.

  3. Effect of Gallium and Indium Co-Substituting on Upconversion Properties of Er/Yb:Yttrium Aluminum Garnet Powders Prepared by the Co-Precipitation Method.

    Science.gov (United States)

    Zhang, Wei; Liang, Yun-Ling; Hu, Zheng-Fa; Feng, Zu-Yong; Lun, Ma; Zhang, Xiu-ping; Sheng, Xia; Liu, Qian; Luo, Jie

    2016-04-01

    Gallium and Indium co-substituted Yb, Er:YAG was fabricated through the chemical co-precipitation method. The formation process and structure of the Ga3+ and In3+ substituted phosphor powders were characterized by the X-ray diffraction, thermo-gravimetry analyzer, infrared spectra, and X-ray photoelectron spectroscopy, and the effects of Ga3+ and In3+ concentration on the luminescence properties were investigated by spectrum. The results showed that the blue shift occurred after the substitution of Ga3+ and In3+ for Al3+ in matrix, and the intensity of emission spectrum was affected by the concentration of Ga3+ and In3+.

  4. Formulating and testing a method for perturbing precipitation time series to reflect anticipated climatic changes

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Georgiadis, Stylianos; Gregersen, Ida Bülow

    2017-01-01

    Urban water infrastructure has very long planning horizons, and planning is thus very dependent on reliable estimates of the impacts of climate change. Many urban water systems are designed using time series with a high temporal resolution. To assess the impact of climate change on these systems......, similarly high-resolution precipitation time series for future climate are necessary. Climate models cannot at their current resolutions provide these time series at the relevant scales. Known methods for stochastic downscaling of climate change to urban hydrological scales have known shortcomings...... in constructing realistic climate-changed precipitation time series at the sub-hourly scale. In the present study we present a deterministic methodology to perturb historical precipitation time series at the minute scale to reflect non-linear expectations to climate change. The methodology shows good skill...

  5. Errors and Correction of Precipitation Measurements in China

    Institute of Scientific and Technical Information of China (English)

    REN Zhihua; LI Mingqin

    2007-01-01

    In order to discover the range of various errors in Chinese precipitation measurements and seek a correction method, 30 precipitation evaluation stations were set up countrywide before 1993. All the stations are reference stations in China. To seek a correction method for wind-induced error, a precipitation correction instrument called the "horizontal precipitation gauge" was devised beforehand. Field intercomparison observations regarding 29,000 precipitation events have been conducted using one pit gauge, two elevated operational gauges and one horizontal gauge at the above 30 stations. The range of precipitation measurement errors in China is obtained by analysis of intercomparison measurement results. The distribution of random errors and systematic errors in precipitation measurements are studied in this paper.A correction method, especially for wind-induced errors, is developed. The results prove that a correlation of power function exists between the precipitation amount caught by the horizontal gauge and the absolute difference of observations implemented by the operational gauge and pit gauge. The correlation coefficient is 0.99. For operational observations, precipitation correction can be carried out only by parallel observation with a horizontal precipitation gauge. The precipitation accuracy after correction approaches that of the pit gauge. The correction method developed is simple and feasible.

  6. [Effect of developing tourism on chemical characteristic of precipitation: taking Lijiang for example].

    Science.gov (United States)

    Zhang, Ning-Ning; He, Yuan-Qing; Wang, Chun-Feng; Pang, Hong-Xi; He, Xian-Zhong

    2011-02-01

    1090 precipitation samples were collected from 1989 to 2006 at Lijiang City. The analyzed results indicate that the average pH value is 6.08 at study period, which is higher than the average pH value (5.0) during 1987 to 1989, and the annual pH value show an increasing trend, suggesting there are more alkaline mass input to air after 1989. the concentrations of major ions Cl-, SO4(2-), NO3-, Na+, Ca2+, Mg2+ and NH4+ are 11.56, 32.64, 3.63, 2.54, 50.19, 7.73 and 11.36 microeq x L(-1), respectively. By computed the correlation coefficients and sources contribution among major ions, it find that Ca2+ and Mg2+ are from soil-derived sources, and about 57.2% of SO4(2-) also come from soil-derived sources; 95.4% of total NO3- and 41.9% of SO4(2-) come from anthropogenic sources, and only Na+ and 25.7% of Cl- come from sea source, meaning that the chemical composition of precipitation at Lijiang region is main influenced by regional sources. According to the variation of tour scale at Lijiang city, it can be divided into 3 periods of 1987-1989, 1989-1996 and 1997-2006. The percent of soil-derived ions at different periods is 40%, 53% and 72%, respectively, showing a significant increase trend; but the percent of anthropology-derived ions at different periods is 39%, 36% and 15%, respectively, showing a decrease trend. It explains that more dust input to the air by expending city scale, changing the land form and overusing water resources. But in order to develop tourism, the pollutants related to industries are controlled well.

  7. Structural and luminescence properties of CaTiO{sub 3}:Eu{sup 3+} phosphor synthesized by chemical co-precipitation method for the application of solid state lighting devices

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dhananjay Kumar, E-mail: dksism89@gmail.com; Manam, J., E-mail: jairam.manam@gmail.com [Department of Applied Physics, Indian School of Mines, Dhanbad-826004 (India)

    2016-05-06

    The present work report a series of trivalent Europium (Eu{sup 3+}) doped well crystallized perovskite CaTiO{sub 3} phosphors successfully synthesized by chemical co-precipitation method. The crystal structure was confirmed by X-ray diffraction (XRD) which is in good agreement with pure orthorhombic phase with space group Pbnm, and it also indicated that the incorporation of the dopant did not affect the crystal structure. The impact of doping on the photoluminescence performances of the sample has been investigated by emission, excitation, and diffuse reflectance spectra at the room temperature. Photoluminescence spectra of Eu{sup 3+} doped CaTiO{sub 3} nanophosphor revealed the characteristic emission peak around wavelength 618 nm in the visible region upon the excitation of near-UV light at wavelength 397 nm due to {sup 5}D{sub 0} → {sup 7}F{sub 2} transition in Eu{sup 3+}. It was further proved that the dipole– dipole interactions results in the concentration quenching of Eu{sup 3+} in CaTiO{sub 3}:Eu{sup 3+} nanophosphors. The elemental composition of sample carried out by energy dispersive spectroscopy (EDS). EDS analysis reveals that the Eu{sup 3+} doped successfully into host CaTiO{sub 3}. The experimental result reveals that prepared nanophosphor can be used in the application of solid state lighting devices.

  8. Preparation of magnesium hydroxide nanoflowers from boron mud via anti-drop precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xi [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Blue Sky Technology Corporation, Beijing 100083 (China); Ma, Hongwen, E-mail: mahw@cugb.edu.cn [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Jiang, Xiaoqian [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Jiang, Zhouqing [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Blue Sky Technology Corporation, Beijing 100083 (China)

    2014-08-15

    Highlights: • We use the anti-drop precipitation method for synthesis of magnesium hydroxide. • Boron mud which is solid waste from a borax factory is used as the magnesium source. • The magnesium hydroxide nanoflowers are prepared in a short time. • The as-prepared magnesium hydroxide can be used as an effective flame retardant. - Abstract: Using boron mud as the starting material, the flower-like magnesium hydroxide (MH) has been successfully prepared via anti-drop precipitation method. The effect of NH{sub 3}·H{sub 2}O concentration, aging time, and surfactant on the morphology of MH was investigated. The optimum precipitation conditions are dropping MgSO{sub 4} solution in 5% NH{sub 3}·H{sub 2}O solution, with 3% polyethylene glycol as surfactant, aging for 30 min. XRD, SEM, FI-IR, and TG/DTA have been employed to characterize the as-prepared samples. XRD reveals that MH with high purity has the brucite structure. SEM images show that the flower-like MH exists in the form of mono-disperse well uniform spherical aggregation with diameter of 3–5 μm. TG/DTA shows a total percentage of weight loss 33.6% with a well-defined endothermic peak near 381.3 °C corresponding to the decomposition of MH. Furthermore, it reports that the extremely fast primary nucleation is of significance for crystal growth of MH.

  9. Analysis of Zr++++ dan ZrO++ cations through their Hydroxide precipitate with thermal differential analysis method

    International Nuclear Information System (INIS)

    Simbolon, Sahat; Ratmi-Herlani

    1996-01-01

    Hydroxide of zirconyl and zirconium, made by reacting zirconium and zirconyl solution with NH 4 OH 25 % solution, were analysed by thermal differential analysis (TDA). It was also done TDA method for hydroxide of zirconyl and zirconium, made by reacting zirconyl chloride and zirconium chloride solid with NH 4 OH 25 % solution directly. It was found that TDA of hydroxide precipitate made through solution had a clear TDA counter, meanwhile TDA thermogram of hydroxide precipitate made by direct adding NH 4 OH 25 % solution to zirconyl and zirconium hydroxide had no clear TDA thermogram. Precipitate Zr O(OH) 2 and Zr(OH) 4 found through solution could be differentiated each other based on their TDA thermograms

  10. Magnetic and electrical properties of the La doped Mn-Zn ferrite nanoparticles synthesized by the co-precipitation method

    International Nuclear Information System (INIS)

    Chandel, Vipin; Vijeta; Thakur, Atul; Thakur, Preeti

    2013-01-01

    In the present study, nano crystalline Mn-Zn-La ferrite with chemical formula Mn 0.4 Zn 0.6 La 0.3 Fe 1.7 O 4 was successfully synthesized by a co-precipitation method. The prepared powders were presintered at 700℃. The pallets formed were finally sintered at 700℃, 800℃ and 900℃ for 3h reach. The structural and morphological behavior was investigated by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD confirms the formation of the expected spinel structure. Scanning Electron Microscopy (SEM) was used to characterize the microstructure of the ferrite samples i.e. grain morphology, grain size, grain size distribution and shape. Fourier transform infrared spectroscopy (FTIR) confirms the peaks of different molecules in the given sample. Electrical and magnetic properties were studied by using dc resistivity set up and vibrating sample magnetometer (VSM). (author)

  11. Fabrication of ITO particles using a combination of a homogeneous precipitation method and a seeding technique and their electrical conductivity

    Directory of Open Access Journals (Sweden)

    Yoshio Kobayashi

    2015-09-01

    Full Text Available The present work proposes a method to fabricate indium tin oxide (ITO particles using precursor particles synthesized with a combination of a homogeneous precipitation method and a seeding technique, and it also describes their electronic conductivity properties. Seed nanoparticles were produced using a co-precipitation method with aqueous solutions of indium (III chloride, tin (IV chloride aqueous solution and sodium hydroxide. Three types of ITO nanoparticles were fabricated. The first type was fabricated using the co-precipitation method (c-ITO. The second and third types were fabricated using a homogeneous precipitation method with the seed nanoparticles (s-ITO and without seeds (n-ITO. The as-prepared precursor particles were annealed in air at 500 °C, and their crystal structures were cubic ITO. The c-ITO nanoparticles formed irregular-shaped agglomerates of nanoparticles. The n-ITO nanoparticles had a rectangular-parallelepiped or quasi-cubic structure. Most s-ITO nanoparticles had a quasi-cubic structure, and their size was larger than the n-ITO particles. The volume resistivities of the c-ITO, n-ITO and s-ITO powders decreased in that order because the regular-shaped particles were made to strongly contact with each other.

  12. Precipitation dynamics and chemical properties in tropical mountain forests of Ecuador

    Directory of Open Access Journals (Sweden)

    R. Rollenbeck

    2006-01-01

    Full Text Available Terrestrial ecosystems in southern Ecuador are strongly affected by interannual climate variations. This holds especially true for the episodic El Niño events, which cause above-normal precipitation in the coastal region of Ecuador and below normal values in the eastern provinces of the Amazon basin (Bendix, 1999. For the transitional zone between these two extremes, which consists mainly of the andean slopes and larger interandean basins the effect on interannual climate variability is not well known. The PREDICT project monitors regional climate in the provinces of Loja and Zamora-Chinchipe (4° S/79° W, where a strong gradients of precipitation are observed. Between the eastern slopes of the Cordillera Real and the dry valley of Catamayo, which are only 70km apart, rain totals drop from over 4000 mm to only 300 mm per year. These two extremes represent the both sides of the Andean mountain chain and are completely covered by the study area, which is 120 km in diameter. Methods used are a combination of point measurements (climate stations and remote sensing devices (weather radar, satellite imagery, which enable a high-resolution real-time observation of rain distribution and underlying processes. By this, ideal conditions are given to monitor a potential shift of the transition zone between below-average and above-average rainfall situated in this region, if another ENSO-anomaly occurs. Furthermore variability of atmospheric nutrient inputs is analysed within the scope of the project, to assess further impacts on this ecosystem.

  13. Precipitation dynamics and chemical properties in tropical mountain forests of Ecuador

    Science.gov (United States)

    Rollenbeck, R.; Fabian, P.; Bendix, J.

    2006-01-01

    Terrestrial ecosystems in southern Ecuador are strongly affected by interannual climate variations. This holds especially true for the episodic El Niño events, which cause above-normal precipitation in the coastal region of Ecuador and below normal values in the eastern provinces of the Amazon basin (Bendix, 1999). For the transitional zone between these two extremes, which consists mainly of the andean slopes and larger interandean basins the effect on interannual climate variability is not well known. The PREDICT project monitors regional climate in the provinces of Loja and Zamora-Chinchipe (4° S/79° W), where a strong gradients of precipitation are observed. Between the eastern slopes of the Cordillera Real and the dry valley of Catamayo, which are only 70km apart, rain totals drop from over 4000 mm to only 300 mm per year. These two extremes represent the both sides of the Andean mountain chain and are completely covered by the study area, which is 120 km in diameter. Methods used are a combination of point measurements (climate stations) and remote sensing devices (weather radar, satellite imagery), which enable a high-resolution real-time observation of rain distribution and underlying processes. By this, ideal conditions are given to monitor a potential shift of the transition zone between below-average and above-average rainfall situated in this region, if another ENSO-anomaly occurs. Furthermore variability of atmospheric nutrient inputs is analysed within the scope of the project, to assess further impacts on this ecosystem.

  14. Development of a numerical simulation method for melting/solidification and dissolution/precipitation phenomena. 1. Literature survey for computer program design

    International Nuclear Information System (INIS)

    Uchibori, Akihiro; Ohshima, Hiroyuki

    2004-04-01

    Survey research of numerical methods for melting/solidification and dissolution/precipitation phenomena was performed to determine the policy for a simulation program development. Melting/solidification and dissolution/ precipitation have been key issues for feasibility evaluation of several techniques applied in the nuclear fuel cycle processes. Physical models for single-component melting/solidification, two-component solution solidification or precipitation by cooling and precipitation by electrolysis, which are moving boundary problems, were made clear from the literature survey. The transport equations are used for thermal hydraulic analysis in the solid and the liquid regions. Behavior of the solid-liquid interface is described by the heat and mass transfer model. These physical models need to be introduced into the simulation program. The numerical methods for the moving boundary problems are categorized into two types: interface tracking method and interface capturing method. Based on the classification, performance of each numerical method was evaluated. The interface tracking method using the Lagrangian moving mesh requires relatively complicated algorithm. The algorithm has high accuracy for predicting the moving interface. On the other hand, the interface capturing method uses the Eulerian fixing mesh, leading to simple algorithm. Prediction accuracy of the method is relatively low. The extended finite element method classified as the interface capturing method can predict the interface behavior accurately even though the Eulerian fixing mesh is used. We decided to apply the extended finite element method to the simulation program. (author)

  15. Centrifugal precipitation chromatography

    Science.gov (United States)

    Ito, Yoichiro; Lin, Qi

    2009-01-01

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. The countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation. PMID:19541553

  16. Fe-based soft magnetic composites coated with NiZn ferrite prepared by a co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yuandong; Yi, Yi; Li, Liya; Ai, Hengyu; Wang, Xiaoxu [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chen, Lulu [Jiangsu Eagle-globe Group Co., Ltd., Nantong 226600 (China)

    2017-04-15

    Fe powder was coated with NiZn ferrite by a co-precipitation method using chlorate as the raw material. Soft magnetic composites were manufactured via compaction and heat treatment of the coated powder. The coated powder and heat treated powder were analysed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy. Their magnetic properties were determined using a Quantum Design-Vibrating Sample Magnetometer (QD-VSM). The composites were analysed with SEM and EDS. The permeability and magnetic loss of the composites were measured with a B-H curve analyzer. The results show that, using the co-precipitation method, the raw precipitate was successfully prepared and coated the pure Fe powder and turned into spinel NiZn ferrite treated at 600 ℃ for 1 h. After heat treatment at 500 ℃ under air, the insulation coating layer of soft magnetic composite (SMC) was not destroyed and containing Fe, Ni, Zn and oxygen. The permeabilities of the SMC are stable at edge of the 2–200 kHz frequency range and the total loss was lower. - Graphical abstract: Scanning electron microscopy (SEM) images of Fe/(NiZn)Fe{sub 2}O{sub 4} composite powder heated at 600 ℃ for 1 h. - Highlights: • Fe particles were coated with (NiZn)Fe{sub 2}O{sub 4} via a co-precipitation and calcined method. • Coating layers were uniform and dense. • The permeabilities of the SMC are stable at edge of the 2–200 kHz frequency range.

  17. Coupled effects of the precipitation of secondary species on the mechanical behaviour and chemical degradation of concretes

    International Nuclear Information System (INIS)

    Planel, D.

    2002-06-01

    Sulfate attack of cement-based materials remains an important problem for the durability assessment of containers and disposal engineering barriers dedicated to the long-term storage of radioactive wastes since underground water which may reach these elements contains small quantities of sulfates (7-31 mmol/1). This work contributes to the study of sulfate-induced damage mechanisms, to their understanding and modelling. The experimental phases of this study aimed at the understanding of the different physico-chemical phenomena involved during an external sulfate attack at following their evolution and their impact on the transport and mechanical properties of the material. Leaching experiments in pure water and in a solution of sodium sulfate (with a sulfate content of 15 mmol/1), have been performed simultaneously on OPC paste (w/c 0,4)in order to allow a comparison of test results. The frequent analysis of the leachant has shown a consumption of sulfate ions by the matrix, proportional to the square rate of time. The use of X-Ray Diffraction on powders, obtained by scraping the calcium-depleted part of the samples, led a precise view of the cement paste mineralogy, during sulfate attack. The use of Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS) confirmed the correctness of XRD profiles and brought important informations concerning cracking distribution and localisation. In addition, a visual monitoring of crack appearance and evolution completed the previous observations. Based on these experimental results, a simplified model accounting for the chemical degradation of cement paste in sulfated water has been proposed. A geochemical code, coupling the chemistry in solution with the reactive transport in porous media has been used for this purpose. The model accounts for the evolution of transport properties (diffusivity) associated with the calcium-depleting of the cement matrix and the precipitation of secondary phases (gypsum

  18. Polyfluorinated and perfluorinated chemicals in precipitation and runoff from cities across eastern and central China.

    Science.gov (United States)

    Zhao, Lijie; Zhou, Meng; Zhang, Tao; Sun, Hongwen

    2013-02-01

    Twenty-three polychlorinated and perfluorinated compounds (PFCs) were investigated in water phase and particulate matters of 19 precipitation samples (18 snow samples and 1 rain sample) from different cities across eastern and central China collected in February 2010. The PFCs in samples of 9e precipitation events during more than half a year at 1 site in Tianjin and 6 successive samples during 1 precipitation event were measured to elucidate the change of PFC in precipitation. In addition, PFCs in 3 runoffs at different kinds of sites in Tianjin were compared with those in the corresponding precipitation. The results showed that the particulate matters separated from the precipitation contained undetectable PFCs. The total PFC concentration ranged between 4.7 and 152 ng L(-1) in water phase of the precipitation samples, with perfluorooctanoic acid (PFOA) being detected at all of the sampling sites and the dominant PFC at most of the sampling sites. Some potential precursors of environmentally concerned PFCs and their degradation intermediates were measured simultaneously, among which 6:2 fluorotelomer unsaturated carboxylic acid (6:2 FTUCA), 8:2 FTUCA, and  × (3, 4, 5, 7):3 acid [F(CF(2))xCH(2)CH(2)COOH] were measured for the first time in Chinese precipitations; however, their concentrations were all lower than the limits of detection except that 6:2 FTUCA and 8:2 FTUCA could be detected in 3 and 8 precipitation samples, respectively. No clear seasonal variation in PFC concentrations in precipitation was observed during half a year; however, a relatively greater average concentration of total PFCs was observed during winter and summer compared with spring. The concentration of individual PFCs showed an obvious descending trend in the successive samples of the precipitation event. PFOA and perfluorononanoic acid in runoffs collected from different sites showed the following similar pattern-gas station > highway > university campus-whereas the other

  19. Investigation of Evaluation method of chemical runaway reaction

    International Nuclear Information System (INIS)

    Sato, Yoshihiko; Sasaya, Shinji; Kurakata, Koichiro; Nojiri, Ichiro

    2002-02-01

    Safety study 'Study of evaluation of abnormal occurrence for chemical substances in the nuclear fuel facilities' will be carried out from 2001 to 2005. In this study, the prediction of thermal hazards of chemical substances will be investigated and prepared. The hazard prediction method of chemical substances will be constructed from these results. Therefore, the hazard prediction methods applied in the chemical engineering in which the chemical substances with the hazard of fire and explosion were often treated were investigated. CHETAH (The ASTM Computer Program for Chemical Thermodynamic and Energy Release Evaluation) developed by ASTM (American Society for Testing and Materials) and TSS (Thermal Safety Software) developed by CISP (ChemInform St. Petersburg) were introduced and the fire and explosion hazards of chemical substances and reactions in the reprocessing process were evaluated. From these evaluated results, CHETAH could almost estimate the heat of reaction at 10% accuracy. It was supposed that CHETAH was useful as a screening for the hazards of fire and explosion of the new chemical substances and so on. TSS could calculate the reaction rate and the reaction behavior from the data measured by the various calorimeters rapidly. It was supposed that TSS was useful as an evaluation method for the hazards of fire and explosion of the new chemical reactions and so on. (author)

  20. Determination of fluorine concentrations using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry to analyze fluoride precipitates.

    Science.gov (United States)

    Lee, H. A.; Lee, J.; Kwon, E.; Kim, D.; Yoon, H. O.

    2015-12-01

    In recent times, fluorine has been receiving increasing attention due to the possibility for chemical (HF) leakage accidents and its high toxicity to human and environment. In this respect, a novel approach for the determination of fluorine concentrations in water samples using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry was investigated in this study. The main disadvantage of WDXRF technique for fluorine analysis is low analytical sensitivity for light elements with atomic number (Z) less than 15. To overcome this problem, we employed the precipitation reaction which fluoride is reacted with cation such as Al3+ and/or Ca2+ prior to WDXRF analysis because of their high analytical sensitivity. The cation was added in fluoride solutions to form precipitate (AlF3 and/or CaF2) and then the solution was filtered through Whatman filter. After drying at 60 °C for 5 min, the filter was coated with X-ray film and directly analyzed using WDXRF spectrometry. Consequently, we analyzed the cation on filter and subsequently fluorine concentration was calculated inversely based on chemical form of precipitate. This method can improve the analytical sensitivity of WDXRF technique for fluorine analysis and be applicable to various elements that can make precipitate.

  1. Calculation of the driving force for the radiation induced precipitation of Ni3Si in nickel-silicon alloys

    International Nuclear Information System (INIS)

    Miodownik, A.P.; Watkin, J.S.

    1979-01-01

    The appearance of precipitates which have been identified as Ni 3 Si in irradiated stainless steels and nickel rich alloys such as Inconel is of considerable interest in relation to the swelling behaviour of such materials. Work on binary nickel-silicon alloys has shown that Ni 3 Si can be induced to precipitate in alloys whose silicon content is well below the accepted solubility limit, and it has also been shown that such precipitates redissolve when heat-treatment is continued at the same temperature in the absence of irradiation. Such effects imply an irradiation induced shift of chemical potential, and cannot be explained by merely involving accelerated diffusion. This paper represents an attempt to calculate the shift in chemical potential required to precipitate Ni 3 Si in alloys containing 1-10% Si (at%) over a range of temperatures (300-1000K), and then proceeds to relate this calculated chemical potential with available information concerning the dose rates required to induce such precipitates at various temperatures. Presentation of the results is modelled on the well established methods for handling the Time-Temperature-Transformation behaviour of ordinary alloy systems, with dose rate being substituted for the time axis. Analogous calculations are presented for nickel-germanium alloys, in order to check whether the numerical values deduced from the nickel silicon system have more general applicability, and also to see whether there are any significant differences in a system where the size factor of the solute is of the opposite sign. (orig.) [de

  2. Evaluation of spatial and spatiotemporal estimation methods in simulation of precipitation variability patterns

    Science.gov (United States)

    Bayat, Bardia; Zahraie, Banafsheh; Taghavi, Farahnaz; Nasseri, Mohsen

    2013-08-01

    Identification of spatial and spatiotemporal precipitation variations plays an important role in different hydrological applications such as missing data estimation. In this paper, the results of Bayesian maximum entropy (BME) and ordinary kriging (OK) are compared for modeling spatial and spatiotemporal variations of annual precipitation with and without incorporating elevation variations. The study area of this research is Namak Lake watershed located in the central part of Iran with an area of approximately 90,000 km2. The BME and OK methods have been used to model the spatial and spatiotemporal variations of precipitation in this watershed, and their performances have been evaluated using cross-validation statistics. The results of the case study have shown the superiority of BME over OK in both spatial and spatiotemporal modes. The results have shown that BME estimates are less biased and more accurate than OK. The improvements in the BME estimates are mostly related to incorporating hard and soft data in the estimation process, which resulted in more detailed and reliable results. Estimation error variance for BME results is less than OK estimations in the study area in both spatial and spatiotemporal modes.

  3. A multi-source precipitation approach to fill gaps over a radar precipitation field

    Science.gov (United States)

    Tesfagiorgis, K. B.; Mahani, S. E.; Khanbilvardi, R.

    2012-12-01

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products. The present work develops an approach to seamlessly blend satellite, radar, climatological and gauge precipitation products to fill gaps over ground-based radar precipitation fields. To mix different precipitation products, the bias of any of the products relative to each other should be removed. For bias correction, the study used an ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar rainfall product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. A weighted Successive Correction Method (SCM) is proposed to make the merging between error corrected satellite and radar rainfall estimates. In addition to SCM, we use a Bayesian spatial method for merging the gap free radar with rain gauges, climatological rainfall sources and SPEs. We demonstrate the method using SPE Hydro-Estimator (HE), radar- based Stage-II, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over three different geographical locations of the United States. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the scientific community.

  4. Photoluminescence and magnetic properties of Fe-doped ZnS nano-particles synthesized by chemical co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Nie Eryong; Liu Donglai; Zhang Yunsen; Bai Xue; Yi Liang; Jin Yong; Jiao Zhifeng [School of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Sun Xiaosong, E-mail: sunxs@scu.edu.cn [School of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China)

    2011-08-15

    This paper is focusing on the synthesis of Zn{sub 1-x}Fe{sub x}S nano-particles with x = 0, 0.1 and 0.2 by chemical co-precipitation method, the prepared of which are characterized by XRD, EDS, TEM, PL, magnetization versus field behavior and M-T curve. In the XRD patterns, Zn{sub 1-x}Fe{sub x}S nano-particles are shown of cubic zinc blende structure, and the broadening diffraction peaks consistent with the small-size characteristic of nano-materials. The diameter of nano-particles is between 3.3 and 5.5 nm according to the HR-TEM images. The EDS data confirm the existence of Fe ions in Fe-doped ZnS nanoparticles. There we found that Fe-doping did not import new energy bands or defect states, but reduced the intensity of PL peaks. The magnetization versus field behaviors were illustrated by the M-H curves at both 5 K and 300 K, respectively, where no remanence or coercive force was observed. This phenomenon indicates that the Zn{sub 1-x}Fe{sub x}S (x = 0.1) nano-particles are superparamagnetic. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves further reveal that the blocking temperature (T{sub B}) of the superparamagnetic behavior might be below 5 K.

  5. Chemical characteristics of surface systems in the Forsmark area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Forsmark area during the period November 2002 - March 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. Results from surface waters are not presented in this report since these were treated in a recently published report. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams, coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells, sampled up to four times per year. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data; Analysis of time trends and seasonal variation (for shallow groundwater); Exploration of relationships among the various chemical parameters. For all investigated parameters, the

  6. Chemical characteristics of surface systems in the Simpevarp area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-01-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Simpevarp area in Oskarshamn, i.e. both the Laxemar subarea and the Simpevarp subarea, during the period Nov 2002 - Mar 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams and coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data. Analysis of time trends and seasonal variation (for surface waters). Exploration of relationships among the various chemical parameters. For all investigated parameters, the report presents selected statistics for each sampling site, as well as for available reference

  7. Chemical characteristics of surface systems in the Simpevarp area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    International Nuclear Information System (INIS)

    Troejbom, Mats; Soederbaeck, Bjoern

    2006-01-01

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Simpevarp area in Oskarshamn, i.e. both the Laxemar subarea and the Simpevarp subarea, during the period Nov 2002 - Mar 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams and coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data. Analysis of time trends and seasonal variation (for surface waters). Exploration of relationships among the various chemical parameters. For all investigated parameters, the report presents selected statistics for each sampling site, as well as for available reference

  8. Precipitates/Salts Model Sensitivity Calculation

    Energy Technology Data Exchange (ETDEWEB)

    P. Mariner

    2001-12-20

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO{sub 2}) on the chemical evolution of water in the drift.

  9. Chemical Methods to Knock Down the Amyloid Proteins

    Directory of Open Access Journals (Sweden)

    Na Gao

    2017-06-01

    Full Text Available Amyloid proteins are closely related with amyloid diseases and do tremendous harm to human health. However, there is still a lack of effective strategies to treat these amyloid diseases, so it is important to develop novel methods. Accelerating the clearance of amyloid proteins is a favorable method for amyloid disease treatment. Recently, chemical methods for protein reduction have been developed and have attracted much attention. In this review, we focus on the latest progress of chemical methods that knock down amyloid proteins, including the proteolysis-targeting chimera (PROTAC strategy, the “recognition-cleavage” strategy, the chaperone-mediated autophagy (CMA strategy, the selectively light-activatable organic and inorganic molecules strategy and other chemical strategies.

  10. Acidity of Scandinavian precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, E; Bordin, G

    1955-01-01

    Data on the pH of the total monthly precipitation at stations of a Swedish network for sampling and chemical analysis of precipitation and atmospheric aerosols during the year July 1953 to June 1954 are presented and discussed, together with the pH data from the first two months of operation of a large pan-Scandinavian net. It is found that well-defined regions of acidity and alkalinity relative to the pH of water in equilibrium with atmospheric carbon dioxide exist, and that these regions persist to such an extent that the monthly deviations from the pattern of the annual mean pH at stations unaffected by local pollution show persistently high acidity, while inland northern stations show equally persistent alkalinity. Some possible reasons for the observed distributions are considered.

  11. Comparison of precipitation nowcasting by extrapolation and statistical-advection methods

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Kitzmiller, D.; Pešice, Petr; Mejsnar, Jan

    2013-01-01

    Roč. 123, 1 April (2013), s. 17-30 ISSN 0169-8095 R&D Projects: GA MŠk ME09033 Institutional support: RVO:68378289 Keywords : Precipitation forecast * Statistical models * Regression * Quantitative precipitation forecast * Extrapolation forecast Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.421, year: 2013 http://www.sciencedirect.com/science/article/pii/S0169809512003390

  12. Relative importance of precipitation frequency and intensity in inter-annual variation of precipitation in Singapore during 1980-2013

    Science.gov (United States)

    Li, Xin; Babovic, Vladan

    2017-04-01

    Observed studies on inter-annual variation of precipitation provide insight into the response of precipitation to anthropogenic climate change and natural climate variability. Inter-annual variation of precipitation results from the concurrent variations of precipitation frequency and intensity, understanding of the relative importance of frequency and intensity in the variability of precipitation can help fathom its changing properties. Investigation of the long-term changes of precipitation schemes has been extensively carried out in many regions across the world, however, detailed studies of the relative importance of precipitation frequency and intensity in inter-annual variation of precipitation are still limited, especially in the tropics. Therefore, this study presents a comprehensive framework to investigate the inter-annual variation of precipitation and the dominance of precipitation frequency and intensity in a tropical urban city-state, Singapore, based on long-term (1980-2013) daily precipitation series from 22 rain gauges. First, an iterative Mann-Kendall trend test method is applied to detect long-term trends in precipitation total, frequency and intensity at both annual and seasonal time scales. Then, the relative importance of precipitation frequency and intensity in inducing the inter-annual variation of wet-day precipitation total is analyzed using a dominance analysis method based on linear regression. The results show statistically significant upward trends in wet-day precipitation total, frequency and intensity at annual time scale, however, these trends are not evident during the monsoon seasons. The inter-annual variation of wet-day precipitation is mainly dominated by precipitation intensity for most of the stations at annual time scale and during the Northeast monsoon season. However, during the Southwest monsoon season, the inter-annual variation of wet-day precipitation is mainly dominated by precipitation frequency. These results have

  13. Evaluation of the light scattering and the turbidity microtiter plate-based methods for the detection of the excipient-mediated drug precipitation inhibition.

    Science.gov (United States)

    Petruševska, Marija; Urleb, Uroš; Peternel, Luka

    2013-11-01

    The excipient-mediated precipitation inhibition is classically determined by the quantification of the dissolved compound in the solution. In this study, two alternative approaches were evaluated, one is the light scattering (nephelometer) and other is the turbidity (plate reader) microtiter plate-based methods which are based on the quantification of the compound precipitate. Following the optimization of the nephelometer settings (beam focus, laser gain) and the experimental conditions, the screening of 23 excipients on the precipitation inhibition of poorly soluble fenofibrate and dipyridamole was performed. The light scattering method resulted in excellent correlation (r>0.91) between the calculated precipitation inhibitor parameters (PIPs) and the precipitation inhibition index (PI(classical)) obtained by the classical approach for fenofibrate and dipyridamole. Among the evaluated PIPs AUC100 (nephelometer) resulted in only four false positives and lack of false negatives. In the case of the turbidity-based method a good correlation of the PI(classical) was obtained for the PIP maximal optical density (OD(max), r=0.91), however, only for fenofibrate. In the case of the OD(max) (plate reader) five false positives and two false negatives were identified. In conclusion, the light scattering-based method outperformed the turbidity-based one and could be reliably used for identification of novel precipitation inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. MODELING OF STRAIN-INDUCED PRECIPITATION KINETICS IN Nb MICROALLOYED STEELS

    Institute of Scientific and Technical Information of China (English)

    X.G. Zhou; Z.Y. Liu; D. Wu; Z.Li; C.M. Li

    2006-01-01

    On the basis of the thermodynamic calculation of precipitation and considering the effect of strain on the precipitation behavior and chemical composition (Si and Mn), the kinetics of precipitation from austenite has been investigated for different temperatures and strains. Nucleation theory and the solubility product of niobium, carbon, and nitrogen in austenite have been used to derive equations for the start time of precipitation as a function of temperature and composition. The value of n in Avrami equation was determined using the available experimental data from the published reports, which indicated that n is a constant independent of temperature and the end time of precipitation is a function of n and the start time of precipitation. The values of the start time and end time of precipitation predicted by the new model are compared with the experimental values and a good agreement was obtained between both.

  15. The assessment of the existing measuring system for atmospheric precipitation control around Belchatow power plant and a concept of its changing

    International Nuclear Information System (INIS)

    Hryniewicz, R.

    1993-01-01

    The influence of fossil-fuel power plants on environment is also demonstrated by pollution of atmospheric precipitation with combustion products emitted to the atmosphere. Actual methods for the precipitation pollution control have been critically reviewed and their use fullness discussed. A new concept has been proposed for that purpose. The detailed analysis of chemical nature of effluents present in rain waters and their physical parameters will be used for environment state assessment in the future

  16. Survey of Nuclear Methods in Chemical Technology

    International Nuclear Information System (INIS)

    Broda, E.

    1966-01-01

    An attempt is made to classify nuclear methods on a logical basis to facilitate assimilation by the technologist. The three main groups are: (I) Tracer methods, (II) Methods based on the influence of absorbers on radiations to be measured, and (III) Radiation chemical methods. The variants of the first two groups are discussed in some detail, and typical examples are given. Group I can be subdivided into (1) Indicator methods, (2) Emanation methods, (3) Radioreagent methods, and (4) Isotope dilution methods, Group II into (5) Activation methods, (6) Absorption methods, (7) Induced Nuclear Reaction methods, (8) Scattering methods, and (9) Fluorescence methods. While the economic benefits due to nuclear methods already run into hundreds of millions of dollars annually, owing to radiation protection problems radiochemical methods in the strict sense are not widely used in actual production. It is suggested that more use should be made of pilot plant tracer studies of chemical processes as used in industry. (author)

  17. Stable isotope (2H, 17O, 18O) and hydro chemical patterns of precipitation collected in weekly resolution at Hannover, Germany

    Science.gov (United States)

    Koeniger, Paul; Himmelsbach, Thomas

    2016-04-01

    Long-term observations of stable isotopes (δ18O and δ2H) in precipitation were initiated in May 2008 at the Federal Institute of Geosciences and Natural Resources (BGR) in Hannover, Germany. In 2014 all precipitation samples were re-analyzed because a purchase of a new laser spectrometer (Picarro L2140-i) now allowed measurements of δ17O and a calculation of the 17O-excess parameter. Starting in October 2015 a routine analysis of hydro chemical parameters was added whenever enough sample aliquot was available (major ions, trace elements). A discussion of the stable isotope data of the seven year series of weekly precipitation samples (n = 370) will be presented. Beneath general patterns (seasonality and trends) we also focus on importance of amount weighing procedures, corrections for minor rain amounts, aspects of sample storage and re-analyzes, as well as impacts through changes in analytical equipment (IRMS, CRD spectroscopy) which is visible from the data. For stable isotopes a Thermo Fisher delta plus IRMS (Gasbench and H-Device) was used until 2011 and from 2012 on a Picarro L2120-i water vapor analyzer with long-term accuracies for quality check samples better than 0.2‰ and 0.8‰ for δ18O and δ2H, respectively.

  18. Preparation of LuAG Powders with Single Phase and Good Dispersion for Transparent Ceramics Using Co-Precipitation Method

    Science.gov (United States)

    Pan, Liangjie; Jiang, Benxue; Fan, Jintai; Yang, Qiuhong; Zhou, Chunlin; Zhang, Pande; Mao, Xiaojian; Zhang, Long

    2015-01-01

    The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG) powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC) was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h) with high terminal pH value (>7.80) resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders. PMID:28793510

  19. Preparation of LuAG Powders with Single Phase and Good Dispersion for Transparent Ceramics Using Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Liangjie Pan

    2015-08-01

    Full Text Available The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h with high terminal pH value (>7.80 resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders.

  20. Systematic front distortion and presence of consecutive fronts in a precipitation system

    NARCIS (Netherlands)

    Volford, A.; Izsak, F.; Ripszam, M.; Lagzi, I.

    2006-01-01

    A new simple reaction-diffusion system is presented focusing on pattern formation phenomena as consecutive precipitation fronts and distortion of the precipitation front.The chemical system investigated here is based on the amphoteric property of aluminum hydroxide and exhibits two unique phenomena.

  1. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review

    Science.gov (United States)

    Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.

    2016-10-01

    Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.

  2. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  3. Modification the Oxalic Co-precipitation Method on a Novel Catalyst Cu/Zn/Al2O3/Cr2O3 for Autothermal Reforming Reaction of Methanol

    Directory of Open Access Journals (Sweden)

    Cheng- Hsin Kuo

    2013-12-01

    Full Text Available This study addresses the catalytic performance of Cu/ZnO/Al2O3/Cr2O3 in low-temperature of autothermal reforming (ATR reaction. Various operating conditions were used to decide the optimum reaction conditions: type of promoter (ZrO2, CeO2, and Cr2O3, precipitation temperature, precipitation pH, operation temperature, molar ratio of O2/CH3OH (O/C, and weight hourly space velocity (WHSV. The catalysts were prepared using the oxalic coprecipitation method. Characterization of the catalyst was conducted using a porosity analyzer, XRD, and SEM. The methanol conversion and volumetric percentage of hydrogen using the best catalyst (Cu/ZnO/Al2O3/Cr2O3 exceeded 93% and 43%, respectively. A catalyst prepared by precipitation at -5 oC and at pH of 1 converted methanol to 40% H2 and less than 3000 ppm CO at reaction temperature of 200 oC. The size and dispersion of copper and the degradation rate and turnover frequency of the catalyst was also calculated. Deactivation of the Cu catalyst at a reaction temperature of 200 oC occurred after 30 h. © 2013 BCREC UNDIP. All rights reservedReceived: 8th May 2013; Revised: 10th August 2013; Accepted: 18th August 2013[How to Cite: Cheng, H.K., Lesmana, D., Wu, H.S. (2013. Modification the Oxalic Co-precipitation Method on a Novel Catalyst Cu/Zn/Al2O3/Cr2O3 for Autothermal Reforming Reaction of Methanol. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 110-124. (doi:10.9767/bcrec.8.2.4844.110-124][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4844.110-124

  4. Synthesis of InGaZnO4 nanoparticles using low temperature multistep co-precipitation method

    International Nuclear Information System (INIS)

    Wu, Ming-Chung; Hsiao, Kai-Chi; Lu, Hsin-Chun

    2015-01-01

    Indium gallium zinc oxide (InGaZnO 4 , IGZO) has attracted explosive growth in investigations over the last decades as an important material in the thin-film transistor. In this study, the various nitrate precursors, including indium nitrate, gallium nitrate, and zinc nitrate, were prepared from the various metals dissolved in nitric acid. Then, we used these nitrate precursors to synthesize the IGZO precursor powder by the multistep co-precipitation method. The synthesis parameters of the co-precipitation method, such as reaction temperature, pH value and reaction time, were controlled precisely to prepare the high quality IGZO precursor powder. Finally, IGZO precursor powder was calcined at 900 °C. Then, the microstructure, the crystalline structure, the particle size distribution and specific surface area of calcined IGZO precursor powder were characterized by electron transmission microscopy, X-ray diffraction technique, dynamic light scattering method and the surface area and porosimetry analyzer, respectively. The relative density of IGZO tablet sintered at 1200 °C for 12 h is as high as 97.30%, and it showed highly InGaZnO 4 crystalline structure and the large grain size. The IGZO nanoparticles developed in our study has the potential for the high quality target materials used in the application of electronic devices. - Graphical abstract: Display Omitted - Highlights: • InGaZnO 4 (IGZO) nanoparticle was synthesized by multistep co-precipitation method. • The synthesis parameters were controlled precisely to prepare high quality powder. • The relative density of highly crystalline IGZO tablet is as high as 97.30%. • IGZO tablet exhibited highly crystalline structure and the large grain size

  5. Safety in the Chemical Laboratory: Tested Disposal Methods for Chemical Wastes from Academic Laboratories.

    Science.gov (United States)

    Armour, M. A.; And Others

    1985-01-01

    Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)

  6. Turbulent precipitation of uranium oxalate in a vortex reactor - experimental study and modelling; Precipitation turbulente d'oxalate d'uranium en reacteur vortex - etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer de Gelicourt, Y

    2004-03-15

    Industrial oxalic precipitation processed in an un-baffled magnetically stirred tank, the Vortex Reactor, has been studied with uranium simulating plutonium. Modelling precipitation requires a mixing model for the continuous liquid phase and the solution of population balance for the dispersed solid phase. Being chemical reaction influenced by the degree of mixing at molecular scale, that commercial CFD code does not resolve, a sub-grid scale model has been introduced: the finite mode probability density functions, and coupled with a model for the liquid energy spectrum. Evolution of the dispersed phase has been resolved by the quadrature method of moments, first used here with experimental nucleation and growth kinetics, and an aggregation kernel based on local shear rate. The promising abilities of this local approach, without any fitting constant, are strengthened by the similarity between experimental results and simulations. (author)

  7. Effect of Calcination at Synthesis of Mg-Al Hydrotalcite Using co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Niar Kurnia Julianti

    2017-01-01

    Full Text Available The use of hydrotalcite in catalysis has wide attention in academic research and industrial parties. Based on its utilization, hydrotalcite can be active catalyst or support. This research is focused on the investigation of characteristic like spesific surface area of Mg-Al hydrotalcite which is prepared with different temperature of calcination. Synthesis of Mg-Al hydrotalcites with Mg/Al molar ratio 3:1 were prepared by co-precipitation method. Mg(NO33.6H2O and Al(NO33.9H2O as precursors of Mg-Al hydrotalcite. Na2CO3 was used as precipitant agent and NaOH was used as buffer solution. The solution was mixed and aging for 5 hours at 650oC. The dried precipitate was calcined at 2500oC, 3500oC, 4500oC, 5500oC and 6500oC. The characterization of functional group was determined by Fourier Transform Infra Red (FT-IR. The Identical peaks diffractogram were analyzed by X-Ray Diffraction (XRD. The spesific surface area was determined by adsorption-desorption of nitrogen. The largest surface area that obtained from the calcination temperature of 650oC is 156.252 m2/g.

  8. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    Energy Technology Data Exchange (ETDEWEB)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I-Lin; Li Lin, E-mail: mlli@ntu.edu.sg [Nanyang Technological University, School of Mechanical and Aerospace Engineering (Singapore)

    2012-03-15

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10-12 {mu}m and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  9. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    International Nuclear Information System (INIS)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I-Lin; Li Lin

    2012-01-01

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10–12 μm and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  10. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    Science.gov (United States)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I.-Lin; Li, Lin

    2012-03-01

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10-12 μm and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  11. Chemical treatment of wastewaters produced during separation of iodine 131

    International Nuclear Information System (INIS)

    Cohen, P.; Marcaillou, J.; Amavis, R.

    1959-01-01

    The authors report the development and assessment of a chemical treatment of radioactive wastewaters by co-precipitation. This treatment is aimed at replacing a treatment based on the use of calcium phosphate which proved to be insufficient for wastewaters resulting from the production of iodine 131. After a presentation of the characteristics of the effluents to be processed, the authors report co-precipitation tests performed on effluents before release in the storage vessel (by using barium hydroxide, lead acetate or lead sulfate) and on effluents diluted on the storage vessel. They show that a co-precipitation method based on the use of lead sulfate in alkaline medium gives the best results

  12. Long-term efficiency of lake restoration by chemical phosphorus precipitation

    DEFF Research Database (Denmark)

    Hupfer, Michael; Reitzel, Kasper; Kleeberg, Andreas

    2016-01-01

    ); ii) a gradual external P load reduction, even if the effect is delayed, will assure the sustainability of the scheduled Al application beyond one decade; iii) a twofold precipitation reduces the risk of failure compared to a singular application with an overdose related to the relevant internal P...

  13. A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite

    DEFF Research Database (Denmark)

    Mbamba, Christian Kazadi; Batstone, Damien J.; Flores Alsina, Xavier

    2015-01-01

    , the present study aims to identify a broadly applicable precipitation modelling approach. The study uses two experimental platforms applied to calcite precipitating from synthetic aqueous solutions to identify and validate the model approach. Firstly, dynamic pH titration tests are performed to define...... an Arrhenius-style correction of kcryst. The influence of magnesium (a common and representative added impurity) on kcryst was found to be significant but was considered an optional correction because of a lesser influence as compared to that of temperature. Other variables such as ionic strength and pH were...

  14. Chemical treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Pottier, P.E.

    1968-01-01

    This is the third manual of three commissioned by the IAEA on the three principal techniques used in concentrating radioactive liquid wastes, namely chemical precipitation, evaporation and ion exchange. The present manual deals with chemical precipitation by coagulation-flocculation and sedimentation, commonly called ''chemical treatment'' of low-activity wastes. Topics discussed in the manual are: (i) principles of coagulation on flocculation and sedimentation and associated processes; (ii) process and equipment; (iii) conditioning and disposal of flocculation sludge; (iv) sampling and the equipment required for experiments; and (v) factors governing the selection of processes. 99 refs, 17 figs, 4 tabs

  15. Growth dynamics and composition of tubular structures in a reaction-precipitation system

    Science.gov (United States)

    Pagano, Jason John

    stability in terms of flow rate and cupric sulfate concentration is investigated. Three of these growth regimes (reverse jetting, reverse popping, and reverse budding) resemble the same behavior for the injection of cupric sulfate into silicate solution. However, the reverse conditions studied herein reveal one novel regime in which the tube is limited by repetitive fracturing. The lengths of the broken-off tube segments and times between subsequent break-off events can be described by log-normal distributions. We also discuss the development of a method for synthesizing highly linear precipitation tubes via gas bubble injection and templating. In this method, an aqueous metal salt is injected into a large reservoir of waterglass. Systematic measurements show that the size of the bubble governs the tube radius. According to this radius, the system selects its growth velocity following volume conservation of the injected metal salt solution. Moreover, scanning electron microscopy reveals intricate ring patterns on the walls. We also show evidence for the existence of minimal and maximal tube radius. Lastly, we report the collapse of tubes at high concentrations of silicate solution, yielding twisted ribbon-like structures. Critical radii and tube collapse are discussed in terms of simple competing forces. Concluding, the latter study suggests that one can create interesting geometries and the possible production of speciality materials. Furthermore, we extend our results toward other metals. This study reveals that silica-supported zinc hydroxide walls can be reacted to form zinc oxide. The chemically activated walls are composed of zinc oxide nanoparticles that can be used for technical applications.

  16. Chemical decontaminating method for stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1990-01-01

    Radioactive metal wastes comprising passivated stainless steels are chemically decontaminated to such a radioactivity level as that of usual wastes. The present invention for chemically decontaminating stainless steels comprises a first step of immersing decontaminates into a sulfuric acid solution and a second step of immersing them into an aqueous solution prepared by adding oxidative metal salts to sulfuric acid, in which a portion of the surface of stainless steels as decontaminates are chemically ground to partially expose substrate materials and then the above-mentioned decontamination steps are applied. More than 90% of radioactive materials are removed in this method by the dissolution of the exposed substrate materials and peeling of cruds secured to the surface of the materials upon dissolution. This method is applicable to decontamination of articles having complicate shapes, can reduce the amount of secondary wastes after decontamination and also remarkably shorten the time required for decontamination. (T.M.)

  17. Estimating Tropical Cyclone Precipitation from Station Observations

    Institute of Scientific and Technical Information of China (English)

    REN Fumin; WANG Yongmei; WANG Xiaoling; LI Weijing

    2007-01-01

    In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert Subjective Method (ESM), the Objective Synoptic Analysis Technique (OSAT) for partitioning TC precipitation was developed by analyzing the western North Pacific (WNP) TC historical track and the daily precipitation datasets. Being an objective way of the ESM, OSAT overcomes the main problems in OOM,by changing two fixed parameters in OOM, the thresholds for the distance of the absolute TC precipitation (D0) and the TC size (D1), into variable parameters.Case verification for OSAT was also carried out by applying CMORPH (Climate Prediction Center MORPHing technique) daily precipitation measurements, which is NOAA's combined satellite precipitation measurement system. This indicates that OSAT is capable of distinguishing simultaneous TC precipitation rain-belts from those associated with different TCs or with middle-latitude weather systems.

  18. Combination of the method of basic precipitation of lanthanons with the ion exchange distribution method by means of ammonium acetate

    International Nuclear Information System (INIS)

    Hubicki, W.; Hubicka, H.

    1980-01-01

    The method of basic precipitation of lanthanons was combined with the ion exchange distribution method using ammonium acetate. As a result of chromatogram development 1:2 the good results of distribution of Sm -Nd, the fractions 99,9% Nd 2 O 3 and Pr 6 O 11 and 99,5% La 2 O 3 were obtained. It was found that the way of packing the column influenced greatly the efficiency of ion distribution. (author)

  19. Mesoscale storm and dry period parameters from hourly precipitation data: program documentation

    Energy Technology Data Exchange (ETDEWEB)

    Thorp, J.M.

    1984-09-01

    Wet deposition of airborne chemical pollutants occurs primarily from precipitation. Precipitation rate, amount, duration, and location are important meteorological factors to be considered when attempting to understand the relationship of precipitation to pollutant deposition. The Pacific Northwest Laboratory (PNL) has conducted studies and experiments in numerous locations to collect data that can be incorporated into theories and models that attempt to describe the complex relationship between precipitation occurrence and chemical wet desposition. Model development often requires the use of average rather than random condition as input. To provide mean values of storm parameters, the task, Climatological Analysis of Mesoscale Storms, was created as a facet of the Environmental Protection Agency's related-service project, Precipitation Scavenging Module Development. Within this task computer programs have been developed at PNL which incorporate hourly precipitation data from National Weather Service stations to calculate mean values and frequency distributions of precipitation periods and of the interspersed dry periods. These programs have been written with a degree of flexibiity that will allow user modification for applications to different, but similar, analyses. This report describes in detail the rationale and operation of the two computer programs which produce the tables of average and frequency distributions of storm and dry period parameters from the precipitation data. A listing of the programs and examples of the generated output are included in the appendices. 3 references, 3 figures, 6 tables.

  20. Thermoluminescence and photoluminescence properties of NaCl:Mn, NaCL:Cu nano-particles produced using co-precipitation and sono-chemistry methods

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabi, M. [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Zahedifar, M. [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Saeidi-Sogh, Z. [Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Ramazani-Moghaddam-Arani, A., E-mail: ramazmo@kashanu.ac.ir [Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Sadeghi, E. [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Harooni, S. [Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of)

    2017-02-21

    The NaCl: Cu and NaCl: Mn nanoparticles (NPs) were produced by co-precipitation and sono-chemistry methods and their thermoluminescence (TL) and photoluminescence (PL) properties were studied. By decreasing the particles size a considerable increase in sensitivity of the samples to high dose gamma radiation was observed. The NPs produced by sono-chemistry method have smaller size, homogeneous structure, more sensitivity to high gamma radiation and less fading than of those produced by co-precipitation method.

  1. Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    Directory of Open Access Journals (Sweden)

    Daniela B. van den Heuvel

    2018-04-01

    Full Text Available Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica–organic composites. Here, we present data on the formation of silica–lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and small-angle X-ray scattering, spectroscopic, electron microscopy, and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica–organic composites from sodium silicate solutions, a widely available and cheap starting material.

  2. Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    Science.gov (United States)

    van den Heuvel, Daniela B.; Stawski, Tomasz M.; Tobler, Dominique J.; Wirth, Richard; Peacock, Caroline L.; Benning, Liane G.

    2018-04-01

    Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica-organic composites. Here we present data on the formation of silica-lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption) and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and SAXS), spectroscopic, electron microscopy and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica-organic composites from sodium silicate solutions, a widely available and cheap starting material.

  3. Relationships between precipitation and surface water chemistry in three Carolina bays

    International Nuclear Information System (INIS)

    Monegue, R.L.; Jagoe, C.H.

    1995-01-01

    Carolina Bays are shallow freshwater wetlands, the only naturally occurring lentic systems on the southeastern coastal plain. Bays are breeding sites for many amphibian species, but data on precipitation/surface water relationships and long-term chemical trends are lacking. Such data are essential to interpret major fluctuations in amphibian populations. Surface water and bulk precipitation were sampled bi-weekly for over two years at three bays along a 25 km transect on the Savannah River Site in South Carolina. Precipitation chemistry was similar at all sites; average pH was 4.56, and the major ions were H + (30.8 % of total), and SO 4 (50.3% of total). H + was positively correlated with SO 4 , suggesting the importance of anthropogenic acids to precipitation chemistry. All three bays, Rainbow Bay (RB), Thunder Bay (TB), and Ellenton Bay (EB), contained soft (specific conductivity 5--90 microS/cm), acidic water (pH 4.0--5.9) with DOM from 4--40 mg/L. The major cation for RB, TB, and EB, respectively, was: Mg (30.8 % of total); Na (27% of total); and Ca (34.2% of total). DOM was the major anion for all bays, and SO 4 represented 13 to 28 % of total anions. H + was not correlated to DOM or SO, in RB; H + was positively correlated to DOM and SO 4 in TB, and negatively correlated to DOM and SO 4 in EB. Different biogeochemical processes probably control pH and other chemical variables in each bay. While surface water H + was not directly correlated with precipitation H + , NO 3 , or SO 4 , precipitation and shallow groundwater are dominant water sources for these bays. Atmospheric inputs of anthropogenic acids and other chemicals are important factors influencing bay chemistry

  4. Soil chemical sensor and precision agricultural chemical delivery system and method

    Science.gov (United States)

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  5. Direct synthesis of Sb{sub 2}O{sub 3} nanoparticles via hydrolysis-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yuehua [Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083 (China); Zhang, Huihui [Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083 (China); Yang, Huaming [Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083 (China)]. E-mail: hmyang@mail.csu.edu.cn

    2007-01-31

    Antimony oxide (Sb{sub 2}O{sub 3}) has wide applications as conductive materials, effective catalyst, functional filler and optical materials. Nanocrystalline Sb{sub 2}O{sub 3} has been successfully synthesized by hydrolysis-precipitation method. The samples were characterized by means of transmission electron microscopy (TEM), high-resolution TEM (HRTEM) images, X-ray diffraction (XRD) and differential thermal analysis (DTA). The average crystal size of the Sb{sub 2}O{sub 3} nanoparticles increases with increasing the reaction temperature. TEM image of the as-synthesized nanocrystalline Sb{sub 2}O{sub 3} shows rod-like structure. HRTEM images indicate a preferred directional growth of the Sb{sub 2}O{sub 3} nanoparticles. The electrochemical behaviors of Sb{sub 2}O{sub 3} electrodes have been primarily investigated by cyclic voltammetry (CV) in lithium hexafluorophosphate (LiPF{sub 6}) solution. Sb{sub 2}O{sub 3} nanocrystallite phase has prominent effect on the electrochemical properties. The results indicate that nanocrystalline Sb{sub 2}O{sub 3} synthesized by hydrolysis-precipitation method shows potential application in the field of the electrode materials.

  6. Contribution to the Chemical and Technological Study of Ammonium Diuranate Precipitation

    International Nuclear Information System (INIS)

    Vuillemey, R.

    1962-01-01

    The present work is designed to study the relationship between the conditions for precipitation by ammonia and the properties of ammonium diuranate obtained either from uranyl nitrate solution or from gaseous uranium hexafluoride. In each case the optimum processes are defined leading on the one hand to uranate which can afterwards be treated in a reduction- fluorination oven to give uranium tetrafluoride, and on the other hand to a uranate suitable for the production of a sinterable uranium oxide. In particular it is shown that the treatment of uranyl nitrate solutions by stoichiometric quantities of ammonia leads to the complete precipitation of the uranium leaving less than 1 mg/litre of uranium in the solution, whereas the treatment of uranium hexafluoride necessitates the use of at least 8 times the stoichiometric quantity. (author) [fr

  7. Precipitation of gold and silver from cyanide solutions by hydrated electrons generated by ionizing radiation

    International Nuclear Information System (INIS)

    Chernyak, A.S.; Zhigunov, V.A.; Shepot'ko, M.L.; Smirnov, G.I.; Dolin, P.I.; Bobrova, A.S.; Khikin, G.I.

    1981-01-01

    Redox reactions are widely used in chemistry and chemical engineering for the precipitation of noble metals, since this general class of reactions offers the possibility of selective recovery of these metals from solutions that are complex in composition. The classical method for precipitation of gold and silver from cyanide process solutions is reduction by metallic zinc. This process has certain advantages, and it is easy to carry out under plant conditions with high indices of efficiency. However, the precipitation of gold and silver is accompanied by contamination of the solutions with zinc ions, which makes it difficult to recycle the cyanide solutions; also, additional treatment of the precipitates is required before they are directed to the refining process. Hence, greater quantities of reagents are required, the process conversion becomes more complicated, and the cost of producing the metals is higher. All of these factors make it attractive to seek new methods for processing cyanide solutions that do not have these shortcomings. An interesting approach to the solution of this problem is the use of so-called ''reagentless'' precipitation methods, among which we may class the reduction of gold and silver to the metallic state in cyanide solutions by hydrated electrons generated by ionizing radiation. The significant advances that have been made in research on the hydrated electron, along with data indicating that it is feasible, at least in principle, to use the hydrated electron for industrial purposes, have been the stiumlus for setting up the studies that are reported here

  8. Thermodynamic Calculation of Carbide Precipitate in Niobium Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bo; YU Yong-mei; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.

  9. Determination of trace uranium in atmospheric precipitation of the Xiangjiang river valley by fission track method

    International Nuclear Information System (INIS)

    Zhai Pengji; Kang Tiesheng

    1986-01-01

    In this work the uranium contents in atmospheric precipitations in the region of the Xiangjiang River valley have been measured by fission track method, which range from 0.008 to 1.5 ppb. The majority of them are below 0.1 ppb. The uranium contents in the samples form different geographical positions are obviously different. Sometimes the differences in uranium contents of the samples from the same area collected at different times are also great. A preliminary discussion is given on the sources of uranium in atmospheric precipitation and on the reason of the difference in contents

  10. Dosing of low-activity strontium 90 in human bone ashes - A method based on the quantitative precipitation of strontium nitrate

    International Nuclear Information System (INIS)

    Patti, Francois; Bullier, Denise

    1969-02-01

    The specific separation of strontium nitrate in bone ash samples by red fuming nitric acid requires a succession of precipitation varying in number according to the weight of ashes. The interest of the technique is to define the experimental conditions required for a reproducible quantitative separation of strontium. The operating process tested on over 1.500 samples allowed to obtain chemical yields of about 90 per cent. (authors) [fr

  11. Investigation of microstructure and mechanical properties of phosphocalcic bone substitute using the chemical wet method

    Science.gov (United States)

    Alimi, Latifa; Bahloul, Lynda; Azzi, Afef; Guerfi, Souad; Ismail, Fadhel; Chaoui, Kamel

    2018-05-01

    Selection of calcium phosphate base materials in reconstructive bone surgery is justified by the surprising similarities in chemical compositions with human bones. The closest to natural apatite material is the hydroxyapatite (HAp) which has a chemical composition based on calcium and phosphate (Ca10(PO4)6(OH)2). In this study, HAp is synthesized using the wet precipitation method from hydrated calcium chloride (CaCl2,12H2O) and di-sodium hydrogen phosphate di-hydrate (HNa2PO4,2H2O). The powder is calcinated at 900°C and 1200°C in order to compare with sintered condition at 1150°C. Vickers microhardness tests and X-ray diffraction analyzes are used for the characterization of the crystalline material. Mechanical properties (Hv, σe, σr, and KC) and the degree of crystallinity (Xc) are discussed according to heat treatment temperatures. Results indicate that heat treating the powder at 1200°C increased crystallinity up to 72%. At the same time, microhardness increased with temperature and even outmatched the sintered case at 1150°C. Fracture toughness is ameliorated with increasing heat treatment temperature by more than two folds.

  12. IN-SITU CHEMICAL STABILIZATION OF METALS AND RADIONUCLIDES THROUGH ENHANCED ANAEROBIC REDUCTIVE PRECIPITATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher C. Lutes; Angela Frizzell, PG; Todd A. Thornton; James M. Harrington

    2003-08-01

    The objective of this NETL sponsored bench-scale study was to demonstrate the efficacy of enhanced anaerobic reductive precipitation (EARP) technology for precipitating uranium using samples from contaminated groundwater at the Fernald Closure Project (FCP) in Cincinnati, Ohio. EARP enhances the natural biological reactions in the groundwater through addition of food grade substrates (typically molasses) to drive the oxidative-reductive potential of the groundwater to a lower, more reduced state, thereby precipitating uranium from solution. In order for this in-situ technology to be successful in the long term, the precipitated uranium must not be re-dissolved at an unacceptable rate once groundwater geochemical conditions return to their pretreatment, aerobic state. The approach for this study is based on the premise that redissolution of precipitated uranium will be slowed by several mechanisms including the presence of iron sulfide precipitates and coatings, and sorption onto fresh iron oxides. A bench-scale study of the technology was performed using columns packed with site soil and subjected to a continuous flow of uranium-contaminated site groundwater (476 {micro}g/L). The ''treated'' column received a steady stream of dilute food grade molasses injected into the contaminated influent. Upon attainment of a consistently reducing environment and demonstrated removal of uranium, an iron sulfate amendment was added along with the molasses in the influent solution. After a month long period of iron addition, the treatments were halted, and uncontaminated, aerobic, unamended water was introduced to the treated column to assess rebound of uranium concentrations. In the first two months of treatment, the uranium concentration in the treated column decreased to the clean-up level (30 {micro}g/L) or below, and remained there for the remainder of the treatment period. A brief period of resolubilization of uranium was observed as the treated column

  13. Physical-chemical property based sequence motifs and methods regarding same

    Science.gov (United States)

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  14. Synthesis and characterization of Fe{sub 2}O{sub 3} nanoparticles by simple precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Sankadiya, Siyaram, E-mail: siyaramsankdiya@gmail.com; Oswal, Nidhi, E-mail: oswal03nidhi@gmail.com [Dept. of Applied Physics, Shri Govindram Sakseria Inst. of Tech. and Sci., 23 Park Road, Indore(MP) 452003 (India); Jain, Pranat, E-mail: pranatjain@gmail.com [Dept. of Material Sc. & Metallurgical Eng., Maulana Azad National Inst. of Tech., Bhopal (MP) 4620003 (India); Gupta, Nitish, E-mail: nitish.nidhi75@gmail.com [Dept. of Applied Chemistry, Shri Govindram Sakseria Inst. of Tech. and Sci., 23 Park Road, Indore (MP) 452003 (India)

    2016-04-13

    A simple and efficient synthesis of Iron-oxide nanoparticles was carried out by precipitation method using ferric chloride as precursor and ammonium hydroxide as a stabilizing agent at different calcination temperatures. The synthesized powder was characterized by powder X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FE-SEM) and Transmission Electron Microscopy (TEM). X-ray diffraction indicated the formation hematite Fe{sub 2}O{sub 3} structure. FTIR showed various functional groups of particles and absorption bands related to metal oxygen vibration modes. The heating temperatures were varied at 100 °C, 200°C, and 300°C. The Fe{sub 2}O{sub 3} nanostructures with the average particle size of about 36.22 nm were prepared at 300°C for 4h. TEM study is also confirming the nanosize of Fe{sub 2}O{sub 3} particle. This aqueous precipitation method gives a large scale production of Fe{sub 2}O{sub 3} nanoparticles easily.

  15. Chemical barriers for controlling groundwater contamination

    International Nuclear Information System (INIS)

    Morrison, S.J.; Spangler, R.R.

    1993-01-01

    Chemical barriers are being explored as a low-cost means of controlling groundwater contamination. The barrier can intercept a contaminant plume and prevent migration by transferring contaminants from the groundwater to immobile solids. A chemical barrier can be emplaced in a landfill liner or in an aquifer cutoff wall or can be injected into a contaminant plume. Chemical barriers can be classified as either precipitation barriers or sorption barriers depending upon the dominant mode of contaminant extraction. In a precipitation barrier, contaminants are bound in the structures of newly formed phases; whereas, in a sorption barrier, contaminants attach to the surfaces of preexisting solids by adsorption or some other surface mechanism. Sorption of contaminants is pH dependent. A precipitation barrier can control the pH of the system, but alkaline groundwater may dominate the pH in a sorption barrier. A comparison is made of the characteristics of precipitation and sorption barriers. Experimental data on the extraction of uranium and molybdenum from simulated groundwater are used to demonstrate these concepts. 10 refs., 9 figs., 1 tab

  16. Preparation and Heat-Treatment of DWPF Simulants With and Without Co-Precipitated Noble Metals

    International Nuclear Information System (INIS)

    Koopman, David C.:Eibling, Russel E

    2005-01-01

    The Savannah River National Laboratory is in the process of investigating factors suspected of impacting catalytic hydrogen generation in the Chemical Process Cell of the Defense Waste Processing Facility, DWPF. Noble metal catalyzed hydrogen generation in simulation work constrains the allowable acid addition operating window in DWPF. This constraint potentially impacts washing strategies during sludge batch preparation. It can also influence decisions related to the addition of secondary waste streams to a sludge batch. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Parallel preparations of two sludge simulants targeting the composition of Sludge Batch 3 were performed in order to evaluate the impact of the form of noble metals. Identical steps were used except that one simulant had dissolved palladium, rhodium, and ruthenium present during the precipitation of the insoluble solids. Noble metals were trimmed into the other stimulant prior to process tests. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The simulants were used as feeds for Sludge Receipt and Adjustment Tank, SRAT, process simulations. The following conclusions were drawn from the simulant preparation work: (1) The first preparation of a waste slurry simulant with co-precipitated noble metals was successful, based on the data obtained. It appears that 99+% of the noble metals were retained in the simulant. (2) Better control of carbonate, hydroxide, and post-wash trim chemical additions is needed before the new method of simulant preparation will be as reproducible as the old method. (3) The two new

  17. Experimentale Study of Alkaline Precipitation on Thermal Process SeaWater Desalination Condition

    International Nuclear Information System (INIS)

    Sumijanto

    2000-01-01

    The experiment of alkaline precipitation by separated method has beencarry out. Experiment took please by heating sea water simulation with eachother consist of a).142 ppm bicarbonate and 400 ppm calcium ion b). 142 ppmbicarbonate and magnesium ion at temperature 40,50,60,70,80,90,100,110 and120 o C respectively by using autoclave. Sampling has been done periodicalfor 30 minute in interval 300 minute for each temperature. The calculation ofalkaline precipitation on each step calculated through the decreasing ofcalcium and magnesium concentration with analysis by AAS. From experimentdata have the information that alkaline precipitation have been formed since40 o C. From time variable have been the information that the precipitationformed at 30 th minute rapidly. Whether at further time the increasing ofprecipitation are not significant. This phenomena can explained that at eachheating step from 40 o C bicarbonate ion be come decomposition with theresult carbonate and hydroxide ion and react with calcium and magnesium formcalcium carbonate and magnesium hydroxide. From this information could beimplemented as base for avoiding using chemical material in desalinationthermal process. (author)

  18. Geochemistry of natural and anthropogenic fall-out (aerosol and precipitation) collected from the NW Mediterranean: two different multivariate statistical approaches

    International Nuclear Information System (INIS)

    Molinaroli, E.; Pistolato, M.; Rampazzo, G.; Guerzoni, S.

    1999-01-01

    The chemical characteristics of the mineral fractions of aerosol and precipitation collected in Sardinia (NW Mediterranean) are highlighted by means of two multivariate statistical approaches. Two different combinations of classification and statistical methods for geochemical data are presented. It is shown that the application of cluster analysis subsequent to Q-Factor analysis better distinguishes among Saharan dust, background pollution (Europe-Mediterranean) and local aerosol from various source regions (Sardinia). Conversely, the application of simple cluster analysis was able to distinguish only between aerosols and precipitation particles, without assigning the sources (local or distant) to the aerosol. This method also highlighted the fact that crust-enriched precipitation is similar to desert-derived aerosol. Major elements (Al, Na) and trace metal (Pb) turn out to be the most discriminating elements of the analysed data set. Independent use of mineralogical, granulometric and meteorological data confirmed the results derived from the statistical methods employed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology.

    Science.gov (United States)

    Zhang, Tao; Ding, Lili; Ren, Hongqiang; Xiong, Xiang

    2009-12-01

    Ammonium nitrogen removal from wastewater has been of considerable concern for several decades. In the present research, we examined chemical precipitation recycle technology (CPRT) for ammonium nitrogen removal from coking wastewater. The pyrolysate resulting from magnesium ammonium phosphate (MAP) pyrogenation in sodium hydroxide (NaOH) solution was recycled for ammonium nitrogen removal from coking wastewater. The objective of this study was to investigate the conditions for MAP pyrogenation and to characterize of MAP pyrolysate for its feasibility in recycling. Furthermore, MAP pyrolysate was characterized by scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) as well as X-ray diffraction (XRD). The MAP pyrolysate could be produced at the optimal condition of a hydroxyl (OH(-)) to ammonium molar ratio of 2:1, a heating temperature of 110 degrees C, and a heating time of 3h. Surface characterization analysis indicated that the main component of the pyrolysate was amorphous magnesium sodium phosphate (MgNaPO(4)). The pyrolysate could be recycled as a magnesium and phosphate source at an optimum pH of 9.5. When the recycle times were increased, the ammonium nitrogen removal ratio gradually decreased if the pyrolysate was used without supplementation. When the recycle times were increased, the ammonium nitrogen removal efficiency was not decreased if the added pyrolysate was supplemented with MgCl(2).6H(2)O plus Na(2)HPO(4).12H(2)O during treatment. A high ammonium nitrogen removal ratio was obtained by using pre-formed MAP as seeding material.

  20. Turbulent precipitation of uranium oxalate in a vortex reactor - experimental study and modelling; Precipitation turbulente d'oxalate d'uranium en reacteur vortex - etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer de Gelicourt, Y

    2004-03-15

    Industrial oxalic precipitation processed in an un-baffled magnetically stirred tank, the Vortex Reactor, has been studied with uranium simulating plutonium. Modelling precipitation requires a mixing model for the continuous liquid phase and the solution of population balance for the dispersed solid phase. Being chemical reaction influenced by the degree of mixing at molecular scale, that commercial CFD code does not resolve, a sub-grid scale model has been introduced: the finite mode probability density functions, and coupled with a model for the liquid energy spectrum. Evolution of the dispersed phase has been resolved by the quadrature method of moments, first used here with experimental nucleation and growth kinetics, and an aggregation kernel based on local shear rate. The promising abilities of this local approach, without any fitting constant, are strengthened by the similarity between experimental results and simulations. (author)

  1. On preparation of nanocrystalline chromites by co-precipitation and autocombustion methods

    Energy Technology Data Exchange (ETDEWEB)

    Matulkova, Irena [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2 (Czech Republic); Department of Radiation and Chemical Physics, Institute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8 (Czech Republic); Holec, Petr [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2 (Czech Republic); Department of Materials Chemistry, Institute of Inorganic Chemistry of the ASCR, v.v i., Husinec-Rez 1001, 250 68 Rez (Czech Republic); Pacakova, Barbara; Kubickova, Simona; Mantlikova, Alice [Department of Magnetic Nanosystems, Institute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8 (Czech Republic); Plocek, Jiri [Department of Materials Chemistry, Institute of Inorganic Chemistry of the ASCR, v.v i., Husinec-Rez 1001, 250 68 Rez (Czech Republic); Nemec, Ivan; Niznansky, Daniel [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2 (Czech Republic); Vejpravova, Jana, E-mail: vejpravo@fzu.cz [Department of Magnetic Nanosystems, Institute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2015-05-15

    Highlights: • ACr{sub 2}O{sub 4} nanopowders, A = Cu, Fe, Ni, Mn and Mg were obtained in high yield. • Co-precipitation and autocombustion routes were optimized for single-phase product. • The nanopowders were examined by X-ray diffraction and vibrational spectroscopy. • Formation of cubic or tetragonal phase in Jahn–Teller NiCr{sub 2}O{sub 4} can be controlled. - Abstract: We present a comprehensive study on optimization of wet preparation routes yielding well-crystalline spinel chromite, ACr{sub 2}O{sub 4} nanoparticles (A = Cu, Fe, Ni, Mn and Mg). The auto-combustion and co-precipitation methods in the presence of nitrate or chloride ions and under different atmospheres, followed by annealing of final products at different temperatures were tested. All samples were characterized by powder X-ray diffraction (PXRD) and vibrational spectroscopy in order to evaluate their phase composition, particle size and micro-strain. Selected samples were subjected to investigation by transmission electron microscopy (TEM). The degree of the particle crystallinity was estimated by relating the apparent crystallite size obtained from the PXRD analysis to the physical grain size observed by the TEM. Optimal conditions leading to single-phase and highly-crystalline chromite nanoparticles are proposed.

  2. Application of physical scaling towards downscaling climate model precipitation data

    Science.gov (United States)

    Gaur, Abhishek; Simonovic, Slobodan P.

    2018-04-01

    Physical scaling (SP) method downscales climate model data to local or regional scales taking into consideration physical characteristics of the area under analysis. In this study, multiple SP method based models are tested for their effectiveness towards downscaling North American regional reanalysis (NARR) daily precipitation data. Model performance is compared with two state-of-the-art downscaling methods: statistical downscaling model (SDSM) and generalized linear modeling (GLM). The downscaled precipitation is evaluated with reference to recorded precipitation at 57 gauging stations located within the study region. The spatial and temporal robustness of the downscaling methods is evaluated using seven precipitation based indices. Results indicate that SP method-based models perform best in downscaling precipitation followed by GLM, followed by the SDSM model. Best performing models are thereafter used to downscale future precipitations made by three global circulation models (GCMs) following two emission scenarios: representative concentration pathway (RCP) 2.6 and RCP 8.5 over the twenty-first century. The downscaled future precipitation projections indicate an increase in mean and maximum precipitation intensity as well as a decrease in the total number of dry days. Further an increase in the frequency of short (1-day), moderately long (2-4 day), and long (more than 5-day) precipitation events is projected.

  3. Physical retrieval of precipitation water contents from Special Sensor Microwave/Imager (SSM/I) data. Part 2: Retrieval method and applications (report version)

    Science.gov (United States)

    Olson, William S.

    1990-01-01

    A physical retrieval method for estimating precipitating water distributions and other geophysical parameters based upon measurements from the DMSP-F8 SSM/I is developed. Three unique features of the retrieval method are (1) sensor antenna patterns are explicitly included to accommodate varying channel resolution; (2) precipitation-brightness temperature relationships are quantified using the cloud ensemble/radiative parameterization; and (3) spatial constraints are imposed for certain background parameters, such as humidity, which vary more slowly in the horizontal than the cloud and precipitation water contents. The general framework of the method will facilitate the incorporation of measurements from the SSMJT, SSM/T-2 and geostationary infrared measurements, as well as information from conventional sources (e.g., radiosondes) or numerical forecast model fields.

  4. Spatio-temporal characteristics of the extreme precipitation by L-moment-based index-flood method in the Yangtze River Delta region, China

    Science.gov (United States)

    Yin, Yixing; Chen, Haishan; Xu, Chong-Yu; Xu, Wucheng; Chen, Changchun; Sun, Shanlei

    2016-05-01

    The regionalization methods, which "trade space for time" by pooling information from different locations in the frequency analysis, are efficient tools to enhance the reliability of extreme quantile estimates. This paper aims at improving the understanding of the regional frequency of extreme precipitation by using regionalization methods, and providing scientific background and practical assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region. To achieve the main goals, L-moment-based index-flood (LMIF) method, one of the most popular regionalization methods, is used in the regional frequency analysis of extreme precipitation with special attention paid to inter-site dependence and its influence on the accuracy of quantile estimates, which has not been considered by most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence, and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, generalized extreme-value (GEV) and generalized normal (GNO) distributions were identified as the best fitted distributions for most of the sub-regions, and estimated quantiles for each region were obtained. Monte Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root-mean-square errors (RMSEs) were bigger and the 90 % error bounds were wider with inter-site dependence than those without inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with a return period of 100 years were finally obtained which indicated that there are two regions with highest precipitation

  5. Method of removing clogging materials due to ruthenium precipitates and sealing them in device

    International Nuclear Information System (INIS)

    Hoshikawa, Tadahiro; Sasahira, Akira.

    1994-01-01

    In a facility, such as a reprocessing facility, for processing a solution containing a great amount of ruthenium, precipitates due to evaporated ruthenium and cooled NO x are brought into contact with each other to decompose the precipitates due to the evaporated ruthenium. Precipitates due to ruthenium evaporated from the solution are reacted with cooled NO x , and the precipitates of ruthenium are decomposed and returned to the solution in the form of extremely fine particles together with recycling flow from the inner wall of the device. Since the precipitates of ruthenium returned to the solution are stable, they are no more evaporated and precipitated on the inner wall of the device. In the solution processing device having a possibility of clogging, clogging can be prevented and the precipitates of ruthenium can be sealed by decomposing them. (T.M.)

  6. Chemical and isotopic variations of precipitation in the Los Alamos Region, New Mexico

    International Nuclear Information System (INIS)

    Adams, A.I.; Goff, F.; Counce, D.

    1995-02-01

    Precipitation collectors were installed at 14 locations on the Pajarito Plateau and surrounding areas to study variations in chemistry, stable isotopes and tritium for the years 1990 to 1993. The volume of precipitation was measured and samples were collected and analyzed every three to four months. All precipitation samples contain 18 O) results record seasonal variations in precipitation as the weather patterns shift from sources in the Pacific Ocean to sources in the Gulf of Mexico. The stable isotope results also show isotopic variations due to elevation differences among the collection points. The tritium contents ( 3 H) in rain samples vary from 6.54 T.U. to 141 T.U. Contouring of high tritium values (e.g. >20 T.U.) from each collection period clearly shows that Laboratory activities release some tritium to the atmosphere. The effect of these releases are well below the limits set by the Environmental Protection Agency for drinking water (about 6200 T.U.). The magnitude of the releases is apparently greatest during the summer months. However, anomalous tritium values are detected as far north as Espahola, New Mexico for many collection periods. Tritium releases by the Laboratory are not constant; thus, the actual amount of tritium in each release has been diluted in the composite samples of our three to four month collection periods

  7. Review of Z phase precipitation in 9–12 wt-%Cr steels

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2016-01-01

    For high temperature applications, 9–12 wt-%Cr steels in fossil fired power plants rely upon precipitate strengthening from (V,Nb)N MX nitrides for long term creep strength. During prolonged exposure at service temperature, another nitride precipitates: Cr(V,Nb)NZ phase. The Z phases lowly replace......MX, eventually causing a breakdown in creep strength. The present paper reviews the Z phase and its behaviour in 9–12 wt-%Cr steels including thermodynamic modelling, crystal structure, nucleation process and precipitation rate as a function of chemical composition. The influence of Z phase precipitation upon...

  8. Synthesis of InGaZnO{sub 4} nanoparticles using low temperature multistep co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ming-Chung, E-mail: mingchungwu@mail.cgu.edu.tw; Hsiao, Kai-Chi; Lu, Hsin-Chun

    2015-07-15

    Indium gallium zinc oxide (InGaZnO{sub 4}, IGZO) has attracted explosive growth in investigations over the last decades as an important material in the thin-film transistor. In this study, the various nitrate precursors, including indium nitrate, gallium nitrate, and zinc nitrate, were prepared from the various metals dissolved in nitric acid. Then, we used these nitrate precursors to synthesize the IGZO precursor powder by the multistep co-precipitation method. The synthesis parameters of the co-precipitation method, such as reaction temperature, pH value and reaction time, were controlled precisely to prepare the high quality IGZO precursor powder. Finally, IGZO precursor powder was calcined at 900 °C. Then, the microstructure, the crystalline structure, the particle size distribution and specific surface area of calcined IGZO precursor powder were characterized by electron transmission microscopy, X-ray diffraction technique, dynamic light scattering method and the surface area and porosimetry analyzer, respectively. The relative density of IGZO tablet sintered at 1200 °C for 12 h is as high as 97.30%, and it showed highly InGaZnO{sub 4} crystalline structure and the large grain size. The IGZO nanoparticles developed in our study has the potential for the high quality target materials used in the application of electronic devices. - Graphical abstract: Display Omitted - Highlights: • InGaZnO{sub 4} (IGZO) nanoparticle was synthesized by multistep co-precipitation method. • The synthesis parameters were controlled precisely to prepare high quality powder. • The relative density of highly crystalline IGZO tablet is as high as 97.30%. • IGZO tablet exhibited highly crystalline structure and the large grain size.

  9. Chemical composition of silica-based biocidal modifier

    Directory of Open Access Journals (Sweden)

    Grishina Anna Nikolaevna

    2016-11-01

    Full Text Available Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

  10. Bayesian networks precipitation model based on hidden Markov analysis and its application

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Surface precipitation estimation is very important in hydrologic forecast. To account for the influence of the neighbors on the precipitation of an arbitrary grid in the network, Bayesian networks and Markov random field were adopted to estimate surface precipitation. Spherical coordinates and the expectation-maximization (EM) algorithm were used for region interpolation, and for estimation of the precipitation of arbitrary point in the region. Surface precipitation estimation of seven precipitation stations in Qinghai Lake region was performed. By comparing with other surface precipitation methods such as Thiessen polygon method, distance weighted mean method and arithmetic mean method, it is shown that the proposed method can judge the relationship of precipitation among different points in the area under complicated circumstances and the simulation results are more accurate and rational.

  11. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling.

    Science.gov (United States)

    Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen

    2015-01-01

    Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.

  12. Radar-Derived Quantitative Precipitation Estimation Based on Precipitation Classification

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2016-01-01

    Full Text Available A method for improving radar-derived quantitative precipitation estimation is proposed. Tropical vertical profiles of reflectivity (VPRs are first determined from multiple VPRs. Upon identifying a tropical VPR, the event can be further classified as either tropical-stratiform or tropical-convective rainfall by a fuzzy logic (FL algorithm. Based on the precipitation-type fields, the reflectivity values are converted into rainfall rate using a Z-R relationship. In order to evaluate the performance of this rainfall classification scheme, three experiments were conducted using three months of data and two study cases. In Experiment I, the Weather Surveillance Radar-1988 Doppler (WSR-88D default Z-R relationship was applied. In Experiment II, the precipitation regime was separated into convective and stratiform rainfall using the FL algorithm, and corresponding Z-R relationships were used. In Experiment III, the precipitation regime was separated into convective, stratiform, and tropical rainfall, and the corresponding Z-R relationships were applied. The results show that the rainfall rates obtained from all three experiments match closely with the gauge observations, although Experiment II could solve the underestimation, when compared to Experiment I. Experiment III significantly reduced this underestimation and generated the most accurate radar estimates of rain rate among the three experiments.

  13. Method for modeling the deposition of sulfur by precipitation over regional scales

    International Nuclear Information System (INIS)

    Hicks, B.B.; Shannon, J.D.

    1979-01-01

    Radioactive fallout data suggest that the concentration of pollutants in rainfall, while highly variable, might be described on the average by about an inverse half-power dependence on the amount of precipitation. Recent measurements of sulfur concentrations in summer rainfall collected at Argonne National Laboratory tend to support this contention, as do preliminary results derived from operations of the DOE precipitation chemistry network. The concept is extended to develop a bulk removal rate for airborne total sulfur by precipitation for use in regional dispersion modeling

  14. Method of chemical analysis of silicate rocks (1962); Methode d'analyse chimique des roches silicatees (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Pouget, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1962-07-01

    A rapid method of analysis for the physical and chemical determination of the major constituents of silicate rocks is described. Water losses at 100 deg. C and losses of volatile elements at 1000 deg. C are estimated after staying in oven for these temperatures, or by mean of a thermo-balance. The determination of silica is made by a double insolubilization with hydrochloric acid on attack solution with sodium carbonate; total iron and aluminium, both with calcium and magnesium, after ammoniacal precipitation of Fe and Al, are determined on the filtration product of silica by titrimetry-photometry of their complexes with EDTA. The alkalis Na and K by flame spectrophotometry, Mn by colorimetry of the permanganate, and Ti by mean of his complex with H{sub 2}O{sub 2}, are determined on fluosulfuric attack solution. Phosphorus is determined by his complex with 'molybdenum blue' on a fluoro-nitro-boric attack solution; iron is estimated by potentiometry, with the help of bichromate on hydrofluoric solution. (author) [French] Une methode d'analyse rapide est decrite pour la determination physico-chimique des constituants principaux des roches silicatees. Les pertes en eau a 100 deg. C et en matieres volatiles a 1000 deg. C sont evaluees apres passage au four a ces temperatures, ou a l'aide d'une thermobalance. La determination de la silice se fait par double insolubilisation a l'acide chlorhydrique, sur une attaque au carbonate de sodium; le fer total et l'aluminium ainsi que le calcium et le magnesium, apres precipitation a l'ammoniaque des deux premiers metaux, sont determines sur le filtrat de la silice par titrimetrie-photometrie de leurs complexes avec l'E.D.T.A. Les alcalins sodium et potassium par spectrophotometrie de flamme, le manganese par colorimetrie du permanganate, le titane a l'aide de son complexe avec l'eau oxygenee, sont determines sur une attaque fluosulfurique. Le phosphore est determine par son complexe du 'bleu de molybdene' sur une attaque fluo

  15. Bone char quality and defluoridation capacity in contact precipitation

    DEFF Research Database (Denmark)

    Albertus, J.; Bregnhøj, Henrik; Kongpun, M.

    2002-01-01

    are added as in the contact precipitation process. The results show that the columns are able to remove up to 700 bedvolumes, before the concentration of fluoride in the effluent water breaks through, above 1.5 mg/L. Operational removal capacities observed are 7 and 9 mg/L, depending on contact time...... and the dosage of chemicals. It is discussed that longer contact time and higher dosage of calcium and phosphate may result in longer operation periods in the contact precipitation columns....

  16. CONCENTRATION OF Pu USING AN IODATE PRECIPITATE

    Science.gov (United States)

    Fries, B.A.

    1960-02-23

    A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.

  17. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications.

    Science.gov (United States)

    Nosrati, Hamed; Salehiabar, Marziyeh; Manjili, Hamidreza Kheiri; Danafar, Hossein; Davaran, Soodabeh

    2018-03-01

    In this study, iron oxide magnetic bovine serum albumin core-shell nanoparticles (BSA coated IONPs) with narrow particle size distribution were synthesized under one-pot reaction via the desolvation and chemical co-precipitation method. Functionalized IONPs were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques. Furthermore, vibrating sample magnetometer (VSM) analysis show these nanoparticles (NPs) have an excellent magnetic properties. Cellular toxicity of IONPs was also investigated on HFF2 cell lines. Additionally, a hemolysis test of as prepared core-shell NPs were performed. The presence of albumin as a biomolecule coating on the surface of IONPs showed an improving effect to reduce the cytotoxicity. The properties of the designed NPs propose the BSA coated IONPs as a promising candidate for multifunctional biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Precipitation Behavior of Poorly Water-Soluble Drugs with an Emphasis on the Digestion of Lipid Based Formulations.

    Science.gov (United States)

    Khan, Jamal; Rades, Thomas; Boyd, Ben

    2016-03-01

    An increasing number of newly discovered drugs are poorly water-soluble and the use of natural and synthetic lipids to improve the oral bioavailability of these drugs by utilizing the digestion pathway in-vivo has proved an effective formulation strategy. The mechanisms responsible for lipid digestion and drug solubilisation during gastrointestinal transit have been explored in detail, but the implications of drug precipitation beyond the potential adverse effect on bioavailability have received attention only in recent years. Specifically, these implications are that different solid forms of drug on precipitation may affect the total amount of drug absorbed in-vivo through their different physico-chemical properties, and the possibility that the dynamic environment of the small intestine may afford re-dissolution of precipitated drug if present in a high-energy form. This review describes the events that lead to drug precipitation during the dispersion and digestion of lipid based formulations, common methods used to inhibit precipitation, as well as conventional and newly emerging characterization techniques for studying the solid state form of the precipitated drug. Moreover, selected case studies are discussed where drug precipitation has ensued from the digestion of lipid based formulations, as well as the apparent link between drug ionisability and altered solid forms on precipitation, culminating in a discussion about the importance of the solid form on precipitation with relevance to the total drug absorbed.

  19. Synthesis of superparamagnetic δ-FeOOH nanoparticles by a chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Naoki, E-mail: nnishida@rs.tus.ac.jp [Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Amagasa, Shota [Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Kobayashi, Yoshio [Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamada, Yasuhiro [Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2016-11-30

    Highlights: • The spherical δ-FeOOH nanoparticles were synthesized by a chemical reaction of FeCl{sub 2}. • The δ-FeOOH nanoparticles showed superparamagnetic behavior. • A mixture of Fe{sub 3}O{sub 4} and Fe(OH){sub 2} were rapidly oxidized into δ-FeOOH nanoparticles. - Abstract: δ-FeOOH nanoparticles were synthesized via the oxidation of precipitates obtained from the reaction of FeCl{sub 2} and N{sub 2}H{sub 4} in the presence of sodium tartrate and gelatin in an alkaline condition. These δ-FeOOH particles were subsequently examined using transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), Mössbauer spectroscopy, and superconducting quantum interference device (SQUID) assessment. The average size of the δ-FeOOH nanoparticles was below 10 nm, and these particles exhibited superparamagnetic behavior as a result of this small size. The precursors of the δ-FeOOH nanoparticles were also characterized as a means of elucidating the reaction mechanism. Precipitates prior to oxidation upon rinsing with water and ethanol were analyzed by obtaining XRD patterns and Mössbauer spectra of wet and frozen samples, respectively. The precipitates obtained by the reaction of FeCl{sub 2} and N{sub 2}H{sub 4} were found to consist of a mixture of Fe{sub 3}O{sub 4} and Fe(OH){sub 2}, and it is believed that these species then rapidly oxidized into δ-FeOOH nanoparticles.

  20. Analysis of Intergranular Precipitation in Isothermally Aged Nitrogen-Containing Austenitic Stainless Steels by an Electrochemical Method and Its Relation to Cryogenic Toughness

    Directory of Open Access Journals (Sweden)

    Maribel L. Saucedo-Muñoz

    2011-01-01

    Full Text Available The precipitation process in two N-containing austenitic stainless steels, aged at temperatures between 873 and 1173 K for times from 10 to 1000 min, was analyzed by an electrochemical method based on the anodic polarization test with an electrolyte of 1 N KOH solution. The anodic polarization curves showed the following intergranular precipitation sequence: austenite → austenite + Cr23C6→ austenite + Cr23C6 + Cr2N. Besides, the fastest precipitation kinetics was detected in the aged steel with the highest content of nitrogen and carbon due to its higher driving force for precipitation. The higher the aging temperature, the higher volume fraction of precipitates. The precipitation fraction can be associated with the current density of the dissolution peaks of each phase. The Charpy-V-Notch impact energy of the aged specimens decreased with the increase in the volume fraction of precipitates.

  1. Chemicals from Agave sisalana Biomass: Isolation and Identification

    Science.gov (United States)

    Santos, Jener David Gonçalves; Vieira, Ivo Jose Curcino; Braz-Filho, Raimundo; Branco, Alexsandro

    2015-01-01

    Agave sisalana (sisal) is known worldwide as a source of hard fibers, and Brazil is the largest producer of sisal. Nonetheless, the process of removing the fibers of the sisal leaf generates 95% waste. In this study, we applied chemical sequential steps (hydrothermal extraction, precipitation, liquid-liquid extraction, crystallization, SiO2 and Sephadex LH 20 column chromatography) to obtain pectin, mannitol, succinic acid, kaempferol and a mixture of saponins as raw chemicals from sisal biomass. The structural identification of these compounds was performed though spectrometric methods, such as Infrared (IR), Ultraviolet (UV), Mass spectrometry (MS) and Nuclear magnetic resonance (NMR). All the sisal chemicals found in this work are used by both the chemical and pharmaceutical industries as excipients or active principles in products. PMID:25903149

  2. Measurement of precipitation using lysimeters

    Science.gov (United States)

    Fank, Johann; Klammler, Gernot

    2013-04-01

    Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between

  3. Indium sulfide precipitation from hydrochloric acid solutions of calcium and sodium chlorides

    International Nuclear Information System (INIS)

    Kochetkova, N.V.; Bayandina, Yu.E.; Toptygina, G.M.; Shepot'ko, A.O.

    1988-01-01

    The effect of precipitation duration, acid concentration, indium complexing with chloride ions on the process of indium sulfide chemical precipitation in hydrochloric acid solutions, precipitate composition and dispersity are studied. It is established that indium sulfide solubility increases in solutions with acid concentration exceeding 0.40-0.45 mol/l. Calcium and indium chloride addition to diluted hydrochloric solutions greatly increases the solubility of indium sulfide. The effect of calcium chloride on In 2 S 3 solubility is higher than that of sodium chloride

  4. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

    2011-07-15

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup

  5. Effect of Mg/Ca ratios on microbially induced carbonate precipitation

    Science.gov (United States)

    Balci, Nurgul; Demirel, Cansu; Seref Sonmez, M.; Kurt, M. Ali

    2016-04-01

    Influence of Mg/Ca ratios on microbially induced carbonate mineralogy were investigated by series of experiments carried out under various environmental conditions (Mg/Ca ratio, temperature and salinity). Halophilic bacterial cultures used for biomineralization experiments were isolated from hypersaline Lake Acıgöl (Denizli, SW Turkey), displaying extreme water chemistry with an average pH around 8.6 (Balci eta l.,2015). Enriched bacterial culture used in the experiments consisted of Halomonas saccharevitans strain AJ275, Halomonas alimentaria strain L7B; Idiomarina sp. TBZ29, 98% Idiomarina seosensis strain CL-SP19. Biomineralization experiments were set up using above enriched culture with Mg/Ca ratios of 0.05, 1, 4 and 15 and salinity of 8% and 15% experiments at 30oC and 10oC. Additionally, long-term biomineralization experiments were set up to last for a year, for Mg/Ca=4 and Mg/Ca=15 experiments at 30oC. For each experimental condition abiotic experiments were also conducted. Solution chemistry throughout incubation was monitored for Na, K, Mg, Ca, bicarbonate, carbonate, ammonium and phosphate for a month. At the end of the experiments, precipitates were collected and morphology and mineralogy of the biominerals were investigated and results were evaluated using the software DIFFRAC.SUITE EVA. Overall the preliminary results showed chemical precipitation of calcite, halite, hydromagnesite and sylvite. Results obtained from biological experiments indicate that, low Mg/Ca ratios (0.05 and 1) favor chlorapatite precipitation, whereas higher Mg/Ca ratios favor struvite precipitation. Biomineralization of dolomite, huntite and magnesite is favorable at high Mg/Ca ratios (4 and 15), in the presence of halophilic bacteria. Moreover, results indicate that supersaturation with respect to Mg (Mg/Ca=15) combined with NaCl (15%) inhibits biomineralization and forms chemical precipitates. 15% salinity is shown to favor chemical precipitation of mineral phases more than

  6. Recycling of poly(ethylene terephthalate – A review focusing on chemical methods

    Directory of Open Access Journals (Sweden)

    B. Geyer

    2016-07-01

    Full Text Available Recycling of poly(ethylene terephthalate (PET is of crucial importance, since worldwide amounts of PETwaste increase rapidly due to its widespread applications. Hence, several methods have been developed, like energetic, material, thermo-mechanical and chemical recycling of PET. Most frequently, PET-waste is incinerated for energy recovery, used as additive in concrete composites or glycolysed to yield mixtures of monomers and undefined oligomers. While energetic and thermo-mechanical recycling entail downcycling of the material, chemical recycling requires considerable amounts of chemicals and demanding processing steps entailing toxic and ecological issues. This review provides a thorough survey of PET-recycling including energetic, material, thermo-mechanical and chemical methods. It focuses on chemical methods describing important reaction parameters and yields of obtained reaction products. While most methods yield monomers, only a few yield undefined low molecular weight oligomers for impaired applications (dispersants or plasticizers. Further, the present work presents an alternative chemical recycling method of PET in comparison to existing chemical methods.

  7. Environmental monitoring of fluoride emissions using precipitation, dust, plant and soil samples

    International Nuclear Information System (INIS)

    Franzaring, J.; Hrenn, H.; Schumm, C.; Klumpp, A.; Fangmeier, A.

    2006-01-01

    A pollution gradient was observed in precipitation, plants and soils sampled at different locations around a fluoride producing chemical plant in Germany. In all samples the influence of emissions was discernible up to a distance of 500 m from the plant. However, fluoride concentrations in plant bioindicators (leaves of birch and black berry) and in bulk precipitation showed a more pronounced relationship with the distance from the source than fluoride concentrations in soil. Vegetables sampled in the vicinity of the plant also had elevated concentrations of fluoride, but only the consumption of larger quantities of this material would lead to exceedances of recommended daily F-intake. The present study did not indicate the existence of low phytotoxicity thresholds for fluoride in the plant species used in the study. Even at very high fluoride concentrations in leaf tissue (963 ppm) plants did not show injury due to HF. Dust sampling downwind of the chemical plant confirmed that particulate fluoride was of minor importance in the study area. - A pronounced pollution gradient was observed in precipitation, plants and soils sampled at different locations around a fluoride emitting chemical plant in Germany

  8. Reference values assessment in a Mediterranean population for small dense low-density lipoprotein concentration isolated by an optimized precipitation method

    Directory of Open Access Journals (Sweden)

    Fernández-Cidón B

    2017-06-01

    Full Text Available Bárbara Fernández-Cidón,1–3 Ariadna Padró-Miquel,1 Pedro Alía-Ramos,1 María José Castro-Castro,1 Marta Fanlo-Maresma,4 Dolors Dot-Bach,1 José Valero-Politi,1 Xavier Pintó-Sala,4 Beatriz Candás-Estébanez1 1Clinical Laboratory, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain; 2Department of Biochemistry, Molecular Biology and Biomedicine, Autonomous University of Barcelona (UAB, Barcelona, Spain; 3Department of Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL, L’Hospitalet de Llobregat, Spain; 4Cardiovascular Risk Unit, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain Background: High serum concentrations of small dense low-density lipoprotein cholesterol (sd-LDL-c particles are associated with risk of cardiovascular disease (CVD. Their clinical application has been hindered as a consequence of the laborious current method used for their quantification. Objective: Optimize a simple and fast precipitation method to isolate sd-LDL particles and establish a reference interval in a Mediterranean population. Materials and methods: Forty-five serum samples were collected, and sd-LDL particles were isolated using a modified heparin-Mg2+ precipitation method. sd-LDL-c concentration was calculated by subtracting high-density lipoprotein cholesterol (HDL-c from the total cholesterol measured in the supernatant. This method was compared with the reference method (ultracentrifugation. Reference values were estimated according to the Clinical and Laboratory Standards Institute and The International Federation of Clinical Chemistry and Laboratory Medicine recommendations. sd-LDL-c concentration was measured in serums from 79 subjects with no lipid metabolism abnormalities. Results: The Passing–Bablok regression equation is y = 1.52 (0.72 to 1.73 + 0.07x (−0.1 to 0.13, demonstrating no significant statistical differences

  9. Thermoluminescent properties of CaSO4:Dy prepared by precipitation method

    International Nuclear Information System (INIS)

    Roman, J.; Rivera, T.; Azorin, J.

    2009-10-01

    This paper reports the synthesis and thermoluminescent (Tl) characterization of CaSO 4 :Dy obtained by the precipitation method. Thermoluminescent CaSO 4 :Dy powder and Teflon (PTFE) were mixed in order to obtain samples in pellets form. Samples of CaSO 4 :Dy were exposed to a radiation gamma source of 60 Co and 90 Sr beta particles. Tl response of CaSO 4 :Dy showed a glow curve with two peaks centered at around 164 and 302 C. Tl phosphor showed a good linearity in the range from 0.5 to 30 Gy. Fading of the Tl information was 5.19 % in 37 days and presented a standard deviation of 4% for reproducibility. (Author)

  10. Effective Assimilation of Global Precipitation

    Science.gov (United States)

    Lien, G.; Kalnay, E.; Miyoshi, T.; Huffman, G. J.

    2012-12-01

    Assimilating precipitation observations by modifying the moisture and sometimes temperature profiles has been shown successful in forcing the model precipitation to be close to the observed precipitation, but only while the assimilation is taking place. After the forecast start, the model tends to "forget" the assimilation changes and lose their extra skill after few forecast hours. This suggests that this approach is not an efficient way to modify the potential vorticity field, since this is the variable that the model would remember. In this study, the ensemble Kalman filter (EnKF) method is used to effectively change the potential vorticity field by allowing ensemble members with better precipitation to receive higher weights. In addition to using an EnKF, two other changes in the precipitation assimilation process are proposed to solve the problems related to the highly non-Gaussian nature of the precipitation variable: a) transform precipitation into a Gaussian distribution based on its climatological distribution, and b) only assimilate precipitation at the location where some ensemble members have positive precipitation. The idea is first tested by the observing system simulation experiments (OSSEs) using SPEEDY, a simplified but realistic general circulation model. When the global precipitation is assimilated in addition to conventional rawinsonde observations, both the analyses and the medium range forecasts are significantly improved as compared to only having rawinsonde observations. The improvement is much reduced when only modifying the moisture field with the same approach, which shows the importance of the error covariance between precipitation and all other model variables. The effect of precipitation assimilation is larger in the Southern Hemisphere than that in the Northern Hemisphere because the Northern Hemisphere analyses are already accurate as a result of denser rawinsonde stations. Assimilation of precipitation using a more comprehensive

  11. The contribution of site to washout and rainout: Precipitation chemistry based on sample analysis from 0.5 mm precipitation increments and numerical simulation

    Science.gov (United States)

    Aikawa, Masahide; Kajino, Mizuo; Hiraki, Takatoshi; Mukai, Hitoshi

    2014-10-01

    Datasets of precipitation chemistry at a precipitation resolution of 0.5 mm from three sites were studied to determine whether the washout and rainout mechanisms differed with site type (urban, suburban, rural). Rainout accounted for approximately one-third of the total NO3- deposition and washout contributed two-thirds, irrespective of the site type, although the washout contribution at the urban site (over 70%) was larger than that at the other two sites. The rainout mechanism and the washout mechanism both accounted for about half the total SO42- deposition at the suburban and rural sites, whereas at the urban site the rainout contribution was over 80%. A chemical transport model produced similar levels of washout and rainout contributions as the precipitation chemistry data.

  12. Turbulent precipitation of uranium oxalate in a vortex reactor - experimental study and modelling

    International Nuclear Information System (INIS)

    Sommer de Gelicourt, Y.

    2004-03-01

    Industrial oxalic precipitation processed in an un-baffled magnetically stirred tank, the Vortex Reactor, has been studied with uranium simulating plutonium. Modelling precipitation requires a mixing model for the continuous liquid phase and the solution of population balance for the dispersed solid phase. Being chemical reaction influenced by the degree of mixing at molecular scale, that commercial CFD code does not resolve, a sub-grid scale model has been introduced: the finite mode probability density functions, and coupled with a model for the liquid energy spectrum. Evolution of the dispersed phase has been resolved by the quadrature method of moments, first used here with experimental nucleation and growth kinetics, and an aggregation kernel based on local shear rate. The promising abilities of this local approach, without any fitting constant, are strengthened by the similarity between experimental results and simulations. (author)

  13. The role of chemical free energy and elastic strain in the nucleation of zirconium hydride

    International Nuclear Information System (INIS)

    Barrow, A.T.W.; Toffolon-Masclet, C.; Almer, J.; Daymond, M.R.

    2013-01-01

    In this work a combination of synchrotron X-ray diffraction and thermodynamic modelling has been used to study the dissolution and precipitation of zirconium hydride in α-Zr establishing the role of elastic misfit strain and chemical free energy in the α → α + δ phase transformation. The nucleation of zirconium hydride is dominated by the chemical free energy where the chemical driving force for hydride precipitation is proportional to the terminal-solid solubility for precipitation and can be predicted by a function that is analogous to the universal nucleation parameter for the bainite transformation in ferrous alloys. The terminal-solid solubility for precipitation was found to be kinetically limited ⩾287 °C at a cooling rate of 5 °C min −1 or greater. The terminal solubilities were established using an offset method applied to the lattice strain data where a resolution of ∼10 wppm H can be achieved in the 〈c〉-direction. This is aided by the introduction of intra-granular strains in the 〈c〉-direction during cooling as a result of the thermal expansion anisotropy which increases the anisotropy associated with the misfitting H atoms within the α-Zr lattice

  14. A rapid chemical method of labelling human plasma proteins with sup(99m)Tc-pertechnetate at pH 7.4

    International Nuclear Information System (INIS)

    Wong, D.W.; Mishkin, F.; Lee, T.

    1978-01-01

    A successful method for labelling human plasma proteins with sup(99m)Tc-pertechnetate by chemical means is described. The labelling methodology involves the production of Sup(99m)Tc-(Sn)citrate complex species with high protein binding capacity at pH 7.4 condition following initial chemical reduction of sodium sup(99m)Tc-pertechnetate by stannous chloride. A combined labelling efficiency range of 95-99% for sup(99m)Tc-labelled fibrinogen, immune gamma globulin and serum albumin is achieved. The actual amount of labelled protein content in the product is found to be 85-95% when assayed by ITLC and 74-85% by TCAA protein precipitation. In vitro experimental data indicate that sup(99m)Tc-fibrinogen contains an average of 85% clottable protein with an average clottability of 95%. This strongly suggests that the radioactive proteins retain much of their biological and physiological activities after the labelling process. (author)

  15. Dynamic simulation of the in-tank precipitation process

    International Nuclear Information System (INIS)

    Hang, T.; Shanahan, K.L.; Gregory, M.V.; Walker, D.D.

    1993-01-01

    As part of the High-Level Waste Tank Farm at the Savannah River Site (SRS), the In-Tank Precipitation (ITP) facility was designed to decontaminate the radioactive waste supernate by removing cesium as precipitated cesium tetraphenylborate. A dynamic computer model of the ITP process was developed using SPEEDUP TM software to provide guidance in the areas of operation and production forecast, production scheduling, safety, air emission, and process improvements. The model performs material balance calculations in all phase (solid, liquid, and gas) for 50 key chemical constituents to account for inventory accumulation, depletion, and dilution. Calculations include precipitation, benzene radiolytic reactions, evaporation, dissolution, adsorption, filtration, and stripping. To control the ITP batch operation a customized FORTRAN program was generated and linked to SPEEDUP TM simulation This paper summarizes the model development and initial results of the simulation study

  16. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR upon TRMM Precipitation Radar (PR in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling

    Directory of Open Access Journals (Sweden)

    Jinyu Gao

    2017-11-01

    Full Text Available Spaceborne precipitation radars are powerful tools used to acquire adequate and high-quality precipitation estimates with high spatial resolution for a variety of applications in hydrological research. The Global Precipitation Measurement (GPM mission, which deployed the first spaceborne Ka- and Ku-dual frequency radar (DPR, was launched in February 2014 as the upgraded successor of the Tropical Rainfall Measuring Mission (TRMM. This study matches the swath data of TRMM PR and GPM DPR Level 2 products during their overlapping periods at the global scale to investigate their similarities and DPR’s improvements concerning precipitation amount estimation and type classification of GPM DPR over TRMM PR. Results show that PR and DPR agree very well with each other in the global distribution of precipitation, while DPR improves the detectability of precipitation events significantly, particularly for light precipitation. The occurrences of total precipitation and the light precipitation (rain rates < 1 mm/h detected by GPM DPR are ~1.7 and ~2.53 times more than that of PR. With regard to type classification, the dual-frequency (Ka/Ku and single frequency (Ku methods performed similarly. In both inner (the central 25 beams and outer swaths (1–12 beams and 38–49 beams of DPR, the results are consistent. GPM DPR improves precipitation type classification remarkably, reducing the misclassification of clouds and noise signals as precipitation type “other” from 10.14% of TRMM PR to 0.5%. Generally, GPM DPR exhibits the same type division for around 82.89% (71.02% of stratiform (convective precipitation events recognized by TRMM PR. With regard to the freezing level height and bright band (BB height, both radars correspond with each other very well, contributing to the consistency in stratiform precipitation classification. Both heights show clear latitudinal dependence. Results in this study shall contribute to future development of spaceborne

  17. The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method

    International Nuclear Information System (INIS)

    Barbosa, Michelle C.; Messmer, Nigel R.; Brazil, Tayra R.; Marciano, Fernanda R.; Lobo, Anderson O.

    2013-01-01

    Nanohydroxyapatite (nHAp) powders were produced via aqueous precipitation by adopting four different experimental conditions, assisted or non-assisted by ultrasound irradiation (UI). The nHAp powders were characterized by X-ray diffraction, energy-dispersive X-ray fluorescence, Raman and attenuated total reflection Fourier transform infrared spectroscopies, which showed typical surface chemical compositions of nHAp. Analysis found strong connections between UI and the crystallization process, crystal growth properties, as well as correlations between calcination and substitution reactions. - Highlights: ► Nanohydroxyapatite powders were produced via aqueous precipitation. ► Three methodologies were compared, such as: dropwise, mixture and ultrasound irradiation (UI). ► Analysis found strong connections between UI and the crystallization process

  18. The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Michelle C.; Messmer, Nigel R.; Brazil, Tayra R.; Marciano, Fernanda R.; Lobo, Anderson O., E-mail: loboao@yahoo.com

    2013-07-01

    Nanohydroxyapatite (nHAp) powders were produced via aqueous precipitation by adopting four different experimental conditions, assisted or non-assisted by ultrasound irradiation (UI). The nHAp powders were characterized by X-ray diffraction, energy-dispersive X-ray fluorescence, Raman and attenuated total reflection Fourier transform infrared spectroscopies, which showed typical surface chemical compositions of nHAp. Analysis found strong connections between UI and the crystallization process, crystal growth properties, as well as correlations between calcination and substitution reactions. - Highlights: ► Nanohydroxyapatite powders were produced via aqueous precipitation. ► Three methodologies were compared, such as: dropwise, mixture and ultrasound irradiation (UI). ► Analysis found strong connections between UI and the crystallization process.

  19. Magnetic Properties of Copper Doped Nickel Ferrite Nanoparticles Synthesized by Co Precipitation Method

    Science.gov (United States)

    Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan

    2018-02-01

    Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.

  20. The synthesis and characterization of W- 1wt. % TiC alloy using a chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hee; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Many studies have demonstrated the dispersed second phase nanoparticles in the tungsten matrix inhibit the grain growth and recrystallization, besides they improve the ductility and the irradiation resistance by hindering grain boundary sliding and stabilizing the microstructure.7 La{sub 2}O{sub 3}, Y{sub 2}O{sub 3}, TiC or ZrC particles are usually added to tungsten. However, some crucial issues should be solved such as the uniform distribution of these second phase particles and the industrial mass production. By using typical mechanical alloying and powder metallurgy, nanoparticles tend to be agglomerated and concentrated at the grain boundaries due to the high surface energies introduced. Moreover, the milling process often produces detrimental phase by the wear of the milling equipment and media. Xia et al. have firstly reported core-shell structured W/TiC using ammonium metatungstate ((NH{sub 4}){sub 6}W{sub 7}O{sub 24}·XH{sub 2}O, AMT) and hydrochloric acid. Nano-sized TiC particles are coated uniformly by AMT precipitation formed by the addition of hydrochloric acid to the AMT solution. The core-shell structure particles were examined by TEM. To achieve uniform distribution of TiC nanoparticles, a wet chemical method is essential rather than typical mechanical alloying. Also, the use of the chemical method of alloying can be easily applied to the industry with cost-effective and environmental benefits. The purpose of this study is to achieve uniform distribution of TiC nano-particles within the tungsten matrix, as the literature has studied. Moreover, the chemical methods could be applied to other refectory metals such as molybdenum. The obtained powder was reduced and sintered using SPS technique. The relative density of sintered sample achieved was 97%. Furthermore, the microstructure of the sintered sample was analyzed using FE-SEM and the presence of TiC particles at the grain boundary and grain interior was confirmed by EDS.

  1. VBSCF Methods: Classical Chemical Concepts and Beyond

    NARCIS (Netherlands)

    Rashid, Z.

    2013-01-01

    The aim of this research has been to extend the ab initio Valence Bond Self-Consistent Field (VBSCF) methodology and to apply this method to the electronic structure of molecules. The valence bond method directly deals with the chemical structure of molecules in a pictorial language, which chemists

  2. End point control of an actinide precipitation reactor

    International Nuclear Information System (INIS)

    Muske, K.R.

    1997-01-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements

  3. Electrodialytic recovery of phosphorus from chemically precipitated sewage sludge ashes

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    Phosphorus scarcity requires improved recover and reuse of urban sources; the recycling of this nutrient from sewage sludge has become increasingly important in the last years. Using an innovative electrodialytic process, the present study shows the potential for P separation from Fe and Al...... precipitated sewage sludge ash using this technique, with a recovery rate of around 70%. Furthermore, heavy metals were removed from the phosphorous fraction, producing a pure and safe phosphorus source in the end....

  4. Electrodialytic recovery of phosphorus from chemically precipitated sewage sludge ashes

    DEFF Research Database (Denmark)

    Viader, Raimon Parés; Erland Jensen, Pernille; Ottosen, Lisbeth M.

    Phosphorus scarcity requires improved recover and reuse of urban sources; the recycling of this nutrient from sewage sludge has become increasingly important in the last years. Using an innovative electrodialytic process, the present study shows the potential for P separation from Fe and Al...... precipitated sewage sludge ash using this technique, with a recovery rate of around 70%. Furthermore, heavy metals were removed from the phosphorous fraction, producing a pure and safe phosphorus source in the end...

  5. Sulphate Removal from Water by Carbon Residue from Biomass Gasification: Effect of Chemical Modification Methods on Sulphate Removal Efficiency

    Directory of Open Access Journals (Sweden)

    Hanna Runtti

    2016-02-01

    Full Text Available Sulphate removal from mine water is a problem because traditional chemical precipitation does not remove all sulphates. In addition, it creates lime sediment as a secondary waste. Therefore, an inexpensive and environmental-friendly sulphate removal method is needed in addition to precipitation. In this study, carbon residues from a wood gasification process were repurposed as precursors to a suitable sorbent for SO42- ion removal. The raw material was modified using ZnCl2, BaCl2, CaCl2, FeCl3, or FeCl2. Carbon residues modified with FeCl3 were selected for further consideration because the removal efficiency toward sulphate was the highest. Batch sorption experiments were performed to evaluate the effects of the initial pH, initial SO42- ion concentration, and contact time on sulphate removal. The removal of SO42- ions using Fe-modified carbon residue was notably higher compared with unmodified carbon residue and commercially available activated carbon. The sorption data exhibited pseudo-second-order kinetics. The isotherm analysis indicated that the sorption data of Fe-modified carbon residues can be represented by the bi-Langmuir isotherm model.

  6. Comparison of the method of classes and the quadrature of moment for the modelling of neodymium oxalate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, J.P.; Lalleman, S.; Bertrand, M. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Process Department, F-30207 Bagnols sur Ceze (France); Plasari, E. [Ecole Nationale Superieure des Industries Chimiques, Laboratoire Reactions et Genie des Procedes, Universite de Lorraine - CNRS,1 rue Grandville, BP 20451, 54001, Nancy Cedex (France)

    2016-07-01

    Oxalic precipitation is generally used in the nuclear industry to deal with radioactive waste and recover the actinides from a multicomponent solution. To facilitate the development of experimental methods and data acquisitions, actinides are often simulated using lanthanides, gaining experience more easily. The purpose of this article is to compare the results achieved by two methods for solving the population balance during neodymium oxalate precipitation in a continuous MSMPR (Mixed Suspension Mixed Product Removal). The method of classes, also called discretized population balance, used in this study is based on the method of Litster. Whereas, the Quadrature Method of Moment (QMOM) is written in terms of the transport equations of the moments of the number density function. All the integrals are solved through a quadrature approximation thanks to the product-difference algorithm or the Chebyshev algorithm. Primary nucleation, crystal growth and agglomeration are taken into account. Agglomeration phenomena have been found to be represented by a loose agglomerates model. Thermodynamic effects are modeled by activity coefficients which are calculated using the Bromley model. The sizes of particles predicted by the two methods are in good agreement with experimental measurements. (authors)

  7. Detection and treatment of chemical weapons and/or biological pathogens

    Science.gov (United States)

    Mariella Jr., Raymond P.

    2004-09-07

    A system for detection and treatment of chemical weapons and/or biological pathogens uses a detector system, an electrostatic precipitator or scrubber, a circulation system, and a control. The precipitator or scrubber is activated in response to a signal from the detector upon the detection of chemical weapons and/or biological pathogens.

  8. Chemicals from Agave sisalana Biomass: Isolation and Identification

    Directory of Open Access Journals (Sweden)

    Jener David Gonçalves Santos

    2015-04-01

    Full Text Available Agave sisalana (sisal is known worldwide as a source of hard fibers, and Brazil is the largest producer of sisal. Nonetheless, the process of removing the fibers of the sisal leaf generates 95% waste. In this study, we applied chemical sequential steps (hydrothermal extraction, precipitation, liquid-liquid extraction, crystallization, SiO2 and Sephadex LH 20 column chromatography to obtain pectin, mannitol, succinic acid, kaempferol and a mixture of saponins as raw chemicals from sisal biomass. The structural identification of these compounds was performed though spectrometric methods, such as Infrared (IR, Ultraviolet (UV, Mass spectrometry (MS and Nuclear magnetic resonance (NMR. All the sisal chemicals found in this work are used by both the chemical and pharmaceutical industries as excipients or active principles in products.

  9. [Bioinorganic chemical composition of the lens and methods of its investigation].

    Science.gov (United States)

    Avetisov, S E; Novikov, I A; Pakhomova, N A; Motalov, V G

    2018-01-01

    Bioinorganic chemical composition of the lens of human and experimental animals (cows, dogs, rats, rabbits) have been analyzed in various studies. In most cases, the studies employed different methods to determine the gross (total) composition of chemical elements and their concentrations in the examined samples. Less frequently, they included an assessment of the distribution of chemical elements in the lens and correlation of their concentration with its morphological changes. Chemical elements from all groups (series) of the periodic classification system were discovered in the lens substance. Despite similar investigation methods, different authors obtained contradicting results on the chemical composition of the lens. This article presents data suggesting possible correlation between inorganic chemical elements in the lens substance with the development and formation of lenticular opacities. All currently employed methods are known to only analyze limited number of select chemical elements in the tissues and do not consider the whole range of elements that can be analyzed with existing technology; furthermore, the majority of studies are conducted on the animal model lens. Therefore, it is feasible to continue the development of the chemical microanalysis method by increasing the sensitivity of Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) with the purpose of assessing the gross chemical composition and distribution of the elements in the lens substance, as well as revealing possible correlation between element concentration and morphological changes in the lens.

  10. Reconstructing missing information on precipitation datasets: impact of tails on adopted statistical distributions.

    Science.gov (United States)

    Pedretti, Daniele; Beckie, Roger Daniel

    2014-05-01

    Missing data in hydrological time-series databases are ubiquitous in practical applications, yet it is of fundamental importance to make educated decisions in problems involving exhaustive time-series knowledge. This includes precipitation datasets, since recording or human failures can produce gaps in these time series. For some applications, directly involving the ratio between precipitation and some other quantity, lack of complete information can result in poor understanding of basic physical and chemical dynamics involving precipitated water. For instance, the ratio between precipitation (recharge) and outflow rates at a discharge point of an aquifer (e.g. rivers, pumping wells, lysimeters) can be used to obtain aquifer parameters and thus to constrain model-based predictions. We tested a suite of methodologies to reconstruct missing information in rainfall datasets. The goal was to obtain a suitable and versatile method to reduce the errors given by the lack of data in specific time windows. Our analyses included both a classical chronologically-pairing approach between rainfall stations and a probability-based approached, which accounted for the probability of exceedence of rain depths measured at two or multiple stations. Our analyses proved that it is not clear a priori which method delivers the best methodology. Rather, this selection should be based considering the specific statistical properties of the rainfall dataset. In this presentation, our emphasis is to discuss the effects of a few typical parametric distributions used to model the behavior of rainfall. Specifically, we analyzed the role of distributional "tails", which have an important control on the occurrence of extreme rainfall events. The latter strongly affect several hydrological applications, including recharge-discharge relationships. The heavy-tailed distributions we considered were parametric Log-Normal, Generalized Pareto, Generalized Extreme and Gamma distributions. The methods were

  11. Facile synthesis of ceria nanoparticles by precipitation route for UV blockers

    International Nuclear Information System (INIS)

    Anupriya, K.; Vivek, E.; Subramanian, B.

    2014-01-01

    Highlights: • Homogenous precipitation was employed to prepare ceria nanoparticles. • An increase in the specific surface area was observed. • TEM showed particle sizes of 4 nm. • Material showed UV shielding effect. -- Abstract: Homogeneous ceria (CeO 2 ) nano particles of approximately 4 nm have been successfully synthesized via a simple precipitation route by employing the mixed solvent method. X-ray diffraction analysis revealed the precipitate particles to be of highly crystalline nature with face centered cubic structure along (1 1 1) (2 0 0) (2 2 0) (3 1 1) (4 0 0) (3 3 1) (4 2 2) (5 1 1) planes. Cerium oxide nanoparticles exhibits enhanced specific surface area of about 139.116 m 2 /g. The mono-dispersed spherical shape morphology of approximately 4 nm particles was confirmed using TEM analysis and its chemical composition by SEM–EDS analysis. Surface morphology reveals the smooth surface with an average roughness of 14.9 nm with the help of AFM. Raman studies show a characteristic peak at 464 cm −1 . The UV absorption edge was found at 314 nm i.e. In the Ultra Violet region suggesting that the material has a good absorption of UV light. Also, it shows an excellent transparency in the visible region

  12. Facile synthesis of ceria nanoparticles by precipitation route for UV blockers

    Energy Technology Data Exchange (ETDEWEB)

    Anupriya, K.; Vivek, E.; Subramanian, B., E-mail: subramanianb3@gmail.com

    2014-03-25

    Highlights: • Homogenous precipitation was employed to prepare ceria nanoparticles. • An increase in the specific surface area was observed. • TEM showed particle sizes of 4 nm. • Material showed UV shielding effect. -- Abstract: Homogeneous ceria (CeO{sub 2}) nano particles of approximately 4 nm have been successfully synthesized via a simple precipitation route by employing the mixed solvent method. X-ray diffraction analysis revealed the precipitate particles to be of highly crystalline nature with face centered cubic structure along (1 1 1) (2 0 0) (2 2 0) (3 1 1) (4 0 0) (3 3 1) (4 2 2) (5 1 1) planes. Cerium oxide nanoparticles exhibits enhanced specific surface area of about 139.116 m{sup 2}/g. The mono-dispersed spherical shape morphology of approximately 4 nm particles was confirmed using TEM analysis and its chemical composition by SEM–EDS analysis. Surface morphology reveals the smooth surface with an average roughness of 14.9 nm with the help of AFM. Raman studies show a characteristic peak at 464 cm{sup −1}. The UV absorption edge was found at 314 nm i.e. In the Ultra Violet region suggesting that the material has a good absorption of UV light. Also, it shows an excellent transparency in the visible region.

  13. Method of cleaning oil slicks and chemical spills

    International Nuclear Information System (INIS)

    Billings, L.

    1992-01-01

    This patent describes a method of cleaning a floating chemical spill on a body of water. It comprises: providing a quantity of popular bark-based pelleted or granular product, flotation means and a flexible net having openings generally smaller than the smallest whole pellet dimension of the pelleted product, spreading the net over a chemical spill on the body of water, connecting the floatation means to the net thereby supporting the net adjacent the surface of the body of water, placing the poplar bark-based product on the net, absorbing the floating chemical spill into the product, and removing the chemical soaked product from the body of water

  14. Calculation of Multiphase Chemical Equilibrium by the Modified RAND Method

    DEFF Research Database (Denmark)

    Tsanas, Christos; Stenby, Erling Halfdan; Yan, Wei

    2017-01-01

    method. The modified RAND extends the classical RAND method from single-phase chemical reaction equilibrium of ideal systems to multiphase chemical equilibrium of nonideal systems. All components in all phases are treated in the same manner and the system Gibbs energy can be used to monitor convergence....... This is the first time that modified RAND was applied to multiphase chemical equilibrium systems. The combined algorithm was tested using nine examples covering vapor–liquid (VLE) and vapor–liquid–liquid equilibria (VLLE) of ideal and nonideal reaction systems. Successive substitution provided good initial......A robust and efficient algorithm for simultaneous chemical and phase equilibrium calculations is proposed. It combines two individual nonstoichiometric solving procedures: a nested-loop method with successive substitution for the first steps and final convergence with the second-order modified RAND...

  15. Research on a pellet co-precipitation micro-filtration process for the treatment of liquid waste containing strontium

    International Nuclear Information System (INIS)

    Xin Luo; North China Institute of Science and Technology, Beijing; Guanghui Zhang; Xue Wang; Ping Gu

    2013-01-01

    The chemical precipitation method for radioactive wastewater treatment has the advantages of being simple and cost-effective. However, difficulties with the solid–liquid separation and sludge concentration restrict the application of this method. In this paper, a pellet co-precipitation micro-filtration (PCM) process was studied for treating strontium-containing wastewater on a laboratory scale. The seed was prepared by CaCO 3 powders. Sr 2+ and CO 3 2- were constantly crystallised on the seed surface, with Na 2 CO 3 as the precipitating agent in the pellet reactor. The following membrane separator with the addition of FeCl 3 enhanced the treatment effect. The average strontium concentrations in the raw water and in the effluent were 12.0 and 0.0220 mg/L, respectively. The strontium decontamination factor (DF) increased with the operation time, with an average value of 577. The precipitate particles formed gradually grew larger, with good sedimentation properties. When the experiment was complete, the formed precipitate was separated easily from the liquid phase and directly discharged. The concentration factor (CF) was 1,958. In the PCM process, crystallisation was the main mechanism for strontium removal, with the influent strontium level playing an important role. Membrane pore blockage and cake layer formation could help to further intercept the strontium crystallites. Furthermore, ferric chloride coagulation in the membrane separator also contributed to strontium removal. The PCM process has potential for wider application in the removal of strontium from wastewater. (author)

  16. Multiresolution comparison of precipitation datasets for large-scale models

    Science.gov (United States)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  17. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    Science.gov (United States)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  18. Method for linearizing the potentiometric curves of precipitation titration in nonaqueous and aqueous-organic solutions

    International Nuclear Information System (INIS)

    Bykova, L.N.; Chesnokova, O.Ya.; Orlova, M.V.

    1995-01-01

    The method for linearizing the potentiometric curves of precipitation titration is studied for its application in the determination of halide ions (Cl - , Br - , I - ) in dimethylacetamide, dimethylformamide, in which titration is complicated by additional equilibrium processes. It is found that the method of linearization permits the determination of the titrant volume at the end point of titration to high accuracy in the case of titration curves without a potential jump in the proximity of the equivalent point (5 x 10 -5 M). 3 refs., 2 figs., 3 tabs

  19. Precipitation and measurements of precipitation

    NARCIS (Netherlands)

    Schmidt, F.H.; Bruin, H.A.R. de; Attmannspacher, W.; Harrold, T.W.; Kraijenhoff van de Leur, D.A.

    1977-01-01

    In Western Europe, precipitation is normal phenomenon; it is of importance to all aspects of society, particularly to agriculture, in cattle breeding and, of course, it is a subject of hydrological research. Precipitation is an essential part in the hydrological cycle. How disastrous local

  20. Self-organizing map network-based precipitation regionalization for the Tibetan Plateau and regional precipitation variability

    Science.gov (United States)

    Wang, Nini; Yin, Jianchuan

    2017-12-01

    A precipitation-based regionalization for the Tibetan Plateau (TP) was investigated for regional precipitation trend analysis and frequency analysis using data from 1113 grid points covering the period 1900-2014. The results utilizing self-organizing map (SOM) network suggest that four clusters of precipitation coherent zones can be identified, including the southwestern edge, the southern edge, the southeastern region, and the north central region. Regionalization results of the SOM network satisfactorily represent the influences of the atmospheric circulation systems such as the East Asian summer monsoon, the south Asian summer monsoon, and the mid-latitude westerlies. Regionalization results also well display the direct impacts of physical geographical features of the TP such as orography, topography, and land-sea distribution. Regional-scale annual precipitation trend as well as regional differences of annual and seasonal total precipitation were investigated by precipitation index such as precipitation concentration index (PCI) and Standardized Anomaly Index (SAI). Results demonstrate significant negative long-term linear trends in southeastern TP and the north central part of the TP, indicating arid and semi-arid regions in the TP are getting drier. The empirical mode decomposition (EMD) method shows an evolution of the main cycle with 4 and 12 months for all the representative grids of four sub-regions. The cross-wavelet analysis suggests that predominant and effective period of Indian Ocean Dipole (IOD) on monthly precipitation is around ˜12 months, except for the representative grid of the northwestern region.

  1. Precipitation Behaviour of Carbonitrides in Ti-Nb-C-N Microalloyed Steels and an Engineering Application with Homogenously Precipitated Nano-particles

    Directory of Open Access Journals (Sweden)

    Yanlin WANG

    2015-11-01

    Full Text Available A thermodynamic model enabling calculation of equilibrium carbonitride composition and relative amounts as a function of steel composition and temperature has been developed previously based on the chemical equilibrium method. In the present work, actual carbonitride precipitation behaviour has been verified in the Ti-Nb-C-N microalloyed steels. The Ti microalloyed steel after refining with 0.012 % Nb exhibited highly improved tensile strength without sacrificing ductility. According to further detailed SEM and TEM analysis, the improved mechanical properties of Ti/Nb microalloyed steel could be attributed to the larger solubility of Nb and Ti, inducing fine dispersion of the carbonitrides with particle size of 2 – 10 nm in the ferrite matrix.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9622

  2. Synthesis of Zn{sub 0.95}Cr{sub 0.05}O DMS by co-precipitation and ceramic methods: Structural and magnetization studies

    Energy Technology Data Exchange (ETDEWEB)

    Paul Joseph, D. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Naveenkumar, S. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Sivakumar, N. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Venkateswaran, C. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India)]. E-mail: cvunom@hotmail.com

    2006-05-10

    Transitional metal ions-substituted ZnO are recently explored for SPINTRONICS applications. Synthesis of single-phase oxide 'diluted magnetic semiconductors' (DMS) is a must to explore the magnetic properties arising due to the strong sp-d exchange interaction. The synthesis route plays a vital role in this aspect. In this work, we have prepared Zn{sub 0.95}Cr{sub 0.05}O by using the co-precipitation method and also the standard ceramic method and optimized the conditions to obtain the single-phase compound. X-ray diffraction measurements were done on Zn{sub 0.95}Cr{sub 0.05}O annealed and sintered at various temperatures. Comparing these results, we conclude that the co-precipitation method is more convenient for obtaining single-phase compound by the relatively low temperature processing of the precipitated hydroxides. Pelleted sample examined for its magnetic property using a vibrating sample magnetometer (VSM) indicated ferromagnetic-like behavior at 300 K and a spin-glass state at 77 K.

  3. Chemical Composition of Water Soluble Inorganic Species in Precipitation at Shihwa Basin, Korea

    Directory of Open Access Journals (Sweden)

    Seung-Myung Park

    2015-05-01

    Full Text Available Weekly rain samples were collected in coastal areas of the Shihwa Basin (Korea from June 2000 to November 2007. The study region includes industrial, rural, and agricultural areas. Wet precipitation was analyzed for conductivity, pH, Cl−, NO3−, SO42−, Na+, K+, Mg2+, NH4+, and Ca2+. The major components of precipitation in the Shihwa Basin were NH4+, volume-weighted mean (VWM of 44.6 µeq∙L−1, representing 43% of all cations, and SO42−, with the highest concentration among the anions (55% at all stations. The pH ranged from 3.4 to 7.7 with a VMM of 4.84. H+ was weakly but positively correlated with SO42− (r = 0.39, p < 0.001 and NO3− (r = 0.38, p < 0.001. About 66% of the acidity was neutralized by NH4+ and Ca2+. The Cl−/Na+ ratio of the precipitation was 37% higher than seawater Cl−/Na+. The high SO42−/NO3− ratio of 2.3 is attributed to the influence of the surrounding industrial sources. Results from positive matrix factorization showed that the precipitation chemistry in Shihwa Basin was influenced by secondary nitrate and sulfate (41% ± 1.1%, followed by sea salt and Asian dust, contributing 23% ± 3.9% and 17% ± 0.2%, respectively. In this study, the annual trends of SO42− and NO3− (p < 0.05 increased, different from the trends in some locations, due to the influence of the expanding power generating facilities located in the upwind area. The increasing trends of SO42− and NO3− in the study region have important implications for reducing air pollution in accordance with national energy policy.

  4. Statistical Optimization of Synthesis of Manganese Carbonates Nanoparticles by Precipitation Methods

    International Nuclear Information System (INIS)

    Javidan, A.; Rahimi-Nasrabadi, M.; Davoudi, A.A.

    2011-01-01

    In this study, an orthogonal array design (OAD), OA9, was employed as a statistical experimental method for the controllable, simple and fast synthesis of manganese carbonate nanoparticle. Ultrafine manganese carbonate nanoparticles were synthesized by a precipitation method involving the addition of manganese ion solution to the carbonate reagent. The effects of reaction conditions, for example, manganese and carbonate concentrations, flow rate of reagent addition and temperature, on the diameter of the synthesized manganese carbonate nanoparticle were investigated. The effects of these factors on the width of the manganese carbonate nanoparticle were quantitatively evaluated by the analysis of variance (ANOVA). The results showed that manganese carbonate nanoparticle can be synthesized by controlling the manganese concentration, flow rate and temperature. Finally, the optimum conditions for the synthesis of manganese carbonate nanoparticle by this simple and fast method were proposed. The results of ANOVA showed that 0.001 mol/ L manganese ion and carbonate reagents concentrations, 2.5 mL/ min flow rate for the addition of the manganese reagent to the carbonate solution and 0 degree Celsius temperature are the optimum conditions for producing manganese carbonate nanoparticle with 75 ± 25 nm width. (author)

  5. Magnetite nanoparticles prepared by co-precipitation method in different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aphesteguy, J.C., E-mail: caphestegu@fi.uba.ar [LAFMACEL-INTECIN, Facultad de Ingeniería, UBA, Paseo Colón 850, C1063EHA Buenos Aires (Argentina); Kurlyandskaya, G.V. [Universidad del País Vasco UPV-EHU, Dept. Electricidad y Electronica, 48940 Leioa (Spain); Ural Federal University, Dept. Magnetism and Magnetic Nanomaterials, 620000 Ekaterinburg (Russian Federation); Celis, J.P. de [National Technology University (UTN), Facultad Regional Avellaneda, Department of Chemistry (Argentina); Safronov, A.P. [Ural Federal University, Dept. Magnetism and Magnetic Nanomaterials, 620000 Ekaterinburg (Russian Federation); Institute of Electrophysics UD RAS, Ekaterinburg 620016 (Russian Federation); Schegoleva, N.N. [Institute of Metal Physics UD RAS, Ekaterinburg 620044 (Russian Federation)

    2015-07-01

    Magnetic nanoparticles (MNPs) of pure magnetite (Fe{sub 3}O{sub 4}) were prepared in an aqueous solution (sample M−I) and in a water-ethyl alcohol mixture (sample M−II) by the co-precipitation method. The structure and magnetic properties of both samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), magnetic (M−H) and microwave measurements (FMR). The mean average particle diameter and particle size distribution was evaluated by the Dynamic Light Scattering (DLS) and Brunauer- Emmett-Teller techniques (BET). The Quantitative chemical analysis of iron was performed by Inductively Coupled Plasma (ICP)- Atomic Emission Spectroscopy (AES) technique. The MNPs prepared in aqueous solution show a higher grain than those prepared in the water-ethyl alcohol mixture. The type of phase structure in both cases can be defined as “defective spinel”. The shape of the majority of M−I MNPs is octahedral. The shape of the majority of M−II MNPs is cubic. The specific surface area of MNPs was as high as 14.4 m{sup 2}/g for M−I sample and 77.8 m{sup 2}/g for sample M–II. The obtained saturation magnetization values of 75 emu/g (M−I) and 68 emu/g (M−II) are consistent with expected values for magnetite MNPs of observed sizes. Ferromagnetic resonance (FMR) measurements confirmed that MNPs of both types are magnetically homogeneous materials. FMR lines' position and line widths can be understood by invoking the local dipolar fields, deviations from sphericity, magnetocrystalline anisotropy and stresses. M−I sample shows sizeable zero field microwave absorption which is absent in the M−II case. The differences in microwave behaviour of M−I and M−II MNPs can be used in the design of microwave radiation absorbing multilayers. - Highlights: • Magnetite nanoparticles were prepared in two different conditions. • Specific surface area of sample prepared in water- ethanol mix is

  6. A comparison of monthly precipitation point estimates at 6 locations in Iran using integration of soft computing methods and GARCH time series model

    Science.gov (United States)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2017-11-01

    Precipitation plays an important role in determining the climate of a region. Precise estimation of precipitation is required to manage and plan water resources, as well as other related applications such as hydrology, climatology, meteorology and agriculture. Time series of hydrologic variables such as precipitation are composed of deterministic and stochastic parts. Despite this fact, the stochastic part of the precipitation data is not usually considered in modeling of precipitation process. As an innovation, the present study introduces three new hybrid models by integrating soft computing methods including multivariate adaptive regression splines (MARS), Bayesian networks (BN) and gene expression programming (GEP) with a time series model, namely generalized autoregressive conditional heteroscedasticity (GARCH) for modeling of the monthly precipitation. For this purpose, the deterministic (obtained by soft computing methods) and stochastic (obtained by GARCH time series model) parts are combined with each other. To carry out this research, monthly precipitation data of Babolsar, Bandar Anzali, Gorgan, Ramsar, Tehran and Urmia stations with different climates in Iran were used during the period of 1965-2014. Root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute error (MAE) and determination coefficient (R2) were employed to evaluate the performance of conventional/single MARS, BN and GEP, as well as the proposed MARS-GARCH, BN-GARCH and GEP-GARCH hybrid models. It was found that the proposed novel models are more precise than single MARS, BN and GEP models. Overall, MARS-GARCH and BN-GARCH models yielded better accuracy than GEP-GARCH. The results of the present study confirmed the suitability of proposed methodology for precise modeling of precipitation.

  7. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation.

    Science.gov (United States)

    Tiano, P; Biagiotti, L; Mastromei, G

    1999-05-01

    The weathering of monumental stones is a complex process inserted in the more general 'matter transformation cycle' operated by physical, chemical and biological factors. The consequence of these combined actions is a loss of cohesion with dwindling and scaling of stone material and the induction of a progressive mineral matrix dissolution. In the case of calcareous stones, calcite leaching increases the material porosity and decreases its mechanical features with a general weakening of the superficial structural strength. Attempts to stop, or at least to slow down, deterioration of monumental stones has been made by conservative treatments with both inorganic or organic products. More recent studies show a new approach to hinder these phenomena by inducing a bio-mediated precipitation of calcite directly inside the stone porosity. This can be achieved either through the application of organic matrix macromolecules extracted from sea shells or of living bacteria. The effectiveness of the treatment using calcinogenic bacteria has been evaluated with laboratory tests specifically developed to evaluate the parameters such as : porosity, superficial strength and chromatic changes, influenced by the treatment itself. The results obtained seem to indicate that this type of treatment might not be suitable for monumental stone conservation.

  8. On the complex conductivity signatures of calcite precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

    2009-11-01

    Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl{sub 2} and Na{sub 2}CO{sub 3} solutions. The experiment continued for 12 days with a constant precipitation rate of {approx}0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

  9. Chemical decontamination method

    International Nuclear Information System (INIS)

    Nishiwaki, Hitoshi.

    1996-01-01

    Metal wastes contaminated by radioactive materials are contained in a rotational decontamination vessel, and the metal wastes are rotated therein while being in contact with a slight amount of a decontamination liquid comprising a mineral acid. As the mineral acid, a mixed acid of nitric acid, hydrochloric acid and fluoric acid is preferably used. Alternatively, chemical decontamination can also be conducted by charging an acid resistant stirring medium in the rotational decontamination vessel. The surface of the metal wastes is uniformly covered by the slight amount of decontamination liquid to dissolve the surface layer. In addition, heat of dissolution generated in this case is accumulated in the inside of the rotational decontamination vessel, the temperature is elevated with no particular heating, thereby enabling to obtain an excellent decontamination effect substantially at the same level as in the case of heating the liquid to 70degC in a conventional immersion decontamination method. Further, although contact areas between the metal wastes and the immersion vessel are difficult to be decontaminated in the immersion decontamination method, all of areas can be dissolved uniformly in the present invention. (T.M.)

  10. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  11. boron nitride coating of uranium dioxide and uranium dioxide-gadolinium oxide fuels by chemical precipitation method

    International Nuclear Information System (INIS)

    Uslu, I.; Tanker, E.; Guenduez, G.

    1997-01-01

    In this research pure urania and urania-gadolinia (5 and 10 %) fuels were coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron tricloride BCl 3 ) and ammonia (NH 3 ) at 600 C.Boron tricloride and ammonia are carried to tubular furnace using hydrogen as carrier gas. The coated samples were sintered at 1600 K. The properties of the coated samples were observed using BET surface area analysis, infrared spectra (IR), X-Ray Diffraction and Scanning Electron Microscope (SEM) techniques

  12. A New Pseudoinverse Matrix Method For Balancing Chemical Equations And Their Stability

    International Nuclear Information System (INIS)

    Risteski, Ice B.

    2008-01-01

    In this work is given a new pseudoniverse matrix method for balancing chemical equations. Here offered method is founded on virtue of the solution of a Diophantine matrix equation by using of a Moore-Penrose pseudoinverse matrix. The method has been tested on several typical chemical equations and found to be very successful for the all equations in our extensive balancing research. This method, which works successfully without any limitations, also has the capability to determine the feasibility of a new chemical reaction, and if it is feasible, then it will balance the equation. Chemical equations treated here possess atoms with fractional oxidation numbers. Also, in the present work are introduced necessary and sufficient criteria for stability of chemical equations over stability of their extended matrices

  13. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    Science.gov (United States)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  14. The precipitation behavior of superalloy ATI Allvac 718Plus

    Energy Technology Data Exchange (ETDEWEB)

    Zickler, Gerald A.; Schnitzer, Ronald; Leitner, Harald [Department of Physical Metallurgy and Materials Testing, Christian Doppler Laboratory Early Stages of Precipitation, Montanuniversitaet Leoben (Austria); Radis, Rene [Christian Doppler Laboratory Early Stages of Precipitation, Institute of Materials Science and Technology, Vienna University of Technology (Austria); Institute for Materials Science and Welding, Graz University of Technology (Austria); Kozeschnik, Ernst [Christian Doppler Laboratory Early Stages of Precipitation, Institute of Materials Science and Technology, Vienna University of Technology (Austria); Stockinger, Martin [Boehler Schmiedetechnik GmbH and Co. KG., Kapfenberg (Austria)

    2010-03-15

    ATI Allvac 718Plus is a novel nickel-based superalloy, which was designed for heavy-duty applications in aerospace gas turbines. The precipitation kinetics of the intermetallic {delta} (Ni{sub 3}Nb) and {gamma}' (Ni{sub 3}(Al,Ti)) phases in this alloy are of scientific as well as technological interest because of their significant influence on the mechanical properties. Important parameters like grain size are controlled by coarse {delta} precipitates located at grain boundaries, whereas small {gamma}' precipitates are responsible for strengthening by precipitation hardening. In the present study, the microstructure is investigated by three-dimensional atom probe tomography and simulated by computer modeling using the thermo-kinetic software MatCalc. The results of numerical simulations and experimental data are compared and critically discussed. It is shown that the chemical compositions of the phases change during isothermal aging, and the precipitation kinetics of {delta} and {gamma}' phases interact with each other as shown in a time temperature precipitation (TTP) plot. The TTP plot shows C-shaped curves with characteristic discontinuities in the temperature range, where simultaneous and concurrent precipitation of the {delta} and {gamma}' phases occurs. This leads to a competition in the diffusion of Nb and Al, which are partly present in both phases. Thus, the present study gives important information on heat treatments for ATI Allvac 718Plus in order to achieve the desired microstructure and mechanical properties. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Structure and magnetic properties of Mg0.35Cu0.2Zn0.45Fe2O4 ferrite synthesized by co-precipitation method

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2017-05-01

    Full Text Available Mg0.35Cu0.2Zn0.45Fe2O4 nanosize particles have been synthesized by chemical co-precipitation method and characterized by X-ray diffraction (XRD and vibrating sample magnetometry (VSM. The XRD patterns confirmed the single phase spinel structure of the synthesized powder. The average crystallite size of the powder varied from 14 to 55 nm by changing annealing temperature. The activation energy for crystal growth was estimated as about 18.61KJ/mol. With the annealing temperature increasing, saturation magnetization (MS was successively increased while the coercivity (HC was first increased, passed through a maximum and then declined. The sintering temperature has significant influence on bulk density, initial permeability and Curie temperature of Mg0.35Cu0.2Zn0.45Fe2O4 ferrite.

  16. New method to estimate paleoprecipitation using fossil amphibians and reptiles and the middle and late Miocene precipitation gradients in Europe

    Science.gov (United States)

    Böhme, M.; Ilg, A.; Ossig, A.; Küchenhoff, H.

    2006-06-01

    Existing methods for determining paleoprecipitation are subject to large errors (±350 400 mm or more using mammalian proxies), or are restricted to wet climate systems due to their strong facies dependence (paleobotanical proxies). Here we describe a new paleoprecipitation tool based on an indexing of ecophysiological groups within herpetological communities. In recent communities these indices show a highly significant correlation to annual precipitation (r2 = 0.88), and yield paleoprecipitation estimates with average errors of ±250 280 mm. The approach was validated by comparison with published paleoprecipitation estimates from other methods. The method expands the application of paleoprecipitation tools to dry climate systems and in this way contributes to the establishment of a more comprehensive paleoprecipitation database. This method is applied to two high-resolution time intervals from the European Neogene: the early middle Miocene (early Langhian) and the early late Miocene (early Tortonian). The results indicate that both periods show significant meridional precipitation gradients in Europe, these being stronger in the early Langhian (threefold decrease toward the south) than in the early Tortonian (twofold decrease toward the south). This pattern indicates a strengthening of climatic belts during the middle Miocene climatic optimum due to Southern Hemisphere cooling and an increased contribution of Arctic low-pressure cells to the precipitation from the late Miocene onward due to Northern Hemisphere cooling.

  17. Safety in the Chemical Laboratory--Chemical Management: A Method for Waste Reduction.

    Science.gov (United States)

    Pine, Stanley H.

    1984-01-01

    Discusses methods for reducing or eliminating waste disposal problems in the chemistry laboratory, considering both economic and environmental aspects of the problems. Proposes inventory control, shared use, solvent recycling, zero effluent, and various means of disposing of chemicals. (JM)

  18. Preparation of CaSO4:Dy by precipitation method to gamma radiation dosimetry

    International Nuclear Information System (INIS)

    Rivera, T.; Roman, J.; Azorin, J.; Sosa, R.; Guzman, J.; Serrano, A.K.; Garcia, M.; Alarcon, G.

    2010-01-01

    This paper presents the results of the preparation and characterization of dysprosium-doped calcium sulfate (CaSO 4 :Dy) phosphor, which was obtained by homogeneous precipitation from calcium acetate Ca(CH 3 COO - ) 2 . Structural and morphological characteristics were studied using a scanning electronic microscope (SEM). The structure of all compounds was determined by X-ray diffraction method too. Thermoluminescence (TL) emission properties of CaSO 4 :Dy under gamma radiation effects were studied. This phosphor powder presented a TL glow curve with two peaks (Tmax) centered at around of 180 and 300 deg. C, respectively. The TL response of CaSO 4 :Dy as a function of gamma absorbed dose was linear in a wide range. Both emission and excitation spectra were also obtained. Results showed that this new preparation method of CaSO 4 :Dy TL phosphor is less expensive, cleaner and safer than the conventional preparation method.

  19. Chemically reducing decontamination method for radioactive metal

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Sato, Hitoshi.

    1994-01-01

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  20. The Contribution of Extreme Precipitation to the Total Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-Qi

    2012-01-01

    Using daily precipitation data from weather stations in China, the variations in the contribution of extreme precipitation to the total precipitation are analyzed. It is found that extreme precipitation accounts for approximately one third of the total precipitation based on the overall mean for China. Over the past half century, extreme precipitation has played a dominant role in the year-to-year variability of the total precipitation. On the decadal time scale, the extreme precipitation makes different contributions to the wetting and drying regions of China. The wetting trends of particular regions are mainly attributed to increases in extreme precipitation; in contrast, the drying trends of other regions are mainly due to decreases in non-extreme precipitation.

  1. Acid Rain Examination and Chemical Composition of Atmospheric Precipitation in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mohsen Saeedi

    2012-01-01

    Full Text Available Air pollution is one of the most important environmental problems in metropolitan cities like Tehran. Rain and snow, as natural events, may dissolve and absorb contaminants of the air and direct them onto the land or surface waters which become polluted. In the present study, precipitation samples were collected from an urbanized area of Tehran. They were analyzed for NO3-, PO43-, SO42-, pH, turbidity, Electrical Conductivity (EC, Cu, Fe, Zn, Pb, Ni, Cr, and Al. We demonstrate that snow samples were often more polluted and had lower pH than those from the rain, possibly as an effect of adsorption capability of snow flakes. Volume weighted average concentrations were calculated and compared with some other studies. Results revealed that Tehran's precipitations are much more polluted than those reported from other metropolitan cities. Cluster analysis revealed that studied parameters such as metals and acidity originated from the same sources, such as fuel combustion in residential and transportation sectors of Tehran.

  2. Determination method of radiostrontium

    International Nuclear Information System (INIS)

    1984-01-01

    This manual provides determination methods of strontium-90 and strontium-89 in the environment released from nuclear facilities, and it is a revised edition of the previous manual published in 1974. As for the preparation method of radiation counting sample, ion exchange method, oxalate separation method and solvent extraction method were adopted in addition to the method of fuming nitric acid separation adopted in the previous edition. Strontium-90 is determined by the separation and radioactivity determination of yttrium-90 in radioequilibrium with strontium-90. Strontium-89 is determined by subtraction of radioactivity of strontium-90 plus yttrium-90 from gross radioactivity of isolated strontium carbonate. Radioactivity determination should be carried out with a low-background 2 π-gas-flow counting system for the mounted sample on a filter having a chemical form of ferric hydroxide, yttrium oxalate or strontium carbonate. This manual describes sample preparation procedures as well as radioactivity counting procedures for environmental samples of precipitates as rain or snow, airborne dust, fresh water, sea water and soil, and also for ash sample made from biological or food samples such as grains, vegetables, tea leaves, pine needle, milk, marine organisms, and total diet, by employing a method of fuming nitric acid separation, ion exchange separation, oxalate precipitate separation or solvent extraction separation (only for an ash sample). Procedures for reagent chemicals preparation is also attached to this manual. (Takagi, S.)

  3. Fundamental chemistry of precipitation and mineral scale formation

    Science.gov (United States)

    Alan W. Rudie; Peter W. Hart

    2005-01-01

    The mineral scale that deposits in digesters and bleach plants is formed by a chemical precipitation process. As such, it is accurately described or modeled using the solubility product equilibrium constant. Although solubility product identifies the primary conditions that need to be met for a scale problem to exist, the acid base equilibria of the scaling anions...

  4. Statistical simulation of ensembles of precipitation fields for data assimilation applications

    Science.gov (United States)

    Haese, Barbara; Hörning, Sebastian; Chwala, Christian; Bárdossy, András; Schalge, Bernd; Kunstmann, Harald

    2017-04-01

    The simulation of the hydrological cycle by models is an indispensable tool for a variety of environmental challenges such as climate prediction, water resources management, or flood forecasting. One of the crucial variables within the hydrological system, and accordingly one of the main drivers for terrestrial hydrological processes, is precipitation. A correct reproduction of the spatio-temporal distribution of precipitation is crucial for the quality and performance of hydrological applications. In our approach we stochastically generate precipitation fields conditioned on various precipitation observations. Rain gauges provide high-quality information for a specific measurement point, but their spatial representativeness is often rare. Microwave links, e. g. from commercial cellular operators, on the other hand can be used to estimate line integrals of near-surface rainfall information. They provide a very dense observational system compared to rain gauges. A further prevalent source of precipitation information are weather radars, which provide rainfall pattern informations. In our approach we derive precipitation fields, which are conditioned on combinations of these different observation types. As method to generate precipitation fields we use the random mixing method. Following this method a precipitation field is received as a linear combination of unconditional spatial random fields, where the spatial dependence structure is described by copulas. The weights of the linear combination are chosen in the way that the observations and the spatial structure of precipitation are reproduced. One main advantage of the random mixing method is the opportunity to consider linear and non-linear constraints. For a demonstration of the method we use virtual observations generated from a virtual reality of the Neckar catchment. These virtual observations mimic advantages and disadvantages of real observations. This virtual data set allows us to evaluate simulated

  5. Additional information about the chemistry of precipitates by variation of the scattering contrast in SANS and SAXS experiments

    International Nuclear Information System (INIS)

    Grosse, M.

    1999-01-01

    Contrast variation experiments provide the possibility to get information about the chemical composition of heterogeneities seen in the small angle scattering experiment. Phases in complex materials can become visible or invisible by changing the contrast. A very important question in this field is the determination of the type of precipitates which are formed during neutron irradiation. These irradiation-induced precipitates are the cause for the neutron embrittlement, which is the life time limiting process for a nuclear power plant. An example is presented, which shows that with contrast variation experiments information about chemical composition of precipitates can be obtained. Several phases in complex materials can be separated. (K.A.)

  6. Computation of rainfall erosivity from daily precipitation amounts.

    Science.gov (United States)

    Beguería, Santiago; Serrano-Notivoli, Roberto; Tomas-Burguera, Miquel

    2018-10-01

    Rainfall erosivity is an important parameter in many erosion models, and the EI30 defined by the Universal Soil Loss Equation is one of the best known erosivity indices. One issue with this and other erosivity indices is that they require continuous breakpoint, or high frequency time interval, precipitation data. These data are rare, in comparison to more common medium-frequency data, such as daily precipitation data commonly recorded by many national and regional weather services. Devising methods for computing estimates of rainfall erosivity from daily precipitation data that are comparable to those obtained by using high-frequency data is, therefore, highly desired. Here we present a method for producing such estimates, based on optimal regression tools such as the Gamma Generalised Linear Model and universal kriging. Unlike other methods, this approach produces unbiased and very close to observed EI30, especially when these are aggregated at the annual level. We illustrate the method with a case study comprising more than 1500 high-frequency precipitation records across Spain. Although the original records have a short span (the mean length is around 10 years), computation of spatially-distributed upscaling parameters offers the possibility to compute high-resolution climatologies of the EI30 index based on currently available, long-span, daily precipitation databases. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Pattern formation and self-organization in a simple precipitation system

    NARCIS (Netherlands)

    Volford, Andras; Izsak, F.; Ripzam, Matyas; Lagzi, Istvan

    Various types of pattern formation and self-organization phenomena can be observed in biological, chemical, and geochemical systems due to the interaction of reaction with diffusion. The appearance of static precipitation patterns was reported first by Liesegang in 1896. Traveling waves and

  8. Physical and chemical properties of SSM-discharge in the system gas-liquid

    International Nuclear Information System (INIS)

    Chernyak, V.Ya.; Olszewski, S.V.; Evstigneev, M.A.; Tsybulev, P.N.; Voronin, P.N.

    1996-01-01

    Investigation on the influence of solved Na 2 SO 4 and NaOH concentrations on discharge plasma contacting solution, and on the influence of discharge parameters on metal precipitation speed, as well as chemical analysis of precipitant in the system plasma - water solution were performed. After plasma treatment of water solutions of Zn and Al nitrates flake-like and snow-white precipitations appear. Differential thermal and atom-adsorption analysis of precipitations show that metals precipitate as hydroxides. Investigation of the influence of SSM-discharge polarity on plasma-chemical precipitation efficiency show that positive polarity of liquid electrode is more preferable. Probably, this fact takes place because plasma electrode of the second subsystem is the cathode, and thus reactions of cations (metal ions) are more intensive near it. (authors)

  9. Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation

    International Nuclear Information System (INIS)

    Kwak, Jun Young; Lee, Choong Sub; Kim, Don; Kim, Yeong Il

    2012-01-01

    Ba-ferrite (BaFe 12 O 19 ) nanoparticles were synthesized by chemical coprecipitation method in an aqueous solution. The particle size and the crystallization temperature of the Ba-ferrite nanoparticles were controlled varying the precipitation temperature. The precipitate that was prepared at 0 .deg. C showed the crystal structure of Ba-ferrite in X-ray diffraction when it was calcined at the temperature above 580 .deg. C, whereas what was prepared at 50 .deg. C showed the crystallinity when it was calcined at the temperature higher than about 700 .deg. C. The particle sizes of the synthesized Ba-ferrite were in a range of about 20-30 nm when it was prepared by being precipitated at 0 .deg. C and calcined at 650 .deg. C. When the precipitation temperature increased, the particle size also increased even at the same calcination temperature. The magnetic properties of the Ba-ferrite nanoparticles were also controlled by the synthetic condition of precipitation and calcination temperature. The coercive force could be appreciably lowered without a loss of saturation magnetization when the Ba-ferrite nanoparticles were prepared by precipitation and calcination both at low temperatures

  10. Chemical Mixtures Health Risk Assessment of Environmental Contaminants: Concepts, Methods, Applications

    Science.gov (United States)

    This problems-based, introductory workshop focuses on methods to assess health risks posed by exposures to chemical mixtures in the environment. Chemical mixtures health risk assessment methods continue to be developed and evolve to address concerns over health risks from multic...

  11. Deciding which chemical mixtures risk assessment methods work best for what mixtures

    International Nuclear Information System (INIS)

    Teuschler, Linda K.

    2007-01-01

    The most commonly used chemical mixtures risk assessment methods involve simple notions of additivity and toxicological similarity. Newer methods are emerging in response to the complexities of chemical mixture exposures and effects. Factors based on both science and policy drive decisions regarding whether to conduct a chemical mixtures risk assessment and, if so, which methods to employ. Scientific considerations are based on positive evidence of joint toxic action, elevated human exposure conditions or the potential for significant impacts on human health. Policy issues include legislative drivers that may mandate action even though adequate toxicity data on a specific mixture may not be available and risk assessment goals that impact the choice of risk assessment method to obtain the amount of health protection desired. This paper discusses three important concepts used to choose among available approaches for conducting a chemical mixtures risk assessment: (1) additive joint toxic action of mixture components; (2) toxicological interactions of mixture components; and (3) chemical composition of complex mixtures. It is proposed that scientific support for basic assumptions used in chemical mixtures risk assessment should be developed by expert panels, risk assessment methods experts, and laboratory toxicologists. This is imperative to further develop and refine quantitative methods and provide guidance on their appropriate applications. Risk assessors need scientific support for chemical mixtures risk assessment methods in the form of toxicological data on joint toxic action for high priority mixtures, statistical methods for analyzing dose-response for mixtures, and toxicological and statistical criteria for determining sufficient similarity of complex mixtures

  12. Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates

    Science.gov (United States)

    Williams, D.J.; Bigham, J.M.; Cravotta, C.A.; Traina, S.J.; Anderson, J.E.; Lyon, J.G.

    2002-01-01

    The pH of mine impacted waters was estimated from the spectral reflectance of resident sediments composed mostly of chemical precipitates. Mine drainage sediments were collected from sites in the Anthracite Region of eastern Pennsylvania, representing acid to near neutral pH. Sediments occurring in acidic waters contained primarily schwertmannite and goethite while near neutral waters produced ferrihydrite. The minerals comprising the sediments occurring at each pH mode were spectrally separable. Spectral angle difference mapping was used to correlate sediment color with stream water pH (r2=0.76). Band-center and band-depth analysis of spectral absorption features were also used to discriminate ferrihydrite and goethite and/or schwertmannite by analyzing the 4T1??? 6A1 crystal field transition (900-1000 nm). The presence of these minerals accurately predicted stream water pH (r2=0.87) and provided a qualitative estimate of dissolved SO4 concentrations. Spectral analysis results were used to analyze airborne digital multispectral video (DMSV) imagery for several sites in the region. The high spatial resolution of the DMSV sensor allowed for precise mapping of the mine drainage sediments. The results from this study indicate that airborne and space-borne imaging spectrometers may be used to accurately classify streams impacted by acid vs. neutral-to-alkaline mine drainage after appropriate spectral libraries are developed.

  13. Study of lithium extraction from brine water, Bledug Kuwu, Indonesia by the precipitation series of oxalic acid and carbonate sodium

    Science.gov (United States)

    Sulistiyono, Eko; Lalasari, Latifa Hanum; Mayangsari, W.; Prasetyo, A. B.

    2018-05-01

    Lithium is one of the key elements in the development of batteries for electric car applications. Currently, the resources of the world's lithium are derived from brine water and lithium mineral based on spodumene rock. Indonesia which is located in the area of the ring of fire, has potential brine water resources in some area, such as brine water from Bledug Kuwu, Central Java that used in this research. The purposes of this research are to characterize brine water, Bledug Kuwu and to investigate the influence of chemical solvents on Li, Na, K, Ca, Mg, Al, B ion precipitation from brine water. This research was done with 2 times the process of chemical precipitation that runs series as follows: 5 liters of brine water were chemically precipitated using 400 ml of 12.43 N oxalic acid and followed by chemical precipitation using 400 mL of 7.07 N sodium carbonate solutions. Evaporation and filtration processes were also done twice in an effort to separate white precipitate and filtrate. The filtrate was analyzed by ICP-OES and white precipitates (salts) were analyzed by SEM, XRD, and XRF. The result shows that oxalate precipitation process extracted 32.24% Al, 23.42% B, 22.43% Ca, 14.26% Fe, 3.21 % K, 9.86% Na and 14.26% Li, the following process by carbonate precipitation process extracted 98.86% Mg, 73% Ca, 22.53% Li, 82.04% Al, 14.38% B, 12.50% K, 2.27% Na. There is 63.21% lithium is not extracted from the series process. The SEM analysis shows that the structure of granules on the precipitated salts by oxalic acid form gentle cubic-shaped solid. In the other hand, oxalate precipitation followed by sodium carbonate has various particle sizes and the shape of crystals is fragments, prism and cube look like magnesium carbonate, calcium chloride, and calcite's crystal respectively. This is in accordance with XRD analysis that phases of whewellite (CaC2O4.H2O), disodium oxalate (Na2C2O4), magnesite (MgCO3), calcium lithium aluminum (Al1.19 Ca1Li0.81), dolomite (CaCO3

  14. River flooding due to intense precipitation

    International Nuclear Information System (INIS)

    Lin, James C.

    2014-01-01

    River stage can rise and cause site flooding due to local intense precipitation (LIP), dam failures, snow melt in conjunction with precipitation or dam failures, etc. As part of the re-evaluation of the design basis as well as the PRA analysis of other external events, the likelihood and consequence of river flooding leading to the site flooding need to be examined more rigorously. To evaluate the effects of intense precipitation on site structures, the site watershed hydrology and pond storage are calculated. To determine if river flooding can cause damage to risk-significant systems, structures, and components (SSC), water surface elevations are analyzed. Typically, the amount and rate of the input water is determined first. For intense precipitation, the fraction of the rainfall in the watershed drainage area not infiltrated into the ground is collected in the river and contributes to the rise of river water elevation. For design basis analysis, the Probable Maximum Flood (PMF) is evaluated using the Probable Maximum Precipitation (PMP) based on the site topography/configuration. The peak runoff flow rate and water surface elevations resulting from the precipitation induced flooding can then be estimated. The runoff flow hydrograph and peak discharge flows can be developed using the synthetic hydrograph method. The standard step method can then be used to determine the water surface elevations along the river channel. Thus, the flood water from the local intense precipitation storm and excess runoff from the nearby river can be evaluated to calculate the water surface elevations, which can be compared with the station grade floor elevation to determine the effects of site flooding on risk-significant SSCs. The analysis needs to consider any possible diversion flow and the effects of changes to the site configurations. Typically, the analysis is performed based on conservative peak rainfall intensity and the assumptions of failure of the site drainage facilities

  15. Two case studies on NARCCAP precipitation extremes

    Science.gov (United States)

    Weller, Grant B.; Cooley, Daniel; Sain, Stephan R.; Bukovsky, Melissa S.; Mearns, Linda O.

    2013-09-01

    We introduce novel methodology to examine the ability of six regional climate models (RCMs) in the North American Regional Climate Change Assessment Program (NARCCAP) ensemble to simulate past extreme precipitation events seen in the observational record over two different regions and seasons. Our primary objective is to examine the strength of daily correspondence of extreme precipitation events between observations and the output of both the RCMs and the driving reanalysis product. To explore this correspondence, we employ methods from multivariate extreme value theory. These methods require that we account for marginal behavior, and we first model and compare climatological quantities which describe tail behavior of daily precipitation for both the observations and model output before turning attention to quantifying the correspondence of the extreme events. Daily precipitation in a West Coast region of North America is analyzed in two seasons, and it is found that the simulated extreme events from the reanalysis-driven NARCCAP models exhibit strong daily correspondence to extreme events in the observational record. Precipitation over a central region of the United States is examined, and we find some daily correspondence between winter extremes simulated by reanalysis-driven NARCCAP models and those seen in observations, but no such correspondence is found for summer extremes. Furthermore, we find greater discrepancies among the NARCCAP models in the tail characteristics of the distribution of daily summer precipitation over this region than seen in precipitation over the West Coast region. We find that the models which employ spectral nudging exhibit stronger tail dependence to observations in the central region.

  16. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature.

    Science.gov (United States)

    Guyette, Richard; Stambaugh, Michael C; Dey, Daniel; Muzika, Rose Marie

    2017-01-01

    The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI). The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1) the water needed by plants to produce carbon bonds (fuel) and 2) the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture). These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1) precipitation insensitive, 2) precipitation unstable, and 3) precipitation sensitive. All three classifications interact in different ways with variable levels of temperature.

  17. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature.

    Directory of Open Access Journals (Sweden)

    Richard Guyette

    Full Text Available The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI. The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1 the water needed by plants to produce carbon bonds (fuel and 2 the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture. These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1 precipitation insensitive, 2 precipitation unstable, and 3 precipitation sensitive. All three classifications interact in different ways with variable levels of temperature.

  18. Comparison of different statistical downscaling methods to estimate changes in hourly extreme precipitation using RCM projections from ENSEMBLES

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Gregersen, Ida Bülow; Rosbjerg, Dan

    2015-01-01

    change method for extreme events, a weather generator combined with a disaggregation method and a climate analogue method. All three methods rely on different assumptions and use different outputs from the regional climate models (RCMs). The results of the three methods point towards an increase...... in extreme precipitation but the magnitude of the change varies depending on the RCM used and the spatial location. In general, a similar mean change is obtained for the three methods. This adds confidence in the results as each method uses different information from the RCMs. The results of this study...

  19. The temporal evolution of magnesium isotope fractionation during hydromagnesite dissolution, precipitation, and at equilibrium

    Science.gov (United States)

    Oelkers, Eric H.; Berninger, Ulf-Niklas; Pérez-Fernàndez, Andrea; Chmeleff, Jérôme; Mavromatis, Vasileios

    2018-04-01

    This study provides experimental evidence of the resetting of the magnesium (Mg) isotope signatures of hydromagnesite in the presence of an aqueous fluid during its congruent dissolution, precipitation, and at equilibrium at ambient temperatures over month-long timescales. All experiments were performed in batch reactors in aqueous sodium carbonate buffer solutions having a pH from 7.8 to 9.2. The fluid phase in all experiments attained bulk chemical equilibrium within analytical uncertainty with hydromagnesite within several days, but the experiments were allowed to continue for up to 575 days. During congruent hydromagnesite dissolution, the fluid first became enriched in isotopically light Mg compared to the dissolving hydromagnesite, but this Mg isotope composition became heavier after the fluid attained chemical equilibrium with the mineral. The δ26Mg composition of the fluid was up to ∼0.35‰ heavier than the initial dissolving hydromagnesite at the end of the dissolution experiments. Hydromagnesite precipitation was provoked during one experiment by increasing the reaction temperature from 4 to 50 °C. The δ26Mg composition of the fluid increased as hydromagnesite precipitated and continued to increase after the fluid attained bulk equilibrium with this phase. These observations are consistent with the hypothesis that mineral-fluid equilibrium is dynamic (i.e. dissolution and precipitation occur at equal, non-zero rates at equilibrium). Moreover the results presented in this study confirm (1) that the transfer of material from the solid to the fluid phase may not be conservative during stoichiometric dissolution, and (2) that the isotopic compositions of carbonate minerals can evolve even when the mineral is in bulk chemical equilibrium with its coexisting fluid. This latter observation suggests that the preservation of isotopic signatures of carbonate minerals in the geological record may require a combination of the isolation of fluid-mineral system

  20. PRECIPITATION-REGULATED STAR FORMATION IN GALAXIES

    International Nuclear Information System (INIS)

    Voit, G. Mark; O’Shea, Brian W.; Donahue, Megan; Bryan, Greg L.

    2015-01-01

    Galaxy growth depends critically on the interplay between radiative cooling of cosmic gas and the resulting energetic feedback that cooling triggers. This interplay has proven exceedingly difficult to model, even with large supercomputer simulations, because of its complexity. Nevertheless, real galaxies are observed to obey simple scaling relations among their primary observable characteristics. Here we show that a generic emergent property of the interplay between cooling and feedback can explain the observed scaling relationships between a galaxy's stellar mass, its total mass, and its chemical enrichment level, as well as the relationship between the average orbital velocity of its stars and the mass of its central black hole. These relationships naturally result from any feedback mechanism that strongly heats a galaxy's circumgalactic gas in response to precipitation of colder clouds out of that gas, because feedback then suspends the gas in a marginally precipitating state

  1. Manual of selected physico-chemical analytical methods. IV

    International Nuclear Information System (INIS)

    Beran, M.; Klosova, E.; Krtil, J.; Sus, F.; Kuvik, V.; Vrbova, L.; Hamplova, M.; Lengyel, J.; Kelnar, L.; Zakouril, K.

    1990-11-01

    The Central Testing Laboratory of the Nuclear Research Institute at Rez has for a decade been participating in the development of analytical procedures and has been providing analyses of samples of different types and origin. The analytical procedures developed have been published in special journals and a number of them in the Manuals of analytical methods, in three parts. The 4th part of the Manual contains selected physico-chemical methods developed or modified by the Laboratory in the years 1986-1990 within the project ''Development of physico-chemical analytical methods''. In most cases, techniques are involved for non-nuclear applications. Some can find wider applications, especially in analyses of environmental samples. Others have been developed for specific cases of sample analyses or require special instrumentation (mass spectrometer), which partly restricts their applicability by other institutions. (author)

  2. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  3. Biogrout, ground improvement by microbial induced carbonate precipitation

    NARCIS (Netherlands)

    Van Paassen, L.A.

    2009-01-01

    Biogrout is a new ground improvement method based on microbially induced precipitation of calcium carbonate (MICP). When supplied with suitable substrates, micro-organisms can catalyze biochemical conversions in the subsurface resulting in precipitation of inorganic minerals, which change the

  4. STAMMEX high resolution gridded daily precipitation dataset over Germany: a new potential for regional precipitation climate research

    Science.gov (United States)

    Zolina, Olga; Simmer, Clemens; Kapala, Alice; Mächel, Hermann; Gulev, Sergey; Groisman, Pavel

    2014-05-01

    We present new high resolution precipitation daily grids developed at Meteorological Institute, University of Bonn and German Weather Service (DWD) under the STAMMEX project (Spatial and Temporal Scales and Mechanisms of Extreme Precipitation Events over Central Europe). Daily precipitation grids have been developed from the daily-observing precipitation network of DWD, which runs one of the World's densest rain gauge networks comprising more than 7500 stations. Several quality-controlled daily gridded products with homogenized sampling were developed covering the periods 1931-onwards (with 0.5 degree resolution), 1951-onwards (0.25 degree and 0.5 degree), and 1971-2000 (0.1 degree). Different methods were tested to select the best gridding methodology that minimizes errors of integral grid estimates over hilly terrain. Besides daily precipitation values with uncertainty estimates (which include standard estimates of the kriging uncertainty as well as error estimates derived by a bootstrapping algorithm), the STAMMEX data sets include a variety of statistics that characterize temporal and spatial dynamics of the precipitation distribution (quantiles, extremes, wet/dry spells, etc.). Comparisons with existing continental-scale daily precipitation grids (e.g., CRU, ECA E-OBS, GCOS) which include considerably less observations compared to those used in STAMMEX, demonstrate the added value of high-resolution grids for extreme rainfall analyses. These data exhibit spatial variability pattern and trends in precipitation extremes, which are missed or incorrectly reproduced over Central Europe from coarser resolution grids based on sparser networks. The STAMMEX dataset can be used for high-quality climate diagnostics of precipitation variability, as a reference for reanalyses and remotely-sensed precipitation products (including the upcoming Global Precipitation Mission products), and for input into regional climate and operational weather forecast models. We will present

  5. Insights: A New Method to Balance Chemical Equations.

    Science.gov (United States)

    Garcia, Arcesio

    1987-01-01

    Describes a method designed to balance oxidation-reduction chemical equations. Outlines a method which is based on changes in the oxidation number that can be applied to both molecular reactions and ionic reactions. Provides examples and delineates the steps to follow for each type of equation balancing. (TW)

  6. Synthesis of alumina powders by precipitation method and solvothermal treatment

    International Nuclear Information System (INIS)

    Politchuk, J.O.; Lima, N.B.; Lazar, D.R.R.; Ussui, V.; Yoshito, W.K.

    2012-01-01

    The improvement of alumina powders synthesis processes has been focused on the preparation of ceramic powders with well defined crystalline structure and with high specific surface area and nanometric particle size without formation of hard agglomerates. For this purpose the precipitation step should be studied and and also the temperature of alumina crystallization should be reduced. The aim of this study was to obtain alumina powders by hydroxide precipitation with ammonia in the presence of cationic surfactant, followed by solvothermal treatment and calcination. The powders were characterized by TG/DTA, X-ray diffraction, surface area measurements by gas adsorption (BET) and scanning electron microscopy. The results showed that powders produced by solvothermal treatment without surfactant have higher crystallinity. However the presence of CTAB enhances 240% the specific surface area compared with powders produced without this reagent (author)

  7. Precipitation Nowcast using Deep Recurrent Neural Network

    Science.gov (United States)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2016-12-01

    An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.

  8. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    DEFF Research Database (Denmark)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming Bjerg

    2017-01-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe–22.7Cr–2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition......, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride...... precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic...

  9. Gravity settling of precipitated magnetite and ferric floc

    International Nuclear Information System (INIS)

    Holt, N.S.; Loft, P.R.

    1983-06-01

    A comparison is presented of the gravity settling performance of ferric floc and magnetite, both in batch settling tests, and on a continuous gravity settler. The precipitation of magnetite from solution on a continuous basis was also demonstrated, and the process was shown not to be significantly affected by the presence of a wide range of chemical species. (U.K.)

  10. Chemical analysis of cyanide in cyanidation process: review of methods

    International Nuclear Information System (INIS)

    Nova-Alonso, F.; Elorza-Rodriguez, E.; Uribe-Salas, A.; Perez-Garibay, R.

    2007-01-01

    Cyanidation, the world wide method for precious metals recovery, the chemical analysis of cyanide, is a very important, but complex operation. Cyanide can be present forming different species, each of them with different stability, toxicity, analysis method and elimination technique. For cyanide analysis, there exists a wide selection of analytical methods but most of them present difficulties because of the interference of species present in the solution. This paper presents the different available methods for chemical analysis of cyanide: titration, specific electrode and distillation, giving special emphasis on the interferences problem, with the aim of helping in the interpretation of the results. (Author)

  11. Synthesis and Characterization of Rice Straw/Fe3O4 Nanocomposites by a Quick Precipitation Method

    Directory of Open Access Journals (Sweden)

    Katayoon Kalantari

    2013-06-01

    Full Text Available Small sized magnetite iron oxide nanoparticles (Fe3O4-NPs with were successfully synthesized on the surface of rice straw using the quick precipitation method in the absence of any heat treatment. Ferric chloride (FeCl3·6H2O, ferrous chloride (FeCl2·4H2O, sodium hydroxide (NaOH and urea (CH4N2O were used as Fe3O4-NPs precursors, reducing agent and stabilizer, respectively. The rice straw fibers were dispersed in deionized water, and then urea was added to the suspension, after that ferric and ferrous chloride were added to this mixture and stirred. After the absorption of iron ions on the surface layer of the fibers, the ions were reduced with NaOH by a quick precipitation method. The reaction was carried out under N2 gas. The mean diameter and standard deviation of metal oxide NPs synthesized in rice straw/Fe3O4 nanocomposites (NCs were 9.93 ± 2.42 nm. The prepared rice straw/Fe3O4-NCS were characterized using powder X-ray diffraction (PXRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray fluorescence (EDXF and Fourier transforms infrared spectroscopy (FT‒IR. The rice straw/Fe3O4-NCs prepared by this method have magnetic properties.

  12. Precipitation characteristic of high strength steels microalloyed with titanium produced by compact strip production

    Institute of Scientific and Technical Information of China (English)

    Jian Zhou; Yonglin Kang; Xinping Mao

    2008-01-01

    Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It was seen that precipitates in Ti mieroalloyed steels mainly included TiN, Ti4C2S2, and TiC. The size of TiN particles varied from 50 to 500 nm, and they could precipitate during or before soaking. The Ti4C2S>2 with the size of 40-100 nm might precipitate before rolling, and the TiC particles with the size of 5-50 nm precipitated heterogeneously. High Ti content would lead to the presence of bigger TiC particles that precipitated in austenite, and by contrast, TiC particles that precipitated in ferrite and the transformation of austenite to ferrite was smaller. They were less than 30 nm and mainly responsible for precipitate strengthening. It should be noted that the TiC particles in higher Ti content were generally smaller than those in the steel with a lower Ti content.

  13. Validation of an semi-automated multi component method using protein precipitation LC-MS-MS for the analysis of whole blood samples

    DEFF Research Database (Denmark)

    Slots, Tina

    BACKGROUND: Solid phase extraction (SPE) are one of many multi-component methods, but can be very time-consuming and labour-intensive. Protein precipitation is, on the other hand, a much simpler and faster sample pre-treatment than SPE, and protein precipitation also has the ability to cover a wi......-mortem whole blood sample preparation for toxicological analysis; from the primary sample tube to a 96-deepwell plate ready for injection on the liquid chromatography mass spectrometry (LC-MS/MS)....

  14. [Removal of high-abundance proteins in plasma of the obese by improved TCA/acetone precipitation method].

    Science.gov (United States)

    Wang, Jun; Feng, Liru; Yu, Wei; Xu, Jian; Yang, Hui; Liu, Xiaoli

    2013-09-01

    To develop an improved trichloroacetic acid (TCA)/acetone precipitation method for removal of high-abundance proteins in plasma of the obese. Volumes of TCA/acetone solution (1, 3, 4, 5, 6, 8, 10 and 20 times of the sample) and concentrations of TCA (10%, 30%, 50%, 60%, 70% TCA/acetone solution) have been investigated to optimize the conditions of sample preparation. SDS-PAGE were used to separate and tested proteins in the supernatant and sediment. The best concentration of the TCA/acetone solution was first determined by SDS-PAGE. The protein in precipitation from 10% TCA/acetone solution processing and the new determined concentration TCA/acetone solution processing were verified by 2-D-SDS-PAGE. And then the digested products of the protein in precipitation and supernatant by trypsin were analyzed by nano HPLC-Chip-MS/MS to verify which is the best concentration to process the plasma. The best volume of TCA/acetone is four times to sample, which less or more TCA/acetone would reduce the removal efficiency of high-abundance proteins. The concentration of TCA in acetone solution should be 60%, which may remove more high-abundance proteins in plasma than 10%, 30%, 50% TCA in acetone solution. If the TCA concentration is more than 60%, the reproducibility will be much poorer due to fast precipitation of proteins. The results of mass identification showed that human plasma prepared with 60% TCA/acetone (4 times sample volume) could be verified more low-abundance proteins than 10%. The most desirable conditions for removal of high-abundance proteins in plasma is 60% TCA/acetone (4 times sample volume), especially for the plasma of obesity.

  15. In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy.

    Directory of Open Access Journals (Sweden)

    Gal Schkolnik

    Full Text Available Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp, thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats.

  16. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    Science.gov (United States)

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  17. Changes in hardness of magnesium alloys due to precipitation hardening

    Directory of Open Access Journals (Sweden)

    Tatiana Oršulová

    2018-04-01

    Full Text Available This paper deals with the evaluation of changes in hardness of magnesium alloys during precipitation hardening that are nowadays widely used in different fields of industry. It focuses exactly on AZ31, AZ61 and AZ91 alloys. Observing material hardness changes serves as an effective tool for determining precipitation hardening parameters, such as temperature and time. Brinell hardness measurement was chosen based on experimental needs. There was also necessary to make chemical composition analysis and to observe the microstructures of tested materials. The obtained results are presented and discussed in this paper.

  18. METHOD OF IMPREGNATING A POROUS MATERIAL

    Science.gov (United States)

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  19. Influence of aerosol on regional precipitation in North China

    Institute of Scientific and Technical Information of China (English)

    DUAN Jing; MAO JieTai

    2009-01-01

    The possible anthropogenic aerosol effect on regional precipitation is analyzed based on the historical data of precipitation and visibility of North China. At first, the precipitation amounts from 1960 to 1979 are considered as natural background values in our study for relatively less intensive industrial activi-ties and light air pollution during that period of time, then the region is divided into different subregions by applying the clustering method including the significance test of station rainfall correlations to the time series of 10-day mean rainfall amounts in this period. Based on the rule that the precipitation characteristics are similar in the same clustering region, the correlation of precipitation amounts among all stations in each region is thus established. Secondly, for the period from 1990 to 2005, during which, the economy had experienced a rapid development in this region, the variations of visibility at each station are analyzed. The stations with the absolute change in visibility less than 0.1 km/a are used as the reference stations, at which it is assumed that precipitation has not been seriously influ-enced by anthropogenic aerosols. Then the rainfall amounts of reference stations are used to estimate the natural precipitation values of the other stations in each clustering region. The difference between estimated precipitation and measured precipitation amount is thought to result from changes in an-thropogenic aerosols. These changes in precipitation amounts caused by anthropogenic aerosols at each station are calculated using the 10-day mean rainfall values from 1990 to 2005. The analysis re-suits obtained with this method are remarkable if it passes the significance test, and therefore, the suppression of regional precipitation over the region by anthropogenic aerosol is proved. It is found that this effect is most remarkable in summer. The influence of anthropogenic aerosols on convective precipitation possibly plays an important

  20. Centrifugal washing and recovery as an improved method for obtaining lignin precipitated from South African kraft mill black liquor

    CSIR Research Space (South Africa)

    Namane, M

    2015-10-01

    Full Text Available This study describes centrifugal recovery as an improved method for collection of lignin isolated from black liquor obtained from a South African kraft mill. Precipitation of lignin was achieved by utilising 6 M sulphuric acid. Recovery...

  1. Comparison of column chromatographic and precipitation methods for the purification of a macrocyclic polyether extractant

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, M.L.; Felinto, C.; Rhoads, S.; Clapper, M.; Finch, J.W.; Hay, B.P.

    1999-11-01

    Column chromatography on aminopropyl-derivatized silica and precipitation of a complex with perchloric acid have been evaluated as methods for the purification of di-tert-butylcyclohexano-18-crown-6 (DtBuCH18C6), a compound frequently employed for the selective extraction of strontium from acidic nitrate media. Both methods are shown to provide a simple and effective means of eliminating inactive sample components (i.e., impurities or stereoisomers incapable of extracting strontium) from the crown ether and enriching the material in 4(z),4{prime}(z) cis-syn-cis DtBuCH18C6, a stereoisomer capable of highly efficient strontium extraction.

  2. Comparison of column chromatographic and precipitation methods for the purification of a macrocyclic polyether extractant

    International Nuclear Information System (INIS)

    Dietz, M.L.; Felinto, C.; Rhoads, S.; Clapper, M.; Finch, J.W.; Hay, B.P.

    1999-01-01

    Column chromatography on aminopropyl-derivatized silica and precipitation of a complex with perchloric acid have been evaluated as methods for the purification of di-tert-butylcyclohexano-18-crown-6 (DtBuCH18C6), a compound frequently employed for the selective extraction of strontium from acidic nitrate media. Both methods are shown to provide a simple and effective means of eliminating inactive sample components (i.e., impurities or stereoisomers incapable of extracting strontium) from the crown ether and enriching the material in 4(z),4 prime(z) cis-syn-cis DtBuCH18C6, a stereoisomer capable of highly efficient strontium extraction

  3. Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan

    Science.gov (United States)

    Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung

    2010-08-01

    Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.

  4. Chemical Characteristics of Precipitation in a Typical Urban Site of the Hinterland in Three Gorges Reservoir, China

    Directory of Open Access Journals (Sweden)

    Liuyi Zhang

    2018-01-01

    Full Text Available Major water-soluble ions were analyzed for two-year precipitation samples in Wanzhou, a typical urban site of the hinterland of Chinese Three Gorges Reservoir. The pH values of the precipitation were in the range of 4.0 to 8.3, and the volume-weighted mean (VWM value was 5.0. The concentration order of anions and cations was as follows: SO42->NO3->Cl->F- and NH4+>Ca2+>Na+>K+>Mg2+, respectively. Good correlations were found between SO42- and NH4+, SO42- and Ca2+, NO3- and NH4+, and NO3- and Ca2+, implying their co-occurrence in the precipitation, most likely as (NH42SO4, (NH4HSO4, NH4NO3, CaSO4, and Ca(NO32. The sum of all measured ions was 416.4 μeq L−1, indicating serious air pollution in Wanzhou. NH4+ and Ca2+ were the most important ions neutralizing the acidic compounds in the precipitation; their major sources included agricultural activity and crustal dust. Local anthropogenic activities, for example, coal burning and traffic related sources, contributed most of SO42- and NO3-. The equivalent concentration ratio of SO42-/NO3- was 4.5, indicating that excessive emission of sulfur was the main reason leading to the precipitation acidity in Wanzhou. However, this ratio was lower than the ratio (5.9 in 2000s in Wanzhou, indicating that the contribution of nitric acid to the acidity of precipitation was strengthening.

  5. Precipitation from Space: Advancing Earth System Science

    Science.gov (United States)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  6. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    Science.gov (United States)

    Buck, R.F.

    1994-05-10

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05--0.1 C, 8--12 Cr, 1--5 Co, 0.5--2.0 Ni, 0.41--1.0 Mo, 0.1--0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels. 2 figures.

  7. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    Science.gov (United States)

    Buck, Robert F.

    1994-01-01

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05-0.1 C, 8-12 Cr, 1-5 Co, 0.5-2.0 Ni, 0.41-1.0 Mo, 0.1-0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels.

  8. On the Precipitation and Precipitation Change in Alaska

    Directory of Open Access Journals (Sweden)

    Gerd Wendler

    2017-12-01

    Full Text Available Alaska observes very large differences in precipitation throughout the state; southeast Alaska experiences consistently wet conditions, while northern Arctic Alaska observes very dry conditions. The maximum mean annual precipitation of 5727 mm is observed in the southeastern panhandle at Little Port Arthur, while the minimum of 92 mm occurs on the North Slope at Kuparuk. Besides explaining these large differences due to geographic and orographic location, we discuss the changes in precipitation with time. Analyzing the 18 first-order National Weather Service stations, we found that the total average precipitation in the state increased by 17% over the last 67 years. The observed changes in precipitation are furthermore discussed as a function of the observed temperature increase of 2.1 °C, the mean temperature change of the 18 stations over the same period. This observed warming of Alaska is about three times the magnitude of the mean global warming and allows the air to hold more water vapor. Furthermore, we discuss the effect of the Pacific Decadal Oscillation (PDO, which has a strong influence on both the temperature and precipitation in Alaska.

  9. Salt precipitation and dissolution in the late Quaternary Dead Sea: Evidence from chemical and δ37Cl composition of pore fluids and halites

    Science.gov (United States)

    Levy, Elan J.; Yechieli, Yoseph; Gavrieli, Ittai; Lazar, Boaz; Kiro, Yael; Stein, Mordechai; Sivan, Orit

    2018-04-01

    The chemical composition and δ37Cl of pore fluids from the ICDP core drilled in the deepest floor of the terminal and hypersaline Dead Sea, and halites from the adjacent Mount Sedom salt diapir, are used to establish the dynamics of halite precipitation and dissolution during the last interglacial and glacial periods. Between ∼132 and 116 thousand years ago (ka) halites precipitated in the lake resulting in the expulsion of Na+ and Cl- from the residual solution. Over 50% of the Cl- reservoir was removed, resulting in a decrease in the Na/Cl ratio from 0.57 to 0.19. This process was accompanied by a decrease in δ37Cl values in the precipitating halites and the associated residual Cl- in the lake. The observed decrease fits a Rayleigh distillation curve with a fractionation factor of Δ(NaCl-Dead Sea solution) = +0.32‰ (±0.12) determined in the present study. This behavior implies negligible contribution of external sources of Cl- to the lake during the main peak of the last interglacial, MIS5e. Subsequently, during the last glacial (ca. 117 to 17 ka) dissolution of halite took place, the Na+ and Cl- inventory were replenished, accompanied by an increase in Na/Cl from 0.21 to 0.55 and in the δ37Cl values from -0.46‰ to -0.12‰. While the lake underwent significant dilution during that time, the decrease in salinity was somewhat suppressed by the dissolution of the halite which was mostly derived from Mount Sedom salt diapir.

  10. ZnS nanoflakes deposition by modified chemical method

    International Nuclear Information System (INIS)

    Desai, Mangesh A.; Sartale, S. D.

    2014-01-01

    We report deposition of zinc sulfide nanoflakes on glass substrates by modified chemical method. The modified chemical method involves adsorption of zinc–thiourea complex on the substrate and its dissociation in presence of hydroxide ions to release sulfur ions from thiourea which react with zinc ions present in the complex to form zinc sulfide nanoflakes at room temperature. Influence of zinc salt and thiourea concentrations ratios on the morphology of the films was investigated by scanning electron microscope (SEM). The ratio of zinc and thiourea in the zinc–thiourea complex significantly affect the size of the zinc sulfide nanoflakes, especially width and density of the nanoflakes. The X-ray diffraction analysis exhibits polycrystalline nature of the zinc sulfide nanoflakes with hexagonal phase

  11. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations

    International Nuclear Information System (INIS)

    Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George

    2016-01-01

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.

  12. Waste and Simulant Precipitation Issues

    International Nuclear Information System (INIS)

    Steele, W.V.

    2000-01-01

    As Savannah River Site (SRS) personnel have studied methods of preparing high-level waste for vitrification in the Defense Waste Processing Facility (DWPF), questions have arisen with regard to the formation of insoluble waste precipitates at inopportune times. One option for decontamination of the SRS waste streams employs the use of an engineered form of crystalline silicotitanate (CST). Testing of the process during FY 1999 identified problems associated with the formation of precipitates during cesium sorption tests using CST. These precipitates may, under some circumstances, obstruct the pores of the CST particles and, hence, interfere with the sorption process. In addition, earlier results from the DWPF recycle stream compatibility testing have shown that leaching occurs from the CST when it is stored at 80 C in a high-pH environment. Evidence was established that some level of components of the CST, such as silica, was leached from the CST. This report describes the results of equilibrium modeling and precipitation studies associated with the overall stability of the waste streams, CST component leaching, and the presence of minor components in the waste streams

  13. Effective assimilation of global precipitation: simulation experiments

    Directory of Open Access Journals (Sweden)

    Guo-Yuan Lien

    2013-07-01

    Full Text Available Past attempts to assimilate precipitation by nudging or variational methods have succeeded in forcing the model precipitation to be close to the observed values. However, the model forecasts tend to lose their additional skill after a few forecast hours. In this study, a local ensemble transform Kalman filter (LETKF is used to effectively assimilate precipitation by allowing ensemble members with better precipitation to receive higher weights in the analysis. In addition, two other changes in the precipitation assimilation process are found to alleviate the problems related to the non-Gaussianity of the precipitation variable: (a transform the precipitation variable into a Gaussian distribution based on its climatological distribution (an approach that could also be used in the assimilation of other non-Gaussian observations and (b only assimilate precipitation at the location where at least some ensemble members have precipitation. Unlike many current approaches, both positive and zero rain observations are assimilated effectively. Observing system simulation experiments (OSSEs are conducted using the Simplified Parametrisations, primitivE-Equation DYnamics (SPEEDY model, a simplified but realistic general circulation model. When uniformly and globally distributed observations of precipitation are assimilated in addition to rawinsonde observations, both the analyses and the medium-range forecasts of all model variables, including precipitation, are significantly improved as compared to only assimilating rawinsonde observations. The effect of precipitation assimilation on the analyses is retained on the medium-range forecasts and is larger in the Southern Hemisphere (SH than that in the Northern Hemisphere (NH because the NH analyses are already made more accurate by the denser rawinsonde stations. These improvements are much reduced when only the moisture field is modified by the precipitation observations. Both the Gaussian transformation and

  14. Chemical treatment of radioactive liquid wastes from medical applications

    International Nuclear Information System (INIS)

    Castillo A, J.

    1995-01-01

    This work is a study about the treatment of the most important radioactive liquid wastes from medical usages, generated in medical institutions with nuclear medicine services. The radionuclides take in account are 32 P, 35 S, 125 I. The treatments developed and improved were specific chemical precipitations for each one of the radionuclides. This work involve to precipitate the radionuclide from the liquid waste, making a chemical compound insoluble in the aqueous phase, for this process the radionuclide stay in the precipitate, lifting the aqueous phase with a very low activity than the begin. The 32 P precipitated in form of Ca 3 32 P O 4 and Ca 2 H 32 P O 4 with a value for Decontamination Factor (DF) at the end of the treatment of 32. The 35 S was precipitated in form of Ba 35 SO 4 with a DF of 26. The 125 I was precipitated in Cu 125 I to obtain a DF of 24. The results of the treatments are between the limits given for the International Atomic Energy Agency and the 10 Code of Federal Regulation 20, for the safety release at the environment. (Author)

  15. Optimization of precipitation conditions of thorium oxalate precipitate

    International Nuclear Information System (INIS)

    Pazukhin, Eh.M.; Smirnova, E.A.; Krivokhatskij, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1986-01-01

    Thorium precipitation in the form of difficultly soluble oxalate has been investigated. The equation binding the concentration of metal with the nitric acid in the initial solution and quantity of a precipitator necessary for minimization of desired product losses is derived. The graphical solution of this equation for a case, when the oxalic acid with 0.78 mol/l concentration is the precipitator, is presented

  16. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Yamazaki, Sei; Miura, Haruki.

    1993-01-01

    The present invention provides a chemical decontamination method for radioactive metal wastes, which are generated from radioactive material handling facilities and the surfaces of which are contaminated by radioactive materials. That is, it has a feature of applying acid dissolution simultaneously with mechanical grinding. The radioactive metal wastes are contained in a vessel such as a barrel together with abrasives in a sulfuric acid solution and rotated at several tens rotation per minute. By such procedures for the radioactive metal wastes, (1) cruds and passive membranes are mechanically removed, (2) exposed mother metal materials are uniformly brought into contact with sulfuric acid and further (3) the mother metal materials dissolve the cruds and the passive membranes also chemically by a reducing dissolution (so-called local cell effect). According to the method of the present invention, stainless steel metal wastes having cruds and passive membranes can rapidly and efficiently be decontaminated to a radiation level equal with that of ordinary wastes. (I.S.)

  17. Characteristics of people with self-reported stress-precipitated seizures.

    Science.gov (United States)

    Privitera, Michael; Walters, Michael; Lee, Ikjae; Polak, Emily; Fleck, Adrienne; Schwieterman, Donna; Haut, Sheryl R

    2014-12-01

    Stress is the most common patient-reported seizure precipitant. We aimed to determine mood and epilepsy characteristics of people who report stress-precipitated seizures. Sequential patients at a tertiary epilepsy center were surveyed about stress as a seizure precipitant. We asked whether acute (lasting minutes-hours) or chronic (lasting days-months) stress was a seizure precipitant, whether stress reduction had been tried, and what effect stress reduction had on seizure frequency. We collected information on antiepileptic drugs, history of depression and anxiety disorder, prior or current treatment for depression or anxiety, and scores on the Neurological Disorders Depression Inventory (NDDI-E) and Generalized Anxiety Disorders-7 (GAD-7) instruments, which are administered at every visit in our Epilepsy Center. We also asked whether respondents thought that they could predict their seizures to determine if stress as a seizure precipitant was correlated with seizure self-prediction. Two hundred sixty-six subjects were included: 219 endorsed stress as a seizure precipitant [STRESS (+)] and 47 did not [STRESS (-)]. Among STRESS (+) subjects, 85% endorsed chronic stress as a seizure precipitant, and 68% endorsed acute stress as a seizure precipitant. In STRESS (+) subjects, 57% had used some type of relaxation or stress reduction method (most commonly yoga, exercise and meditation), and, of those who tried, 88% thought that these methods improved seizures. Among STRESS (-) subjects, 25% had tried relaxation or stress reduction, and 71% thought that seizures improved. Although univariate analysis showed multiple associations with stress as a seizure precipitant, in the multivariable logistic regression, only the GAD-7 score was associated with STRESS (+) (OR = 1.18 [1.03-1.35], p = 0.017). Subjects who reported stress as a seizure precipitant were more likely to report an ability to self-predict seizures (p < 0.001). Stress-precipitated seizures are commonly reported

  18. The effect of a local source on the composition of precipitation in south-central Maine

    Science.gov (United States)

    Scott D. Boyce; Samuel S. Butcher

    1976-01-01

    Bulk precipitation samples were collected from ten sites in south-central Maine during the period 18 June to 30 September 1974. Data from the chemical analyses of the precipitation were used to determine regional deposition patterns of the ionic constituents. Acidic pH values ranging from 3.8 to 5.0 are characteristic of the region, but relatively alkaline pH values of...

  19. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.; Bajic, Vladimir B.

    2016-01-01

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  20. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.

    2016-01-06

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  1. Toxicity assessment of chemical contaminants;transition from in vitromethods to novel in vitro methods

    Directory of Open Access Journals (Sweden)

    A.A. Farshad

    2007-04-01

    Full Text Available Exposure to occupational and environmental contaminants is a major contributor to human health problems. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there areapproximately 80, 000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from ethical, economical and scientific perspectives. Therefore, increasing the number of available industrial chemicals andnew products has created a demand for alternatives to animal methods for better safety evaluation. Recent toxicity studies have demonstrated that in vitro methods are capable of rapidly providing toxicity information. In this review, current toxicity test methods for risk evaluation of industrial chemical contaminants are presented. To evaluate the potential applications of  more recent test methods developed for toxicity testing of chemical contaminants are discussed. Although  to be considered more broadly for risk assessment of human chemical exposures. In vitro methods,in vitro toxicology methods cannot exactly mimic the biodynamics of the whole body, in vitro  relationships (QSARs and physiologically based toxicokinetic (PBTK models have a potentialtest systems in combination with the knowledge of quantitative structure activity.

  2. Method for fractional solid-waste sampling and chemical analysis

    DEFF Research Database (Denmark)

    Riber, Christian; Rodushkin, I.; Spliid, Henrik

    2007-01-01

    four subsampling methods and five digestion methods, paying attention to the heterogeneity and the material characteristics of the waste fractions, it was possible to determine 61 substances with low detection limits, reasonable variance, and high accuracy. For most of the substances of environmental...... of variance (20-85% of the overall variation). Only by increasing the sample size significantly can this variance be reduced. The accuracy and short-term reproducibility of the chemical characterization were good, as determined by the analysis of several relevant certified reference materials. Typically, six...... to eight different certified reference materials representing a range of concentrations levels and matrix characteristics were included. Based on the documentation provided, the methods introduced were considered satisfactory for characterization of the chemical composition of waste-material fractions...

  3. Spatio-temporal analysis of the extreme precipitation by the L-moment-based index-flood method in the Yangtze River Delta region, China

    Science.gov (United States)

    Yin, Yixing; Chen, Haishan; Xu, Chongyu; Xu, Wucheng; Chen, Changchun

    2014-05-01

    The regionalization methods which 'trade space for time' by including several at-site data records in the frequency analysis are an efficient tool to improve the reliability of extreme quantile estimates. With the main aims of improving the understanding of the regional frequency of extreme precipitation and providing scientific and practical background and assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region, in this paper, L-moment-based index-flood (LMIF) method, one of the popular regionalization methods, is used in the regional frequency analysis of extreme precipitation; attention was paid to inter-site dependence and its influence on the accuracy of quantile estimates, which hasn't been considered for most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, Generalized extreme-value (GEV) and Generalized Normal (GNO) distributions were identified as the best-fit distributions for most of the sub regions. Estimated quantiles for each region were further obtained. Monte-Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root mean square errors (RMSEs) were bigger and the 90% error bounds were wider with inter-site dependence than those with no inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with return period of 100 years were obtained which indicated that there are two regions with the highest precipitation extremes (southeastern coastal area of Zhejiang Province and the

  4. Mobility of radiocaesium in boreal forest ecosystems: Influence of precipitation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Steinnes, E. [Department of Chemistry, Norwegian University of Science and Technology (Norway); Gjelsvik, R.; Skuterud, L.; Thoerring, H. [Norwegian Radiation Protection Authority (Norway)

    2014-07-01

    Mobility and plant uptake of Cs in soils is generally limited by the presence of clay minerals in the soil. However, cations supplied by precipitation may substantially influence the mobility of radiocaesium in natural surface soil and subsequent transfer to food chains. The chemical composition of precipitation shows substantial variation among different areas in Norway for two main reasons. At sites close to the coast the atmospheric supply of marine cations and anions is many-fold greater than in regions shielded from marine influence by mountains. The southernmost part of the country has been, and still is, substantially affected by soil acidification due to long-range atmospheric transport of acidifying substances from areas elsewhere in Europe. This may explain a much higher greater uptake of {sup 137}Cs from the Chernobyl accident in moose in this region than elsewhere (Steinnes et al., 2009), in spite of the fact that some areas farther north received substantially greater fallout. Similarly a much greater transfer of {sup 137}Cs to natural birch forest vegetation is evident from the more acidified soils in the south than in comparable ecosystems elsewhere in the country (Thoerring et al., 2012). Repeated recordings of activity levels in natural surface soils showed faster leaching of Chernobyl {sup 137}Cs relative to inland areas not only in the south but also in coastal areas farther north (Gjelsvik and Steinnes, 2013), indicating that the amounts of marine cations in precipitation also has an appreciable effect on the Cs leaching. The geographical leaching differences still became less prominent with time. Recent lysimeter experiments with undisturbed soil columns obtained from an area receiving high radiocaesium deposition from the Chernobyl accident, applying precipitation with ionic composition characteristic of the different regions mentioned above, did not change the current depth distribution of {sup 137}Cs. However, acidic precipitation increased

  5. Defect investigations of micron sized precipitates in Al alloys

    Science.gov (United States)

    Klobes, B.; Korff, B.; Balarisi, O.; Eich, P.; Haaks, M.; Kohlbach, I.; Maier, K.; Sottong, R.; Staab, T. E. M.

    2011-01-01

    A lot of light aluminium alloys achieve their favourable mechanical properties, especially their high strength, due to precipitation of alloying elements. This class of age hardenable Al alloys includes technologically important systems such as e.g. Al-Mg-Si or Al-Cu. During ageing different precipitates are formed according to a specific precipitation sequence, which is always directed onto the corresponding intermetallic equilibrium phase. Probing the defect state of individual precipitates requires high spatial resolution as well as high chemical sensitivity. Both can be achieved using the finely focused positron beam provided by the Bonn Positron Microprobe (BPM) [1] in combination with the High Momentum Analysis (HMA) [2]. Employing the BPM, structures in the micron range can be probed by means of the spectroscopy of the Doppler broadening of annihilation radiation (DBAR). On the basis of these prerequisites single precipitates of intermetallic phases in Al-Mg-Si and Al-Cu, i.e. Mg2Si and Al2Cu, were probed. A detailed interpretation of these measurements necessarily relies on theoretical calculations of the DBAR of possible annihilation sites. These were performed employing the DOPPLER program. However, previous to the DBAR calculation the structures, which partly contain vacancies, were relaxed using the ab-initio code SIESTA, i.e. the atomic positions in presence of a vacancy were recalculated.

  6. Defect investigations of micron sized precipitates in Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Klobes, B; Korff, B; Balarisi, O; Eich, P; Haaks, M; Kohlbach, I; Maier, K; Sottong, R [Helmholtz-Institut fuer Strahlen- und Kernphysik, Nussallee 14-16, D-53115 Bonn (Germany); Staab, T E M, E-mail: klobes@hiskp.uni-bonn.de [Fraunhofer ISC, Neunerplatz 2, D-97082 Wuerzburg (Germany)

    2011-01-01

    A lot of light aluminium alloys achieve their favourable mechanical properties, especially their high strength, due to precipitation of alloying elements. This class of age hardenable Al alloys includes technologically important systems such as e.g. Al-Mg-Si or Al-Cu. During ageing different precipitates are formed according to a specific precipitation sequence, which is always directed onto the corresponding intermetallic equilibrium phase. Probing the defect state of individual precipitates requires high spatial resolution as well as high chemical sensitivity. Both can be achieved using the finely focused positron beam provided by the Bonn Positron Microprobe (BPM) in combination with the High Momentum Analysis (HMA). Employing the BPM, structures in the micron range can be probed by means of the spectroscopy of the Doppler broadening of annihilation radiation (DBAR). On the basis of these prerequisites single precipitates of intermetallic phases in Al-Mg-Si and Al-Cu, i.e. Mg{sub 2}Si and Al{sub 2}Cu, were probed. A detailed interpretation of these measurements necessarily relies on theoretical calculations of the DBAR of possible annihilation sites. These were performed employing the DOPPLER program. However, previous to the DBAR calculation the structures, which partly contain vacancies, were relaxed using the ab-initio code SIESTA, i.e. the atomic positions in presence of a vacancy were recalculated.

  7. Coupled effects of the precipitation of secondary species on the mechanical behaviour and chemical degradation of concretes; Les effets couples de la precipitation d'especes secondaires sur le comportement mecanique et la degradation chimique des betons

    Energy Technology Data Exchange (ETDEWEB)

    Planel, D

    2002-06-01

    Sulfate attack of cement-based materials remains an important problem for the durability assessment of containers and disposal engineering barriers dedicated to the long-term storage of radioactive wastes since underground water which may reach these elements contains small quantities of sulfates (7-31 mmol/1). This work contributes to the study of sulfate-induced damage mechanisms, to their understanding and modelling. The experimental phases of this study aimed at the understanding of the different physico-chemical phenomena involved during an external sulfate attack at following their evolution and their impact on the transport and mechanical properties of the material. Leaching experiments in pure water and in a solution of sodium sulfate (with a sulfate content of 15 mmol/1), have been performed simultaneously on OPC paste (w/c 0,4)in order to allow a comparison of test results. The frequent analysis of the leachant has shown a consumption of sulfate ions by the matrix, proportional to the square rate of time. The use of X-Ray Diffraction on powders, obtained by scraping the calcium-depleted part of the samples, led a precise view of the cement paste mineralogy, during sulfate attack. The use of Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS) confirmed the correctness of XRD profiles and brought important informations concerning cracking distribution and localisation. In addition, a visual monitoring of crack appearance and evolution completed the previous observations. Based on these experimental results, a simplified model accounting for the chemical degradation of cement paste in sulfated water has been proposed. A geochemical code, coupling the chemistry in solution with the reactive transport in porous media has been used for this purpose. The model accounts for the evolution of transport properties (diffusivity) associated with the calcium-depleting of the cement matrix and the precipitation of secondary phases (gypsum

  8. New methods of sup(111)In chemical separation

    International Nuclear Information System (INIS)

    Santos, D.F.; Osso Junior, J.A.; Bastos, M.A.V.; Britto, J.L.Q.; Silva, R.F.

    1986-01-01

    The cation exchange and thermochromatography methods for chemical separation of sup(111) In from silver targets are described. The cation exchange method is based on the difference between In and Ag distribution coefficients on cation exchange resin treated with HNO sub(3). The thermochromatography consists of indium diffusion on silver melted after sublimation and posterior condensation. (M.C.K.)

  9. Stability and precipitation of diverse nanoparticles

    Science.gov (United States)

    Desai, Chintal

    nanotubes. Formation of colloidal dispersions via precipitation processes has been widely used in the chemical and pharmaceutical industries. The synthesis of micro- particles for hydrophobic drugs is effectively carried out via anti-solvent precipitation method. The formation of small particles in the precipitation method is strongly influenced by colloidal interactions, and therefore, dependent on the properties of the particles and the liquid. The effect of solvent on the colloidal stability of the micro-drug particles is studied in detail. It is found that the organic solvent plays an important role on particle formation, polymorphism and stability of micron scale drug particles in aqueous media. Also, the supersaturation can be varied by using different solvents and the physicochemical characteristics of the suspension can be altered, which affects stability. Understanding of the colloidal stability and the aggregation kinetics has great importance not only for fundamental researches, but also for their applications.

  10. Investigation of Chemical Equilibrium Kinetics by the Electromigration Method

    CERN Document Server

    Bozhikov, G A; Bontchev, G D; Maslov, O D; Milanov, M V; Dmitriev, S N

    2002-01-01

    Measurement of the chemical reaction rates for complex formation as well as hydrolysis type reactions by the method of horizontal zone electrophoresis is outlined. The correlation between chemical equilibrium kinetics and electrodiffusion processes in a constant d.c. electric field is described. In model electromigration experiments the reaction rate constant of the complex formation of Hf(IV) and DTPA is determined.

  11. Control of calcium carbonate precipitation in anaerobic reactors

    NARCIS (Netherlands)

    Langerak, van E.P.A.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what

  12. Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method

    Science.gov (United States)

    Cahyaningrum, S. E.; Herdyastuty, N.; Devina, B.; Supangat, D.

    2018-01-01

    Hydroxyapatite is main inorganic component of the bone with formula Ca10(PO4)6(OH)2. Hydroxyapatite can be used as substituted bone biomaterial because biocompatible, non toxic, and osteoconductive. In this study, hydroxyapatite is synthesized using wet precipitation method from egg shell. The product was sintered at different temperatures of 800°C to 1000°C to improve its crystallinity. The hydroxyapatite was characterized by X-ray analysis, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) to reveal its phase content, morphology and types of bond present within it. The analytical results showed hydroxyapatite had range in crystallinity from 85.527 to 98.753%. The analytical functional groups showed that presence of functional groups such as OH, (PO4)3 2-, and CO3 2- that indicated as hydroxyapatite. The result of characterization SEM indicated that hydroxyapatite without sintering and HAp sintering at 800 °C were irregular shape without pore. The best hydroxyapatite with temperature sintering at 900 °C showed oval shaped with pores without agglomerated.

  13. The effect of precipitation on contaminant dissolution and transport: Analytic solutions

    International Nuclear Information System (INIS)

    Light, W.B.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1988-09-01

    We analysed the effect of precipitation on the dissolution and transport rates of a nondecaying contaminant. Precipitation near the waste surface can have a profound effect on dissolution and transport rates. The mass-transfer rate at the waste surface is controlled by the solid-liquid reaction rate to an extent determined by the modified reaction-rate modulus, α. At later times extending to steady state, the mass-transfer rate depends on the location of the precipitation front r/sub p/ and on the solubility ratio C/sub o//C/sub p/. A precipitation front very near the waste surface can change the dissolution mechanism from solubility-diffusion-controlled to chemical-reaction-rate controlled. Precipitation limits the concentration of the contaminant at r > r/sub p/ to C/sub p/, steepening the concentration gradient for dissolution on the waste package side of the front and flattening the gradient for transport in the region outside the front. This increases the rate of contaminant transport from the waste to the front while decreasing the rate of transport away from the front, when compared to the situation without precipitation. The difference in the transport rates at the front is the rate of precipitation. For large changes in solubility, most of the contaminant is immobilized by precipitation, as was observed in a parallel study. The effect of a precipitation front located nearby in surrounding rock is to increase the release rate at the waste surface/rock interface. The increase in release rate at the waste surface is greater the closer the precipitation and the larger the ratio C/sub o//C/sub p/, also observed by others. The release rates of other waste constituents that dissolve congruently with the solubility-controlling matrix can be increased by a local high-solubility region between the waste surface and the precipitation front. 10 refs., 5 figs

  14. Contribution to the Chemical and Technological Study of Ammonium Diuranate Precipitation; Contribution a l'etude chimique et technologique de la precipitation de diuranate d'ammonium

    Energy Technology Data Exchange (ETDEWEB)

    Vuillemey, R [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    The present work is designed to study the relationship between the conditions for precipitation by ammonia and the properties of ammonium diuranate obtained either from uranyl nitrate solution or from gaseous uranium hexafluoride. In each case the optimum processes are defined leading on the one hand to uranate which can afterwards be treated in a reduction- fluorination oven to give uranium tetrafluoride, and on the other hand to a uranate suitable for the production of a sinterable uranium oxide. In particular it is shown that the treatment of uranyl nitrate solutions by stoichiometric quantities of ammonia leads to the complete precipitation of the uranium leaving less than 1 mg/litre of uranium in the solution, whereas the treatment of uranium hexafluoride necessitates the use of at least 8 times the stoichiometric quantity. (author) [French] Le present travail a pour objet l'etude des relations entre les conditions de precipitation par l'ammoniaque et les proprietes du diuranate d'ammonium, obtenue soit a partir de nitrate d'uranyle en solution, soit d'hexafluorure d'uranium gazeux. Dans chacun des cas, il est defini les procedes optima conduisant d'une part a un uranate susceptible d'etre traite ulterieurement en four de reduction-fluoruration pour l'obtention de tetrafluorure d'uranium et a un uranate pouvant convenir a la fabrication d'un oxyde d'uranium frittable d'autre part. En particulier, il est mis en evidence que le traitement des solutions de nitrate d'uranyle par des quantites stochiometriques d'ammoniaque entraine une precipitation totale de l'uranium avec moins de 1 mg/litre/U dans les eaux-meres, alors que celui de l'hexafluorure d'uranium necessite au moins huit fois la quantite stochiometrique. La mise au point d'un procede de precipitation en deux temps a l'avantage dans les deux cas de permettre avec le meme appareillage la fabrication de produits differents en faisant varier notamment le rapport des reactifs dans le premier temps. (auteur)

  15. Clinical Considerations in the Assessment of Adolescent Chemical Dependency.

    Science.gov (United States)

    Winters, Ken

    1990-01-01

    Discusses relevant research findings of clinical assessment of adolescent chemical dependency so that service providers can better address these concerns. Three major issues are discussed: the definition of adolescent chemical dependency, clinical domains of assessment (chemical use problem severity, precipitating and perpetuating risk factors,…

  16. Statistical-Dynamical Seasonal Forecasts of Central-Southwest Asian Winter Precipitation.

    Science.gov (United States)

    Tippett, Michael K.; Goddard, Lisa; Barnston, Anthony G.

    2005-06-01

    Interannual precipitation variability in central-southwest (CSW) Asia has been associated with East Asian jet stream variability and western Pacific tropical convection. However, atmospheric general circulation models (AGCMs) forced by observed sea surface temperature (SST) poorly simulate the region's interannual precipitation variability. The statistical-dynamical approach uses statistical methods to correct systematic deficiencies in the response of AGCMs to SST forcing. Statistical correction methods linking model-simulated Indo-west Pacific precipitation and observed CSW Asia precipitation result in modest, but statistically significant, cross-validated simulation skill in the northeast part of the domain for the period from 1951 to 1998. The statistical-dynamical method is also applied to recent (winter 1998/99 to 2002/03) multimodel, two-tier December-March precipitation forecasts initiated in October. This period includes 4 yr (winter of 1998/99 to 2001/02) of severe drought. Tercile probability forecasts are produced using ensemble-mean forecasts and forecast error estimates. The statistical-dynamical forecasts show enhanced probability of below-normal precipitation for the four drought years and capture the return to normal conditions in part of the region during the winter of 2002/03.May Kabul be without gold, but not without snow.—Traditional Afghan proverb

  17. Chemical Mixtures Health Risk Assessment of Environmental Contaminants: Concepts, Methods, And Applications

    Science.gov (United States)

    This problems-based, introductory workshop focuses on methods to assess health risks posed by exposures to chemical mixtures in the environment. Chemical mixtures health risk assessment methods continue to be developed and evolve to address concerns over health risks from multic...

  18. Patterning of alloy precipitation through external pressure

    Science.gov (United States)

    Franklin, Jack A.

    Due to the nature of their microstructure, alloyed components have the benefit of meeting specific design goals across a wide range of electrical, thermal, and mechanical properties. In general by selecting the correct alloy system and applying a proper heat treatment it is possible to create a metallic sample whose properties achieve a unique set of design requirements. This dissertation presents an innovative processing technique intended to control both the location of formation and the growth rates of precipitates within metallic alloys in order to create multiple patterned areas of unique microstructure within a single sample. Specific experimental results for the Al-Cu alloy system will be shown. The control over precipitation is achieved by altering the conventional heat treatment process with an external surface load applied to selected locations during the quench and anneal. It is shown that the applied pressures affect both the rate and directionality of the atomic diffusion in regions close to the loaded surfaces. The control over growth rates is achieved by altering the enthalpic energy required for successful diffusion between lattice sites. Changes in the local chemical free energy required to direct the diffusion of atoms are established by introducing a non-uniform elastic strain energy field within the samples created by the patterned surface pressures. Either diffusion rates or atomic mobility can be selected as the dominating control process by varying the quench rate; with slower quenches having greater control over the mobility of the alloying elements. Results have shown control of Al2Cu precipitation over 100 microns on mechanically polished surfaces. Further experimental considerations presented will address consistency across sample ensembles. This includes repeatable pressure loading conditions and the chemical interaction between any furnace environments and both the alloy sample and metallic pressure loading devices.

  19. Chemical Alteration of Soils on Earth as a Function of Precipitation: Insights Into Weathering Processes Relevant to Mars

    Science.gov (United States)

    Amundson, R.; Chadwick, O.; Ewing, S.; Sutter, B.; Owen, J.; McKay, C.

    2004-12-01

    Soils lie at the interface of the atmosphere and lithosphere, and the rates of chemical and physical processes that form them hinge on the availability of water. Here we quantify the effect of these processes on soil volume and mass in different rainfall regimes. We then use the results of this synthesis to compare with the growing chemical dataset for soils on Mars in order to identify moisture regimes on Earth that may provide crude analogues for past Martian weathering conditions. In this synthesis, the rates of elemental gains/losses, and corresponding volumetric changes, were compared for soils in nine soil chronosequences (sequences of soils of differing ages) - sequences formed in climates ranging from ~1 to ~4500 mm mean annual precipitation (MAP). Total elemental chemistry of soils and parent materials were determined via XRF, ICP-MS, and/or ICP-OES, and the absolute elemental gains or losses (and volume changes) were determined by normalizing data to an immobile index element. For the chronosequences examined, the initial stages of soil formation (103^ to 104^ yr), regardless of climate, generally show volumetric expansion due to (1) reduction in bulk density by biological/physical turbation, (2) addition of organic matter, (3) accumulation of water during clay mineral synthesis, and/or (4) accumulation of atmospheric salts and dust. Despite large differences in parent materials (basalt, sandstone, granitic alluvium), there was a systematic relationship between long-term (105^ to 106^ yr) volumetric change and rainfall, with an approximate cross-over point between net expansion (and accumulation of atmospheric solutes and dust) and net collapse (net losses of Si, Al, and alkaline earths and alkali metals) between approximately 20 and 100 mm MAP. Recently published geochemical data of soils at Gusev Crater (Gellert et al. 2004. Science 305:829), when normalized to Ti, show apparent net losses of Si and Al that range between 5 and 50% of values relative to

  20. Characteristics of Spatial Structural Patterns and Temporal Variability of Annual Precipitation in Ningxia

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitation concentration index,wavelet analysis and Mann-Kendall rank statistic method,the characteristics of precipitation on the spatial-temporal variability and trend were analyzed by the monthly precipitation series in Ningxia during 1951-2008.[Result] In Ningxia,the spatial structural patterns of a...

  1. How do the multiple large-scale climate oscillations trigger extreme precipitation?

    Science.gov (United States)

    Shi, Pengfei; Yang, Tao; Xu, Chong-Yu; Yong, Bin; Shao, Quanxi; Li, Zhenya; Wang, Xiaoyan; Zhou, Xudong; Li, Shu

    2017-10-01

    Identifying the links between variations in large-scale climate patterns and precipitation is of tremendous assistance in characterizing surplus or deficit of precipitation, which is especially important for evaluation of local water resources and ecosystems in semi-humid and semi-arid regions. Restricted by current limited knowledge on underlying mechanisms, statistical correlation methods are often used rather than physical based model to characterize the connections. Nevertheless, available correlation methods are generally unable to reveal the interactions among a wide range of climate oscillations and associated effects on precipitation, especially on extreme precipitation. In this work, a probabilistic analysis approach by means of a state-of-the-art Copula-based joint probability distribution is developed to characterize the aggregated behaviors for large-scale climate patterns and their connections to precipitation. This method is employed to identify the complex connections between climate patterns (Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)) and seasonal precipitation over a typical semi-humid and semi-arid region, the Haihe River Basin in China. Results show that the interactions among multiple climate oscillations are non-uniform in most seasons and phases. Certain joint extreme phases can significantly trigger extreme precipitation (flood and drought) owing to the amplification effect among climate oscillations.

  2. Structure and properties of nanosize NiFe2O4 prepared by template and precipitation methods

    Czech Academy of Sciences Publication Activity Database

    Ćosović, A.; Ćosović, B.; Žák, Tomáš; David, Bohumil; Talijan, N.

    2013-01-01

    Roč. 49, č. 3 (2013), s. 271-277 ISSN 1450-5339 R&D Projects: GA ČR(CZ) GAP108/11/1350; GA MŠk(CZ) ED1.1.00/02.0068 Institutional research plan: CEZ:AV0Z2041904 Institutional support: RVO:68081723 Keywords : nanosized NiFe2O4 * template method * precipitation route * microstructure * phase composition * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.135, year: 2013

  3. Detection of the relationship between peak temperature and extreme precipitation

    Science.gov (United States)

    Yu, Y.; Liu, J.; Zhiyong, Y.

    2017-12-01

    Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.

  4. Responses of switchgrass to precipitation changes: Nonlinear and asymmetric?

    Science.gov (United States)

    Background/Question/Methods: Climate changes, including chronic changes in precipitation amounts, will influence plant physiology, biomass and productivity, and soil respiration. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. Two preci...

  5. Evaluation of a chemical risk assessment method of South Korea for chemicals classified as carcinogenic, mutagenic or reprotoxic (CMR).

    Science.gov (United States)

    Kim, Min-Uk; Byeon, Sang-Hoon

    2017-12-12

    Chemicals were used in various fields by the development of industry and science and technology. The Chemical Hazard Risk Management (CHARM) was developed to assess the risk of chemicals in South Korea. In this study, we were to evaluate the CHARM model developed for the effective management of workplace chemicals. We used 59 carcinogenic, mutagenic or reprotoxic (CMR) materials, which are both the work environment measurement result and the usage information among the manufacturer data. The CHARM model determines the risk to human health using the exposure level (based on working environment measurements or a combination of the quantity used and chemical physical properties (e.g., fugacity and volatility)), hazard (using occupational exposure limit (OEL) or Risk phrases (R-phrases)/Hazard statements (H-statements) from the Material Safety Data Sheet (MSDS)). The risk level was lower when using the results of the work environment measurement than when applying the chemical quantity and physical properties in the exposure level evaluation method. It was evaluated as grade 4 for the CMR material in the hazard class determination. The risk assessment method by R-phrases was evaluated more conservatively than the risk assessment method by OEL. And the risk assessment method by H-statements was evaluated more conservatively than the risk assessment method by R-phrases. The CHARM model was gradually conservatively assessed as it proceeded in the next step without quantitative information for individual workplaces. The CHARM is expected to help identify the risk if the hazards and exposure levels of chemicals were identified in individual workplaces. For CMR substances, although CHARM is highly evaluated for hazards, the risk is assessed to be low if exposure levels are assessed low. When evaluating the risk of highly hazardous chemicals such as CMR substances, we believe the model should be adapted to be more conservative and classify these as higher risk. This work is

  6. An Approach for Generating Precipitation Input for Worst-Case Flood Modelling

    Science.gov (United States)

    Felder, Guido; Weingartner, Rolf

    2015-04-01

    There is a lack of suitable methods for creating precipitation scenarios that can be used to realistically estimate peak discharges with very low probabilities. On the one hand, existing methods are methodically questionable when it comes to physical system boundaries. On the other hand, the spatio-temporal representativeness of precipitation patterns as system input is limited. In response, this study proposes a method of deriving representative spatio-temporal precipitation patterns and presents a step towards making methodically correct estimations of infrequent floods by using a worst-case approach. A Monte-Carlo rainfall-runoff model allows for the testing of a wide range of different spatio-temporal distributions of an extreme precipitation event and therefore for the generation of a hydrograph for each of these distributions. Out of these numerous hydrographs and their corresponding peak discharges, the worst-case catchment reactions on the system input can be derived. The spatio-temporal distributions leading to the highest peak discharges are identified and can eventually be used for further investigations.

  7. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    International Nuclear Information System (INIS)

    Gomez-Eyles, Jose L.; Collins, Chris D.; Hodson, Mark E.

    2011-01-01

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: → Isotope ratios can be used to evaluate chemical methods to predict bioavailability. → Chemical methods predicted bioavailability better than exhaustive extractions. → Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  8. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.uk [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-04-15

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: > Isotope ratios can be used to evaluate chemical methods to predict bioavailability. > Chemical methods predicted bioavailability better than exhaustive extractions. > Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  9. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  10. Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    P. Somasundaran

    2008-09-20

    Chemical EOR can be an effective method for increasing oil recovery and reducing the amount of produced water; however, reservoir fluids are chemically complex and may react adversely to the polymers and surfactants injected into the reservoir. While a major goal is to alter rock wettability and interfacial tension between oil and water, rock-fluid and fluid-fluid interactions must be understood and controlled to minimize reagent loss, maximize recovery and mitigate costly failures. The overall objective of this project was to elucidate the mechanisms of interactions between polymers/surfactants and the mineral surfaces responsible for determining the chemical loss due to adsorption and precipitation in EOR processes. The role of dissolved inorganic species that are dependent on the mineralogy is investigated with respect to their effects on adsorption. Adsorption, wettability and interfacial tension are studied with the aim to control chemical losses, the ultimate goal being to devise schemes to develop guidelines for surfactant and polymer selection in EOR. The adsorption behavior of mixed polymer/surfactant and surfactant/surfactant systems on typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) was correlated to their molecular structures, intermolecular interactions and the solution conditions such as pH and/or salinity. Predictive models as well as general guidelines for the use of polymer/surfactant surfactant/surfactant system in EOR have been developed The following tasks have been completed under the scope of the project: (1) Mineral characterization, in terms of SEM, BET, size, surface charge, and point zero charge. (2) Study of the interactions among typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) and surfactants and/or polymers in terms of adsorption properties that include both macroscopic (adsorption density, wettability) and microscopic (orientation

  11. Physical method to assess a probable maximum precipitation, using CRCM datas

    International Nuclear Information System (INIS)

    Beauchamp, J.

    2009-01-01

    'Full text:' For Nordic hydropower facilities, spillways are designed with a peak discharge based on extreme conditions. This peak discharge is generally derived using the concept of a probable maximum flood (PMF), which results from the combined effect of abundant downpours (probable maximum precipitation - PMP) and rapid snowmelt. On a gauged basin, the weather data record allows for the computation of the PMF. However, uncertainty in the future climate raises questions as to the accuracy of current PMP estimates for existing and future hydropower facilities. This project looks at the potential use of the Canadian Regional Climate Model (CRCM) data to compute the PMF in ungauged basins and to assess potential changes to the PMF in a changing climate. Several steps will be needed to accomplish this task. This paper presents the first step that aims at applying/adapting to CRCM data the in situ moisture maximization technique developed by the World Meteorological Organization, in order to compute the PMP at the watershed scale. The CRCM provides output data on a 45km grid at a six hour time step. All of the needed atmospheric data is available at sixteen different pressure levels. The methodology consists in first identifying extreme precipitation events under current climate conditions. Then, a maximum persisting twelve hours dew point is determined at each grid point and pressure level for the storm duration. Afterwards, the maximization ratio is approximated by merging the effective temperature with dew point and relative humidity values. The variables and maximization ratio are four-dimensional (x, y, z, t) values. Consequently, two different approaches are explored: a partial ratio at each step and a global ratio for the storm duration. For every identified extreme precipitation event, a maximized hyetograph is computed from the application of this ratio, either partial or global, on CRCM precipitation rates. Ultimately, the PMP is the depth of the

  12. Physical method to assess a probable maximum precipitation, using CRCM datas

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, J. [Univ. de Quebec, Ecole de technologie superior, Quebec (Canada)

    2009-07-01

    'Full text:' For Nordic hydropower facilities, spillways are designed with a peak discharge based on extreme conditions. This peak discharge is generally derived using the concept of a probable maximum flood (PMF), which results from the combined effect of abundant downpours (probable maximum precipitation - PMP) and rapid snowmelt. On a gauged basin, the weather data record allows for the computation of the PMF. However, uncertainty in the future climate raises questions as to the accuracy of current PMP estimates for existing and future hydropower facilities. This project looks at the potential use of the Canadian Regional Climate Model (CRCM) data to compute the PMF in ungauged basins and to assess potential changes to the PMF in a changing climate. Several steps will be needed to accomplish this task. This paper presents the first step that aims at applying/adapting to CRCM data the in situ moisture maximization technique developed by the World Meteorological Organization, in order to compute the PMP at the watershed scale. The CRCM provides output data on a 45km grid at a six hour time step. All of the needed atmospheric data is available at sixteen different pressure levels. The methodology consists in first identifying extreme precipitation events under current climate conditions. Then, a maximum persisting twelve hours dew point is determined at each grid point and pressure level for the storm duration. Afterwards, the maximization ratio is approximated by merging the effective temperature with dew point and relative humidity values. The variables and maximization ratio are four-dimensional (x, y, z, t) values. Consequently, two different approaches are explored: a partial ratio at each step and a global ratio for the storm duration. For every identified extreme precipitation event, a maximized hyetograph is computed from the application of this ratio, either partial or global, on CRCM precipitation rates. Ultimately, the PMP is the depth of the

  13. Chemical tailoring of steam to remediate underground mixed waste contaminents

    Science.gov (United States)

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  14. Recover of some rare earth elements from leach liquor of the Saghand uranium ore using combined precipitation and cation exchange methods

    International Nuclear Information System (INIS)

    Khanchi, A. R.; Rafati, H.; Rezvaniyanzadeh, M. R.

    2008-01-01

    In this research work, the recovery and separation of La(III), Ce(III), Sm(III), Dy(III) and Nd(III) from Saghand uranium ore have been studied by precipitation and ion-exchange chromatography methods using Dowex 50 W-X 8 cation exchanger. At first, some preliminary and preconcentration experiments such as comminution, sieve analysis, gravity table and electrostatic in preconcentration of lanthanides were performed. Then, acidic digesting and leaching procedure were used. The results of experiments showed that rare earth elements, along with interfering ions such as Al(III), Fe(III), Mg(II) and Mn(II) present in the leach liquor solution. The investigation of separation process by precipitation method revealed that precipitation and then fast separation using centrifugal technique had the best results in the elimination of interference elements. In order to separate the lanthanides and to obtain their elution curves, the chromatographic column containing Dowex 50 W-X 8 resin was employed. For efficient separation of lanthanides from interference elements the hydrochloric acid with concentration of two and six molar was used respectively. Recovery of lanthanides from the leach liquor solution was achieved more than 85%

  15. An effective placental cotyledons proteins extraction method for 2D gel electrophoresis.

    Science.gov (United States)

    Tan, Niu J; Daim, Leona D J; Jamil, Amilia A M; Mohtarrudin, Norhafizah; Thilakavathy, Karuppiah

    2017-03-01

    Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE). Based on widely used protein extraction strategies, 12 different extraction methodologies were carefully selected, which included one chemical extraction, two mechanical extraction coupled protein precipitations, and nine chemical extraction coupled protein precipitations. Extracted proteins were resolved in a one-dimensional gel electrophoresis and 2D-GE; then, it was compared with set criteria: extraction efficacy, protein resolution, reproducibility, and recovery efficiency. Our results revealed that a better profile was obtained by chemical extraction in comparison to mechanical extraction. We further compared chemical extraction coupled protein precipitation methodologies, where the DNase/lithium chloride-dense sucrose homogenization coupled dichloromethane-methanol precipitation (DNase/LiCl-DSH-D/MPE) method showed good protein extraction efficiency. This, however, was carried out with the best protein resolution and proteome reproducibility on 2D-gels. DNase/LiCl-DSH-D/MPE was efficient in the extraction of proteins from placental cotyledons tissues. In addition, this methodology could hypothetically allow the protein extraction of any tissue that contains highly abundant lipid and glycogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A study on selective precipitation of U(VI) by hydrophilic cyclic urea derivatives for development of a reprocessing system based on precipitation method

    International Nuclear Information System (INIS)

    Suzuki, Tomoya; Takao, Koichiro; Kawasaki, Takeshi; Harada, Masayuki; Ikeda, Yasuhisa; Nogami, Masanobu

    2014-01-01

    Selective precipitation ability of 2-imidazolidone (EU) and tetrahydro-2-pyrimidinone (PU) for U(VI) species in HNO 3 solutions containing U(VI), U(IV) (simulant of Pu(IV)), and simulated fission products (FPs) was investigated. As a result, it was found that these compounds precipitate almost quantitatively U(VI) as UO 2 (NO 3 ) 2 L 2 (L = EU, PU) from 3.0 M HNO 3 solution. In contrast, these urea derivatives form neither solid precipitates nor oily products with U(IV) in HNO 3 solutions containing only U(IV) species and even in U(VI)-U(IV) admixture system. Therefore, the separation of U(VI) from U(IV) was demonstrated to be achieved in use of EU and PU. Furthermore, EU and PU are capable to remove most of simulated FPs[Sr(II), Ru(III), Rh(III), Re(VII) La(III), Ce(III), Pr(III), Nd(III), and Sm(III)] from U(VI) to give their decontamination factors (DFs) higher than 100, while those values of Zr(IV), Mo(VI), Pd(II), and Ba(II) are necessary to be improved in both systems. From these results, it is expected that EU and PU are the promising precipitants for selective separation of U(VI) from HNO 3 solutions dissolving spent FBR fuels. (author)

  17. Kinetic study of nucleation and crystal growth during oxalic precipitation in the nuclear industry

    International Nuclear Information System (INIS)

    Andrieu, Murielle

    1999-01-01

    In spite of an extensive use in chemical industry, most of precipitation processes are based on global and empirical knowledge. However, in the recent years, fundamental and phenomenological theories have been developed and they can be used to better understand the mechanisms of precipitation of plutonium IV oxalate, which is a significant stage of the irradiated fuel reprocessing. For this reason, appropriate methods were developed to study nucleation and crystal growth kinetics in a nuclear environment under a wide range of operating conditions. Each phenomena was studied individually in order to reduce the free parameters of the System. This study bears on the oxalates of plutonium and elements which simulate plutonium behaviour during the precipitation, neodymium III and uranium IV. A compact apparatus of a specific construction was used for nucleation measurements in accordance with the Nielsen's method. The state of the mixing was characterised at the reactor scale (macro-mixing) and at molecular scale (micro-mixing). The experimental results for the studied oxalates are in good agreement with the Volmer and Weber's theory. We propose primary nucleation kinetic laws over a wide range of operating conditions (temperature, non-stoichiometric conditions, acidity...). An original method, using a high seed charge, was developed for the determination of crystal growth kinetics, in a batch crystallizer. The crystal growth rate is first order with respect to the supersaturation and the kinetic constant follows an Arrhenius type relation with activation energies of 14, 29 and 36 kJ.mol -1 for respectively neodymium III, uranium IV and plutonium IV oxalates. The overall growth process is surface integration controlled, with a screw dislocation mechanism. [fr

  18. Coupled effects of the precipitation of secondary species on the mechanical behaviour and chemical degradation of concretes; Les effets couples de la precipitation d'especes secondaires sur le comportement mecanique et la degradation chimique des betons

    Energy Technology Data Exchange (ETDEWEB)

    Planel, D

    2002-06-01

    Sulfate attack of cement-based materials remains an important problem for the durability assessment of containers and disposal engineering barriers dedicated to the long-term storage of radioactive wastes since underground water which may reach these elements contains small quantities of sulfates (7-31 mmol/1). This work contributes to the study of sulfate-induced damage mechanisms, to their understanding and modelling. The experimental phases of this study aimed at the understanding of the different physico-chemical phenomena involved during an external sulfate attack at following their evolution and their impact on the transport and mechanical properties of the material. Leaching experiments in pure water and in a solution of sodium sulfate (with a sulfate content of 15 mmol/1), have been performed simultaneously on OPC paste (w/c 0,4)in order to allow a comparison of test results. The frequent analysis of the leachant has shown a consumption of sulfate ions by the matrix, proportional to the square rate of time. The use of X-Ray Diffraction on powders, obtained by scraping the calcium-depleted part of the samples, led a precise view of the cement paste mineralogy, during sulfate attack. The use of Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS) confirmed the correctness of XRD profiles and brought important informations concerning cracking distribution and localisation. In addition, a visual monitoring of crack appearance and evolution completed the previous observations. Based on these experimental results, a simplified model accounting for the chemical degradation of cement paste in sulfated water has been proposed. A geochemical code, coupling the chemistry in solution with the reactive transport in porous media has been used for this purpose. The model accounts for the evolution of transport properties (diffusivity) associated with the calcium-depleting of the cement matrix and the precipitation of secondary phases (gypsum

  19. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    Science.gov (United States)

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Speleothems as Examples of Chemical Equilibrium Processes.

    Science.gov (United States)

    Wilson, James R.

    1984-01-01

    The chemical formation of speleothems such as stalactites and stalagmites is poorly understood by introductory geology instructors and misrepresented in most textbooks. Although evaporation may be a controlling factor in some caves, it is necessary to consider chemical precipitation as more important in controlling the diagenesis of calcium…

  1. Methods for the Determination of Chemical Contaminants in Drinking Water. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual, intended for chemists and technicians with little or no experience in chemical procedures required to monitor drinking water, covers analytical methods for inorganic and organic chemical contaminants listed in the interim primary drinking water regulations. Topics include methods for heavy metals, nitrate, and organic…

  2. Electrochemical and chemical methods of metallizing plastic films

    OpenAIRE

    Chapples, J.

    1991-01-01

    This thesis describes two novel techniques for the metallization of non-electroactive polymer films and thicker sectioned polyethylene and nylon substrates. In the first approach, non-electroactive polymer substrates were impregnated with surface layers of polypyrrole and polyaniline, using electrochemical and chemical methods of polymerization. The relative merits of both these approaches are discussed and compared with other methods in the literature. The resultant composi...

  3. Effect of rhenium injection methods on emission characteristics of metalloceramic alloys

    International Nuclear Information System (INIS)

    Ostach, E.M.; Redega, K.P.; Savranskaya, E.S.; Chapajkina, L.A.

    1975-01-01

    Ni-29% Re-3.6% BaBe 3 O 5 pseudoalloy prepared by chemical mixing had a higher secondary electron emission coefficient than the same alloy prepared by mechanical mixing. This is apparently due to more uniform distribution of Re and BaBe 3 O 5 in the former case. In the chemical mixing method, rhenic acid and Ni, Ba, and Be nitrates were the starting materials. The metals were precipitated by means of (NH 4 ) 2 CO 3 . The precipitate was filtered out, dried, and partially reduced in H to give a fine powder containing the desired amounts of Ni, Re, and uniformly dispersed BaBe 3 O 5 . In the mechanical mixing method, Ni powder (8-10 μm), coarse Re powder (40-60 μm) or fine Re powder ( 3 O 5 obtained by preliminary calcining of a mixture of BaCO 3 and BeO were mixed

  4. Thermoanalytical investigation of nanocrystalline iron (II) phosphate obtained by spontaneous precipitation from aqueous solutions

    International Nuclear Information System (INIS)

    Scaccia, Silvera; Carewska, Maria; Di Bartolomeo, Angelo; Prosini, Pier Paolo

    2003-01-01

    Fe 3 (PO 4 ) 2 ·8H 2 O has been precipitated under supersaturation conditions from deaerated Fe(NH 4 ) 2 (SO 4 ) 2 ·6H 2 O and K 2 HPO 4 aqueous, ethanol-water and iso-propanol-water solutions at pH=6.5 and ambient temperature. The precipitates have been characterised by TG/DTG/DTA and DSC techniques, chemical analysis, BET, and X-ray powder diffraction. The presence of ethanol and iso-propanol in the spontaneous precipitation process of ferrous phosphate leads to highly crystalline powder. Thermal treatment at 500 deg. C yields a poorly crystalline dehydrated iron phosphate

  5. Irradiation-induced precipitates in a neutron irradiated 304 stainless steel studied by three-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, T., E-mail: ttoyama@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Nozawa, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Van Renterghem, W. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Matsukawa, Y.; Hatakeyama, M.; Nagai, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Al Mazouzi, A. [EDF R and D, Avenue des Renardieres Ecuelles, 77818 Moret sur Loing Cedex (France); Van Dyck, S. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium)

    2011-11-15

    Highlights: > Irradiation-induced precipitates in a 304 stainless steel were investigated by three-dimensional atom probe. > The precipitates were found to be {gamma}' precipitates (Ni{sub 3}Si). > Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening. - Abstract: Irradiation-induced precipitates in a 304 stainless steel, neutron-irradiated to a dose of 24 dpa at 300 deg. C in the fuel wrapper plates of a commercial pressurized water reactor, were investigated by laser-assisted three-dimensional atom probe. A high number density of 4 x 10{sup 23} m{sup -3} of Ni-Si rich precipitates was observed, which is one order of magnitude higher than that of Frank loops. The average diameter was {approx}10 nm and the average chemical composition was 40% Ni, 14% Si, 11% Cr and 32% Fe in atomic percent. Over a range of Si concentrations, the ratio of Ni to Si was {approx}3, close to that of {gamma}' precipitate (Ni{sub 3}Si). In some precipitates, Mn enrichment inside the precipitate and P segregation at the interface were observed. Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening.

  6. Merging Satellite Precipitation Products for Improved Streamflow Simulations

    Science.gov (United States)

    Maggioni, V.; Massari, C.; Barbetta, S.; Camici, S.; Brocca, L.

    2017-12-01

    Accurate quantitative precipitation estimation is of great importance for water resources management, agricultural planning and forecasting and monitoring of natural hazards such as flash floods and landslides. In situ observations are limited around the Earth, especially in remote areas (e.g., complex terrain, dense vegetation), but currently available satellite precipitation products are able to provide global precipitation estimates with an accuracy that depends upon many factors (e.g., type of storms, temporal sampling, season, etc.). The recent SM2RAIN approach proposes to estimate rainfall by using satellite soil moisture observations. As opposed to traditional satellite precipitation methods, which sense cloud properties to retrieve instantaneous estimates, this new bottom-up approach makes use of two consecutive soil moisture measurements for obtaining an estimate of the fallen precipitation within the interval between two satellite overpasses. As a result, the nature of the measurement is different and complementary to the one of classical precipitation products and could provide a different valid perspective to substitute or improve current rainfall estimates. Therefore, we propose to merge SM2RAIN and the widely used TMPA 3B42RT product across Italy for a 6-year period (2010-2015) at daily/0.25deg temporal/spatial scale. Two conceptually different merging techniques are compared to each other and evaluated in terms of different statistical metrics, including hit bias, threat score, false alarm rates, and missed rainfall volumes. The first is based on the maximization of the temporal correlation with a reference dataset, while the second is based on a Bayesian approach, which provides a probabilistic satellite precipitation estimate derived from the joint probability distribution of observations and satellite estimates. The merged precipitation products show a better performance with respect to the parental satellite-based products in terms of categorical

  7. GPS-based PWV for precipitation forecasting and its application to a typhoon event

    Science.gov (United States)

    Zhao, Qingzhi; Yao, Yibin; Yao, Wanqiang

    2018-01-01

    The temporal variability of precipitable water vapour (PWV) derived from Global Navigation Satellite System (GNSS) observations can be used to forecast precipitation events. A number of case studies of precipitation events have been analysed in Zhejiang Province, and a forecasting method for precipitation events was proposed. The PWV time series retrieved from the Global Positioning System (GPS) observations was processed by using a least-squares fitting method, so as to obtain the line tendency of ascents and descents over PWV. The increment of PWV for a short time (two to six hours) and PWV slope for a longer time (a few hours to more than ten hours) during the PWV ascending period are considered as predictive factors with which to forecast the precipitation event. The numerical results show that about 80%-90% of precipitation events and more than 90% of heavy rain events can be forecasted two to six hours in advance of the precipitation event based on the proposed method. 5-minute PWV data derived from GPS observations based on real-time precise point positioning (RT-PPP) were used for the typhoon event that passed over Zhejiang Province between 10 and 12 July, 2015. A good result was acquired using the proposed method and about 74% of precipitation events were predicted at some ten to thirty minutes earlier than their onset with a false alarm rate of 18%. This study shows that the GPS-based PWV was promising for short-term and now-casting precipitation forecasting.

  8. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    Science.gov (United States)

    Todd, Paul W. (Inventor); Jones, Alan (Inventor); Thomas, Nathan A. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  9. CalWater 2 - Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment

    Science.gov (United States)

    Spackman, J. R.; Ralph, F. M.; Prather, K. A.; Cayan, D. R.; DeMott, P. J.; Dettinger, M. D.; Fairall, C. W.; Leung, L. R.; Rosenfeld, D.; Rutledge, S. A.; Waliser, D. E.; White, A. B.

    2014-12-01

    Emerging research has identified two phenomena that play key roles in the variability of the water supply and the incidence of extreme precipitation events along the West Coast of the United States. These phenomena include the role of (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major storms along the U.S. West Coast, and (2) aerosols—from local sources as well as those transported from remote continents—and their modulating effects on western U.S. precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of extreme precipitation and its effects, including the provision of beneficial water supply. This presentation summarizes the science objectives and strategies to address gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. Observations are proposed for multiple winter seasons as part of a 5-year broad interagency vision referred to as CalWater 2 to address these science gaps (http://esrl.noaa.gov/psd/calwater). In January-February 2015, a field campaign has been planned consisting of a targeted set of aircraft and ship-based measurements and associated evaluation of data in near-shore regions of California and in the eastern Pacific. In close coordination with NOAA, DOE's Atmospheric Radiation Measurement (ARM) program is also contributing air and shipborne facilities for ACAPEX (ARM Cloud Aerosol and Precipitation Experiment), a DOE-sponsored study complementing CalWater 2. Ground-based measurements from NOAA's HydroMeteorological Testbed (HMT) network in California and aerosol chemical instrumentation at Bodega Bay, California have been designed to add important near surface-level context for the

  10. [Research on determination of chemical purity of andrographolide by coulometric titration method].

    Science.gov (United States)

    Yang, Ning; Yang, Dezhi; Xu, Lishen; Lv, Yang

    2010-04-01

    The determination of chemical purity of andrographolide by coulometric titration method is studied in this paper. The coulometric titration was carried out in a mixture composed of 4 mol x L(-1) hydrochloric acid and 1 mol x L(-1) potassium bromide solution and 1 mol x L(-1) potassium nitrate solution (1:1). Bromine is electrogenerated at the anode and reacts with the andrographolide. The number of electrons involved in the eleatrode reaction is 2. Purity of andrographolide is 99.76% compared with 99.77% utilizing area normalization method by HPLC. The RSD are 0.33% and 0.02% respectively. The results from two methods are consistent, so the determination of chemical purity of andrographolide by coulometric titration method is scientific and feasible. The method is rapid, simple, convenient, sensitive and accurate. The reference material is not essential in the method. The method is suitable for determination of chemical purity of andrographolide.

  11. Sb interactions with TaC precipitates and Cu in ion-implanted α-Fe

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Myers, S.M.

    1980-01-01

    The interactions of Sb with the other species implanted into Fe to form Fe-Ta-C-Sb and Fe-Cu-Sb alloys have been examined with transmission electron microscopy and Rutherford backscattering following annealing at 873 0 K. Trapping of Sb at TaC precipitates is observed in the former alloy just as was previously observed in Fe-Ti-C-Sb. In Fe-Cu-Sb, Sb interactions are governed by the atomic ratio of Sb to Cu. For ratios between 0.2 to 0.4, the compound β-Cu 3 Sb was observed to form. For Sb to Cu ratios approx.< 0.1, fcc Cu precipitates were observed. In addition to the expected Sb dissolution in Cu, Sb trapping by Cu precipitates is also observed. The binding enthalpy of Sb at both TaC and Cu precipitates with respect to a solution site in the bcc Fe is the same as observed for TiC, approx. 0.4 eV. The constancy of the binding enthalpy at such chemically dissimilar precipitates supports the hypothesis that the trapping is due to the structural discontinuity of the precipitate-host interface. The observed Sb trapping at precipitates is of potential significance for the control of temper embrittlement in bcc steels

  12. Properties of Extreme Precipitation and Their Uncertainties in 3-year GPM Precipitation Radar Data

    Science.gov (United States)

    Liu, N.; Liu, C.

    2017-12-01

    Extreme high precipitation rates are often related to flash floods and have devastating impacts on human society and the environments. To better understand these rare events, 3-year Precipitation Features (PFs) are defined by grouping the contiguous areas with nonzero near-surface precipitation derived using Global Precipitation Measurement (GPM) Ku band Precipitation Radar (KuPR). The properties of PFs with extreme precipitation rates greater than 20, 50, 100 mm/hr, such as the geographical distribution, volumetric precipitation contribution, seasonal and diurnal variations, are examined. In addition to the large seasonal and regional variations, the rare extreme precipitation rates often have a larger contribution to the local total precipitation. Extreme precipitation rates occur more often over land than over ocean. The challenges in the retrieval of extreme precipitation might be from the attenuation correction and large uncertainties in the Z-R relationships from near-surface radar reflectivity to precipitation rates. These potential uncertainties are examined by using collocated ground based radar reflectivity and precipitation retrievals.

  13. MODELING OF ISOTHERMAL PRECIPITATION KINETICS IN HSLA STEELS AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    X.M. Zhao; D. Wu; L.Z. Zhang; Z.Y. Liu

    2004-01-01

    Microalloying elements in high-strength low-alloy steels, such as Nb, Ti and V, precipitate during hot-rolling processes. On the basis of classical theory of nucleation and growth, quantitative modeling of isothermal precipitation was developed, which was tested by the stress relaxation method, the calculated precipitation-time-temperature curve is in good agreements with the measured results, then the model was applied to predict the precipitation behavior during continuous cooling.

  14. CHEMICAL EFFECTS ON PWR SUMP STRAINER BLOCKAGE AFTER A LOSS-OF-COOLANT ACCIDENT: REVIEW ON U.S. RESEARCH EFFORTS

    Directory of Open Access Journals (Sweden)

    CHI BUM BAHN

    2013-06-01

    Full Text Available Industry- or regulatory-sponsored research activities on the resolution of Generic Safety Issue (GSI-191 were reviewed, especially on the chemical effects. Potential chemical effects on the head loss across the debris-loaded sump strainer under a post-accident condition were experimentally evidenced by small-scale bench tests, integrated chemical effects test (ICET, and vertical loop head loss tests. Three main chemical precipitates were identified by WCAP-16530-NP: calcium phosphate, aluminum oxyhydroxide, and sodium aluminum silicate. The former two precipitates were also identified as major chemical precipitates by the ICETs. The assumption that all released calcium would form precipitates is reasonable. CalSil insulation needs to be minimized especially in a plant using trisodium phosphate buffer. The assumption that all released aluminum would form precipitates appears highly conservative because ICETs and other studies suggest substantial solubility of aluminum at high temperature and inhibition of aluminum corrosion by silicate or phosphate. The industry-proposed chemical surrogates are quite effective in increasing the head loss across the debris-loaded bed and more effective than the prototypical aluminum hydroxide precipitates generated by in-situ aluminum corrosion. There appears to be some unresolved potential issues related to GSI-191 chemical effects as identified in NUREG/CR-6988. The United States Nuclear Regulatory Commission, however, concluded that the implications of these issues are either not generically significant or are appropriately addressed, although several issues associated with downstream in-vessel effects remain.

  15. Short-range quantitative precipitation forecasting using Deep Learning approaches

    Science.gov (United States)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2017-12-01

    Predicting short-range quantitative precipitation is very important for flood forecasting, early flood warning and other hydrometeorological purposes. This study aims to improve the precipitation forecasting skills using a recently developed and advanced machine learning technique named Long Short-Term Memory (LSTM). The proposed LSTM learns the changing patterns of clouds from Cloud-Top Brightness Temperature (CTBT) images, retrieved from the infrared channel of Geostationary Operational Environmental Satellite (GOES), using a sophisticated and effective learning method. After learning the dynamics of clouds, the LSTM model predicts the upcoming rainy CTBT events. The proposed model is then merged with a precipitation estimation algorithm termed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) to provide precipitation forecasts. The results of merged LSTM with PERSIANN are compared to the results of an Elman-type Recurrent Neural Network (RNN) merged with PERSIANN and Final Analysis of Global Forecast System model over the states of Oklahoma, Florida and Oregon. The performance of each model is investigated during 3 storm events each located over one of the study regions. The results indicate the outperformance of merged LSTM forecasts comparing to the numerical and statistical baselines in terms of Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), RMSE and correlation coefficient especially in convective systems. The proposed method shows superior capabilities in short-term forecasting over compared methods.

  16. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    International Nuclear Information System (INIS)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 μ in diameter and contained numerous small voids (less than 0.3 μm) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 μm in diameter and contained large voids (approximately 1 μm). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost

  17. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 ..mu.. in diameter and contained numerous small voids (less than 0.3 ..mu..m) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 ..mu..m in diameter and contained large voids (approximately 1 ..mu..m). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost.

  18. Physicochemical Approach to Alkaline Flocculation of Chlorella vulgaris Induced by Calcium Phosphate Precipitates.

    Czech Academy of Sciences Publication Activity Database

    Brányiková, Irena; Filipenská, Monika; Urbanová, K.; Růžička, Marek; Pivokonský, Martin; Brányik, T.

    2018-01-01

    Roč. 166, 1 June (2018), s. 54-60 ISSN 0927-7765 R&D Projects: GA ČR(CZ) GA18-05007S Institutional support: RVO:67985858 ; RVO:67985874 Keywords : microalgae * calcium phosphate * precipitates * surface interactions Subject RIV: CI - Industrial Chemistry, Chemical Engineering; BK - Fluid Dynamics (UH-J) OBOR OECD: Chemical process engineering; Environmental sciences (social aspects to be 5.7) (UH-J) Impact factor: 3.887, year: 2016

  19. Synthesis of Bi2O3 architectures in DMF–H2O solution by precipitation method and their photocatalytic activity

    International Nuclear Information System (INIS)

    Yang, Li-Li; Han, Qiao-Feng; Zhao, Jin; Zhu, Jun-Wu; Wang, Xin; Ma, Wei-Hua

    2014-01-01

    Graphical abstract: Flowerlike α-Bi 2 O 3 architectures assembled by nanobrick-based petals with pineapple surface were firstly synthesized by precipitation method at room temperature in DMF–H 2 O solution. - Highlights: • Nanobrick-based flowerlike Bi 2 O 3 crystals with pineapple surface were synthesized by precipitation method. • Good solubility of Bi(NO 3 ) 3 in DMF played a crucial role in the growth of flowerlike Bi 2 O 3 . • The growth mechanism of Bi 2 O 3 microcrystallites has been explained in detail. - Abstract: Well-crystalline flowerlike α-Bi 2 O 3 hierarchical architectures with pineapple-shaped petals have been synthesized by precipitation method at a volume ratio of DMF/H 2 O of 5, where DMF and H 2 O were used to dissolve Bi(NO 3 ) 3 and KOH, respectively. If the DMF/H 2 O ratio was decreased to 2:1, 1:1 and 0:30, flower-, bundle- and dendrite-shaped α-Bi 2 O 3 microcrystallites aggregated by nanorods were formed, respectively. The simple synthetic route and thus obtained Bi 2 O 3 architectures of various morphologies provide a basis insight for their formation mechanism. The photocatalytic activity of the as-prepared Bi 2 O 3 particles for degradation of Rhodamine B (RhB) under visible-light irradiation was obviously influenced by their morphologies. Bi 2 O 3 of nanorod-based microstructures exhibited higher photodegradation activity than nanobrick-based ones, owing to higher light absorption and carrier separation efficiency in one-dimensional (1D) nanostructured materials

  20. Formation of crystalline Zn-Al layered double hydroxide precipitates on γ-alumina: the role of mineral dissolution.

    Science.gov (United States)

    Li, Wei; Livi, Kenneth J T; Xu, Wenqian; Siebecker, Matthew G; Wang, Yujun; Phillips, Brian L; Sparks, Donald L

    2012-11-06

    To better understand the sequestration of toxic metals such as nickel (Ni), zinc (Zn), and cobalt (Co) as layered double hydroxide (LDH) phases in soils, we systematically examined the presence of Al and the role of mineral dissolution during Zn sorption/precipitation on γ-Al(2)O(3) (γ-alumina) at pH 7.5 using extended X-ray absorption fine structure spectroscopy (EXAFS), high-resolution transmission electron microscopy (HR-TEM), synchrotron-radiation powder X-ray diffraction (SR-XRD), and (27)Al solid-state NMR. The EXAFS analysis indicates the formation of Zn-Al LDH precipitates at Zn concentration ≥0.4 mM, and both HR-TEM and SR-XRD reveal that these precipitates are crystalline. These precipitates yield a small shoulder at δ(Al-27) = +12.5 ppm in the (27)Al solid-state NMR spectra, consistent with the mixed octahedral Al/Zn chemical environment in typical Zn-Al LDHs. The NMR analysis provides direct evidence for the existence of Al in the precipitates and the migration from the dissolution of γ-alumina substrate. To further address this issue, we compared the Zn sorption mechanism on a series of Al (hydr)oxides with similar chemical composition but differing dissolubility using EXAFS and TEM. These results suggest that, under the same experimental conditions, Zn-Al LDH precipitates formed on γ-alumina and corundum but not on less soluble minerals such as bayerite, boehmite, and gibbsite, which point outs that substrate mineral surface dissolution plays an important role in the formation of Zn-Al LDH precipitates.

  1. Improvement of the performance of the electrostatic precipitators for coal thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Baldacci, A. (ENEL, Pisa (IT)); Bogani, V.; Dinelli, G.; Mattachini, F.

    1986-10-01

    Electrostatic precipitators performances are greatly influenced by the physical and chemical characteristics of the particles which are to be collected; a very important role is played by electric resistivity of fly ash: when it is high we have a general increase in the number of discharges within the precipitator ,with a consequent decrease in collection efficiency and an increase in emissions. In order to avoid such a behaviour, a different kind of energization, based on the superposition of narrow voltage pulses to a DC voltage, may be used. A prototype of pulse power supply has been installed on the electrostatic precipitator of a coal burning 320 MWe thermal unit and some tests have been carried out to verify its performance with different operating conditions. Some results of the tests are presented here, together with the plan of the research which will develop on a new experimental electrostatic precipitator.

  2. Investigation of the precipitation of Na2SO4 in supercritical water

    DEFF Research Database (Denmark)

    Voisin, T.; Erriguible, A.; Philippot, G.

    2017-01-01

    solubility in sub-and supercritical water is determined on a wide temperature range using a continuous set-up. Crystallite sizes formed after precipitation are measured with in situ synchrotron wide angle X-ray scattering (WAXS). Combining these experimental results, a numerical modeling of the precipitation......SuperCritical Water Oxidation process (SCWO) is a promising technology for treating toxic and/or complex chemical wastes with very good efficiency. Above its critical point (374 degrees C, 22.1 MPa), water exhibits particular properties and organic compounds can be easily dissolved and degraded...... with the addition of oxidizing agents. But these interesting properties imply a main drawback regarding inorganic compounds. Highly soluble at ambient temperature in water, these inorganics (such as salts) are no longer soluble in supercritical water and precipitate into solids, creating plugs in SCWO processes...

  3. Assessment of chemical exposures: calculation methods for environmental professionals

    National Research Council Canada - National Science Library

    Daugherty, Jack E

    1997-01-01

    ... on by scientists, businessmen, and policymakers. Assessment of Chemical Exposures: Calculation Methods for Environmental Professionals addresses the expanding scope of exposure assessments in both the workplace and environment...

  4. Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co-precipitation methods

    Directory of Open Access Journals (Sweden)

    Manju Kurian

    2016-09-01

    Full Text Available The experimental conditions used in the preparation of nano crystalline mixed ferrite materials play an important role in the particle size of the product. In the present work a comparison is made on sol–gel auto combustion methods and co-precipitation methods by preparing Nickel Zinc Ferrite (Ni0.5Zn0.5Fe2O4 nano particles. The prepared ferrite samples were calcined at different temperatures and characterized by using standard methods. X-ray diffraction analysis indicated the formation of single phase ferrite nanoparticles for samples calcined at 500 °C. The lattice parameter range of 8.32–8.49 Å confirmed the cubic spinel structure. Average crystallite size estimated from X-ray diffractogram was found to be between 17 and 40 nm. The IR spectra showed two main absorption bands, the high frequency band ν1 around 600 cm−1 and the low frequency band ν2 around 400 cm−1 arising from tetrahedral (A and octahedral (B interstitial sites in the spinel lattice. TEM pictures showed particles in the nanometric range confirming the XRD data. The studies revealed that the sol–gel auto combustion method was superior to the co-precipitation method for producing single phase nano particles with smaller crystallite size.

  5. New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow

    Science.gov (United States)

    Zakeri, Ramin; Kamali Moghadam, Ramin; Mani, Mahmoud

    2017-04-01

    The modified quantum kinetic (MQK) chemical reaction model introduced by Zakeri et al. is developed for applicable cases in axisymmetric reactive rarefied gas flows using the direct simulation Monte Carlo (DSMC) method. Although, the MQK chemical model uses some modifications in the quantum kinetic (QK) method, it also employs the general soft sphere collision model and Stockmayer potential function to properly select the collision pairs in the DSMC algorithm and capture both the attraction and repulsion intermolecular forces in rarefied gas flows. For assessment of the presented model in the simulation of more complex and applicable reacting flows, first, the air dissociation is studied in a single cell for equilibrium and non-equilibrium conditions. The MQK results agree well with the analytical and experimental data and they accurately predict the characteristics of the rarefied flowfield with chemical reaction. To investigate accuracy of the MQK chemical model in the simulation of the axisymmetric flow, air dissociation is also assessed in an axial hypersonic flow around two geometries, the sphere as a benchmark case and the blunt body (STS-2) as an applicable test case. The computed results including the transient, rotational and vibrational temperatures, species concentration in the stagnation line, and also the heat flux and pressure coefficient on the surface are compared with those of the other chemical methods like the QK and total collision energy (TCE) models and available analytical and experimental data. Generally, the MQK chemical model properly simulates the chemical reactions and predicts flowfield characteristics more accurate rather than the typical QK model. Although in some cases, results of the MQK approaches match with those of the TCE method, the main point is that the MQK does not need any experimental data or unrealistic assumption of specular boundary condition as used in the TCE method. Another advantage of the MQK model is the

  6. Magnetic and structural properties of Cu0.85Fe0.15O system synthesized by co-precipitation

    International Nuclear Information System (INIS)

    Colorado, H. D.; Pérez Alcázar, G. A.

    2011-01-01

    Cu 0.94 Fe 0.06 O and Cu 0.85 Fe 0.15 O samples were synthesized by using the co-precipitation chemical method. Starting from aqueous solutions of copper nitrate, CuO (NO 3 ) 2 3H 2 O, iron nitrate, Fe (NO 3 ) 3 9H 2 O and sodium hydroxide as precipitating agent, NaOH. The precipitate of three samples for Cu 0.94 Fe 0.06 O and five for Cu 0.85 Fe 0.15 O of fine powder were calcined for 5 h at different temperatures. The obtained X rays diffraction patterns refined by the Rietveld method show the CuO characteristic pattern, showing that the Fe atoms enter to replace Cu atoms. Furthermore, it was obtained that the crystallite size decreases with calcination temperatures for Cu 0.94 Fe 0.06 O. The transmission Mössbauer spectroscopy showed that the samples present a disordered paramagnetic behavior due to the big value of the half-width of line of the quadrupolar splitting. Vibrating sample magnetometry confirms the paramagnetic character. The XRD results indicate that the material is nanostructured, due that the crystallite sizes are of the order of 10 nm for Cu 0.94 Fe 0.06 O and 40 nm for Cu 0.85 Fe 0.15 O.

  7. Novel method for concentrating and drying polymeric nanoparticles: hydrogen bonding coacervate precipitation.

    Science.gov (United States)

    D'Addio, Suzanne M; Kafka, Concepcion; Akbulut, Mustafa; Beattie, Patrick; Saad, Walid; Herrera, Margarita; Kennedy, Michael T; Prud'homme, Robert K

    2010-04-05

    Nanoparticles have significant potential in therapeutic applications to improve the bioavailability and efficacy of active drug compounds. However, the retention of nanometer sizes during concentrating or drying steps presents a significant problem. We report on a new concentrating and drying process for poly(ethylene glycol) (PEG) stabilized nanoparticles, which relies upon the unique pH sensitive hydrogen bonding interaction between PEG and polyacid species. In the hydrogen bonding coacervate precipitation (HBCP) process, PEG protected nanoparticles rapidly aggregate into an easily filterable precipitate upon the addition various polyacids. When the resulting solid is neutralized, the ionization of the acid groups eliminates the hydrogen bonded structure and the approximately 100 nm particles redisperse back to within 10% of their original size when poly(acrylic acid) and citric acid are used and 45% when poly(aspartic acid) is used. While polyacid concentrations of 1-5 wt % were used to form the precipitates, the incorporation of the acid into the PEG layer is approximately 1:1 (acid residue):(ethylene oxide unit) in the final dried precipitate. The redispersion of dried beta-carotene nanoparticles protected with PEG-b-poly(lactide-co-glycolide) polymers dried by HBCP was compared with the redispersion of particles dried by freeze-drying with sucrose as a cryprotectant, spray freeze-drying, and normal drying. Freeze-drying with 0, 2, and 12 wt % sucrose solutions resulted in size increases of 350%, 50%, and 6%, respectively. Spray freeze-drying resulted in particles with increased sizes of 50%, but no cryoprotectant and only moderate redispersion energy was required. Conventional drying resulted in solids that could not be redispersed back to nanometer size. The new HBCP process offers a promising and efficient way to concentrate or convert nanoparticle dispersions into a stable dry powder form.

  8. Enhanced performance of electrostatic precipitators through chemical modification of particle resistivity and cohesion

    Energy Technology Data Exchange (ETDEWEB)

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J. [ADA Technologies, Inc., Englewood, CO (United States)

    1995-11-01

    Control of fine particles, including particulate air toxics, from utility boilers is required near-term by state and federal air regulations. Electrostatic precipitators (ESP) serve as the primary air pollution control device for the majority of coal-fired utility boilers in the Eastern and Midwestern united States. Cost-effective retrofit technologies for fine particle control, including flue gas conditioning, are needed for the large base of existing ESPs. Flue has conditioning is an attractive option because it requires minimal structural changes and lower capital costs. For flue gas conditioning to be effective for fine particle control, cohesive and particle agglomerating agents are needed to reduce reentrainment losses, since a large percentage of particulate emissions from well-performing ESPs are due to erosion, rapping, and non-rapping reentrainment. A related and somewhat ironic development is that emissions reductions of SO{sub 2} from utility boilers, as required by the Title IV acid rain program of the 1990 Clean Air Act amendments, has the potential to substantially increase particulate air toxics from existing ESPs. The switch to low-sulfur coals as an SO{sub 2} control strategy by many utilities has exacerbated ESP performance problems associated with high resistivity flyash. The use of flue gas conditioning has increased in the past several years to maintain adequate performance in ESPs which were not designed for high resistivity ash. However, commercially available flue gas conditioning systems, including NH{sub 3}/SO{sub 3} dual gas conditioning systems, have problems and inherent drawbacks which create a need for alternative conditioning agents. in particular, NH{sub 3}/SO{sub 3} systems can create odor and ash disposal problems due to ammonia outgassing. In addition, there are concerns over chemical handling safety and the potential for accidental releases.

  9. How is climate change impacting precipitation?

    Science.gov (United States)

    Heidari, A.; Houser, P. R.

    2015-12-01

    Water is an integrating component of the climate, energy and geochemical cycles, regulating biological and ecological activities at all spatial and temporal scales. The most significant climate warming manifestation would be a change in the distribution of precipitation and evaporation, and the exacerbation of extreme hydrologic events. Due to this phenomenon and the fact that precipitation is the most important component of the water cycle, the assumption of its stationarity for water management and engineering design should be examined closely. The precipitation Annual Maximum Series (AMS) over some stations in Virginia based on in situ data were been used as a starting point to examine this important issue. We analyzed the AMS precipitation on NOAA data for the stations close to Fairfax VA, looked for trends in extreme values, and applied our new method of Generalized Extreme Value (GEV) theory based on quadratic forms to address changes in those extreme values and to quantify non-stationarities. It is very important to address the extreme values of precipitation based on several statistical tests to have better understanding of climate change impact on the extreme water cycle events. In our study we compared our results with the conclusion on NOAA atlas 14 Ap.3 which found no sign of precipitation non-stationarity. We then assessed the impact of this uncertainty in IDF curves on the flood map of Fairfax and compared the results with the classic IDF curves.

  10. Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2013-01-01

    Full Text Available Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.

  11. Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

    International Nuclear Information System (INIS)

    Ramakrishna, Chilakala; Thenepalli, Thriveni; Ahn, Ji Whan

    2017-01-01

    This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as CO 2 flow rate, Ca (OH) 2 concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca (OH) 2 concentration and increasing the CO 2 flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

  12. The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method.

    Science.gov (United States)

    Barbosa, Michelle C; Messmer, Nigel R; Brazil, Tayra R; Marciano, Fernanda R; Lobo, Anderson O

    2013-07-01

    Nanohydroxyapatite (nHAp) powders were produced via aqueous precipitation by adopting four different experimental conditions, assisted or non-assisted by ultrasound irradiation (UI). The nHAp powders were characterized by X-ray diffraction, energy-dispersive X-ray fluorescence, Raman and attenuated total reflection Fourier transform infrared spectroscopies, which showed typical surface chemical compositions of nHAp. Analysis found strong connections between UI and the crystallization process, crystal growth properties, as well as correlations between calcination and substitution reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Precipitable water and vapor flux between Belem and Manaus

    International Nuclear Information System (INIS)

    Marques, J.

    1977-01-01

    The water vapor flux and precipitable water was computated over the natural Amazon forest in the stretch between Belem and Manaus for 1972. The atmospheric branch of hidrological cycle theory was applied and the most significant conclusions on an annual basis are: Atlantic Ocean water vapor contributes 52% to the regional precipitation and is significant the role played by local evapotranspiration in the precipitation in the area; there were signs of the phenomenon of water vapor recycling nearly throughout the year. Evapotranspiration contributes to 48% of the precipitations in the area studied. The real evapotranspiration estimated by this method was 1,000mm year - 1 [pt

  14. Study and interpretation of the chemical characteristics of natural water

    Science.gov (United States)

    Hem, John David

    1985-01-01

    The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities. Broad interrelationships among these processes and their effects can be discerned by application of principles of chemical thermodynamics. Some of the processes of solution or precipitation of minerals can be closely evaluated by means of principles of chemical equilibrium, including the law of mass action and the Nernst equation. Other processes are irreversible and require consideration of reaction mechanisms and rates. The chemical composition of the crustal rocks of the Earth and the composition of the ocean and the atmosphere are significant in evaluating sources of solutes in natural freshwater.

  15. Comparison of methods of zeta potential and residual turbidity of pectin solutions using calcium sulphate/aluminium sulphate as a precipitant

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana A.

    2017-01-01

    Full Text Available The affinity of calcium ion binding from CaO used in the most common process of purification of sugar beet juice is relatively low. Therefore, large amounts of this compound are required. This paper presents the theoretical basis of a novel sugar beet juice purification method based on the application of the binary system CaSO4/Al2(SO4 . In order to monitor the process of coagulation and precipitation of pectin in the presence of CaSO4/Al2(SO43, two methods were compared: measurement of the zeta potential and of residual solution turbidity. The zeta potential of pectin solution was determined by electrophoretic method, while the residual turbidity was determined by spectrophotometry. Two model solutions of pectin (0.1 % w/w were investigated. Studies were performed with 10 different concentrations of the binary solution CaSO4/Al2(SO43 (50 - 500 g dm-3. The amount of the precipitant CaSO4/Al2(SO43 (1:1 w/w needed to achieve the minimum solution turbidity and charge neutralization of pectin particles (zero zeta potential were measured and compared. Colloidal destabilization occurred before a complete neutralization of the surface charge of pectin particles (zeta potential ~ 0 mV. Optimal quantities (490 - 705 mg g-1 pectin of the applied binary mixture, were obtained using both methods. This is much lower than the amount of CaO that is commonly used in the conventional process of sugar beet juice purification (about 9 g• g-1 pectin. The use of these precipitants could be important from both economic and environmental point of view. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 31055

  16. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    OpenAIRE

    Yao, Dong-mei; Zhang, Xin; Wang, Ke-feng; Zou, Tao; Wang, Dong; Qian, Xin-hua

    2016-01-01

    According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production proce...

  17. Study on the Variation Characteristic of Precipitation in Liaoning Province in Recent 48 Years

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the variation characteristic of precipitation in Liaoning Province in recent 48 years. [Method] According to monthly precipitation data from meteorological observation station in Liaoning Province from 1961 to 2008, the variation characteristic of precipitation in Liaoning was analyzed by means of one-dimensional linear estimation, 5-year moving average and wavelet transform method in our paper. [Result] Annual mean precipitation in Liaoning from 1961 to 2008 showed decrease...

  18. Application of Carrier Element-Free Co-precipitation Method for Ni(II), Cu(II) and Zn(II) Ions Determination in Water Samples Using Chrysin

    International Nuclear Information System (INIS)

    Layth Imad Abd Ali; Wan Aini Wan Ibrahim; Azli Sulaiman; Mohd Marsin Sanagi

    2015-01-01

    A co-precipitation method was developed to separate and pre-concentrate Ni(II), Cu(II) and Zn(II) ions using an organic co precipitant, chrysin without adding any carrier element termed as carrier element-free co-precipitation (CEFC). Analytes were determined using flame atomic absorption spectrometry (FAAS). The influence of analytical conditions, such as pH of the solution, quantity of co-precipitant, standing time, centrifugation rate and time, sample volume, and interference of concomitant ions were investigated over the recovery yields of the trace metals. The limit of detection, the limit of quantification and linearity range obtained from the FAAS measurements were found to be in the range of 0.64 to 0.86 μg L -1 , 2.13 to 2.86 μg L -1 and 0.9972 to 0.9989 for Ni(II), Cu(III) and Zn(II) ions, respectively. The precision of the method, evaluated as the relative standard deviation (RSD) obtained after analyzing a series of 10 replicates, was between 2.6 % to 3.9 % for the trace metal ions. The proposed procedure was applied and validated by analyzing river water reference material for trace metals (SLRS-5) and spiking trace metal ions in some water samples. The recoveries of the analyte metal ions were between 94.7-101.2 %. (author)

  19. Morphology and Precipitation Kinetics of MnS in Low-Carbon Steel During Thin Slab Continuous Casting Process

    Institute of Scientific and Technical Information of China (English)

    YU Hao; KANG Yong-lin; ZHAO Zheng-zhi; SUN Hao

    2006-01-01

    The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscopy analysis, it was seen that a majority of manganese sulfides precipitated at austenite grain boundaries, the morphologies of which were spherical or close to the spherical shape and the size of MnS precipitates ranged from 30 nm to 100 nm. A mathematical model of the manganese sulfide precipitation in this process was developed based on classical nucleation theory. Under the given conditions, the starting and finishing precipitation temperatures of MnS in the continuous casting thin slab of the studied low-carbon steel are 1 189 ℃ and 1 171 ℃, respectively, and the average diameter of MnS precipitates is about 48 nm within this precipitation temperature range. The influences of chemical components and thermo-mechanical processing conditions on the precipitation behavior of MnS in the same process were also discussed.

  20. Chemical analysis by nuclear methods. v. 2

    International Nuclear Information System (INIS)

    Alfassi, Z.B.

    1998-01-01

    'Chemical analysis by Nuclear Methods' is an effort of some renowned authors in field of nuclear chemistry and radiochemistry which is compiled by Alfassi, Z.B. and translated into Farsi version collected in two volumes. The second volume consists of the following chapters: Detecting ion recoil scattering and elastic scattering are dealt in the eleventh chapter, the twelfth chapter is devoted to nuclear reaction analysis using charged particles, X-ray emission is discussed at thirteenth chapter, the fourteenth chapter is about using ion microprobes, X-ray fluorescence analysis is discussed in the fifteenth chapter, alpha, beta and gamma ray scattering in chemical analysis are dealt in chapter sixteen, Moessbauer spectroscopy and positron annihilation are discussed in chapter seventeen and eighteen; The last two chapters are about isotope dilution analysis and radioimmunoassay