WorldWideScience

Sample records for chemical physics research

  1. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2014-01-01

    Advances in Chemical Physics is the only series of volumes available that explores the cutting edge of research in chemical physics. This is the only series of volumes available that presents the cutting edge of research in chemical physics.Includes contributions from experts in this field of research.Contains a representative cross-section of research that questions established thinking on chemical solutions.Structured with an editorial framework that makes the book an excellent supplement to an advanced graduate class in physical chemistry or chemical physics.

  2. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Quantum Dynamical Resonances in Ch

  3. Advances in chemical Physics

    CERN Document Server

    Rice, Stuart A

    2011-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series offers contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of che

  4. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2011-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series offers contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of che

  5. Cyclotrons at the Institute of Physical and Chemical Research

    International Nuclear Information System (INIS)

    Imamura, Masashi.

    1989-01-01

    In this article the destruction by American forces, during World War II, of the Japanese cyclotrons and the subsequent construction of new cyclotrons at the Institute of Physical and Chemical Research, Japan is described. Their use for biological and medical radiation chemistry studies is summarized. (UK)

  6. Stochastic processes in chemical physics

    CERN Document Server

    Shuler, K E

    2009-01-01

    The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

  7. Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2004-10-01

    Pacific Northwest National Laboratory (PNNL) hosted its first annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2004. During this period, fourteen PNNL scientists hosted sixteen young scientists from eleven different universities. Of the sixteen participants, fourteen were graduate students; one was transitioning to graduate school; and one was a university faculty member.

  8. Aerosol chemical physics

    International Nuclear Information System (INIS)

    Marlow, W.H.

    1982-01-01

    A classification of the research fields in the chemical physics of aerosol microparticles is given. The emphasis lies on the microphysics of isolated particles and clusters and on physical transformations and thermodynamics. (LDN)

  9. 2007 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Kenneth M.

    2007-10-31

    The Pacific Northwest National Laboratory (PNNL) hosted its fourth annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from April through September 2007. During this time, 21 PNNL scientists hosted 23 participants from 20 different universities. Of the 23 participants, 20 were graduate students, 1 was a postdoctoral fellow, and 2 were university faculty members. This report covers the essense of the program and the research the participants performed.

  10. Laboratory of Chemical Physics

    Data.gov (United States)

    Federal Laboratory Consortium — Current research in the Laboratory of Chemical Physics is primarily concerned with experimental, theoretical, and computational problems in the structure, dynamics,...

  11. 2008 Summer Research Institute Interfacial and Condensed Phase Chemical Physics Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C.; Tonkyn, Russell G.; Avery, Nachael B.

    2008-11-01

    For the fifth year, the Pacific Northwest National Laboratory in Richland, Washington, invited graduate students, postdoctoral fellows, university faculty, and students entering graduate students from around the world to participate in the Summer Research Institute in Interfacial and Condensed Phase Chemical Physics. The institute offers participants the opportunity to gain hands-on experience in top-notch research laboratories while working along internationally respected mentors. Of the 38 applicants, 20 were accepted for the 8- to 10-week program. The participants came from universities as close as Seattle and Portland and as far away as Germany and Singapore. At Pacific Northwest National Laboratory, the 20 participants were mentored by 13 scientists. These mentors help tailor the participant’s experience to the needs of that person. Further, the mentors provide guidance on experimental and theoretical techniques, research design and completion, and other aspects of scientific careers in interfacial and condensed phase chemical physics. The research conducted at the institute can result in tangible benefits for the participants. For example, many have co-authored papers that have been published in peer-reviewed journals, including top-rated journals such as Science. Also, they have presented their research at conferences, such as the Gordon Research Conference on Dynamics at Surfaces and the AVS national meeting. Beyond that, many of the participants have started building professional connections with researchers at Pacific Northwest National Laboratory, connections that will serve them well during their careers.

  12. Project research on nuclear physical and chemical characteristics of actinide nuclides

    International Nuclear Information System (INIS)

    Yamana, Hajimu; Nakagome, Yoshihiro; Shibata, Seiichi; Fujii, Toshiyuki; Uehara, Akihiro; Shirai, Osamu; Moriyama, Hirotake; Nagai, Takayuki; Yamanaka, Shinsuke; Shinohara, Atsushi; Kurata, Masaki; Myochin, Munetaka; Nakamura, Shoji; Matsuura, Haruaki

    2008-01-01

    The chemical and nuclear physical characteristics of actinide elements have been investigated using the experimental methods and instruments of this laboratory. This laboratory has a facility in which the transuranium elements (TRU) and the long-lived fission products (LLFP) can be dealt with. The utility of this facility has been expected. The investigation on the actinide elements and its fission products have been carried out as a project research from both view points of science and technology. The research reports during three years (2005-07) are described here. (M.H.)

  13. 2005 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2005-11-15

    The Pacific Northwest National Laboratory (PNNL) hosted its second annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2005. During this period, sixteen PNNL scientists hosted fourteen young scientists from eleven different universities. Of the fourteen participants, twelve were graduate students; one was a postdoctoral fellow; and one was a university faculty member.

  14. Physics research 1980

    International Nuclear Information System (INIS)

    1980-01-01

    Research programmes at Oxford University are given for the year 1980 of the Clarendon Laboratory, Nuclear Physics Laboratory, Theoretical Physics Department and the Atmospheric Physics Department, together with provisional research programmes in Astrophysics, Metallurgy and the Science of Materials, and Archaeology and the History of Art. Items of interest to physicists are also included from Engineering Science, Geology and Mineralogy, Laboratory of Molecular Biophysics, Physical Chemistry Laboratory and the Chemical Crystallography Laboratory. (U.K.)

  15. Annual report of the Institute of Physical and Chemical Research, for fiscal 1998

    International Nuclear Information System (INIS)

    1999-01-01

    This annual report describes the abstracts of researches and oral presentations and papers reported as the results for fiscal 1998 in each laboratory of RIKEN (the Institute of Physical and Chemical Research). Moreover, the themes of special project funding for basic science, grant research, contract research, industrial properties, research subjects of special postdoctoral researchers and junior research associate and technology research subjects of technology research fellow are inserted. The abstract of researches, oral presentations and publications reported by Frontier Research Program, Brain Science Institute, Riken and Riken Genomic Science Center are contained. Riken Symposia and Symposia Sponsored by Riken are explained. (S.Y.)

  16. Data processing in cosmic rays at the Institute of Physical and Chemical Research

    International Nuclear Information System (INIS)

    Wada, Masami

    1980-01-01

    Data processing performed by the World Data Center for Cosmic Rays, installed at the Institute of Physical and Chemical Research (IPCR) is reported. The Center was set up as a member of the World Data Center for Solar and Terrestrial Physics and performs assigned services. There are several C-level World Data Centers in Japan, and the DC for Cosmic Rays, IPCR, is described in detail, in the context of cosmic ray research itself. As to the future of the Center, IPCR, personal opinions and expectations are made. Thus a glimpse on a century of International Cooperative Observation and a quarter century of world data center operations are made from cosmic ray research side. (author)

  17. Nigerian Journal of Chemical Research

    African Journals Online (AJOL)

    The Nigerian Journal of Chemical Research is now abstracted by Chemical Abstract Service (CAS). The journal's target is to communicate annually results of researchers in the broad areas of Chemistry, namely Analyitcal; Inorganic; Organic; Physical and other subdivisions of Chemistry.

  18. 2006 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Avery, Nikki B.; Barlow, Stephan E.

    2006-11-10

    The Pacific Northwest National Laboratory (PNNL) hosted its third annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2006. During this period, twenty PNNL scientists hosted twenty-seven scientists from twenty-five different universities. Of the twenty-seven participants, one was a graduating senior; twenty-one were graduate students; one was a postdoctoral fellow; and four were university faculty members.

  19. Radiation, chemicals, and occupational health research

    International Nuclear Information System (INIS)

    Turner, J.E.

    1984-01-01

    Radiation protection and its interplay with physical research programs are described. Differences and similarities between problems in health protection for chemicals and for radiation are discussed. The importance of dosimetry in radiation work and its relevance to chemicals are cited. A collaborative program between physical and biological scientists on the toxicity of metals is briefly described. It serves as an example of new research directed toward the development of fundamental concepts and principles as a basis for understanding and controlling occupational and population exposures to chemicals. 12 references, 4 figures

  20. Annual report of the Institute of Physical and Chemical Research, for fiscal 1979

    International Nuclear Information System (INIS)

    1980-01-01

    In this annual report, the summary of the researches carried out in the Institute in 1979, and the reports of the researches published as the achievements of the Institute are described, being classified into every laboratory. In addition, the summary of specific researches, special researches and the researches made with subsidies, entrusted researches and the list of patents acquired in 1979 are written. The gists of the lectures given in international conferences and the symposia in the Institute held in 1979 are also included at the end. The laboratories are divided into those concerned with atomic nuclei, material science, applied physics, fundamental technologies, inorganic chemistry, organic chemistry, biochemistry and agricultural chemicals, the research group on laser science, and eight other facilities. The specific researches are related to laser science, solar light energy, mathematical formula treating system and biology. The special researches are integrated researches, important researches, industrialization researches, and the researches on cosmic ray, agricultural chemicals and atomic energy. 31 subjects from 20 companies were entrusted, and 70 researchers were accepted from 48 companies, in 1979. The eight facilities are those of organic microanalysis, inorganic analysis, electronic computer, helium liquefaction, beam analysis, animal test, safety control and workmanship. (Kako, I.)

  1. Annual report of the Institute of Physical and Chemical Research, for fiscal 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The research activities in the Institute of Physical and Chemical Research (RIKEN) for the fiscal year 1999 were briefly described in this report. In addition, the research papers published in the year from the laboratories in RIKEN Wako Main Campus, RIKEN Tsukuba Research Center of Life Science and RIKEN Harima Institute were presented. Moreover, ten special research projects for basic science are now progressing on the following themes: photosynthetic science (artificial photosynthesis and the mechanism of photosynthesis), biodesign research (cellular function system, membranous function system), coherent science research (coherent control for free electron, quantum processing, structural control and coherent molecular interaction), research on multi-bioprobes (development of multi-functional bioactive compounds), research on essential reaction (stereo-control and energy control), atomic-scale sciengineering (phase 2 study), MR science research (phase 2 study), slow quantum beam production of ultra slow highly charged ions and ecomolecular science research (material conversion and biological/chemical conversion for environmental compounds). The research activities of RIKEN Brain Science Institute were also outlined and RIKEN Genomic Sciences Center were also outlined. In the year, RIKEN symposium was held 38 times by various laboratories. Here, the themes of these symposia were listed as well as those of international symposia sponsored by RIKEN Institute. (M.N.)

  2. The Physical/Chemical Closed-Loop Life Support Research Project

    Science.gov (United States)

    Bilardo, Vincent J., Jr.

    1990-01-01

    The various elements of the Physical/Chemical Closed-Loop Life Support Research Project (P/C CLLS) are described including both those currently funded and those planned for implementation at ARC and other participating NASA field centers. The plan addresses the entire range of regenerative life support for Space Exploration Initiative mission needs, and focuses initially on achieving technology readiness for the Initial Lunar Outpost by 1995-97. Project elements include water reclamation, air revitalization, solid waste management, thermal and systems control, and systems integration. Current analysis estimates that each occupant of a space habitat will require a total of 32 kg/day of supplies to live and operate comfortably, while an ideal P/C CLLS system capable of 100 percent reclamation of air and water, but excluding recycling of solid wastes or foods, will reduce this requirement to 3.4 kg/day.

  3. Biological, chemical and medical physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is an overview of the actual situation in Brazil, concerning three important areas of physics: biological, chemical and medical. It gives a brief historical of research in these areas. It talks as well, about perspectives and financing. It contains many tables with the main research groups in activity in Brazilian institutions. (A.C.A.S.)

  4. Advances in chemical physics advances in liquid crystals

    CERN Document Server

    Prigogine, Ilya; Vij, Jagdish K

    2009-01-01

    Prigogine and Rice's highly acclaimed series, Advances in Chemical Physics, provides a forum for critical, authoritative reviews of current topics in every area of chemical physics. Edited by J.K. Vij, this volume focuses on recent advances in liquid crystals with significant, up-to-date chapters authored by internationally recognized researchers in the field.

  5. Research in the chemical sciences: Summaries of FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This summary book is published annually on research supported by DOE`s Division of Chemical Sciences in the Office of Energy Research. Research in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced batteries is arranged according to national laboratories, offsite institutions, and small businesses. Goal is to add to the knowledge base on which existing and future efficient and safe energy technologies can evolve. The special facilities used in DOE laboratories are described. Indexes are provided (topics, institution, investigator).

  6. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  7. Summaries of FY 1980 research in the chemical sciences

    International Nuclear Information System (INIS)

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included

  8. Writing Material in Chemical Physics Research: The Laboratory Notebook as Locus of Technical and Textual Integration

    Science.gov (United States)

    Wickman, Chad

    2010-01-01

    This article, drawing on ethnographic study in a chemical physics research facility, explores how notebooks are used and produced in the conduct of laboratory science. Data include written field notes of laboratory activity; visual documentation of "in situ" writing processes; analysis of inscriptions, texts, and material artifacts produced in the…

  9. Summaries of FY 1980 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included. (DLC)

  10. Summaries of FY 1993 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The summaries in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced battery technology are arranged according to national laboratories and offsite institutions. Small business innovation research projects are also listed. Special facilities supported wholly or partly by the Division of Chemical Sciences are described. Indexes are provided for selected topics of general interest, institutions, and investigators.

  11. Tata Institute of Fundamental Research School of Physics

    International Nuclear Information System (INIS)

    Daniel, R.R.

    1975-01-01

    The diverse activities currently in progress in the School of Physics at Tata Institute of Fundamental Research, Bombay are reported in detail. The activities involving theoretical and experimental research are grouped under the following areas: (1) pure physics (2) astronomy and space science (3) chemical and biological studies and (4) applied research. In pure physics, studies are in progress in nuclear physics, high energy physics and solid state physics. In astronomy and space science, the fields of investigation comprise: cosmic ray physics, theoretical astrophysics and radio-astronomy. In chemical physics, structure of a variety of systems have been investigated using NMR and Moessbauer techniques. In molecular biology, basic biological processes have been studied in terms of structure and properties of biomolecules. In addition to these areas of pure research, considerable advances have been made in computer science and technology, solid state electronics, microwave engineering and hydrogy. The work done in each one of these areas is briefly summarized. A number of supporting research facilities are mentioned. A brief mention has also been made on the existing education and training programmes. (A.K.)

  12. Physics in Brazil in the next decade: atomic, molecular and optical physics, biological, chemical and medical physics, physics teaching and plasma physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is an overview of physics in Brazil in the next decade. It is specially concerned with atomic, molecular and optical physics, biological chemical and medical physics, and also teaching of physics and plasma physics. It presents the main research groups in Brazil in the above mentioned areas. It talks as well, about financing new projects and the costs involved to improve these areas. (A.C.A.S.)

  13. Summaries of FY 1982 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.

  14. Summaries of FY 1982 research in the chemical sciences

    International Nuclear Information System (INIS)

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index

  15. Summaries of FY 1981 research in the chemical sciences

    International Nuclear Information System (INIS)

    1981-08-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division will find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The contents are as follows: DOE laboratires; chemical physics; atomic physics; chemical energy; separations; analysis; chemical engineering sciences; offsite contracts; equipment funds; topical index; institutional index for offsite contracts; and investigator index

  16. Chemical physics of electroactive materials: concluding remarks.

    Science.gov (United States)

    Rutland, Mark W

    2017-07-01

    It is an honour to be charged with providing the concluding remarks for a Faraday Discussion. As many have remarked before, it is nonetheless a prodigious task, and what follows is necessarily a personal, and probably perverse, view of a watershed event in the Chemical Physics of Electroactive materials. The spirit of the conference was captured in a single sentence during the meeting itself."It is the nexus between rheology, electrochemistry, colloid science and energy storage". The current scientific climate is increasingly dominated by a limited number of global challenges, and there is thus a tendency for research to resemble a football match played by 6 year olds, where everyone on the field chases the (funding) ball instead of playing to their "discipline". It is thus reassuring to see how the application of rigorous chemical physics is leading to ingenious new solutions for both energy storage and harvesting, via, for example, nanoactuation, electrowetting, ionic materials and nanoplasmonics. In fact, the same language of chemical physics allows seamless transition between applications as diverse as mechano-electric energy generation, active moisture transport and plasmonic shutters - even the origins of life were addressed in the context of electro-autocatalysis!

  17. Mimicking Bone - Chemical and Physical Challenges

    Directory of Open Access Journals (Sweden)

    Sophie C Cox

    2014-08-01

    Full Text Available It is known that chemical and physical features of bone contribute to its functionality, reactivity and mechanical performance. This fundamental rationale underpins the author’s research strategy. This paper presents a summary of efforts to fabricate a synthetic structure, referred to as a scaffold, that both chemically and physical emulates the intricate structure of bone. An understanding of key features of bone tissue that contribute to its remarkable properties is presented as a background to this work. Novel work aimed at improving the understanding of the synthesis of a ceramic biomaterial, namely hydroxyapatite, that is chemically similar to bone mineral is discussed. A case study involving the manufacture of porous scaffolds by 3D printing is also presented. In summary, this article highlights a number of on-going challenges that multidisciplinary tissue engineers aim to solve to get one step closer to mimicking bone, which clinically could improve the quality of life for millions of people worldwide.    Photo credit: By Doc. RNDr. Josef Reischig, CSc. (Author's archive [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0], via Wikimedia Commons

  18. Analysis and classification of physical and chemical methods of fuel activation

    Directory of Open Access Journals (Sweden)

    Fedorchak Viktoriya

    2015-12-01

    Full Text Available The offered article explores various research studies, developed patents in terms of physical and chemical approaches to the activation of fuel. In this regard, national and foreign researches in the field of fuels activators with different principles of action were analysed, evaluating their pros and cons. The article also intends to classify these methods and compare them regarding diverse desired results and types of fuels used. In terms of physical and chemical influences on fuels and the necessity of making constructive changes in the fuel system of internal combustion engines, an optimal approach was outlined.

  19. Chemical and Physical Properties of Hi-Cal-2

    Science.gov (United States)

    Spakowski, A. E.; Allen, Harrison, Jr.; Caves, Robert M.

    1955-01-01

    As part of the Navy Project Zip to consider various boron-containing materials as possible high-energy fuels, the chemical and physical properties of Hi-Cal-2 prepared by the Callery Chemical Company were evaluated at the NACA Lewis laboratory. Elemental chemical analysis, heat of combustion, vapor pressure and decomposition, freezing point, density, self ignition temperature, flash point, and blow-out velocity were determined for the fuel. Although the precision of measurement of these properties was not equal to that obtained for hydrocarbons, this special release research memorandum was prepared to make the data available as soon as possible.

  20. Frontiers in chemical engineering: research needs and opportunities

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Physical Sciences, Mathematics, and Applications; Division on Engineering and Physical Sciences; National Research Council

    1988-01-01

    ...: Research Needs and Opportunities Board on Chemical Sciences and Technology Commission on Physical Sciences, Mathematics, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1988 i Copyrighttrue Please breaks inserted. are Page files. accidentally typesetting been have may original from the errors not typographic original ret...

  1. Summaries of FY 1979 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.

  2. Summaries of FY 1979 research in the chemical sciences

    International Nuclear Information System (INIS)

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas

  3. Mound Facility activities in chemical and physical research: July-December 1979

    International Nuclear Information System (INIS)

    1980-01-01

    Research is reported in the following fields: isotope separation (Ar, C, He, Kr, Ne, O, Xe), low-temperature research (H intermolecular potential functions, gas analysis in trennschaukel), separation chemistry ( 229 Th, 231 Pa, 230 Th, 234 U), separation research (liquid thermal diffusion, Ca isotope separation, molecular beam scattering, mutual diffusion of noble gas mixtures, lithium chemical exchange with cryptands), and calculations in plutonium chemistry (algorithms, valence in natural water)

  4. QUERCETIN PHYSICAL-CHEMICAL CHARACTERISTICS’ DEFINITION

    Directory of Open Access Journals (Sweden)

    I. V. Kovalevska

    2014-04-01

    dissolubility raise of this substance. Quercetin soaking research exposed that the substance does not get wet with hydrofoil dissolutions. Melting temperature determination showed that quercetin refers to thermostable powders (Тmelt. – 302 0С, that is why there are no physical-chemical changes while mechanic and physical affect. Thickness meaning (1,478 gives a chance to predict the creation of substance particles conglomeration which is being investigated. Conclusion. Thus, received experimental data allows to come to conclusion about the necessity to carry out the researches of the physical-chemical quercetin substance features to improve biopharmaceutic indices.

  5. International physical protection self-assessment tool for chemical facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig R.; Burdick, Brent A.; Stiles, Linda L.; Lindgren, Eric Richard

    2010-09-01

    This report is the final report for Laboratory Directed Research and Development (LDRD) Project No.130746, International Physical Protection Self-Assessment Tool for Chemical Facilities. The goal of the project was to develop an exportable, low-cost, computer-based risk assessment tool for small to medium size chemical facilities. The tool would assist facilities in improving their physical protection posture, while protecting their proprietary information. In FY2009, the project team proposed a comprehensive evaluation of safety and security regulations in the target geographical area, Southeast Asia. This approach was later modified and the team worked instead on developing a methodology for identifying potential targets at chemical facilities. Milestones proposed for FY2010 included characterizing the international/regional regulatory framework, finalizing the target identification and consequence analysis methodology, and developing, reviewing, and piloting the software tool. The project team accomplished the initial goal of developing potential target categories for chemical facilities; however, the additional milestones proposed for FY2010 were not pursued and the LDRD funding therefore was redirected.

  6. Physical and chemical characterization of bioaerosols - Implications for nucleation processes

    Science.gov (United States)

    Ariya, P. A.; Sun, J.; Eltouny, N. A.; Hudson, E. D.; Hayes, C. T.; Kos, G.

    The importance of organic compounds in the oxidative capacity of the atmosphere, and as cloud condensation and ice-forming nuclei, has been recognized for several decades. Organic compounds comprise a significant fraction of the suspended matter mass, leading to local (e.g. toxicity, health hazards) and global (e.g. climate change) impacts. The state of knowledge of the physical chemistry of organic aerosols has increased during the last few decades. However, due to their complex chemistry and the multifaceted processes in which they are involved, the importance of organic aerosols, particularly bioaerosols, in driving physical and chemical atmospheric processes is still very uncertain and poorly understood. Factors such as solubility, surface tension, chemical impurities, volatility, morphology, contact angle, deliquescence, wettability, and the oxidation process are pivotal in the understanding of the activation processes of cloud droplets, and their chemical structures, solubilities and even the molecular configuration of the microbial outer membrane, all impact ice and cloud nucleation processes in the atmosphere. The aim of this review paper is to assess the current state of knowledge regarding chemical and physical characterization of bioaerosols with a focus on those properties important in nucleation processes. We herein discuss the potential importance (or lack thereof) of physical and chemical properties of bioaerosols and illustrate how the knowledge of these properties can be employed to study nucleation processes using a modeling exercise. We also outline a list of major uncertainties due to a lack of understanding of the processes involved or lack of available data. We will also discuss key issues of atmospheric significance deserving future physical chemistry research in the fields of bioaerosol characterization and microphysics, as well as bioaerosol modeling. These fundamental questions are to be addressed prior to any definite conclusions on the

  7. EXPERIMENTAL RESEARCHES OF THERMO-PHYSICAL AND PHYSICOCHEMICAL INTERNALS OF BIO-DIESEL FUEL

    OpenAIRE

    V. N. Goryachkin; A. V. Ivaschenko

    2010-01-01

    The conducted researches are related to transfer of diesel engines to biodiesel fuel. The technique and results of an experimental research of thermo-physical and physical-and-chemical properties of biodiesel fuel as well as mixes of biodiesel fuel with the petroleum one are presented.

  8. BOOK REVIEW: Introductory Nanoscience: Physical and Chemical Concepts Introductory Nanoscience: Physical and Chemical Concepts

    Science.gov (United States)

    Bich Ha, Nguyen

    2011-12-01

    Having grown rapidly during the last two decades, and successfully synthesized the achievements of physics, chemistry, life science as well as information and computational science and technology, nanoscience and nanotechnology have emerged as interdisciplinary fields of modern science and technology with various prospective applications towards environmental protection and the sustainable development of industry, agriculture, public health etc. At the present time, there exist many textbooks, monographs and encyclopedias on nanoscience and nanotechnology. They present to readers the whole process of development from the emergence of new scientific ideas to comprehensive studies of concrete subjects. They are useful for experienced scientists in nanoscience and nanotechnology as well as related scientific disciplines. However, there are very few textbooks on nanoscience and nanotechnology for beginners—senior undergraduate and junior graduate students. Published by Garland Science in August 2011, Introductory Nanoscience: Physical and Chemical Concepts by Masaru Kuno is one of these rare textbooks. The purpose of this book is twofold. In a pedagogical manner the author presents the basic physical and chemical concepts of nanoscience and nanotechnology. Students with a background knowledge in general chemistry and semiclassical quantum physics can easily understand these concepts. On the other hand, by carefully studying the content of this textbook, readers can learn how to derive a large number of formulae and expressions which they will often use in their study as well as in their future research work. A distinguishing feature of the book is the inclusion of a large number of thought problems at the end of each chapter for demonstrating how to calculate the numerical values of almost all physical quantities involved in the theoretical and experimental studies of all subjects of nanoscience and nanotechnology. The author has successfully achieved both of the

  9. Perspective: Reaches of chemical physics in biology

    Science.gov (United States)

    Gruebele, Martin; Thirumalai, D.

    2013-01-01

    Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry. PMID:24089712

  10. Perspective: Reaches of chemical physics in biology.

    Science.gov (United States)

    Gruebele, Martin; Thirumalai, D

    2013-09-28

    Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.

  11. Quantum mechanical tunneling in chemical physics

    CERN Document Server

    Nakamura, Hiroki

    2016-01-01

    Quantum mechanical tunneling plays important roles in a wide range of natural sciences, from nuclear and solid-state physics to proton transfer and chemical reactions in chemistry and biology. Responding to the need for further understanding of multidimensional tunneling, the authors have recently developed practical methods that can be applied to multidimensional systems. Quantum Mechanical Tunneling in Chemical Physics presents basic theories, as well as original ones developed by the authors. It also provides methodologies and numerical applications to real molecular systems. The book offers information so readers can understand the basic concepts and dynamics of multidimensional tunneling phenomena and use the described methods for various molecular spectroscopy and chemical dynamics problems. The text focuses on three tunneling phenomena: (1) energy splitting, or tunneling splitting, in symmetric double well potential, (2) decay of metastable state through tunneling, and (3) tunneling effects in chemical...

  12. EXPERIMENTAL RESEARCHES OF THERMO-PHYSICAL AND PHYSICOCHEMICAL INTERNALS OF BIO-DIESEL FUEL

    Directory of Open Access Journals (Sweden)

    V. N. Goryachkin

    2010-11-01

    Full Text Available The conducted researches are related to transfer of diesel engines to biodiesel fuel. The technique and results of an experimental research of thermo-physical and physical-and-chemical properties of biodiesel fuel as well as mixes of biodiesel fuel with the petroleum one are presented.

  13. Comparison of Chemical and Physical-chemical Wastewater Discoloring Methods

    Directory of Open Access Journals (Sweden)

    Durašević, V.

    2007-11-01

    Full Text Available Today's chemical and physical-chemical wastewater discoloration methods do not completely meet demands regarding degree of discoloration. In this paper discoloration was performed using Fenton (FeSO4 . 7 H2O + H2O2 + H2SO4 and Fenton-like (FeCl3 . 6 H2O + H2O2 + HCOOH chemical methods and physical-chemical method of coagulation/flocculation (using poly-electrolyte (POEL combining anion active coagulant (modified poly-acrylamides and cationic flocculant (product of nitrogen compounds in combination with adsorption on activated carbon. Suitability of aforementioned methods was investigated on reactive and acid dyes, regarding their most common use in the textile industry. Also, investigations on dyes of different chromogen (anthraquinone, phthalocyanine, azo and xanthene were carried out in order to determine the importance of molecular spatial structure. Oxidative effect of Fenton and Fenton-like reagents resulted in decomposition of colored chromogen and high degree of discoloration. However, the problem is the inability of adding POEL in stechiometrical ratio (also present in physical-chemical methods, when the phenomenon of overdosing coagulants occurs in order to obtain a higher degree of discoloration, creating a potential danger of burdening water with POEL. Input and output water quality was controlled through spectrophotometric measurements and standard biological parameters. In addition, part of the investigations concerned industrial wastewaters obtained from dyeing cotton materials using reactive dye (C. I. Reactive Blue 19, a process that demands the use of vast amounts of electrolytes. Also, investigations of industrial wastewaters was labeled as a crucial step carried out in order to avoid serious misassumptions and false conclusions, which may arise if dyeing processes are only simulated in the laboratory.

  14. Physical-chemical property based sequence motifs and methods regarding same

    Science.gov (United States)

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  15. 40 CFR 716.50 - Reporting physical and chemical properties.

    Science.gov (United States)

    2010-07-01

    ... chemical properties. Studies of physical and chemical properties must be reported under this subpart if... they investigated one or more of the following properties: (a) Water solubility. (b) Adsorption... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting physical and chemical...

  16. Reverse engineering life: physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes.

    Science.gov (United States)

    Skuse, Gary R; Lamkin-Kennard, Kathleen A

    2013-01-01

    Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate differentiation. However, there has also been a realization that stem cell differentiation is not regulated only by chemical signals but also by the physical milieu in which a particular stem cell exists. In this regard we are challenged to mimic both chemical and physical environments. Herein we describe a method to induce stem cell differentiation into cardiomyocytes using a combination of chemical and physical cues. This method can be applied to produce differentiated cells for research and potentially for cell-based therapy of cardiomyopathies.

  17. Physical-chemical structure of VIPRO

    International Nuclear Information System (INIS)

    Lauri, L.

    1986-01-01

    PELF is a manufacturer of rigid expanded PVC in the form of panels of different density. There are only three manufacturers of this product in the world. This material is used in self-supporting structures of forms of transport, refrigerator trucks, busses, in the naval industry, for the construction of boats up to 40-50 meters in length, in the aeronautical and military industries. The research was developed in the two following phases: 1st phase: construction of a PVC panel with the density of approximately 1.000 Kg/cm. doped with extremely pure Boron using the base formula of rigid expanded PVC 2nd phase: construction of a completely new panel using for the first time in the world in the sector of plastic matters, the formula 'in alloy' where the absorbing material Boron or Lead become part of the chemical link. Only a simple and at the same time extremely resistant physical-chemical structure, a determined increase of resistance to temperatures, a considerable increase also of the number of Hydrogen atoms/c.m. could give the hoped for results. This is how VIPRO was born

  18. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  19. Physical, chemical and sensory characteristics of red guava (Psidium guajava) velva at different fruit ripening time

    Science.gov (United States)

    Ishartani, D.; Rahman, F. L. F.; Hartanto, R.; Utami, R.; Khasanah, L. U.

    2018-01-01

    This study purposed to determine the effect of red guava fruit ripening time on the physical (overrun and melting rate), chemical (vitamin C, pH, total dissolved solid) and sensory (color, taste, aroma, texture, and overall compare to control (without ripening) velva) characteristic of red guava velva. Red guava fruits were harvested at 90 days after flowering, ripened and then processed into velva. This research used Completely Randomized Design with fruit ripening time (without ripening, 4 days, and 6 days) as single factor. The research was conducted in triplicate. Chemical and physical characteristic data was analysed using One Way Analysis of Varian whether sensory characteristic data was analyzed using Independent Sample T-test. The result showed that fruit ripening time significantly affected the physical, chemical and sensory characteristic of the velva. Vitamin C, pH, and total solid of the velva were increased as the ripening time prolonged. In other hand, increasing of fruit ripening time decreased the overrun and melting rate of the velva. Red guava velva made from 6 days ripening had better sensory characteristics compared to velva made from red guava fruit without ripening or 4 day ripening. This research conclude that 6 days ripening time gives better chemical, physical and sensory characteristics of the velva compare to 4 days ripening time. Red guava fruits ripened for 6 days were recommended as raw material in velva making.

  20. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  1. Physical and chemical characteristics of fibrous peat

    Science.gov (United States)

    Sutejo, Yulindasari; Saggaff, Anis; Rahayu, Wiwik; Hanafiah

    2017-11-01

    Banyuasin is one of the regency in South Sumatera which has an area of 200.000 Ha of peat land. Peat soil are characterized by high compressibility parameters and low initial shear strength. Block sampling method was used to obtain undisturbed sample. The results of this paper describe the characteristics of peat soil from physical and chemical testing. The physical and chemical characteristics of peat include water content (ω), specific gravity (Gs), Acidity (pH), unit weight (γ), and ignition loss tests. SEM and EDS test was done to determine the differences in fiber content and to analyze chemical elements of the specimen. The average results ω, Gs, and pH are 263.538 %, 1.847, and 3.353. Peat is classified in H4 (by Von Post). The results of organic content (OC), ash content (AC), and fiber content (FC) are found 78.693 %, 21.310 %, and 73.703 %. From the results of physical and chemical tests, the peat in Banyuasin is classified as fibrous peat. All the results of the characteristics and classification of fibrous peat compared with published data were close.

  2. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    Jarek, R.

    2004-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  3. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  4. ANTIMICROBIAL, PHYSICAL AND CHEMICAL QUALITIES OF MEDICINAL ANTISEPTIC DRUGS

    Directory of Open Access Journals (Sweden)

    Paliy D. V.

    2014-12-01

    Full Text Available In our research results of the study of antimicrobial, physical and chemical qualities of antiseptic medicines of decamethoxin (DCM. Antimicrobial activity of DCM, palisan, decasan, deseptol against srains of S.aureus (n 56, S.epidermidis (n 26, E.coli (n 24, P.mirabilis (n 11, P.vulgaris (n 8 was studied by means of method of serial dilutions. Obtained data of mass spectrometry study of antimicrobial compositions with constant concentrations of DCM have shown that medicinal forms of DCM are complex physical and chemical systems, because of different origin and number of adjuvant ingredients used during their fabrication. Among synthetic quaternary ammonium agents there have been found the substance (commercial name of medicine is decamethoxin to have high antimicrobial activity against strains of grampositive and gram-negative microorganisms, an also C.albicans. There was found that antimicrobial activity of antiseptic palisan had been higher comparably to DCM in equivalent concentration. The composition and concentrations of acting agents and the methodology of preparation of palisan have been substantiated on the basis of microbiological, mass spectrometry characteristics of antiseptics DCM, palisan.

  5. XXI symposium Modern chemical physics. Tuapse 2009. Summaries of reports

    International Nuclear Information System (INIS)

    2009-01-01

    The materials of the XXI symposium Modern chemical physics, Tuapse 2009 (25 September - 6 October, 2009) are presented. Scientific program includes lectures, presentations and poster sessions on photochemistry and radiation chemistry, elementary processes, homogeneous and heterogeneous catalysis. The problems of chemical reaction kinetics, quantum chemistry, chemical spectroscopy, macromolecular chemistry are discussed. Topics of chemical physics of surface, nanochemistry, nanophysics and nanotechnology are treated [ru

  6. Physical and chemical characteristics of cheese bread, using fermented broken rice

    Directory of Open Access Journals (Sweden)

    Andressa CORADO

    2017-10-01

    Full Text Available Abstract Development of new food products, taking as raw material the subproducts obtained during industrial process become an economic and nutritious alternative, since these are usually discarded, caning be a significant nutritional source good. This research aimed to develop cheese bread using fermented broken rice instead of sour starch in four different concentrations (0%, 25%, 50%, 75% and 100%. After the development of formulations, was performed physics and chemicals characterization of products obtained, performing analysis of: proximate composition, dietary fiber, acidity, pH, ºBrix, total soluble sugars, reducing and sucrose. The increased formulations didn’t present significant differences, highlighting the average values of protein 7%, dietary fiber 9% and ash 1.9%. Broken rice, after fermentation process, becomes a profitable alternative instead of the sour starch on cheese breads, saving all the physical and chemical characteristics and being inexpensive.

  7. Physical Chemistry Chemical Kinetics and Reaction Mechanism

    CERN Document Server

    Trimm, Harold H

    2011-01-01

    Physical chemistry covers diverse topics, from biochemistry to materials properties to the development of quantum computers. Physical chemistry applies physics and math to problems that interest chemists, biologists, and engineers. Physical chemists use theoretical constructs and mathematical computations to understand chemical properties and describe the behavior of molecular and condensed matter. Their work involves manipulations of data as well as materials. Physical chemistry entails extensive work with sophisticated instrumentation and equipment as well as state-of-the-art computers. This

  8. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  9. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  10. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  11. Chemical Sciences Division: Annual report 1992

    International Nuclear Information System (INIS)

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences)

  12. Chemical Engineering Division research highlights, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Burris, L.; Webster, D. S.; Barney, D. L.; Cafasso, F. A.; Steindler, M. J.

    1980-06-01

    In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

  13. Responses of soil physical and chemical properties to karst rocky desertification evolution in typical karst valley area

    Science.gov (United States)

    Chen, Fei; Zhou, Dequan; Bai, Xiaoyong; zeng, Cheng; Xiao, Jianyong; Qian, Qinghuan; Luo, Guangjie

    2018-01-01

    In order to reveal the differences of soil physical and chemical properties and their response mechanism to the evolution of KRD. The characteristics of soil physical and chemical properties of different grades of KRD were studied by field sampling method to research different types of KRD in the typical karst valley of southern China. Instead of using space of time, to explore the response and the mechanisms of the soil physical and chemical properties at the different evolution process. The results showed that: (1) There were significant differences in organic matter, pH, total nitrogen, total phosphorus, total potassium, sediment concentration, clay content and AWHC in different levels of KRD environment. However, these indicators are not with increasing desertification degree has been degraded, but improved after a first degradation trends; (2) The correlation analysis showed that soil organic matter, acid, alkali, total nitrogen, total phosphorus, total potassium and clay contents were significantly correlated with other physical and chemical factors. They are the key factors of soil physical and chemical properties, play a key role in improving soil physical and chemical properties and promoting nutrient cycling; (3) The principal component analysis showed that the cumulative contribution rate of organic matter, pH, total nitrogen, total phosphorus, total potassium and sediment concentration was 80.26%, which was the key index to evaluate rocky desertification degree based on soil physical and chemical properties. The results have important theoretical and practical significance for the protection and restoration of rocky desertification ecosystem in southwest China.

  14. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  15. Use of physical/chemical mutagens in plant breeding program in Vietnam

    International Nuclear Information System (INIS)

    Tran Duy Quy; Nguyen Huu Dong; Bui Huy Thuy; Le Van Nha; Nguyen Van Bich

    2001-01-01

    Among more than 1870 new plant varieties formed by mutation breeding in the world, 44 varieties of different plants were formed by Vietnamese scientists. Research on induced mutation in Vietnam started in 1966, was promoted in Agricultural Institute, Cuu Long Delta Rice Research Institute, Institute of Food Crop Research, and Agriculture Universities, and has produced varieties of rice, maize, soybean, peanut, tomato, jujuba, green bean etc using physical and chemical mutagens: Irradiation with gamma rays or neutrons, and use of such chemicals as dimethylsulfate (DMS), diethylsulfate (DES), ethyleneimine (EI), N-nitrosomethylurea (NUM), N-nitrosoethylurea (NEU), and sodium azide (NaN 3 ). In the present report, the results of cytological and genetic effects in M1 plants, the frequency and spectrum of chlorophyll and morphological mutants, the mutants obtained and the genetic nature of the next generation are described, particularly for the case of rice. Radiation dose and dose rate used as mutagens are also reported. (S. Ohno)

  16. Use of physical/chemical mutagens in plant breeding program in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Tran Duy Quy; Nguyen Huu Dong; Bui Huy Thuy; Le Van Nha; Nguyen Van Bich [Agricultural Genetics Institute, Hanoi (Viet Nam)

    2001-03-01

    Among more than 1870 new plant varieties formed by mutation breeding in the world, 44 varieties of different plants were formed by Vietnamese scientists. Research on induced mutation in Vietnam started in 1966, was promoted in Agricultural Institute, Cuu Long Delta Rice Research Institute, Institute of Food Crop Research, and Agriculture Universities, and has produced varieties of rice, maize, soybean, peanut, tomato, jujuba, green bean etc using physical and chemical mutagens: Irradiation with gamma rays or neutrons, and use of such chemicals as dimethylsulfate (DMS), diethylsulfate (DES), ethyleneimine (EI), N-nitrosomethylurea (NUM), N-nitrosoethylurea (NEU), and sodium azide (NaN{sub 3}). In the present report, the results of cytological and genetic effects in M1 plants, the frequency and spectrum of chlorophyll and morphological mutants, the mutants obtained and the genetic nature of the next generation are described, particularly for the case of rice. Radiation dose and dose rate used as mutagens are also reported. (S. Ohno)

  17. Chemical and Physical Interactions of Martian Surface Material

    Science.gov (United States)

    Bishop, J. L.

    1999-09-01

    A model of alteration and maturation of the Martian surface material is described involving both chemical and physical interactions. Physical processes involve distribution and mixing of the fine-grained soil particles across the surface and into the atmosphere. Chemical processes include reaction of sulfate, salt and oxidizing components of the soil particles; these agents in the soils deposited on rocks will chew through the rock minerals forming coatings and will bind surface soils together to form duricrust deposits. Formation of crystalline iron oxide/oxyhydroxide minerals through hydrothermal processes and of poorly crystalline and amorphous phases through palagonitic processes both contribute to formation of the soil particles. Chemical and physical alteration of these soil minerals and phases contribute to producing the chemical, magnetic and spectroscopic character of the Martian soil as observed by Mars Pathfinder and Mars Global Surveyor. Minerals such as maghemite/magnetite and jarosite/alunite have been observed in terrestrial volcanic soils near steam vents and may be important components of the Martian surface material. The spectroscopic properties of several terrestrial volcanic soils containing these minerals have been analyzed and evaluated in terms of the spectroscopic character of the surface material on Mars.

  18. Chemical and Physical Soil Restoration in Mining Areas

    Science.gov (United States)

    Teresinha Gonçalves Bizuti, Denise; de Marchi Soares, Thaís; Roberti Alves de Almeida, Danilo; Sartorio, Simone Daniela; Casagrande, José Carlos; Santin Brancalion, Pedro Henrique

    2017-04-01

    The current trend of ecological restoration is to address the recovery of degraded areas by ecosystemic way, overcoming the rehabilitation process. In this sense, the topsoil and other complementary techniques in mining areas plays an important role in soil recovery. The aim of this study was to contextualize the soil improvement, with the use of topsoil through chemical and physical attributes, relative to secondary succession areas in restoration, as well as in reference ecosystems (natural forest). Eighteen areas were evaluated, six in forest restoration process, six native forests and six just mining areas. The areas were sampled in the depths of 0-5, 5-10, 10-20, 20-40 and 40-60 cm. Chemical indicators measured were parameters of soil fertility and texture, macroporosity, microporosity, density and total porosity as physical parameters. The forest restoration using topsoil was effective in triggering a process of soil recovery, promoting, in seven years, chemical and physical characteristics similar to those of the reference ecosystem.

  19. Physical and chemical properties of pyrolyzed biosolids for utilization in sand-based turfgrass rootzones

    Science.gov (United States)

    Biosolids are several forms of treated sewage sludge that are intended for use as soil conditioners for horticultural, agricultural and industrial crops. The objectives of this research were to determine the chemical and physical properties of biosolids pyrolyzed at several different temperatures, a...

  20. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of ozone treatment on chemical and physical properties of wheat (Triticum aestivum L.) gluten, glutenin and gliadin. Methods: Wheat proteins isolated from wheat flour were treated with ozone gas. The physical and chemical properties of gluten proteins were investigated after treatment ...

  1. Impact of Rangeland Degradation on Soil Physical, Chemical

    African Journals Online (AJOL)

    major threats to enhance a sustainable pastoral-livestock production in Ethiopia. ... overall negative impact on the soil physical and chemical characteristics, demanding ... chemical properties (Gemedo et al., 2006) as well as the rangeland .... parameters such as life forms (annuals and perennials), plant forms (woody plant,.

  2. FORMULATION OF MATHEMATICAL PROBLEM DESCRIBING PHYSICAL AND CHEMICAL PROCESSES AT CONCRETE CORROSION

    Directory of Open Access Journals (Sweden)

    Sergey V. Fedosov

    2017-06-01

    Full Text Available The article deals with the relevance of new scientific research focused on modeling of physical and chemical processes occurring in the cement concrete at their exploitation. The basic types of concrete corrosion are described. The problem of mass transfer processes in a flat reinforced concrete wall at concrete corrosion of the first and the second types has been mathematically formulated.

  3. Radon: Chemical and physical states of radon progeny. Final technical report

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1996-01-01

    The evolving chemical and physical form of radon progeny influence their transport to the bioreceptor and the extent to which that receptor can take up these species into various tissues. When first born following radioactive decay processes, the potentially deleterious radon progeny undergo various physical and chemical transformations as they transcend from a highly charged to a neutral state, and interact with various constituents of the environment. These transformations impact on the extent to which the radon progeny become associated with aerosol particles on the one hand, and their ultimate chemical form that is available for uptake in the biosystem, on the other. The program, which originally commenced in 1987, dealt with the basic chemistry and physics of radon progeny and hence impacted on several themes of importance to the DOE/OHER radon program. One of these is dose response, which is governed by the physical forms of the radon progeny, their transport to the bioreceptor and the chemical forms that govern their uptake. The second theme had to do with cellular responses, one of the major issues motivating the work. It is well known that various sizes of ions and molecules are selectively transported across cell membrane to differing degrees. This ultimately has to do with their chemical and physical forms, charge and size. The overall objective of the work was threefold: (1) quantifying the mechanisms and rates of the chemical and physical transformation; (2) ascertaining the ultimate chemical forms, and (3) determining the potential interactions of these chemical species with biological functional groups to ascertain their ultimate transport and incorporation within cells

  4. Evaluation of physical and chemical characteristics of xanthan gums

    Directory of Open Access Journals (Sweden)

    Claire Tondo Vendruscolo

    2007-03-01

    Full Text Available This work aimed at evaluating the physical and chemical characteristics of the xanthan produced by Xanthomonas arboricola pv pruni strain 115, and at comparing it with two xanthans obtained from commercial sources – Kelzan e Roeper. The analyzed xanthans showed specified patterns mentioned in the literature, except for low pyruvic acid content in the xanthan produced by strain 115, low monovalent salt content in the Roeper sample and high divalent salt content in both commercial samples. The low pyruvic acid content in the xanthan produced by X. arboricola pv pruni 115 did not affect the aqueous solution viscosity. Thus, the xanthan produced by strain 115 show physical and chemical characteristics that allow its use by the petroleum industry, as well as, in food, pharmaceutical and cosmetics products. Xanthomonas arboricola pv pruni. Xanthan. Physical and chemical characteristics.

  5. XIII symposium. Modern chemical physics. Theses of reports

    International Nuclear Information System (INIS)

    2001-01-01

    Materials of the thirteenth symposium on modern chemical physics are presented. They represent different directions of development of this field of knowledge, such as synthesis, structure, properties of metal-polymer compositions, radiation-chemical investigations in nanotechnology, problems of supercritical chemistry, calculations of kinetic parameters of catalytic systems [ru

  6. Physical and chemical data collected using bottle casts in a World-wide distribution from NOAA Ship RESEARCHER and other platforms from 1911-11-11 to 1990-03-18 (NODC Accession 9600072)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and chemical data were collected using bottle casts in a World-wide distribution from NOAA Ship RESEARCHER and other platforms from 11 November 1911 to 18...

  7. Frontiers in Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-02

    These are slides dealing with frontiers in chemical physics. The following topics are covered: Time resolving chemistry with ultrashort pulses in the 0.1-40 THz spectral range; Example: Mid-infrared absorption spectrum of the intermediate state CH2OO; Tracking reaction dynamics through changes in the spectra; Single-shot measurement of the mid-IR absorption dynamics; Applying 2D coherent mid-IR spectroscopy to learn more about transition states; Time resolving chemical reactions at a catalysis using mid-IR and THz pulses; Studying topological insulators requires a surface sensitive probe; Nonlinear phonon dynamics in Bi2Se3; THz-pump, SHG-probe as a surface sensitive coherent 2D spectroscopy; Nanometer and femtosecond spatiotemporal resolution mid-IR spectroscopy; Coherent two-dimensional THz/mid-IR spectroscopy with 10nm spatial resolution; Pervoskite oxides as catalysts; Functionalized graphene for catalysis; Single-shot spatiotemporal measurements; Spatiotemporal pulse measurement; Intense, broad-band THz/mid-IR generation with organic crystals.

  8. Criterion for selection the optimal physical and chemical properties of cobalt aluminate powder used in investment casting process

    OpenAIRE

    M. Zielińska; J. Sieniawski; B. Gajecka

    2009-01-01

    The aim of this work was to determine physical and chemical properties of cobalt aluminate (CoAl2O4) modifiers produced by different companies and the influence of different types of modifiers on the grain size of high temperature creep resisting superalloys: Inconel 713C, René 77 and MAR-M 509.The first stage of the research work took over the investigations of physical and chemical properties of cobalt aluminate manufactured by three different companies: Remet, Mason Color and Permedia Lubl...

  9. CMS Young Researchers Award 2013 and Fundamental Physics Scholars Award from the CMS Experiment

    CERN Multimedia

    Lapka, Marzena

    2014-01-01

    Photo 2: CMS Fundamental Physics Scholars (FPSs) 1st prize: Joosep Pata, from Estonian National Institue of Chemical Physics and Biophysics / Photo 1 and 3: CMS Young Researchers Award. From left to right: Guido Tonelli, Colin Bernet, Andre David, Oliver Gutsche, Dmytro Kovalskyi, Andrea Petrucci, Joe Incandela and Jim Virdee

  10. Physical and Chemical Properties of Soils under Contrasting Land ...

    African Journals Online (AJOL)

    Physical and Chemical Properties of Soils under Contrasting Land Use ... the aim of understanding the response of the soil to different management practices over time. ... The soil chemical properties studied were soil pH, organic carbon, total ...

  11. Study on Physical Properties and Chemical Composition of Some Myanmar Gems

    International Nuclear Information System (INIS)

    Kyaw Myint Htoo; Tun Khin; Sein Htoon

    2004-05-01

    Physical properties of some Myanmar gems were studied by using refractometer, dichroscope, polariscope, SG test, UV test and microscope. Then, chemical composition were investigated by XRF-technique. After that, gem identification, evaluation, colour improvement were studied according to these physical properties and chemical composition

  12. Chemical and physical quality examination: Chapter 4

    Science.gov (United States)

    Lamar, William

    1953-01-01

    In a balanced study of water pollution or water utilization a thorough chemical and physical examination is essential. This provides a basis for evaluation of stream conditions, their effects and remedies. Such information is of value to the general public who are interested in clean water and in recreation, hunting, fishing, and wildlife; to the chemist, engineer, hydrologist, and industrialist who are interested in the domestic and industrial use of water both as raw material and as a vehicle for the removal of waste materials; to the sanitarian who is interested in healthful conditions; and to the biologist who is interested in maintaining a favorable biological balance. For every living plant and animal there are optimum physical and chemical conditions and these characteristics are determining factors in the aquatic life of any body of water.

  13. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  14. Physical Research Program: research contracts and statistical summary

    International Nuclear Information System (INIS)

    1975-01-01

    The physical research program consists of fundamental theoretical and experimental investigations designed to support the objectives of ERDA. The program is directed toward discovery of natural laws and new knowledge, and to improved understanding of the physical sciences as related to the development, use, and control of energy. The ultimate goal is to develop a scientific underlay for the overall ERDA effort and the fundamental principles of natural phenomena so that these phenomena may be understood and new principles, formulated. The physical research program is organized into four functional subprograms, high-energy physics, nuclear sciences, materials sciences, and molecular sciences. Approximately four-fifths of the total physical research program costs are associated with research conducted in ERDA-owned, contractor-operated federally funded research and development centers. A little less than one-fifth of the costs are associated with the support of research conducted in other laboratories

  15. Physical- chemical changes in irradiated sodium alginate algimar

    International Nuclear Information System (INIS)

    Rapado Paneque, Manuel; Alazanes, Sonia; Sainz Vidal, Dianelys; Wandrey, Christine

    2003-01-01

    The effect of gamma radiation on the physical-chemical properties of sodium alginate Algimar has been investigated. dilution viscometric, densitometry FTIR spectroscopy served to identify modifications. Decreasing intrinsic, viscosities clearly revealed chain cleavage for both solid alginate indicate that chain degradation occurs without significant change of the chemical structure, The obtained results have practical implication change of the chemical structure. The obtained results have practical implication in the field of radiation modification and sterilization of sodium alginate used for microcapsule formation

  16. Nigerian Journal of Chemical Research: Advanced Search

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Nigerian Journal of Chemical Research: Advanced Search ... containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., .... and Applied Sciences, Nigerian Journal of Biotechnology, Nigerian Journal of Chemical Research ...

  17. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  18. Physical and Chemical Factors Affecting Contaminant Hydrology in Cold Environments

    National Research Council Canada - National Science Library

    Grant, Steven

    2000-01-01

    .... The chemical thermodynamics of geochemical solutions below 0 deg C is then reviewed. Particular attention is placed on the physical-chemical properties of ice and liquid water at subzero temperatures...

  19. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 4: Physical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Braby, L.A.

    1994-08-01

    Part 4 of the Pacific Northwest Laboratory Annual Report for 1993 to the DOE Office of Energy Research includes those programs funded under the title ``Physical and Technological Research.`` The Field Task Program Studies reported in this document are grouped by budget category. Attention is focused on the following subject areas: dosimetry research; and radiological and chemical physics.

  20. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 4: Physical sciences

    International Nuclear Information System (INIS)

    Braby, L.A.

    1994-08-01

    Part 4 of the Pacific Northwest Laboratory Annual Report for 1993 to the DOE Office of Energy Research includes those programs funded under the title ''Physical and Technological Research.'' The Field Task Program Studies reported in this document are grouped by budget category. Attention is focused on the following subject areas: dosimetry research; and radiological and chemical physics

  1. Physical and chemical stability of pemetrexed in infusion solutions.

    Science.gov (United States)

    Zhang, Yanping; Trissel, Lawrence A

    2006-06-01

    Pemetrexed is a multitargeted, antifolate, antineoplastic agent that is indicated for single-agent use in locally advanced or metastatic non-small-cell lung cancer after prior chemotherapy and in combination with cisplatin for the treatment of malignant pleural mesothelioma not treatable by surgery. Currently, there is no information on the long-term stability of pemetrexed beyond 24 hours. To evaluate the longer-term physical and chemical stability of pemetrexed 2, 10, and 20 mg/mL in polyvinyl chloride (PVC) bags of dextrose 5% injection and NaCl 0.9% injection. Triplicate samples of pemetrexed were prepared in the concentrations and infusion solutions required. Evaluations for physical and chemical stability were performed initially and over 2 days at 23 degrees C protected from light and exposed to fluorescent light, and over 31 days of storage at 4 degrees C protected from light. Physical stability was assessed using turbidimetric and particulate measurement as well as visual observation. Chemical stability was evaluated by HPLC. All pemetrexed solutions remained chemically stable, with little or no loss of pemetrexed over 2 days at 23 degrees C, protected from light and exposed to fluorescent light, and over 31 days of storage at 4 degrees C, protected from light. The room temperature samples were physically stable throughout the 48 hour test period. However, pemetrexed admixtures developed large numbers of microparticulates during refrigerated storage exceeding 24 hours. Pemetrexed is chemically stable for 2 days at room temperature and 31 days refrigerated in dextrose 5% injection and NaCl 0.9% injection. However, substantial numbers of microparticulates may form in pemetrexed diluted in the infusion solutions in PVC bags, especially during longer periods of refrigerated storage. Limiting the refrigerated storage period to the manufacturer-recommended 24 hours will limit particulate formation.

  2. Physical and Chemical Changes of Polystyrene Nanospheres Irradiated with Laser

    International Nuclear Information System (INIS)

    Mustafa, Mohd Ubaidillah; Juremi, Nor Rashidah Md.; Mohamad, Farizan; Wibawa, Pratama Jujur; Agam, Mohd Arif; Ali, Ahmad Hadi

    2011-01-01

    It has been reported that polymer resist such as PMMA (Poly(methyl methacrylate) which is a well known and commonly used polymer resist for fabrication of electronic devices can show zwitter characteristic due to over exposure to electron beam radiation. Overexposed PMMA tend to changes their molecular structure to either become negative or positive resist corresponded to electron beam irradiation doses. These characteristic was due to crosslinking and scissors of the PMMA molecular structures, but till now the understanding of crosslinking and scissors of the polymer resist molecular structure due to electron beam exposure were still unknown to researchers. Previously we have over exposed polystyrene nanospheres to various radiation sources, such as electron beam, solar radiation and laser, which is another compound that can act as polymer resist. We investigated the physical and chemical structures of the irradiated polystyrene nanospheres with FTIR analysis. It is found that the physical and chemical changes of the irradiated polystyrene were found to be corresponded with the radiation dosages. Later, combining Laser irradiation and Reactive Ion Etching manipulation, created a facile technique that we called as LARIEA NSL (Laser and Reactive Ion Etching Assisted Nanosphere Lithography) which can be a facile technique to fabricate controllable carbonaceous nanoparticles for applications such as lithographic mask, catalysts and heavy metal absorbers.

  3. New chair for the Particle Physics and Astronomy Research Council

    CERN Multimedia

    2001-01-01

    Peter Warry has been appointed as Chair of PPARC for the next 4 years. Chairman of Victrex plc, whose business is in speciality chemicals, he has been an Industrial Professor at the University of Warwick since 1993. PPARC pursues a programme of high quality basic research in particle physics, astronomy, cosmology and space science and its budget for 2002 is approximately 220 million GBP.

  4. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos

    2009-04-01

    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  5. Excavation research with chemical explosives

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberg, William E; Day, Walter C [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-01

    The US Army Engineer Nuclear Cratering Group (NCG) is located at the Lawrence Radiation Laboratory in Livermore, California. NCG was established in 1962 and assigned responsibility for technical program direction of the Corps of Engineers Nuclear Excavation Research Program. The major part of the experimental program has been the execution of chemical explosive excavation experiments. In the past these experiments were preliminary to planned nuclear excavation experiments. The experience gained and technology developed in accomplishing these experiments has led to an expansion of NCG's research mission. The overall research and development mission now includes the development of chemical explosive excavation technology to enable the Corps of Engineers to more economically accomplish Civil Works Construction projects of intermediate size. The current and future chemical explosive excavation experiments conducted by NCG will be planned so as to provide data that can be used in the development of both chemical and nuclear excavation technology. In addition, whenever possible, the experiments will be conducted at the specific sites of authorized Civil Works Construction Projects and will be designed to provide a useful portion of the engineering structures planned in that project. Currently, the emphasis in the chemical explosive excavation program is on the development of design techniques for producing specific crater geometries in a variety of media. Preliminary results of two such experiments are described in this paper; Project Pre-GONDOLA III, Phase III, Reservoir Connection Experiment; and a Safety Calibration Series for Project TUGBOAT, a small boat harbor excavation experiment.

  6. Excavation research with chemical explosives

    International Nuclear Information System (INIS)

    Vandenberg, William E.; Day, Walter C.

    1970-01-01

    The US Army Engineer Nuclear Cratering Group (NCG) is located at the Lawrence Radiation Laboratory in Livermore, California. NCG was established in 1962 and assigned responsibility for technical program direction of the Corps of Engineers Nuclear Excavation Research Program. The major part of the experimental program has been the execution of chemical explosive excavation experiments. In the past these experiments were preliminary to planned nuclear excavation experiments. The experience gained and technology developed in accomplishing these experiments has led to an expansion of NCG's research mission. The overall research and development mission now includes the development of chemical explosive excavation technology to enable the Corps of Engineers to more economically accomplish Civil Works Construction projects of intermediate size. The current and future chemical explosive excavation experiments conducted by NCG will be planned so as to provide data that can be used in the development of both chemical and nuclear excavation technology. In addition, whenever possible, the experiments will be conducted at the specific sites of authorized Civil Works Construction Projects and will be designed to provide a useful portion of the engineering structures planned in that project. Currently, the emphasis in the chemical explosive excavation program is on the development of design techniques for producing specific crater geometries in a variety of media. Preliminary results of two such experiments are described in this paper; Project Pre-GONDOLA III, Phase III, Reservoir Connection Experiment; and a Safety Calibration Series for Project TUGBOAT, a small boat harbor excavation experiment

  7. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  8. Chemical and Physical Sensing in the Petroleum Industry

    Science.gov (United States)

    Disko, Mark

    2008-03-01

    World-scale oil, gas and petrochemical production relies on a myriad of advanced technologies for discovering, producing, transporting, processing and distributing hydrocarbons. Sensing systems provide rapid and targeted information that can be used for expanding resources, improving product quality, and assuring environmentally sound operations. For example, equipment such as reactors and pipelines can be operated with high efficiency and safety with improved chemical and physical sensors for corrosion and hydrocarbon detection. At the interface between chemical engineering and multiphase flow physics, ``multi-scale'' phenomena such as catalysis and heat flow benefit from new approaches to sensing and data modeling. We are combining chemically selective micro-cantilevers, fiber optic sensing, and acoustic monitoring with statistical data fusion approaches to maximize control information. Miniaturized analyzers represent a special opportunity, including the nanotech-based quantum cascade laser systems for mid-infrared spectroscopy. Specific examples for use of these new micro-systems include rapid monocyclic aromatic molecule identification and measurement under ambient conditions at weight ppb levels. We see promise from emerging materials and devices based on nanotechnology, which can one day be available at modest cost for impact in existing operations. Controlled surface energies and emerging chemical probes hold the promise for reduction in greenhouse gas emissions for current fuels and future transportation and energy technologies.

  9. Variation in the chemical composition, physical characteristics and ...

    African Journals Online (AJOL)

    Variation in the chemical composition, physical characteristics and energy values of cereal grains produced in the Western Cape area of South Africa. TS Brand, CW Cruywagen, DA Brandt, M Viljoen, WW Burger ...

  10. Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport

    Science.gov (United States)

    Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith

    2018-06-01

    A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.

  11. The Main Physical-Chemical Characteristics of Smoked Sausage

    Directory of Open Access Journals (Sweden)

    Corina Iuliana Costescu

    2015-05-01

    Full Text Available The paper presents the organoleptic and physical-chemical quality of smoked sausage, produced by a manufacturer in the western part of Romania. The organoleptic examination highlighted: product shape, exterior and in section aspect, consistency, color, taste and flavor. The physical-chemical examination highlighted the content of moisture, fat, sodium chloride, nitrites and easy hydrolyzed nitrogen. Water content was under the maximum admitted limit of 58%. Medium fat value was 32.24%, by 5.76% under the 38% maximum limit. Medium sodium chloride content was 2.1%, under the maximum admitted limit of 3%. Easy hydrolyzed nitrogen registered a medium value of 26.71 mg NH3/100g product under the 45% maximum admitted limit. Nitrites content was 5.18 ppm, under the 7 ppm imposed limit.

  12. Research in particle physics

    International Nuclear Information System (INIS)

    1993-08-01

    This proposal presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. Some changes have been made in the structure of the program from the previous arrangement of tasks. Task B, Accelerator Design Physics, is being submitted as a separate proposal for an independent grant; this will be consistent with the nature of the research and the source of funding. We are active in seven principal areas which will be discussed in this report: Colliding Beams - physics of e + e - and bar pp collisions; MACRO Experiment - search for magnetic monopoles and study of cosmic rays; Proton Decay - search for nucleon instability and study of neutrino interactions; Particle Theory - theoretical high energy particle physics, including two Outstanding Junior Investigator awards; Muon G-2 - measurement of the anomalous magnetic moment of the muon; SSCintcal - calorimetry for the GEM Experiment; and Muon detectors for the GEM Experiment

  13. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    International Nuclear Information System (INIS)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone; Kelecom, Alphonse; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova; Dores, Luis Augusto de Carvalho Bresser

    2011-01-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  14. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone, E-mail: wspereira@inb.gov.br [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Protecao Radiologica. Grupo Multidisciplinar de Radioprotecao; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Biologia. Lab. de Radiobiologia e Radiometria Pedro Lopes dos Santos; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Desenvolvimento de Processos; Dores, Luis Augusto de Carvalho Bresser [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Gerencia de Descomissionamento

    2011-07-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  15. Physical and Chemical Environmental Abstraction Model

    International Nuclear Information System (INIS)

    Nowak, E.

    2000-01-01

    As directed by a written development plan (CRWMS M and O 1999a), Task 1, an overall conceptualization of the physical and chemical environment (P/CE) in the emplacement drift is documented in this Analysis/Model Report (AMR). Included are the physical components of the engineered barrier system (EBS). The intended use of this descriptive conceptualization is to assist the Performance Assessment Department (PAD) in modeling the physical and chemical environment within a repository drift. It is also intended to assist PAD in providing a more integrated and complete in-drift geochemical model abstraction and to answer the key technical issues raised in the U.S. Nuclear Regulatory Commission (NRC) Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). EBS-related features, events, and processes (FEPs) have been assembled and discussed in ''EBS FEPs/Degradation Modes Abstraction'' (CRWMS M and O 2000a). Reference AMRs listed in Section 6 address FEPs that have not been screened out. This conceptualization does not directly address those FEPs. Additional tasks described in the written development plan are recommended for future work in Section 7.3. To achieve the stated purpose, the scope of this document includes: (1) the role of in-drift physical and chemical environments in the Total System Performance Assessment (TSPA) (Section 6.1); (2) the configuration of engineered components (features) and critical locations in drifts (Sections 6.2.1 and 6.3, portions taken from EBS Radionuclide Transport Abstraction (CRWMS M and O 2000b)); (3) overview and critical locations of processes that can affect P/CE (Section 6.3); (4) couplings and relationships among features and processes in the drifts (Section 6.4); and (5) identities and uses of parameters transmitted to TSPA by some of the reference AMRs (Section 6.5). This AMR originally considered a design with backfill, and is now being updated (REV 00 ICN1) to address

  16. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    2001-04-16

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding

  17. Physics Research at the Naval Research Laboratory

    Science.gov (United States)

    Coffey, Timothy

    2001-03-01

    The United States Naval Research Laboratory conducts a broad program of research into the physical properties of matter. Studies range from low temperature physics, such as that associated with superconducting systems to high temperature systems such as laser produced or astrophysical plasmas. Substantial studies are underway on surface science and nanoscience. Studies are underway on the electronic and optical properties of materials. Studies of the physical properties of the ocean and the earth’s atmosphere are of considerable importance. Studies of the earth’s sun particularly as it effects the earth’s ionosphere and magnetosphere are underway. The entire program involves a balance of laboratory experiments, field experiments and supporting theoretical and computational studies. This talk will address NRL’s funding of physics, its employment of physicists and will illustrate the nature of NRL’s physics program with several examples of recent accomplishments.

  18. Research ethics in physical education

    Directory of Open Access Journals (Sweden)

    Júlio César Schmitt Rocha

    2009-06-01

    Full Text Available The objective here is to point out ethics in Physical Education research against a backdrop of individual and collective human conduct. Since Plato, the question of ethics in the Western world has been an incessant search for the virtues to harmonize personal and social wellbeing and for the absolute principles of conduct: Autonomy, Beneficence and Justice. Physical Education cannot exempt itself from these and its countless areas of research. In addition to the moral education that develops and solidifies within social groups, the characteristic of which is action on an individual level, we must also consider ethical principles such as those defended by the Physical Education World Manifesto and those that regulate the professional activities of Physical Education professionals. Irrespective of the area investigated, Research in Physical Education will always clash with institutionalized ethical principles enforced by ethics committees, councils and the values accepted by the researchers. Committees strive to preserve the integrity and dignity of the people enrolled on research studies while the researchers challenge the limits of knowledge at an uncomfortable frontier between the acceptable and the unacceptable within a given context of academic vision and needs.

  19. CHEMICAL AND PHYSICAL CHARACTERIZATION OF COLLAPSING LOW-MASS PRESTELLAR DENSE CORES

    Energy Technology Data Exchange (ETDEWEB)

    Hincelin, U. [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Commerçon, B. [Ecole Normale Supérieure de Lyon, CRAL, UMR 5574 du CNRS, Université Lyon I, 46 Allée d’Italie, F-69364 Lyon cedex 07 (France); Wakelam, V.; Hersant, F.; Guilloteau, S. [Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac (France); Herbst, E., E-mail: ugo.hincelin@gmail.com [Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2016-05-01

    The first hydrostatic core, also called the first Larson core, is one of the first steps in low-mass star formation as predicted by theory. With recent and future high-performance telescopes, the details of these first phases are becoming accessible, and observations may confirm theory and even present new challenges for theoreticians. In this context, from a theoretical point of view, we study the chemical and physical evolution of the collapse of prestellar cores until the formation of the first Larson core, in order to better characterize this early phase in the star formation process. We couple a state-of-the-art hydrodynamical model with full gas-grain chemistry, using different assumptions for the magnetic field strength and orientation. We extract the different components of each collapsing core (i.e., the central core, the outflow, the disk, the pseudodisk, and the envelope) to highlight their specific physical and chemical characteristics. Each component often presents a specific physical history, as well as a specific chemical evolution. From some species, the components can clearly be differentiated. The different core models can also be chemically differentiated. Our simulation suggests that some chemical species act as tracers of the different components of a collapsing prestellar dense core, and as tracers of the magnetic field characteristics of the core. From this result, we pinpoint promising key chemical species to be observed.

  20. A study of the effects of physical dermabrasion combined with chemical peeling in porcine skin.

    Science.gov (United States)

    Kang, Boo Kyoung; Choi, Jeong Hwee; Jeong, Ki Heon; Park, Jong Min; Suh, Dong Hye; Lee, Sang Jun; Shin, Min Kyung

    2015-02-01

    Many comparative studies of chemical peeling and dermabrasion have been reported. However, rare basic scientific data about the immediate effects after combined treatment with chemical peeling and dermabrasion have been confirmed. The aim of this study is to evaluate the effect of the application of physical abrasion in combination with chemical peels. Three pigs were treated with physical abrasion using a water jet device in combination with an α-hydroxy acid solution, and the skin samples of the control received chemical peeling solution alone. The levels of growth factors and neuropeptides were measured with a multiplex immunoassay. Skin treated with physical dermabrasion combined with chemical peeling showed prominent detachment and swelling of the stratum corneum (SC), and fluid collection in the hair follicles. The mean cell count of CD34 positive fibroblasts and mast cells, levels of epidermal growth factor, fibroblast growth factor-2, vascular endothelial growth factor, and neurotensin, were significantly increased in the tissue treated with physical abrasion combined with a chemical peeling agent, compared to the skin in the control. We concluded that physical dermabrasion combined with chemical peeling can be more effective than chemical peeling alone, for the approach through transfollicular routes.

  1. Chemical Education Research: Improving Chemistry Learning

    Science.gov (United States)

    Dudley Herron, J.; Nurrenbern, Susan C.

    1999-10-01

    Chemical education research is the systematic investigation of learning grounded in a theoretical foundation that focuses on understanding and improving learning of chemistry. This article reviews many activities, changes, and accomplishments that have taken place in this area of scholarly activity despite its relatively recent emergence as a research area. The article describes how the two predominant broad perspectives of learning, behaviorism and constructivism, have shaped and influenced chemical education research design, analysis, and interpretation during the 1900s. Selected research studies illustrate the range of research design strategies and results that have contributed to an increased understanding of learning in chemistry. The article also provides a perspective of current and continuing challenges that researchers in this area face as they strive to bridge the gap between chemistry and education - disciplines with differing theoretical bases and research paradigms.

  2. Methodology for completing Hanford 200 Area tank waste physical/chemical profile estimations

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1996-01-01

    The purpose of the Methodology for Completing Hanford 200 Area Tank Waste Physical/Chemical Profile Estimations is to capture the logic inherent to completing 200 Area waste tank physical and chemical profile estimates. Since there has been good correlation between the estimate profiles and actual conditions during sampling and sub-segment analysis, it is worthwhile to document the current estimate methodology

  3. Grout to meet physical and chemical requirements for closure at Hanford grout vaults. Final report

    International Nuclear Information System (INIS)

    1994-01-01

    The US Army Engineer Waterways Experiment Station (WES) developed a grout based on portland cement, Class F fly ash, and bentonite clay, for the Hanford Grout Vault Program. The purpose of this grout was to fill the void between a wasteform containing 106-AN waste and the vault cover blocks. Following a successful grout development program, heat output, volume change, and compressive strength were monitored with time in simulated repository conditions and in full-depth physical models. This research indicated that the cold-cap grout could achieve and maintain adequate volume stability and other required physical properties in the internal environment of a sealed vault. To determine if contact with 106-AN liquid waste would cause chemical deterioration of the cold-cap grout, cured specimens were immersed in simulated waste. Over a period of 21 days at 150 F, specimens increased in mass without significant changes in volume. X-ray diffraction of reacted specimens revealed crystallization of sodium aluminum silicate hydrate. Scanning electron microscopy used with X-ray fluorescence showed that clusters if this phase had formed in grout pores, increasing grout density and decreasing its effective porosity. Physical and chemical tests collectively indicate a sealing component. However, the Hanford Grout Vault Program was cancelled before completion of this research. This report summarizes close-out Waterways Experiment Station when the Program was cancelled

  4. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad

    2016-09-30

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have been investigated in single cylinder engine running in GCI combustion mode at part-load conditions both experimentally and numerically. The studied fuels are: Saudi Aramco light naphtha (SALN) (Research octane number (RON) = 62 and final boiling point (FBP) = 91 °C), Haltermann straight run naphtha (HSRN) (RON = 60 and FBP = 140 °C) and a primary reference fuel (PRF65) (RON = 65 and FBP = 99 °C). Injection sweeps, where the start of injection (SOI) is changed between −60 and −11 CAD aTDC, have been performed for the three fuels. Full cycle computational fluid dynamics (CFD) simulations were executed using PRFs as chemical surrogates for the naphtha fuels. Physical surrogates based on the evaporation characteristics of the naphtha streams have been developed and their properties have been implemented in the engine simulations. It was found that the three fuels have similar combustion phasings and emissions at the conditions tested in this work with minor differences at SOI earlier than −30 CAD aTDC. These trends were successfully reproduced by the CFD calculations. The chemical and physical effects were further investigated numerically. It was found that the physical characteristics of the fuel significantly affect the combustion for injections earlier than −30 CAD aTDC because of the low evaporation rates of the fuel because of the higher boiling temperature of the fuel and the colder in-cylinder air during injection. © 2016 Elsevier Ltd

  5. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1990-01-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  6. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, J.P.

    1999-01-27

    Understanding the fundamental chemical and physical aging mechanisms is necessary to learn how to produce a bio-oil that is more stable during shipping and storage. This review provides a basis for this understanding and identifies possible future research paths to produce bio-oils with better storage stability.

  7. Conceptual Integration of Chemical Equilibrium by Prospective Physical Sciences Teachers

    Science.gov (United States)

    Ganaras, Kostas; Dumon, Alain; Larcher, Claudine

    2008-01-01

    This article describes an empirical study concerning the mastering of the chemical equilibrium concept by prospective physical sciences teachers. The main objective was to check whether the concept of chemical equilibrium had become an integrating and unifying concept for them, that is to say an operational and functional knowledge to explain and…

  8. Investigating the effects of different physical and chemical stress ...

    African Journals Online (AJOL)

    2018-04-09

    Apr 9, 2018 ... bacteria from extreme physical and chemical stress conditions. Additionally .... by inducing stress response genes, become more tolerant phenotypes ..... biofilm, monochloramine is more effective than free chlorine over long ...

  9. Basic actinide chemistry and physics research in close cooperation with hot laboratories: ACTILAB

    International Nuclear Information System (INIS)

    Minato, K; Konashi, K; Fujii, T; Uehara, A; Nagasaki, S; Ohtori, N; Tokunaga, Y; Kambe, S

    2010-01-01

    Basic research in actinide chemistry and physics is indispensable to maintain sustainable development of innovative nuclear technology. Actinides, especially minor actinides of americium and curium, need to be handled in special facilities with containment and radiation shields. To promote and facilitate actinide research, close cooperation with the facilities and sharing of technical and scientific information must be very important and effective. A three-year-program B asic actinide chemistry and physics research in close cooperation with hot laboratories , ACTILAB, was started to form the basis of sustainable development of innovative nuclear technology. In this program, research on actinide solid-state physics, solution chemistry and solid-liquid interface chemistry is made using four main facilities in Japan in close cooperation with each other, where basic experiments with transuranium elements can be made. The 17 O-NMR measurements were performed on (Pu 0.91 Am 0.09 )O 2 to study the electronic state and the chemical behaviour of Am and Cm ions in electrolyte solutions was studied by distribution experiments.

  10. In Situ Remediation Integrated Program. In situ physical/chemical treatment technologies for remediation of contaminated sites: Applicability, developing status, and research needs

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Gates, D.D.; West, O.R.; Liang, L.; Donaldson, T.L.; Webb, O.F.; Corder, S.L.; Dickerson, K.S.

    1994-06-01

    The U.S. Department of Energy (DOE) In Situ Remediation Integrated Program (ISR IP) was established in June 1991 to facilitate the development and implementation of in situ remediation technologies for environmental restoration within the DOE complex. Within the ISR IP, four subareas of research have been identified: (1) in situ containment, (2) in situ physical/chemical treatment (ISPCT), (3) in situ bioremediation, and (4) subsurface manipulation/electrokinetics. Although set out as individual focus areas, these four are interrelated, and successful developments in one will often necessitate successful developments in another. In situ remediation technologies are increasingly being sought for environmental restoration due to the potential advantages that in situ technologies can offer as opposed to more traditional ex situ technologies. These advantages include limited site disruption, lower cost, reduced worker exposure, and treatment at depth under structures. While in situ remediation technologies can offer great advantages, many technology gaps exist in their application. This document presents an overview of ISPCT technologies and describes their applicability to DOE-complex needs, their development status, and relevant ongoing research. It also highlights research needs that the ISR IP should consider when making funding decisions

  11. Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste

    International Nuclear Information System (INIS)

    Williams, Paul T.; Reed, Anton R.

    2006-01-01

    Biomass waste in the form of biomass flax fibre, produced as a by-product of the textile industry was processed via both physical and chemical activation to produce activated carbons. The surface area of the physically activated carbons were up to 840 m 2 g -1 and the carbons were of mesoporous structure. Chemical activation using zinc chloride produced high surface area activated carbons up to 2400 m 2 g -1 and the pore size distribution was mainly microporous. However, the process conditions of temperature and zinc chloride concentration could be used to manipulate the surface area and porosity of the carbons to produce microporous, mesoporous and mixed microporous/mesoporous activated carbons. The physically activated carbons were found to be a mixture of Type I and Type IV carbons and the chemically activated carbons were found to be mainly Type I carbons. The development of surface morphology of physically and chemically activated carbons observed via scanning electron microscopy showed that physical activation produced activated carbons with a nodular and pitted surface morphology whereas activated carbons produced through chemical activation had a smooth surface morphology. Transmission electron microscopy analysis could identify mesopore structures in the physically activated carbon and microporous structures in the chemically activated carbons

  12. Physics research needs for ITER

    International Nuclear Information System (INIS)

    Sauthoff, N.R.

    1995-01-01

    Design of ITER entails the application of physics design tools that have been validated against the world-wide data base of fusion research. In many cases, these tools do not yet exist and must be developed as part of the ITER physics program. ITER's considerable increases in power and size demand significant extrapolations from the current data base; in several cases, new physical effects are projected to dominate the behavior of the ITER plasma. This paper focuses on those design tools and data that have been identified by the ITER team and are not yet available; these needs serve as the basis for the ITER Physics Research Needs, which have been developed jointly by the ITER Physics Expert Groups and the ITER design team. Development of the tools and the supporting data base is an on-going activity that constitutes a significant opportunity for contributions to the ITER program by fusion research programs world-wide

  13. Research in Chemical Kinetics, v.3

    CERN Document Server

    2012-01-01

    This series of volumes aims to publish authoritative review articles on a wide range of exciting and contemporary topics in gas and condensed phase kinetics. Research in Chemical Kinetics complements the acclaimed series Comprehensive Chemical Kinetics, and is edited by the same team of professionals. The reviews contained in this volume are concise, topical accounts of specific research written by acknowledged experts. The authors summarize their latest work and place it in a general context. Particular strengths of the volume are the quality of the contributions and their top

  14. Research in chemical kinetics, v.2

    CERN Document Server

    1994-01-01

    This is the second volume in a new series, which aims to publish authoritative review articles on a wide range of exciting and contemporary topics in gas and condensed phase kinetics. Research in Chemical Kinetics complements the acclaimed series Comprehensive Chemical Kinetics, and is edited by the same team of professionals. The reviews contained in this volume are concise, topical accounts of specific research written by acknowledged experts. The authors summarize their latest work and place it in a general context. Particular strengths of the volume are the quality of the c

  15. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    R. Jarek

    2005-01-01

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  16. Development and the physical, chemical, microbiological and sensory analyses of red pepper seasoned with parmesan cheese - doi: 10.4025/actascitechnol.v35i3.12794

    Directory of Open Access Journals (Sweden)

    Gisele Teixeira de Souza Sora

    2013-06-01

    Full Text Available Pickles comprising red pepper seasoned with Parmesan cheese has been developed as a new type of product developed by family cottage industries. Two formulations were prepared, or rather, with and without the preservative potassium sorbate, which underwent several physical, chemical, microbiological and sensory analyses. Physical and chemical analyses were undertaken for acidity, pH and °Brix; microbiological analyses for total heat-tolerant coliforms, Salmonella sp, molds, yeasts; sensory aspects such as physical features, aroma, flavor and texture, coupled to purchase intention among tasters were investigated. Both formulations comprised physical, chemical and microbiological parameters within standards. Sensory evaluation showed satisfactory results and research on purchase intention showed approximately 80% acceptability. Results from physical, chemical and microbiological tests showed that pickled pepper seasoned with Parmesan cheese may be prepared with citric acid as a preservative. Sensory evaluation and purchase intention indicate a real production and sale possibility of pickled peppers seasoned with Parmesan cheese by family cottage industries.  

  17. Physical and Chemical Interactions between Mg:Al Layered Double Hydroxide and Hexacyanoferrate

    Science.gov (United States)

    Boclair, Joseph W.; Braterman, Paul S.; Brister, Brian D.; Wang, Zhiming; Yarberry, Faith

    2001-11-01

    The physical and chemical interactions of ferrocyanide (potassium and ammonium salts) and ferricyanide (potassium salt) with Mg:Al layered double hydroxides (LDH) (having Mg:Al ratios of 2 and 3) are investigated using powder XRD and FTIR spectroscopy. Physically, the potassium ferricyanide is shown to intercalate with a small local field deformation similar to that seen for hexacyanocobaltate (III) in similar materials. Chemically, the reduction of ferricyanide to ferrocyanide upon intercalation is confirmed. Physical interactions of ferrocyanide with 3:1 LDH are shown spectroscopically to include the possible generation of anions in differing environments. Chemically, ferrocyanide is shown to generate cubic ferrocyanides (of the type M2MgFe(CN)6, where M=K+ or NH+4) under conditions where free Mg2+ is likely present in solution, namely, solutions with a pH lower than ∼7.5. It is shown that the reported 2112-cm-1 band found in some chemically altered LDH ferrocyanide is indeed due to interlayer ferricyanide, but that the 2080 cm-1 band is due to the cubic material.

  18. Chemical physics of decomposition of energetic materials. Problems and prospects

    International Nuclear Information System (INIS)

    Smirnov, Lev P

    2004-01-01

    The review is concerned with analysis of the results obtained in the kinetic and mechanistic studies on decomposition of energetic materials (explosives, powders and solid propellants). It is shown that the state-of-the art in this field is inadequate to the potential of modern chemical kinetics and chemical physics. Unsolved problems are outlined and ways of their solution are proposed.

  19. Production of nanomaterials: physical and chemical technologies

    International Nuclear Information System (INIS)

    Giorgi, Leonardo; Salernitano, Elena

    2015-01-01

    Are define nanomaterials those materials which have at least one dimension in the range between 1 and 100 nm. By the term nanotechnology refers, instead, to the study of phenomena and manipulation of materials at the atomic and molecular level. The materials brought to the nanometric dimensions take particular chemical-physical properties different from the corresponding conventional macro materials. Speaking about the structure of nanoscale, you can check some basic properties materials (eg. Melting temperature, magnetic and electrical properties) without changing its chemical composition. In this perspective are crucial knowledge and control of production processes in order to design and get the nanomaterial more suitable for a specific application. For this purpose, it describes a series of processes of production of nanomaterials with application examples. [it

  20. RESEARCH OF UV-PROTECTIVE ACTIVITY OF FERULIC ACID AS PART OF OINTMENT COMPOSITIONS WITH DIFFERENT PHYSICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    I. L. Abisalova

    2014-01-01

    Full Text Available Cosmetics with the ability to neutralize harmful influence of ultraviolet rays on skin are quite in demand. UV filters in creams composition are divided into two groups: physical and chemical. Antioxidants are used as chemical UV filters. The article presents the results of ferulic acid testing as UV filter in ointment bases with lipophile, hydrophile and lipophilic and hydrophilic properties. The dependence of ferulic acid efficiency from the base type where it was applied was established. The results received are correlated with data about release rate of ferulic acid received in vitro. Ointment bases with such emulsifiers as cetyl alcohol, base emulsifier and Olivem 1000 have the most signified UV protective effect of ferulic acid.

  1. Physical and Chemical Properties of Some Selected Rice Varieties

    African Journals Online (AJOL)

    User

    Physical and chemical properties of nine rice varieties grown and processed in Ebonyi .... Therefore, one tonne of a slender variety of rice will need more storage space than the ..... during washing and boiling of milled rice Starch 36:386-390.

  2. International Symposium 100 Years of Chemical Warfare : Research, Deployment, Consequences

    CERN Document Server

    Hoffmann, Dieter; Renn, Jürgen; Schmaltz, Florian; Wolf, Martin; One hundred years of chemical warfare : research, deployment, consequences; 100 Jahre Giftgaskrieg : Forschung, Einsatz, Folgen chemischer Massenvernichtungswaffen

    2017-01-01

    On April 22, 1915, the German military released 150 tons of chlorine gas at Ypres, Belgium. Carried by a long-awaited wind, the chlorine cloud passed within a few minutes through the British and French trenches, leaving behind at least 1,000 dead and 4,000 injured. This chemical attack, which amounted to the first use of a weapon of mass destruction, marks a turning point in world history. The preparation as well as the execution of the gas attack was orchestrated by Fritz Haber, the director of the Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry in Berlin-Dahlem. During World War I, Haber transformed his research institute into a center for the development of chemical weapons (and of the means of protection against them). Bretislav Friedrich and Martin Wolf (Fritz Haber Institute of the Max Planck Society, the successor institution of Haber’s institute) together with Dieter Hoffmann, Jürgen Renn, and Florian Schmaltz (Max Planck Institute for the History of Science) organized an inte...

  3. Physical, chemical and texture characteristics of Aro cheese

    Directory of Open Access Journals (Sweden)

    González, M.L.

    2017-10-01

    Full Text Available In 2016, Mexico’s total annual production of cheese was 375,181 tons. Cheese is widely consumed among all socioeconomic groups, and the decision to purchase this product is based on income, with a wide variety of cheeses, brands, and styles available. The fresco cheese is the most popular type and is mostly produced according to traditional or artisanal methods in small family businesses, and small and medium-sized enterprises. It is made with the milk of the producers' livestock, giving it an added value. In Mexico, however, there is not enough scientific information related to the characterization of various dairy products of artisanal production, for example, Aro cheese. The aim of the present study was to define the physical, chemical, and rheological characteristics of the Aro cheese that is commercialized in Teotitlán de Flores Magón, Oaxaca, Mexico. Twenty-four samples of Aro cheese were collected in four establishments with high sales in Teotitlán de Flores Magón, Oaxaca, for analysis physical (Diameter, weight, height and color, chemical (pH, acidity, aw, chlorides, moisture, ashes, protein and fat, and texture (hardness, springiness, adhesiveness and cohesiveness. No difference was found in weight, diameter, height, and color (L* and b*. However, differences in hardness and cohesiveness were found. Although Aro cheese is characterized as an enzymatically coagulated cheese, pH values of 5.82 to 6.08 were recorded, and the data relating to moisture, protein, fat, and chlorides are similar to other Mexican fresh cheeses. The cheese of Aro that is commercialized in Teotitlán de Flores Magón, presents similar physical, chemical and texture characteristics to other fresh cheeses of artisanal production.

  4. Nuclear physics research report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the 1988 Nuclear Physics Research Report for the University of Surrey, United Kingdom. The report includes both experimental nuclear structure physics and theoretical nuclear physics research work. The experimental work has been carried out predominantly with the Nuclear Structure Facility at the SERC Daresbury Laboratory, and has concerned nuclear shapes, shape coexistence, shape oscillations, single-particle structures and neutron-proton interaction. The theoretical work has involved nuclear reactions with a variety of projectiles below 1 GeV per nucleon incident energy, and aspects of hadronic interactions at intermediate energies. (U.K.)

  5. Physical and chemical events that follow the passage of a charged particle in liquid water

    International Nuclear Information System (INIS)

    Wright, H.A.; Hamm, R.N.; Turner, J.E.; Magee, J.L.; Chatterjee, A.

    1985-01-01

    Biological effects of radiation are the result of a complicated sequence of events that begins with initial physical interactions that are complete by approx. 10 -15 s, followed by chemical interactions that begin at approx. 10 -11 s and are complete by approx. 10 -6 s, and followed by later biochemical and biological events, some of which may not occur for years. A central problem in radiation physics and radiation chemistry is to understand the details of the physical and chemical events that occur during that first microsecond following the passage of a charged particle. Significant progress has been made recently at linking early physical events with later chemical events. We have developed a Monte Carlo computer code to calculate the position and identity of each physical event that a charged particle (electron, proton, alpha) and all of its secondaries undergoes in traversing liquid water. The code then calculates the position and identity of each reactive chemical species (ion or radical) that is produced from these physical events and is present at 10 -11 s, and then follows each reactant through the diffusion and chemical reaction stage of track development. This work will be discussed and examples of ''pictures'' of charged-particle tracks at various times will be shown. 11 refs., 9 figs

  6. Perspective: Fifty years of density-functional theory in chemical physics

    International Nuclear Information System (INIS)

    Becke, Axel D.

    2014-01-01

    Since its formal inception in 1964–1965, Kohn-Sham density-functional theory (KS-DFT) has become the most popular electronic structure method in computational physics and chemistry. Its popularity stems from its beautifully simple conceptual framework and computational elegance. The rise of KS-DFT in chemical physics began in earnest in the mid 1980s, when crucial developments in its exchange-correlation term gave the theory predictive power competitive with well-developed wave-function methods. Today KS-DFT finds itself under increasing pressure to deliver higher and higher accuracy and to adapt to ever more challenging problems. If we are not mindful, however, these pressures may submerge the theory in the wave-function sea. KS-DFT might be lost. I am hopeful the Kohn-Sham philosophical, theoretical, and computational framework can be preserved. This Perspective outlines the history, basic concepts, and present status of KS-DFT in chemical physics, and offers suggestions for its future development

  7. Perspective: Fifty years of density-functional theory in chemical physics

    Energy Technology Data Exchange (ETDEWEB)

    Becke, Axel D., E-mail: axel.becke@dal.ca [Department of Chemistry, Dalhousie University, 6274 Coburg Rd., P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada)

    2014-05-14

    Since its formal inception in 1964–1965, Kohn-Sham density-functional theory (KS-DFT) has become the most popular electronic structure method in computational physics and chemistry. Its popularity stems from its beautifully simple conceptual framework and computational elegance. The rise of KS-DFT in chemical physics began in earnest in the mid 1980s, when crucial developments in its exchange-correlation term gave the theory predictive power competitive with well-developed wave-function methods. Today KS-DFT finds itself under increasing pressure to deliver higher and higher accuracy and to adapt to ever more challenging problems. If we are not mindful, however, these pressures may submerge the theory in the wave-function sea. KS-DFT might be lost. I am hopeful the Kohn-Sham philosophical, theoretical, and computational framework can be preserved. This Perspective outlines the history, basic concepts, and present status of KS-DFT in chemical physics, and offers suggestions for its future development.

  8. Chemical and physical characterisation of biomass-based pyrolysis oils. Literature view

    Energy Technology Data Exchange (ETDEWEB)

    Fagernaes, L [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    Biomass-based pyrolysis oils are complex mixtures of mainly organic compounds and water. The determination of their physical and chemical properties and chemical composition is a challenge for researchers. Characterisation of biomass pyrolysis oils has been studied at many universities in North America and Europe in the 1980s and 1990s. The existing literature on the analytical methods used for these oils is reviewed in this report. For characterising the chemical composition, the bio-oils have first been mainly fractionated into different classes. Solvent extraction and adsorption chromatography are the most general methods used. In adsorption chromatography, the oils have been fractionated into different hydrocarbon and polar fractions. The fractions obtained have been analysed with various chromatographic and spectroscopic methods. Gas chromatography/mass spectrometry (GC/MS) technique is the analytical method most widely used and well adaptable for the fractions. For high-molecular-mass and highly polar compounds liquid chromatographic (LC) techniques as well as infrared (FT-IR) and nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopies are more suitable due to the low volatility of pyrolysis oils. For whole pyrolysis oils, LC techniques, primarily size exclusion chromatography and FT-IR and FT-NMR spectroscopies have proved to be useful methods

  9. Chemical and physical characterisation of biomass-based pyrolysis oils. Literature view

    Energy Technology Data Exchange (ETDEWEB)

    Fagernaes, L. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    Biomass-based pyrolysis oils are complex mixtures of mainly organic compounds and water. The determination of their physical and chemical properties and chemical composition is a challenge for researchers. Characterisation of biomass pyrolysis oils has been studied at many universities in North America and Europe in the 1980s and 1990s. The existing literature on the analytical methods used for these oils is reviewed in this report. For characterising the chemical composition, the bio-oils have first been mainly fractionated into different classes. Solvent extraction and adsorption chromatography are the most general methods used. In adsorption chromatography, the oils have been fractionated into different hydrocarbon and polar fractions. The fractions obtained have been analysed with various chromatographic and spectroscopic methods. Gas chromatography/mass spectrometry (GC/MS) technique is the analytical method most widely used and well adaptable for the fractions. For high-molecular-mass and highly polar compounds liquid chromatographic (LC) techniques as well as infrared (FT-IR) and nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopies are more suitable due to the low volatility of pyrolysis oils. For whole pyrolysis oils, LC techniques, primarily size exclusion chromatography and FT-IR and FT-NMR spectroscopies have proved to be useful methods

  10. JILA Science | Exploring the frontiers of physics

    Science.gov (United States)

    print logo Main menu Research Research Areas Research Highlights JILA Discoveries JILA Physics Frontier Institutes Give to JILA Search form Search Search Advanced JILA Sites: JILA Physics Frontier Center JILA Molecular Physics Biophysics Chemical Physics Laser Physics Nanoscience Precision Measurement Quantum

  11. Irradiation of 'minas frescal' cheese: physical-chemical aspects

    International Nuclear Information System (INIS)

    Gurgel, Maria Sylvia de C.C. do Amaral; Spoto, Marta H.F.; Domardo, Raquel E.; Gutierrez, Erica Maria Roel

    2000-01-01

    The present work studied the viability of gamma radiation as alternative method of conservation 'minas frescal' cheese through by determining its effect on the physical-chemical properties of this product after irradiation. Cheese elaborated in the Laboratory of Food Irradiation CENA/USP, were exposed to doses of 0 (it controls); 1; 2; 3 and 4 kGy and stored under refrigeration (±5 deg C). The analysis were accomplished in the 1st, 7th and 14th day of storage considered the following parameters: acidity, pH, moisture and level of proteolysis according to methodology of Association of Official Analytical Chemists (A.O.A.C.),1995. The results revealed that the dose of 2 kGy was the most indicated for irradiation of that type of cheese, because after this treatment, the product maintained in good conditions for consumption after 14 days of storage. It was concluded that gamma radiation can be used as a method of conservation of 'minas frescal' cheese, without causing alterations in its physical-chemical characteristics. (author)

  12. Experimental atomic and molecular physics research

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Atomic Physics research in the Physics Division consists of five ongoing experimental programs: dissociation and other interactions of energetic molecular ions in solid and gaseous targets; beam-foil research and collision dynamics of heavy ions; photoionization-photoelectron research; spectroscopy of free atoms and molecules, high precision laser-rf double-resonance spectroscopy with atomic and molecular beams; and Moessbauer effect research

  13. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2010-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  14. Chemical, physical and tribological investigation of polymercaptanized soybean oil

    Science.gov (United States)

    Polymercaptanized soybean oil (PMSO) was investigated for its chemical, physical and tribological properties relative to soybean oil (SO) and also as a potential multi-functional lubricant additive in high oleic sunflower oil (HOSuO). Analytical investigations showed that PMSO is obtained by convers...

  15. [Chemical, physical and biological risks in law enforcement].

    Science.gov (United States)

    Magrini, Andrea; Grana, Mario; Vicentini, Laura

    2014-01-01

    Chemical, physical and biological risks among public safety and security forces. Law enforcement personnel, involved in routine tasks and in emergency situations, are exposed to numerous and several occupational hazards (chemical, physical and biological) whith likely health and security consequences. These risks are particularly high when the organization and preparation are inadequate, there is a lacking or insufficient coordination, information, education and communication and safety and personal protective equipment are inadequate or insufficient. Despite the objective difficulties, caused by the actual special needs related to the service performed or the organizational peculiarities, the risk identification and assessment is essential for worker health and safety of personnel, as provided for by Legislative Decree no. 81/2008. Chemical risks include airborne pollutants due to vehicular traffic (carbon monoxide, ultrafine particles, benzene, polycyclic aromatic hydrocarbons, aldehydes, nitrogen and sulfur oxides, lead), toxic gases generated by combustion process following fires (aromatic hydrocarbons, PAHs, dioxins and furans, biphenyls, formaldehyde, metals and cyanides), substances emitted in case of chemical accidents (solvents, pesticides, toxic gases, caustics), drugs (methylamphetamine), riot control agents and self-defence spray, lead at firing ranges, and several materials and reagents used in forensic laboratory. The physical hazards are often caused by activities that induce biomechanical overload aid the onset of musculoskeletal disorders, the use of visual display terminals and work environments that may expose to heat stress and discomfort, high and low pressure, noise, vibrations, ionizing and non-ionizing radiation. The main biological risks are blood-borne diseases (viral hepatitis, AIDS), airborne diseases (eg, tuberculosis, meningitis, SARS, anthrax), MRSA, and vector-borne diseases. Many of these risk factors are unavoidable or are not

  16. An overview of nuclear physics research

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2010-01-01

    This overview is aimed to give a general picture of the global developments in nuclear physics research over the years since the beginning. It is based on the inaugural talk given at the 54th annual nuclear physics symposium organized by the Department of Atomic Energy, which was held as an International Symposium at BARC, Mumbai during Dec 8-12, 2009. The topics of nuclear fission, nuclear shell effects, super-heavy nuclei, and expanding frontiers of nuclear physics research with the medium to ultra-relativistic energy heavy-ion reactions are in particular highlighted. Accelerator driven sub-critical reactor system (ADS) is briefly described in the end as an example of spin-off of nuclear physics research. (author)

  17. High energy physics research

    International Nuclear Information System (INIS)

    Piroue, P.A.

    1992-10-01

    The goal of this research is to understand the fundamental constituents of matter and their interactions. At this time, the following activities are underway: e + e - interactions and Z 0 physics at CERN; studies to upgrade the L3 detector at LHC; very high statistics charm physics at Fermilab; search for the H particle at BNL; search for the fifth force; rare kaon decay experiments at BNL; study of B-meson physics at hadron colliders; e + e - pair creation by light at SLAC; R ampersand D related to SSC experiments and the GEM detector; and theoretical research in elementary particle physics and cosmology. The main additions to the activities described in detail in the original grant proposal are (1) an experiment at SLAC (E-144) to study strong-field QED effects in e-laser and γ-laser collisions, and (2) a search for the H particle at BNL (E-188). The R ampersand D efforts for the GEM detector have also considerably expanded. In this paper we give a brief status report for each activity currently under way

  18. Research accomplishments in particle physics: Annual progress report

    International Nuclear Information System (INIS)

    1988-01-01

    This document presents our report of the research accomplishments of Boston University researchers in six projects in high energy physics research: Colliding Beams Physics; Proton Decay; Monopole Detection with MACRO; Precision Muon G-2 Experiment; Accelerator Design Physics; and Theoretical Physics

  19. Experimental nuclear physics research in Hungary

    International Nuclear Information System (INIS)

    Koltay, Ede.

    1984-01-01

    The status and recent results of experimental nuclear physics in Hungary is reviewed. The basic nuclear sciences, instrumental background and international cooperation are discussed. Personal problems and the effects of the international scientific deconjuncture are described. The applied nuclear and interdisciplinary researches play an important role in Hungarian nuclear physics. Some problems of cooperation of Hungarian nuclear and other research institutes applying or producing nuclear analytical technology are reviewed. The new instrument, the Debrecen cyclotron under construction gives new possibilities to basic and applied researches. A new field of Hungarian nuclear physics is the fusion and plasma research using tokamak equipment, the main topics of which are plasma diagnostics and fusion control systems. Some practical applications of Hungarian nuclear physical results, e.g. establishment of new analytical techniques like PIXE, RBS, PIGE, ESCA, etc. are summarized. (D.Gy.)

  20. The EPFL Plasma Physics Research Centre

    International Nuclear Information System (INIS)

    2001-01-01

    The Plasma Physics Research Centre (CRPP) is a non-departmental unit of the EPFL, and currently employs about 130 people, about 105 on the EPFL site and the rest at the Paul Scherrer Institute, PSI, in Villigen, Switzerland. The CRPP is a National Competence Centre in the field of Plasma Physics. In addition to plasma physics teaching, its missions are primarily the pursuit of scientific research in the field of controlled fusion within the framework of the EURATOM-Swiss Confederation Association and the development of its expertise as well as technology transfer in the field of materials research. As the body responsible for all scientific work on controlled fusion in Switzerland, the CRPP plays a national role of international significance. This document of 6 pages presents the explanation of the Plasma Physics Research Centre' activities (CRPP). (author)

  1. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  2. Physical-chemical characteristics of whitening toothpaste and evaluation of its effects on enamel roughness

    Directory of Open Access Journals (Sweden)

    Sérgio Paulo Hilgenberg

    2011-08-01

    Full Text Available This in vitro study evaluated the physical-chemical characteristics of whitening toothpastes and their effect on bovine enamel after application of a bleaching agent (16% carbamide peroxide. Physical-chemical analysis was made considering mass loss by desiccation, ash content and pH of the toothpastes. Thirty bovine dental enamel fragments were prepared for roughness measurements. The samples were subjected to bleaching treatments and simulated brushing: G1. Sorriso Dentes Brancos (Conventional toothpaste, G2. Close-UP Whitening (Whitening toothpaste, and G3. Sensodyne Branqueador (Whitening toothpaste. The average roughness (Ra was evaluated prior to the bleaching treatment and after brushing. The results revealed differences in the physical-chemical characteristics of the toothpastes (p < 0.0001. The final Ra had higher values (p < 0.05 following the procedures. The mean of the Ra did not show significant differences, considering toothpaste groups and bleaching treatment. Interaction (toothpaste and bleaching treatment showed significant difference (p < 0.0001. The whitening toothpastes showed differences in their physical-chemical properties. All toothpastes promoted changes to the enamel surface, probably by the use of a bleaching agent.

  3. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  4. Materials and Molecular Research Division annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Research is presented concerning materials science including metallurgy and ceramics; solid state physics; and materials chemistry; chemical sciences covering radiation science, chemical physics, and chemical energy; nuclear science; coal research; solar energy; magnetic fusion, conservation; and environmental research. (FS)

  5. Physical and chemical events that follow the passage of a charged particle in liquid water

    International Nuclear Information System (INIS)

    Wright, H.A.; Hamm, R.N.; Turner, J.E.; Magee, J.L.; Chatterjee, A.

    1986-01-01

    Biological effects of radiation are the result of a complicated sequence of events that begins with initial physical interactions that are complete by ∼10 -15 s, followed by chemical interactions that begin at ∼10 -11 s and are completed by ∼10 -15 s, and followed by later biochemical and biological events, some of which may not occur for years. A central problem in radiation physics and radiation chemistry is to understand the details of the physical and chemical events that occur during that first microsecond following the passage of a charged particle. Significant progress has been made recently at linking early physical events with later chemical events. The authors have developed a Monte Carlo computer code to calculate the position and identity of each physical event that a charged particle (electron, proton, alpha) and all of its secondaries undergoes in traversing liquid water. The code then calculates the position and identity of each reactive chemical species (ion or radical) that is produced from these physical events and is present at 10 -11 s, and then follows each reactant through the diffusion and chemical reaction stage of track development. This work will be discussed and examples of pictures of charged-particle tracks at various times will be shown. 11 references, 9 figures, 4 tables

  6. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2012-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using highly sensitive and advanced laser-based spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been applied for the chemical speciation of actinide in aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. Development of TRLFS technology for the chemical speciation of actinides, Development of laser-induced photo-acoustic spectroscopy (LPAS) system, Application of LIBD technology to investigate dynamic behaviors of actinides dissolution reactions, Development of nanoparticle analysis technology in groundwater using LIBD, Chemical speciation of plutonium complexes by using a LWCC system, Development of LIBS technology for the quantitative analysis of actinides, Evaluation on the chemical reactions between actinides and humic substances, Spectroscopic speciation of uranium-ligand complexes in aqueous solution, Chemical speciation of actinides adsorbed on metal oxides surfaces

  7. Calculations of physical and chemical reactions with DNA in aqueous solution from Auger cascades

    International Nuclear Information System (INIS)

    Wright, H.A.; Hamm, R.N.; Turner, J.E.; Howell, R.W.; Rao, D.V.; Sastry, K.S.R.

    1989-01-01

    Monte Carlo calculations are performed of the physical and chemical interactions in liquid water by electrons produced during Auger cascades resulting from the decay of various radionuclides. Estimates are also made of the number of direct physical and indirect chemical interactions that would be produced on DNA located near the decay site. 13 refs., 8 figs

  8. Optimization of the sampling scheme for maps of physical and chemical properties estimated by kriging

    Directory of Open Access Journals (Sweden)

    Gener Tadeu Pereira

    2013-10-01

    Full Text Available The sampling scheme is essential in the investigation of the spatial variability of soil properties in Soil Science studies. The high costs of sampling schemes optimized with additional sampling points for each physical and chemical soil property, prevent their use in precision agriculture. The purpose of this study was to obtain an optimal sampling scheme for physical and chemical property sets and investigate its effect on the quality of soil sampling. Soil was sampled on a 42-ha area, with 206 geo-referenced points arranged in a regular grid spaced 50 m from each other, in a depth range of 0.00-0.20 m. In order to obtain an optimal sampling scheme for every physical and chemical property, a sample grid, a medium-scale variogram and the extended Spatial Simulated Annealing (SSA method were used to minimize kriging variance. The optimization procedure was validated by constructing maps of relative improvement comparing the sample configuration before and after the process. A greater concentration of recommended points in specific areas (NW-SE direction was observed, which also reflects a greater estimate variance at these locations. The addition of optimal samples, for specific regions, increased the accuracy up to 2 % for chemical and 1 % for physical properties. The use of a sample grid and medium-scale variogram, as previous information for the conception of additional sampling schemes, was very promising to determine the locations of these additional points for all physical and chemical soil properties, enhancing the accuracy of kriging estimates of the physical-chemical properties.

  9. Recent nuclear physics research at IMP

    International Nuclear Information System (INIS)

    Jin Genming

    1998-01-01

    The recent progresses in the nuclear physics research in IMP (Institute of Modern Physics) are reviewed including the synthesis and studies of nuclei far from stability and properties of hot nuclei. Heavy Ion Research Facility Lanzhou (HIRFL) is of cyclotron family delivering intermediate energy heavy ions. During the recent years, progresses have been made in the studies of heavy ion physics as well as in the development of the HIRFL. This paper will begin with the recent upgrading of HIRFL with an emphasis on the development of Radioactive Ion Beam Line Lanzhou (RIBLL), and then be focused on the physics research in IMP including intermediate energy heavy ion collisions and hot nuclei, synthesis and studies of nuclei far from stability. (J.P.N)

  10. Physical and chemical characteristics of off vine ripened mango ...

    African Journals Online (AJOL)

    The need to develop the best off vine mango ripening technique for both consumption and processing was investigated. Some physical and chemical measurements were performed on mature Green Dodo mangoes before and during a 3-day and 6-day ripening period by smoked pit ripening (SPR), ethylene (fruit ...

  11. MgB2 thin films by hybrid physical-chemical vapor deposition

    International Nuclear Information System (INIS)

    Xi, X.X.; Pogrebnyakov, A.V.; Xu, S.Y.; Chen, K.; Cui, Y.; Maertz, E.C.; Zhuang, C.G.; Li, Qi; Lamborn, D.R.; Redwing, J.M.; Liu, Z.K.; Soukiassian, A.; Schlom, D.G.; Weng, X.J.; Dickey, E.C.; Chen, Y.B.; Tian, W.; Pan, X.Q.; Cybart, S.A.; Dynes, R.C.

    2007-01-01

    Hybrid physical-chemical vapor deposition (HPCVD) has been the most effective technique for depositing MgB 2 thin films. It generates high magnesium vapor pressures and provides a clean environment for the growth of high purity MgB 2 films. The epitaxial pure MgB 2 films grown by HPCVD show higher-than-bulk T c due to tensile strain in the films. The HPCVD films are the cleanest MgB 2 materials reported, allowing basic research, such as on magnetoresistance, that reveals the two-band nature of MgB 2 . The carbon-alloyed HPCVD films demonstrate record-high H c2 values promising for high magnetic field applications. The HPCVD films and multilayers have enabled the fabrication of high quality MgB 2 Josephson junctions

  12. Chemical Sciences Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  13. Group Theory with Applications in Chemical Physics

    Science.gov (United States)

    Jacobs, Patrick

    2005-10-01

    Group Theory is an indispensable mathematical tool in many branches of chemistry and physics. This book provides a self-contained and rigorous account on the fundamentals and applications of the subject to chemical physics, assuming no prior knowledge of group theory. The first half of the book focuses on elementary topics, such as molecular and crystal symmetry, whilst the latter half is more advanced in nature. Discussions on more complex material such as space groups, projective representations, magnetic crystals and spinor bases, often omitted from introductory texts, are expertly dealt with. With the inclusion of numerous exercises and worked examples, this book will appeal to advanced undergraduates and beginning graduate students studying physical sciences and is an ideal text for use on a two-semester course. An introductory and advanced text that comprehensively covers fundamentals and applications of group theory in detail Suitable for a two-semester course with numerous worked examples and problems Includes several topics often omitted from introductory texts, such as rotation group, space groups and spinor bases

  14. Chemical and physical soil attributes in integrated crop-livestock system under no-tillage

    OpenAIRE

    Silva,Hernani Alves da; Moraes,Anibal de; Carvalho,Paulo César de Faccio; Fonseca,Adriel Ferreira da; Caires,Eduardo Fávero; Dias,Carlos Tadeu dos Santos

    2014-01-01

    Although integrated crop-livestock system (ICLS) under no-tillage (NT) is an attractive practice for intensify agricultural production, little regional information is available on the effects of animal grazing and trampling, particularly dairy heifers, on the soil chemical and physical attributes. The objective of this study was to evaluate the effects of animal grazing on the chemical and physical attributes of the soil after 21 months of ICLS under NT in a succession of annual winter pastur...

  15. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  16. Investigation of the influence of physical and chemical properties of biodiesel in the fuel economy, energy and environmental performance of motor diesel

    Directory of Open Access Journals (Sweden)

    Korpach А.

    2016-08-01

    Full Text Available Due to exhaustion of world energy reserves and significant environmental pollution by harmful substances, current research aimed at determining the effectiveness of alternative fuels. In the article compare two samples of biodiesel and studied their physical and chemical properties accordance with International Standard. Effect of different samples of biodiesel in fuel economy, energy and environmental performance automotive diesel determined by the bench tests of 4CH11,0/12.5 (D-241 diesel. The difference between physical and chemical properties of two biodiesel samples influenced to the fuel efficiency and environmental performance of the diesel. Operation on biodiesel with higher density and kinematic viscosity provide increases of maximum power and torque and increase fuel consumption. It also increases the concentration of nitrogen oxides in exhaust gases and it opacity. The results allow evaluate how the deviation of physical and chemical properties of biodiesel could affect the operational performance of the engine.

  17. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors

    Science.gov (United States)

    Liu, Kui; Lin, Xialu; Zhao, Jinshun

    2013-01-01

    Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors. PMID:23901269

  18. Understanding the physical and chemical changes on the three levels of the presentation of chemical concepts in students primary education

    OpenAIRE

    Bregar, Anja

    2017-01-01

    Physical and chemical changes are learning contents that address the essential chemical concepts in processes at particle level. When explaining chemical concepts at particle level, it is necessary to use various and appropriate visualization elements, such as (1) pictures, (2) photographs, (3) film excerpts (4) 2D or 3D stationary submicroscopic representations, (5) 2D and 3D dynamic contamination schemes, etc. This way, teachers can explain and interpret a chemical concept on three presenta...

  19. Radiological and Environmental Research Division annual report, October 1978-September 1979. Part I. Fundamental molecular physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Research on the chemical physics of atoms and molecules, especially their interaction with external agents such as photons and electrons is reported. Abstracts of seven individual items from the report were prepared separately for the data base. (GHT)

  20. A European Aerosol Phenomenology - 3: Physical and Chemical 2 Characteristics of Particulate Matter from 60 Rural, Urban, and Kerbside Sites Across Europe

    Czech Academy of Sciences Publication Activity Database

    Putaud, J.-P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Harrison, R. M.; Hansson, H.C.; Herrmann, H.; Hitzenberger, R.; Hüglin, C.; Jones, A.M.; Kasper-Giebl, A.; Kiss, G.; Kousa, A.; Kuhlbusch, T.A.J.; Löschau, G.; Maenhaut, W.; Molnar, A.; Moreno, T.; Pekkanen, J.; Perrino, C.; Pitz, M.; Puxbaum, H.; Querol, X.; Rodriguez, S.; Salma, I.; Schwarz, Jaroslav; Smolík, Jiří; Schneider, J.; Spindler, G.; ten Brink, H.; Tursic, J.; Viana, M.; Wiedensohler, A.; Raes, F.

    2010-01-01

    Roč. 44, č. 10 (2010), s. 1308-1320 ISSN 1352-2310 Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosol * chemical composition * number concentration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.226, year: 2010

  1. Physical, sensory and chemical properties of bread prepared from ...

    African Journals Online (AJOL)

    Physical, sensory and chemical properties of bread prepared from wheat and ... Different levels (0, 1, 2 and 3% w/w) of cissus gum powder was added to ... flours for bread making where 100% wheat bread without cissus gum served as control. ... serve as a gluten substitute in preparing acceptable wheat bread substituted ...

  2. Gravitational Physics Research

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.

  3. Summaries of FY 1986 research in nuclear physics

    International Nuclear Information System (INIS)

    1987-03-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics

  4. Physical and chemical investigations on natural dyes

    Science.gov (United States)

    Acquaviva, S.; D'Anna, E.; de Giorgi, M. L.; Della Patria, A.; Baraldi, P.

    2010-09-01

    Natural dyes have been used extensively in the past for many purposes, such us to colour fibers and to produce inks, watercolours and paints, but their use declined rapidly after the discovery of synthetic colours. Nowadays we witness a renewed interest, as natural dyes are neither toxic nor polluting. In this work, physical and chemical properties of four selected dyes, namely red (Madder), yellow (Weld and Turmeric) and blue (Woad) colours, produced by means of traditional techniques at the Museo dei Colori Naturali (Lamoli, Italy), have been investigated. The chromatic properties have been studied through the reflectance spectroscopy, a non-invasive technique for the characterisation of chromaticity. Reflection spectra both from powders and egg-yolk tempera models have been acquired to provide the typical features of the dyes in the UV-vis spectral range. Moreover, to assess the feasibility of laser cleaning procedures, tempera layers were investigated after irradiation with an excimer laser. Micro Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray analyses have complemented the survey, returning compositional and morphological information as well. Efforts have been made to give scientific feedback to the production processes and to support the research activity in the restoration of the artworks where these dyes were employed.

  5. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-03-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  6. Chemical Safety Research Advances in Support of Lautenberg Act

    Science.gov (United States)

    EPA researchers are developing new ways to identify which chemicals to prioritize for further testing, to provide better access to information about chemicals, and to understand what potential risks chemicals may pose to humans and the environment.

  7. Chemical and physical effects of crowding on growth and survival of Penaeus monodon Fabricius post-larvae

    NARCIS (Netherlands)

    Nga, B.T.; Lürling, M.F.L.L.W.; Peeters, E.T.H.M.; Roijackers, R.M.M.; Scheffer, M.; Nghia, T.T.

    2005-01-01

    The hypothesis that crowding effects through physical and/or chemical interference may be an important factor in lowering the chance of survival and reducing growth of Penaeus monodon post-larvae under high stocking densities was tested. To separate physical interference from chemically-exerted

  8. Physical and chemical characterization of waste wood derived biochars.

    Science.gov (United States)

    Yargicoglu, Erin N; Sadasivam, Bala Yamini; Reddy, Krishna R; Spokas, Kurt

    2015-02-01

    Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties. Favorable properties of biochar include its high surface area and porosity, and ability to adsorb a variety of compounds, including nutrients, organic contaminants, and some gases. Physical and chemical properties of biochars are dictated by the feedstock and production processes (pyrolysis or gasification temperature, conversion technology and pre- and post-treatment processes, if any), which vary widely across commercially produced biochars. In this study, several commercially available biochars derived from waste wood are characterized for physical and chemical properties that can signify their relevant environmental applications. Parameters characterized include: physical properties (particle size distribution, specific gravity, density, porosity, surface area), hydraulic properties (hydraulic conductivity and water holding capacity), and chemical and electrochemical properties (organic matter and organic carbon contents, pH, oxidation-reduction potential and electrical conductivity, zeta potential, carbon, nitrogen and hydrogen (CHN) elemental composition, polycyclic aromatic hydrocarbons (PAHs), heavy metals, and leachable PAHs and heavy metals). A wide range of fixed carbon (0-47.8%), volatile matter (28-74.1%), and ash contents (1.5-65.7%) were observed among tested biochars. A high variability in surface area (0.1-155.1g/m(2)) and PAH and heavy metal contents of the solid phase among commercially available biochars was also observed (0.7-83 mg kg(-1)), underscoring the importance of pre-screening biochars prior to application. Production conditions appear to dictate PAH content--with the highest PAHs observed in biochar produced via fast pyrolysis and lowest among the gasification

  9. Development and Validation of an Instrument to Measure Student Knowledge Gains for Chemical and Physical Change for Grades 6-8

    Science.gov (United States)

    Christian, Brittany N.; Yezierski, Ellen J.

    2012-01-01

    Teachers tend to instruct topically, which requires the student to use multiple and interconnected concepts to succeed in each instructional unit. Therefore, it is beneficial to combine research on related concepts to form topic driven instruments to better assist teachers in assessing and instructing students. Chemical and physical change as a…

  10. Research in particle physics

    International Nuclear Information System (INIS)

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron endash positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the ''electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider

  11. Investigations of Physical-Chemical and Microbiological Deterioration of Chocolate Pralines

    DEFF Research Database (Denmark)

    Nielsen, Cecilie Lykke Marvig

    Chocolate pralines, defined as soft fruit, sugar or fat based fillings covered with a chocolate shell, are multidomain, complex food products. The chocolate shell consists of a continuous fat phase in which sugar and cocoa particles are dispersed. The fillings can vary in composition and texture...... of the sugar and cocoa particles plays a role in the sensorial assessment of the chocolate. Fillings for chocolate pralines varies a lot and no common quality parameters can be set for these, but needs to be defined for the individual filling. The shelf life of chocolate pralines is determined by numerous...... and complex interactions between intrinsic and external parameters, and spoilage can be of either microbial or physical-chemical character or a combination of the two. Chocolate belong to the group of low moisture food products and is only susceptible to physical-chemical spoilage, while the fillings has...

  12. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    Whitaker, J.S.

    1990-01-01

    This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: Colliding Beams Physics; Accelerator Design Physics; MACRO Project; Proton Decay Project; Theoretical Particle Physics; Muon G-2 Project; and Hadron Collider Physics. The scope of each of these projects is presented in detail in this paper

  13. The Migration and Entrapment of DNAPLs in Physically and Chemically Heterogeneous Porous Media - Final Report - 09/15/1996 - 09/15/2000; FINAL

    International Nuclear Information System (INIS)

    Abriola, L. M.; Demond, A. H.

    2000-01-01

    Hazardous dense nonaqueous phase liquids (DNAPLs), such as chlorinated solvents, are slightly water soluble and pose a serious threat to soil and groundwater supplies in many portions of the United States. The migration and entrapment of DNAPLs in the subsurface environment is typically believed to be controlled by physical heterogeneities; i.e, layers and lenses of contrasting soil texture. The rationale for this assumption is that capillarity, as determined by the soil texture, is the dominant transport mechanism. Capillarity also depends on interfacial tension and medium wettability. Interfacial tension and medium wettability may be spatially and temporally dependent due to variations in aqueous phase chemistry, contaminant aging, and/or variations in mineralogy and organic matter distributions. Such chemical heterogeneities have largely been ignored to date, even though they are known to have dramatic effects on the hydraulic property relations. Numerical multiphase flow and transport models typically assume that solids are water-wet and that interfacial tension is constant. The primary objective of this research is to investigate the influence of coupled physical and chemical heterogeneities on the migration and entrapment of DNAPLs. This objective will be accomplished through a combination of laboratory and numerical experiments. Laboratory experiments will be conducted to examine: (i) aqueous phase chemistry effects on medium wettability and interfacial tension; and (ii) relative permeability-saturation-capillary pressure relations for chemically heterogeneous systems. An important objective of this research is to modify a two-dimensional multiphase flow and transport model to account for chemically and physically heterogeneous systems. This numerical simulator will be used in conjunction with independently measured parameters to simulate two-dimensional DNAPL infiltration experiments. Comparisons of simulated and laboratory data will provide a means to

  14. Summaries of FY 1988 research in nuclear physics

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. The nuclear physics research summaries in this document were initially prepared by the investigators, then reviewed and edited by DOE staff. They describe the general character and goals of the research programs, current research efforts, especially significant recent results, and plans for the near future. The research summaries are organized into two groups: research programs at national laboratories and those at universities, with the material arranged alphabetically by institution. The names of all Ph.D.-level personnel who are primarily associated with the work are included. The FY 1988 funding levels are also provided. Included for the first time are activities of the nuclear data program, which was incorporated within nuclear physics in FY 1987. We remind the readers that this compilation is just an overview of the Nuclear Physics program. Primary publications should be used for reference to the work and for a more complete and accurate understanding

  15. Surface treatments for biological, chemical and physical applications

    CERN Document Server

    Karaman, Mustafa

    2017-01-01

    A step-by-step guide to the topic with a mix of theory and practice in the fields of biology, chemistry and physics. Straightforward and well-structured, the first chapter introduces fundamental aspects of surface treatments, after which examples from nature are given. Subsequent chapters discuss various methods to surface modification, including chemical and physical approaches, followed by the characterization of the functionalized surfaces. Applications discussed include the lotus effect, diffusion barriers, enzyme immobilization and catalysis. Finally, the book concludes with a look at future technology advances. Throughout the text, tutorials and case studies are used for training purposes to grant a deeper understanding of the topic, resulting in an essential reference for students as well as for experienced engineers in R&D.

  16. Physical and chemical stability of palonosetron HCl in 4 infusion solutions.

    Science.gov (United States)

    Trissel, Lawrence A; Xu, Quanyun A

    2004-10-01

    Palonosetron HCl is a selective 5-HT(3) receptor antagonist used for the prevention of chemotherapy-induced nausea and vomiting. Palonosetron HCl may be diluted in an infusion solution for administraton. Consequently, stability information is needed for palonosetron HCl admixed in common infusion solutions. To evaluate the physical and chemical stability of palonosetron HCl in concentrations of 5 and 30 microg/mL in dextrose 5% injection, NaCl 0.9% injection, dextrose 5% in NaCl 0.45% injection, and dextrose 5% in lactated Ringer's injection. Triplicate test samples of palonosetron HCl at each concentration in each diluent were tested. Samples were stored and evaluated at appropriate intervals for up to 48 hours at room temperature ( approximately 23 degrees C) and 14 days under refrigeration (4 degrees C). Physical stability was assessed using turbidimetric and particulate measurement, as well as visual inspection. Chemical stability was assessed by HPLC. All of the admixtures were initially clear and colorless when viewed in normal fluorescent room light and with a Tyndall beam. Measured turbidity and particulate content were low initially and remained low throughout the study. The drug concentration was unchanged in any of the samples at either temperature throughout the study. Palonosetron HCl is physically and chemically stable in all 4 common infusion solutions for at least 48 hours at room temperature and 14 days under refrigeration.

  17. Research accomplishments and future goals in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-30

    This document presents our proposal to continue the activities of Boston University researchers in high energy physics research. We have a broad program of participation in both non-accelerator and accelerator-based efforts. High energy research at Boston University has a special focus on the physics program of the Superconducting Supercollider. We are active in research and development for detector subsystems, in the design of experiments, and in study of the phenomenology of the very high energy interactions to be observed at the SSC. The particular areas discussed in this paper are: colliding beams physics; accelerator design physics; MACRO project; proton decay project; theoretical particle physics; muon G-2 project; fast liquid scintillators; SSCINTCAL project; TRD project; massively parallel processing for the SSC; and physics analysis and vertex detector upgrade at L3.

  18. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-04-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  19. Physical-chemical pretreatment as an option for increased sustainability of municipal wastewater treatment plants

    NARCIS (Netherlands)

    Mels, A.

    2001-01-01

    Keywords : municipal wastewater treatment, physical-chemical pretreatment, chemically enhanced primary treatment, organic polymers, environmental sustainability

    Most of the currently applied municipal wastewater treatment plants in The Netherlands are

  20. Denaturation of collagen structures and their transformation under the physical and chemical effects

    Science.gov (United States)

    Ivankin, A.; Boldirev, V.; Fadeev, G.; Baburina, M.; Kulikovskii, A.; Vostrikova, N.

    2017-11-01

    The process of denaturation of collagen structures under the influence of physical and chemical factors play an important role in the manufacture of food technology and the production of drugs for medicine and cosmetology. The paper discussed the problem of the combined effects of heat treatment, mechanical dispersion and ultrasonic action on the structural changes of the animal collagen in the presence of weak protonated organic acids. Algorithm combined effects of physical and chemical factors as a result of the formation of the technological properties of products containing collagen has been shown.

  1. Characterization samples of Tigris river water treated with nano colloidal silver (physically, chemically, microbiologically)

    International Nuclear Information System (INIS)

    Dumboos, H. I.; Beden, S. J.; Zouari, K.; Chkir, N.; Ahmed, H. A.

    2012-12-01

    Many researches of using nano silver in purification of drinking water from bacteria and its effect on stan dared properties as drinking water were established. Two stages accomplished in these projects. First stage include preparation of colloidal silver with characterization process and prepare water samples through sedimentation, filtration process, PH and turbidity measure then treated with colloidal silver in volume ratio (0.1-Λ) ml/100ml. The second stage represent select the better results from stage one and take samples to determine the standard characterization values with chemical, physical and microbiological taste. Results will be compared with Iraq standard certification. (Author)

  2. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  3. Effects of anticaking agents and relative humidity on the physical and chemical stability of powdered vitamin C.

    Science.gov (United States)

    Lipasek, Rebecca A; Taylor, Lynne S; Mauer, Lisa J

    2011-09-01

    Vitamin C is an essential nutrient that is widely used by the food industry in the powder form for both its nutritional and functional properties. However, vitamin C is deliquescent, and deliquescence has been linked to physical and chemical instabilities. Anticaking agents are often added to powder systems to delay or prevent caking, but little is known about their effect on the chemical stability of powders. In this study, various anticaking agents (calcium phosphate, calcium silicate, calcium stearate, corn starch, and silicon dioxide) were combined with sodium ascorbate at 2% and 50% w/w ratios and stored at various relative humidities (23%, 43%, 64%, 75%, 85%, and 98% RHs). Chemical and physical stability and moisture sorption were monitored over time. Additionally, saturated solution samples were stored at various pHs to determine the effect of surface pH and dissolution on the vitamin degradation rate. Storage RH, time, and anticaking agent type and ratio all significantly affected (P vitamin C stability. Silicon dioxide and calcium silicate (50% w/w) and calcium stearate (at both ratios) were the only anticaking agents to improve the physical stability of powdered sodium ascorbate while none of the anticaking agents improved its chemical stability. However, corn starch and calcium stearate had the least adverse effect on chemical stability. Dissolution rate and pH were also important factors affecting the chemical and physical stability of the powders. Therefore, monitoring storage environmental conditions and anticaking agent usage are important for understanding the stability of vitamin C. Anticaking agent type and ratio significantly affected the physical and chemical stability of vitamin C over time and over a range of RHs. No anticaking agent improved the chemical stability of the vitamin, and most caused an increase in chemical degradation even if physical stability was improved. It is possible that anticaking agents would greatly affect other

  4. Chemical and physical characteristics of tar samples from selected Manufactured Gas Plant (MGP) sites

    International Nuclear Information System (INIS)

    Ripp, J.; Taylor, B.; Mauro, D.; Young, M.

    1993-05-01

    A multiyear, multidisciplinary project concerning the toxicity of former Manufactured Gas Plant (MGP) tarry residues was initiated by EPRI under the Environmental Behavior of Organic Substances (EBOS) Program. This report concerns one portion of that work -- the collection and chemical characterization of tar samples from several former MGP sites. META Environmental, Inc. and Atlantic Environmental Services, Inc. were contracted by EPRI to collect several samples of tarry residues from former MGP sites with varied historical gas production processes and from several parts of the country. The eight tars collected during this program were physically very different. Some tars were fluid and easily pumped from existing wells, while other tars were thicker, semi-solid, or solid. Although care was taken to collect only tar, the nature of the residues at several sites made it impossible not to collect other material, such as soil, gravel, and plant matter. After the samples were collected, they were analyzed for 37 organic compounds, 8 metals, and cyanide. In addition, elemental analysis was performed on the tar samples for carbon, hydrogen, oxygen, sulfur and nitrogen content and several physical/chemical properties were determined for each tar. The tars were mixed together in different batches and distributed to researchers for use in animal toxicity studies. The results of this work show that, although the tars were produced from different processes and stored in different manners, they had some chemical similarities. All of the tars, with the exception of one unusual solid tar, contained similar relative abundances of polycyclic aromatic hydrocarbons (PAHs)

  5. Chemical and physical conversion in cold atmosphere and the effect of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M; Aalto, P; Korhonen, P; Laaksonen, A; Vesala, T [Helsinki Univ. (Finland). Dept. of Physics

    1997-12-31

    The project is focusing on the formation and growth mechanisms of atmospheric aerosol and cloud droplets. Both aerosol particles and cloud droplets affect strongly on the atmospheric radiation fluxes by scattering and absorption. The droplet formation results from physical and chemical processes occurring simultaneously. The studies concerning the tropospheric cloud droplet formation, laboratory experiments with a cloud chamber and stratospheric cloud formation are summarized. The recent studies summarized in this presentation indicate that both aerosol particles and cloud droplets have a significant role in climatic change and ozone depletion problems. The anthropogenic emissions of gaseous and particulate pollutants change the properties of atmospheric aerosols and cloud droplets. The research in this field will be continued and more quantitative understanding based both experimental and theoretical studies is required

  6. Chemical and physical conversion in cold atmosphere and the effect of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M.; Aalto, P.; Korhonen, P.; Laaksonen, A.; Vesala, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    The project is focusing on the formation and growth mechanisms of atmospheric aerosol and cloud droplets. Both aerosol particles and cloud droplets affect strongly on the atmospheric radiation fluxes by scattering and absorption. The droplet formation results from physical and chemical processes occurring simultaneously. The studies concerning the tropospheric cloud droplet formation, laboratory experiments with a cloud chamber and stratospheric cloud formation are summarized. The recent studies summarized in this presentation indicate that both aerosol particles and cloud droplets have a significant role in climatic change and ozone depletion problems. The anthropogenic emissions of gaseous and particulate pollutants change the properties of atmospheric aerosols and cloud droplets. The research in this field will be continued and more quantitative understanding based both experimental and theoretical studies is required

  7. Solar cells elaborated by chemical methods: examples of research and development at CIE-UNAM

    International Nuclear Information System (INIS)

    Rincon, Marina E.

    2008-01-01

    Full text: At the Energy Research Center (CIE-UNAM-Mexico), the major areas of renewable energy research are solar thermal energy, photovoltaic energy, geothermal energy, hydrogen energy, materials for renewable energy, and energy planning. Among the efforts to developed solar cells, both physical and chemical methods are in progress at CIE-UNAM. In this contribution we focus on the advancement in efficiency, stability, and cost, of photovoltaic junctions based on chemically deposited films. Examples of early research are a composite thin film electrode comprised of SnO2/Bi2S3 nanocrystallites (5 nm) prepared by sequential deposition of SnO2 and Bi2S3 films onto an optically transparent electrode; the co-deposition of pyrrole and Bi2S3 nanoparticles on chemically deposited bismuth sulfide substrates to explore new approaches to improve light-collection efficiency in polymer photovoltaics; the sensitization of titanium dioxide coatings by chemically deposited cadmium selenide and bismuthe sulfide thin films. Here the good photostability of the coatings was promising for the use of the sensitized films in photocatalytic as well as photovoltaic applications. More recently, chemically deposited cadmium sulfide thin films have been explored in planar hybrid heterojunctions with chemically synthesized poly 3-octylthiophene, as well as all-chemically deposited photovoltaic structures. Examples of the last are: chemically deposited thin films of CdS (80 nm), Sb2S3 (450 nm), and Ag2Se (150 nm) annealed at 300 C and integrated into a p-i-n structure glass/SnO2:F/n-CdS/Sb2S3/p-AgSbSe2/Ag, showing Voc ∼ 550 mV and Jsc ∼ 2.3 mA/cm2 at 1 kW/m2 (tungsten halogen) intensity. Similarly, chemically deposited SnS (450nm) and CuS (80nm) thin films integrated in a photovoltaic structure SnO2:F/CdS/SnS/CuS/Ag, showing Voc>300 mV and Jsc up to 5 mA/cm2 under 850 W/m2 tungsten halogen illumination. These photovoltaic structures have been found to be stable over a period extending over

  8. Physical-chemical modeling of elements' behavior in mixing sea and fresh waters of minor rivers in the White Sea catchment area.

    Science.gov (United States)

    Maksimova, Victoria V; Mazukhina, Svetlana I; Cherepanova, Tatiana A; Gorbacheva, Tamara T

    2017-07-29

    The physical-chemical stage of marginal filters in minor rivers of the White Sea catchment area by the example of the Umba River, flowing to Kandalaksha Gulf, has been explored. Application of the method of physical-chemical modeling on the basis of field data allowed establishing migration forms of a number of elements in the "river-sea" system and deposition of solid phases when mixing waters. The mixing of river and sea water is accompanied by the sedimentation of predominantly goethite, hydromuscovite, and hydroxylapatite. Sediments in mixing river and sea waters were found to be mainly composed by goethite, hydromuscovite, and hydroxylapatite. The research has added to the knowledge of the role of the abiotic part in the marginal filters of small rivers in the Arctic.

  9. Influence of copper nanoparticles on the physical-chemical properties of activated sludge.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS, play vital roles in the normal operation of wastewater treatment plants (WWTPs. The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm, but different observation were made at higher CuNPs concentrations (30 and 50 ppm. At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity.

  10. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-07-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  11. A research Program in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  12. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-06-01

    The introductory section describes the goals, main thrusts, and interrelationships between the various activities in the program and principal achievements of the Stony Brook Nuclear Theory Group during 1992--93. Details and specific accomplishments are related in abstract form. Current research is taking place in the following areas: strong interaction physics (the physics of hadrons, QCD and the nucleus, QCD at finite temperature and high density), relativistic heavy-ion physics, nuclear structure and nuclear many- body theory, and nuclear astrophysics

  13. The role of nanoparticles in the changing of physical and chemical properties of oil

    International Nuclear Information System (INIS)

    Xalilov, R.; Nasibova, A.; Lesin, V.; Xomutov, G.

    2015-01-01

    Researches in recent years have been shown that, magnetic nanoparticles of iron oxides are widespread in animate and inanimate nature. Researches carried out in the natural systems (plant, oil and etc.) by the electron paramagnetic resonance (EPR) method show that the bio generation of the nanoparticles has been highlighted. Comprehensive analysis of the influence of radioactive pollution to the plants has been conducted during the initial studies of natural systems for cliffing the mechanisms of the biogenic generation of magnetic nanoparticles, wide EPR signal characterizing the magnetic nanoparticles was observed. Magnetic nanoparticles can be included into the structure of fractal aggregates of colloid components of oil. Influence of the magnetic field to the main physical chemical properties of oil was happened as a result of bio mineralization process with the presence of generated magnetic nanoparticles.

  14. The effects of physical and chemical changes on the optimum ...

    African Journals Online (AJOL)

    The aim of this study was to determine physical and chemical changes during fruit development and their relationship with optimum harvest maturity for Bacon, Fuerte and Zutano avocado cultivars grown under Dörtyol ecological condition. Fruits cv. Bacon, Fuerte and Zutano were obtained trees grafted on seedlings and ...

  15. The physical and chemical stability of suspensions of sustained-release diclofenac microspheres.

    Science.gov (United States)

    Lewis, L; Boni, R L; Adeyeye, C M

    1998-01-01

    The major challenge in liquid sustained-release oral suspensions is to minimize drug diffusion into the suspending medium and to retain the original properties of the microparticles during storage. Diclofenac wax microspheres prepared by the hydrophobic congealable disperse phase method were formulated as a sustained release suspension and stored at three different temperatures (25, 37 and 45 degrees C) for 3 months, to evaluate the physical and chemical stability of the suspended microspheres. Suspensions of microspheres stored at ambient temperatures were both physically and chemically stable, but at higher temperatures, up to 45 degrees C, there was a decrease in drug release due to scaling and melting on the microsphere surface as observed by scanning electron microscopy. However, on prolonged storage, up to 90 days, especially at 45 degrees C, temperature became a dominant factor causing an increase in drug release. The suspension of diclofenac microspheres was chemically stable for 3 months, while the plain drug suspension exhibited slight degradation.

  16. Physical and chemical stability of different formulations with superoxide dismutase.

    Science.gov (United States)

    Di Mambro, V M; Campos, P M B G Maia; Fonseca, M J V

    2004-10-01

    Topical formulations with superoxide dismutase (SOD), a scavenger of superoxide radicals, have proved to be effective against some skin diseases. Nevertheless, formulations with proteins are susceptible to both chemical and physical instability. Three different formulations (anionic and non-ionic gel and emulsion) were developed and supplemented with SOD in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by assessing the rheological behavior of the formulations stored at room temperature, 37 and 45 degrees C. Chemical stability was evaluated by the measurement of enzymatic activity in the formulations stored at room temperature and at 45 degrees C. Formulations showed a flow index less than one, characterizing pseudoplastic behavior. There was no significant difference in initial values of flow index, tixotropy or minimum apparent viscosity. Neither gel showed significant changes in minimum apparent viscosity concerning storage time or temperature, as well, SOD presence and its activity. The emulsion showed decreased viscosity by the 28th day, but no significant changes concerning storage temperature or SOD presence, although it showed a decreased activity. The addition of SOD to the formulations studied did not affect their physical stability but gel formulations seem to be better bases for enzyme addition.

  17. The plutonium: brief presentation of its nuclear, physical and chemical properties

    International Nuclear Information System (INIS)

    Madic, C.

    1993-01-01

    In this text we give a brief presentation of the nuclear properties (isotopes, isotopic composition of spent fuels, decay), of the physical properties (phase diagrams, alloys) and of the chemical properties (complexes, solvent extraction) of the plutonium

  18. Monitoring soil chemical and physical parameters under Douglas fir in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Konsten, C.J.M.; Tiktak, A.; Bouten, W.

    1987-01-01

    In march 1987 a monitoring program started in two Douglas fir stands of different vitality in the Netherlands. Aim of the study is to provide insight in the chemical and physical rooting conditions of the vegetation and to quantify the contributions of atmospheric deposition to soil acidification. The hydrological part of the monitoring progam consists of automated measurements of precipitation, throughfall, soil water pressure head and soil water content; in addition soil water content is determined by neutron sonde measurements and gravimetry. These data are used as input data for simulation models which calculate water fluxes through the vegetation and soil. For the soil chemical part of the program precipitation (bulk and wet-only), throughfall and litter fall are sampled. The soil solution is sampled by suction from porous cups and from porous plates by a new, continous technique. Combination of soil chemical and soil physical data will result in chemical fluxes through the vegetation and through various soil compartments. Element budgets for the ecosystem will also be calculated. The program forms part of an interdisciplinary monitoring project within the Dutch Priority Programme on Acidification. 2 figs., 1 tab., 19 refs.

  19. Nuclear Physics Research at ELI-NP

    Science.gov (United States)

    Zamfir, N. V.

    2018-05-01

    The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.

  20. Molybdenum and technetium cycle in the environment. Physical chemical evolution and mobility in soils and plants

    International Nuclear Information System (INIS)

    Saas, A.; Denardi, J.L.; Colle, C.; Quinault, J.M.

    1980-01-01

    Molybdenum 99 and technetium 99 from liquid discharges of base nuclear installations (reactors, reprocessing plants, UF 6 treatment, etc.) can reach the environment via irrigation waters and atmospheric deposits. The contribution to the soil by irrigation results in a physical-chemical transformation, the results of which, in the case of technetium 99, could be volatilization via microbes. The changes in the physical-chemical forms of technetium in different soils reveals the preponderant effect of the initial amount deposited. The determination of the rate of technetium and molybdenum assimilation shows a certain similarity in behaviour; yet the localization of these isotopes is not the same. The transfer of molybdenum and technetium via the root system is different in its intensity; this is mainly due to different physical-chemical forms. Finally, each isotope has an optimum assimilation threshold and a toxicity threshold. The study of the physical-chemical evolution and the mobility in the soil-plant-water table system of these two isotopes shows a new aspect with respect to certain transfer channels to the human being [fr

  1. Increased Surface Roughness in Polydimethylsiloxane Films by Physical and Chemical Methods

    Directory of Open Access Journals (Sweden)

    Jorge Nicolás Cabrera

    2017-08-01

    Full Text Available Two methods, the first physical and the other chemical, were investigated to modify the surface roughness of polydimethylsiloxane (PDMS films. The physical method consisted of dispersing multi-walled carbon nanotubes (MWCNTs and magnetic cobalt ferrites (CoFe2O4 prior to thermal cross-linking, and curing the composite system in the presence of a uniform magnetic field H. The chemical method was based on exposing the films to bromine vapours and then UV-irradiating. The characterizing techniques included scanning electron microscopy (SEM, energy-dispersive spectroscopy (EDS, Fourier transform infrared (FTIR spectroscopy, optical microscopy, atomic force microscopy (AFM and magnetic force microscopy (MFM. The surface roughness was quantitatively analyzed by AFM. In the physical method, the random dispersion of MWCNTs (1% w/w and magnetic nanoparticles (2% w/w generated a roughness increase of about 200% (with respect to PDMS films without any treatment, but that change was 400% for films cured in the presence of H perpendicular to the surface. SEM, AFM and MFM showed that the magnetic particles always remained attached to the carbon nanotubes, and the effect on the roughness was interpreted as being due to a rupture of dispersion randomness and a possible induction of structuring in the direction of H. In the chemical method, the increase in roughness was even greater (1000%. Wells were generated with surface areas that were close to 100 μm2 and depths of up to 500 nm. The observations of AFM images and FTIR spectra were in agreement with the hypothesis of etching by Br radicals generated by UV on the polymer chains. Both methods induced important changes in the surface roughness (the chemical method generated the greatest changes due to the formation of surface wells, which are of great importance in superficial technological processes.

  2. Gesture analysis for physics education researchers

    Directory of Open Access Journals (Sweden)

    Rachel E. Scherr

    2008-01-01

    Full Text Available Systematic observations of student gestures can not only fill in gaps in students’ verbal expressions, but can also offer valuable information about student ideas, including their source, their novelty to the speaker, and their construction in real time. This paper provides a review of the research in gesture analysis that is most relevant to physics education researchers and illustrates gesture analysis for the purpose of better understanding student thinking about physics.

  3. Comparisons of physical and chemical sputtering in high density divertor plasmas with the Monte Carlo Impurity (MCI) transport model

    International Nuclear Information System (INIS)

    Evans, T.E.; Loh, Y.S.; West, W.P.; Finkenthal, D.F.

    1997-11-01

    The MCI transport model was used to compare chemical and physical sputtering for a DIII-D divertor plasma near detachment. With physical sputtering alone the integrated carbon influx was 8.4 x 10 19 neutral/s while physical plus chemical sputtering produced an integrated carbon influx of 1.7 x 10 21 neutrals/s. The average carbon concentration in the computational volume increased from 0.012% with only physical sputtering to 0.182% with both chemical and physical sputtering. This increase in the carbon inventory produced more radiated power which is in better agreement with experimental measurements

  4. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    Science.gov (United States)

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  5. Health physics research abstracts No. 12

    International Nuclear Information System (INIS)

    1985-11-01

    The No. 12 of Health Physics Research Abstracts is the continuation of a series of Bulletins published by the IAEA since 1967 and which collect reports from Member States on Health Physics research in progress or just completed. The present issue contains 386 reports received up to December 1984 and covering the following topics: personnel monitoring, dosimetry, assessment of dose to man, operational radiation protection techniques, biological effects of radiations, environmental studies, pathways and monitoring, radiation hazards resulting from the operation of nuclear facilities, radiation accidents and emergency plans, epidemiology of radiation damage, optimization of radiation protection, research programs and projects

  6. Summaries of FY 1992 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  7. Summaries of FY 1992 research in nuclear physics

    International Nuclear Information System (INIS)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed

  8. Future atomic physics researches at HIRFL-CSR

    International Nuclear Information System (INIS)

    Cai Xiaohong; Xia Jiawen; Zhan Wenlong

    1999-01-01

    A new storage ring system, HIRFL-CSR, is now in construction in the National Laboratory of Heavy Ion Research Facility of Lanzhou, China. The new facility consists of a main ring (CSRm) and an experimental ring (CSRe). With the flexibility of the production and the investigation of highly charged ions and radioactive ion beams the new HIRFL-CSR facility will make many frontier atomic physics researches possible in near future. The future physics researches at the HIRFL-CSR are now under consideration. In this paper an overview of the HIRFL-CSR project is given, and the main atomic physics programs to be carried at the HIRFL-CSR are presented. (orig.)

  9. IRT-type research reactor physical calculation methodology

    International Nuclear Information System (INIS)

    Carrera, W.; Castaneda, S.; Garcia, F.; Garcia, L.; Reyes, O.

    1990-01-01

    In the present paper an established physical calculation procedure for the research reactor of the Nuclear Research Center (CIN) is described. The results obtained by the method are compared with the ones reported during the physical start up of a reactor with similar characteristics to the CIN reactor. 11 refs

  10. Research in theoretical physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Domokos, G.; Kovesi-Domokos, S.

    1998-06-01

    This report summarizes the research carried out under Grant DE-FG02-85ER40211. The main topics covered are: astroparticle physics at very high and ultrahigh energies; search for new physics by means of detectors of ultrahigh energy particles of extraterrestrial origin. Methods for searching in heavy quark decays for signatures of physics beyond the standard model are developed.

  11. Research in theoretical physics. Final report

    International Nuclear Information System (INIS)

    Domokos, G.; Kovesi-Domokos, S.

    1998-06-01

    This report summarizes the research carried out under Grant DE-FG02-85ER40211. The main topics covered are: astroparticle physics at very high and ultrahigh energies; search for new physics by means of detectors of ultrahigh energy particles of extraterrestrial origin. Methods for searching in heavy quark decays for signatures of physics beyond the standard model are developed

  12. Education Research in Physical Therapy: Visions of the Possible.

    Science.gov (United States)

    Jensen, Gail M; Nordstrom, Terrence; Segal, Richard L; McCallum, Christine; Graham, Cecilia; Greenfield, Bruce

    2016-12-01

    Education research has been labeled the "hardest science" of all, given the challenges of teaching and learning in an environment encompassing a mixture of social interactions, events, and problems coupled with a persistent belief that education depends more on common sense than on disciplined knowledge and skill. The American Educational Research Association specifies that education research-as a scientific field of study-examines teaching and learning processes that shape educational outcomes across settings and that a learning process takes place throughout a person's life. The complexity of learning and learning environments requires not only a diverse array of research methods but also a community of education researchers committed to exploring critical questions in the education of physical therapists. Although basic science research and clinical research in physical therapy have continued to expand through growth in the numbers of funded physical therapist researchers, the profession still lacks a robust and vibrant community of education researchers. In this perspective article, the American Council of Academic Physical Therapy Task Force on Education Research proposes a compelling rationale for building a much-needed foundation for education research in physical therapy, including a set of recommendations for immediate action. © 2016 American Physical Therapy Association.

  13. Perspectives of experimental nuclear physics research at RBI Croatia

    International Nuclear Information System (INIS)

    Soic, N.

    2009-01-01

    Experimental nuclear physics has been one of the top research activities at the Rudjer Boskovic Institute, the largest and leading Croatian research center in science and applications. The RBI nuclear physics group has strong link with the researchers at the University of Zagreb. RBI scientists perform experiments at the RBI Tandem accelerator facility and at the top European experimental facilities in collaboration with the prominent research groups in the field. Current status of the RBI experimental nuclear physics research and our recent activities aimed to strengthen our position at the RBI and to increase our international reputation and impact in collaborative projects will be presented. Part of these activities is focused on local accelerator facilities, at present mainly used for application research, and their increased usage for nuclear physics research and for development and testing of novel research equipment for large international facilities. Upgrade of the local research equipment is on the way through FP7 REGPOT project 'CLUNA: Clustering phenomena in nuclear physics: strengthening of the Zagreb-Catania-Birmingham partnership'. Recently, steps to exploit potential of the facility for nuclear astrophysics research have been initiated. Possible future actions for further strengthening of the RBI experimental nuclear physics research will be discussed.(author)

  14. Research in the chemical sciences. Summaries of FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposals that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.

  15. The Physical, Chemical and Physiological Limits of Life

    Directory of Open Access Journals (Sweden)

    Dirk Schulze-Makuch

    2015-07-01

    Full Text Available Life on Earth displays an incredible diversity in form and function, which allows it to survive not only physical extremes, but also periods of time when it is exposed to non-habitable conditions. Extreme physiological adaptations to bridge non-habitable conditions include various dormant states, such as spores or tuns. Here, we advance the hypothesis that if the environmental conditions are different on some other planetary body, a deviating biochemistry would evolve with types of adaptations that would manifest themselves with different physical and chemical limits of life. In this paper, we discuss two specific examples: putative life on a Mars-type planet with a hydrogen peroxide-water solvent and putative life on a Titan-type planetary body with liquid hydrocarbons as a solvent. Both examples would have the result of extending the habitable envelope of life in the universe.

  16. Efficient Regeneration of Physical and Chemical Solvents for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Tande, Brian [Univ. of North Dakota, Grand Forks, ND (United States); Seames, Wayne [Univ. of North Dakota, Grand Forks, ND (United States); Benson, Steve [Univ. of North Dakota, Grand Forks, ND (United States)

    2013-12-01

    The objective of this project was to evaluate the use of composite polymer membranes and porous membrane contactors to regenerate physical and chemical solvents for capture of carbon dioxide (CO2) from synthesis gas or flue gas, with the goal of improving the energy efficiency of carbon capture. Both a chemical solvent (typical for a post-combustion capture of CO2 from flue gas) and a physical solvent (typical for pre- combustion capture of CO2 from syngas) were evaluated using two bench-scale test systems constructed for this project. For chemical solvents, polytetrafluoroethylene and polypropylene membranes were found to be able to strip CO2 from a monoethanolamine (MEA) solution with high selectivity without significant degradation of the material. As expected, the regeneration temperature was the most significant parameter affecting the CO2 flux through the membrane. Pore size was also found to be important, as pores larger than 5 microns lead to excessive pore wetting. For physical solvents, polydimethyl-siloxane (PDMS)-based membranes were found to have a higher CO2 permeability than polyvinylalcohol (PVOH) based membranes, while also minimizing solvent loss. Overall, however, the recovery of CO2 in these systems is low – less than 2% for both chemical and physical solvents – primarily due to the small surface area of the membrane test apparatus. To obtain the higher regeneration rates needed for this application, a much larger surface area would be needed. Further experiments using, for example, a hollow fiber membrane module could determine if this process could be commercially viable.

  17. Effect of Lepidium meyenii (maca) on testicular function of mice with chemically and physically induced subfertility.

    Science.gov (United States)

    Valdivia Cuya, M; Yarasca De La Vega, K; Lévano Sánchez, G; Vásquez Cavero, J; Temoche García, H; Torres Torres, L; Cruz Ornetta, V

    2016-10-01

    The aim of this study was to evaluate the effect of Lepidium meyenii (maca) in chemically and physically subfertile mice. After 35 days, the following groups of mice were evaluated: control, sham, chemical subfertility, chemical subfertility-maca-supplemented, physical subfertility, physical subfertility-maca-supplemented and maca-supplemented only. Motility (32.36% ± 5.34%) and sperm count (44.4 ± 5.37 × 10(6) /ml) in the chemically and physically subfertile mice (11.81% ± 4.06%, 17.34 ± 13.07 × 10(6) /ml) decreased compared to the control (75.53% ± 2.97% and 57.4 ± 19.6 10(6) /ml) and sham (53.5% ± 7.86% and 58.4 ± 14.10 10(6) /ml). Maca was able to reverse the deleterious effect of motility (76.36 ± 1.97) as well as sperm count (53.5 ± 9.18 × 10(6) /ml) on chemical subfertility. In contrast, maca did not reverse the effects of induced physical subfertility nor motility (18.78% ± 14.41%) or sperm count (20.17 ± 11.20 × 10(6) /ml). The percentage of sperm DNA fragmentation in the physically subfertile mice increased (11.1% ± 19.29%) compared to the control (0.84% ± 0.85%). However, in the physically subfertile group, maca decreased sperm DNA fragmentation (2.29% ± 2.30%) closer to the sham (1.04% ± 0.62%) and the control (0.84% ± 0.85%). The group supplemented only with maca showed 0.54% ± 0.50% of spermatozoa with DNA fragmentation. Yet, the differences observed were statistically not significant. In conclusion, it appears that maca activates the cytochrome P450 system after chemically induced subfertility. However, it does not reverse the low mitochondrial membrane potential in spermatozoa compromised in the physical subfertility group. © 2016 Blackwell Verlag GmbH.

  18. The Impact of the Physical Activity Policy Research Network.

    Science.gov (United States)

    Manteiga, Alicia M; Eyler, Amy A; Valko, Cheryl; Brownson, Ross C; Evenson, Kelly R; Schmid, Thomas

    2017-03-01

    Lack of physical activity is one of the greatest challenges of the 21st century. The Physical Activity Policy Research Network (PAPRN) is a thematic network established in 2004 to identify determinants, implementation, and outcomes of policies that are effective in increasing physical activity. The purpose of this study is to describe the products of PAPRN and make recommendations for future research and best practices. A mixed methods approach was used to obtain both quantitative and qualitative data on the network. First, in 2014, PAPRN's dissemination products from 2004 to 2014 were extracted and reviewed, including 57 publications and 56 presentations. Next, semi-structured qualitative interviews were conducted with 25 key network participants from 17 locations around the U.S. The transcripts were transcribed and coded. The results of the interviews indicated that the research network addressed several components of its mission, including the identification of physical activity policies, determinants of these policies, and the process of policy implementation. However, research focusing on physical activity policy outcomes was limited. Best practices included collaboration between researchers and practitioners and involvement of practitioners in research design, data collection, and dissemination of results. PAPRN is an example of a productive research network and has contributed to both the process and content of physical activity policy research over the past decade. Future research should emphasize physical activity policy outcomes. Additionally, increased partnerships with practitioners for collaborative, cross-sectoral physical activity policy research should be developed. Copyright © 2016 American Journal of Preventive Medicine. All rights reserved.

  19. Technical area status report for chemical/physical treatment

    International Nuclear Information System (INIS)

    Brown, C.H. Jr.; Schwinkendorf, W.E.

    1993-08-01

    These Appendices describe various technologies that may be applicable to the Mixed Waste Treatment Plant (MWTP) Chemical/Physical Treatment System (CPTS). These technologies were identified by the CPTS Technical Support Group (TSG) as potentially applicable to a variety of separation, volume reduction, and decontamination requirements. The purpose was to identify all available and developing technologies, and their characteristics, for subsequent evaluation for specific requirements identified for the CPTS. However, the technologies described herein are not necessarily all inclusive, nor are they necessarily all applicable

  20. Sensitivity of simulated convection-driven stratosphere-troposphere exchange in WRF-Chem to the choice of physical and chemical parameterization

    Science.gov (United States)

    Phoenix, Daniel B.; Homeyer, Cameron R.; Barth, Mary C.

    2017-08-01

    Tropopause-penetrating convection is capable of rapidly transporting air from the lower troposphere to the upper troposphere and lower stratosphere (UTLS), where it can have important impacts on chemistry, the radiative budget, and climate. However, obtaining in situ measurements of convection and convective transport is difficult and such observations are historically rare. Modeling studies, on the other hand, offer the advantage of providing output related to the physical, dynamical, and chemical characteristics of storms and their environments at fine spatial and temporal scales. Since these characteristics of simulated convection depend on the chosen model design, we examine the sensitivity of simulated convective transport to the choice of physical (bulk microphysics or BMP and planetary boundary layer or PBL) and chemical parameterizations in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). In particular, we simulate multiple cases where in situ observations are available from the recent (2012) Deep Convective Clouds and Chemistry (DC3) experiment. Model output is evaluated using ground-based radar observations of each storm and in situ trace gas observations from two aircraft operated during the DC3 experiment. Model results show measurable sensitivity of the physical characteristics of a storm and the transport of water vapor and additional trace gases into the UTLS to the choice of BMP. The physical characteristics of the storm and transport of insoluble trace gases are largely insensitive to the choice of PBL scheme and chemical mechanism, though several soluble trace gases (e.g., SO2, CH2O, and HNO3) exhibit some measurable sensitivity.

  1. SIFAT FISIK, KIMIA, DAN FUNGSIONAL DAMAR [Brief Review on: Physical, Chemical and Functional Properties of Dammar

    Directory of Open Access Journals (Sweden)

    Noryawati Mulyono1

    2004-12-01

    Full Text Available Dammar is one of Indonesian forestry products which is abundant. It has unique physical, chemical and functional properties. The important physical properties of dammar include its solubility in some organic solvents, softening temperature, viscosity and its absorbance. The important chemical properties reviewed here include its properties as resin, composition of terpenoid compounds present in dammar, and essential oil yielded from distillation of fresh dammar. Physical and chemical properties of dammar need to be studied further in order to optimize its functional properties. So far, dammar is widely used as weighting agent and source of essential oil. However, now, some species of dammar are being explored and developed for sal flour, fat source, triacylglycerol substituent for cocoa butter and wood preservatives.

  2. Health physics research abstracts No. 13

    International Nuclear Information System (INIS)

    1987-05-01

    No. 13 of Health Physics Research Abstracts is the continuation of a series of bulletins published by the IAEA since 1967 and which collect reports from Member States on health physics research in progress or just completed. The present issue contains 370 reports received up to March 1987 and covers the following topics: Personnel monitoring, dosimetry, assessment of dose to man, operational radiation protection techniques, radiation levels, effects of radiation, environmental studies, pathways and monitoring, analysis and evaluation of radiation hazards resulting from the operation of nuclear facilities, radiation accidents and emergency preparedness, epidemiology of radiation damage, optimization of radiation protection, research programmes and projects

  3. PHYSICAL AND CHEMICAL DEGRADATION OF AGRICULTURAL SOILS AT SAN PEDRO LAGUNILLAS, NAYARIT

    Directory of Open Access Journals (Sweden)

    Gelacio Alejo Santiago

    2012-08-01

    Full Text Available The objective of this study was to evaluate the degradation to propose strategies for remediation and recovery of agricultural soils of San Pedro Lagunillas, Nayarit, Mexico; considering physical and chemical properties. Soils maintained with natural vegetation but slightly grazed and agricultural soils used for more than 20 years for the production of several crops, were compared. Eight sites were studied (four cultivated and four uncultivated, each agricultural lands (cultivated was located at a distance of 30 to 80 m from its counterpart or soil with natural vegetation (uncultivated. Samples were obtained from the following layers: 0 to 10, 10 to 20 and 20 to 30 cm. The variables evaluated were: particles smaller than 2 mm, pH, organic matter, extractable phosphorus, exchangeable potassium, calcium and magnesium; soil texture and water infiltration rate. An analysis of variance and Tukey means test (α = 0.05 was applied. It was concluded that traditional farming practices led to adverse changes in soil chemical properties, in the upper 20 cm soil layer. Physical properties were also affected because infiltration film and water infiltration rate decreased about 50% in cultivated soils. The overall results in this work evident the need to take appropriate measures to prevent the physical and chemical degradation of cultivated soils in order to preserve this resource and maintain their productivity.

  4. Research of chemical structure of atmospheric precipitation

    International Nuclear Information System (INIS)

    Korenyak, D.

    2001-01-01

    The structure of atmospheric precipitation changes in its passing through the air medium. Thus, the atmospheric precipitation is one of the ecological factors, acting regularly. The research of chemical structure of atmospheric precipitation is closely connected with the problems of turnover of elements, with sanitary - ecological conditions of regions, with the matters of agricultural equipment and of salt balance of the soils. In paper the author for the first time represents the data on chemical structure of precipitation in the town. The data of chemical analysis of 18 samples are given. Obtained results permitted, to a certain extent, to determine the mechanisms of formation of atmospheric precipitation in the region investigated and its genesis. (authors)

  5. Dominance of physical and chemical gases properties on kinetics of gassing in NPP's circulation contours

    International Nuclear Information System (INIS)

    Piontkovskij, A.I.

    2001-01-01

    Is seen out a dominance analysis of physical and chemical matter properties on gases solubility in circulation contour NPP's heat-transfer. Is represented a concentration computation methods of gas dissolved in heat-transfer with use of in lying pressure in matter. Are analysed the computation results for diverse gases in wide range of operating parameters, and also dominance of physical and chemical gas properties on intensity of heat-exchange processes in heat-transfer with dissolved gase

  6. Improving the Database for Physical and Chemical Sputtering. Summary Report of an IAEA Technical Meeting

    International Nuclear Information System (INIS)

    Braams, B. J.

    2013-02-01

    Seven experts and IAEA staff convened in Vienna to review the existing database for physical and chemical sputtering of fusion wall materials and to make recommendations about priorities for further work. Recommendations were made about database needs for pure and mixed Be, C and W wall material for the processes of physical and chemical sputtering, reflection, penetration and trapping and also for effects of surface and material microstructure. The proceedings and recommendations of the meeting are summarized here. (author)

  7. Overview of physics research on the TCV tokamak

    Czech Academy of Sciences Publication Activity Database

    Fasoli, A.; Alberti, S.; Amorim, P.; Angioni, C.; Asp, E.; Behn, R.; Bencze, A.; Berrino, J.; Blanchard, P.; Bortolon, A.; Brunner, S.; Camenen, Y.; Cirant, S.; Coda, S.; Curchod, L.; DeMeijere, K.; Duval, B. P.; Fable, E.; Fasel, D.; Felici, F.; Furno, I.; Garcia, O.E.; Giruzzi, G.; Gnesin, S.; Goodman, T.; Graves, J.; Gudozhnik, A.; Gulejova, B.; Henderson, M.; Hogge, J. Ph.; Horáček, Jan; Joye, B.; Karpushov, A.; Kim, S.-H.; Laqua, H.; Lister, J. B.; Llobet, X.; Madeira, T.; Marinoni, A.; Marki, J.; Martin, Y.; Maslov, M.; Medvedev, S.; Moret, J.-M.; Paley, J.; Pavlov, I.; Piffl, Vojtěch; Piras, F.; Pitts, R.A.; Pitzschke, A.; Pochelon, A.; Porte, L.; Reimerdes, H.; Rossel, J.; Sauter, O.; Scarabosio, A.; Schlatter, C.; Sushkov, A.; Testa, D.; Tonetti, G.; Tskhakaya, D.; Tran, M. Q.; Turco, F.; Turri, G.; Tye, R.; Udintsev, V.; Véres, G.; Villard, L.; Weisen, H.; Zhuchkova, A.; Zucca, C.

    2009-01-01

    Roč. 49, č. 10 (2009), s. 104005-104005 ISSN 0029-5515 Institutional research plan: CEZ:AV0Z20430508 Keywords : overview highlights * fusion research * tokamak TCV * self-generated current * H-mode physics * Electron internal transport barrier * electron cyclotron heating * electron cyclotron current drive physics * density peaking * MHDactivity * edge physics * reciprocating Mach probe * Pfirsch–Schlueter component. Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.270, year: 2009 http://stacks.iop.org/NF/49/104005

  8. Integrated modelling of physical, chemical and biological weather

    DEFF Research Database (Denmark)

    Kurganskiy, Alexander

    . This is an online-coupled meteorology-chemistry model where chemical constituents and different types of aerosols are an integrated part of the dynamical model, i.e., these constituents are transported in the same way as, e.g., water vapor and cloud water, and, at the same time, the aerosols can interactively...... impact radiation and cloud micro-physics. The birch pollen modelling study has been performed for domains covering Europe and western Russia. Verification of the simulated birch pollen concentrations against in-situ observations showed good agreement obtaining the best score for two Danish sites...

  9. Physical, chemical and microbiological analysis of the water quality of Rawal Lake, Pakistan

    Directory of Open Access Journals (Sweden)

    Mehreen Hassan

    2014-06-01

    Full Text Available What better gift of nature would be than good quality water? In order to assess the quality of water of Rawal Lake, following research was carried out. Rawal lake is a source of drinking water supplied to many areas of Rawalpindi and Islamabad’ the capital city of Pakistan. Water of this lake is being highly polluted by the local communities alongside the lake through solid waste dumping. Samples of surface water were collected, tested and analyzed in the laboratory on the basis of physical, chemical and microbiological parameters. The results showed uncertainties in many of the selected parameters. Microbiological analysis revealed high contamination of E. coli, fecal coliform and total coliform in the samples proving it unfit for drinking. It was found that the concentration of all physical parameters such as nitrates, chloride, pH and conductivity were within the normal limits. The level of heavy metals like lead, iron, chromium etc. was also found low. Turbidity at some points exceeded the maximum acceptable limit as per WHO statement.

  10. Physical methods in air pollution research: The second decade

    International Nuclear Information System (INIS)

    Cahill, T.A.

    1985-01-01

    The ''Second Decade'' in the application of physical techniques to air pollution has been a profound change in the understanding and capabilities. A great deal remains to be done with the new tools. But what about the next phase? The author feels that it will probably involve greater chemical and biological emphasis, as opposed to merely elemental analysis. But this will not be easy, and one will again need an influx of new people and ideas into the field, most likely from the biological, organic chemical, and medical communities. The author predicts that because of the inherent complexity of the problem, it will not happen in just 10 years. In the meantime, one will somehow manage to keep busy rediscovering atmospheric aerosols yet again, but with the new eyes the improved physical methods have gained

  11. 77 FR 7613 - Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108

    Science.gov (United States)

    2012-02-13

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-264; NRC-2012-0026] Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108 AGENCY: Nuclear Regulatory Commission... Facility Operating License No. R-108 (``Application''), which currently authorizes the Dow Chemical Company...

  12. Physical security at research reactors

    International Nuclear Information System (INIS)

    Clark, R.A.

    1977-01-01

    Of the 84 non-power research facilities licensed under 10 CFR Part 50, 73 are active (two test reactors, 68 research reactors and three critical facilities) and are required by 10 CFR Part 73.40 to provide physical protection against theft of SNM and against industrial sabotage. Each licensee has developed a security plan required by 10 CFR Part 50.34(c) to demonstrate the means of compliance with the applicable requirements of 10 CFR Part 73. In 1974, the Commission provided interim guidance for the organization and content of security plans for (a) test reactors, (b) medium power research and training reactors, and (c) low power research and training reactors. Eleven TRIGA reactors, with power levels greater than 250 kW and all other research and training reactors with power levels greater than 100 kW and less than or equal to 5,000 kW are designated as medium power research and training reactors. Thirteen TRIGA reactors with authorized power levels less than 250 kW are considered to be low power research and training reactors. Additional guidance for complying with the requirements of 73.50 and 73.60, if applicable, is provided in the Commission's Regulatory Guides. The Commission's Office of Inspection and Enforcement inspects each licensed facility to assure that an approved security plan is properly implemented with appropriate procedures and physical protection systems

  13. Research in particle physics. [Dept. of Physics, Boston Univ

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Scott J.

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron[endash]positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider.

  14. The research on magnetic exploring abandoned chemical weapons by Japanese

    International Nuclear Information System (INIS)

    Wang Luoguo; Li Jingyue; Wang Zezhong

    2007-01-01

    During Word war II, a lot of chemical weapons were left by Japanese on our land. It is very difficult to explore because its complicated states underground. There is no document about the details of this. Few of the research work have been done. In order to destroy completely abandoned chemical weapons by Japanese, the paper has given a serious study on the means to explore the chemical weapons for the purpose to protect our environment and benefit our people. After plenty of research and test, we get good results. (authors)

  15. Heterogeneity in physical, chemical and plankton-community structures in Lake Tanganyika

    NARCIS (Netherlands)

    Langenberg, V.T.; Tumba, J.M.; Tshibangu, K.; Lukwesa, C.; Chitamwebwa, D.; Bwebwa, D.; Makasa, L.; Roijackers, R.M.M.

    2008-01-01

    From 28 August to 6 September 1995, we monitored the lake-wide physical, chemical and biological properties of the pelagic waters in Lake Tanganyika. The aim of this study was to examine the spatial environmental variability and its relation to fluctuations in plankton abundance and community

  16. Sensorial, physical and chemical evaluation of bio-fortified Ipomoea batatas

    Directory of Open Access Journals (Sweden)

    Mara N.G. Santos

    2014-08-01

    Full Text Available Context: Bio-fortified sweet potato, Ipomoea batatas (L. Lamarck beta-carotene rich, has been included in the most vulnerable population’s diet with the purpose of reducing health disturbances associated with hipovitaminosis. Aims:To evaluate a physical and chemical analysis of total carotenes and beta-carotene and to determine the antioxidant potential as well as to carry out a sensorial analysis of the bio-fortified Ipomoea batatas (L. Lamarck (BDB in nature and processed. Methods: BDB was processed as sweet (in natura, paste and syrup and physicochemical characteristics were compared, total carotenoids, beta-carotene, antioxidant activity (DPPH and microbiological and sensory analyses were performed. Results:The analysis of total carotenoids, beta-carotene and anti-oxidant potential showed the following results: BDB in nature – 11.81 mg/100 g/440.5 mg/100 g/26.30%; sweet paste – 0.61 mg/100 g/53.5 mg/100 g/53.40% and savored syrup – 0.85 mg/100 g/46.0 mg/100 g/14.30%. The methods of conservation avoided the coliforms growth at 35 and 45°C, Staphylococcus coagulasa positivo, Bacillus cereus and Salmonella in all elaborated candies. The sensorial analysis didn’t detect significant differences among the syrup or paste. Conclusions: The conservation methods have an important function keeping the physical, chemical characteristics and sensorial of BDB, although they can influence in their chemical and nutritional composition, mainly in relation to the quantity of total carotenoids and beta-carotene.

  17. Chemical, physical-chemical, and sensory characteristics of lychee (Litchi chinensis Sonn) wines.

    Science.gov (United States)

    Alves, Juliana Alvarenga; de Oliveira Lima, Luiz Carlos; Nunes, Cleiton Antônio; Dias, Disney Ribeiro; Schwan, Rosane Freitas

    2011-01-01

    Four lychee (Litchi chinensis Sonn) wines (prepared with 3 yeast strains [UFLA CA11, UFLA CA1183, and UFLA CA1174]) and a spontaneous fermentation (SPON) were done in order to add value to the fruit while preventing waste arising from the short shelf life of lychee. The fermentation was monitored daily by analyzing the soluble solids, pH, acidity, ethanol, and sugar. At the end of fermentation, the wines were subjected to chemical, physical-chemical, and sensory analysis. The wines prepared showed greater variations in the qualitative than in the quantitative analysis of their constituents. The sensory analysis indicated that the wines fermented by yeast UFLA CA1183 and UFLA CA11 had rates of acceptance above 75%. The principal components analysis separated the wines into 2 groups according to the analyzed compounds. Based on these analyses, the wine produced by inoculation with UFLA CA1183 proved to be the most suitable for the production of lychee wines. Development of new products and adding value to fruits. Importance of selection of specific yeasts for production of fruit wine. © 2011 Institute of Food Technologists®

  18. Alternative approaches to research in physical therapy: positivism and phenomenology.

    Science.gov (United States)

    Shepard, K F; Jensen, G M; Schmoll, B J; Hack, L M; Gwyer, J

    1993-02-01

    This article presents philosophical approaches to research in physical therapy. A comparison is made to demonstrate how the research purpose, research design, research methods, and research data differ when one approaches research from the philosophical perspective of positivism (predominantly quantitative) as compared with the philosophical perspective of phenomenology (predominantly qualitative). Differences between the two approaches are highlighted by examples from research articles published in Physical Therapy. The authors urge physical therapy researchers to become familiar with the tenets, rigor, and knowledge gained from the use of both approaches in order to increase their options in conducting research relevant to the practice of physical therapy.

  19. Chemical and physical passivation of type II strained-layer superlattice devices by means of thiolated self-assembled monolayers and polymer encapsulates

    Science.gov (United States)

    Henry, Nathan C.; Knorr, Daniel B.; Williams, Kristen S.; Baril, Neil; Nallon, Eric; Lenhart, Joseph L.; Andzelm, Jan W.; Pellegrino, Joseph; Tidrow, Meimei; Cleveland, Erin; Bandara, Sumith

    2015-05-01

    The efficacy of solution deposition of thiolated self-assembled monolayers (SAMs) has been explored for the purpose of passivating III-V type II superlattice (T2SL) photodetectors, more specifically a p-type heterojunction device. Sulfur passivation has previously been achieved on T2SL devices. However, degradation over time, temperature sensitivity and inconsistent reproducibility necessitate a physical encapsulate that can chemically bond to the chemical passivant. Thus, this research investigates two passivation methods, surface passivation with a thiol monolayer and passivation with a polymer encapsulant with a view toward future combination of these techniques. Analysis of the physical and chemical condition of the surface prior to deposition assisted in the development of ideal processes for optimized film quality. Successful deposition was facilitated by in situ oxide removal. Various commercially available functional (cysteamine) and non-functional (alkane) thiolated monolayers were investigated. Dark current was reduced by 3 orders of magnitude and achieved negligible surface leakage at low bias levels. The lowest dark current result, 7.69 × 10-6 A/cm2 at 50 mV, was achieved through passivation with cysteamine.

  20. Research in Particle Physics at the Santa Cruz Institute for Particle Physics, 2000-2003

    International Nuclear Information System (INIS)

    Abraham Seiden

    2003-01-01

    The Santa Cruz Institute for Particle Physics is an Organized Research Unit within the University of California system. This is a special structure allowing a focused emphasis on research and includes special commitments for space and personnel from the Santa Cruz campus. The Institute serves to consolidate the research in experimental and theoretical particle physics on campus. This report covers four separate experimental projects. The projects are the BaBar experiment, the ATLAS experiment, the GLAST space satellite, and work toward a Linear Collider and its detector. Research in High Energy Physics (last final report for period 1996-2000)

  1. Non-chemical weed management

    DEFF Research Database (Denmark)

    Melander, Bo; Liebman, Matt; Davies, Adam S.

    2017-01-01

    Non-chemical weed management covers all management practices that influence weeds except herbicides. This chapter summarises the major achievements in European research, as well as work undertaken in North America. Research groups from both continents have interacted strongly on the topic over...... and in some cases amenity areas as well. Preventive methods reduce weed germination, cultural methods improve crop competition and direct physical weed control reduces weed survival. Non-chemical weed management is mainly adopted in organic crop production, as conventional growers still perceive it as more...

  2. Summaries of FY 1984 research in high energy physics

    International Nuclear Information System (INIS)

    1984-12-01

    The US Department of Energy, through the Office of Energy Research, Division of High Energy and Nuclear Physics, provides approximately 90 percent of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major US high energy accelerator facilities and over 90 universities under contract to do experimental and theoretical investigations on the properties, structure, and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the US Department of Energy. The areas covered include: (1) conception, design, construction, and operation of particle accelerators; (2) experimental research using the accelerators and ancillary equipment; (3) theoretical research; and (4) research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of unerstanding the basic nature of matter and energy

  3. Physical, Chemicals and Flavors of Some Varieties of Arabica Coffee

    Directory of Open Access Journals (Sweden)

    Yusianto .

    2014-08-01

    Full Text Available Export of Arabica coffee was 28,100 tons/year or 8.28% total export of Indonesian coffee, most of them are specialty coffee. Beside their origin, variety and determine the of physical, chemical and flavors characters. The promising clones or varieties i.e. BP 416A, BP 418A, BP 430A, BP 431A, BP 432A, BP 507A, BP 508A, BP 509A, BP 511A, BP 513A, BP 516A, BP 517A and BP 518A still not be determined their quality This research was conducted to analyze their physicals, chemicals and flavors during 2 periods of harvesting (2004 and 2005, using AS 1, S 795 and USDA 762 as the control. Mature coffee berry was harvested, sorted manually, and depulped, cleaned manually and then fermented in plastic sacks during 36 hours. The fermented parchment was washed, and then sun dried, dehulled to get green coffee. Observations wre conducted on green coffee yield, husk content, color of green coffee, distribution of size, bulk density of green and roasted coffee, roasting characters, color of roasted beans, and pH, acidity and flavors. The results showed (a The lowest content of husk was BP 432A and the highest was USDA 762. The control varieties of AS 1, S 795 and USDA 762, showed husk content >15%, while those potential varieties were < 15% except BP 416A. (b Beans size >6,5 mm and more than 80% were BP 416A, BP 430A, BP 432A, BP 509A, P 88 and S 795. Green coffee of BP 430A, BP 432A and BP 509A were uniform, but S 795 was not uniform. AS 1 and BP 416A and P 88 was one group; S 795 was one group with BP 542A; BP 509 was a group with BP 432A; but BP4 30A and USDA 762 were the other groups. (c Green coffee of USDA 762 was the palest color, but BP 542A was the darkest color. AS 1 and S 795 were a group with all potential varieties, except BP 542A. (d Roasted coffee of USDA 762 was the palest color and AS 1 was the darkest. In this case, AS 1 was a group with BP 430A, BP 509A and P 88, while S 795 was a group with BP 416A and BP 432A, but USDA 762 and BP 542A were

  4. Effective use of physical/chemical mutagens in crop hybrid breeding in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu Luxiang; Wang Jing [Chinese Academy of Agricultural Sciences, Institute for Application of Atomic Energy, Beijing (China)

    2001-03-01

    Crop heterosis utilization was one of the greatest achievements in the agriculture production in the 20th century. It is proved that every breakthrough in crop hybrid breeding was predicated on the discovery or successful development of new heterosis germplasm. In recent years, in order to open up the scope and ways of using crop heterosis, it has been paid much close attention to apply mutation techniques to hybrid breeding. Useful tool materials like male sterile mutant lines, fertile restoration mutants in many crops have been obtained by effective use of physical/chemical mutagens. Brief introduction is made in this paper on the newest research improvement concerning the effective use of the techniques of mutation induction in China to create special useful genes, enrich the diversity of germplasm and promote the rapid development of crop hybrid breeding. (author)

  5. Effective use of physical/chemical mutagens in crop hybrid breeding in China

    International Nuclear Information System (INIS)

    Liu Luxiang; Wang Jing

    2001-01-01

    Crop heterosis utilization was one of the greatest achievements in the agriculture production in the 20th century. It is proved that every breakthrough in crop hybrid breeding was predicated on the discovery or successful development of new heterosis germplasm. In recent years, in order to open up the scope and ways of using crop heterosis, it has been paid much close attention to apply mutation techniques to hybrid breeding. Useful tool materials like male sterile mutant lines, fertile restoration mutants in many crops have been obtained by effective use of physical/chemical mutagens. Brief introduction is made in this paper on the newest research improvement concerning the effective use of the techniques of mutation induction in China to create special useful genes, enrich the diversity of germplasm and promote the rapid development of crop hybrid breeding. (author)

  6. Effect of textured soy protein and tomato pulp on chemical, physical ...

    African Journals Online (AJOL)

    Yomi

    2012-03-27

    Mar 27, 2012 ... chemical, physical and sensory properties of ground chicken döner kebab ... foods with health-enhancing activity. Soy proteins ... vascular disease, cancer and osteoporosis (Anderson et al., 1995). Thus ... antioxidant content is associated with a reduced risk of lung and other .... Ease of fracture. Juiciness.

  7. Coupling of physical erosion and chemical weathering after phases of intense human activity

    Science.gov (United States)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Kubik, Peter W.

    2014-05-01

    Anthropogenic disturbance of natural vegetation profoundly alters the lateral and vertical fluxes of soil nutrients and particles at the land surface. Human-induced acceleration of soil erosion can thereby result in an imbalance between physical erosion, soil production and chemical weathering. The (de-)coupling between physical erosion and chemical weathering in ecosystems with strong anthropogenic disturbances is not yet fully understood, as earlier studies mostly focused on natural ecosystems. In this study, we explore the chemical weathering intensity for four study sites located in the Internal Zone of the Spanish Betic Cordillera. Most of the sites belong to the Nevado-Filabres complex, but are characterized by different rates of long-term exhumation, 10Be catchment-wide denudation and hill slope morphology. Denudation rates are generally low, but show large variation between the three sites (from 23 to 246 mm kyr-1). The magnitude of denudation rates is consistent with longer-term uplift rates derived from marine deposits, fission-track measurements and vertical fault slip rates. Two to three soil profiles were sampled per study site at exposed ridge tops. All soils overly fractured mica schist, and are very thin (< 60cm). In each soil profile, we sampled 5 depth slices, rock fragments and the (weathered) bedrock. In total, 38 soil and 20 rock samples were analyzed for their chemical composition. The chemical weathering intensity is constrained by the Chemical Depletion Fraction that is based on a chemical mass balance approach using Zr as an immobile element. Chemical weathering accounts for 5 to 35% of the total mass lost due to denudation. We observe systematically higher chemical weathering intensities (CDFs) in sites with lower denudation rates (and vice versa), suggesting that weathering is supply-limited. Our measurements of soil elemental losses from 10 soil profiles suggest that the observed variation in chemical weathering is strongly associated

  8. Physical and chemical trigger factors in environmental intolerance.

    Science.gov (United States)

    Claeson, Anna-Sara; Palmquist, Eva; Nordin, Steven

    2018-04-01

    Individuals with environmental intolerance (EI) react to exposure from different environmental sources at levels tolerated by most people and that are below established toxicological and hazardous thresholds. The main aim of this study was to determine the prevalence of attributing symptoms to chemical and physical sources in the environment among individuals with different forms of self-reported EI and in referents. Cross-sectional data from a population-based study, the Västerbotten Environmental Health Study (n = 3406), were used and individuals with self-reported EI to chemicals, buildings, electromagnetic fields and sounds as well as a group with multiple EIs were identified. The Environmental-Symptom Attribution Scale was used to quantify degree to which health symptoms are attributed to 40 specific environmental exposures and sources, with subscales referring to the four types of EI. All EI groups, except the group with building related intolerance (BRI), reported more symptoms from the expected sources compared to the referents. In addition, individuals with chemical and sound intolerance reported symptoms from building related trigger factors, and individuals with electromagnetic hypersensitivity reported symptoms from chemical trigger factors. The study suggests that individuals with BRI react to fewer and more specific trigger factors than do individuals with other EIs, and that it is important to ask about different sources since three of the EI groups attribute their symptoms to a wide variety of sources in addition to the sources to which their EI implicates. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. The Chemistry Departement of the Institute for Nuclear Physics Research, Amsterdam, The Netherlands

    International Nuclear Information System (INIS)

    Lindner, L.

    1977-01-01

    In 1946, the Institute for Nuclear Physics Research (IKO) in Amsterdam was founded as a typical post World War II effort to cope with the surge in scientific research, primarily in the USA. At present, the Institute encompasses almost 250 workers - including a Philips research group - out of which nearly 30 are members of the Chemistry Department. In the beginning, the investigations dealt with more or less conventional tracerwork using long-lived radionuclides produced in nuclear reactors. This changed rapidly with the synchrocyclotron coming into operation in 1947. The present can be best characterized as a sort of a transition state. Emphasis has been laid upon more typical chemical aspects of the research program: a shift from ''nuclear'' chemistry to ''radio'' chemistry. The future is determined by the 500 MeV linear electron accelerator, dubbed MEA (Medium Energy Accelerator) already under construction. (T.G.)

  10. Teaching and physics education research: bridging the gap

    International Nuclear Information System (INIS)

    Fraser, James M; Miller, Kelly; Dowd, Jason E; Tucker, Laura; Mazur, Eric; Timan, Anneke L

    2014-01-01

    Physics faculty, experts in evidence-based research, often rely on anecdotal experience to guide their teaching practices. Adoption of research-based instructional strategies is surprisingly low, despite the large body of physics education research (PER) and strong dissemination effort of PER researchers and innovators. Evidence-based PER has validated specific non-traditional teaching practices, but many faculty raise valuable concerns toward their applicability. We address these concerns and identify future studies required to overcome the gap between research and practice. (key issues reviews)

  11. Lepidopteran defence droplets - A composite physical and chemical weapon against potential predators

    DEFF Research Database (Denmark)

    Pentzold, S.; Zagrobelny, Mika; Khakimov, Bekzod

    2016-01-01

    Insects often release noxious substances for their defence. Larvae of Zygaena filipendulae (Lepidoptera) secrete viscous and cyanogenic glucoside-containing droplets, whose effectiveness was associated with their physical and chemical properties. The droplets glued mandibles and legs of potential...

  12. Double-Layer Structured CO2 Adsorbent Functionalized with Modified Polyethyleneimine for High Physical and Chemical Stability.

    Science.gov (United States)

    Jeon, Sunbin; Jung, Hyunchul; Kim, Sung Hyun; Lee, Ki Bong

    2018-06-18

    CO 2 capture using polyethyleneimine (PEI)-impregnated silica adsorbents has been receiving a lot of attention. However, the absence of physical stability (evaporation and leaching of amine) and chemical stability (urea formation) of the PEI-impregnated silica adsorbent has been generally established. Therefore, in this study, a double-layer impregnated structure, developed using modified PEI, is newly proposed to enhance the physical and chemical stabilities of the adsorbent. Epoxy-modified PEI and diepoxide-cross-linked PEI were impregnated via a dry impregnation method in the first and second layers, respectively. The physical stability of the double-layer structured adsorbent was noticeably enhanced when compared to the conventional adsorbents with a single layer. In addition to the enhanced physical stability, the result of simulated temperature swing adsorption cycles revealed that the double-layer structured adsorbent presented a high potential working capacity (3.5 mmol/g) and less urea formation under CO 2 -rich regeneration conditions. The enhanced physical and chemical stabilities as well as the high CO 2 working capacity of the double-layer structured adsorbent were mainly attributed to the second layer consisting of diepoxide-cross-linked PEI.

  13. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  14. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  15. Physics Research Integrated Development Environment (PRIDE)

    International Nuclear Information System (INIS)

    Burton, J.; Cormell, L.

    1993-12-01

    Past efforts to implement a Software Engineering approach to High Energy Physics computing have been met with significant resistance and have been, in many cases, only marginally successful. At least a portion of the problem has been the Lick of an integrated development environment, tailored to High Energy Physics and incorporating a suite of Computer Aided Software Engineering tools. The Superconducting Super Collider Physics Research Division Computing Department is implementing pilot projects to develop just such an environment

  16. Chemical and physical characteristics of phosphate rock materials of varying reactivity

    International Nuclear Information System (INIS)

    Syers, J.K.; Currie, L.D.

    1986-01-01

    Several chemical and physical properties of 10 phosphate rock (PR) materials of varying reactivity were evaluated. The highest concentrations of As and Cd were noted. Because Cd and U can accumulate in biological systems, it may be necessary to direct more attention towards the likely implications of Cd and U concentrations when evaluating a PR for direct application. Three sequential extractions with 2% citric acid may be more useful for comparing the chemical solubility of PR materials, particularly for those containing appreciable CaC0 3 . The poor relationship obtained between surface area and the solubility of the PR materials suggests that surface area plays a secondary role to chemical reactivity in controlling the solubility of a PR in a chemical extractant. A Promesh plot provided an effective method for describing the particle-size characteristics of those PR materials which occurred as sands. Fundamental characteristics, such as mean particle size and uniformity, can readily be determined from a Promesh plot. (author)

  17. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H_2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N_2H"+, ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N_2H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N_2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N_2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH_3 and NH_3/N_2 mixtures)

  18. Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research.

    Science.gov (United States)

    Hulme, S Elizabeth; Whitesides, George M

    2011-05-16

    This Review discusses the potential usefulness of the worm Caenorhabditis elegans as a model organism for chemists interested in studying living systems. C. elegans, a 1 mm long roundworm, is a popular model organism in almost all areas of modern biology. The worm has several features that make it attractive for biology: it is small (1000 cells), transparent, and genetically tractable. Despite its simplicity, the worm exhibits complex phenotypes associated with multicellularity: the worm has differentiated cells and organs, it ages and has a well-defined lifespan, and it is capable of learning and remembering. This Review argues that the balance between simplicity and complexity in the worm will make it a useful tool in determining the relationship between molecular-scale phenomena and organism-level phenomena, such as aging, behavior, cognition, and disease. Following an introduction to worm biology, the Review provides examples of current research with C. elegans that is chemically relevant. It also describes tools-biological, chemical, and physical-that are available to researchers studying the worm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Numerical tables on physical and chemical analyses of Rhine water 1983

    International Nuclear Information System (INIS)

    1984-01-01

    The numerical tables contain the measuring results of the physical-chemical studies on the Rhine water for the year 1983. The tables are arranged by general parameters, organic matter, eutrophicating substances, anorganic matter, metals, organic micropollution as well as by radioactivity (total alpha- or beta- and T-activity). (MM) [de

  20. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  1. UCLA Particle Physics Research Group annual progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1981-08-01

    The objectives, basic research programs, recent results and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. A synopsis of research carried out last year is given. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research

  2. From students to researchers: The education of physics graduate students

    Science.gov (United States)

    Lin, Yuhfen

    This dissertation aims to make two research contributions: (1) In physics education research, this work aims to advance our understanding of physics student learning at the graduate level. This work attempts to better understand how physics researchers and teachers are produced, and what factors support or encourage the process of becoming a researcher and a teacher. (2) In cognitive science research in the domain of expert/novice differences, researchers are interested in defining and understanding what expertise is. This work aims to provide some insight into some of the components of expertise that go into becoming a competent expert researcher in the domain of physics. This in turn may contribute to our general understanding of expertise across multiple domains. Physics graduate students learn in their classes as students, teach as teaching assistants, and do research with research group as apprentices. They are expected to transition from students to independent researchers and teachers. The three activities of learning, teaching, and research appear to be very different and demand very different skill-sets. In reality, these activities are interrelated and have subtle effects on each other. Understanding how students transition from students to researchers and teachers is important both to PER and physics in general. In physics, an understanding of how physics students become researchers may help us to keep on training physicists who will further advance our understanding of physics. In PER, an understanding of how graduate students learn to teach will help us to train better physics teachers for the future. In this dissertation, I examine physics graduate students' approaches to teaching, learning, and research through semi-structured interviews. The collected data is interpreted and analyzed through a framework that focuses on students' epistemological beliefs and locus of authority. The data show how students' beliefs about knowledge interact with their

  3. Boundary Conditions for the Paleoenvironment: Chemical and Physical Processes in Dense Interstellar Clouds: Summary of Research

    Science.gov (United States)

    Irvine, William M.

    1999-01-01

    The basic theme of this program was the study of molecular complexity and evolution for the biogenic elements and compounds in interstellar clouds and in primitive solar system objects. Research included the detection and study of new interstellar and cometary molecules and investigation of reaction pathways for astrochemistry from a comparison of theory and observed molecular abundances. The latter includes studies of cold, dark clouds in which ion-molecule chemistry should predominate, searches for the effects of interchange of material between the gas and solid phases in interstellar clouds, unbiased spectral surveys of particular sources, and systematic investigation of the interlinked chemistry and physics of dense interstellar clouds. In addition, the study of comets has allowed a comparison between the chemistry of such minimally thermally processed objects and that of interstellar clouds, shedding light on the evolution of the biogenic elements during the process of solar system formation. One PhD dissertation on this research was completed by a graduate student at the University of Massachusetts. An additional 4 graduate students at the University of Massachusetts and 5 graduate students from other institutions participated in research supported by this grant, with 6 of these thus far receiving PhD degrees from the University of Massachusetts or their home institutions. Four postdoctoral research associates at the University of Massachusetts also participated in research supported by this grant, receiving valuable training.

  4. Physical and chemical properties of pyrethroids.

    Science.gov (United States)

    Laskowski, Dennis A

    2002-01-01

    The physical and chemical properties of the pyrethroids bifenthrin, cyfluthrin, cypermethrin (also zetacypermethrin), deltamethrin, esfenvalerate (also fenvalerate), fenpropathrin, lambda-cyhalothrin (also cyhalothrin), permethrin, and tralomethrin have been reviewed and summarized in this paper. Physical properties included molecular weight, octanol-water partition coefficient, vapor pressure, water solubility, Henry's law constant, fish biocencentration factor, and soil sorption, desorption, and Freundlich coefficients. Chemical properties included rates of degradation in water as a result of hydrolysis, photodecomposition, aerobic or anaerobic degradation by microorganisms in the absence of light, and also rates of degradation in soil incubated under aerobic or anaerobic conditions. Collectively, the pyrethroids display a highly nonpolar nature of low water solubility, low volatility, high octanol-water partition coefficients, and have high affinity for soil and sediment particulate matter. Pyrethroids have low mobility in soil and are sorbed strongly to the sediments of natural water systems. Although attracted to living organisms because of their nonpolar nature, their capability to bioconcentrate is mitigated by their metabolism and subsequent elimination by the organisms. In fish, bioconcentration factors (BCF) ranged from 360 and 6000. Pyrethroids in water solution tend to be stable at acid and neutral pH but [table: see text] become increasingly susceptible to hydrolysis at pH values beyond neutral. Exceptions at higher pH are bifenthrin (stable), esfenvalerate (stable), and permethrin (half-life, 240 d). Pyrethroids vary in susceptibility to sunlight. Cyfluthrin and tralomethrin in water had half-lives of 0.67 and 2.5 d; lambda-cyhalothrin, esfenvalerate, deltamethrin, permethrin, and cypermethrin were intermediate with a range of 17-110 d; and bifenthrin and fenpropathrin showed the least susceptibility with half-lives of 400 and 600 d, respectively

  5. Health physics research abstracts no. 11

    International Nuclear Information System (INIS)

    1984-07-01

    The present issue No. 11 of Health Physics Research Abstracts is the continuation of a series of Bulletins published by the Agency since 1967. They collect reports from Member States on Health Physics research in progress or just completed. The main aim in issuing such reports is to draw attention to work that is about to be published and to enable interested scientists to obtain further information through direct correspondence with the investigators. The attention of users of this publication is drawn to the fact that abstracts of published documents on Health Physics are published eventually in INIS Atomindex, which is one of the output products of the Agency's International Nuclear Information System. The present issue contains 235 reports received up to December 1983 from the following Member States. In parentheses the country's ISO code and number of reports are given

  6. Chemical Research Society of India – Tenth Anniversary

    Indian Academy of Sciences (India)

    WINTEC

    The Chemical Research Society of India (CRSI) established in 1999 completes its tenth year during the Tenth National Symposium (NSC-10; February 2008) in Bangalore at the. Indian Institute of Science. The Society has been providing a forum for chemists to dis- cuss and share their research contributions with ...

  7. Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant

    Science.gov (United States)

    Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati

    2016-11-01

    The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.

  8. Nuclear physics and heavy element research at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

    2009-05-11

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  9. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1991-12-01

    This report presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. We are active in eight principal areas which are discussed in this report: Colliding Beams - physics of electron-positron annihilation; Accelerator Design Physics - advanced accelerator design; Monopole/ Neutrino - searchers for magnetic monopoles and for neutrino oscillations; Proton Decay - search for nucleon instability and study of nonaccelarator physics; Particle Theory - theoretical high energy particles physics; Muon G-2 - an experiment to measure the anomalous magnetic moment of the muon with a factor of 20 better precision than currently achieved; SSSintcal - scintillating fiber calorimetry for the SSC; and SSC Muon Detectors - development of muon detectors for the GEM Experiment at the SSC

  10. Collaboration between physical activity researchers and transport planners

    DEFF Research Database (Denmark)

    Crist, Katie; Bolling, Khalisa; Schipperijn, Jasper

    2018-01-01

    Collaboration between physical activity (PA) researchers and transport planners is a recommended strategy to combat the physical inactivity epidemic. Data collected by PA researchers could be used to identify, implement and evaluate active transport (AT) projects. However, despite aligned interests......, researchers and transport planners rarely collaborate. This study utilized qualitative methods to 1) gain an in-depth understanding of the data utilized in AT planning, 2) explore the utility of Global Positioning Systems (GPS) and accelerometer data in supporting the planning process, 3) identify...... expertise in health or transport planning. A thematic analysis was conducted following structural coding by two researchers. The analysis revealed that geographic and physical activity data that are current, local, objective and specific to individual AT trips would improve upon currently available data...

  11. Research-based active-learning instruction in physics

    Science.gov (United States)

    Meltzer, David E.; Thornton, Ronald K.

    2013-04-01

    The development of research-based active-learning instructional methods in physics has significantly altered the landscape of U.S. physics education during the past 20 years. Based on a recent review [D.E. Meltzer and R.K. Thornton, Am. J. Phys. 80, 478 (2012)], we define these methods as those (1) explicitly based on research in the learning and teaching of physics, (2) that incorporate classroom and/or laboratory activities that require students to express their thinking through speaking, writing, or other actions that go beyond listening and the copying of notes, or execution of prescribed procedures, and (3) that have been tested repeatedly in actual classroom settings and have yielded objective evidence of improved student learning. We describe some key features common to methods in current use. These features focus on (a) recognizing and addressing students' physics ideas, and (b) guiding students to solve problems in realistic physical settings, in novel and diverse contexts, and to justify or explain the reasoning they have used.

  12. Physics-based approach to chemical source localization using mobile robotic swarms

    Science.gov (United States)

    Zarzhitsky, Dimitri

    2008-07-01

    Recently, distributed computation has assumed a dominant role in the fields of artificial intelligence and robotics. To improve system performance, engineers are combining multiple cooperating robots into cohesive collectives called swarms. This thesis illustrates the application of basic principles of physicomimetics, or physics-based design, to swarm robotic systems. Such principles include decentralized control, short-range sensing and low power consumption. We show how the application of these principles to robotic swarms results in highly scalable, robust, and adaptive multi-robot systems. The emergence of these valuable properties can be predicted with the help of well-developed theoretical methods. In this research effort, we have designed and constructed a distributed physicomimetics system for locating sources of airborne chemical plumes. This task, called chemical plume tracing (CPT), is receiving a great deal of attention due to persistent homeland security threats. For this thesis, we have created a novel CPT algorithm called fluxotaxis that is based on theoretical principles of fluid dynamics. Analytically, we show that fluxotaxis combines the essence, as well as the strengths, of the two most popular biologically-inspired CPT methods-- chemotaxis and anemotaxis. The chemotaxis strategy consists of navigating in the direction of the chemical density gradient within the plume, while the anemotaxis approach is based on an upwind traversal of the chemical cloud. Rigorous and extensive experimental evaluations have been performed in simulated chemical plume environments. Using a suite of performance metrics that capture the salient aspects of swarm-specific behavior, we have been able to evaluate and compare the three CPT algorithms. We demonstrate the improved performance of our fluxotaxis approach over both chemotaxis and anemotaxis in these realistic simulation environments, which include obstacles. To test our understanding of CPT on actual hardware

  13. Decommissioning of the research reactors at the Russian Research Centre Kurchatov Institute

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoy, N.N.; Ryantsev, E.P.; Kolyadin, V.I.; Kucharkin, N.E.; Melkov, E.S.; Gorlinsky, Yu.E.; Kyznetsova, T.I.; Bulkin, B.K.

    2002-01-01

    The Kurchatov Institute is the largest research center of Russia in the field of nuclear science and engineering. It comprises more than 10 research institutes and scientific-technological complexes carrying out research work in the field of safe development of atomic engineering, controlled thermonuclear fusion, and plasma physics, nuclear physics and elementary particle physics, research reactors, radiation materials technology, solid state physics and superconductivity, molecular and chemical physics, and also perspective know-how's, information science and ecology. This report is basically devoted to the decommissioning of the research reactor installations, in particular to the reactor MR because of the volume and complexity of actions involved. (author)

  14. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  15. [Research in high energy physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  16. High energy physics division semiannual report of research activities

    International Nuclear Information System (INIS)

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1991-08-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1991--June 30, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included

  17. Federal agencies active in chemical industry-related research and development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-29

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  18. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad; Viollet, Yoann; Elwardani, Ahmed Elsaid; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have

  19. RESEARCH IN PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Universiy

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  20. Integrating research evidence and physical activity policy making

    DEFF Research Database (Denmark)

    Aro, Arja R.; Bertram, Maja; Hämäläinen, Riitta-Maija

    2016-01-01

    Evidence shows that regular physical activity is enhanced by supporting environment. Studies are needed to integrate research evidence into health enhancing, cross-sector physical activity (HEPA) policy making. This article presents the rationale, study design, measurement procedures...... and the initial results of the first phase of six European countries in a five-year research project (2011-2016), REsearch into POlicy to enhance Physical Activity (REPOPA). REPOPA is programmatic research; it consists of linked studies; the first phase studied the use of evidence in 21 policies in implementation...... to learn more in depth from the policy making process and carried out 86 qualitative stakeholder interviews. The second, ongoing phase builds on the central findings of the first phase in each country; it consists of two sets of interventions: game simulations to study cross-sector collaboration...

  1. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  2. Summaries of FY 1977, research in high energy physics

    International Nuclear Information System (INIS)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977

  3. Main directions of Research Institute of Experimental and Theoretic Physics

    International Nuclear Information System (INIS)

    Tazhibaeva, I.L.

    1997-01-01

    The characteristic of main directions of the Research Institute of Experimental and Theoretic Physics (RIETF) activity is given in the paper. It is noted, that Institute is headquarters organisation in 4 following scientific programs of Ministry of Science - Academy of Science of Republic of Kazakhstan: Physics and mechanics of gases, plasma and liquid; Theoretical physics; Nonlinear processes and structural self-organization of substance; Research works Comet. Since 1994 RIETF is one of executors on interstate scientific program ITER. There are following priorities in activity of the institute: - actual problems of relativity theory, gravitation and quantum mechanics; - research on combustion problems and heat-mass-transfer; - physics of gases, plasma and liquid; physics non-equilibrium processes in plasma an in plasma-similar media; - solid state physics and material testing problems; modification of materials properties; electrophysical, optical and structural researches of substance; - interactions of nuclear, electromagnet radiation and accelerated particles with substance; - theoretical and experimental nuclear physics and physics of cosmic rays

  4. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Blocker, C.A.

    1992-01-01

    This report discusses research in the following areas of high energy physics: B meson mixing; CDF response to low energy jets; jet scaling behavior; search for pair produced leptoquarks at CDF; SSC program; quantum field theory; and neural networks. (LSP)

  5. Sources of radioactive waste from light-water reactors and their physical and chemical properties

    International Nuclear Information System (INIS)

    Bell, M.J.; Collins, J.T.

    1979-01-01

    The general physical and chemical properties of waste streams in light-water reactors (LWRs) are described. The principal mechanisms for release and the release pathways to the environment are discussed. The calculation of liquid and gaseous source terms using one of the available models is presented. These calculated releases are compared with observed releases from operating LWRs. The computerized mathematical model used is the GALE Code which is the Nuclear Regulatory Commission (NRC) staff's model for calculating source terms for effluents from LWRs (USNRC76a, USNRC76b). Programs currently being conducted at operating reactors by the NRC, Electric Power Research Institute, and various utilities to better define the characteristics of waste streams and the performance of radwaste process equipment are described

  6. Health physics research abstracts No.14: Information on research in progress

    International Nuclear Information System (INIS)

    1989-01-01

    The present issue No. 14 of Health Physics Research Abstracts is the continuation of a series of bulletins published by the Agency since 1967. They collect reports from Member States on Health Physics research in progress or just completed. The main aim in issuing such reports is to draw attention to work that is about to be published and to enable interested scientists to obtain further information through direct correspondence with the investigator. The present issue contains 381 reports received up to September 1988

  7. Synthesis of discipline-based education research in physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2014-09-01

    Full Text Available This paper presents a comprehensive synthesis of physics education research at the undergraduate level. It is based on work originally commissioned by the National Academies. Six topical areas are covered: (1 conceptual understanding, (2 problem solving, (3 curriculum and instruction, (4 assessment, (5 cognitive psychology, and (6 attitudes and beliefs about teaching and learning. Each topical section includes sample research questions, theoretical frameworks, common research methodologies, a summary of key findings, strengths and limitations of the research, and areas for future study. Supplemental material proposes promising future directions in physics education research.

  8. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions.

    Science.gov (United States)

    Tagliazucchi, Mario; de la Cruz, Mónica Olvera; Szleifer, Igal

    2010-03-23

    The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.

  9. Researches on Physico-Chemical and Microbiological Characteristics of Sheep and Cow Milk from Cristian Farm, Romania

    Directory of Open Access Journals (Sweden)

    Popa Ionuţ Radu

    2014-06-01

    Full Text Available This study was conducted over a period of three month in the Cristian farm, Sibiu. For the physical, chemical and microbiological analyzes were taken a number of 15 samples per month. From physico-chemical point of view the content evolution of fat, not fat solid substance, density, protein, freezing point, temperature, lactose, conductivity, pH, water addition was followed. Samples were analyzed using the milk analyzer Ekomilk Total of the Research Centre in Biotechnology and Microbiology of the "Lucian Blaga" University. The microbiological contamination of milk was done by determining the total number of bacteria and coliform bacteria. From microbiological point of view it was observed that these conditions are largely met, but a more rigorous control on the cleanliness of utensils and of the staff is required.

  10. Nigerian Journal of Chemical Research 29 Vol. 15, 2010 ...

    African Journals Online (AJOL)

    Hp

    Nigerian Journal of Chemical Research. 29. Vol. 15, 2010. Antibacterial & Antifungal Studies On Some Coordination Compound Of Metals. With Ampicillin. Pranay Guru. Department of Engineering Chemistry, People's College of Research & Technology, Bhopal. (M. P.) India, email:pranayguru@rediffmail.com. ABSTRACT.

  11. Physical and chemical assessment of MSF distillate and SWRO product for drinking purpose

    KAUST Repository

    Gacem, Yasmine; Taleb, Safia; Ramdani, Amina; Senadjki, Samia; Ghaffour, NorEddine

    2012-01-01

    The objective of this study was to evaluate the physical and chemical proprieties of desalinated seawater produced by Multi Stage Flash (MSF) and Reverse Osmosis (RO) processes for drinking purpose. The final products, after post

  12. Chemical and physical analysis of core materials for advanced high temperature reactors with process heat applications

    International Nuclear Information System (INIS)

    Nickel, H.

    1985-08-01

    Various chemical and physical methods for the analysis of structural materials have been developed in the research programmes for advanced high temperature reactors. These methods are discussed using as examples the structural materials of the reactor core - the fuel elements consisting of coated particles in a graphite matrix and the structural graphite. Emphasis is given to the methods of chemical analysis. The composition of fuel kernels is investigated using chemical analysis methods to determine the heavy metals content (uranium, plutonium, thorium and metallic impurity elements) and the amount of non-metallic constituents. The properties of the pyrocarbon and silicon carbide coatings of fuel elements are investigated using specially developed physiochemical methods. Regarding the irradiation behaviour of coated particles and fuel elements, methods have been developed for examining specimens in hot cells following exposures under reactor operating conditions, to supplement the measurements of in-reactor performance. For the structural graphite, the determination of impurities is important because certain impurities may cause pitting corrosion during irradiation. The localized analysis of very low impurity concentrations is carried out using spectrochemical d.c. arc excitation, local laser and inductively coupled plasma methods. (orig.)

  13. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1993-11-01

    This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework

  14. Effects of chemical-physical pre-treatment processes on hemp fibres for reinforcement of composites and textiles

    DEFF Research Database (Denmark)

    Thomsen, Anne Belinda; Thygesen, Anders; Bohn, Vibeke

    2006-01-01

    Retted hemp fibres were treated using chemical-physical pre-treatments and the material was characterised chemically in order to evaluate the effect of the pre-treatments, respectively, wet oxidation (WO), hydrothermal treatment (HT) and steam explosion (STEX). Process variables were addition...

  15. Top 10 research questions related to children physical activity motivation.

    Science.gov (United States)

    Chen, Ang

    2013-12-01

    Physical activity is critical to healthy development of children. It is well documented that helping children develop and sustain a physically active lifestyle requires children to become motivated. Many studies have been conducted in the past 2.5 decades on determinants and correlates for children and adolescents' physical activity motivation. The findings have informed researchers and practitioners about motivation sources for children and effective strategies to motivate children in given physical activity settings. Built on the extensive knowledge base and theoretical platforms formed by these research studies, the purpose of this article is to take a look at the current research landscape and provide subjective thoughts about what we still need to know about children's physical activity motivation. The product of this subjective thinking process rendered 10 potential questions for future research on children's physical activity motivation in both in-school and out-of-school settings. These topics encompass those focusing on children's physical activity motivation as a mental dispositional process, those conceptualizing the motivation as an outcome of person-environment interactions, and those attempting to dissect the motivation as an outcome of social-cultural influences and educational policies. It is hoped that the topics can serve researchers interested in children's physical activity motivation as starting blocks from which they can extend their conceptual thinking and identify research questions that are personally meaningful. It is also hoped that the list of potential questions can be helpful to researchers in accomplishing the imperative and significant mission to motivate children to be physically active in the 21st century and beyond.

  16. Combining research in physical chemistry and chemical education: Part A. The femtosecond molecular dynamics of small gas-phase anion clusters. Part B. Surveying student beliefs about chemistry and the development of physical chemistry learning tutorials

    Science.gov (United States)

    Barbera, Jack

    2007-12-01

    This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student

  17. Physical, chemical, and biological properties of radiocerium relevant to radiation protection guidelines

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Present knowledge of the relevant physical, chemical, and biological properties of radiocerium as a basis for establishing radiation protection guidelines is summarized. The first section of the report reviews the chemical and physical properties of radiocerium relative to the biological behavior of internally-deposited cerium and other lanthanides. The second section of the report gives the sources of radiocerium in the environment and the pathways to man. The third section of the report describes the metabolic fate of cerium in several mammalian species as a basis for predicting its metabolic fate in man. The fourth section of the report considers the biomedical effects of radiocerium in light of extensive animal experimentation. The last two sections of the report describe the history of radiation protection guidelines for radiocerium and summarize data required for evaluating the adequacy of current radiation protection guidelines. Each section begins with a summary of the most important findings that follow

  18. How consumer physical activity monitors could transform human physiology research

    Science.gov (United States)

    Hall Brown, Tyish S.; Collier, Scott R.; Sandberg, Kathryn

    2017-01-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. PMID:28052867

  19. How consumer physical activity monitors could transform human physiology research.

    Science.gov (United States)

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.

  20. Gold processing residue from Jacobina Basin: chemical and physical properties

    OpenAIRE

    Lima, Luiz Rogério Pinho de Andrade; Bernardez, Letícia Alonso; Barbosa, Luís Alberto Dantas

    2007-01-01

    p. 848-852 Gold processing residues or tailings are found in several areas in the Itapicuru River region (Bahia, Brazil), and previous studies indicated significant heavy metals content in the river sediments. The present work focused on an artisanal gold processing residue found in a site from this region. Samples were taken from the processing residue heaps and used to perform a physical and chemical characterization study using X-ray diffraction, scanning electron microscopy, neutron...

  1. Sensorial, physical and chemical evaluation of bio-fortified Ipomoea batatas

    OpenAIRE

    Mara N.G. Santos; Joice V.C. Orsine; Alexandre I. de A. Pereira; Roberto Cañete; María R.C.G. Novaes

    2014-01-01

    Context: Bio-fortified sweet potato, Ipomoea batatas (L.) Lamarck beta-carotene rich, has been included in the most vulnerable population’s diet with the purpose of reducing health disturbances associated with hipovitaminosis. Aims:To evaluate a physical and chemical analysis of total carotenes and beta-carotene and to determine the antioxidant potential as well as to carry out a sensorial analysis of the bio-fortified Ipomoea batatas (L.) Lamarck (BDB) in nature and processed. Method...

  2. Indoor environment and children's health: recent developments in chemical, biological, physical and social aspects.

    Science.gov (United States)

    Le Cann, Pierre; Bonvallot, Nathalie; Glorennec, Philippe; Deguen, Séverine; Goeury, Christophe; Le Bot, Barbara

    2011-12-01

    Much research is being carried out into indoor exposure to harmful agents. This review focused on the impact on children's health, taking a broad approach to the indoor environment and including chemical, microbial, physical and social aspects. Papers published from 2006 onwards were reviewed, with regards to scientific context. Most of publications dealt with chemical exposure. Apart from the ongoing issue of combustion by-products, most of these papers concerned semi volatile organic compounds (such as phthalates). These may be associated with neurotoxic, reprotoxic or respiratory effects and may, therefore, be of particular interest so far as children are concerned. In a lesser extent, volatile organic compounds (such as aldehydes) that have mainly respiratory effects are still studied. Assessing exposure to metals is still of concern, with increasing interest in bioaccessibility. Most of the papers on microbial exposure focused on respiratory tract infections, especially asthma linked to allergens and bio-aerosols. Physical exposure includes noise and electromagnetic fields, and articles dealt with the auditory and non auditory effects of noise. Articles on radiofrequency electromagnetic fields mainly concerned questions about non-thermal effects and papers on extremely low-frequency magnetic fields focused on the characterization of exposure. The impact of the indoor environment on children's health cannot be assessed merely by considering the effect of these different types of exposure: this review highlights new findings and also discusses the interactions between agents in indoor environments and also with social aspects. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications

    Science.gov (United States)

    Weiss, Charles J.

    2017-01-01

    An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…

  4. Uncertainty of inhalation dose coefficients for representative physical and chemical forms of iodine-131

    Science.gov (United States)

    Harvey, Richard Paul, III

    Releases of radioactive material have occurred at various Department of Energy (DOE) weapons facilities and facilities associated with the nuclear fuel cycle in the generation of electricity. Many different radionuclides have been released to the environment with resulting exposure of the population to these various sources of radioactivity. Radioiodine has been released from a number of these facilities and is a potential public health concern due to its physical and biological characteristics. Iodine exists as various isotopes, but our focus is on 131I due to its relatively long half-life, its prevalence in atmospheric releases and its contribution to offsite dose. The assumption of physical and chemical form is speculated to have a profound impact on the deposition of radioactive material within the respiratory tract. In the case of iodine, it has been shown that more than one type of physical and chemical form may be released to, or exist in, the environment; iodine can exist as a particle or as a gas. The gaseous species can be further segregated based on chemical form: elemental, inorganic, and organic iodides. Chemical compounds in each class are assumed to behave similarly with respect to biochemistry. Studies at Oak Ridge National Laboratories have demonstrated that 131I is released as a particulate, as well as in elemental, inorganic and organic chemical form. The internal dose estimate from 131I may be very different depending on the effect that chemical form has on fractional deposition, gas uptake, and clearance in the respiratory tract. There are many sources of uncertainty in the estimation of environmental dose including source term, airborne transport of radionuclides, and internal dosimetry. Knowledge of uncertainty in internal dosimetry is essential for estimating dose to members of the public and for determining total uncertainty in dose estimation. Important calculational steps in any lung model is regional estimation of deposition fractions

  5. Corrosion of research reactor aluminium-clad spent fuel in water-chemical and microbiological influenced

    International Nuclear Information System (INIS)

    Maksin, T.N.; Dobrijevic, R.P.; Idjakovic, Z.E.; Pesic, M.P.

    2002-01-01

    Spent fuel resulting from 25 years of operating research reactor RA at the Vinca Institute is presently all stored in the temporary spent fuel storage pool. It has been left in the ambient temperature and humidity for more then fifteen years so intensive corrosion processes were notice. We have spent fuel pools under control, after first research coordination meeting (RCM), of the first CRP, by monitoring of physical and chemical parameters of water in the pools, including temperature, pH-factor, electrical conductivity, mass concentration of corrosion products in the water and mud, mass concentration of relevant ions etc. The rack of standard corrosion coupons, was given at that time, has been in poor quality water for six years. We pick up rack assembly from basin and analysed. The results of this investigation are present in this article. (author)

  6. Intuitive Physics: Current Research and Controversies.

    Science.gov (United States)

    Kubricht, James R; Holyoak, Keith J; Lu, Hongjing

    2017-10-01

    Early research in the field of intuitive physics provided extensive evidence that humans succumb to common misconceptions and biases when predicting, judging, and explaining activity in the physical world. Recent work has demonstrated that, across a diverse range of situations, some biases can be explained by the application of normative physical principles to noisy perceptual inputs. However, it remains unclear how knowledge of physical principles is learned, represented, and applied to novel situations. In this review we discuss theoretical advances from heuristic models to knowledge-based, probabilistic simulation models, as well as recent deep-learning models. We also consider how recent work may be reconciled with earlier findings that favored heuristic models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Institutional supporting research highlights in physics and mathematics, fiscal year 1983

    International Nuclear Information System (INIS)

    Vigil, J.C.

    1984-03-01

    Highlights of FY 1983 Institutional Supporting Research and Development activities within the six Physics and Mathematics divisions and the Center for Nonlinear Studies are presented. The highlights are but a fraction of the ISRD activities in the Directorate and are intended to be a representative sample of progress in the various research areas. FY 1983 ISRD activities within the Physics and Mathematics divisions included both basic and applied research and were divided into 11 research areas: mathematics and numerical methods, low-energy nuclear physics, medium- and high-energy nuclear physics, atomic and molecular physics, solid-state physics and materials science, fluid dynamics, plasma physics and intense particle beam theory, astrophysics and space physics, particle transport methods, accelerator and fusion technology, and biophysics. Highlights from each of these areas are presented

  8. An ethnographic study: Becoming a physics expert in a biophysics research group

    Science.gov (United States)

    Rodriguez, Idaykis

    Expertise in physics has been traditionally studied in cognitive science, where physics expertise is understood through the difference between novice and expert problem solving skills. The cognitive perspective of physics experts only create a partial model of physics expertise and does not take into account the development of physics experts in the natural context of research. This dissertation takes a social and cultural perspective of learning through apprenticeship to model the development of physics expertise of physics graduate students in a research group. I use a qualitative methodological approach of an ethnographic case study to observe and video record the common practices of graduate students in their biophysics weekly research group meetings. I recorded notes on observations and conduct interviews with all participants of the biophysics research group for a period of eight months. I apply the theoretical framework of Communities of Practice to distinguish the cultural norms of the group that cultivate physics expert practices. Results indicate that physics expertise is specific to a topic or subfield and it is established through effectively publishing research in the larger biophysics research community. The participant biophysics research group follows a learning trajectory for its students to contribute to research and learn to communicate their research in the larger biophysics community. In this learning trajectory students develop expert member competencies to learn to communicate their research and to learn the standards and trends of research in the larger research community. Findings from this dissertation expand the model of physics expertise beyond the cognitive realm and add the social and cultural nature of physics expertise development. This research also addresses ways to increase physics graduate student success towards their PhD. and decrease the 48% attrition rate of physics graduate students. Cultivating effective research

  9. Summaries of FY 1977: Research in the chemical sciences

    International Nuclear Information System (INIS)

    1978-02-01

    Research on fundamental interactions, processes, and techniques important to the production, use, and conservation of energy is being conducted at government, university, and corporate laboratories. This report documents all of the Chemical Sciences basic energy research projects and provides a summary of funding levels and indexes

  10. Technical area status report for chemical/physical treatment

    International Nuclear Information System (INIS)

    Brown, C.H. Jr.; Schwinkendorf, W.E.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs and activities throughout the DOE Complex. The Mixed Waste Integrated Program (MWIP) was created by the DOE Office of Technology Development (OTD) to develop, deploy, and complete appropriate technologies for the treatment of an DOE low-level mixed waste (LLMW). The MWIP mission includes development of strategies related to enhanced waste form production, improvements to and testing of the EM-30 baseline flowsheet for mixed waste treatment, programmatic oversight for ongoing technical projects, and specific technical tasks related to the site specific Federal Facilities Compliance Agreement (FFCA). The MWIP has established five Technical Support Groups (TSGs) based on primary functional areas of the Mixed Waste Treatment Plant) identified by EM-30. These TSGs are: (1) Front-End Waste Handling, (2) Chemical/Physical Treatment, (3) Waste Destruction and Stabilization, (4) Second-stage Destruction and Offgas Treatment, and (5) Final Waste Forms. The focus of this document is the Chemical/Physical Treatment System (CPTS). The CPTS performs the required pretreatment and/or separations on the waste streams passing through the system for discharge to the environment or efficient downstream processing. Downstream processing can include all system components except Front-End Waste Handling. The primary separations to be considered by the CPTS are: (1) removal of suspended and dissolved solids from aqueous and liquid organic streams, (2) separation of water from organic liquids, (3) treatment of wet and dry solids, including separation into constituents as required, for subsequent thermal treatment and final form processing, (4) mercury removal and control, and (5) decontamination of equipment and waste classified as debris

  11. [Pharmaceutical research progress of rhynchophylla based on chemical stability].

    Science.gov (United States)

    Hao, Bo; Yang, Xiu-Juan; Feng, Yi; Hong, Yan-Long

    2014-12-01

    Rhynchophylla is a Chinese herb commonly used in clinical practice. It's also the primary herb of some famous Chinese herbal compound such as Tianma Gouteng decoction, and Lingyang Gouteng decoction. According the record from many previous materia medica literatures, rhynchophylla should be added later during decoction. Pharmaceutical research showed that rhynchophylla alkaloids were not stable. Which has resulted in many problems in the research and its application. For example, there was not a quantitative determination method in "Chinese Pharmacopoeia" of past and present versions, which seriously impacted its quality control and product application. Firstly, records from previous materia medica literatures and "Chinese Pharmacopoeia" were systematically sorted based on the chemical stability of rhynchophylla. Secondly, pharmaceutical research including chemical compositions and their stability, pharmacological effects, extraction process and quality analysis, was reviewed after reference of literatures published at home and abroad in recent decades. Positive reference and evidence for further research and development of rhynchophylla will be provided in the article.

  12. Physics Education Research efforts to promote diversity: Challenges and opportunities

    Science.gov (United States)

    Brahmia, Suzanne

    2015-04-01

    We begin this talk with a brief description of the gender and ethnic diversity of the physics community. We then discuss several current efforts within Physics Education Research that have the potential to further our understanding of issues surrounding underrepresentation. These efforts include research into (1) the role of community and strategies for developing effective communities; (2) physics identity and self-efficacy; (3) the affordances that students from underrepresented groups bring to physics learning; (4) socioeconomics and its impact on mathematization. One of the challenges to conducting this research is the relatively small proportion of underrepresented minority students in current physics classes, and the small number of women in physics and engineering majors. In collaboration with Stephen Kanim, New Mexico State University.

  13. Annual Report 1979. Research Institute of physics Stockholm

    International Nuclear Information System (INIS)

    1979-01-01

    Following a list of the research personnel, brief reports are presented on research projects in the fields of surface, atomic and molecular physics, atomic and molecular theory, nuclear physics, nuclear theory, exotic atoms and instrumentation and methods. There follow lists of seminars held, publications, theses and the main topics of a workshop on very stable nuclear systems held at Kornoe, 26-28 Aug 1979. (JIW)

  14. Physical and chemical treatment of the acid wastewater poured from Aznalcollar quarnx (Sevilla-Spain); Tratamiento fisicoquimico de las aguas acidas vertidas tras la rotura de la balsa minera de Aznalcollar (Sevilla)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Mediavilla, B.; Medialdea, J. M.; Montes, M. A.; Garcia Martinez de Simon, I.; Lopez, C. M.; Moron, M. J.; Escot, E.; Arnaiz, M. C.; Lebrato, J. [Universidad de Sevilla. Sevialla (Spain)

    1999-11-01

    In this work, laboratory results of physical and chemical treatment of the acid wastewater poured from Aznalcollar quarry (Sevilla, Spain) the last april 25, 1998, are presented. Experiments were carried out in the facilities of the Wastewater Treatment Research Group, University of Sevilla. Objectives were to adjust pH and to remove heavy metals from the water. Comparative results showed application of calcium hydroxide and aluminium policyholder as the most effective physical and chemical treatment for the water, in terms of pH adjustment and heavy metal removal. Data suggest that treatment systems including preliminary adjustment of water pH followed by addition of chemical coagulants, significantly alter the physical state of dissolved heavy metals and facilitate their removal by sedimentation. Such procedures might be useful for the treatment of surface waters polluted with high concentrations of heavy metals. (Author) 5 refs.

  15. Trends of plasma physics and nuclear fusion research life cycle and research effort curve

    International Nuclear Information System (INIS)

    Ohe, Takeru; Kanada, Yasumasa; Momota, Hiromu; Ichikawa, Y.H.

    1979-05-01

    This paper presents a quantitative analysis of research trends in the fields of plasma physics and nuclear fusion. This analysis is based on information retrieval from available data bases such as INSPEC tapes. The results indicate that plasma physics research is now in the maturation phase of its life cycle, and that nuclear fusion research is in its growth phase. This paper indicates that there is a correlation between the number of accumulated papers in the fields of plasma physics and nuclear fusion and the experimentally attained values of the plasma ignition parameter ntT. Using this correlation ''research effort curve'', we forecast that the scientific feasibility of controlled fusion using magnetic confinement systems will be proved around 1983. (author)

  16. Attitude Research in Physical Education: A Review

    Science.gov (United States)

    Silverman, Stephen

    2017-01-01

    This paper provides a comprehensive review of attitude research in physical education. The first section reviews theoretical models that are prevalent in attitude research. Then, the next section describes the methods that were used to locate the research used in the remainder of the paper. The third section discusses measurement issues in…

  17. Physical properties and chemical composition of Segamat Kaolin, Johor, Malaysia

    International Nuclear Information System (INIS)

    Umar Hamzah; Learn, K.K.; Sahibin Rahim

    2010-01-01

    Kaolin is a source of secondary mineral as a product of a weathering process of primary minerals. Its main component is fine grain kaolinite (< 2 μm) and it also contains other elements such as aluminium and iron phyllosilicate as the pigment. Aluminium rich kaolin is light in colour with high plasticity and is normally used in the ceramic, plastic, paint, paper, pesticide, pharmacology and cosmetic industries. The physical and chemical characteristics of kaolins are important for its potential application. In this study, about 25 kaolin samples were hand-augered from depths of 1-2 m at Buloh Kasap Segamat, Johor, Malaysia. Chemical analysis carried out included determination of oxides and types of minerals by X-ray diffraction and X-ray fluorescence. Shrinkage rate, rupture modulus and water absorption rate tests were carried out in the physical properties analysis. Plastic and liquid limits of the kaolin were also measured for plastic index. The Segamat kaolin was light in colour due to its high silicate composition. The highest mineral content in the kaolin was kaolinite and quartz occurred as impurities. The low shrinkage rate showed that the kaolin was dense with little voids, hence very suitable for use in the ceramic industry. This kaolin has low water absorption, plasticity and durable according to the rupture modulus test. (author)

  18. Chemical Atmosphere-Snow-Sea Ice Interactions: defining future research in the field, lab and modeling

    Science.gov (United States)

    Frey, Markus

    2015-04-01

    The air-snow-sea ice system plays an important role in the global cycling of nitrogen, halogens, trace metals or carbon, including greenhouse gases (e.g. CO2 air-sea flux), and therefore influences also climate. Its impact on atmospheric composition is illustrated for example by dramatic ozone and mercury depletion events which occur within or close to the sea ice zone (SIZ) mostly during polar spring and are catalysed by halogens released from SIZ ice, snow or aerosol. Recent field campaigns in the high Arctic (e.g. BROMEX, OASIS) and Antarctic (Weddell sea cruises) highlight the importance of snow on sea ice as a chemical reservoir and reactor, even during polar night. However, many processes, participating chemical species and their interactions are still poorly understood and/or lack any representation in current models. Furthermore, recent lab studies provide a lot of detail on the chemical environment and processes but need to be integrated much better to improve our understanding of a rapidly changing natural environment. During a 3-day workshop held in Cambridge/UK in October 2013 more than 60 scientists from 15 countries who work on the physics, chemistry or biology of the atmosphere-snow-sea ice system discussed research status and challenges, which need to be addressed in the near future. In this presentation I will give a summary of the main research questions identified during this workshop as well as ways forward to answer them through a community-based interdisciplinary approach.

  19. Analysis of Environmental Physical-Chemical Factors and Macroalga Species In The Coastal Water of Nusalaut, Central Maluku - Indonesia

    Directory of Open Access Journals (Sweden)

    Karel Melsasail

    2018-03-01

    Full Text Available The physical-chemical factors of environment are very influential on the presence and the growth of macrolaga in waters. Well-maintained water habitat is a good environment for the growth of macroalgae. A research has been conducted on the physicochemical environmental factors and the macroalgae species in the coastal waters of Nusalaut Island using transect method, and it was a survey research on four different observation stations. The results of the research showed that station I (Amet Village has the best physicochemical factors for the presence and the growth of macroalgae, compared to station II (Nalahia Village, station III (Sila Village and station IV (Leinitu Village. The most widely found macro algae are from the Rhodophyta class, with a total of 17 species of macroalgae, of which 15 species are found in station I.

  20. Radiotherapy physics research in the UK: challenges and proposed solutions.

    Science.gov (United States)

    Mackay, R I; Burnet, N G; Green, S; Illidge, T M; Staffurth, J N

    2012-10-01

    In 2011, the Clinical and Translational Radiotherapy Research Working Group (CTRad) of the National Cancer Research Institute brought together UK radiotherapy physics leaders for a think tank meeting. Following a format that CTRad had previously and successfully used with clinical oncologists, 23 departments were asked to complete a pre-meeting evaluation of their radiotherapy physics research infrastructure and the strengths, weaknesses, opportunities and threats within their own centre. These departments were brought together with the CTRad Executive Group and research funders to discuss the current state of radiotherapy physics research, perceived barriers and possible solutions. In this Commentary, we summarise the submitted materials, presentations and discussions from the meeting and propose an action plan. It is clear that there are challenges in both funding and staffing of radiotherapy physics research. Programme and project funding streams sometimes struggle to cater for physics-led work, and increased representation on research funding bodies would be valuable. Career paths for academic radiotherapy physicists need to be examined and an academic training route identified within Modernising Scientific Careers; the introduction of formal job plans may allow greater protection of research time, and should be considered. Improved access to research facilities, including research linear accelerators, would enhance research activity and pass on developments to patients more quickly; research infrastructure could be benchmarked against centres in the UK and abroad. UK National Health Service departments wishing to undertake radiotherapy research, with its attendant added value for patients, need to develop a strategy with their partner higher education institution, and collaboration between departments may provide enhanced opportunities for funded research.

  1. Physical-chemical, caloric and sensory characterization of light jambolan (Syzygium cumini Lamarck jelly

    Directory of Open Access Journals (Sweden)

    Ellen Silva Lago-Vanzela

    2011-09-01

    Full Text Available In Brazil, several little economically explored fruits have good potential as raw material for the agro-industry. This study aimed to produce and determine the physical-chemical and sensory characteristics of light jambolan jelly. This fruit has intense purple color, which gave the jellies - both standard and light - a quite attractive visual aspect. The light jellies exhibited similar physical-chemical characteristics to the ones developed through the conventional method and; with the proportion of sweeteners used, the caloric values of the formulations were reduced to the range of 41 to 53%, attending the requirements of the Brazilian legislation for this type of product. The sensory profile obtained for the 4 light formulations developed, clearly showed the tasters' preference for the jelly elaborated with the association of cyclamate and saccharin. Thus, the results revealed good perspectives for the application of this fruit in the food industry.

  2. Synthesis and physical-chemical properties of 3-alkylthio-5-(quinoline-2-yl, 2-hydroxyquinoline-4-yl-4-R-2,4-dihydro-3H-1,2,4-triazoles

    Directory of Open Access Journals (Sweden)

    T. M. Kaplaushenko

    2016-06-01

    Full Text Available The major social and economic problem of pharmaceutical industry is the search for biologically active substances, which may become the basis of new drugs, competitive with expensive imported drugs. Analysis of literature shows that in recent decades the attention is paid to researches of heterocyclic systems as potential biologically active agents of both domestic and foreign scientists. Particular interest in this regard cause 3-thio derivatives of 1,2,4-triazoles. Despite high number of publications relating to synthesis and biological properties of 1,2,4-triazole derivatives, the structure and physical-chemical properties of these compounds are studied insufficiently. In this regard, the study of synthetic, physical-chemical and biological properties of 3-alkylthio-5-(quinoline-2-yl, 2-hydroxyquinoline-4-yl-4-R1-2,4-dihydro-3H-1,2,4-triazoles in our point of view is a new, theoretically and practically significant direction. Purpose - targeted synthesis of new low-toxic and highly effective compounds with potential pharmacological activity in a series of 3-alkylthio-5-(quinoline-2-yl, 2-hydroxyquinoline-4-yl-4-R-2,4-dihydro-3H-1,2,4-triazoles and the study of physical and chemical properties of the synthesized compounds. Materials and methods. As starting compounds 5-(quinoline-2-il- 2-hydroxyquinoline-4-yl-4-R1-3-thio-1,2,4-triazoles have been used. Through further cooperation with halogen alkanes (ethyl bromide, propyl bromide, amyl bromide, octyl bromide, nonyl bromide, decyl bromide, cyclohexyl chloride, benzyl chloride 3-alkylthio-5-(quinoline-2-yl, 2-hydroxyquinoline-4-yl-4-R1-2,4-dyhidro-3H-1,2,4-triazoles have been obtained. Results. 15 New compounds have been received as a result of synthetic transformations, the structure of synthesized compounds has been confirmed by modern complex of physical and chemical methods of analysis (IR-spectrophotometry, 1H NMR-spectroscopy, elemental analysis, and their individuality has been proved by

  3. Health physics practices at research accelerators

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-02-01

    A review is given of the uses of particle accelerators in health physics, the text being a short course given at the Health Physics Society Ninth Midyear Topical Symposium in February, 1976. Topics discussed include: (1) the radiation environment of high energy accelerators; (2) dosimetry at research accelerators; (3) shielding; (4) induced activity; (5) environmental impact of high energy accelerators; (6) population dose equivalent calculation; and (7) the application of the ''as low as practicable concept'' at accelerators

  4. Proceedings of RIKEN BNL Research Center Workshop, RHIC Spin Physics V, Volume 32, February 21, 2001

    International Nuclear Information System (INIS)

    BUNCE, G.; SAITO, N.; VIGDOR, S.; ROSER, T.; SPINKA, H.; ENYO, H.; BLAND, L.C.; GURYN, W.

    2001-01-01

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD and RHIC physics through the nurturing of a new generation of young physicists. During the fast year, the Center had only a Theory Group. In the second year, an Experimental Group was also established at the Center. At present, there are seven Fellows and nine post dots in these two groups. During the third year, we started a new Tenure Track Strong Interaction Theory RHIC Physics Fellow Program, with six positions in the academic year 1999-2000; this program will increase to include eleven theorists in the next academic year, and, in the year after, also be extended to experimental physics. In addition, the Center has an active workshop program on strong interaction physics, about ten workshops a year, with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. The construction of a 0.6 teraflop parallel processor, which was begun at the Center on February 19, 1998, was completed on August 28, 1998

  5. Research on reactor physics data

    International Nuclear Information System (INIS)

    1961-01-01

    In the early years of nuclear reactor research, each national program tended to develop its own reactor physics information. The Government of Norway proposed to the Agency the undertaking of a joint program in reactor physics utilizing the facilities and staff of its zero power reactor NORA then under construction. Following the approval by the Board of Governors in February, the Agency invited Member States to submit the names and qualifications of scientists they wished to suggest for the project. All the results and information gained through the program, which is expected to last about three years, will be placed at the disposal of the Agency's Member States

  6. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1987-01-01

    This document presents a report of the research accomplishments of Boston University researchers in six projects in high energy physics research: Study of high energy electron-positron annihilation, using the ASP and SLD detectors at SLAC; Search for proton decay and neutrinos from point astrophysical sources, as well as the study of cosmic ray muons and neutrinos in the IMB detector; Development of a new underground detector facility in the Gran Sasso Laboratory in Italy for magnetic monopoles and to study astrophysical muons and neutrinos; Preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring and detector system at BNL; Development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; and Study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics

  7. UCLA Particle Physics Research Group annual progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1983-11-01

    The objectives, basic research programs, recent results, and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. The research carried out by the Group last year may be divided into three separate programs: (1) baryon spectroscopy, (2) investigations of charge symmetry and isospin invariance, and (3) tests of time reversal invariance. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research. An update of the group bibliography is given at the end

  8. Effects of pig slurry application on soil physical and chemical properties and glyphosate mobility

    Directory of Open Access Journals (Sweden)

    Daniela Aparecida de Oliveira

    2014-10-01

    Full Text Available Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control, 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Vermelho distrófico (Hapludox soil. In the control, the quantities of P and K removed by harvested grains were replaced in the next crop cycle. Soil physical properties (bulk density, porosity, texture, and saturated hydraulic conductivity and chemical properties (organic matter, pH, extractable P, and exchangeable K were measured. Soil solution samples were collected at depths of 20, 40 and 80 cm using suction lysimeters, and glyphosate concentrations were measured over a 60-day period after slurry application. Soil physical and chemical properties were little affected by the pig slurry applications, but soil pH was reduced and P levels increased in the surface layers. In turn, K levels were increased in sub-surface layers. Glyphosate concentrations tended to decrease over time but were not affected by pig slurry application. The concentrations of glyphosate found in different depths show that the pratice of this application in agricultural soils has the potential for contamination of groundwater, especially when the water table is the surface and heavy rains occur immediately after application.

  9. Chemical and physical soil attributes in integrated crop-livestock system under no-tillage

    Directory of Open Access Journals (Sweden)

    Hernani Alves da Silva

    Full Text Available Although integrated crop-livestock system (ICLS under no-tillage (NT is an attractive practice for intensify agricultural production, little regional information is available on the effects of animal grazing and trampling, particularly dairy heifers, on the soil chemical and physical attributes. The objective of this study was to evaluate the effects of animal grazing on the chemical and physical attributes of the soil after 21 months of ICLS under NT in a succession of annual winter pastures (2008, soybeans (2008/2009, annual winter pastures (2009, and maize (2009/10. The experiment was performed in the municipality of Castro (PR in a dystrophic Humic Rhodic Hapludox with a clay texture. The treatments included a combination of two pasture (annual ryegrass monoculture and multicropping - annual ryegrass, black oat, white clover and red clover with animal grazing during the fall-winter period with two animal weight categories (light and heavy, in a completely randomized block experimental design with 12 replications. After the maize harvest (21 months after beginning, soil samples were collected at 0-10 and 10-20 cm layers to measure soil chemical and physical attributes. The different combinations of pasture and animal weight did not alter the total organic carbon and nitrogen in the soil, but they influence the attributes of soil acidity and exchangeable cations. The monoculture pasture of ryegrass showed greater soil acidification process compared to the multicropping pasture. When using heavier animals, the multicropping pasture showed lesser increase in soil bulk density and greater macroporosity.

  10. Particle accelerator physics and technology for high energy density physics research

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Ni, P.; Roth, M.; Udrea, S.; Varentsov, D. [Darmstadt Univ., Institut fur Kernphysik, Technische Schlobgartenstr. 9 (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Kain, V.; Schmidt, R.; Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Zioutas, K. [Patras Univ., Dept. of Physics (Greece); Mintsev, V.; Fortov, V.E. [Russian Academy of Sciences, Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2007-08-15

    Interaction phenomena of intense ion- and laser radiation with matter have a large range of application in different fields of science, extending from basic research of plasma properties to applications in energy science, especially in inertial fusion. The heavy ion synchrotron at GSI now routinely delivers intense uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Our simulations show that the new accelerator complex FAIR (Facility for Antiproton and Ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. A natural example of hot dense plasma is provided by our neighbouring star the sun, and allows a deep insight into the physics of fusion, the properties of matter at high energy density, and is moreover an excellent laboratory for astro-particle physics. As such the sun's interior plasma can even be used to probe the existence of novel particles and dark matter candidates. We present an overview on recent results and developments of dense plasma physics addressed with heavy ion and laser beams combined with accelerator- and nuclear physics technology. (authors)

  11. Mound Laboratory activities in chemical and physical research: July--December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    The status of the following programs is reported: isotope separation of carbon, argon, helium, krypton, neon, xenon, oxygen, and sulfur; metal hydride research; separation chemistry; and separation research

  12. Adsorption and Pore of Physical-Chemical Activated Coconut Shell Charcoal Carbon

    Science.gov (United States)

    Budi, E.; Umiatin, U.; Nasbey, H.; Bintoro, R. A.; Wulandari, Fi; Erlina, E.

    2018-04-01

    The adsorption of activated carbon of coconut shell charcoal on heavy metals (Cu and Fe) of the wastewater and its relation with the carbon pore structure was investigated. The coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours to produce charcoal and then shieved into milimeter sized granule particles. Chemical activation was done by immersing the charcoal into chemical solution of KOH, NaOH, HCl and H3PO4, with various concentration. The activation was followed by physical activation using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology of activated carbon were characterized by using Scanning Electron Microscopy (SEM). Wastewater was made by dissolving CuSO4.5H2O and FeSO4.7H2O into aquades. The metal adsorption was analized by using Atomic Absorption Spectroscopy (AAS). The result shows that in general, the increase of chemical concentration cause the increase of pore number of activated carbon due to an excessive chemical attack and lead the increase of adsorption. However it tend to decrease as further increasing in chemical activator concentration due to carbon collapsing. In general, the adsorption of Cu and Fe metal from wastewater by activated carbon increased as the activator concentration was increased.

  13. Physics of a ballistic missile defense - The chemical laser boost-phase defense

    Science.gov (United States)

    Grabbe, Crockett L.

    1988-01-01

    The basic physics involved in proposals to use a chemical laser based on satellites for a boost-phase defense are investigated. After a brief consideration of simple physical conditions for the defense, a calculation of an equation for the number of satellites needed for the defense is made along with some typical values of this for possible future conditions for the defense. Basic energy and power requirements for the defense are determined. A sumary is made of probable minimum conditions that must be achieved for laser power, targeting accuracy, number of satellites, and total sources for power needed.

  14. Review: Physical, physical chemistries, chemical and sensorial characteristics of the several fruits and vegetables chips by low-temperature vacuum frying machine

    Directory of Open Access Journals (Sweden)

    AHMAD DWI SETYAWAN

    2013-11-01

    Full Text Available Setyawan AD, Sugiyarto, Solichatun, Susilowati A. 2013. Review: Physical, physical chemistries, chemical and sensorial characteristics of the several fruits and vegetables chips by low-temperature vacuum frying machine. Nusantara Bioscience 5: 84-100. Frying process is one of the oldest cooking methods and most widely practiced in the world. Frying process is considered as a dry cooking method because the process does not involve water. In frying process, oil conduction occurs at high temperature pressing water out of food in the form of bubbles. Fried foods last longer due to reduced water levels lead less decomposition by microbes, even fried foods can be enhanced nutritional value and quality of appearance. Food frying technology can extend the shelf life of fruits and vegetables and frying oil enhances the flavors of the products, however, improper frying oil can have harmful effects on human health. Vacuum frying is a promising technology that may be an option for the production of novel snacks such as fruit and vegetable crisps that present the desired quality and respond to new health trends. This technique fry food at a low temperature and pressure so that the nutritional quality of the food is maintained and the quality of the used oil does not quickly declined and became saturated oils that are harmful to human health. This technique produces chips that have physical, physico-chemical, chemical, and sensory generally better than conventional deep-fat frying methods.

  15. THE PHYSICAL AND CHEMICAL CHARACTERIZATION OF THE EMISSIONS FROM A RESIDENTIAL OIL BOILER

    Science.gov (United States)

    The toxicity of emissions from the combustion of home heating oil and the use of residential oil boilers (ROB) is an important health concern. Yet scant physical and chemical information about the emissions from this source are available for dispersion, climate, and source-recep...

  16. What Can We Learn from PER: Physics Education Research?

    Science.gov (United States)

    Singh, Chandralekha

    2014-01-01

    Physics Education Research (PER) focuses on understanding how students learn physics at all levels and developing strategies to help students with diverse prior preparations learn physics more effectively. New physics instructors are encouraged to visit http://PhysPort.org, a website devoted to helping instructors find effective teaching resources…

  17. Researchers study decontamination of chemical, biological warfare agents

    OpenAIRE

    Trulove, Susan

    2007-01-01

    The U.S. Army Research Office has awarded Virginia Tech a $680,000 grant over two years to build an instrument that can be used to study the chemistry of gases that will decompose both chemical and biological warfare agents on surfaces.

  18. Study on chemical reactivity control of liquid sodium. Research program

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki; Sugiyama, Ken-ichiro; Kitagawa, Hiroshi; Oka, Nobuki; Yoshioka, Naoki

    2007-01-01

    Liquid sodium has the excellent properties as coolant of the fast breeder reactor (FBR). On the other hand, it reacts high with water and oxygen. So an innovative technology to suppress the reactivity is desired. The purpose of this study is to control the chemical reactivity of liquid sodium by dispersing the nanometer-size metallic particles (we call them Nano-particles) into liquid sodium. We focus on the atomic interaction between Nano-particles and sodium atoms. And we try to apply it to suppress the chemical reactivity of liquid sodium. Liquid sodium dispersing Nano-particles is named 'Nano-fluid'. Research programs of this study are the Nano-particles production, the evaluation of reactivity suppression of liquid sodium and the feasibility study to FBR plant. In this paper, the research programs and status are described. The important factors for particle production were understood. In order to evaluate the chemical reactivity of Nano-fluid the research programs were planned. The feasibility of the application of Nano-fluid to the coolant of FBR plant was evaluated preliminarily from the viewpoint of design and operation. (author)

  19. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    1980-01-01

    The brochure contains the abstracts of the papers presented at the 7th EPS meeting 1980 in Darmstadt. The main subjects were: a) Neutron scattering and Moessbauer effect in materials research, b) ion implantation in micrometallurgy, c) applications of nuclear reactions and radioisotopes in research on solids, d) recent developments in activation analysis and e) pions, positrons, and heavy ions applied in solid state physics. (RW) [de

  20. Different physical and chemical pretreatments of wheat straw for enhanced biobutanol production in simultaneous saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Thirmal, Chumangalah; Dahman, Yaser [Department of Chemical Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)

    2011-07-01

    The objective of this study is to increase butanol product yields using wheat straw as the biomass. First this study examined different pretreatment and saccharification processes to obtain the maximum sugar concentration. Three different physical and chemical pretreatment methods for the wheat straws were examined in the present work in comparison with physical pretreatment alone as a reference. This included water, acidic, and alkaline pretreatment. For all cases, physical pretreatment represented by 1 mm size reduction of the straws was applied prior to each pretreatment. Results showed that 13.91 g/L glucose concentration was produced from saccharification with just the physical pretreatment (i.e., no chemical pretreatment). This represented {approx}5-20 % lower sugar release in saccharification compared to the other three pretreatment processes. Saccharification with acid pretreatment obtained the highest sugar concentrations, which were 18.77 g/L glucose and 12.19 g/L xylose. Second this study produced butanol from simultaneous saccharification and fermentation (SSF) using wheat straw hydrolysate and Clostridium beijerinckii BA101. Water pretreatment was applied to separate lignin and polysaccharides from the wheat straw. Physical pretreatment was applied prior to water pretreatment where, wheat straw was grounded into fine particles less than 1 mm size. Another experiment was conducted where physical pretreatment was applied alone prior to SSF (i.e. no chemical pretreatment was applied). Both processes converted more than 10% of wheat straw into butanol product. This was 2% higher than previous studies. The results illustrated that SSF with physical pretreatment alone obtained 2.61 g/L butanol.

  1. Summaries of FY 1978 research in the chemical sciences

    International Nuclear Information System (INIS)

    1979-04-01

    This report provides on indexed compilation of individual research projects that make up the DOE Chemical Sciences basic energy research program. The DOE in-house projects and projects supported at university and other non-DOE laboratories are reported in separate sections. An analysis and summary of funding levels are given. The research covers areas such as coal chemistry, catalysis, H 2 , combustion, solar photoconversion, fusion, atmospheric chemistry, and MHD

  2. Summaries of FY 1978 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Elliot S.

    1979-04-01

    This report provides on indexed compilation of individual research projects that make up the DOE Chemical Sciences basic energy research program. The DOE in-house projects and projects supported at university and other non-DOE laboratories are reported in separate sections. An analysis and summary of funding levels are given. The research covers areas such as coal chemistry, catalysis, H/sub 2/, combustion, solar photoconversion, fusion, atmospheric chemistry, and MHD. (DLC)

  3. Radiotherapy physics research in the UK: challenges and proposed solutions

    Science.gov (United States)

    Mackay, R I; Burnet, N G; Green, S; Illidge, T M; Staffurth, J N

    2012-01-01

    In 2011, the Clinical and Translational Radiotherapy Research Working Group (CTRad) of the National Cancer Research Institute brought together UK radiotherapy physics leaders for a think tank meeting. Following a format that CTRad had previously and successfully used with clinical oncologists, 23 departments were asked to complete a pre-meeting evaluation of their radiotherapy physics research infrastructure and the strengths, weaknesses, opportunities and threats within their own centre. These departments were brought together with the CTRad Executive Group and research funders to discuss the current state of radiotherapy physics research, perceived barriers and possible solutions. In this Commentary, we summarise the submitted materials, presentations and discussions from the meeting and propose an action plan. It is clear that there are challenges in both funding and staffing of radiotherapy physics research. Programme and project funding streams sometimes struggle to cater for physics-led work, and increased representation on research funding bodies would be valuable. Career paths for academic radiotherapy physicists need to be examined and an academic training route identified within Modernising Scientific Careers; the introduction of formal job plans may allow greater protection of research time, and should be considered. Improved access to research facilities, including research linear accelerators, would enhance research activity and pass on developments to patients more quickly; research infrastructure could be benchmarked against centres in the UK and abroad. UK National Health Service departments wishing to undertake radiotherapy research, with its attendant added value for patients, need to develop a strategy with their partner higher education institution, and collaboration between departments may provide enhanced opportunities for funded research. PMID:22972972

  4. Microsensors for In-situ Chemical, Physical and Radiological Characterization of Mixed Waste (73808)

    International Nuclear Information System (INIS)

    Thundat, Thomas G.

    2004-01-01

    Portable, real-time, in-situ chemical, physical, and radiological sensors for the characterization and monitoring of transuranic waste, mixed waste, ground water, contaminated soil, and process streams are needed within the DOE complex. A continuation of this basic research program is proposed to study the influence of control of the electrochemical potential of a metallic coating on a microcantilever as a means of developing specific and highly sensitive sensors. Basic research will be needed to understand the influence of variation of electrochemical potential on the bending of cantilevers in an electrolyte solution. Changes in the chemical potential of a metal-electrolyte interface, affected by changing the applied potential, leads to a change in the depletion or accumulation of substances at the interface. This change in the surface excess at the interface is reflected in a change in the interfacial tension, which is sensitively detected as cantilever deflection. Deposition of electroactive heavy metals as well as the adsorption of metal oxide species will be detectable as a cantilever bending. We plan to continue field-testing cantilever sensors at DOE sites as appropriate. Practical sensors for Hg and CrO4 -2 have been developed, and the former has been field tested. A sensor for large poorly hydrated anions (ClO4 -, ReO4 -, TcO4 -) based on a quarternary ammonium SAM coating is under development and will be field tested when appropriate. The advantage of cantilever sensors is that once the basic platform is developed, it can be the basis for a plethora of inexpensive, miniature sensors. This program will take advantage of advances in cantilever technology made by other programs as well

  5. Nuclear Physics Research Activity In Vietnam During Period From 2005 To 2007

    International Nuclear Information System (INIS)

    Tran Duc Thiep

    2008-01-01

    During the recent years though the difficult conditions as the limit in research budget, the lack in experimental facilities and in manpower, the Nuclear Physics Research in Vietnam still continues to develop and has achieved promising results. This expresses the efforts from the Government as well as from the nuclear physics scientists. In this report we would like to present the Nuclear Physics Research Activity and the achieved results in Vietnam during period from 2005 to 2007 in following directions: Nuclear Reaction and Structure, Nuclear Matter and Nuclear Data, Nuclear Reactor Physics, Nuclear Physics Research based on Accelerators, Physics of Cosmic Rays, Nuclear Physics Related Researches. The report also concerns the problems of manpower, the joining of research institutes in the Country and the expansion of international collaborations in the coming period of the Nuclear Physics Research Activity. The Report was prepared mainly on the basis of the reports that will be presented at the 7th National Conference on Nuclear Science and Technology, held from 30-31 August 2007 in Danang city. (author)

  6. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    International Nuclear Information System (INIS)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-01-01

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  7. Physics laboratory 2

    International Nuclear Information System (INIS)

    1980-01-01

    The report covers the research activities of the Physics laboratory of H.C. Oersted Institute, University of Copenhagen in the period January 1, 1976 - January 1, 1979. It gives also an idea about the teaching carried out by yhe laboratory. The research - broadly speaking - deals mainly with the interaction of particles (ions, electrons and neutrons) and electromagnetic radiation (X-rays) with matter. Use is made in studies of: atomic physics, radiation effects, surface physics, the electronic and crystallographic structure of matter and some biological problems. The research is carried out partly in the laboratory itself and partly at and in collaboration with other institutes in this country (H.C. Oersted Institute, Chemical Laboratories, Denmark's Technical University, Aarhus University, Institute of Physics and Risoe National Laboratory) and abroad (Federal Republic of Germany, France, India, Sweden, U.K., U.S.A. and U.S.S.R.). All these institutes are listed in the abstract titles. Bibliography comprehends 94 publications. A substantial part of the research is supported by the Danish Natural Sciences Research Council. (author)

  8. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  9. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  10. The physical and chemical environment and radionuclide migration in a low level radioactive waste repository

    International Nuclear Information System (INIS)

    Torok, J.; Buckley, L.P.

    1988-01-01

    The expected physical and chemical environment within the low-level radioactive waste repository to be sited at Chalk River is being studied to establish the rate of radionuclide migration. Chemical conditions in the repository are being assessed for their effect on buffer performance and the degradiation of the concrete structure. Experimental programs include the effect of changes in solution chemistry on radionuclide distribution between buffer/backfill materials and the aqueous phase; the chemical stability of the buffer materials and the determination of the controlling mechanism for radionuclide transport during infiltration

  11. Quantum computing for physics research

    International Nuclear Information System (INIS)

    Georgeot, B.

    2006-01-01

    Quantum computers hold great promises for the future of computation. In this paper, this new kind of computing device is presented, together with a short survey of the status of research in this field. The principal algorithms are introduced, with an emphasis on the applications of quantum computing to physics. Experimental implementations are also briefly discussed

  12. Physical and chemical stability of proflavine contrast agent solutions for early detection of oral cancer.

    Science.gov (United States)

    Kawedia, Jitesh D; Zhang, Yan-Ping; Myers, Alan L; Richards-Kortum, Rebecca R; Kramer, Mark A; Gillenwater, Ann M; Culotta, Kirk S

    2016-02-01

    Proflavine hemisulfate solution is a fluorescence contrast agent to visualize cell nuclei using high-resolution optical imaging devices such as the high-resolution microendoscope. These devices provide real-time imaging to distinguish between normal versus neoplastic tissue. These images could be helpful for early screening of oral cancer and its precursors and to determine accurate margins of malignant tissue for ablative surgery. Extemporaneous preparation of proflavine solution for these diagnostic procedures requires preparation in batches and long-term storage to improve compounding efficiency in the pharmacy. However, there is a paucity of long-term stability data for proflavine contrast solutions. The physical and chemical stability of 0.01% (10 mg/100 ml) proflavine hemisulfate solutions prepared in sterile water was determined following storage at refrigeration (4-8℃) and room temperature (23℃). Concentrations of proflavine were measured at predetermined time points up to 12 months using a validated stability-indicating high-performance liquid chromatography method. Proflavine solutions stored under refrigeration were physically and chemically stable for at least 12 months with concentrations ranging from 95% to 105% compared to initial concentration. However, in solutions stored at room temperature increased turbidity and particulates were observed in some of the tested vials at 9 months and 12 months with peak particle count reaching 17-fold increase compared to baseline. Solutions stored at room temperature were chemically stable up to six months (94-105%). Proflavine solutions at concentration of 0.01% were chemically and physically stable for at least 12 months under refrigeration. The solution was chemically stable for six months when stored at room temperature. We recommend long-term storage of proflavine solutions under refrigeration prior to diagnostic procedure. © The Author(s) 2014.

  13. Device-based monitoring in physical activity and public health research

    International Nuclear Information System (INIS)

    Bassett, David R

    2012-01-01

    Measurement of physical activity is important, given the vital role of this behavior in physical and mental health. Over the past quarter of a century, the use of small, non-invasive, wearable monitors to assess physical activity has become commonplace. This review is divided into three sections. In the first section, a brief history of physical activity monitoring is provided, along with a discussion of the strengths and weaknesses of different devices. In the second section, recent applications of physical activity monitoring in physical activity and public health research are discussed. Wearable monitors are being used to conduct surveillance, and to determine the extent and distribution of physical activity and sedentary behaviors in populations around the world. They have been used to help clarify the dose–response relation between physical activity and health. Wearable monitors that provide feedback to users have also been used in longitudinal interventions to motivate research participants and to assess their compliance with program goals. In the third section, future directions for research in physical activity monitoring are discussed. It is likely that new developments in wearable monitors will lead to greater accuracy and improved ease-of-use. (paper)

  14. Chemical Abundances and Physical Parameters of H II Regions in the Magellanic Clouds

    Science.gov (United States)

    Reyes, R. E. C.

    The chemical abundances and physical parameters of H II regions are important pa rameters to determine in order to understand how stars and galaxies evolve. The Magellanic Clouds offer us a unique oportunity to persue such studies in low metallicity galaxies. In this contribution we present the results of the photoionization modeling of 5 H II regions in each of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) sys tems. Optical data were collected from the literature, complemented by our own observa tions (Carlos Reyes et al. 1998), including UV spectra from the new IUE data ban k and infrared fluxes from the IRAS satellite. The chemical abundances of He, C, N, O, Ne, S, Ar and physical parameters like the densities, the ionized masses, the luminosities, the ionization temperatures , the filling factor and optical depth are determined. A comparison of the abundances of these HII regions with those of typical planetary nebulae and supergiants stars is also presented.

  15. Retention of young female post-doc physics researchers in the UK

    Science.gov (United States)

    Whitelegg, Elizabeth

    2004-03-01

    The talk will describe the results of a research project to investigate the problems young women physics researchers encountered during early stages of their careers and their perceptions of the longer-term difficulties they anticipated were they to pursue a career in physics research. The project examined quantitative data from a large sample of female members of the UK Institute of Physics (IOP) and qualitative data from intensive interviews with 27 young female doctoral and post-doctoral researchers at an early stage in their careers. In the survey of women PhD members of the IOP, only 15% of the younger women (aged under 30) said they had encountered gender barriers compared with 45% of older women. However, within a few years of completing their PhDs only 25% of the young women remained in physics research although they had previously aspired to work in this area. The reasons given for leaving physics included a dislike of the male culture or atmosphere in research labs, the fact that few of the young women thought that they would ever attain a senior physics post, concerns about balancing a research career with raising a young family and anticipating a need to relocate to match a partners career moves. These are clearly gender-related barriers and constraints although these young women often did not perceive them in this way. This research examines the notion of direct and indirect gender barriers. It addresses the idea of subtle discrimination by examining both institutional employment practices and the prevalent male culture or atmosphere in physics research, which contribute to the leaky pipeline in womens physics employment in the UK.

  16. Physical and chemical properties of San Francisco Bay waters, 1969-1976 (NODC Accession 8400194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — One magnetic tape containing the physical and chemical properties of San Francisco Bay waters was forwarded to NODC by Mr. Richard Smith of the U.S Geological Survey...

  17. Annual report 1977. Research institute of physics, Stockholm Sweden

    International Nuclear Information System (INIS)

    Nilsson, A.

    1978-01-01

    A summary of the research activities during 1977 is presented. The following headings are given: Atomic and Molecular Physics, Surface Physics, Nuclear Physics, Nuclear Theory, Exotic Atoms, and instrumentation and Methods. Lists of publications, seminars, conferences, and personnel are given

  18. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1986-03-01

    These technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded

  19. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties

    Science.gov (United States)

    Sukhanova, Alyona; Bozrova, Svetlana; Sokolov, Pavel; Berestovoy, Mikhail; Karaulov, Alexander; Nabiev, Igor

    2018-02-01

    Studies on the methods of nanoparticle (NP) synthesis, analysis of their characteristics, and exploration of new fields of their applications are at the forefront of modern nanotechnology. The possibility of engineering water-soluble NPs has paved the way to their use in various basic and applied biomedical researches. At present, NPs are used in diagnosis for imaging of numerous molecular markers of genetic and autoimmune diseases, malignant tumors, and many other disorders. NPs are also used for targeted delivery of drugs to tissues and organs, with controllable parameters of drug release and accumulation. In addition, there are examples of the use of NPs as active components, e.g., photosensitizers in photodynamic therapy and in hyperthermic tumor destruction through NP incorporation and heating. However, a high toxicity of NPs for living organisms is a strong limiting factor that hinders their use in vivo. Current studies on toxic effects of NPs aimed at identifying the targets and mechanisms of their harmful effects are carried out in cell culture models; studies on the patterns of NP transport, accumulation, degradation, and elimination, in animal models. This review systematizes and summarizes available data on how the mechanisms of NP toxicity for living systems are related to their physical and chemical properties.

  20. Allocation of fossil and nuclear fuels. Heat production from chemically and physically bound energy

    International Nuclear Information System (INIS)

    Wagner, U.

    2008-01-01

    The first part of the book presents the broad field of allocation, transformation, transport and distribution of the most important energy carriers in the modern power industry. The following chapters cover solid fossil fuel, liquid fuel, gaseous fuel and nuclear fuel. The final chapters concern the heat production from chemically and physically bound energy, including elementary analysis, combustion calculations, energy balance considerations in fossil fuel fired systems, and fundamentals of nuclear physics

  1. Use of Research-Based Instructional Strategies in Core Chemical Engineering Courses

    Science.gov (United States)

    Prince, Michael; Borrego, Maura; Henderson, Charles; Cutler, Stephanie; Froyd, Jeff

    2013-01-01

    Traditional lecturing remains the most prevalent mode of instruction despite overwhelming research showing the increased effectiveness of many alternate instructional strategies. This study examines chemical engineering instructors' awareness and use of 12 such instructional strategies. The study also examines how chemical engineering…

  2. Effects of physical and chemical heterogeneity on water-quality samples obtained from wells

    Science.gov (United States)

    Reilly, Thomas E.; Gibs, Jacob

    1993-01-01

    Factors that affect the mass of chemical constituents entering a well include the distributions of flow rate and chemical concentrations along and near the screened or open section of the well. Assuming a layered porous medium (with each layer being characterized by a uniform hydraulic conductivity and chemical concentration), a knowledge of the flow from each layer along the screened zone and of the chemical concentrations in each layer enables the total mass entering the well to be determined. Analyses of hypothetical systems and a site at Galloway, NJ, provide insight into the temporal variation of water-quality data observed when withdrawing water from screened wells in heterogeneous ground-water systems.The analyses of hypothetical systems quantitatively indicate the cause-and-effect relations that cause temporal variability in water samples obtained from wells. Chemical constituents that have relatively uniform concentrations with depth may not show variations in concentrations in the water discharged from a well after the well is purged (evacuation of standing water in the well casing). However, chemical constituents that do not have uniform concentrations near the screened interval of the well may show variations in concentrations in the well discharge water after purging because of the physics of ground-water flow in the vicinity of the screen.Water-quality samples were obtained through time over a 30 minute period from a site at Galloway, NJ. The water samples were analyzed for aromatic hydrocarbons, and the data for benzene, toluene, and meta+para xylene were evaluated for temporal variations. Samples were taken from seven discrete zones, and the flow-weighted concentrations of benzene, toluene, and meta+para xylene all indicate an increase in concentration over time during pumping. These observed trends in time were reproduced numerically based on the estimated concentration distribution in the aquifer and the flow rates from each zone.The results of

  3. Chemical and physical analyses of selected plants and soils from Puerto Rico (1981-1990)

    Science.gov (United States)

    M. J. Sanchez; E. Lopez; A. E. Lugo

    1997-01-01

    This report contains the result of many analyses conducted at the laboratory of the IITF of Puerto Rico between 1981 and 1990. our objective was to make available the chemical and physical data developed for tropical forest ecosystems.

  4. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    Science.gov (United States)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  5. Chemical and physical structures of proteinoids and related polyamino acids

    Science.gov (United States)

    Mita, Hajime; Kuwahara, Yusuke; Nomoto, Shinya

    Studies of polyamino acid formation pathways in the prebiotic condition are important for the study of the origins of life. Several pathways of prebiotic polyamino acid formation have been reported. Heating of monoammonium malate [1] and heating of amino acids in molten urea [2] are important pathways of the prebiotic peptide formation. The former case, globular structure called proteinoid microsphere is formed in aqueous conditions. The later case, polyamino acids are formed from unrestricted amino acid species. Heating of aqueous aspargine is also interesting pathway for the prebiotic polyamino acid formation, because polyamino acid formation proceeds in aqueous condition [3]. In this study, we analyzed the chemical structure of the proteinoids and related polyamino acids formed in the above three pathways using with mass spectrometer. In addition, their physical structures are analyzed by the electron and optical microscopes, in order to determine the self-organization abilities. We discuss the relation between the chemical and the physical structures for the origins of life. References [1] Harada, K., J. Org. Chem., 24, 1662 (1959), Fox, S. W., Harada, K., and Kendrick, J., Science, 129, 1221 (1959). [2] Terasaki, M., Nomoto, S., Mita, H., and Shimoyama, A., Chem. Lett., 480 (2002), Mita, H., Nomoto, S., Terasaki, M., Shimoyama, A., and Yamamoto, Y., Int. J. Astrobiol., 4, 145 (2005). [3] Kovacs, K and Nagy, H., Nature, 190, 531 (1961), Munegumi, T., Tanikawa, N., Mita, H. and Harada, K., Viva Origino, 22, 109 (1994).

  6. Physics in ;Real Life;: Accelerator-based Research with Undergraduates

    Science.gov (United States)

    Klay, J. L.

    All undergraduates in physics and astronomy should have access to significant research experiences. When given the opportunity to tackle challenging open-ended problems outside the classroom, students build their problem-solving skills in ways that better prepare them for the workplace or future research in graduate school. Accelerator-based research on fundamental nuclear and particle physics can provide a myriad of opportunities for undergraduate involvement in hardware and software development as well as ;big data; analysis. The collaborative nature of large experiments exposes students to scientists of every culture and helps them begin to build their professional network even before they graduate. This paper presents an overview of my experiences - the good, the bad, and the ugly - engaging undergraduates in particle and nuclear physics research at the CERN Large Hadron Collider and the Los Alamos Neutron Science Center.

  7. Engaging undergraduate students in hadron physics research and instrumentation

    Science.gov (United States)

    Horn, Tanja

    2017-09-01

    Nuclear physics research is fundamental to our understanding of the visible universe and at the same time intertwined with our daily life. Nuclear physics studies the origin and structure of the atomic nuclei in terms of their basic constituents, the quarks and gluons. Atoms and molecules would not exist without underlying quark-gluon interactions, which build nearly all the mass of the visible universe from an assembly of massless gluons and nearly-massless quarks. The study of hadron structure with electromagnetic probes through exclusive and semi-inclusive scattering experiments carried out at the 12 GeV Jefferson Laboratory plays an important role in this effort. In particular, planned precision measurements of pion and kaon form factors and longitudinal-transverse separated deep exclusive pion and kaon electroproduction cross sections to the highest momentum transfers achievable play an important role in understanding hadron structure and masses and provide essential constraints for 3D hadron imaging. While a growing fraction of nuclear physics research is carried out at large international laboratories, individual university research groups play critical roles in the success of that research. These include data analysis projects and the development of state-of-the-art instrumentation demanded by increasingly sophisticated experiments. These efforts are empowered by the creativity of university faculty, staff, postdocs, and provide students with unique hands-on experience. As an example, an aerogel Cherenkov detector enabling strangeness physics research in Hall C at Jefferson Lab was constructed at the Catholic University of America with the help of 16 undergraduate and high school students. The ''Conference Experience for Undergraduates'' (CEU) provides a venue for these students who have conducted research in nuclear physics. This presentation will present the experiences of one of the participants in the first years of the CEU, her current research program

  8. Final Report. Research in Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Greensite, Jeffrey P. [San Francisco State Univ., CA (United States); Golterman, Maarten F.L. [San Francisco State Univ., CA (United States)

    2015-04-30

    Grant-supported research in theoretical high-energy physics, conducted in the period 1992-2015 is briefly described, and a full listing of published articles result from those research activities is supplied.

  9. Surface physics of materials materials science and technology

    CERN Document Server

    Blakely, J M

    2013-01-01

    Surface Physics of Materials presents accounts of the physical properties of solid surfaces. The book contains selected articles that deal with research emphasizing surface properties rather than experimental techniques in the field of surface physics. Topics discussed include transport of matter at surfaces; interaction of atoms and molecules with surfaces; chemical analysis of surfaces; and adhesion and friction. Research workers, teachers and graduate students in surface physics, and materials scientist will find the book highly useful.

  10. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.

    1981-01-01

    Applications of synchrotron radiation to research in high-energy atomic physics are summarized. These lie in the areas of photoelectron spectrometry, photon scattering, x-ray absorption spectroscopy, time-resolved measurements, resonance spectroscopy and threshold excitation, and future, yet undefined studies

  11. Physico-Chemical Research on the Sounding Rocket Maser 13

    Science.gov (United States)

    Lockowandt, Christian; Kemi, Stig; Abrahamsson, Mattias; Florin, Gunnar

    MASER is a sounding rocket platform for short-duration microgravity experiments, providing the scientific community with an excellent microgravity tool. The MASER programme has been running by SSC from 1987 and has up to 2012 provided twelve successful flights for microgravity missions with 6-7 minutes of microgravity, the g-level is normally below 1x10-5 g. The MASER 13 is planned to be launched in spring 2015 from Esrange Space Center in Northern Sweden. The rocket will carry four ESA financed experiment modules. The MASER 13 vehicle will be propelled by the 2-stage solid fuel VSB-30 rocket motor, which provided the 390 kg payload with an apogee of 260 km and 6 and a half minutes of microgravity. Swedish Space Corporation carries out the MASER missions for ESA and the program is also available for other customers. The payload comprise four different experiment modules of which three could be defined as physic-chemical research; XRMON-SOL, CDIC-3, MEDI. It also comprises the Maser Service Module and the recovery system. The Service Module provided real-time 5 Mbps down-link of compressed experiment digital video data from the on-board cameras, as well as high-speed housekeeping telemetry data. XRMON-SOL In this experiment the influence of gravity on the formation of an equiaxed microstructure will be investigated. Special attention will be put on the aspect of nucleation, segregation and impingement. The experiment scope is to melt and solidify an AlCu-alloy sample in microgravity. The solidification will be performed in an isothermal environment. The solidification process will be monitored and recorded with X-ray image during the whole flight, images will also be down-linked to ground for real-time monitoring and possible interaction. CDIC-3 The goal is to study in migrogravity the spatio-temporal dynamics of a chemical front travelling in a thin solution layer open to the air and specifically the respective role of Marangoni and density-related hydrodynamic

  12. Disruption of the ‘disease triangle’ by chemical and physical environmental change

    Science.gov (United States)

    A. H. Chappelka; N. E. Grulke; L. De Kok

    2015-01-01

    The physical and chemical environment of the Earth has changed rapidly over the last 100 years and is predicted to continue to change into the foreseeable future. One of the main concerns with potential alterations in climate is the propensity for increases in the magnitude and frequency of extremes to occur. Even though precipitation is predicted to increase in some...

  13. Physical and chemical properties for sandstone and bentonites

    International Nuclear Information System (INIS)

    Sato, Haruo

    2004-01-01

    Physical and chemical properties such as porosity, pore-size distribution, dry density, solid density, mineralogy and chemical composition, which are important parameters for the understanding and analysis of the diffusion phenomena of radionuclides and ions in bentonite and in the geosphere, were measured. The measurements were performed for sandstone, of which fundamental data and information are limited. For bentonite, 3 kinds of bentonites with different smectite contents (Kunigel-V1, Kunipia-F, MX80) were used. In the measurements of the physical and chemical properties of rock, the measurements of solid density by pychnometer, the measurements of porosity, dry density and solid density by water saturation method, the measurements of porosity, dry density, solid density, pore-size distribution and specific surface area of pores by Hg porosimetry, the identifications of constituent minerals by X-ray Diffractometry (XRD), the measurement of chemical composition by whole rock analysis, the observations of micropore structure by Laser Confocal Microscope (LCM), the measurements of water vaporization curves and the measurements of the homogeneity of the rock by penetration of KMnO 4 were performed. While, in the measurements of the physical and chemical properties for bentonite, water basis water content, water content, porosity, dry density, solid density and their distributions in samples were measured, and the degree of inhomogeneity was quantitatively evaluated by comparing with data and information reported up to date. The porosities of sandstone are 15.6±0.21% for water saturation method and 15.5±0.2% for Hg porosimetry, and similar values were obtained in both methods. The solid densities ranged 2.65-2.69 Mg/m 3 for 3 methods, and the average value was 2.668±0.012 Mg/m 3 . The average pore size was 88.8±0.5nm, and pore sizes ≤10μm shared 80% of total pore volume and pore sizes ≤1μm shared 40%. The specific surface area of the pores is 4.09±0.017 m

  14. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  15. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  16. RCOP: Research Center for Optical Physics

    Science.gov (United States)

    Tabibi, Bagher M. (Principal Investigator)

    1996-01-01

    During the five years since its inception, Research Center for Optical Physics (RCOP) has excelled in the goals stated in the original proposal: 1) training of the scientists and engineers needed for the twenty-first century with special emphasis on underrepresented citizens and 2) research and technological development in areas of relevance to NASA. In the category of research training, there have been 16 Bachelors degrees and 9 Masters degrees awarded to African American students working in RCOP during the last five years. RCOP has also provided research experience to undergraduate and high school students through a number of outreach programs held during the summer and the academic year. RCOP has also been instrumental in the development of the Ph.D. program in physics which is in its fourth year at Hampton. There are currently over 40 graduate students in the program and 9 African American graduate students, working in RCOP, that have satisfied all of the requirements for Ph.D. candidancy and are working on their dissertation research. At least three of these students will be awarded their doctoral degrees during 1997. RCOP has also excelled in research and technological development. During the first five years of existence, RCOP researchers have generated well over $3 M in research funding that directly supports the Center. Close ties with NASA Langley and NASA Lewis have been established, and collaborations with NASA scientists, URC's and other universities as well as with industry have been developed. This success is evidenced by the rate of publishing research results in refereed journals, which now exceeds that of the goals in the original proposal (approx. 2 publications per faculty per year). Also, two patents have been awarded to RCOP scientists.

  17. Leaf habit does not determine the investment in both physical and chemical defences and pair-wise correlations between these defensive traits.

    Science.gov (United States)

    Moreira, X; Pearse, I S

    2017-05-01

    Plant life-history strategies associated with resource acquisition and economics (e.g. leaf habit) are thought to be fundamental determinants of the traits and mechanisms that drive herbivore pressure, resource allocation to plant defensive traits, and the simultaneous expression (positive correlations) or trade-offs (negative correlations) between these defensive traits. In particular, it is expected that evergreen species - which usually grow slower and support constant herbivore pressure in comparison with deciduous species - will exhibit higher levels of both physical and chemical defences and a higher predisposition to the simultaneous expression of physical and chemical defensive traits. Here, by using a dataset which included 56 oak species (Quercus genus), we investigated whether leaf habit of plant species governs the investment in both physical and chemical defences and pair-wise correlations between these defensive traits. Our results showed that leaf habit does not determine the production of most leaf physical and chemical defences. Although evergreen oak species had higher levels of leaf toughness and specific leaf mass (physical defences) than deciduous oak species, both traits are essentially prerequisites for evergreenness. Similarly, our results also showed that leaf habit does not determine pair-wise correlations between defensive traits because most physical and chemical defensive traits were simultaneously expressed in both evergreen and deciduous oak species. Our findings indicate that leaf habit does not substantially contribute to oak species differences in plant defence investment. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Combined physical and chemical absorption of carbon dioxide in a mixture of ionic liquids

    International Nuclear Information System (INIS)

    Pinto, Alicia M.; Rodríguez, Héctor; Arce, Alberto; Soto, Ana

    2014-01-01

    Highlights: • Carbon dioxide can be absorbed in mixtures of two ionic liquids: [C 2 mim][EtSO 4 ] and [C 2 mim][OAc]. • A combination of physical and chemical absorption mechanisms is observed. • The CO 2 absorption capacity of the mixture of ionic liquids decreases with increasing temperature. • [C 2 mim][EtSO 4 ] in the mixture prevents solidification of the product resulting from reaction of [C 2 mim][OAc] and CO 2 . • Density and viscosity studies of the mixture of ionic liquids also lead to synergies, in particular at low temperatures. - Abstract: Ionic liquids have attracted great interest recently as the basis of a potential alternative technology for the capture of carbon dioxide. Beyond the inherent tunability of properties of individual ionic liquids, a further strategy in optimising the ionic liquid sorbent for this application is the use of mixtures of ‘pure’ ionic liquids. Some ionic liquids absorb CO 2 physically, whereas others do so chemically. Both mechanisms of absorption present advantages and disadvantages for a CO 2 capture process operating in a continuous regime. In this work, a mixture of 1-ethyl-3-methylimidazolium acetate (an ionic liquid that reacts chemically with CO 2 ) and 1-ethyl-3-methylimidazolium ethylsulfate (an ionic liquid that absorbs CO 2 only through a physical mechanism) was investigated for the absorption of CO 2 as a function of temperature and at pressures up to 17 bar. The absorption/desorption studies were complemented by the characterisation of thermal and physical properties of the mixture of ionic liquids, which provide extra information on the interactions at a molecular level, and are also critical for the assessment of its suitability for a proposed process and for the subsequent process design

  19. Chemical Compound Navigator: A Web-Based Chem-BLAST, Chemical Taxonomy-Based Search Engine for Browsing Compounds

    Czech Academy of Sciences Publication Activity Database

    Prasanna, M. D.; Vondrášek, Jiří; Wlodawer, A.; Rodriguez, H.; Bhat, T. N.

    2006-01-01

    Roč. 63, č. 4 (2006), s. 907-917 ISSN 0887-3585 Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV * AIDS * drug discovery * chemical data-tree Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.730, year: 2006

  20. [Recent results in research on oscillatory chemical reactions].

    Science.gov (United States)

    Poros, Eszter; Kurin-Csörgei, Krisztina

    2014-01-01

    The mechanisms of the complicated periodical phenomenas in the nature (e.g. hearth beat, sleep cycle, circadian rhythms, etc) could be understood with using the laws of nonlinear chemical systems. In this article the newest result in the research of the subfield of nonlinear chemical dynamics aimed at constructing oscillatory chemical reactions, which are novel either in composition or in configuration, are presented. In the introductory part the concept of chemical periodicity is defined, then the forms as it can appear in time and space and the methods of their study are discussed. Detailed description of the experimental work that has resulted in two significant discoveries is provided. A method was developed to design pH-oscillators which are capable of operating under close conditions. The batch pH-oscillators are more convenient to use in some proposed applications than the equivalent CSTR variant. A redox oscillator that is new in composition was found. The permanganate oxidation of some amino acids was shown to take place according to oscillatory kinetics in a narrow range of the experimental parameters. The KMnO4 - glycine - Na2HPO4 system represents the first example in the family of manganese based oscillators where amino acids is involved. In the conclusion formal analogies between the simple chemical and some more complicated biological oscillatory phenomena are mentioned and the possibility of modeling periodic processes with the use of information gained from the studies of chemical oscillations is pointed out.

  1. The influences of the physical-chemical factors on the free-volume relations in polymers

    International Nuclear Information System (INIS)

    Bartos, J.; Kristiak, J.; Kristiakova, K.; Sausa, O.; Bandzuch, P.

    1995-01-01

    The positron annihilation spectroscopy was used to the study of different physical-chemical factors on the free-volume microstructure of the model polymeric systems [amorphous 1,4-cis-poly(butadiene), amorphous a-tactic and semi-crystal iso-tactic poly(propylene), polycarbonate

  2. Characteristic of physical, chemical, and microbiological kombucha from various varieties of apples

    Science.gov (United States)

    Zubaidah, E.; Yurista, S.; Rahmadani, N. R.

    2018-03-01

    Kombucha is a fermented tea beverage with the addition of kombucha starter also called SCOBY (Symbiotic Culture Of Bacteria and Yeast). The purpose of this research was to know the physical, chemical and microbiological characteristics of kombucha from various varieties of apple kombucha. The study used Randomized Block Design (RAK) with one factor of apple varieties (Anna, Fuji, Granny Smith, Manalagi, Red Delicious, Rome Beauty, Royal Gala). Each treatment was repeated three times. Data was analyzed with ANOVA (Analysis of Variance). The best treatment was selected using Multiple Attribute method. Data of hedonic test was analysed using Friedman Test. The best treatment was obtained on Fuji varieties of kombucha apple with the characteristics as follows: total acid 1.33%; pH 2.95; Total phenol 268.57 μg/ml GAE; Total sugar 6.74%; Antibacterial activity against S.aureus 21.30 mm; Antibacterial activity E.coli 21.20 mm; Antioxidant activity 35.62%; Organoleptic aroma 3.55, taste 3.3; Color 3.4 (on a scale of 1-5)

  3. Physical and chemical stability of expired fixed dose combination artemether-lumefantrine in uncontrolled tropical conditions

    Directory of Open Access Journals (Sweden)

    Hess Kimberly

    2009-02-01

    Full Text Available Abstract Background New artemisinin combination therapies pose difficulties of implementation in developing and tropical settings because they have a short shelf-life (two years relative to the medicines they replace. This limits the reliability and cost of treatment, and the acceptability of this treatment to health care workers. A multi-pronged investigation was made into the chemical and physical stability of fixed dose combination artemether-lumefantrine (FDC-ALU stored under heterogeneous, uncontrolled African conditions, to probe if a shelf-life extension might be possible. Methods Seventy samples of expired FDC-ALU were collected from private pharmacies and malaria researchers in seven African countries. The samples were subjected to thin-layer chromatography (TLC, disintegration testing, and near infrared Raman spectrometry for ascertainment of active ingredients, tablet integrity, and chemical degradation of the tablet formulation including both active ingredients and excipients. Results Seventy samples of FDC-ALU were tested in July 2008, between one and 58 months post-expiry. 68 of 70 (97% samples passed TLC, disintegration and Raman spectrometry testing, including eight samples that were post-expiry by 20 months or longer. A weak linear association (R2 = 0.33 was observed between the age of samples and their state of degradation relative to brand-identical samples on Raman spectrometry. Sixty-eight samples were retested in February 2009 using Raman spectrometry, between eight and 65 months post-expiry. 66 of 68 (97% samples passed Raman spectrometry retesting. An unexpected observation about African drug logistics was made in three batches of FDC-ALU, which had been sold into the public sector at concessional pricing in accordance with a World Health Organization (WHO agreement, and which were illegally diverted to the private sector where they were sold for profit. Conclusion The data indicate that FDC-ALU is chemically and

  4. Thermodynamics principles characterizing physical and chemical processes

    CERN Document Server

    Honig, Jurgen M

    1999-01-01

    This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory''s approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics.The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relat...

  5. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-02-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  6. Application of PIN diodes in Physics Research

    International Nuclear Information System (INIS)

    Ramirez-Jimenez, F. J.; Mondragon-Contreras, L.; Cruz-Estrada, P.

    2006-01-01

    A review of the application of PIN diodes as radiation detectors in different fields of Physics research is presented. The development and research in semiconductor technology, the use of PIN diodes in particle counting, X-and γ-ray spectroscopy, medical applications and charged particle spectroscopy are considered. Emphasis is made in the activities realized in the different research and development Mexican institutions dealing with this kind of radiation detectors

  7. Spatial variability of chemical and physical attributes of dystrophic Red-Yellow Latosol in no tillage

    Directory of Open Access Journals (Sweden)

    João Vidal de Negreiros Neto

    2014-02-01

    Full Text Available Knowledge of spatial variability in chemical and physical properties of the soil is very important, especially for precision agriculture. Geostatistics is seeking to improve techniques that can enable the correct and responsible use of soil. So during the agricultural year 2011/2012 in an area of direct planting the corn crop in the municipality of Gurupi (TO, in the Brazilian Cerrado, aimed to analyze the spatial variability of chemical and physical properties in a Typic Dystrophic tillage. Was installed sampling grid for the collection of soil, with 100 sampling points in an area of 1755m2. The contents of available phosphorus, organic matter, pH (H2O, concentrations of K +, Ca2+, Mg2+, the sum of values and base saturation (BS, V at depths of 0-0.20 m, and resistance to penetration (RP at depths 0-0.05 m, 0.05-0.10 m, 0.10-0.20 m and 0.20-0.40 m and bulk density (Ds. We conducted a descriptive analysis classic, with the aid of statistical software ASSISTAT, and then were modeled semivariograms for all attributes, resulting in their cross-validation and kriging maps. The chemical and physical properties of soil, except the base saturation (V, spatial dependence. Probably the discontinuity of the spatial dependence of Vvalue, is due to fertility management over the years.

  8. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e + e - analysis, bar P decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the φ factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K L 0 → π 0 γγ and π 0 ν bar ν, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R ampersand D

  9. Implications, large and small, from chemical education research for the teaching of chemistry

    Directory of Open Access Journals (Sweden)

    Peter J. Fensham

    2002-05-01

    Full Text Available Research studies in chemical education pose a communication problem for chemists. Unlike the findings from other specializations in chemistry the findings in chemical education tend to be reported in education journals that are not readily accessible to most chemists or chemistry teachers. This lecture is an attempt to remedy this gap in communication. Research studies fall into three broad categories. (i issues related to the content of chemistry itself, that is, What content to teach? And What meaning of each topic is to be conveyed? (ii issues related to how chemical content is taught, such as, the role of lectures, practical work, particular pedagogies, etc. and (iii issues related to its learning, that is, learning of concepts, conceptual change, motivation, etc. Findings in each of these categories of research over the last twenty years have drawn attention to opportunities for improving the quality of chemical education in each of the levels of formal education where chemistry is taught. Sometimes the research findings seem small since they, in fact, merely diagnose the actual problem in teaching and learning. At other times, the research findings are large because they provide a solution to these problems. What remains to be done is to disseminate the findings so that appropriate teaching occurs more widely, with its consequent gains in the quality of learning. Research findings, of these small and large types will be used to illustrate the potential of research to make the practice of chemical education more effective.

  10. Accessible protocol for practice classroom about physical and chemical factors that affect the biomembranes integrity

    Directory of Open Access Journals (Sweden)

    Thiago Barros Galvão

    2012-12-01

    Full Text Available The aim of the current work is to review a protocol used in practical classes to demonstrate some factors that affect biomembrane integrity. Sugar-beet fragments were utilized as the experimental model as membrane damage could be visualized by leakage of betacyanins, hydrophilic pigments accumulated in the cell vacuoles. The tests were carried out as discrete experiments utilizing physical agents and chemical products present in the student daily routine. To test the effect of temperature, sugar-beet fragments were submitted to heat, cold or both at different times of exposition. When chemical products were tested, sugar-beet fragments were exposed to organic solvents (common alcohol and acetone or polar and amphipathic substances (disinfectant, detergent, hydrogen peroxide, and sodium hypochlorite. The obtained results were discussed in terms of the capacity of the physical and chemical factors to cause membrane damage. The review of this protocol using reagents that are present in the student daily routine were able to demonstrate clearly the effect of the different tested factors, allowing the utilization of this practical class under limited conditions.

  11. Physics and safety of advanced research reactors

    International Nuclear Information System (INIS)

    Boening, K.; Hardt, P. von der

    1987-01-01

    Advanced research reactor concepts are presently being developed in order to meet the neutron-based research needs of the nineties. Among these research reactors, which are characterized by an average power density of 1-10 MW per liter, highest priority is now generally given to the 'beam tube reactors'. These provide very high values of the thermal neutron flux (10 14 -10 16 cm -2 s -1 ) in a large volume outside of the reactor core, which can be used for sample irradiations and, in particular, for neutron scattering experiments. The paper first discusses the 'inverse flux trap concept' and the main physical aspects of the design and optimization of beam tube reactors. After that two examples of advanced research reactor projects are described which may be considered as two opposite extremes with respect to the physical optimization principle just mentioned. The present situation concerning cross section libraries and neutronic computer codes is more or less satisfactory. The safety analyses of advanced research reactors can largely be updated from those of current new designs, partially taking advantage of the immense volume of work done for power reactors. The paper indicates a few areas where generic problems for advanced research reactor safety are to be solved. (orig.)

  12. Steps toward validity in active living research: research design that limits accusations of physical determinism.

    Science.gov (United States)

    Riggs, William

    2014-03-01

    "Active living research" has been accused of being overly "physically deterministic" and this article argues that urban planners must continue to evolve research and address biases in this area. The article first provides background on how researchers have dealt with the relationship between the built environment and health over years. This leads to a presentation of how active living research might be described as overly deterministic. The article then offers lessons for researchers planning to embark in active-living studies as to how they might increase validity and minimize criticism of physical determinism. © 2013 Published by Elsevier Ltd.

  13. Integration and Physical Education: A Review of Research

    Science.gov (United States)

    Marttinen, Risto Harri Juhani; McLoughlin, Gabriella; Fredrick, Ray, III; Novak, Dario

    2017-01-01

    The Common Core State Standards Initiative has placed an increased focus on mathematics and English language arts. A relationship between physical activity and academic achievement is evident, but research on integration of academic subjects with physical education is still unclear. This literature review examined databases for the years…

  14. Occurrence and distribution of Chytridiales related to some physical and chemical factors

    Directory of Open Access Journals (Sweden)

    Samy K. Hassan

    2014-08-01

    Full Text Available Physical and chemical properties of water and soil were positively corelated with the occurrence and distribution of chytrides. Thirty-six zoosporic members of chytrids belonging to fourteen genera were recorded in the present study. Nowakowskiella, Karlingia, Cladochytrium, Endochytrium and Rhizophlyctis were the most common genera observed along River Nileshore and other canals in nine Governorates in Egypt during the winter of 1989/1990.

  15. Confinement Physics Research Facility/ZTH: A progress report

    International Nuclear Information System (INIS)

    Hammer, C.F.; Thullen, P.

    1989-01-01

    In October 1985 the Los Alamos National Laboratory's Controlled Thermonuclear Research (CTR) Division began the design and construction of the Confinement Physics Research Facility (CPRF) and the ZTH toroidal, reversed-field-pinch (RFP), plasma physics experiment. The CPRF is a facility which will provide the buildings, utilities, pulsed power system, control system and diagnostics needed to operate a magnetically confined fusion experiment, and ZTH will be the first experiment operated in the facility. The construction of CPRF/ZTH is scheduled for completion in the first quarter of 1993. 5 figs

  16. High energy physics research. Final technical report, 1957--1994

    International Nuclear Information System (INIS)

    Williams, H.H.

    1995-01-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development

  17. High energy physics research. Final technical report, 1957--1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  18. CANONICAL CORRELATION OF PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE WOOD OF Eucalyptus grandis AND Eucalyptus saligna CLONES

    Directory of Open Access Journals (Sweden)

    Paulo Fernando Trugilho

    2003-01-01

    Full Text Available The analysis of canonical correlation measures the existence and the intensity of the association between two groups of variables. The research objectified to evaluate thecanonical correlation between chemical and physical characteristics and fiber dimensional ofwood of Eucalyptus grandis and Eucalyptus saligna clones, verifying the interdependenceamong the groups of studied variables. The analysis indicated that the canonical correlationswere high and that in two cases the first and second pair were significant at the level of 1% ofprobability. The analysis of canonical correlation showed that the groups are notindependent. The intergroup associations indicated that the wood of high insoluble lignin contentand low ash content is associated with the high radial and tangential contraction and highbasic density wood.

  19. Actinide targets for fundamental research in nuclear physics

    Science.gov (United States)

    Eberhardt, K.; Düllmann, Ch. E.; Haas, R.; Mokry, Ch.; Runke, J.; Thörle-Pospiech, P.; Trautmann, N.

    2018-05-01

    Thin actinide layers deposited on various substrates are widely used as calibration sources in nuclear spectroscopy. Other applications include fundamental research in nuclear chemistry and -physics, e.g., the chemical and physical properties of super-heavy elements (SHE, Z > 103) or nuclear reaction studies with heavy ions. For the design of future nuclear reactors like fast-fission reactors and accelerator-driven systems for transmutation of nuclear waste, precise data for neutron absorption as well as neutron-induced fission cross section data for 242Pu with neutrons of different energies are of particular importance, requiring suitable Pu-targets. Another application includes studies of nuclear transitions in 229Th harvested as α-decay recoil product from a thin layer of its 233U precursor. For this, a thin and very smooth layer of 233U is used. We report here on the production of actinide layers mostly obtained by Molecular Plating (MP). MP is currently the only fabrication method in cases where the desired actinide material is available only in very limited amounts or possesses a high specific activity. Here, deposition is performed from organic solution applying a current density of 1-2 mA/cm2. Under these conditions target thicknesses of 500-1000 μg/cm2 are possible applying a single deposition step with deposition yields approaching 100 %. For yield determination α-particle spectroscopy, γ-spectroscopy and Neutron Activation Analysis is routinely used. Layer homogeneity is checked with Radiographic Imaging. As an alternative technique to MP the production of thin lanthanide and actinide layers by the so-called "Drop on Demand"-technique applied e.g., in ink-jet printing is currently under investigation.

  20. NREL Senior Research Fellow Honored by The Journal of Physical Chemistry |

    Science.gov (United States)

    News | NREL 7 » NREL Senior Research Fellow Honored by The Journal of Physical Chemistry News Release: NREL Senior Research Fellow Honored by The Journal of Physical Chemistry January 10, 2007 The Journal of Physical Chemistry B. The Dec. 21 issue was titled The Arthur J. Nozik Festschrift (Volume 110

  1. Proceedings of the eighth national conference on research in physics

    International Nuclear Information System (INIS)

    2005-01-01

    This is a book of abstracts of the oral presentations that were presented during the eighth national conference on research in physics that was held from 20 to 23 deecember 2005 in Tunisia (Elkantaoui- Sousse). The following themes were covered : Nuclear and theoretical physics; Optical, molecular and atomic physics; Condensed matter physics; Soft matter physics; Mechanis; Thermal transfert; Electronics; physics engineering

  2. Proceedings of the Ninth National Conference on Research in Physics

    International Nuclear Information System (INIS)

    2008-01-01

    This is a book of abstracts of the oral presentations that were presented during the ninth national conference on research in physics that was held from 17 to 20 mars 2008 in Tunisia (Yasmine Hammamet). The following themes were covered : Nuclear and theoretical physics; optical, molecular and atomic physics; condensed matter physics; Soft matter physics; Mechanics; Thermal transfer; Electronics; physics engineering

  3. Criterion for selection the optimal physical and chemical properties of cobalt aluminate powder used in investment casting process

    Directory of Open Access Journals (Sweden)

    M. Zielińska

    2009-07-01

    Full Text Available The aim of this work was to determine physical and chemical properties of cobalt aluminate (CoAl2O4 modifiers produced by different companies and the influence of different types of modifiers on the grain size of high temperature creep resisting superalloys: Inconel 713C, René 77 and MAR-M 509.The first stage of the research work took over the investigations of physical and chemical properties of cobalt aluminate manufactured by three different companies: Remet, Mason Color and Permedia Lublin. There were determined the grain size distribution of cobalt aluminate powder, the average diameter and morphology of powder particles, phase composition, as well as sodium and cobalt content, pH value of water suspension and the bulk density. In the next step, the ceramic moulds were made with different kind of cobalt aluminate (Mason Color, Remet, Permedia Lublin and its concentration (0, 5% in the primary slurry. The samples of stepped shape were poured in the ceramic moulds prepared earlier. The average grain size of the γ phase was determined on the stepped samples.It was established that physical and chemical properties of cobalt aluminate modifier are different up to the manufacturer. For example the modifiers manufactured by Permedia; Mason Color and Remet companies have different the average diameter of particles- 68,050d; 49,6 i 36,7μm, and also cobalt content _CoC=32,53%; 39,43% i 34,79%mass, respectively. The grain size of γ matrix of superalloys depends on the kind of used inoculant. The best grain refinement of the matrix of superalloys: Inconel 713C, René 77 and MAR-M 509 was observed in the castings modified with the use of Mason Color modifier. On the grounds of literature data and obtained results it was established that the cobalt content of cobalt aluminate influences the intensity of nucleation process during the crystallization of superalloys: Inconel 713C, René 77 i MAR-M 509.

  4. Community structure, phytoplankton density and physical-chemical factor of batang palangki waters of sijunjung regency, west sumatera

    Science.gov (United States)

    Gusmaweti; Deswati, L.

    2018-03-01

    The long-term goal of this study is to provide an overview of the presence of phytoplankton in support of its functions in the waters of Batang Palangki as a conservation area of information on river water management, especially for Batang Palangki stakeholders. Specific targets to be achieved in achieving these objectives are (1) to know the density of phytoplankton, index of diversity of species, equitabilty index, domination index, and in Batang Palangki waters, and (2) to analyze the chemical and physical factors of the waters. The sampling method of phytoplankton is purposive sampling. The phytoplankton sampling is done By filtering 100 liters of water into the net plankton no 25 and filtered into the 25 cc, and then identified. The determination of water quality such as water temperature, water pH and watercolour. dissolved oxygen (DO) and BOD, and Hg content (mercury). The results showed that phytoplankton found from each of station was 370 individualis per liter with the highest density found in the station I of 155. The number of genus was 7, namely Neidium, Gyrogsima, Synedra, Frustulia, Fragillaria, Nitzschia and Peridinium. The diversity index averaged at 0.45, equabilty index averaged at 0.54, while the dominance index averaged at 0.28. Physical and chemical factor measurement results found that water temperature averaged at 26 °C, transparency ranged from 12 - 30 cm, velocity speed ranged from 8 - 15 m/s, while chemical factors such as DO, BOD, and COD ranged from 5.25 to 5.96 mg/L, 3.28 - 3.49 mg/L, and 47.05 - 76.25 mg/L respectively. Likewise, TOM measured in this research was 9.61 - 2.10 mg/L while Hg content ranged from 0.098 - 0.208 mg/L.

  5. New researchers for applied physics

    CERN Multimedia

    Rita Giuffredi, PicoSEC project

    2012-01-01

    On 12 September, thirteen PicoSEC researchers met in Lyon for the first time, at the project’s kick-off meeting. The meeting was the opportunity for them to get to know each other and start building a fruitful working and human relationship. A hard task awaits them: reaching the 200-picosecond-limit on time resolution in photon detectors.    The 13 researchers recruited for the PicoSEC project and the organizers of the project, September 2012. Photon detectors are used in many different fields ranging from high-energy physics calorimetry for the future generation of colliders to the photon time-of-flight technique for the next generation of PET scanners. Within the PicoSEC EU-funded Marie Curie Initial Training Network, 18 Early Stage Researchers and 4 Experienced Researchers are being trained to develop new detection techniques based on very fast scintillating crystals and photo detectors. In a multi-site project like PicoSEC, in which 11 institutes and companies from 6 ...

  6. Physical and chemical properties of calcium doped neodymium manganite

    International Nuclear Information System (INIS)

    Tikhonova, L.A.; Zhuk, P.P.; Tonoyan, A.A.; Vecher, A.A.

    1991-01-01

    Physical and chemical properties of calcium doped neodymium manganite were investigated. It was shown that structure of perovskite with O'-orthorhombic distortion was characteristic for solid solutions of Nd 1-x Ca x MnO 3 (x=0-0.5). Maximum of conductivity for samples with x=0.2 was determined. Inversion of conductivity from p- (x=0) to n-type (x=0.5) was observed in increase of concentration of calcium doped addition. Values of thermal expansion coefficient of studied solid solutions of Nd 1-x Ca x MnO 3 didn't depend on concentration of doped addition within the range 700 to 1200 K and were (9.9-11.3)·10 -6 K -1

  7. Characterization of physical and chemical properties of QLARIVIA-line of deuterium depleted Water

    International Nuclear Information System (INIS)

    Ferdes, Ov. S.; Mladin, C.; Petre, R.M.; Mitu, F.; Costinel, Diana; Vremera, Raluca; Sandru, Claudia

    2008-01-01

    QLARIVIA is the brand-name of Deuterium Depleted Water line of products of drinking water differentiating mainly by the deuterium concentration. It is the result of a national technological transfer project and it is based on an original, patented technology for deuterium depletion from the normal water. The paper presents the measuring and analysis results of the chemical and physical properties of the QLARIVIA brand-line of drinking DDW, as: pH; water hardness; permanganate index; Ca; Mg; Cl - ; SO4 2 - ; NH 4 ; NO 3 - ; NO 2 - , as well as the deuterium concentration determination by mass spectrometry. The analysis has been performed on at least 20 batch-samples, by usual, standardized and/or validated analytical methods, in ISO 17025:2005 accredited laboratories. The results are discussed considering the requirements of the EU directive on drinking water as well as of the Romanian Act on drinking water no. 458/2002 with its supplemental modification by the Act no.363/2004. The conclusion is that QLARIVIA - brand line of drinking DDW fulfills all the official physical and chemical requirements for the drinking water. (authors)

  8. Institute of Nuclear Physics, mission and scientific research activities

    International Nuclear Information System (INIS)

    Zoto, J.; Zaganjori, S.

    2004-01-01

    The Institute of Nuclear Physics (INP) was established in 1971 as a scientific research institution with main goal basic scientific knowledge transmission and transfer the new methods and technologies of nuclear physics to the different economy fields. The organizational structure and main research areas of the Institute are described. The effects of the long transition period of the Albanian society and economy on the Institution activity are also presented

  9. Undergraduate Research in Physics as an Educational Tool

    Science.gov (United States)

    Hakim, Toufic M.; Garg, Shila

    2001-03-01

    The National Science Foundation's 1996 report "Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering and Technology" urged that in order to improve SME&T education, decisive action must be taken so that "all students have access to excellent undergraduate education in science .... and all students learn these subjects by direct experience with the methods and processes of inquiry." Research-related educational activities that integrate education and research have been shown to be valuable in improving the quality of education and enhancing the number of majors in physics departments. Student researchers develop a motivation to continue in science and engineering through an appreciation of how science is done and the excitement of doing frontier research. We will address some of the challenges of integrating research into the physics undergraduate curriculum effectively. The departmental and institutional policies and infrastructure required to help prepare students for this endeavor will be discussed as well as sources of support and the establishment of appropriate evaluation procedures.

  10. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  11. Postharvest Chemical, Sensorial and Physical-Mechanical Properties of Wild Apricot (Prunus armeniaca L.

    Directory of Open Access Journals (Sweden)

    Evica MRATINIĆ

    2011-11-01

    Full Text Available Some chemical, sensorial and physical-mechanical properties of 19 apricot genotypes and Hungarian Best (control such as moisture content, soluble solids content, titratable acidity ratio and their ratio, fruit and stone mass, flesh/stone ratio, fruit dimensions (length, width, thickness, arithmetic and geometric mean diameter, sphericity, surface area and aspect ratio were determined. Their application is also discussed. The highest moisture content and stone mass observed in X-1/1/04 and X-1/2/04, soluble solids content in ZO-1/03, titratable acidity in ZL-2/03, SS/TA ratio in ZL-1/03, and fruit mass and flesh/stone ratio in DL-1/1/04 genotype. The most number of genotypes have orange and deep orange skin and flesh colour, respectively, whereas sweet kernel taste was predominant in most genotypes. Regarding physical-mechanical properties, the superior fruit dimensions (length, width, thickness, arithmetic and geometric mean diameter and surface area observed in DL-1/1/04 genotype, whereas the highest sphericity and surface area observed in X-1/1/04 and X-1/2/04 genotypes. Also, the series of genotypes evaluated have better chemical, sensorial and physical-mechanical properties than Hungarian Best (control. Finally, information about these properties is very important for understanding the behaviour of the product during the postharvest operations.

  12. Chemical-physical parameters of atmospheric precipitations in the Pisa urban area

    International Nuclear Information System (INIS)

    Paradossi, C.; Marchini, F.

    1998-01-01

    In the work the major chemical-physical parameters of the rain collected in May 1992 - May 1993 period in Pisa are studied and discussed. The ph analysis was particular interesting. Indeed sometimes it reached values between 4.5 and 5.0. Also the ions examined although they did not reach values supposed to cause damage, were subjected to monthly variations. This paper confirms previously results. Pisa although not being considered an industrial area is subjected to pollutant acid rains [it

  13. EFFECT OF NUTMEG (MYRISTICA FRANGRANS HOUTT LEAVES AND CLOVE (SYZYGIUM AROMATICUM L. LEAVES TREATMENT TO PHYSICAL AND CHEMICAL CHARACTERISTICS OF KACANG GOAT (CAPRA HIRCUS

    Directory of Open Access Journals (Sweden)

    Sapsuha Y.

    2017-10-01

    Full Text Available Nutmeg (Myristica frangrans Houtt and clove (Syzygium aromaticum L is an herb plants that contain essential oils. The research objective was to determine the physical quality (pH, shrinkage cooking, and water holding capacity and chemical quality (moisture content, protein content and fat content of Kacang goat (Capra hircus by rationing of nutmeg and clove leaves treatment. There are four treatments that consisted of the percentage of R0 = ration basal (without the addition of nutmeg and clove leaves, R1 = basal diet + 5% of nutmeg leaves, R2 = basal diet + 5% of clove leaves, R3 = basal diet + 5% of nutmeg leaves +5 % of clove leaves, while each treatment was replicated four times. The results showed that the use of nutmeg and cloves leaves in a ration of 5% does not affect the physical and chemical quality of the Kacang goat in terms of pH, cooking shrinkage, water holding capacity, moisture content, protein content and fat content.

  14. Methodology for the physical and chemical exergetic analysis of steam boilers

    International Nuclear Information System (INIS)

    Ohijeagbon, Idehai O.; Waheed, M. Adekojo; Jekayinfa, Simeon O.

    2013-01-01

    This paper presents a framework of thermodynamic, energy and exergy, analyses of industrial steam boilers. Mass, energy, and exergy analysis were used to develop a methodology for evaluating thermodynamic properties, energy and exergy input and output resources in industrial steam boilers. Determined methods make available an analytic procedure for the physical and chemical exergetic analysis of steam boilers for appropriate applications. The energy and exergy efficiencies obtained for the entire boiler was 69.56% and 38.57% at standard reference state temperature of 25 °C for an evaporation ratio of 12. Chemical exergy of the material streams was considered to offer a more comprehensive detail on energy and exergy resource allocation and losses of the processes in a steam boiler. - Highlights: ► We evaluated thermodynamic properties and performance variables associated with material streams. ► We analysed resources allocation, and magnitude of exergetic losses in steam boilers. ► Chemical exergy of material streams contributed to improved exergy values. ► High operational parameter will lead to higher boiler exergy. ► Exergy destroyed was higher in the combustion as against the heat exchanging unit

  15. Overview of the physical-chemical properties of the noble gases

    International Nuclear Information System (INIS)

    McKinley, C.

    1973-01-01

    This paper lists the concentrations of noble gases in the atmosphere and the relative abundance of the stable isotopes. Selected physical properties are tabulated; solubilities of noble gases in water and other liquids, and liquid-vapor equilibria data for binary systems containing a noble gas are presented. Adsorption data are tabulated for illustrative conventional adsorbents and are also presented by a Polanyi correlation. Clathration, biochemical effects, and chemical reactivity are highlighted. Analytical procedures are briefly described. Other relatively non-reactive gases present in the atmosphere in trace quantities are mentioned: methane, carbon tetrafluoride, and sulfur hexafluoride.

  16. Radiological and Environmental Research Division Annual Report. Atmosphere Physics January - December 1979.

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, R. E.; Hicks, B. B.

    1978-01-01

    A comparison of this document with previous reports of this series will reveal some substantial changes in the research performed by this Section. There have been several projects in which scientific work has evolved, creating the bases for exciting new programs. For example, the Section's work on micrometeorology was initially in support of planetary boundary layer modeling studies. In recent years, the techniques that were developed have been extended to .include air pollutants, and we are now closely identified with work on the dry deposition of airborne particles and trace gases. In this area of research, three separate programs can be identified'. Under EPA sponsorship, we are developing methods for parameterizing the dry deposition of acid aerosol for, the MAP3S program. In a second EPA program, we are conducting field experiments to investigate the physical, chemical and biological factors that control dry deposition rates to natural surfaces. Under DOE sponsorship, we are conducting field experiments concentrating on the deposition of trace gases and particles to open water surfaces.

  17. Annual report of the Institute of Physical and Chemical Research, for fiscal 1997

    International Nuclear Information System (INIS)

    1998-01-01

    This annual report are constructed by two volumes: Research subjects of laboratories and research groups and Frontier research program. In the former, research actions of 44 laboratories on Wako Campus, 1 project office of research groups, 6 laboratories of Tsukuba life science center, 1 center and 4 laboratories of RIKEN Harima institute, and scientific and technical services were described. And, actions on 6 kinds of basic science research, 1 research of protein folds research, 4 kinds of research concerning the peaceful use of atomic energy, 1 international collaboration, 2 kinds of development of fundamental technology, 3 kinds of development of computational science and technology, 5 kinds of basic science research on life science, 1 research on synchrotron radiation science, 1 research on synchrotron program and others, 1 research on synchrotron radiation instrumentation, 3 kinds of strategic research program and others, and 1 special contract research were also described in basic science research and others. In the latter, in frontier research program, research actions on 5 laboratories of bio-homeostasis research, 3 laboratories of frontier materials research, 10 laboratories of brain science research, 4 laboratories of photodynamics research, and 4 laboratories of bio-mimetic control research were described. And, actions on 4 laboratories of neuronal function research group, 3 laboratories of neuronal circuit mechanisms research group, 2 laboratories of cognitive brain science group, 2 laboratories of developmental brain science group, 3 laboratories of molecular neuropathology group, 2 laboratories of brainway group, 3 laboratories of brain-style information systems research group, and 3 laboratories of advanced technology development center were described in brain science institute, RIKEN. (G.K.)

  18. Chemical physics: The standing of a mature discipline

    Directory of Open Access Journals (Sweden)

    Castro Eduardo A

    2007-03-01

    Full Text Available Abstract It is always promising and enticing to start a new editorial task in the scientific arena and the launch of the Chemistry Central Journal is no exception. The different thematic sections making up this journal are quite representative of the whole chemistry enterprise. However, one of them has a special relevance. In fact, Chemical Physics (CP is the most general and it embodies a wide diversity of issues. Of particular importance at the launch of this groundbreaking new journal is the confidence of the Section Editor in BioMed Central (owners of Chemistry Central as publishers, and from Chemistry Central to its Editorial Board. I feel deeply grateful for this new assignment and I hope to be able to perform a thorough job in editing this section. Below, I make my request to you as potential authors and reviewers.

  19. Physical-chemical model of nanodiamond formation at explosion

    International Nuclear Information System (INIS)

    Chernyshev, A.P.; Lukyanchikov, L.A.; Lyakhov, N.Z.; Pruuel, E.R.; Sheromov, M.A.; Ten, K.A.; Titov, V.M.; Tolochko, B.P.; Zhogin, I.L.; Zubkov, P.I.

    2007-01-01

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state

  20. Physical-chemical model of nanodiamond formation at explosion

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, A.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Lukyanchikov, L.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Lyakhov, N.Z. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Pruuel, E.R. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Sheromov, M.A. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Ten, K.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Titov, V.M. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Tolochko, B.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation)]. E-mail: b.p.tolochko@inp.nsk.su; Zhogin, I.L. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Zubkov, P.I. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation)

    2007-05-21

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state.

  1. Induced mutations in chickpea (Cicer arietinum L.) I. comparative mutagenic effectiveness and efficiency of physical & chemical mutagens

    International Nuclear Information System (INIS)

    Kharkwal, M.C.

    1998-01-01

    Mutagenic effectiveness usually means the rate of mutation as related to dose. Mutagenic efficiency refers to the mutation rate in relation to damage. Studies on comparative mutagenic effectiveness and efficiency of two physical (gamma rays and fast neutrons) and two chemical mutagens (NMU and EMS) on two desi (G 130 & H 214), one kabuli (C 104) and one green seeded (L 345) chickpea (Cicer arietinum L.) have been reported. The treatments included three doses each of gamma rays (400, 500 and 600 Gy) and fast neutrons (5, 10 and 15 Gy) and two concentrations with two different durations of two chemical mutagens, NMU 0.01% 20h and 0.02% 8h) and EMS (0.1% 20h and 0.2% 8h). Results indicated that chemical mutagens, particularly NMU are not only more effective but also efficient than physical mutagens in inducing mutations in chickpea. Mutagenic effectiveness and efficiency showed differential behaviour depending upon mutagen and varietal type. Chemical mutagens were more efficient than physical in inducing cholorophyll as well as viable and total number of mutations. Among the mutagens NMU was the most potent, while in the physical, gamma rays were more effective. Out of four mutagens, NMU was the most effective and efficient in inducing a high frequency and wide spectrum of chlorophyll mutations in the M2 followed by fast neutrons. While gamma rays showed least effectiveness, EMS was least efficient mutagens. Major differences in the mutagenic response of the four cultivars were observed. The varieties of desi type were more resistant towards mutagenic treatment than kabuli and green seeded type

  2. Lifetimes of organic photovoltaics: Combining chemical and physical characterisation techniques to study degradation mechanisms

    DEFF Research Database (Denmark)

    Norrman, K.; Larsen, N.B.; Krebs, Frederik C

    2006-01-01

    Degradation mechanisms of a photovoltaic device with an Al/C-60/C-12-PSV/PEDOT:PSS/ITO/glass geometry was studied using a combination of in-plane physical and chemical analysis techniques: TOF-SIMS, AFM, SEM, interference microscopy and fluorescence microscopy. A comparison was made between...

  3. Physical adsorption vs. chemical binding of undecylenic acid on porous silicon surface: a comparative study of differently functionalized materials

    Energy Technology Data Exchange (ETDEWEB)

    Salonen, J.; Lehto, V.P. [University of Turku (Finland). Department of Physics; Chirvony, V.; Matveeva, E. [Nanophotonics Technology Center, Technical University of Valencia (Spain); Pastor, E.

    2009-07-15

    To imply miscibility to porous silicon (PSi) used for biomedical purposes a number of functionalization methods are employed. In order to distinguish between a non-specific surfactant-like interaction (physical sorption) and chemical binding of unsaturated chemicals (undecylenic acid, UD) to H-terminated PSi surface we studied the two differently treated materials. Differential scanning calorimetry (DSC) and thermogravimetry (TGA), BET and FTIR measurements were performed with the PSi powder samples (n+ doped). Changes in surface area, weight loss, calorific effect and chemical composition that accompanied the thermal treatment have shown that the physisorbed UD molecules undergo a chemical process (binding) with the Si-H{sub x} surface groups at about 150 C in both, N{sub 2} inert atmosphere and in a synthetic air, oxidative atmosphere. Controlled conversion of physically sorbed molecules to the chemically attached ones is discussed with respect to methods of surface modification of PSi materials for increasing their biocompatibility. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Radiation chemical research around a 15 MeV high average power linac

    International Nuclear Information System (INIS)

    Lahorte, P.; Mondelaers, W.; Masschaele, B.; Cauwels, P.

    1998-01-01

    Complete text of publication follows. The Laboratory of Subatomic and Radiation Physics of the University of Gent is equipped with a 15 MeV 20 kW linear electron accelerator (linac) facility. This accelerator was initially designed for fundamental nuclear physics research but was modified to generate beams for new experimental interdisciplinary projects. In its present configuration the accelerator is used as a multipurpose apparatus for research in the fields of polymer chemistry (crosslinking), biomaterials (hydrogels, drug delivery systems, implants), medicine (extracorporeal bone irradiation, human grafts), biomedical materials, food technology (package materials, food preservation), dosimetry (EPR of alanine systems, geldosimetry), solid-state physics, agriculture and nuclear and radiation physics. In this paper an overview will be presented of both the various research projects around our linac facility involving radiation chemistry and the specialised technologies facilitating this research

  5. Physical-Chemical Characterization and Formulation Considerations for Solid Lipid Nanoparticles.

    Science.gov (United States)

    Chauhan, Harsh; Mohapatra, Sarat; Munt, Daniel J; Chandratre, Shantanu; Dash, Alekha

    2016-06-01

    Pure glyceryl mono-oleate (GMO) (lipid) and different batches of GMO commonly used for the preparation of GMO-chitosan nanoparticles were characterized by modulated differential scanning calorimetry (MDSC), cryo-microscopy, and cryo-X-ray powder diffraction techniques. GMO-chitosan nanoparticles containing poloxamer 407 as a stabilizer in the absence and presence of polymers as crystallization inhibitors were prepared by ultrasonication. The effect of polymers (polyvinyl pyrrolidone (PVP), Eudragits, hydroxyl propyl methyl cellulose (HPMC), polyethylene glycol (PEG)), surfactants (poloxamer), and oils (mineral oil and olive oil) on the crystallization of GMO was investigated. GMO showed an exothermic peak at around -10°C while cooling and another exothermic peak at around -12°C while heating. It was followed by two endothermic peaks between 15 and 30 C, indicative of GMO melting. The results are corroborated by cryo-microscopy and cryo-X-ray. Significant differences in exothermic and endothermic transition were observed between different grades of GMO and pure GMO. GMO-chitosan nanoparticles resulted in a significant increase in particle size after lyophilization. MDSC confirmed that nanoparticles showed similar exothermic crystallization behavior of lipid GMO. MDSC experiments showed that PVP inhibits GMO crystallization and addition of PVP showed no significant increase in particle size of solid lipid nanoparticle (SLN) during lyophilization. The research highlights the importance of extensive physical-chemical characterization for successful formulation of SLN.

  6. Chemical and Physical Weathering of Granites in a Semi-Arid Savanna

    Science.gov (United States)

    Khomo, L.; Hartshorn, A.; Chadwick, O.; Kurtz, A.; Heimsath, A.; Rogers, K.

    2005-12-01

    The catena concept describes soil properties on hillslopes and implies a hydrological mass redistribution process that has been applied differently in different parts of the Earth. In tectonically active regions, it is mostly used to describe the redistribution of mass by overland flow leading to thickening soil mantles downslope. This application is somewhat different from its initial and still popular usage in tectonically inactive areas of Africa, where it defines long-term soil property differentiation along hillslopes as controlled by internal soil hydrology as opposed to overland flow. Many ecologists have found the "African" catena concept to be useful as an organizing principal for savanna studies, but there has been little recent research on catenas per se in Africa. Elsewhere however, there is a growing body of research that places the concept ever more strongly into a landscape evolution context. Here, we apply these new approaches to catenas in a South African savanna underlain by a heterogeneous suite of Basement granites straddling a gradient in effective precipitation. We constrain the weathering extent of hilly terrains formed on these oldrocks by calculating element losses with solid-phase mass-balance calculations augmented by cosmogenic (26Al/10Be) derived rates of landscape denudation. We test the efficacy of Ti, Zr and Nb as immobile elements to benchmark chemical losses and gains in these semi-arid weathering environments. We also trace and quantify the abundance of the host minerals for these elements (Ti = rutile and ilmenite, Nb = columbite and Zr = zircon and baddleyite) in a variety of rocks in the basement complex. This analysis provides the boundary conditions for assigning immobile elements to parent materials required for the mass balance calculations. We calculate total denudation using the cosmogenic isotopes and then partition it into chemical and physical loss vectors using the mass balance calculations for representative

  7. Proposed activity - Budget for research in high energy physics

    International Nuclear Information System (INIS)

    Barger, V.; Camerini, U.; Carlsmith, D.

    1989-01-01

    This paper contains task reports on the following topics: Hadron physics at Fermilab; Lepton hadron scattering; Electroweak and weak interactions at the Stanford Linear Accelerator Center; Hyperon beam program/hadroproduction of heavy flavors at Fermilab; High energy physics colliding beam detector facility at Fermilab; Data analysis facility; Institute for Elementary Particle Physics research; Study of weak and electromagnetic interactions at Desy and Cern; Theoretical high energy physics; Dumand; and Ultra high energy gamma rays

  8. Chemical Interactions of Surface-Active Agents with Growing Resorcinol-Formaldehyde Gels

    Czech Academy of Sciences Publication Activity Database

    Jirglová, Hana; Maldonato-Hódar, F. J.

    2010-01-01

    Roč. 26, č. 20 (2010), s. 16103-16109 ISSN 0743-7463 Institutional research plan: CEZ:AV0Z40400503 Keywords : chemical interactions * FTIR * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.269, year: 2010

  9. Classification and Visualization of Physical and Chemical Properties of Falsified Medicines with Handheld Raman Spectroscopy and X-Ray Computed Tomography.

    Science.gov (United States)

    Kakio, Tomoko; Yoshida, Naoko; Macha, Susan; Moriguchi, Kazunobu; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko

    2017-09-01

    Analytical methods for the detection of substandard and falsified medical products (SFs) are important for public health and patient safety. Research to understand how the physical and chemical properties of SFs can be most effectively applied to distinguish the SFs from authentic products has not yet been investigated enough. Here, we investigated the usefulness of two analytical methods, handheld Raman spectroscopy (handheld Raman) and X-ray computed tomography (X-ray CT), for detecting SFs among oral solid antihypertensive pharmaceutical products containing candesartan cilexetil as an active pharmaceutical ingredient (API). X-ray CT visualized at least two different types of falsified tablets, one containing many cracks and voids and the other containing aggregates with high electron density, such as from the presence of the heavy elements. Generic products that purported to contain equivalent amounts of API to the authentic products were discriminated from the authentic products by the handheld Raman and the different physical structure on X-ray CT. Approach to investigate both the chemical and physical properties with handheld Raman and X-ray CT, respectively, promise the accurate discrimination of the SFs, even if their visual appearance is similar with authentic products. We present a decision tree for investigating the authenticity of samples purporting to be authentic commercial tablets. Our results indicate that the combination approach of visual observation, handheld Raman and X-ray CT is a powerful strategy for nondestructive discrimination of suspect samples.

  10. Research-design model for professional development of teachers: Designing lessons with physics education research

    Science.gov (United States)

    Eylon, Bat-Sheva; Bagno, Esther

    2006-12-01

    How can one increase the awareness of teachers to the existence and importance of knowledge gained through physics education research (PER) and provide them with capabilities to use it? How can one enrich teachers’ physics knowledge and the related pedagogical content knowledge of topics singled out by PER? In this paper we describe a professional development model that attempts to respond to these needs. We report on a study of the model’s implementation in a program for 22 high-school experienced physics teachers. In this program teachers (in teams of 5-6) developed during a year and a half (about 330h ), several lessons (minimodules) dealing with a topic identified as problematic by PER. The teachers employed a systematic research-based approach and used PER findings. The program consisted of three stages, each culminating with a miniconference: 1. Defining teaching and/or learning goals based on content analysis and diagnosis of students’ prior knowledge. 2. Designing the lessons using PER-based instructional strategies. 3. Performing a small-scale research study that accompanies the development process and publishing the results. We describe a case study of one of the groups and bring evidence that demonstrates how the workshop advanced: (a) Teachers’ awareness of deficiencies in their own knowledge of physics and pedagogy, and their perceptions about their students’ knowledge; (b) teachers’ knowledge of physics and physics pedagogy; (c) a systematic research-based approach to the design of lessons; (d) the formation of a community of practice; and (e) acquaintance with central findings of PER. There was a clear effect on teachers’ practice in the context of the study as indicated by the materials brought to the workshop. The teachers also reported that they continued to use the insights gained, mainly in the topics that were investigated by themselves and by their peers.

  11. Research-design model for professional development of teachers: Designing lessons with physics education research

    Directory of Open Access Journals (Sweden)

    Esther Bagno

    2006-09-01

    Full Text Available How can one increase the awareness of teachers to the existence and importance of knowledge gained through physics education research (PER and provide them with capabilities to use it? How can one enrich teachers’ physics knowledge and the related pedagogical content knowledge of topics singled out by PER? In this paper we describe a professional development model that attempts to respond to these needs. We report on a study of the model’s implementation in a program for 22 high-school experienced physics teachers. In this program teachers (in teams of 5-6 developed during a year and a half (about 330 h , several lessons (minimodules dealing with a topic identified as problematic by PER. The teachers employed a systematic research-based approach and used PER findings. The program consisted of three stages, each culminating with a miniconference: 1. Defining teaching and/or learning goals based on content analysis and diagnosis of students’ prior knowledge. 2. Designing the lessons using PER-based instructional strategies. 3. Performing a small-scale research study that accompanies the development process and publishing the results. We describe a case study of one of the groups and bring evidence that demonstrates how the workshop advanced: (a Teachers’ awareness of deficiencies in their own knowledge of physics and pedagogy, and their perceptions about their students’ knowledge; (b teachers’ knowledge of physics and physics pedagogy; (c a systematic research-based approach to the design of lessons; (d the formation of a community of practice; and (e acquaintance with central findings of PER. There was a clear effect on teachers’ practice in the context of the study as indicated by the materials brought to the workshop. The teachers also reported that they continued to use the insights gained, mainly in the topics that were investigated by themselves and by their peers.

  12. Research-design model for professional development of teachers: Designing lessons with physics education research

    Directory of Open Access Journals (Sweden)

    Bat-Sheva Eylon

    2006-09-01

    Full Text Available How can one increase the awareness of teachers to the existence and importance of knowledge gained through physics education research (PER and provide them with capabilities to use it? How can one enrich teachers’ physics knowledge and the related pedagogical content knowledge of topics singled out by PER? In this paper we describe a professional development model that attempts to respond to these needs. We report on a study of the model’s implementation in a program for 22 high-school experienced physics teachers. In this program teachers (in teams of 5-6 developed during a year and a half (about 330h, several lessons (minimodules dealing with a topic identified as problematic by PER. The teachers employed a systematic research-based approach and used PER findings. The program consisted of three stages, each culminating with a miniconference: 1. Defining teaching and/or learning goals based on content analysis and diagnosis of students’ prior knowledge. 2. Designing the lessons using PER-based instructional strategies. 3. Performing a small-scale research study that accompanies the development process and publishing the results. We describe a case study of one of the groups and bring evidence that demonstrates how the workshop advanced: (a Teachers’ awareness of deficiencies in their own knowledge of physics and pedagogy, and their perceptions about their students’ knowledge; (b teachers’ knowledge of physics and physics pedagogy; (c a systematic research-based approach to the design of lessons; (d the formation of a community of practice; and (e acquaintance with central findings of PER. There was a clear effect on teachers’ practice in the context of the study as indicated by the materials brought to the workshop. The teachers also reported that they continued to use the insights gained, mainly in the topics that were investigated by themselves and by their peers.

  13. Occupational health hazards in veterinary medicine: physical, psychological, and chemical hazards.

    Science.gov (United States)

    Epp, Tasha; Waldner, Cheryl

    2012-02-01

    This paper reports physical, psychological, and chemical hazards relevant to western Canadian veterinarians as obtained by a self-administered mailed questionnaire. Nine-three percent (750/806) of veterinarians reported some form of injury during the previous 5 years; 17% of respondents (131/791) indicated injuries that resulted in 1 or more days off work. Median stress levels were similar across work environments; overall, 7% (57/813) indicated either no stress or severe stress, while 53% (428/813) indicated moderate stress. Twenty percent (3/15) of food animal practitioners and 37% (114/308) of companion animal practitioners who took X-rays reported accidental exposure. Accidental exposure to gas anesthetic was reported by 69% (394/570) of those in private practice. Exposure to chemicals occurred in all work environments. Veterinarians in western Canada are at risk of minor to severe injury due to both animal and non-animal related causes.

  14. Soil Physical and Chemical Properties in Epigeal Termite Mounds in Pastures

    Directory of Open Access Journals (Sweden)

    Sandra Santana de Lima

    2018-03-01

    Full Text Available ABSTRACT We characterized soil physical and chemical properties and soil organic matter in epigeal termite mounds in pastures to evaluate the changes promoted by termites in comparison to an adjacent area. We selected seven active epigeal termite mounds in the municipality of Seropédica, state of Rio de Janeiro, Brazil. Soil samples were collected from top, center and base positions of each mound, at 0.50 and 1.50 m distance from the base of the mound. We identified individuals of the genus Embiratermes, Velocitermes, and Orthognathotermes. The humin fraction predominated over the humic and fulvic acid fractions both in mounds and adjacent soil. The amount of organic matter and the mineral fractions (mineral-associated organic carbon - MOC varied among builder species. The studied chemical attributes point to a higher concentration of nutrients in the mounds than in the adjacent soil.

  15. Buying drugs on a Darknet market: A better deal? Studying the online illicit drug market through the analysis of digital, physical and chemical data.

    Science.gov (United States)

    Rhumorbarbe, Damien; Staehli, Ludovic; Broséus, Julian; Rossy, Quentin; Esseiva, Pierre

    2016-10-01

    Darknet markets, also known as cryptomarkets, are websites located on the Darknet and designed to allow the trafficking of illicit products, mainly drugs. This study aims at presenting the added value of combining digital, chemical and physical information to reconstruct sellers' activities. In particular, this research focuses on Evolution, one of the most popular cryptomarkets active from January 2014 to March 2015. Evolution source code files were analysed using Python scripts based on regular expressions to extract information about listings (i.e., sales proposals) and sellers. The results revealed more than 48,000 listings and around 2700 vendors claiming to send illicit drug products from 70 countries. The most frequent categories of illicit drugs offered by vendors were cannabis-related products (around 25%) followed by ecstasy (MDA, MDMA) and stimulants (cocaine, speed). The cryptomarket was then especially studied from a Swiss point of view. Illicit drugs were purchased from three sellers located in Switzerland. The purchases were carried out to confront digital information (e.g., the type of drug, the purity, the shipping country and the concealment methods mentioned on listings) with the physical analysis of the shipment packaging and the chemical analysis of the received product (purity, cutting agents, chemical profile based on minor and major alkaloids, chemical class). The results show that digital information, such as concealment methods and shipping country, seems accurate. But the illicit drugs purity is found to be different from the information indicated on their respective listings. Moreover, chemical profiling highlighted links between cocaine sold online and specimens seized in Western Switzerland. This study highlights that (1) the forensic analysis of the received products allows the evaluation of the accuracy of digital data collected on the website, and (2) the information from digital and physical/chemical traces are complementary to

  16. CERN and ESA examine future fundamental physics research in space

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    A special workshop on Fundamental Physics in Space and related topics will be held at CERN in Geneva from 5 to 7 April 2000. Remarkable advances in technology and progress made in reliability and cost effectiveness of European space missions in recent years have opened up exciting new directions for such research. The workshop provides a forum for sharing expertise gained in high energy physics research with colleagues working in research in space.

  17. Research in theoretical and elementary particle physics

    International Nuclear Information System (INIS)

    Mitselmakher, G.

    1996-01-01

    In 1995 the University of Florida started a major expansion of the High Energy Experimental Physics group (HEE) with the goal of adding four new faculty level positions to the group in two years. This proposal covers the second year of operation of the new group and gives a projection of the planned research program for the next five years, when the group expects their activities to be broader and well defined. The expansion of the HEE group started in the Fall of 1995 when Guenakh Mitselmakher was hired from Fermilab as a Full Professor. A search was then performed for two junior faculty positions. The first being a Research Scientist/Scholar position which is supported for 9 months by the University on a faculty line at the same level as Assistant Professor but without the teaching duties. The second position is that of an Assistant Professor. The search has been successfully completed and Jacobo Konigsberg from Harvard University has accepted the position of Research Scientist and Andrey Korytov from MIT has accepted the position of Assistant Professor. They will join the group in August 1996. The physics program for the new group is focused on hadron collider physics. G. Mitselmakher has been leading the CMS endcap muon project since 1994. A Korytov is the coordinator of the endcap muon chamber effort for CMS and a member of the CDF collaboration and J. Konigsberg is a member of CDF where he has participated in various physics analyses and has been coordinator of the gas calorimetry group. The group at the U. of Florida has recently been accepted as an official collaborating institution on CDF. They have been assigned the responsibility of determining the collider beam luminosity at CDF and they will also be an active participant in the design and operation of the muon detectors for the intermediate rapidity region. In addition they expect to continue their strong participation in the present and future physics analysis of the CDF data

  18. [Advances in research of chemical constituents and pharmacological activites of Bauhinia].

    Science.gov (United States)

    Shang, Xiao-Ya; Liu, Wei; Zhao, Cong-Wei

    2008-03-01

    The research advances based on the related references were summarized in the last thirty years. Bauhinia contained many kinds of chemical constituents, primarily including flavanoids, steroids, terpenoid and so on, some of them were firstly obtained from the nature. Many plants of the Bauhinia are used in traditional medicine for their interesting biological activities such as antidiabetic, antiinflammatory, antimicrobial, analgesic, astringent and diuretic effects. This paper gives an overview of phytochemical and pharmacological research in Bauhinia, and it has been classified accordding to the chemical structure characteristics. To provide more material to draw on for further development and utilization resources of Bauhinia.

  19. Cognitive development in introductory physics: A research-based approach to curriculum reform

    Science.gov (United States)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish

  20. The effective use of physical and chemical mutagen in the induction of mutation for crop improvement in Malaysia

    International Nuclear Information System (INIS)

    Abdul Rahim Harun

    2001-01-01

    The earliest work of induced mutations breeding program in Malaysia was reported in 1967. The project was carried out by Rubber Research Institute of Malaysia using x-radiation in an attempt to improve rubber trees for dwarfism and disease resistance. Subsequently, more efforts were taken up by the universities to promote the technology for genetic changes and creation of new genetic resources, particularly in crops that are not easily achievable through conventional techniques. Gamma radiation is always been used as physical mutagen, while ethyl methane sulfonate (EMS) was a popular chemical mutagen used in induced mutation breeding in the country. Gamma rays is an effective mutagen to which more than 30 potential mutants were produced up to now through mutagenesis of several important food crops and ornamental plants. Although chemical mutagen such as EMS were reported being used, the result is not so convincing as compared to gamma radiation. Malaysian Institute for Nuclear Technology Research (MINT) has initiated and promoted nuclear technique in mutation breeding for the improvement of importance food crops such as rice, legume and other potential crops for export, like fruit trees and ornamentals. Gamma radiation is the main source of mutagen used in mutation-breeding programme at MINT. The effectiveness of these two mutagens were verified with mutants derived through induced mutation breeding in the country which some mutant has shown outstanding improvement and released as new varieties and cultivars. This paper summarises and discuss the effects as well as achievement attained through the use of ionizing radiation and chemical mutagen in plant mutation breeding in Malaysia. (author)

  1. The effective use of physical and chemical mutagen in the induction of mutation for crop improvement in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Rahim Harun [Malaysian Institute for Nuclear Technology Research, Bangi, Selangor (Malaysia)

    2001-03-01

    The earliest work of induced mutations breeding program in Malaysia was reported in 1967. The project was carried out by Rubber Research Institute of Malaysia using x-radiation in an attempt to improve rubber trees for dwarfism and disease resistance. Subsequently, more efforts were taken up by the universities to promote the technology for genetic changes and creation of new genetic resources, particularly in crops that are not easily achievable through conventional techniques. Gamma radiation is always been used as physical mutagen, while ethyl methane sulfonate (EMS) was a popular chemical mutagen used in induced mutation breeding in the country. Gamma rays is an effective mutagen to which more than 30 potential mutants were produced up to now through mutagenesis of several important food crops and ornamental plants. Although chemical mutagen such as EMS were reported being used, the result is not so convincing as compared to gamma radiation. Malaysian Institute for Nuclear Technology Research (MINT) has initiated and promoted nuclear technique in mutation breeding for the improvement of importance food crops such as rice, legume and other potential crops for export, like fruit trees and ornamentals. Gamma radiation is the main source of mutagen used in mutation-breeding programme at MINT. The effectiveness of these two mutagens were verified with mutants derived through induced mutation breeding in the country which some mutant has shown outstanding improvement and released as new varieties and cultivars. This paper summarises and discuss the effects as well as achievement attained through the use of ionizing radiation and chemical mutagen in plant mutation breeding in Malaysia. (author)

  2. Ergonomics and Beyond: Understanding How Chemical and Heat Exposures and Physical Exertions at Work Affect Functional Ability, Injury, and Long-Term Health.

    Science.gov (United States)

    Ross, Jennifer A; Shipp, Eva M; Trueblood, Amber B; Bhattacharya, Amit

    2016-08-01

    To honor Tom Waters's work on emerging occupational health issues, we review the literature on physical along with chemical exposures and their impact on functional outcomes. Many occupations present the opportunity for exposure to multiple hazardous exposures, including both physical and chemical factors. However, little is known about how these different factors affect functional ability and injury. The goal of this review is to examine the relationships between these exposures, impairment of the neuromuscular and musculoskeletal systems, functional outcomes, and health problems with a focus on acute injury. Literature was identified using online databases, including PubMed, Ovid Medline, and Google Scholar. References from included articles were searched for additional relevant articles. This review documented the limited existing literature that discussed cognitive impairment and functional disorders via neurotoxicity for physical exposures (heat and repetitive loading) and chemical exposures (pesticides, volatile organic compounds [VOCs], and heavy metals). This review supports that workers are exposed to physical and chemical exposures that are associated with negative health effects, including functional impairment and injury. Innovation in exposure assessment with respect to quantifying the joint exposure to these different exposures is especially needed for developing risk assessment models and, ultimately, preventive measures. Along with physical exposures, chemical exposures need to be considered, alone and in combination, in assessing functional ability and occupationally related injuries. © 2016, Human Factors and Ergonomics Society.

  3. PHYSICAL AND CHEMICAL PROPERTIES OF Salacca Edulis REINW FRUIT IN SLEMAN DISTRICT

    Directory of Open Access Journals (Sweden)

    Nurul Hidayati

    2013-01-01

    Full Text Available RACT Yogyakarta Special Province decided Salak Pondohs (Salacca edulis Reinw as excellent commodity, particularly in Sleman. To support successful strategy, development of salak pondoh cultivation in terms of its post harvest, namely character of salah pondoh, is required. Purpose: to study physical and chemical properties of various types salak pondoh from farmers, wholesalers and retailers at three levels of quality. Samples were taken by using Purposive Random Sampling method. Aspects to observe involved physical properties of fruit flesh and chemical properties of fruit flesh Results: salak pondoh among various market players showed, teksture, water content, total acid, and tanine content of fruit flesh were significantly different. While color, thickness, edible section percentage, and total sugar content of fruit flesh were not significantly different. Characteristics of salak pondoh at various levels of quality indicated that color and textures of flesh fruits were significantly different. Edible section percentage, thickness, water content, total sugar, total acid and tanine content of fruit flesh not significantly different. Characters of various types salak pondoh showed that edible section percentage, water content, total acid, and tanine content of fruit flesh significantly different. While color, thickness, textures and total sugar content of fruit flesh not significantly different.

  4. Technical area status report for chemical/physical treatment. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.H. Jr. [Oak Ridge National Lab., TN (United States); Schwinkendorf, W.E. [BDM Federal, Inc., Arlington, VA (United States)

    1993-08-01

    These Appendices describe various technologies that may be applicable to the Mixed Waste Treatment Plant (MWTP) Chemical/Physical Treatment System (CPTS). These technologies were identified by the CPTS Technical Support Group (TSG) as potentially applicable to a variety of separation, volume reduction, and decontamination requirements. The purpose was to identify all available and developing technologies, and their characteristics, for subsequent evaluation for specific requirements identified for the CPTS. However, the technologies described herein are not necessarily all inclusive, nor are they necessarily all applicable.

  5. Science reference room index to physical, chemical and other property data

    CERN Document Server

    This nice reference guide from Arizona State University's Noble Science and Engineering Library amounts to "an index to selected library and internet resources that contain chemical, physical, thermodynamic, mechanical, toxicological, and safety data with a list of suggested standard reference sources that may be found in most technical libraries, this reference guide goes on to include a vast reservoir of alphabetically listed library books and Internet sites where a user may locate specific information. From Abrasion Resistance to Yield Strength data, this index is quite comprehensive.

  6. Evaluation of physical, chemical and microbial quality of distribution network drinkingwater in Bushehr, Iran

    Directory of Open Access Journals (Sweden)

    Elham Shabankareh fard

    2015-01-01

    Full Text Available Background: The physical, chemical and microbial properties of water are the criteria to consider it as drinking water quality. Unfavorable changes in such parameters may threat consumers' health. The aim of this study is to give a clear view of physical, chemical and microbial quality of distribution network drinking water in Bushehr and compare with national and EPA standards. Materials and Methods: This descriptive sectional study was done during Sep 2012 to Feb 2013 (6 months. 50 Samples were collected directly from distribution network drinking water in Bushehr. Physical and chemical analyses were done according to standard methods. Multiple tube fermentation method was used to determine fecal and total coliform bacteria and spread plate method was used to measure heterotrophic bacteria. Results: The mean values of measured parameters were as follow: electrical conductivity 1155.5 µs/cm, turbidity 0.27 NTU, pH 7.12, alkalinity 171.5, total hardness 458.96, calcium hardness 390.96, magnesium hardness 68 mg/L as CaCO3, calcium 156.38, magnesium 16.95, residual chlorine 0.61, chloride 83.26, TDS 577.7, iron 0.115, fluoride 0.48, phosphate 0.059, nitrate 3.08, nitrite 0.003 and sulphate 728.38 mg/L. Total coliform (0, fecal coliform (0 MPN/100 ml and HPC 309.8 CFU/mL. Except TDS and sulphate, all cited results met the national and EPA standards. Conclusion: Quality of water from distribution network in Bushehr was not problematical from health point of view. However, high TDS and sulphate content may increase diarrhea risk in consumer as well as corrosive effect of water.

  7. The first Italian doctorate (PhD Course) in Physics Education Research

    Science.gov (United States)

    Michelini, Marisa; Santi, Lorenzo

    2008-05-01

    The first PhD Italian course in Physics Education Research in Udine aims to qualify young researchers and teachers coming from all the Italian groups of research in the field. It becomes a context for developing research projects carried out following parallel research lines on: Teaching/Learning paths for didactic innovation, cognitive research, ICT for strategies to overcome conceptual knots in physics; E-learning for personalization; d) Computer on-line experiments and modelling; e) Teacher formation and training; f) Informal learning in science.

  8. Soymilk plain beverages: correlation between acceptability and physical and chemical characteristics

    Directory of Open Access Journals (Sweden)

    Marcela Moreira Terhaag

    2013-06-01

    Full Text Available The objective of the research was to relate the physical and chemical characteristics of soymilk plain beverages to its sensory acceptance. Five commercial products and a new product formulated based on the less accepted sample were used. The overall acceptance was evaluated by 102 assessors using a 10-point hybrid hedonic scale. The hedonic scores ranged from 3.8 (sample E to 7.0 (A. Most assessors (55% preferred sample A, which was viscous (26.6 cp, dark (L* = 77.7, and slightly acidic (pH = 6.6. Sample C, which had lower solid content and higher acidity, was preferred by 29% of the assessors. These two beverages showed the greatest commercial potential of the products analyzed. The least-accepted sample (E, preferred by 8% of the assessors, had a lighter color (L* = 96.8, lower viscosity (13.5 cp, higher lipid content (2.2 g/100 g, and less protein (1.68 g/100 g than the other products evaluated. A reformulation of the least preferred product (E with the addition of maltodextrin and also vanilla and milk flavors increased its acceptance, yielding an average score of 7.2. Overall, it was observed that a soymilk plain beverage with higher viscosity, darker color, and higher protein content best meets consumer expectations.

  9. Examining problem solving in physics-intensive Ph.D. research

    Directory of Open Access Journals (Sweden)

    Anne E. Leak

    2017-07-01

    Full Text Available Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging. Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting, while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options. In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation. Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver’s perspective. This framework will be examined and refined in future work. Understanding problems

  10. Examining problem solving in physics-intensive Ph.D. research

    Science.gov (United States)

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-12-01

    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students

  11. Research and chemical industry in 90's

    International Nuclear Information System (INIS)

    Trapasso, I.

    1992-01-01

    This paper examines the importance of research with respect to changes taking place within the chemical industry. Specific areas having a significant impact on the future evolution of the industry are identified. The chemical industry is highly R ampersand D intensive with respect to its overall sales volume, as well as, to R ampersand D levels in other industries; and R ampersand D has been a dominant factor influencing the restructuring, on a global scale, of this industry. In the 90's, the industry is expected to have a supply model which is based on the production of marketable high-technology products and integrated systems, developed through coordinated research in multi-disciplinary scientific fields. The optimum strategic and organizational strategies which are to be adopted by the industry during this decade are discussed with reference to the directions being taken by a large multi-national firm in developing strategies in various areas, e.g., new prime materials, environmental protection, pharmacology, and biotechnology. A look is given at recent developments in the sector of advanced polymers, with attention given to processes involving polymer genetics, new products with a wide range of applications and those offering a high level of environmental compatibility. A review of new materials development includes an assessment of prospects for biodegradable plastics based on natural carbohydrates

  12. Mol - Research Division report 1987 - 2

    International Nuclear Information System (INIS)

    Delbarre, J.

    1988-03-01

    This report covers the research activities at the SCK-CEN, MOl, during the second semester of 1987. It deals with materials physics, nuclear physics, metallurgy, ceramics, nuclear chemistry, chemical engineering, biology, nuclear metrology and analytical chemistry. (MCB)

  13. Mol - Research Division report 1987 - 1

    International Nuclear Information System (INIS)

    Delbarre, J.

    1987-10-01

    This report covers the research activities at the SCK-CEN, Mol, during the first semester of 1987. It deals with material physics, nuclear physics, metallurgy, ceramics, nuclear chemistry, chemical engineering, biology, nuclear metrology and analytical chemistry. (MCB)

  14. Soil chemical and physical properties that differentiate urban land-use and cover types

    Science.gov (United States)

    R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal

    2007-01-01

    We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...

  15. DCB - DNA and Chromosome Aberrations Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, this research area is focused on making clear the genetic and epigenetic mechanisms of tumorigenesis and mechanisms of chemical and physical carcinogenesis.

  16. Present status of chemical research progress on ceramics, 1

    International Nuclear Information System (INIS)

    Hirooka, Yoshihiko; Imai, Hisashi

    1982-07-01

    Among silicon-based ceramics, silicon nitride and silicon carbide have generated considerable interest in recent years as potential materials for many high temperature engineering applications. Particularly in their dense high-strength forms, these materials are being proposed for use as structural materials, for instance, in HTGRs and in CTRs. Their potential usefulness and the maximum use temperature absolutely depend upon their chemical characteristics such as thermal stability and chemical reactivity against high temperature environment. There still remains, however, much room to investigate in chemistry of ceramics both in technological and academic aspects. From this point of view some chemical works mainly on silicon nitride, silicon carbide and supplementarily on their common oxide, silicon dioxide, are systematically reviewed and a prospect of the direction to which future research on these ceramics shall proceed is implied in this document. (author)

  17. Overview of research in physics and health sciences at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Milton, J.C.D.

    1988-01-01

    Toxicology research was a logical extension of existing program at Chalk River. Research in radiotoxicology has been going on there since the early forties. An overview of the existing physics and health sciences research programs operating at the Research Company of Atomic Energy of Canada Limited was presented. Programs in nuclear physics, heavy ion nuclear physics, astrophysical neutrino physics, condensed matter physics, fusion, biology, dosimetry, and environmental sciences were briefly described. In addition, a description of the research company organization was provided

  18. Review on study of multi-physics in environment engineering

    International Nuclear Information System (INIS)

    Liu Shanli; Zhao Jian; Sheng Jinchang

    2006-01-01

    This paper analyzes some problems on multi-field coupling ones between seepage mechanics and other physical and chemical processes (such as temperature field. stress field, solute transport. chemical action and so on) in environment engineering, it explains the research theory of multi-field coupling, it summarizes the abroad and domestic research about the model of multi-field problem and finally it looks into the future of research tendency in environment engineering. (authors)

  19. Microflora and Physical-Chemical Characteristics of Omani Laban

    Directory of Open Access Journals (Sweden)

    N. Guizani

    1999-06-01

    Full Text Available Fifteen samples of Laban made at home in three Omani regions were subjected to physical-chemical and microbiological analysis. Laban had an average titratable acidity, pH, fat, protein and total solids of 1.12%, 3.98, 1.I2%, 2. 11% and 6.29%, respectively. The microbial flora of traditional Omani laban was found to be predominantly mesophilic lactococci. and homofemenentative lactobacili. The mean Lactococci and lactobacilli counts were 1.3 x 10 8 and 2.4 x 10 6/ml respectively. The main microbial types involved in the manufacture of Omani laban were Lactoeoccus lactis ssp lactis. Lacrococcus locus ssp locus biov. Diacetylactis, Lactococcus lactis ssp, Cremoris. and Lactobacillus plantarum. Leuconostoc species were present in low proportion compared to other lactic acid bacteria. All Laban samples contained high yeast numbers and were highly contaminated with coliforms, and fecal coliforms.

  20. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Daniel F.; Urata, Chihiro; Masheder, Benjamin; Dunderdale, Gary J.; Hozumi, Atsushi, E-mail: a.hozumi@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560 (Japan); Yagihashi, Makoto [Nagoya Municipal Industrial Research Institute, Rokuban, Atsuta-ku, Nagoya 456-0058 (Japan)

    2014-05-01

    A fluorinated and hydrophobic ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyl)triethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

  1. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity

    Directory of Open Access Journals (Sweden)

    Daniel F. Miranda

    2014-05-01

    Full Text Available A fluorinated and hydrophobic ionic liquid (IL, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyltriethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

  2. Materials and Molecular Research Division annual report, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Progress in research in structure of materials, mechanical, and physical properties, solid state physics, and materials chemistry, including chemical structure, high temperature and surface chemistry, is reported. (FS)

  3. Materials of 46. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical. Volume 1,2,3

    International Nuclear Information System (INIS)

    2003-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meetings organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects were proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum as well as the reports of results of works sponsored by Committee of Scientific Research

  4. Research trends in neutron physics

    International Nuclear Information System (INIS)

    Lynn, J.E.

    1976-01-01

    The trends in neutron research are discussed from the viewpoints of development of pulsed neutron sources, the ingenuity of specialization of instrumentation and experimental techniques, and research programs. The latter comprise the large and still expanding requirements of nuclear data for nuclear power technology, the requirements of other fundamental sciences, and the experimental and theoretical developments required for a more fundamental understanding of the subject of neutron and related nuclear reactions itself. The general conclusion is that high energy resolution coupled with high intensity for detecting weak reactions provides the key to further progress, and that (provided financial limitations do not stifle the further development of experimental facilities, particularly neutron sources) the subject of neutron physics still has a long and fruitful future

  5. Collaboration in Australian condensed matter physics research

    International Nuclear Information System (INIS)

    Cushion, J.D.

    1998-01-01

    Full text: This year marks the 'coming of age' of the annual Condensed Matter Physics Meetings which has constituted possibly the most successful physics series which has been run in Australia and New Zealand. The conferences have become colloquially known as the 'Wagga conferences' to the community, leading to such strange but interpretable phrases as 'Wagga is in New Zealand this year'. It seems an appropriate time to take stock of some of the changes which have taken place in Australian condensed matter physics research over the past 21 years. Statistics will be presented on some of the trends over this time, using the Wagga abstract books as the data source. Particular emphasis will be placed on the increase in collaborative research which has occurred, fuelled by a combination of government policies, reduction in resources and increasing complexity of some of the research projects. Collaborative papers now frequently include authors from more than one university as well as from CSIRO, ANSTO/AINSE, other government and semi-government laboratories and private industry. None of these occurred in the 'early days' but most would agree that the health of the discipline has been improved by the change. It is also appropriate to point out the role of the Wagga conferences in fostering these collaborations by bringing together the groups so that they could meet, interact and discover which people had the missing expertise to make a particular project viable

  6. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1990-01-01

    This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: study of high energy electron-positron annihilation, using SLD detector at SLAC. Development of integrated transition radiation detection and tracking for an SSC detector; Development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; Development of a new underground detector facility in the Gran Saso Laboratory in Italy to search for magnetic monopoles and to study astrophysical muons and neutrinos; Search for proton decay and neutrinos from point astrophysical sources, and the study of cosmic ray muons and neutrinos in the IMB detector; Study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics; Preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring and detector system at BNL; Fabrication (with M.I.T. and Princeton) of the BGO endcaps and associated tracking chambers for the L3 detector at LEP. Development of a central tracker for the SSC; and This new tasks requests support for research, development, and beam testing of a prototype SSC calorimeter featuring a tower geometry and composed of lead alloy and scintillating fibers

  7. Short-Term Changes in Physical and Chemical Properties of Soil Charcoal Support Enhanced Landscape Mobility

    Science.gov (United States)

    Pyle, Lacey A.; Magee, Kate L.; Gallagher, Morgan E.; Hockaday, William C.; Masiello, Caroline A.

    2017-11-01

    Charcoal is a major component of the stable soil organic carbon reservoir, and the physical and chemical properties of charcoal can sometimes significantly alter bulk soil properties (e.g., by increasing soil water holding capacity). However, our understanding of the residence time of soil charcoal remains uncertain, with old measured soil charcoal ages in apparent conflict with relatively short modeled and measured residence times. These discrepancies may exist because the fate of charcoal on the landscape is a function not just of its resistance to biological decomposition but also its physical mobility. Mobility may be important in controlling charcoal landscape residence time and may artificially inflate estimates of its degradability, but few studies have examined charcoal vulnerability to physical redistribution. Charcoal landscape redistribution is likely higher than other organic carbon fractions owing to charcoal's low bulk density, typically less than 1.0 g/cm3. Here we examine both the physical and chemical properties of soil and charcoal over a period of two years following a 2011 wildfire in Texas. We find little change in properties with time; however, we find evidence of enhanced mobility of charcoal relative to other forms of soil organic matter. These data add to a growing body of evidence that charcoal is preferentially eroded, offering another explanation for variations observed in its environmental residence times.

  8. Physical and chemical studies of superconduction properties of the intercalation compounds

    International Nuclear Information System (INIS)

    Eder, F.X.; Lerf, A.

    1980-01-01

    The superconducting properties of the intercalation compounds of layered dichalcogenides were studied. Our studies were concerned mainly to the alkali metal intercalation derivatives of TaS 2 and NbS 2 , and later on extended to the molecule intercalation compounds. The main difficulties with this class of superconductors result from varying material properties; these are therefore the subject of broad intensity in our investigations. The results received on the physical and chemical properties of the intercalation compounds is utilized for a phenomenological description of the factors mainly determining there superconducting properties. (orig.) [de

  9. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1979-02-01

    The technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  10. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380 3 corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification

  11. Health and Safety Research Division progress report for the period April 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S.V.

    1992-03-01

    This is a brief progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology including Measurement Applications and Development, Pollutant Assessments, Measurement Systems Research, Dosimetry Applications Research, Metabolism and Dosimetry Research and Nuclear Medicine. Biological and Radiation Physics including Atomic, Molecular, and High Voltage Physics, Physics of Solids and Macromolecules, Liquid and Submicron Physics, Analytic Dosimetry and Surface Physics and Health Effects. Chemical Physics including Molecular Physics, Photophysics and Advanced Monitoring Development. Biomedical and Environmental Information Analysis including Human Genome and Toxicology, Chemical Hazard Evaluation and Communication, Environmental Regulations and Remediation and Information Management Technology. Risk Analysis including Hazardous Waste.

  12. Chemical, physical, and sensory characteristics of analog rice developed from the mocaf, arrowroof, and red bean flour

    Science.gov (United States)

    Wahjuningsih, S. B.; Susanti, S.

    2018-01-01

    This research was aimed to analyze the chemical, physical, and sensory characteristics of the analog rice developed from a composite formula consisting of mocaf, arrowroot, and red bean flour. Experiment was designed into 5 different composition types i.e B1 (90%: 0%: 10%), B2 (80%:10%: 10%), B3 (70% : 20% : 10%), B4 (60%: 30%:10%), and B5 (50%: 40%: 10%) which in each type was repeated in 4 times. Carrageenan was used as a binder in the making process of those analog rice. Investigation procedure was carried out into several stages such as preparation and characterization of raw materials, production of analog rice in composite formula, then the testing of its chemical and sensory properties. Chemical characteristics were evaluated about the level of starch, amylose, dietary fiber, and resistant starch while sensory characteristics were examined about the texture, flavor, and aroma. The result showed that based on the sensory test, the best composite formula of rice analog was B2 (ratio flour of mocaf: Arrowroot: Red bean = 80:10:10). In addition, B2 formula possessed the chemical characteristics similar with the truth rice either in water content (12.18%), ash (2.63%), protein (6.17%), fat (1.31%), carbohydrate (89.88%), starch (73.29%), amylose (24.91%), total dietary fiber (7.04%), or resistant starch (6.71%). Furthermore, the higher of arrowroot flour proportion, the greater of amylose, dietary fiber and resistant starch containing in the rice analog. In the opposite, its starch content was getting down.

  13. Research accomplishments and future goals in particle physics

    International Nuclear Information System (INIS)

    1989-01-01

    This document reports the past year's achievements and the present directions of the activities of Boston University researchers in seven projects in high energy physics research: study of high energy electron-positron annihilation, using the SLD detector at SLAC; search for proton decay and neutrinos from point astrophysical sources, as well as the study of cosmic ray muons and neutrinos in the IMB detector; development of a new underground detector facility in the Gran Sasso Laboratory in Italy for magnetic monopoles and to study astrophysical muons and neutrinos; preparation of an experiment to measure the anomalous magnetic moment of the muon in a new superconducting storage ring detector system at BNL; development of new concepts for particle accelerator components, including design and prototyping of high-precision electrostatic and magnetic elements; study of proton-antiproton collisions using the UA1 detector at CERN; and study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics

  14. Prediction of chemical, physical and sensory data from process parameters for frozen cod using multivariate analysis

    DEFF Research Database (Denmark)

    Bechmann, Iben Ellegaard; Jensen, H.S.; Bøknæs, Niels

    1998-01-01

    Physical, chemical and sensory quality parameters were determined for 115 cod (Gadus morhua) samples stored under varying frozen storage conditions. Five different process parameters (period of frozen storage, frozen storage. temperature, place of catch, season for catching and state of rigor) were...... varied systematically at two levels. The data obtained were evaluated using the multivariate methods, principal component analysis (PCA) and partial least squares (PLS) regression. The PCA models were used to identify which process parameters were actually most important for the quality of the frozen cod....... PLS models that were able to predict the physical, chemical and sensory quality parameters from the process parameters of the frozen raw material were generated. The prediction abilities of the PLS models were good enough to give reasonable results even when the process parameters were characterised...

  15. Physical and chemical properties of selected agricultural byproduct-based activated carbons and their ability to adsorb geosmin

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.; Losso, J.N.; Rao, R.M. [Louisiana State University Agricultural Center, Baton Rouge, LA (United States). Department of Food Science; Marshall, W.E. [USDA-ARS, Southern Regional Research Center, New Orleans, LA (United States)

    2002-09-01

    The objectives of this study were to evaluate selected physical and chemical properties of agricultural byproduct-based activated carbons made from pecan shells and sugarcane bagasse, and compare those properties to a commercial coal-based activated carbon as well as to compare the adsorption efficiency of these carbons for geosmin. Comparison of the physical and chemical properties of pecan shell- and bagasse-based carbons to the commercial carbon, Calgon Filtrasorb 400, showed that pecan shell carbon, but not the bagasse carbon, compared favorably to Filtrasorb 400, especially in terms of surface area, bulk density, ash and attrition. A carbon dosage study done in a model system showed the amount of geosmin adsorbed to be greater for Filtrasorb 400 and the bagasse-based carbon at low carbon concentrations than for the pecan shell carbons, but geosmin adsorption was similar in all carbons at higher carbon dosages. Application of the Freundlich isotherm model to the adsorption data showed that carbons made by steam activation of pecan shells or sugarcane bagasse had geosmin adsorption characteristics most like those of the commercial carbon. In terms of physical, chemical and adsorptive properties, steam-activated pecan shell carbon most resembled the commercial carbon and has the potential to replace Filtrasorb 400 in applications involving removal of geosmin from aqueous environments. (author)

  16. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP: VOLUME 61 RIKEN-TODAI MINI-WORKSHOP ON ''TOPICS IN HADRON PHYSICS AT RHIC''. VOLUME 61

    International Nuclear Information System (INIS)

    EN'YO, H.; HAMAGAKI, H.; HATSUDAT WATANABA, Y.; YAZAKI, K.

    2004-01-01

    The RIKEN-TODAI Mini-Workshop on ''Topics in Hadron Physics at RHIC'' was held on March 23rd and 24th, 2064 at the Nishina Memorial Hall of RIKEN, Wako, Saitama, Japan, sponsored by RIKEN (Institute of Physical and Chemical Research) and TODAI (University of Tokyo). The workshop was planned when we learned that two distinguished theorists in hadron physics, Professors L. McLerran and S.H. Lee, would be visiting TODAI and/or RIKEN during the week of March 22-26. We asked them to give key talks at the beginning of the workshop and attend the sessions consisting of talks by young theorists in RIKEN, TODAI and other institutes in Japan and they kindly agreed on both. Considering the JPS meeting scheduled from March 27 through 30, we decided to have a.one-and-half-a-day workshop on March 23 and 24. The purpose of the workshop was to offer young researchers an opportunity to learn the forefront of hadron physics as well as to discuss their own works with the distinguished theorists

  17. Inspection methods for physical protection Task III review of other agencies' physical security activities for research reactors

    International Nuclear Information System (INIS)

    In Task I of this project, the current Nuclear Regulatory Commission (NRC) position-on physical security practices and procedures at research reactors were reviewed. In the second task, a sampling of the physical security plans was presented and the three actual reactor sites described in the security plans were visited. The purpose of Task III is to review other agencies' physical security activities for research reactors. During this phase, the actions, procedures and policies of two domestic and two foreign agencies other than the NRC that relate to the research reactor community were examined. The agencies examined were: International Atomic Energy Agency; Canadian Atomic Energy Control Board; Department of Energy; and American Nuclear Insurers

  18. Effects of chemical dispersants on oil physical properties and dispersion. Volume 1

    International Nuclear Information System (INIS)

    Khelifa, A.; Fingas, M.; Hollebone, B.P.; Brown, C.E.; Pjontek, D.

    2007-01-01

    Laboratory and field testing have shown that the dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). This study focused on new laboratory experiments that measured the effects on the physical properties and dispersion of oil, with particular reference to the effects of chemical dispersants on IFT and oil viscosity and the subsequent effects on oil droplet formation. Experiments were conducted at 15 degrees C using Arabian Medium, Alaska North Slope and South Louisiana crude and Corexit 9500 and Corexit 9527 chemical dispersants. The dispersants were denser than the 3 oils. The effect of IFT reduction on oil dispersion was measured and showed substantial reduction in the size and enhancement of the concentration of oil droplets in the water column. It was shown that the brine-oil IFT associated with the 3 crudes reduced to less than 3.6 mN/m with the application of the chemical dispersants, even at a low dispersant-to-oil ratio (DOR) value of 1:200. The use of chemical dispersants increased the viscosity of the dispersant-oil mixture up to 40 per cent over the neat crude oil. It was shown that for each mixing condition, an optimum value of DOR exists that provides for maximal dispersant effectiveness. The IFT reaches maximum reduction at optimum DOR. It was suggested that oil spill modelling can be improved with further study of IFT reduction with DOR and variations of critical micelle concentration with the type and solubility of chemical dispersant, oil type and oil to water ratio. 13 refs., 3 tabs., 7 figs

  19. Grand Challenges in Physics Education Research: Teacher Preparation

    Science.gov (United States)

    Heron, Paula

    2015-04-01

    The courses, curricula and programs that produce new K-12 teachers have been the subject of research in the physics education community for many years. In terms of recruitment, curricula, and mentoring, programs and pathways vary considerably from institution to institution. Each program addresses many different aspects of teaching including knowledge of the content and familiarity with best teaching practices. At the same time, even within physics (or physical science) there is a broad range of student outcomes that are considered important, including acquisition of factual knowledge, development of skill with disciplinary practices, and positive attitudes toward the discipline and one's own abilities. Given the broad range of both input and outcome variables it is no surprise that there are very few clear answers about the impact of teacher preparation on teachers, students and society. In this talk I will summarize some of the main findings to date, and identify some areas where much more research is needed.

  20. The influence of mineralogical, chemical and physical properties on grindability of commercial clinkers with high MgO level

    International Nuclear Information System (INIS)

    Souza, Vladia Cristina G. de; Koppe, Jair Carlos; Costa, Joao F.C.L.; Vargas, Andre Luis Marin; Blando, Eduardo; Huebler, Roberto

    2008-01-01

    This research investigates various methods able to identify possible mineralogical, physical and chemical influences on the grindability of commercial clinkers with high MgO level. The aim of the study is to evaluate the hardness and elastic modulus of the clinker mineral phases and their fracture strength during the comminution processes, comparing samples from clinkers with low MgO level (0.5%) and clinkers with elevated MgO levels (> 5.0%). The study of the influence of mineralogical, chemical and physical properties was carried out using several analytical techniques, such as: optical microscopy, X-ray diffraction with Rietveld refinement (XRD) and X-ray fluorescence (XRF). These techniques were useful in qualifying the different clinker samples. The drop weight test (DWT) and the Bond ball mill grindability test were performed to characterize the mechanical properties of clinkers. Nanoindentation tests were also carried out. Results from the Bond ball mill grindability test were found to be related to the hardness of the mineral phase and to mineralogical characteristics, such as type and amount of inclusions in silicates, belite and alite crystals shape, or microcracked alites. In contrast, the results obtained by the DWT were associated to the macro characteristics of clinkers, such as porosity, as well as to the hardness and mineralogical characteristics of belite crystals in clusters. Hardness instrumented tests helped to determine the Vickers hardness and elastic modulus from the mineral phases in commercial clinkers and produced different values for the pure phases compared to previous publications