WorldWideScience

Sample records for chemical oxygen demand

  1. Chitosan on Reducing Chemical Oxygen Demands in Laundry Waste Water

    Directory of Open Access Journals (Sweden)

    Tri Joko

    2016-09-01

    Full Text Available Laundry liquid waste contains several chemical substances in detergent raw materials such as phosphate, surfactants, ammonia, and total suspended solids. The existence of detergent in high concentrations and exceeds the quality standards that have been estabilished in a body of water can lead to cases of enviromental pollution in the form of increased turbidity an Chemical Oxygen Demands (COD levels. Therefore in order to maintain and to ensure the availabillity of water in terms of quality, it requires coagulation-flocculation process to laundry liquid waste before discharging into water bodies. This study aims to determine the decrease of COD levels and turbidity level in laundry liquid waste using chitosan coagulant in “X” laundry, Tembalang District, Semarang. The research is a quasi experimental study with pretest-posttest with control group research design with 6 times replication. The total samples are 60 in wich 24 tested for the levels of turbidity and 6 controls. The test results of Kruskal-Wallis with significance p-value < 0,05 indicates that dosage variation (p=0,000 gives different levels of COD and dosage variation (p=0,000 provide 755,97 mg/l and the advantage levels of turbidity before treatment was 516,20 NTU. The optimum dosage of chitosan coagulant is on the dose of 200 mg/l with the effectiveness decrease of COD levels and turbidity levels on 72,67% an 98,67% respectively.

  2. Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra

    Directory of Open Access Journals (Sweden)

    Dae-Hee Park

    2010-03-01

    Full Text Available Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD and chemical oxygen demand (COD concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. Irrespective of the sewer pipes and the types of the areas, two distinct peaks were identified from the synchronous fluorescence spectra, which correspond to protein-like fluorescence (PLF and humic-like fluorescence (HLF, respectively. HLF in sewer samples appears to be associated with fluorescent whitening agents. Five fluorescence characteristics were selected from the synchronous spectra and the first-derivatives. Among the selected fluorescence indices, a peak in the PLF region (i.e., Index I showed the highest correlation coefficient with both BOD and COD. A multiple regression approach based on suspended solid (SS and Index I used to compensate for the contribution of SS to BOD and COD revealed an improvement in the estimation capability, showing good correlation coefficients of 0.92 and 0.94 for BOD and COD, respectively.

  3. Correlation between Biochemical Oxygen Demand and Chemical Oxygen Demand for Various Wastewater Treatment Plants in Egypt to Obtain the Biodegradability Indices

    OpenAIRE

    Khaled Zaher Abdallah; Gina Hammam

    2014-01-01

    Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) are the most commonly used parameters for the characterization of wastewaters. Both of these parameters have advantages and disadvantages, and the choice usually depends on many factors such as the time period required to determine each one of them. It is essential to obtain a correlation between BOD5 and COD for various wastewater treatment plants, to help in the design and operation of these plants. In this paper, the biodegr...

  4. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  5. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    Science.gov (United States)

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater. PMID:17918591

  6. Application of Ozone and Oxygen to Reduce Chemical Oxygen Demand and Hydrogen Sulfide from a Recovered Paper Processing Plant

    Directory of Open Access Journals (Sweden)

    Patricia A. Terry

    2010-01-01

    Full Text Available A pilot study was performed at the Fox River Fiber recovered paper processing company in DePere, Wisconsin, to determine the extent to which injection of oxygen and ozone could reduce the high chemical oxygen demand, COD, in the effluent and the effectiveness of the ozone/oxygen stream in suppressing production of hydrogen sulfide gas in downstream sewage lines. Adaptive Ozone Solutions, LLC, supplied the oxygen/ozone generation and injection system. Samples were analyzed both before and after oxygen/ozone injection. Hydrogen sulfide gas was continuously monitored at sewer stations downstream of Fox River Fiber. Results showed that with a very short contact time, effluent COD was reduced by over 15%. A simple kinetic model predicts that a contact time of fewer than 30 minutes could reduce COD by as much as 60%. In addition, downstream hydrogen sulfide gas production in the sewage mains was also better controlled, such that costly Bioxide applications could be reduced.

  7. Evaluation of Three Flow Injection Analysis Methods for the Determination of Chemical Oxygen Demand

    OpenAIRE

    Korenaga, Takashi; Moriwake, Tosio; Takahashi, Teruo

    1984-01-01

    Three methods for determining chemical oxygen demand (COD) by means of flow injection analysis (FIA) with potassium permanganate, potassium dichromate, or cerium(IV) sulfate as oxidant, developed in this laboratory, are described from the point of view of their operating properties. The permanganate method is the most sensitive and common, but forms manganese(IV) oxide precipitate which blocks the FIA lines and connectors. Addition of phosphoric acid in the reagent system is, however, effecti...

  8. Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor

    OpenAIRE

    Na Yao; Jinqi Wang; Yikai Zhou

    2014-01-01

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerat...

  9. Study on Determination of Chemical Oxygen Demand in Water with Ion Chromatography

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong-Hai; DING Hong-Chun; FANG Yan-Ju; XIAN Yue-Zhong; JIN Li-Tong

    2007-01-01

    A new method for determining chemical oxygen demand (COD) value in water using ion chromatography coupled with nano TiO2-K2S2O8 co-existing system was described. The photocatalytic oxidation system and nano TiO2-K2S2O8 co-existing system could degrade the organic compounds in water. All sulfur-containing species in the reactive solution were eventually transformed to sulfate which could be determined by conductivity detector in ion chromatography. The change of conductivity of sulfate was proportional to COD value. The optimal experimental conditions and the mechanism of the detection were discussed. The application range was 10.0-300.0 mg·L -1 and the lowest limit of detection was 3.5 mg·L -1. It was considered that the value obtained could be reliably correlated with the COD value obtained using the conventional methods.

  10. Chemical Oxygen Demand of Seawater Determined with a Microwave Heating Method

    Institute of Scientific and Technical Information of China (English)

    LIU Li; JI Hongwei; LIU Ying; XIN Huizhen

    2005-01-01

    This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied. Using the proposed method, we analyzed the glucose standard solution, the coefficient of variation being less than 2%. Compared with the traditional electric stove heating method, the results of F-test and T-test showed that there was no significant difference between the two methods, but the microwave method had slightly higher precision and reproducibility than the electric stove method. With the microwave heating method, several seawater samples from Jiaozhou Bay and the South Yellow Sea were also analyzed. The recovery was between 97.5% and 104.3%. This new method has the advantages of shortening the heating time, improving the working efficiency and having simple operation and therefore can be used to analyze the COD in seawater.

  11. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    Science.gov (United States)

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed.

  12. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    Science.gov (United States)

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed. PMID:25704155

  13. Protozoan biomass relation to nutrient and chemical oxygen demand removal in activated sludge mixed liquor.

    Science.gov (United States)

    Akpor, Oghenerobor B; Momba, Maggy N B; Okonkwo, Jonathan O

    2008-08-01

    The relationship between biomass concentration to nutrient and chemical oxygen demand (COD) removal in mixed liquor supplemented with sodium acetate was investigated, using three protozoan isolates and three different initial biomass concentrations (10(1), 10(2) and 10(3) cells/mL). The study was carried out in a shaking flask environment at a shaking speed of 100 rpm for 96 h at 25 degrees C. Aliquot samples were taken periodically for the determination of phosphate, nitrate, COD and dissolved oxygen, using standard methods. The results revealed remarkable phosphate removal of 82-95% at biomass concentration of 10(3)cells/mL. A high nitrate removal of over 87% was observed at all initial biomass concentration in mixed liquor. There was an observed COD increase of over 50% in mixed liquor in at the end of 96-h incubation and this was irrespective of initial biomass concentration used for inoculation. The study shows the trend in nutrient and COD removal at different biomass concentrations of the test isolates in mixed liquor.

  14. A portable photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters.

    Science.gov (United States)

    Zhang, Shanqing; Li, Lihong; Zhao, Huijun

    2009-10-15

    A photoelectrochemical probe for rapid determination of chemical oxygen demand (COD) is developed using a nanostructured mixed-phase TiO2 photoanode, namely PeCOD probe. A UV-LED light source and a USB mircroelectrochemical station are powered and controlled by a laptop computer, which makes the probe portable for onsite COD analyses. The photoelectrochemical measurement of COD was optimized in terms of light intensity, applied bias, and pH. Under the optimized conditions, the net steady state currents originated from the oxidation of organic compounds were found to be directly proportional to COD concentrations. A practical detection limit of 0.2 ppm COD and a linear range of 0-120 ppm COD were achieved. The analytical method using the portable PeCOD probe has the advantages of being rapid, low cost, robust, user-friendly, and environmental friendly. It has been successfully applied to determine the COD values of the synthetic samples consisting of potassium hydrogen phthalate, D-glucose, glutamic acid, glutaric acid, succinic acid, and malonic acid, and real samples from various industries, such as bakery, oil and grease manufacturer, poultry, hotel, fine food factory, and fresh food producer, commercial bread manufacturer. Excellent agreement between the proposed method and the conventional COD method (dichromate) was achieved. PMID:19921898

  15. WO3/W Nanopores Sensor for Chemical Oxygen Demand (COD Determination under Visible Light

    Directory of Open Access Journals (Sweden)

    Xuejin Li

    2014-06-01

    Full Text Available A sensor of a WO3 nanopores electrode combined with a thin layer reactor was proposed to develop a Chemical Oxygen Demand (COD determination method and solve the problem that the COD values are inaccurately determined by the standard method. The visible spectrum, e.g., 420 nm, could be used as light source in the sensor we developed, which represents a breakthrough by limiting of UV light source in the photoelectrocatalysis process. The operation conditions were optimized in this work, and the results showed that taking NaNO3 solution at the concentration of 2.5 mol·L−1 as electrolyte under the light intensity of 214 μW·cm−2 and applied bias of 2.5 V, the proposed method is accurate and well reproducible, even in a wide range of pH values. Furthermore, the COD values obtained by the WO3 sensor were fitted well with the theoretical COD value in the range of 3–60 mg·L−1 with a limit value of 1 mg·L−1, which reveals that the proposed sensor may be a practical device for monitoring and controlling surface water quality as well as slightly polluted water.

  16. Influence of Chemical Oxygen Demand Concentrations on Anaerobi Ammonium Oxidation by Granular Sludge From EGSB Reactor

    Institute of Scientific and Technical Information of China (English)

    JING KANG; JIAN-LONG WANG

    2006-01-01

    Objective To investigate the effect of chemical oxygen demand (COD) concentrations on the anaerobic ammonium oxidation (ANAMMOX). Methods An Expanded Granular Sludge Bed (EGSB) reactor was used to cultivate the granular sludge and to perform the ANAMMOX reaction in the bench scale experiment. NH4+-N and NO2--N were measured by usingcolorimetric method. NO3--N was analyzed by using the UV spectrophotometric method. COD measurement was based on digestion with potassium dichromate in concentrated sulphuric acid. Results When the COD concentrations in the reactors were 0 mg/L, 200 mg/L, 350 mg/L, and 550 mg/L, respectively, the NH4+-N removal efficiency was 12.5%, 14.2%, 14.3%, and 23.7%; the removal amount of NO2--N was almost the same; the nitrate removal efficiency was 16.8%, 94.5%, 86.6%, and 84.2% and TN removal efficiency was 16.3%, 50.7%, 46.9%, and 50.4%, moreover, the COD removal efficiency concentrations have a significant influence on anaerobic ammonium oxidation by granular sludge.

  17. Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor

    Directory of Open Access Journals (Sweden)

    Na Yao

    2014-06-01

    Full Text Available In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L and a low detection limit (1.84 mg/L. It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples.

  18. Environmental capacity of chemical oxygen demand in the Bohai Sea: modeling and calculation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xixi; WANG Xiulin; SHI Xiaoyong; LI Keqiang; DING Dongsheng

    2011-01-01

    A three-dimensional advection-diffusion model coupled with the degradation process is established for describing the transport of chemical oxygen demand (COD). Comparison of the simulated distribution of COD at the surface in the Bohai Sea in August, 2001 with field observations, shows that the model simulates the dataset reasonably well. The Laizhou Bay, Bohai Bay, and Liaodong Bay were contaminated heavily near shore. Based on the optimal discharge flux method, the Environmental Capacity (EC) and allocated capacities of COD in the Bohai Sea are calculated. For seawater of Grades I to IV of the Chinese National Standard, the ECs of COD in the Bohai Sea were 77×104t/a, 116×l04t/a, 154×l04t/a and 193×104t/a, respectively. The Huanghe (Yellow) River pollutant discharge accounted for the largest percentage of COD at 14.3%, followed by that of from the Liugu River (11.5%), and other nine local rivers below 10%. The COD level in 2005 was worse than that of Grade II seawater and was beyond the environmental capacity. In average, 35% COD reduction is called to meet the standard of Grade I seawater.

  19. Validation of MIKE 11 Model Simulated Data for Biochemical and Chemical Oxygen Demands Transport

    Directory of Open Access Journals (Sweden)

    Mahdieh Eisakhani

    2012-01-01

    Full Text Available Problem statement: The aim of the study was to model the discharge, biochemical and chemical oxygen demands (BOD and COD loads in each cross section of Bertam River in Cameron Highlands, Malaysia. Cameron Highlands form the headwater catchment for two major rivers of the lowlands; Pahang River and Perak River. On the other hand, Cameron Highlands is undergoing rapid development as a popular tourist destination and an area exploited for growing of temperature vegetables, fruits and flowers. It is also a mountainous area subjected to torrential tropical showers. The condition of Bertam River as one of the main rivers in Cameron Highlands has degraded over the years in terms of water pollution and river environment. Approach: Therefore, MIKE 11 a one-dimensional hydrodynamic simulation program was utilized to model stream flow transport and water quality processing in the river system. The model was used to generate the river outflow and simulate BOD and COD concentrations in each cross section of Bertam River. Hydrodynamic Module (HD which uses an implicit, finite difference solver was applied to calculate water level and flow for the river. Next, Rainfall-Runoff Module (RR which is include unit hydrograph method and lumped conceptual continuous hydrological model was used to combine the meteorological data of the study area to MIKE 11 simulation system. Finally, Advection-Dispersion Module (AD was used for transported BOD and COD concentrations calculation. Results: Water quality results show the BOD5 varies from 1-2 mg L-1 during pre-monsoon and from 4-10 mg L-1 during post-monsoon. The COD between 39-49 mg L-1 was observed during High Water Flow (HWF. Much lower concentration was detected during Average Water Flow (AWF which was between 10-14 mg L-1. The comparative analysis between measured and simulated data showed that MIKE 11 is able to predict sufficiently accurate BOD and COD loads at the catchment outlet especially during AWF. Conclusion

  20. Efficiency of horizontal roughing filter in removing nitrate, phosphate and chemical oxygen demand from effluent of waste stabilization pond

    OpenAIRE

    Seyed Mostafa Khezri; Gharib Majidi; Hossein Jafari Mansoorian; Mohsen Ansari; Farideh Atabi; Taha Tohidi Mogaddam; Nahid Rashtchi

    2015-01-01

    Background: The effective size of the end grain of horizontal roughing filters (HRFs) is larger than 2 mm. This study aimed to examine the efficiency of HRFs in removing nitrate, phosphate, and chemical oxygen demand (COD) from effluent of a wastewater stabilization pond. Methods: This experimental study was conducted in 2013. The pilot project was transferred to the Karaj wastewater treatment plant (stabilization pond), and the installation, equipping, and start-up of the system began usi...

  1. A sensitive and environmentally friendly method for determination of chemical oxygen demand using NiCu alloy electrode

    International Nuclear Information System (INIS)

    Highlights: ► NiCu alloy modified electrode is used to determine chemical oxygen demand. ► NiCu alloy can effectively oxidize a wide range of organic compounds. ► Compared with the existing methods, this method has wide linear range and high sensitivity. ► The results are linearly correlated to those by the classic dichromate method. ► The proposed method has an excellent practical perspective in water quality control. - Abstract: A simple, sensitive and environmentally friendly method was developed for determination of chemical oxygen demand (COD) by cyclic voltammetry using nickel–copper (NiCu) alloy electrode. The structure and the electrochemical behavior of NiCu alloy electrode were investigated by atomic force microscope, energy dispersive X-ray spectrometer, and cyclic voltammetry, respectively. The results indicated that NiCu alloy film with high quality was stably modified on the surface of glass carbon (GC) electrode, which could effectively oxidize a wide range of organic compounds. Subsequently, the parameters affecting the analytical performance were investigated, including pH, dissolved oxygen and concentration of chloride ion. Under optimized conditions, the linear range was 10–1533 mg L−1 and the detection limit was 1.0 mg L−1. The results obtained from the proposed method were linearly correlated to those by the classic dichromate method (r = 0.9978, p < 0.01, n = 13). Finally, the validated method was used to determine the COD values of surface water, reclaimed water and wastewater. It was shown that the proposed method had an excellent practical perspective on determination of COD in water quality control and pollution evaluation.

  2. High removal of chemical and biochemical oxygen demand from tequila vinasses by using physicochemical and biological methods.

    Science.gov (United States)

    Retes-Pruneda, Jose Luis; Davila-Vazquez, Gustavo; Medina-Ramírez, Iliana; Chavez-Vela, Norma Angelica; Lozano-Alvarez, Juan Antonio; Alatriste-Mondragon, Felipe; Jauregui-Rincon, Juan

    2014-08-01

    The goal of this research is to find a more effective treatment for tequila vinasses (TVs) with potential industrial application in order to comply with the Mexican environmental regulations. TVs are characterized by their high content of solids, high values of biochemical oxygen demand (BODs), chemical oxygen demand (COD), low pH and intense colour; thus, disposal of untreated TVs severely impacts the environment. Physicochemical and biological treatments, and a combination of both, were probed on the remediation of TVs. The use of alginate for the physicochemical treatment of TVs reduced BOD5 and COD values by 70.6% and 14.2%, respectively. Twenty white-rot fungi (WRF) strains were tested in TV-based solid media. Pleurotus ostreatus 7992 and Trametes trogii 8154 were selected due to their ability to grow on TV-based solid media. Ligninolytic enzymes' production was observed in liquid cultures of both fungi. Using the selected WRF for TVs' bioremediation, both COD and BOD5 were reduced by 88.7% and 89.7%, respectively. Applying sequential physicochemical and biological treatments, BOD5 and COD were reduced by 91.6% and 93.1%, respectively. Results showed that alginate and selected WRF have potential for the industrial treatment of TVs.

  3. Effects of chitosan on growth of an aquatic plant (Hydrilla verticillata) in polluted waters with different chemical oxygen demands

    Institute of Scientific and Technical Information of China (English)

    XU Qiu-jin; NIAN Yue-gang; JIN Xiang-can; YAN Chang-zhou; LIU Jin; Jiang Gao-ming

    2007-01-01

    Effects of chitosan on a submersed plant, Hydrilla verticillata, were investigated. Results indicated that H. verticillata could prevent ultrastructure phytotoxicities and oxidativereaction from polluted water with high chemical oxygen demand (COD). Superoxide dismutase (SOD) activity and malondialdehyde (MDA) contents in H. verticillata treated with 0.1% chitosan in wastewater increased with high COD (980 mg/L) and decreased with low COD (63 mg/L), respectively. Ultrastructural analysis showed that the stroma and grana of chloroplast basically remained normal. However, plant cells from the control experiment (untreated with chitosan) were vacuolated and the cell interval increased. The relict of protoplast moved to the center, with cells tending to disjoint. Our findings indicate that wastewater with high COD concentration can cause a substantial damage to submersed plant, nevertheless, chitosan probably could alleviate the membrane lipid peroxidization and ultrastructure phytotoxicities, and protect plant cells from stress of high COD concentration polluted water.

  4. Using electro-flotation/oxidation for reducing chemical oxygen demand, total organic carbon and total solids in vinasses

    Directory of Open Access Journals (Sweden)

    Javier Dávila Rincón

    2010-05-01

    Full Text Available The high chemical oxygen demand (COD of vinasses from ethanol distilleries (greater than 130,000 mg/L has led to exploring alternative treatments enabling their final disposition. The electro-flotation/oxidation of vinasses was thus experimentally evalua-ted regarding initial pH, electrolytic support (NaCl and hydrogen peroxide concentration (H2O2, current density (CD and se-veral electrodes: iron, aluminum and galvanized steel. Its effect on reducing COD and total organic carbon (TOC was studied, an initial 214,000 ppm COD value being reduced to 90,000 ppm, thereby representing a 58% reduction. The greatest reduc-tions were achieved with galvanized steel electrodes, basic pH, 20 mA/cm2 and 60,000 ppm H2O2.

  5. Improved Method for the Flow Injection Analysis of Chemical Oxygen Demand Using Silver Nitrate

    OpenAIRE

    Korenaga, Takashi; Ikatsu, Hisayoshi; Moriwake, Tosio; Takahashi, Teruo

    1980-01-01

    On the flow injection analysis (FIA) of chemical oxygendemand (COD), silver salt was added as an oxidation catalyst for COD substances and a masking agent for halide to improve operating conditions of the FIA apparatus. Both of a proper concentration of potassium permanganate solution and 6.0 % sulfuric acid solution containing 0.1 % silver nitrate are individually pumped up with respective flow rates of 0.51 ml min(-l) and merged into a carrier stream. A 20 μ1 of sample solution is injected ...

  6. Removal of chemical oxygen demand and dissolved nutrients by a sunken lawn infiltration system during intermittent storm events.

    Science.gov (United States)

    Hou, Lizhu; Yang, Huan; Li, Ming

    2014-01-01

    Urban surface water runoff typically contains high but varying amounts of organic matter and nutrients that require removal before reuse. Infiltration systems such as sunken lawns can improve water quality. However, there is currently insufficient information describing the treatment efficiency of lawn-based infiltration systems. In this study, novel sunken lawn infiltration systems (SLISs) were designed and their pollutant removal effectiveness was assessed. The results revealed that SLISs with Poa pratensis and Lolium perenne effectively removed most chemical oxygen demand (CODCr) and dissolved nutrients. Average CODCr, total nitrogen (TN), ammonium-nitrogen (NH4(+)-N) and total phosphorus (TP) concentrations were reduced by 78.93, 66.64, 71.86 and 75.83%, respectively, and the corresponding effluent concentrations met the standard for urban miscellaneous water consumption in China. The NH4(+)-N in the synthetic runoff was shown to be removed by adsorption during the stormwater dosing and nitrification during subsequent dry days, as well as through uptake by plants. Phosphorus was mainly removed by adsorption and chemical precipitation. The NH4(+)-N and phosphorus Langmuir isotherm model fitted the clay loam soil adsorption process better than the Freundlich model. Overall, these results indicate that an SLIS provides an alternative means of removing runoff pollutants owing to its efficiency, easy operation and maintenance. PMID:24473312

  7. Efficiency of horizontal roughing filter in removing nitrate, phosphate and chemical oxygen demand from effluent of waste stabilization pond

    Directory of Open Access Journals (Sweden)

    Seyed Mostafa Khezri

    2015-06-01

    Full Text Available Background: The effective size of the end grain of horizontal roughing filters (HRFs is larger than 2 mm. This study aimed to examine the efficiency of HRFs in removing nitrate, phosphate, and chemical oxygen demand (COD from effluent of a wastewater stabilization pond. Methods: This experimental study was conducted in 2013. The pilot project was transferred to the Karaj wastewater treatment plant (stabilization pond, and the installation, equipping, and start-up of the system began using an effluent treatment plant. Sampling was done from March to August in 3 rates, 0.5, 1 and 1.5 m/h, and included simultaneous sampling from inlet and outlet filtering to determine the concentrations of nitrate, phosphate, and COD. Results: At filtration rates of 0.5, 1, and 1.5 m/h, the average nitrate removal equaled 25%, 32%, and 34%, respectively, average phosphate removal equaled 29%, 26%, and 28%, respectively, and the average COD removal at filtration rates of 0.5, 1, and 1.5 m/h equaled 62%, 66%, and 68%, respectively. Outlet values of phosphate and nitrate were lower than the standards set by the Environmental Standards Organization (ESO (P < 0.05. Conclusion: According to the results of this study, the HRF function was approximately adequate in COD removal, but its efficiency in nitrate and phosphate removal was lower.

  8. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    Science.gov (United States)

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions.

  9. Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand.

    Science.gov (United States)

    de Farias Silva, Carlos Eduardo; da Silva Gonçalves, Andreza Heloiza; de Souza Abud, Ana Karla

    2016-01-01

    Various agricultural residues have been tested as biosorbents due to their low cost, high surface area, and favorable surface chemistry. In this work, a sweet orange albedo was tested as a biosorbent for treatment of real textile effluents. The orange albedo powder was prepared by drying the residue at 50 °C and milling to 30 mesh, and then used for dye adsorption from a alkaline (pH = 10.71) effluent. The adsorption process was studied in batch experiments at 30 °C by measuring color removal and chemical oxygen demand (COD). The color removal was found not to be significantly altered when the effluent was used in its raw state, while COD increased probably due to albedo degradation. For the effluent diluted to 60% (Veffluent VH2O(-1)), color and COD removal percentages of approximately 89% were obtained. It was found that pH played a very significant role on the adsorption process, as the treated albedo displayed a relative pHPZC* of 4.61, and the highest dye removal efficiencies were reached at pH lower than 2. The COD was strongly influenced by the effluent dilution. The effectiveness in eliminating color and COD shows that orange albedo can be potentially used as a biosorbent to treat textile wastewater. PMID:27533873

  10. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    Science.gov (United States)

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. PMID:27085154

  11. Miniaturized and green method for determination of chemical oxygen demand using UV-induced oxidation with hydrogen peroxide and single drop microextraction

    International Nuclear Information System (INIS)

    We report on a green method for the determination of low levels of chemical oxygen demand. It is based on the combination of (a) UV-induced oxidation with hydrogen peroxide, (b) headspace single-drop microextraction with in-drop precipitation, and (c) micro-turbidimetry. The generation of CO2 after photolytic oxidation followed by its sequestration onto a microdrop of barium hydroxide gives rise to a precipitate of barium carbonate which is quantified by turbidimetry. UV-light induced oxidation was studied in the absence and presence of H2O2, ultrasound, and ferrous ion. Determinations of chemical oxygen demand were performed using potassium hydrogen phthalate as a model compound. The optimized method gives a calibration curve that is linear between 3.4 and 20 mg L−1 oxygen. The detection limit was 1.2 mg L−1 of oxygen, and the repeatability (as relative standard deviation) was around 5 %. The method was successfully applied to the determination of chemical oxygen demand in different natural waters and a synthetic wastewater. (author)

  12. The Effect of H2O2 Interference in Chemical Oxygen Demand Removal During Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Afsane Chavoshani

    2016-07-01

    Full Text Available Hydrogen peroxide (H2O2 is one of the most oxidants in AOPs. By H2O2 dissociation, hydroxyl radical with a standard oxidation potential of 2.7 is produced. It is reported H2O¬ residual in AOPs has been led to interference in chemical oxygen demand (COD test and it is able to hinder biological treatment of waste water. Because of high mixed organic load of solid waste leachate, this study investigated effect of H2O2 interference in COD removal from solid waste leachate. In this study effect of parameters such as pH (3,5,7,12, H2O2 dose (0.01, 0.02, 0.03, 0.04 mol l-1, and time reaction(10,20,30,40,50,60 min evaluated on H2O2 interference in COD removal from solid waste leachate. Optimum pH and concentration were 3 and 0.02 moll-1 respectively. With increasing reaction time, COD removal was increased. The false COD obtained between 0.49mg per 1mg of H2O2. The average of COD removal by H2O2 for 60 min was 6.57%. Also reaction rate of this process was 0.0029 min-1. The presence of H2O2 leads to overestimation of COD values after reaction time because it consumes the oxidation agent. The extent of H2O2 interference in COD analysis was proportional to the remaining H2O2 concentration at the moment of sampling.

  13. Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill wastewater

    Directory of Open Access Journals (Sweden)

    Sacchi, Angelo

    2007-03-01

    Full Text Available We investigated the biofiltration ability of the aquatic fern Azolla to remove polyphenols and chemical oxygen demand (COD from olive mill wastewater (OMWw collected from the traditional (TS and continuous (CS extraction systems. Azolla biomass was packed into five sequential Imhoff cones and five sequential columns. In both experiments, the filtrates collected from the 5th biofilter showed a decrease in polyphenol contents: from 7650 mg l–1 to 3610 mg l–1 in TS OMWw and from 3852 mg l–1 to 1351 mg l–1 in CS OMWw. The COD contents decreased from 110200 mg L–1 to 52400 mg L–1 in TS OMWw and from 41600 mg L–1 to 2300 mg L–1 in CS OMWw. A 5:1 OMWw to Azolla-fresh-weight ratio was optimal for both polyphenol and COD removal. The biofiltration ability of alfalfa was compared with that of Azolla, but the treatment with alfalfa did not result in the reduction of COD or polyphenols.La eficacia del helecho de agua azolla para eliminar polifenoles y reducir la demanda química de oxígeno (DQO de los alpechines obtenidos en el proceso de obtención tradicional y continuo del aceite de oliva, fue investigado mediante ensayos de filtración. Cinco conos secuenciales de Imhoff y cinco columnas secuenciales se rellenaron de biomasa de Azolla. En ambos experimentos, el filtrado procedente de la quinta extracción mostró una disminución en el contenido de polifenoles de 7650 mg L–1 a 3610 mg L–1en el alpechín obtenido mediante el sistema tradicional y de 3852 mg L–1 a 1351 mg L–1en el alpechín del sistema continuo. La demanda química de oxígeno del alpechín del sistema tradicional disminuyó de 110200 mg L–1 a 52400 mg L–1 en y de 41600 mg L–1a 2300 mg L–1en el procedente del sistema continuo. Una proporción en peso 5:1 de alpechín: Azolla fue la óptima tanto para la reducción de los polifenoles como para la de la DQO. La eficiencia del tratamiento biológico con alfalfa se comparó con la obtenida con Azolla. Los

  14. A pilot scale trickling filter with pebble gravel as media and its performance to remove chemical oxygen demand from synthetic brewery wastewater*

    OpenAIRE

    Habte Lemji, Haimanot; Eckstädt, Hartmut

    2013-01-01

    Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study. A pilot scale trickling filter filled with gravel was used as the experimental biofilter. Pilot scale plant experiments were made to evaluate the performance of the trickling filter aerobic and anaerobic biofilm systems for removal of chemical oxygen demand (COD) and nutrients from synthetic brewery wastewater. Performance evaluation data of ...

  15. Effect of spent cotton stalks on color removal and chemical oxygen demand lowering in olive oil mill wastewater by white rot fungi.

    Science.gov (United States)

    Kahraman, S; Yeşilada, O

    1999-01-01

    Wastewater from olive oil mill was decolorized (and its chemical oxygen demand reduced in static cultivation) using the fungi Coriolus versicolor, Funalia trogii, Phanerochaete chrysosporium and Pleurotus sajor-caju. The effect of cotton stalk on decolorizing and COD removing capability was demonstrated. P. chrysosporium (in 20% medium with cotton stalk) reduced the COD by 48% and color by 58%, F. trogii (in 30% medium with cotton stalk)) by 51 and 55%, respectively.

  16. Performance of on-site pilot static granular bed reactor (SGBR) for treating dairy processing wastewater and chemical oxygen demand balance modeling under different operational conditions.

    Science.gov (United States)

    Oh, Jin Hwan; Park, Jaeyoung; Ellis, Timothy G

    2015-02-01

    The performance and operational stability of a pilot-scale static granular bed reactor (SGBR) for the treatment of dairy processing wastewater were investigated under a wide range of organic and hydraulic loading rates and temperature conditions. The SGBR achieved average chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS)-removal efficiencies higher than 90% even at high loading rates up to 7.3 kg COD/m(3)/day, with an hydraulic retention time (HRT) of 9 h, and at low temperatures of 11 °C. The average methane yield of 0.26 L CH4/g COD(removed) was possibly affected by a high fraction of particulate COD and operation at low temperatures. The COD mass balance indicated that soluble COD was responsible for most of the methane production. The reactor showed the capacity of the methanogens to maintain their activity and withstand organic and hydraulic shock loads.

  17. Quality improvement in determination of chemical oxygen demand in samples considered difficult to analyze, through participation in proficiency-testing schemes

    DEFF Research Database (Denmark)

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.;

    2010-01-01

    test the performance achievable in the participants laboratories, so we carried out a second PT of COD determination in samples considered ‘‘difficult’’ to analyze (i.e. solid samples and liquid samples with high concentrations of suspended solids). The results obtained (based on acceptable z......Chemical oxygen demand (COD) is a critical analytical parameter in waste and wastewater treatment, more specifically in anaerobic digestion, although little is known about the quality of measuring COD of anaerobic digestion samples. Proficiency testing (PT) is a powerful tool that can be used to...

  18. Improving the simultaneous removal of chemical oxygen demand and terephthalic acid in a cross-flow aerobic sludge reactor by using response surface methodology.

    Science.gov (United States)

    Hu, Dong-Xue; Tian, Yu; Chen, Zhao-Bo; Ge, Hui; Cui, Yu-Bo; Ran, Chun-Qiu

    2015-01-01

    Central composite design and response surface methodology (RSM) were implemented to optimize the operational parameters for a cross-flow aerobic sludge reactor (CFASR) in remedying mixed printing and dyeing wastewater (MPDW). The individual and interactive effects of three variables, hydraulic retention time (HRT), pH and sludge loading rate (SLR), on chemical oxygen demand (COD) and terephthalic acid (TA) removal rates were evaluated. For HRT of 15.3-19.8 hours, pH of 7.2-8.1 and SLR of 0.4-0.6 kg chemical oxygen demand (COD) per kg mixed liquor suspended solids per day, COD and TA removal rates of the CFASR exceeded 85% and 90%, respectively. The check experiment revealed that the effluent from the optimized CFASR was stable below the limitation of 100 mg COD/L and the TA concentration decreased by 6.0% compared to the usual CFASR. The results verified that the RSM was useful for optimizing the operation parameters of the CFASR in remedying MPDW.

  19. Removal of color and chemical oxygen demand using a coupled coagulation-electrocoagulation-ozone treatment of industrial wastewater that contains offset printing dyes

    International Nuclear Information System (INIS)

    Industrial offset printing processes generate wastewater with highly colored obtaining values of 5 x 106Pt-Co units and great values of chemical oxygen demand (COD) 5.3 x 10-5 mg L-1. Thus, conventional technologies such as biologicals treatment fail in reaching the discharge limits. In this research, a sequential treatment was applied: coagulation with aluminum hydroxychloride (AHC), electrocoagulation with Al anodes and finally ozonation. Optimal conditions are found when adding 20 mg L-1 AHC, followed by electrocoagulation at 4 A for 50 min, and finally alkaline ozonation for 15 min, resulting in an overall color removal of 99.99% color and 99.35 COD. The sludge generated by the coagulation process was analyzed by scanning electron microscopy and energy dispersive X-ray (EDX) microanalysis. (Author)

  20. Removal of color and chemical oxygen demand using a coupled coagulation-electrocoagulation-ozone treatment of industrial wastewater that contains offset printing dyes

    Energy Technology Data Exchange (ETDEWEB)

    Roa M, G.; Barrera D, C.; Balderas H, P.; Zaldumbide O, F. [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Km 14.5 Carretera Toluca-Atlacomulco, 50200 San Cayetano-Toluca, Estado de Mexico (Mexico); Reyes P, H. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Bilyeu, B., E-mail: groam@uaemex.mx [Xavier University of Louisiana, Department of Chemistry, 1 Drexel Drive, New Orleans, LA 70125 (United States)

    2014-07-01

    Industrial offset printing processes generate wastewater with highly colored obtaining values of 5 x 10{sup 6}Pt-Co units and great values of chemical oxygen demand (COD) 5.3 x 10{sup -5} mg L{sup -1}. Thus, conventional technologies such as biologicals treatment fail in reaching the discharge limits. In this research, a sequential treatment was applied: coagulation with aluminum hydroxychloride (AHC), electrocoagulation with Al anodes and finally ozonation. Optimal conditions are found when adding 20 mg L{sup -1} AHC, followed by electrocoagulation at 4 A for 50 min, and finally alkaline ozonation for 15 min, resulting in an overall color removal of 99.99% color and 99.35 COD. The sludge generated by the coagulation process was analyzed by scanning electron microscopy and energy dispersive X-ray (EDX) microanalysis. (Author)

  1. Spatial distribution and diurnal variation of chemical oxygen demand at the beginning of the rainy season in the Changjiang (Yangtze) River Estuary

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A field observation was carried out in the Changjiang (Yangtze) River Estuary from May 19 to 26, 2003. A total of 29 stations, including 2 anchored stations, were occupied through almost the whole salinity gradient. Based on the observation data, biogeochemistry of chemical oxygen demand (COD) was examined. Spatial distribution pattern of COD shows that it decreased downstream. The COD concentration varied generally within a narrow range of 1.24-1.60 mg/L in the zone around the river mouth, beyond which it decreased rapidly to 0.20 mg/L. In the mixed water zone, the fluctuation in COD was smaller at 2 m above the bottom layer than at the surface layer in 48 h. In the seawater zone, the 48-h fluctuation at the surface was the largest, followed by that of 5 m below the surface and 2 m above the bottom layers in a range of from 2.50 to 0.55 mg/L. Freshwater discharge was the dominant source of COD in the estuary. The average COD beyond the river mouth was 2.7 rog/L, which accorded with the Chinese seawater quality Grade I. Relationships between dissolved oxygen and biogeochemical parameters such as suspended particulate matter, dissolved organic matter and chlorophyll-a were also discussed.

  2. Treatment of a slaughterhouse wastewater: effect of internal recycle rate on chemical oxygen demand, total Kjeldahl nitrogen and total phosphorus removal.

    Science.gov (United States)

    Fongsatitkul, P; Wareham, D G; Elefsiniotis, P; Charoensuk, P

    2011-12-01

    This study investigated the ability of an anaerobic/anoxic/oxic (A2/O) system to treat a slaughterhouse wastewater. The system employed two identical continuous-flow reactors (101 total liquid volume each) running in parallel with the main operational variable, being the internal recycle (IR) rate. The chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and total phosphorus (TP) performance was evaluated as the IR flowrate was increased from a Q of 151d(-1) to 4Q at a system hydraulic retention time of 16 h and a solids retention time of 10 d. The COD:TKN and COD:TP ratios were 8.2:1 and 54:1, which supported both nitrogen and phosphorus removal. For all IR multiples of Q, the COD removal was in excess of 90%. The TKN removal showed a modest improvement (a 4-5% increase, depending on the dissolved oxygen (DO)) as the IR doubled from Q to 2Q, but no further increase was observed at the 4Q IR rate. The TP removal reached its optimum (around 85%-89% (again depending on the DO)) at the 2Q rate. PMID:22439562

  3. Effects of chemical oxygen demand (COD)/N ratios on pollutants removal in the subsurface wastewater infiltration systems with/without intermittent aeration.

    Science.gov (United States)

    Song, Siyu; Pan, Jing; Wu, Shiwei; Guo, Yijing; Yu, Jingxiao; Shan, Qingchi

    2016-01-01

    The matrix oxidation reduction potential level, organic pollutants and nitrogen removal performances of eight subsurface wastewater infiltration systems (SWISs) (four with intermittent aeration, four without intermittent aeration) fed with influent chemical oxygen demand (COD)/N ratio of 3, 6, 12 and 18 were investigated. Nitrification of non-aerated SWISs was poor due to oxygen deficiency while higher COD/N ratios further led to lower COD and nitrogen removal rate. Intermittent aeration achieved almost complete nitrification, which successfully created aerobic conditions in the depth of 50 cm and did not change anoxic or anaerobic conditions in the depth of 80 and 110 cm. The sufficient carbon source in high COD/N ratio influent greatly promoted denitrification in SWISs with intermittent aeration. High average removal rates of COD (95.68%), ammonia nitrogen (NH4(+)-N) (99.32%) and total nitrogen (TN) (89.65%) were obtained with influent COD/N ratio of 12 in aerated SWISs. The results suggest that intermittent aeration was a reliable option to achieve high nitrogen removal in SWISs, especially with high COD/N ratio wastewater.

  4. Effect of nickel loading on hydrogen production and chemical oxygen demand (COD) destruction from glucose oxidation and gasification in supercritical water

    International Nuclear Information System (INIS)

    minutes of reaction time increased the hydrogen yield from 0.618 mol/mol to 1.45 mol/mol. Chemical oxygen demand (COD) removal efficiency was 75 % in presence of both commercial and synthesized catalysts and 90 % without catalyst. This study showed that the same hydrogen yield can be obtained from the synthesized low nickel alumina loading (18 wt %) catalyst with (65 wt %) nickel on silica-alumina loading commercial catalyst. (author)

  5. Co-Digestion of Palm Oil Mill Effluent and Refined Glycerin Wash Water for Chemical Oxygen Demand Removal and Methane Production

    Directory of Open Access Journals (Sweden)

    A. Sulaiman

    2009-01-01

    Full Text Available Problem statement: Refined Glycerin Wash Water (RGWW from the oleochemical industry contains high Chemical Oxygen Demand (COD and requires proper treatment before disposal. Unfortunately the wash water also contains high concentration of sodium chloride (NaCl that could cause inhibition to the normal biological treatment process. However, there is feasibility of co-digesting the RGWW and Palm Oil Mill Effluent (POME for its treatment and methane recovery. Approach: A large 500 m3 semi-commercial closed digester tank was used to study the effect of co-digesting POME and RGWW under mesophilic condition at different RGWW percentage. The digester performance in terms of COD removal efficiency and methane production rate and stability based on total Volatile Fatty Acids (VFA accumulation, Mixed Liquor Volatile Suspended Solid (MLVSS and pH were evaluated. Results: At 1.0% of RGWW co-digested, both COD removal efficiency and methane production rate showed satisfactory results with higher than 90% and 505 m3 day-1, respectively. However, once the percentage was increased to a maximum of 5.25%, COD removal efficiency remains high but the methane production rate reduced significantly down to 307 m3 day-1. At this stage, the digester was already unstable with high total VFA recorded of 913 mg L-1 and low cells concentration of 8.58 g L-1. This was probably due to the effect of plasmolysis on the methanogens at high concentration of NaCl in the digester of nearly 4000 mg L-1. Conclusion: Co-digesting of RGWW with high NaCl content and POME is satisfactory for COD removal but not for increasing the methane production.

  6. Comparison of Poly Aluminum Chloride and Chlorinated Cuprous for Chemical Oxygen Demand and Color Removal from Kashan Textile Industries Company Wastewater

    Directory of Open Access Journals (Sweden)

    Hoseindoost Gh.1 MSPH,

    2016-08-01

    Full Text Available Aims Textile wastewaters are the most important health and environmental problems in Kashan. This research was aimed to compare the poly aluminum chloride and chlorinated cuprous efficiency for removal of Chemical Oxygen Demand (COD and color from Kashan Textile Industries Company wastewater. Materials & Methods This experimental bench scale study in a batch system was conducted on 20 composed wastewater samples collected from Kashan Textile Industries Company raw wastewater. During 5 months, in the beginning of every week a day was selected randomly and in the day a composed sample was taken and studied. PAC at the doses of 10, 20, 30, 40 and 50mg.l-1 and chlorinated cuprous at the doses of 100, 200, 300, 400 and 500mg.l-1 were applied. The optimum pH also optimum concentration of PAC and chlorinated cuprous were determined using Jar test. The data was analyzed by SPSS 16 using descriptive statistics and Fisher Exact test. Findings The average concentration of COD in the raw textile wastewater was 2801.56±1398.29mg.l-1. The average COD concentration has been decreased to 1125.47±797.55mg.l-1. There was a significant difference between the effects of these two coagulants efficiency (p<0.05. The average COD removal efficiency for chlorinated cuprous and PAC was 58.52% and 72.56%, respectively. Also, the average color removal efficiency by chlorinated cuprous and PAC were 17.23 and 64.45%, respectively. Conclusion PAC is more efficient than chlorinated cuprous for both COD and color removal from KTIC wastewater.

  7. Long-term effects of antibiotics on the elimination of chemical oxygen demand, nitrification, and viable bacteria in laboratory-scale wastewater treatment plants.

    Science.gov (United States)

    Schmidt, Susan; Winter, Josef; Gallert, Claudia

    2012-10-01

    Antibiotics and other pharmaceuticals are contaminants of the environment because of their widespread use and incomplete removal by microorganisms during wastewater treatment. The influence of a mixture of ciprofloxacin (CIP), gentamicin (GM), sulfamethoxazole (SMZ)/trimethoprim (TMP), and vancomycin (VA), up to a final concentration of 40 mg/L, on the elimination of chemical oxygen demand (COD), nitrification, and survival of bacteria, as well as the elimination of the antibiotics, was assessed in a long-term study in laboratory treatment plants (LTPs). In the presence of 30 mg/L antibiotics, nitrification of artificial sewage by activated sludge ended at nitrite. Nitrate formation was almost completely inhibited. No nitrification at all was possible in the presence of 40 mg/L antibiotics. The nitrifiers were more sensitive to antibiotics than heterotrophic bacteria. COD elimination in antibiotic-stressed LTPs was not influenced by ≤20 mg/L antibiotics. Addition of 30 mg/L antibiotic mixture decreased COD removal efficiency for a period, but the LTPs recovered. Similar results were obtained with 40 mg/L antibiotic mixture. The total viable count of bacteria was not affected negatively by the antibiotics. It ranged from 2.2 × 10(6) to 8.2 × 10(6) colony-forming units per milliliter (CFU/mL) compared with the control at 1.4 × 10(6)-6.3 × 10(6) CFU/mL. Elimination of the four antibiotics during phases of 2.4-30 mg/L from the liquid was high for GM (70-90 %), much lower for VA, TMP, and CIP (0-50 %), and highly fluctuating for SMZ (0-95 %). The antibiotics were mainly adsorbed to the sludge and not biodegraded. PMID:22622431

  8. Development of variable pathlength UV-vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring.

    Science.gov (United States)

    Chen, Baisheng; Wu, Huanan; Li, Sam Fong Yau

    2014-03-01

    To overcome the challenging task to select an appropriate pathlength for wastewater chemical oxygen demand (COD) monitoring with high accuracy by UV-vis spectroscopy in wastewater treatment process, a variable pathlength approach combined with partial-least squares regression (PLSR) was developed in this study. Two new strategies were proposed to extract relevant information of UV-vis spectral data from variable pathlength measurements. The first strategy was by data fusion with two data fusion levels: low-level data fusion (LLDF) and mid-level data fusion (MLDF). Predictive accuracy was found to improve, indicated by the lower root-mean-square errors of prediction (RMSEP) compared with those obtained for single pathlength measurements. Both fusion levels were found to deliver very robust PLSR models with residual predictive deviations (RPD) greater than 3 (i.e. 3.22 and 3.29, respectively). The second strategy involved calculating the slopes of absorbance against pathlength at each wavelength to generate slope-derived spectra. Without the requirement to select the optimal pathlength, the predictive accuracy (RMSEP) was improved by 20-43% as compared to single pathlength spectroscopy. Comparing to nine-factor models from fusion strategy, the PLSR model from slope-derived spectroscopy was found to be more parsimonious with only five factors and more robust with residual predictive deviation (RPD) of 3.72. It also offered excellent correlation of predicted and measured COD values with R(2) of 0.936. In sum, variable pathlength spectroscopy with the two proposed data analysis strategies proved to be successful in enhancing prediction performance of COD in wastewater and showed high potential to be applied in on-line water quality monitoring.

  9. Sediment oxygen demand in eastern Kansas streams, 2014 and 2015

    Science.gov (United States)

    Foster, Guy M.; King, Lindsey R.; Graham, Jennifer L.

    2016-08-29

    Dissolved oxygen concentrations in streams are affected by physical, chemical, and biological factors in the water column and streambed, and are an important factor for the survival of aquatic organisms. Sediment oxygen demand (SOD) rates in Kansas streams are not well understood. During 2014 and 2015, the U.S. Geological Survey, in cooperation with the Kansas Department of Health and Environment, measured SOD at eight stream sites in eastern Kansas to quantify SOD rates and variability with respect to season, land use, and bottom-sediment characteristics. Sediment oxygen demand rates (SODT) ranged from 0.01 to 3.15 grams per square meter per day at the ambient temperature of the measurements. The summer mean SOD rate was 3.0-times larger than the late fall mean rate, likely because of increased biological activity at warm water temperatures. Given the substantial amount of variability in SOD rates possible within sites, heterogeneity of substrate type is an important consideration when designing SOD studies and interpreting the results. Sediment oxygen demand in eastern Kansas streams was correlated with land use and streambed-sediment characteristics, though the strength of relations varied seasonally. The small number of study sites precluded a more detailed analysis. The effect of basin land use and streambed sediment characteristics on SOD is currently (2016) not well understood, and there may be many contributing factors including basin influences on water quality that affect biogeochemical cycles and the biological communities supported by the stream.

  10. COMPARISON OF METHODS TO DETERMINE OXYGEN DEMAND FOR BIOREMEDIATION OF A FUEL CONTAMINATED AQUIFER

    Science.gov (United States)

    Four analytical methods were compared for estimating concentrations of fuel contaminants in subsurface core samples. The methods were total organic carbon, chemical oxygen demand, oil and grease, and a solvent extraction of fuel hydrocarbons combined with a gas chromatographic te...

  11. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    Science.gov (United States)

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME.

  12. 三种快速测定石油污水中COD方法的比较%Comparison of three methods for determination of chemical oxygen demand of petroleum polluted water

    Institute of Scientific and Technical Information of China (English)

    贾锦霞; 郭景玉

    2011-01-01

    以新疆乌鲁木齐石化总厂石油污水研究对象,采用标准法从消解时间、取样量、催化剂用量三方面考察测定了COD的最佳实验条件,并在两实验室间验证其可靠性。分别利用重铬酸钾快速法、密封消解法、HACH法测定石油污水的COD值,并与标准法进行比对。结果表明:(1)取样量相同时,重铬酸钾快速法比标准法耗酸量还要多,仅仅只是缩短了回流时间;(2)密封消解法具有省时、省试制、工作效率高的特点,可以作为标准法的替代方法;(3)HACH方法在实际操作中不经济。%The national standard method was used to detect chemical oxygen demand of petroleum -polluted water from Urumchi petrochemistry company.The elimination time, sample Volume and catalyst consumption of the chemical oxygen demand was determined. The optimal experimental condition of the were determined and verified by practical water sample between two Laboratories.Three kinds of methods were Compared with the standard method.It was shown that.(1)In the same condition,The catalyst amount of K_2Cr_2O_7 rapid detecting were more than national standard.(2)the standard method was replaced of the sealed elimination by saving time,saving drugs and high efficiency.(3)In practice,HACH was uneconomic.

  13. Watershed modeling of dissolved oxygen and biochemical oxygen demand using a hydrological simulation Fortran program.

    Science.gov (United States)

    Liu, Zhijun; Kieffer, Janna M; Kingery, William L; Huddleston, David H; Hossain, Faisal

    2007-11-01

    Several inland water bodies in the St. Louis Bay watershed have been identified as being potentially impaired due to low level of dissolved oxygen (DO). In order to calculate the total maximum daily loads (TMDL), a standard watershed model supported by U.S. Environmental Protection Agency, Hydrological Simulation Program Fortran (HSPF), was used to simulate water temperature, DO, and bio-chemical oxygen demand (BOD). Both point and non-point sources of BOD were included in watershed modeling. The developed model was calibrated at two time periods: 1978 to 1986 and 2000 to 2001 with simulated DO closely matched the observed data and captured the seasonal variations. The model represented the general trend and average condition of observed BOD. Water temperature and BOD decay are the major factors that affect DO simulation, whereas nutrient processes, including nitrification, denitrification, and phytoplankton cycle, have slight impacts. The calibrated water quality model provides a representative linkage between the sources of BOD and in-stream DO\\BOD concentrations. The developed input parameters in this research could be extended to similar coastal watersheds for TMDL determination and Best Management Practice (BMP) evaluation.

  14. Effect of Nano-ZnO Particle on the Chemical Oxygen Demand in Water of Dianchi Lake%纳米氧化锌对滇池水COD的影响

    Institute of Scientific and Technical Information of China (English)

    施在从; 李成季; 施丽美; 杨奕; 陈芮

    2014-01-01

    化学需氧量( COD)作为一种常用的评价水体污染程度的综合性指标,能够反映水体受还原性物质污染的程度。 COD数值越高,表明水质有机污染越严重。本文以Zn(NO3)2·6H2O为主要原料,Na2CO3·10H2O为沉淀剂,采用溶液直接沉淀法制得纳米ZnO。以纳米ZnO作为吸附剂和杀菌剂,采用酸性高锰酸钾法测定纳米ZnO对滇池水COD值的影响。结果表明:纳米ZnO的加入量为8 mg/L(滇池水)、吸附时间2 h时,滇池水COD值降低效果显著。%Chemical oxygen demand ( COD) was considered as the value to assess the pollution degree of water. Using Zn(NO3)2·6H2O as main reagent and Na2CO3·10H2O as precipitant, nano-zinc oxide was obtained by di-rect precipitation from solution. Using nano-zinc oxide as absorbent and disinfectant, the effect of nano-zinc oxide on the COD in water of Dianchi Lake was discussed in detail by acidic potassium permanganate method. The result showed that the added amount of nano-zinc oxide and the absorption time had influence on the value of COD. The further research was shown that the value of COD could be remarkably decreased when the added amount of nano-zinc oxide was 8 mg/L and the absorption time was 2 h, which was considered to be optimum condition on cleansing the water of Dianchi Lake.

  15. Sediment oxygen demand of wetlands in the oil sands region of northeastern Alberta

    International Nuclear Information System (INIS)

    Sediment oxygen demand (SOD) can significantly influence the dissolved oxygen concentrations in shallow water bodies. This study discussed the types of sediments used to reclaim wetlands and their influence on SOD, successional processes, and ecosystem trajectories. The study hypothesized that oil sands process material (OSPM) affected wetlands would support cyanobacterial biofilms as opposed to submergent macrophytes as a result of insufficient phosphorus levels. SOD was assessed by monitoring dissolved oxygen concentrations within domes placed on the sediment surface for a 3-hour period. Gas flux and composition analyses were used to quantify the biological SOD components. Chemical SOD components were then determined by subtraction. Concentrations of phosphorus bioavailable to the macrophytes were estimated using plant root simulator probes. The study showed that OSPM wetlands exhibited higher chemical SOD and SOD than reference wetlands, and supported benthic biofilms as opposed to the submergent macrophyte communities typically found in northeastern Alberta wetlands.

  16. 14 CFR 25.1450 - Chemical oxygen generators.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Chemical oxygen generators. 25.1450 Section... oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be...

  17. The Demand for Chemical Fertilizers in China

    OpenAIRE

    Peng, Daiyan; Kawaguchi, Tsunemasa

    2001-01-01

    During the past two decades, the tremendous increase in the use of chemical fertilizers compared with other inputs in Chinese agriculture is particularly impressive. This growing use of chemical fertilizers has played a crucial role Chinese agricultural growth. In the future, the use of chemical fertilizers will continue to play an unsubstitutably important role. As land become more scarce, the future growth of Chinese agriculture will mainly depend on technological progress like the adoption...

  18. Experimental Study on the Contribution and Impact of Chemical Oxygen Demand Caused by Flotation Reagents%不同矿山化学药剂对水体COD贡献和影响的试验研究

    Institute of Scientific and Technical Information of China (English)

    李伟新

    2012-01-01

    矿山选矿药剂的使用已经引起了严重的水体污染,为了可持续利用矿区水资源,选择了常见的5种浮选药剂和3种起泡剂进行了其对水体化学需氧量(COD)贡献和影响的试验研究。研究结果表明:不同浓度范围的乙黄原酸盐(乙黄)、丁黄原酸盐(丁黄)、聚丙烯酰胺(PAM)、乙硫氮、Ds对水体COD的贡献不一样,并且同一种浮选药剂在不同浓度条件下对应的c0D并不呈现线性关系。总体来看,5种药剂中丁黄对COD贡献最大,而乙硫氮对COD贡献最小。不同来源起泡剂对水体COD的贡献有较大差异,总体来看GY2”要比SD2”及ZLZZ2”的COD贡献大。起泡剂的GC—MS仪器分析结果显示起泡剂中多环化合物或者杂环化合物占的比例越大,其对废水COI)贡献越多,因此研制以直链状为主要成分的“环保型”起泡剂显得尤为迫切。%Mineral mining has caused the use of agents to serious water pollution, in order to protect the sustainable use of water resources in miningarea, this paper uses the familiar five kinds of flotation agents and three kinds of foaming agents on the contribution and impact on the water body of its chemical oxygen demand (COD). The results showed that range of different concentrations of ethyl xauthogeuic acid, xanghogenate, polyacrylamide(PAM), diethyldithioearbamate, DS had different contribution towards COD. The corresponding COD did not show a linear relationship under the conditions of the same kind of flotation reagent with different concentrations. Overall, xaughogenate made the greatest contribution to the COD, while that of diethyldithioearbamate was the minimum contribution in five kinds of flotation reagents. Foaming agents with different sources had greater differences contribution on COD. The foaming agent 2~ named GY2# had made greater contribution of COD than that of ZZ2~ and SD2#. The more contents of the multi

  19. 14 CFR 23.1450 - Chemical oxygen generators.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical...

  20. Methods for assessing biochemical oxygen demand (BOD): a review.

    Science.gov (United States)

    Jouanneau, S; Recoules, L; Durand, M J; Boukabache, A; Picot, V; Primault, Y; Lakel, A; Sengelin, M; Barillon, B; Thouand, G

    2014-02-01

    The Biochemical Oxygen Demand (BOD) is one of the most widely used criteria for water quality assessment. It provides information about the ready biodegradable fraction of the organic load in water. However, this analytical method is time-consuming (generally 5 days, BOD5), and the results may vary according to the laboratory (20%), primarily due to fluctuations in the microbial diversity of the inoculum used. Work performed during the two last decades has resulted in several technologies that are less time-consuming and more reliable. This review is devoted to the analysis of the technical features of the principal methods described in the literature in order to compare their performances (measuring window, reliability, robustness) and to identify the pros and the cons of each method.

  1. Inhibitory effect of nitrobenzene on oxygen demand in lake sediments

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Zhou; Xuying Wang; Hanchang Shi

    2012-01-01

    Nitrobenzene is an important raw material and product,which presents a heavy threat to the ecosystem.The potential impacts of nitrobenzene on sediment oxygen demand (SOD) were studied in lake sediment simulating reactors receiving relatively low inputs of nitrobenzene.Oxygen microprofiles were measured in these sediment reactors using microelectrodes.After an initial microprofile measurement as a control,nitrobenzene was added to the overlying water resulting in concentrations of 0,50,100,and 150 μg/L.Microprofiles were measured on day 1,2,4 and 7 following the addition of nitrobenzene.SODs were determined from the microprofiles using a reaction-diffusion model.Results showed that the SODs increased relative to the initial values measured in the pre-treatment period in reactors exposed to all nitrobenzene concentrations on day 1.However,the values decreased gradually on the following days,which eventually resulted in a 50% loss in SODs after 7 days of exposure to nitrobenzene in all reactors.In addition,the inhibition effect of nitrobenzene on SOD exhibited a weak relationship with its concentration.The microscopic observation and count of algae in the sediment showed that the exposure to nitrobenzene did not change the composition of algae greatly,however,it decreased the number of dominant algae species sharply after 7 days of exposure.These results suggested that nitrobenzene could significantly alter SOD in lakes,which could ultimately affect the pollutant recovery in aquatic-sediment systems.

  2. 49 CFR 173.168 - Chemical oxygen generators.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen...

  3. The Impact of Price on Chemical Fertilizer Demand in China

    Institute of Scientific and Technical Information of China (English)

    John K.Dagsvik

    2012-01-01

    Since 1998,the national policies on chemical fertilizer in China have been concentrated in limiting price plus subsidizing,abolishing agricultural tax,giving direct subsidies to farmers,and other aspects.In order to analyze the impact of national policies on the consumption of chemical fertilizer,this article selects the consumption of chemical fertilizer per unit,chemical fertilizer price index and farmers’net income in different provinces during the period 1998-2007 as variables,to conduct regression analysis of chemical fertilizer expenditure function,and calculate the price elasticity and income elasticity of chemical fertilizer demand in different provinces over the decade based on the regression results.The results show that at present the basic consumption of chemical fertilizer for agricultural development in China is 0.35 t/hm 2 ,and the consumption of chemical fertilizer is excessive in some provinces;the chemical fertilizer market has not been really established,and the price has little impact on demand.This indicates that the chemical fertilizer is essential for agricultural economic development,and it increases along with the increase of farmers’income; the intervention of the national policy in chemical fertilizer price is a fundamental reason for the rising demand for chemical fertilizer.This also to some extent indicates that the policy effect of merely using environmental taxes to change farmers’consumption of chemical fertilizer is limited;there is a need to transform the existing policies purely promoting agricultural economic development,toward giving different subsidies in accordance with whether the farmers’fertilization pattern is beneficial to the environment.

  4. Oxygen saturations of medical inpatients in a Malawian hospital: cross-sectional study of oxygen supply and demand

    Directory of Open Access Journals (Sweden)

    Hywel-Gethin Tudur Evans

    2012-05-01

    Full Text Available Normal 0 false false false EN-GB JA X-NONE Oxygen is a World Health Organisation listed essential drug yet provision of oxygen in developing countries often fails to meet demand.  The aim of this study was to evaluate the need for supplementary oxygen against oxygen delivery capacity at a large teaching hospital in Malawi.  A cross‐sectional study of all adult medical inpatients and assessment of oxygen provision over a 24‐hour period was conducted.    144 patients were included in the study, 14 of whom met local and international criteria for oxygen therapy (oxygen saturations of <90%.  Four were receiving oxygen.  Of the 8 oxygen concentrators available, only 4 were functional.  In conclusion, we identified a need for oxygen that was greater than the supply.

  5. Effects of arteriovenous fistulas on cardiac oxygen supply and demand

    NARCIS (Netherlands)

    Bos, W.J.W.; Zietse, R.; Wesseling, K.H.; Westerhof, N.

    1999-01-01

    Background. Arteriovenous (AV) fistulas used for hemodialysis access may affect cardiac load by increasing the preload while decreasing the afterload. In dogs, AV fistulas have also been shown to affect coronary perfusion negatively. We investigated the net effect of AV fistulas on cardiac oxygen su

  6. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    Science.gov (United States)

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  7. Sediment oxygen demand in a constructed lake in south-eastern Australia.

    Science.gov (United States)

    Wallace, Todd A; Ganf, George G; Brookes, Justin D

    2016-10-01

    The occurrence of hypoxia and anoxia in aquatic environments is increasing, driven by changes in land use and alteration of flow regimes. Periods of low oxygen impact biodiversity and water quality for both recreational and consumptive users. We use the Torrens Lake as a case study to assess pelagic, benthic and resuspended sediment oxygen demand, and the release of sediment bound phosphorus to determine the relative role of internal and external loading on water quality in a lake within a heavily urbanised landscape. Our results indicate temporal shifts in the dominant oxygen demanding process in the lake. During periods of no-inflow, sediment oxygen demand is the dominant process; during periods of inflow resulting from wet weather conditions, pelagic rather than sediment derived oxygen demand becomes the governing process. The inlet end of the lake is a depositional zone for stormwater borne sediments. Resuspended sediments at the inlet end of the lake exert a higher oxygen demand than those from the outlet, and represent a larger pool of potentially mobile phosphorus compared to sediments at the outlet end of the lake. However, external rather than internal loading appears to be the dominant driver of water quality in this lake. PMID:27420167

  8. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    Science.gov (United States)

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  9. Materials for Chemical-Looping with Oxygen Uncoupling

    OpenAIRE

    Tobias Mattisson

    2013-01-01

    Chemical-looping with oxygen uncoupling (CLOU) is a novel combustion technology with inherent separation of carbon dioxide. The process is a three-step process which utilizes a circulating oxygen carrier to transfer oxygen from the combustion air to the fuel. The process utilizes two interconnected fluidized bed reactors, an air reactor and a fuel reactor. In the fuel reactor, the metal oxide decomposes with the release of gas phase oxygen (step 1), which reacts directly with the fuel through...

  10. In situ global method for measurement of oxygen demand and mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.; Lundbaeck, K.M.O.; Clausen, E.C.; Gaddy, J.L. [Univ. of Arkansas, Fayetteville, AR (United States). Dept. of Chemical Engineering

    1997-05-01

    Two aerobic microorganisms, Saccharomycopsis lipolytica and Brevibacterium lactofermentum, have been used in a study of mass transfer and oxygen uptake from a global perspective using a closed gas system. Oxygen concentrations in the gas and liquid were followed using oxygen electrodes, and the results allowed for easy calculation of in situ oxygen transport. The cell yields on oxygen for S. lipolytica and B. lactofermentum were 1.01 and 1.53 g/g respectively. The mass transfer coefficient was estimated as 10 h{sup {minus}1} at 500 rpm for both fermentations. The advantages with this method are noticeable since the use of model systems may be avoided, and the in situ measurements of oxygen demand assure reliable data for scale-up.

  11. Relationship between Oxygen Chemical Potential and Steel Cleanliness

    Institute of Scientific and Technical Information of China (English)

    Mansour Soltanieh; Yousef Payandeh

    2005-01-01

    To investigate inclusion formation in each step during steel making process, several samples were taken in different steps of the production of steel at Mobarakeh Steel Co of Esfahan to measure the oxygen chemical potential of the molten steel in each stage. The chemical compositions of the inclusions in samples were investigated lby scanning electron microscope. The chemical composition of the slag was analyzed. With the use of thermodynamic calculations and chemical analysis of the melt, at the working temperature, the relationship between dissolved oxygen and other elements were determined. Finally, it was found that there is a close relationship between inclusions formed in each step with the oxygen partial pressure.

  12. Considerações práticas sobre o teste de demanda química de oxigênio (DQO aplicado a análise de efluentes anaeróbios Practical aspects of the chemical oxygen demand (COD test applied to the analysis of anaerobic effluents

    Directory of Open Access Journals (Sweden)

    Sérgio F. de Aquino

    2006-12-01

    Full Text Available Este artigo apresenta resultados de testes laboratoriais que investigaram a influência dos íons cloreto, amonium, ferro e sulfeto no teste de demanda química de oxigênio (DQO, bem como valores dos coeficientes de conversão da matéria orgânica específica (proteínas, carboidratos e lipídeos determinados empiricamente. O artigo apresenta, ainda, resultados da comparação dos métodos colorimétrico e titulométrico de determinação da DQO e faz uma discussão crítica do uso do teste de DQO como parâmetro de monitoramento da eficiência de sistemas de tratamento anaeróbio.This paper presents practical results on the influence of chloride, amonium, sulphide and iron on the chemical oxygen demand (COD test, as well as experimental values of stoichiometric coefficients to convert the specific organic matter (protein, carbohydrate and lipid into COD. The paper also presents results that compare the titrimetric and colorimetric methods used to measure the COD and makes a critical analysis of the use of COD test as a tool to monitor the efficiency of anaerobic treatment systems.

  13. IN-SITU DETERMINATION OF SEDIMENT OXYGEN DEMAND IN CULTIVATION PONDS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a method for in-situ determining sediment oxygen demand (SOD) in cultivation pond. This method based on sediment surface structure, temperature, and other determining conditions like those in shrimp cultivation environments, overcomes defects of old methods and provides more accurate estimation of SOD's effect on dissolved oxygen in culture waters. Our experiment shows that the sediment surface structure and temperature had important effect on SOD in culture water. Different SOD values were derived from different parts of oxygen consumption curves of sediment, because the curves were not linear. According to the oxygen consumption curves of sediment and saturated DO in culture water, it was thought more suitable to calculate SOD with dissolved oxygen reduction from 5.0 to 2.0 mg/l. This method to determine the SOD of shrimp ponds yielded satisfactory results.

  14. Geostatistical Modeling of the Spatial Distribution of Sediment Oxygen Demand Within a Coastal Plain Blackwater Watershed

    Science.gov (United States)

    Blackwater streams of the Georgia Coastal Plain are often listed as impaired due to chronically low DO levels. Previous research has shown that high sediment oxygen demand (SOD) values, a hypothesized cause of lowered DO within these waters, are significantly positively correlated with TOC within th...

  15. Ultimate biochemical oxygen demand in semi-intensively managed shrimp pond waters

    Science.gov (United States)

    Three independent studies were conducted to quantified ultimate biochemical oxygen demand (UBOD) and the corresponding decomposition rate constant for production pond (average 21.5 ha each) waters and effluents on six semi-intensively managed marine shrimp (Litopenaeus vannamei) farms in Honduras. S...

  16. Alternative aircraft anti-icing formulations with reduced aquatic toxicity and biochemical oxygen demand

    Science.gov (United States)

    Gold, Harris; Joback, Kevin; Geis, Steven; Bowman, George; Mericas, Dean; Corsi, Steven R.; Ferguson, Lee

    2010-01-01

    The current research was conducted to identify alternative aircraft and pavement deicer and anti-icer formulations with improved environmental characteristics compared to currently used commercial products (2007). The environmental characteristics of primary concern are the biochemical oxygen demand (BOD) and aquatic toxicity of the fully formulated products. Except when the distinction among products is necessary for clarity, “deicer” will refer to aircraft-deicing fluids (ADFs), aircraft anti-icing fluids (AAFs), and pavementdeicing materials (PDMs).

  17. Myocardial Ischemia: Lack of Coronary Blood Flow or Myocardial Oxygen Supply/Demand Imbalance?

    Science.gov (United States)

    Heusch, Gerd

    2016-07-01

    Regional myocardial blood flow and contractile function in ischemic myocardium are well matched, and there is no evidence for an oxygen supply/demand imbalance. Thus, myocardial ischemia is lack of coronary blood flow with electric, functional, metabolic, and structural consequences for the myocardium. All therapeutic interventions must aim to improve blood flow to ischemic myocardium as much and as quickly as possible. PMID:27390331

  18. Oxygen demand during mineralization of aquatic macrophytes from an oxbow lake.

    Science.gov (United States)

    Bianchini Jr, I; Cunha-Santino, M B; Peret, A M

    2008-02-01

    This study presents a kinetic model of oxygen consumption during aerobic decomposition of detritus from seven species of aquatic macrophytes: Cabomba furcata, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Oxycaryum cubense and Utricularia breviscapa. The aquatic macrophytes were collected from Oleo Lagoon situated in the Mogi-Guaçu river floodplain (SP, Brazil). Mineralization experiments were performed using the closed bottles method. Incubations made with lake water and macrophytes detritus (500 mL and 200 mg.L(-1) (DM), respectively) were maintained during 45 to 80 days at 20 degrees C under aerobic conditions and darkness. Carbon content of leachates from aquatic macrophytes detritus and dissolved oxygen concentrations were analyzed. From the results we concluded that: i) the decomposition constants differ among macrophytes; these differences being dependent primarily on molecular and elemental composition of detritus and ii) in the short term, most of the oxygen demand seems to depend upon the demineralization of the dissolved carbon fraction. PMID:18470379

  19. The Impact of Price on Chemical Fertilizer Demand in China

    OpenAIRE

    Huang, Wen-fang; Du, Cheng; John K. Dagsvik

    2012-01-01

    Since 1998, the national policies on chemical fertilizer in China have been concentrated in limiting price plus subsidizing, abolishing agricultural tax, giving direct subsidies to farmers, and other aspects. In order to analyze the impact of national policies on the consumption of chemical fertilizer, this article selects the consumption of chemical fertilizer per unit, chemical fertilizer price index and farmers' net income in different provinces during the period 1998-2007 as variables, to...

  20. Non-steady response of BOD biosensor for the determination of biochemical oxygen demand in wastewater.

    Science.gov (United States)

    Velling, Siiri; Mashirin, Alexey; Hellat, Karin; Tenno, Toomas

    2011-01-01

    A biochemical oxygen demand (BOD) biosensor for effective and expeditious BOD(7) estimations was constructed and the non-steady phase of the output signal was extensively studied. The modelling approach introduced allows response curve reconstruction and a curve fitting procedure of good quality, resulting in parameters indicating the relationship between response and organic substrate concentration and stability properties of the BOD biosensor. Also, the immobilization matrixes of different thicknesses were characterized to determine their suitability for bio-sensing measurements in non-stationary conditions, as well as for the determination of the mechanical durability of the BOD biosensor in time. The non-steady response of the experimental output of the BOD biosensor was fitted according to the developed model that enables to determine the stability of the biosensor output and dependency on biodegradable organic substrate concentration. The calibration range of the studied BOD biosensor in OECD synthetic wastewater was 15-110 mg O(2) L(-1). Repeatability tests showed relative standard deviation (RSD) values of 2.8% and 5.8% for the parameter τ(d), characterizing the transient output of the amperometric oxygen sensor in time, and τ(s), describing the dependency of the transient response of the BOD biosensor on organic substrate concentration, respectively. BOD biosensor experiments for the evaluation of the biochemical oxygen demand of easily degradable and refractory municipal wastewater showed good concurrence with traditional BOD(7) analysis.

  1. Total, chemical, and biological oxygen consumption of the sediments in the Ziya River watershed, China.

    Science.gov (United States)

    Rong, Nan; Shan, Baoqing

    2016-07-01

    Sediment oxygen demand (SOD) is a critical dissolved oxygen (DO) sink in many rivers. Understanding the relative contributions of the biological and chemical components of SOD would improve our knowledge of the potential environmental harm SOD could cause and allow appropriate management systems to be developed. A various inhibitors addition technique was conducted to measure the total, chemical, and biological SOD of sediment samples from 13 sites in the Ziya River watershed, a severely polluted and anoxic river system in the north of China. The results showed that the major component of SOD was chemical SOD due to iron predominate. The ferrous SOD accounted for 21.6-78.9 % of the total SOD and 33.26-96.79 % of the chemical SOD. Biological SOD represented 41.13 % of the overall SOD averagely. Sulfide SOD accounted for 1.78-45.71 % of the total SOD and it was the secondary predominate of the chemical SOD. Manganous SOD accounted for 1.2-16.6 % of the total SOD and it was insignificant at many sites. Only four kinds of benthos were collected in the Ziya River watershed, resulting from the low DO concentration in the sediment surface due to SOD. This study would be helpful for understanding and preventing the potential sediment oxygen depletion during river restoration.

  2. Benthic Oxygen Demand in Three Former Salt Ponds Adjacent to South San Francisco Bay, California

    Science.gov (United States)

    Topping, Brent R.; Kuwabara, James S.; Athearn, Nicole D.; Takekawa, John Y.; Parcheso, Francis; Henderson, Kathleen D.; Piotter, Sara

    2009-01-01

    Sampling trips were coordinated in the second half of 2008 to examine the interstitial water in the sediment and the overlying bottom waters of three shallow (average depth 2 meters). The water column at all deployment sites was monitored with dataloggers for ancillary water-quality parameters (including dissolved oxygen, salinity, specific conductance, temperature, and pH) to facilitate the interpretation of benthic-flux results. Calculated diffusive benthic flux of dissolved (0.2-micron filtered) oxygen was consistently negative (that is, drawn from the water column into the sediment) and ranged between -0.5 x 10-6 and -37 x 10-6 micromoles per square centimeter per second (site averages depicted in table 2). Assuming pond areas of 1.0, 1.4, and 2.3 square kilometers for ponds A16, A14, and A3W, respectively, this converts to an oxygen mass flux into the ponds' sediment ranging from -1 to -72 kilograms per day. Diffusive oxygen flux into the benthos (listed as negative) was lowest in pond A14 (-0.5 x 10-6 to -1.8 x 10-6 micromoles per square centimeter per second) compared with diffusive flux estimates for ponds A16 and A3W (site averages -26 x 10-6 to -35 x 10-6 and -34 x 10-6 to -37 x 10-6 micromoles per square centimeter per second, respectively). These initial diffusive-flux estimates are of the order of magnitude of those measured in the South Bay using core-incubation experiments (Topping and others, 2004), which include bioturbation and bioirrigation effects. Estimates of benthic oxygen demand reported herein, based on molecular diffusion, serve as conservative estimates of benthic flux because solute transport across the sediment-water interface can be enhanced by multidisciplinary processes including bioturbation, bioirrigation, ground-water advection, and wind resuspension (Kuwabara and others, 2009).

  3. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    2000-08-16

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  4. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  5. Chemical deuteration in neutron scattering: Demand, supply and impact

    International Nuclear Information System (INIS)

    Molecular deuteration significantly increases the options in structure function investigations using Neutron Scatteringand diffraction techniques. There have been limited global initiatives in the field of molecular deuteration where the majority of these programs focus on biological deuteration of proteins and lipids, while more complex deuterated small molecules haven’t been widely available to the neutron community. This has limited the experiments that can be performed, and formed a bottle-neck for advancing the applications of neutron scattering. In this paper we will discuss the recent advancements and the impact of deuteration on the research outcomes achieved by using deuterated molecules produced by the chemical deuteration laboratories at the National Deuteration Facility in the Bragg Institute, ANSTO. Recent high-impact case studies will be presented which reveal the exciting and diverse characterisation studies which are now available for the neutron community. We describe here the synthesis and application of deuterated organic molecules used to investigate complex nanoscale systems in the fields of molecular electronics, structural biology, and biotechnology. The chemical deuteration of surfactants, sugars, heterocyclic and aromatic compounds has made possible a wide range of investigations. This includes the study of (i) the localisation of sugars in lipid membranes using neutron diffraction to give insights into cryoprotective mechanisms, (ii) the pH-responsiveness of the assembly of lipid digestion products in biologically relevant systems, and (iii) the structure and host-guest properties of metal-organic frameworks (MOFs) using neutron diffraction.

  6. Soft Computing of Biochemical Oxygen Demand Using an Improved T-S Fuzzy Neural Network☆

    Institute of Scientific and Technical Information of China (English)

    Junfei Qiao; Wei Li; Honggui Han

    2014-01-01

    It is difficult to measure the online values of biochemical oxygen demand (BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the knowledge representation ability and learning capability, an improved T–S fuzzy neural network (TSFNN) is in-troduced to predict BOD values by the soft computing method. In this improved TSFNN, a K-means clustering is used to initialize the structure of TSFNN, including the number of fuzzy rules and parameters of membership function. For training TSFNN, a gradient descent method with the momentum item is used to adjust antecedent parameters and consequent parameters. This improved TSFNN is applied to predict the BOD values in effluent of the wastewater treatment process. The simulation results show that the TSFNN with K-means clustering algorithm can measure the BOD values accurately. The algorithm presents better approximation performance than some other methods.

  7. Improvement of the analysis of the biochemical oxygen demand (BOD) of Mediterranean seawater by seeding control.

    Science.gov (United States)

    Simon, F Xavier; Penru, Ywann; Guastalli, Andrea R; Llorens, Joan; Baig, Sylvie

    2011-07-15

    Biochemical oxygen demand (BOD) is a useful parameter for assessing the biodegradability of dissolved organic matter in water. At the same time, this parameter is used to evaluate the efficiency with which certain processes remove biodegradable natural organic matter (NOM). However, the values of BOD in seawater are very low (around 2 mgO(2)L(-1)) and the methods used for its analysis are poorly developed. The increasing attention given to seawater desalination in the Mediterranean environment, and related phenomena such as reverse osmosis membrane biofouling, have stimulated interest in seawater BOD close to the Spanish coast. In this study the BOD analysis protocol was refined by introduction of a new step in which a critical quantity of autochthonous microorganisms, measured as adenosine triphosphate, is added. For the samples analyzed, this improvement allowed us to obtain reliable and replicable BOD measurements, standardized with solutions of glucose-glutamic acid and acetate. After 7 days of analysis duration, more than 80% of ultimate BOD is achieved, which in the case of easily biodegradable compounds represents nearly a 60% of the theoretical oxygen demand. BOD(7) obtained from the Mediterranean Sea found to be 2.0±0.3 mgO(2)L(-1) but this value decreased with seawater storage time due to the rapid consumption of labile compounds. No significant differences were found between two samples points located on the Spanish coast, since their organic matter content was similar. Finally, the determination of seawater BOD without the use of inoculum may lead to an underestimation of BOD. PMID:21645736

  8. Improvement of the analysis of the biochemical oxygen demand (BOD) of Mediterranean seawater by seeding control.

    Science.gov (United States)

    Simon, F Xavier; Penru, Ywann; Guastalli, Andrea R; Llorens, Joan; Baig, Sylvie

    2011-07-15

    Biochemical oxygen demand (BOD) is a useful parameter for assessing the biodegradability of dissolved organic matter in water. At the same time, this parameter is used to evaluate the efficiency with which certain processes remove biodegradable natural organic matter (NOM). However, the values of BOD in seawater are very low (around 2 mgO(2)L(-1)) and the methods used for its analysis are poorly developed. The increasing attention given to seawater desalination in the Mediterranean environment, and related phenomena such as reverse osmosis membrane biofouling, have stimulated interest in seawater BOD close to the Spanish coast. In this study the BOD analysis protocol was refined by introduction of a new step in which a critical quantity of autochthonous microorganisms, measured as adenosine triphosphate, is added. For the samples analyzed, this improvement allowed us to obtain reliable and replicable BOD measurements, standardized with solutions of glucose-glutamic acid and acetate. After 7 days of analysis duration, more than 80% of ultimate BOD is achieved, which in the case of easily biodegradable compounds represents nearly a 60% of the theoretical oxygen demand. BOD(7) obtained from the Mediterranean Sea found to be 2.0±0.3 mgO(2)L(-1) but this value decreased with seawater storage time due to the rapid consumption of labile compounds. No significant differences were found between two samples points located on the Spanish coast, since their organic matter content was similar. Finally, the determination of seawater BOD without the use of inoculum may lead to an underestimation of BOD.

  9. Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra

    OpenAIRE

    Dae-Hee Park; Tae-Hwan Lee; Bo-Mi Lee; Jin Hur

    2010-01-01

    Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the es...

  10. Influence of oxygen on the chemical stage of radiobiological mechanism

    Science.gov (United States)

    Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel

    2016-07-01

    The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too.

  11. Multi-objective optimization of environmentally conscious chemical supply chains under demand uncertainty

    OpenAIRE

    Ruiz Femenía, Rubén; Guillén Gosálbez, Gonzalo; Jiménez, Laureano; Caballero Suárez, José Antonio

    2013-01-01

    In this work, we analyze the effect of demand uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear program (MILP) with the unique feature of incorporating explicitly the demand uncertainty using scenarios with given probability of occurrence. The environmental performance is quantified following life cycle assessment (LCA) ...

  12. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand.

    Science.gov (United States)

    Abrevaya, Ximena C; Sacco, Natalia J; Bonetto, Maria C; Hilding-Ohlsson, Astrid; Cortón, Eduardo

    2015-01-15

    Microbial fuel cells (MFCs) are bio-electrochemical devices, where usually the anode (but sometimes the cathode, or both) contains microorganisms able to generate and sustain an electrochemical gradient which is used typically to generate electrical power. In the more studied set-up, the anode contains heterotrophic bacteria in anaerobic conditions, capable to oxidize organic molecules releasing protons and electrons, as well as other by-products. Released protons could reach the cathode (through a membrane or not) whereas electrons travel across an external circuit originating an easily measurable direct current flow. MFCs have been proposed fundamentally as electric power producing devices or more recently as hydrogen producing devices. Here we will review the still incipient development of analytical uses of MFCs or related devices or set-ups, in the light of a non-restrictive MFC definition, as promising tools to asset water quality or other measurable parameters. An introduction to biological based analytical methods, including bioassays and biosensors, as well as MFCs design and operating principles, will also be included. Besides, the use of MFCs as biochemical oxygen demand sensors (perhaps the main analytical application of MFCs) is discussed. In a companion review (Part 2), other new analytical applications are reviewed used for toxicity sensors, metabolic sensors, life detectors, and other proposed applications. PMID:24856922

  13. Development and characterization of microbial biosensors for evaluating low biochemical oxygen demand in rivers.

    Science.gov (United States)

    Chee, Gab-Joo

    2013-12-15

    Five microorganisms were used to construct a biosensor for the evaluation of low biochemical oxygen demand (BOD) in rivers. Characterization and comparison of BOD biosensors were performed using two standard solutions: glucose and glutamic acid (GGA) and artificial wastewater (AWW). Pseudomonas putida SG10 demonstrated the best response when using AWW. Trichosporon cutaneum IFO10466, however, had an extremely poor response. When evaluating the biosensor response to each component of AWW, all of the microorganisms except T. cutaneum displayed the highest response to tannic acid. In a comparison of the two standard solutions for all the microorganisms, the biosensor responses of GGA were approximately three times higher than those of AWW were. In the BOD determination of environmental samples, the biosensor BOD values evaluated using AWW were slightly lower or equivalent to BOD5 values, whereas the biosensor BOD values evaluated using GGA were considerably lower. These results suggest that GGA is suitable for the detection of high BOD in industrial wastewaters and factory effluents, while AWW is suitable for the detection of low BOD in rivers. PMID:24209354

  14. A Novel Biosensor for the Rapid Determination of Biochemical Oxygen Demand

    Institute of Scientific and Technical Information of China (English)

    JIN-SONG CHEN; LI-SHENG ZHANG; JIAN-LONG WANG

    2007-01-01

    Objective To investigate the function of a novel biosensor used for the rapid determination of biochemical oxygen demand (BOD) which is developed by our research group based on suspended immobilized microbial cell system in a completely mixed determining chamber as a substitute of the traditional membrane system. Methods Activated sludge was immobilized by PVA gel and used as a bio-sensing element. The novel biosensor was used to measure the short time BOD value and the conventional cultivation method was used for BOD5 measurement. Results A linear relationship was observed for the difference between the current and the concentration of glucose-glutamic acid (GGA) solution below 200mg/L with a correlation coefficient of 0.995. The optimal response of the sensor was obtained at pH 7.0 and 30℃. The sensor response was within 15 min and was reproducible within ±5% of the mean in a series of eight samples containing 75 mg/L BOD using standard GGA solution. The novel sensor response was found to be fairly constant over a period of 0days, with ±5% fluctuations. Conclusion A relatively good agreement is found between BOD estimated by the novel BOD biosensor and that determined by the conventional 5-day BOD method. This novel BOD biosensor has good sensitivity, stability and reproducibility.

  15. Development and characterization of microbial biosensors for evaluating low biochemical oxygen demand in rivers.

    Science.gov (United States)

    Chee, Gab-Joo

    2013-12-15

    Five microorganisms were used to construct a biosensor for the evaluation of low biochemical oxygen demand (BOD) in rivers. Characterization and comparison of BOD biosensors were performed using two standard solutions: glucose and glutamic acid (GGA) and artificial wastewater (AWW). Pseudomonas putida SG10 demonstrated the best response when using AWW. Trichosporon cutaneum IFO10466, however, had an extremely poor response. When evaluating the biosensor response to each component of AWW, all of the microorganisms except T. cutaneum displayed the highest response to tannic acid. In a comparison of the two standard solutions for all the microorganisms, the biosensor responses of GGA were approximately three times higher than those of AWW were. In the BOD determination of environmental samples, the biosensor BOD values evaluated using AWW were slightly lower or equivalent to BOD5 values, whereas the biosensor BOD values evaluated using GGA were considerably lower. These results suggest that GGA is suitable for the detection of high BOD in industrial wastewaters and factory effluents, while AWW is suitable for the detection of low BOD in rivers.

  16. Estimation of Biochemical Oxygen Demand Based on Dissolved Organic Carbon, UV Absorption, and Fluorescence Measurements

    Directory of Open Access Journals (Sweden)

    Jihyun Kwak

    2013-01-01

    Full Text Available Determination of 5-d biochemical oxygen demand (BOD5 is the most commonly practiced test to assess the water quality of surface waters and the waste loading. However, BOD5 is not a good parameter for the control of water or wastewater treatment processes because of its long test period. It is very difficult to produce consistent and reliable BOD5 results without using careful laboratory quality control practices. This study was performed to develop software sensors to predict the BOD5 of river water and wastewater. The software sensors were based on the multiple regression analysis using the dissolved organic carbon (DOC concentration, UV light absorbance at 254 nm, and synchronous fluorescence spectra. River water samples and wastewater treatment plant (WWTP effluents were collected at 1-hour interval to evaluate the feasibility of the software sensors. In short, the software sensors developed in this study could well predict the BOD5 of river water (r=0.78 and for the WWTP effluent (r=0.90.

  17. Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand

    Science.gov (United States)

    Casey, Darren P; Joyner, Michael J

    2012-01-01

    Hypoxia can have profound influences on the circulation. In humans, acute exposure to moderate hypoxia has been demonstrated to result in vasodilatation in the coronary, cerebral, splanchnic and skeletal muscle vascular beds. The combination of submaximal exercise and hypoxia produces a ‘compensatory’ vasodilatation and augmented blood flow in contracting skeletal muscles relative to the same level of exercise under normoxic conditions. This augmented vasodilatation exceeds that predicted by a simple sum of the individual dilator responses to hypoxia alone and normoxic exercise. Additionally, this enhanced hypoxic exercise hyperaemia is proportional to the hypoxia-induced fall in arterial oxygen (O2) content, thus preserving muscle O2 delivery and ensuring it is matched to demand. Several vasodilator pathways have been proposed and examined as likely regulators of skeletal muscle blood flow in response to changes in arterial O2 content. The purpose of this review is to put into context the present evidence regarding mechanisms responsible for the compensatory vasodilatation observed during hypoxic exercise in humans. Along these lines, this review will highlight the interactions between various local metabolic and endothelial derived substances that influence vascular tone during hypoxic exercise. PMID:22988134

  18. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  19. Measurement and chemical kinetic model predictions of detonation cell size in methanol-oxygen mixtures

    Science.gov (United States)

    Eaton, R.; Zhang, B.; Bergthorson, J. M.; Ng, H. D.

    2012-03-01

    In this study, detonation cell sizes of methanol-oxygen mixtures are experimentally measured at different initial pressures and compositions. Good agreement is found between the experiment data and predictions based on the chemical length scales obtained from a detailed chemical kinetic model. To assess the detonation sensitivity in methanol-oxygen mixtures, the results are compared with those of hydrogen-oxygen and methane-oxygen mixtures. Based on the cell size comparison, it is shown that methanol-oxygen is more detonation sensitive than methane-oxygen but less sensitive than hydrogen-oxygen.

  20. Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling

    International Nuclear Information System (INIS)

    Highlights: • Manganese-based combined oxides are examined for chemical-looping combustion applications. • Promising compositions includes (MnyFe1−y)Ox, (MnySi1−y)Ox and CaMnO3−δ. • Study includes thermodynamic analysis and overview of current experimental experiences. - Abstract: Oxygen-carrier materials for chemical-looping with oxygen uncoupling (CLOU) must be capable of taking up and releasing gas-phase O2 at conditions relevant for generation of heat and power. In principle, the capability of a certain material to do so is determined by its thermodynamic properties. This paper provides an overview of the possibility to design feasible oxygen carrier materials from combined oxides, i.e. oxides with crystal structures that include several different cations. Relevant literature is reviewed and the thermodynamic properties and key characteristics of a few selected combined oxide systems are calculated and compared to experimental data. The general challenges and opportunities of the combined oxide concept are discussed. The focus is on materials with manganese as one of its components and the following families of compounds and solid solutions have been considered: (MnyFe1−y)Ox, (MnySi1−y)Ox, CaMnO3−δ, (NiyMn1−y)Ox, (MnyCu1−y)Ox and (MnyMg1−y)Ox. In addition to showing promise from a thermodynamic point of view, reactivity data from experimental investigations suggests that the rate of O2 release can be high for all systems. Thus these combined oxides could also be very suitable for practical application

  1. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor.

    Science.gov (United States)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha

    2014-03-25

    The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion(®). The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion(®), resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  2. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2015-09-01

    Full Text Available Chemical-looping technology is one of the promising CO2 capture technologies. It generates a CO2 enriched flue gas, which will greatly benefit CO2 capture, utilization or sequestration. Both chemical-looping combustion (CLC and chemical-looping gasification (CLG have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coal may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA has been widely used for the development of oxygen carriers (e.g., oxide reactivity. Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC and Chemical-Looping with Oxygen Uncoupling (CLOU. The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.

  3. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    Science.gov (United States)

    Feaster, Toby D.; Conrads, Paul A.

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  4. Removal of oxygen demand and nitrogen using different particle-sizes of anthracite coated with nine kinds of LDHs for wastewater treatment

    Science.gov (United States)

    Zhang, Xiangling; Guo, Lu; Wang, Yafen; Ruan, Congying

    2015-10-01

    This paper reports the application of anthracite particles of different sizes and coated with nine kinds of layered double hydroxides (LDHs) varying in MII-MIII cations, as alternative substrates in the simulated vertical-flow constructed wetland columns. Effects of LDHs-coating and particle size of modified anthracites were examined to evaluate their abilities in removing oxygen demand and nitrogen from sewage wastewater. Results showed that LDHs modification effectively enhanced the removal of nitrogen and organics. The removal efficiencies of total nitrogen (TN) , ammonia and chemical oxygen demand (COD) were best improved by 28.5%, 11.9% and 4.1% for the medium particle size (1-3 mm), followed by 9.2%, 5.5% and 13.6% for the large size (3-5 mm), respectively. Only TN removal was improved up to 16.6% for the small particle size (0.5-1 mm). Nitrate tended to accumulate and fluctuate greatly across all the treatments, probably due to the dominancy of aerobic condition in the vertical-flow columns. Overall, MgFe-LDHs was selected as the best-modified coating for anthracite. The results suggested LDHs modification would be one of the promising strategies to provide new-types of highly efficient and lasting wetland substrates.

  5. 76 FR 12556 - Airworthiness Directives; Various Transport Category Airplanes Equipped With Chemical Oxygen...

    Science.gov (United States)

    2011-03-08

    ... 12866, (2) Is not a ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034... Category Airplanes Equipped With Chemical Oxygen Generators Installed in a Lavatory AGENCY: Federal... affected airplanes identified above. This AD requires modifying the chemical oxygen generators in...

  6. Influence of biological oxygen demand degradation patterns on water-quality modeling for rivers running through urban areas.

    Science.gov (United States)

    Fan, Chihhao; Wang, Wei-Shen

    2008-10-01

    Water-quality modeling has been used as a support tool for water-resources management. The Streeter-Phelps (SP) equation is one often-used algorithm in river water-quality simulation because of its simplicity and ease in use. To characterize the river dissolved oxygen (DO) sag profile, it only considers that the first-order biological oxygen demand (BOD) degradation and atmospheric reaeration are the sink and source in a river, respectively. In the river water-quality calculation, the assumption may not always provide satisfactory simulation due to an inappropriate description of BOD degradation. In the study, various patterns of BOD degradation were combined with the oxygen reaeration to simulate the DO sag profile in a river. Different BOD degradation patterns used include the first-order decay, mixed second-order decay, and oxygen-inhibition decay. The results shows that the oxygen-inhibition SP equation calculates higher BOD and DO concentration, while the mixed second SP equation calculates the least among the three tested models. In river-water calculation of Keelung River, the SP and oxygen-inhibition SP equations calculate similar BOD and DO concentrations, and the mixed second SP equation calculates the least BOD and DO concentration. The pollution loading of BOD and atmospheric reaeration constant are the two important factors that have significant impacts on aqueous DO concentration. In the field application, it is suggested that the mixed second SP equation be employed in water-quality simulation when the monitoring data exhibits a faster trend in BOD decay. The oxygen-inhibition SP equation may calculate the water quality more accurately when BOD decay is slower.

  7. Control of voluntary feed intake in fish: a role for dietary oxygen demand in Nile tilapia (Oreochromis niloticus) fed diets with different macronutrient profiles.

    Science.gov (United States)

    Saravanan, S; Geurden, I; Figueiredo-Silva, A C; Kaushik, S J; Haidar, M N; Verreth, J A J; Schrama, J W

    2012-10-28

    It has been hypothesised that, at non-limiting water oxygen conditions, voluntary feed intake (FI) in fish is limited by the maximal physiological capacity of oxygen use (i.e. an 'oxystatic control of FI in fish'). This implies that fish will adjust FI when fed diets differing in oxygen demand, resulting in identical oxygen consumption. Therefore, FI, digestible energy (DE) intake, energy balance and oxygen consumption were monitored at non-limiting water oxygen conditions in Nile tilapia fed diets with contrasting macronutrient composition. Diets were formulated in a 2 × 2 factorial design in order to create contrasts in oxygen demand: two ratios of digestible protein (DP):DE ('high' v. 'low'); and a contrast in the type of non-protein energy source ('starch' v. 'fat'). Triplicate groups of tilapia were fed each diet twice daily to satiation for 48 d. FI (g DM/kg(0·8) per d) was significantly lower (9·5%) in tilapia fed the starch diets relative to the fat diets. The DP:DE ratio affected DE intakes (P demand of these diets. Indeed, DE intakes of fish showed an inverse linear relationship with dietary oxygen demand (DOD; R 2 0·81, P theory), oxygen consumption of fish was identical among three out of the four diets. Altogether, these results demonstrate the involvement of metabolic oxygen use and DOD in the control of FI in tilapia.

  8. Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments

    DEFF Research Database (Denmark)

    Reader, H. E.; Stedmon, C. A.; Kritzberg, E. S.

    2014-01-01

    on the same order of magnitude for all three catchments. Biological oxygen demand (BOD) was used as a proxy for the lability of carbon in the system. The range of BOD values was similar for all three catchments, however, the ratio of BOD to DOC (an indication of the labile fraction) in Ume river was four...... times higher than in the southern two catchments. Total annual BOD loading to the Baltic Sea was twice as high in the northern catchment than in the two southern catchments. Lower winter temperatures and preservation of organic matter in the northern catchment combined with an intense spring flood help...

  9. Raw material demand and sourcing options for the development for a bio-based chemical industry in Europe : Part 1 : Estimation of maximum demand

    NARCIS (Netherlands)

    Bos, H.L.; Sanders, J.P.M.

    2013-01-01

    This perspective presents an estimation of the future demand for biomass of the chemical industry in Europe, provided that naphtha, the present feedstock of the petrochemical industry, is fully replaced by biomass. Data are based on the Eurostat data on manufactured goods for EU27 in 2007. Two diffe

  10. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  11. Discriminating between west-side sources of nutrients and organiccarbon contributing to algal growth and oxygen demand in the San JoaquinRiver

    Energy Technology Data Exchange (ETDEWEB)

    Wstringfellow@lbl.gov

    2002-07-24

    The purpose of this study was to investigate the Salt and Mud Slough tributaries as sources of oxygen demanding materials entering the San Joaquin River (SJR). Mud Slough and Salt Slough are the main drainage arteries of the Grasslands Watershed, a 370,000-acre area west of the SJR, covering portions of Merced and Fresno Counties. Although these tributaries of the SJR are typically classified as agricultural, they are also heavily influenced by Federal, State and private wetlands. The majority of the surface water used for both irrigation and wetland management in the Grassland Watershed is imported from the Sacramento-San Joaquin Delta through the Delta-Mendota Canal. In this study, they measured algal biomass (as chlorophyll a), organic carbon, ammonia, biochemical oxygen demand (BOD), and other measures of water quality in drainage from both agricultural and wetland sources at key points in the Salt Slough and Mud Slough tributaries. This report includes the data collected between June 16th and October 4th, 2001. The objective of the study was to compare agricultural and wetland drainage in the Grasslands Watershed and to determine the relative importance of each return flow source to the concentration and mass loading of oxygen demanding materials entering the SJR. Additionally, they compared the quality of water exiting our study area to water entering our study area. This study has demonstrated that Salt and Mud Sloughs both contribute significant amounts of oxygen demand to the SJR. Together, these tributaries could account for 35% of the oxygen demand observed below their confluence with the SJR. This study has characterized the sources of oxygen demanding materials entering Mud Slough and evaluated the oxygen demand conditions in Salt Slough. Salt Slough was found to be the dominant source of oxygen demand load in the study area, because of the higher flows in this tributary. The origins of oxygen demand in Salt Slough still remain largely uninvestigated

  12. A 400 kyr record of combustion oxygen demand in the western equatorial Pacific: Evidence for a precessionally forced climate response

    Science.gov (United States)

    Perks, Helen M.; Keeling, Ralph F.

    1998-02-01

    We have developed a combustion analysis technique for sediments which measures the amount of O2 consumed by the reduced species. We have measured this quantity, which we call "combustion oxygen demand (COD)," on a carbonate-rich sediment core from the Ontong-Java Plateau in the western equatorial Pacific back to marine oxygen isotope stage 11. The precision of the COD technique is ±6.3 µmol O2 g-1, which corresponds to ˜±0.0076% wt Corg, assuming oxidation of organic carbon dominates the signal. The COD time series is characterized by values which are about twice as high during glacials as during interglacials, the largest shift occurring from 401 µmol O2 g-1 in midstage 6 to 144 µmol O2 g-1 at 5e, and is coherent with the oxygen isotope curve of Globigerinoides sacculifer in the same core at the Milankovitch frequencies of 100 and 41 kyr. Pronounced variations in the 19-23 kyr band suggest that the climate of the western equatorial Pacific is sensitive to precessional forcing, a response not apparent from other records obtained in this region.

  13. Active packaged lamb with oxygen scavenger/carbon dioxide emitter sachet: physical-chemical and microbiological stability during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Marco Antonio Trindade

    2013-09-01

    Full Text Available Lamb meat has been commercialized in Brazil almost exclusively as a frozen product due to the longer shelf life provided by freezing when compared to refrigeration. However, as a result of the current trend of increased demand for convenience products, a need has emerged for further studies to facilitate the marketing of refrigerated lamb cuts. The aim of the present study was to evaluate the contribution of active packaging technology in extending the shelf life of lamb loins (Longissimus lumborum stored under refrigeration (1±1 ° C when compared to the traditional vacuum packaging. For this purpose, two kinds of sachets were employed: oxygen scavenger sachet and oxygen scavenger/carbon dioxide emitter sachet. Experiments were conducted in three treatments: 1 Vacuum (Control, 2 Vacuum + oxygen scavenger sachet and 3 Vacuum + oxygen scavenger/carbon dioxide emitter sachet. Microbiological (counts of anaerobic psychrotrophs, coliform at 45 ° C, coagulase-positive staphylococci, Salmonella and lactic acid bacteria and physical-chemical (thiobarbituric acid reactive substances, objective color, pH value, water loss from cooking and shear force analyses were carried out weekly for a total storage period of 28 days. The experiment was performed three times for all treatments. Results showed that the lamb meat remained stable with respect to the majority of the evaluated physical and chemical indexes and remained within the standards established by Brazilian legislation for pathogenic microorganisms throughout the storage period in all three packaging systems. However, all treatments presented elevated counts of anaerobic psychrotrophic microorganisms and lactic acid bacteria, reaching values above 10(7 CFU/g at 28 days of storage. Thus, under the conditions tested, neither the oxygen scavenger sachet nor the dual function sachet (oxygen scavenger/carbon dioxide emitter were able to extend the shelf life of refrigerated lamb loin when added to this

  14. Metal Oxide Nanoparticle Growth on Graphene via Chemical Activation with Atomic Oxygen

    OpenAIRE

    Johns, James E.; Alaboson, Justice M. P.; Patwardhan, Sameer; Ryder, Christopher R.; Schatz, George C.; Hersam, Mark C.

    2013-01-01

    Chemically interfacing the inert basal plane of graphene with other materials has limited the development of graphene-based catalysts, composite materials, and devices. Here, we overcome this limitation by chemically activating epitaxial graphene on SiC(0001) using atomic oxygen. Atomic oxygen produces epoxide groups on graphene, which act as reactive nucleation sites for zinc oxide nanoparticle growth using the atomic layer deposition precursor diethyl zinc. In particular, exposure of epoxid...

  15. Thermal Analysis and Investigation of NiO-Based Oxygen Carriers for Chemical-Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jerndal, Erik, e-mail: erik.jerndal@chalmers.se

    2009-03-15

    Capture and storage of CO{sub 2} can be used to reduce greenhouse gas emissions from combustion of fossil fuels. Chemical-looping combustion is a two-step combustion process where CO{sub 2} is obtained in a separate stream, ready for compression and storage. The technology uses circulating oxygen carriers to transfer oxygen from an air reactor to a fuel reactor, thus avoiding an energy consuming gas separation unit. A thermal analysis of the process using a large number of possible oxygen carriers was performed by simulating chemical reactions. Based on the ability of the oxygen carriers to convert different gaseous fuels, stability in air and melting temperature some metal oxides based on Ni, Cu, Fe, Mn, Co, W and sulphates of Ba, Sr and Ca showed good thermodynamic properties and could be feasible as oxygen carriers. The promising systems were investigated further with respect to temperature changes in the fuel reactor as well as possible formation of carbon, sulphides and sulphates which may deactivate the oxygen carriers. Oxygen carriers of NiO, supported by NiAl{sub 2}O{sub 4}, were prepared and investigated experimentally with respect to parameters important for chemical-looping combustion. These oxygen carriers were based on commercially available raw materials in contrast to most of the previously tested oxygen carriers, which have been prepared from pure chemicals. Further, it was investigated if spray-drying, which is a production method suitable for large-scale particle preparation, can be used to produce high performing oxygen carriers instead of the small-scale freeze-granulation method. Generally, materials prepared from commercially available raw material showed high reactivity with methane and oxygen. Oxygen carriers prepared by spray-drying, displayed a remarkable similarity when compared to oxygen carriers prepared from the same starting material by freeze-granulation, both regarding physical properties and reactivity. Further, the up-scaling of

  16. Syngas Generation from Methane Using a Chemical-Looping Concept: A Review of Oxygen Carriers

    Directory of Open Access Journals (Sweden)

    Kongzhai Li

    2013-01-01

    Full Text Available Conversion of methane to syngas using a chemical-looping concept is a novel method for syngas generation. This process is based on the transfer of gaseous oxygen source to fuel (e.g., methane by means of a cycling process using solid oxides as oxygen carriers to avoid direct contact between fuel and gaseous oxygen. Syngas is produced through the gas-solid reaction between methane and solid oxides (oxygen carriers, and then the reduced oxygen carriers can be regenerated by a gaseous oxidant, such as air or water. The oxygen carrier is recycled between the two steps, and the syngas with a ratio of H2/CO = 2.0 can be obtained successively. Air is used instead of pure oxygen allowing considerable cost savings, and the separation of fuel from the gaseous oxidant avoids the risk of explosion and the dilution of product gas with nitrogen. The design and elaboration of suitable oxygen carriers is a key issue to optimize this method. As one of the most interesting oxygen storage materials, ceria-based and perovskite oxides were paid much attention for this process. This paper briefly introduced the recent research progresses on the oxygen carriers used in the chemical-looping selective oxidation of methane (CLSOM to syngas.

  17. Heart rate and oxygen demand of powered exoskeleton–assisted walking in persons with paraplegia

    Directory of Open Access Journals (Sweden)

    Pierre Asselin, MS

    2015-06-01

    Full Text Available Historically, persons with paralysis have limited options for overground ambulation. Recently, powered exoskeletons, which are systems that translate the user’s body movements to activate motors that move the lower limbs through a predetermined gait pattern, have become available. As part of an ongoing clinical study (NCT01454570, eight nonambulatory persons with paraplegia were trained to ambulate with a powered exoskeleton. Measurements of oxygen uptake (VO2 and heart rate (HR were recorded for 6 min each during each maneuver while sitting, standing, and walking. The average value of VO2 during walking (11.2 +/– 1.7 mL/kg/min was significantly higher than for sitting and standing (3.5 +/– 0.4 and 4.3 +/– 0.9 mL/kg/min, respectively; p < 0.001. The HR response during walking was significantly greater than that of either sitting or standing (118 +/– 21 vs 70 +/– 10 and 81 +/– 12 beats per minute, respectively; p < 0.001. Persons with paraplegia were able to ambulate efficiently using the powered exoskeleton for overground ambulation, providing the potential for functional gain and improved fitness.

  18. Chemical Constraints on the Oxygen Abundances in Jupiter and Saturn

    CERN Document Server

    Wang, Dong

    2012-01-01

    We perform a comparative analysis of the chemical kinetics of CO and $\\rm PH_3$ in Jupiter and Saturn to assess the full set of constraints available on the troposphere water abundance in the two giant planets. For carbon monoxide we employ both a widely used CO kinetic scheme from Yung et al, and a newly identified CO chemical scheme from Visscher and Moses. For $\\rm PH_3$ chemical scheme, we use the same chemical scheme as in Visscher and Fegley. Yung's chemical scheme for CO yields a water enrichment of 0.95 - 23.0 times solar abundance on Jupiter, and an upper limit of 14.0 for Saturn. Visscher's chemical scheme in contrast produces a water enrichment of 0.24 - 2.6 times solar abundance in Jupiter, and for Saturn an upper limit for water enrichment of 8.0. From this scheme, which takes advantage of the most up-to-date kinetics, we preclude high water enrichments on Jupiter and Saturn, and show that the kinetics approach yields Jovian bulk abundance in which values of C/O elevated relative to solar are adm...

  19. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasinski, Slawomir, E-mail: slawomir.kasinski@uwm.edu.pl; Wojnowska-Baryla, Irena

    2014-02-15

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.

  20. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax).

    Science.gov (United States)

    Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy

    2016-01-01

    The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower U CAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species. PMID:27382468

  1. Gas production, oxygen demand and microbial activity in sediments of wetlands constructed with oil sands mine tailings

    International Nuclear Information System (INIS)

    Changes in sediment oxygen demand (SOD) in 2 reference and 9 oil sands process material (OSPM) impacted wetlands were evaluated. The wetlands were constructed in 1992. SOD was measured by determining the rate of O2 depletion in in-situ test chambers placed on the sediment surface within the test pond areas. The study showed that SOD measurements conducted in 2008-2009 showed a slower rate of oxygen consumption than measurements conducted in 1993. Results suggested that sediment-associated reducing compounds were depleted. Carbon dioxide (CO2) was dominantly respired by methanogens using the carbon as a terminal electron acceptor in conjunction with hydrogen to produce methane (CH4). Gases analyzed in situ from the wetland sediments suggested that OSPM-affected sediments promote the growth of methanogenic bacteria. Samples of evolved gas, pore water, and intact sediment cores were collected at each wetland site in order to determine if significant differences in biogeochemical composition have developed. Further research is being conducted to characterize the relationship between the microbes and the sediments of the reclaimed wetlands.

  2. The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand.

    Science.gov (United States)

    Boulet, Lindsey M; Stembridge, Mike; Tymko, Michael M; Tremblay, Joshua C; Foster, Glen E

    2016-08-01

    In humans, coronary blood flow is tightly regulated by microvessels within the myocardium to match myocardial energy demand. However, evidence regarding inherent sensitivity of the microvessels to changes in arterial partial pressure of carbon dioxide and oxygen is conflicting because of the accompanied changes in myocardial energy requirements. This study aimed to investigate the changes in coronary blood velocity while manipulating partial pressures of end-tidal CO2 (Petco2) and O2 (Peto2). It was hypothesized that an increase in Petco2 (hypercapnia) or decrease in Peto2 (hypoxia) would result in a significant increase in mean blood velocity in the left anterior descending artery (LADVmean) due to an increase in both blood gases and energy demand associated with the concomitant cardiovascular response. Cardiac energy demand was assessed through noninvasive measurement of the total left ventricular mechanical energy. Healthy subjects (n = 13) underwent a euoxic CO2 test (Petco2 = -8, -4, 0, +4, and +8 mmHg from baseline) and an isocapnic hypoxia test (Peto2 = 64, 52, and 45 mmHg). LADVmean was assessed using transthoracic Doppler echocardiography. Hypercapnia evoked a 34.6 ± 8.5% (mean ± SE; P < 0.01) increase in mean LADVmean, whereas hypoxia increased LADVmean by 51.4 ± 8.8% (P < 0.05). Multiple stepwise regressions revealed that both mechanical energy and changes in arterial blood gases are important contributors to the observed changes in LADVmean (P < 0.01). In summary, regulation of the coronary vasculature in humans is mediated by metabolic changes within the heart and an inherent sensitivity to arterial blood gases.

  3. The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand.

    Science.gov (United States)

    Boulet, Lindsey M; Stembridge, Mike; Tymko, Michael M; Tremblay, Joshua C; Foster, Glen E

    2016-08-01

    In humans, coronary blood flow is tightly regulated by microvessels within the myocardium to match myocardial energy demand. However, evidence regarding inherent sensitivity of the microvessels to changes in arterial partial pressure of carbon dioxide and oxygen is conflicting because of the accompanied changes in myocardial energy requirements. This study aimed to investigate the changes in coronary blood velocity while manipulating partial pressures of end-tidal CO2 (Petco2) and O2 (Peto2). It was hypothesized that an increase in Petco2 (hypercapnia) or decrease in Peto2 (hypoxia) would result in a significant increase in mean blood velocity in the left anterior descending artery (LADVmean) due to an increase in both blood gases and energy demand associated with the concomitant cardiovascular response. Cardiac energy demand was assessed through noninvasive measurement of the total left ventricular mechanical energy. Healthy subjects (n = 13) underwent a euoxic CO2 test (Petco2 = -8, -4, 0, +4, and +8 mmHg from baseline) and an isocapnic hypoxia test (Peto2 = 64, 52, and 45 mmHg). LADVmean was assessed using transthoracic Doppler echocardiography. Hypercapnia evoked a 34.6 ± 8.5% (mean ± SE; P < 0.01) increase in mean LADVmean, whereas hypoxia increased LADVmean by 51.4 ± 8.8% (P < 0.05). Multiple stepwise regressions revealed that both mechanical energy and changes in arterial blood gases are important contributors to the observed changes in LADVmean (P < 0.01). In summary, regulation of the coronary vasculature in humans is mediated by metabolic changes within the heart and an inherent sensitivity to arterial blood gases. PMID:27233761

  4. Increase in water column denitrification during the deglaciation controlled by oxygen demand in the eastern equatorial Pacific

    Directory of Open Access Journals (Sweden)

    P. Martinez

    2009-05-01

    Full Text Available Here we present organic export production and isotopic nitrogen results over the last 30 000 years from one core localized off Costa Rica (ODP Site 1242 on the leading edge of the oxygen minimum zone of the Eastern Tropical North Pacific. Marine export production reveals glacial-interglacial variations with low organic matter (total organic carbon and total nitrogen contents during warm intervals, twice more during cold episodes and double peaked maximum during the deglaciation, between ~15.5–18.5 and 11–13 ka BP. When this new export production record is compared with four nearby cores localized within the Eastern Pacific along the Equatorial divergence, a good agreement between all the cores is observed, with the major feature being a maximum of export during the early deglaciation. As for export production, water-column denitrification represented by sedimentary δ15N records along the Eastern tropical North and South Pacific between 15° N and 36° S is coherent as well over the last deglaciation period. The whole isotopic nitrogen profiles indicate that denitrification increased abruptly at 19 ka BP to a maximum during the early deglaciation, confirming a typical Antarctic timing. It is proposed that the increase in export production and then in subsurface oxygen demand lead to an intensification of water-column denitrification within the oxygen minimum zones in the easternmost Pacific at the time of the last deglaciation. The triggering mechanism would have been primarily linked to an increase in preformed nutrients contents feeding the Equatorial Undercurrent driven by the resumption of overturning in the Southern Ocean and the return of nutrients from the deep ocean to the sea-surface. An increase in equatorial wind-driven upwelling of sub-surface nutrient-rich waters could have played the role of an amplifier.

  5. A flow injection analysis system with encapsulated high-density Saccharomyces cerevisiae cells for rapid determination of biochemical oxygen demand.

    Science.gov (United States)

    Seo, Kyo Seong; Choo, Kwang Ho; Chang, Ho Nam; Park, Joong Kon

    2009-05-01

    The biochemical oxygen demand (BOD) determination was studied using a novel flow injection analysis (FIA) system with encapsulated Saccharomyces cerevisiae cells and an oxygen electrode and was compared with conventional 5-day BOD tests. S. cerevisiae cells were packed in a calcium alginate capsule at a dry cell weight of 250 g/l of capsule core. The level of dissolved oxygen (DO) was reduced due to the enhanced respiratory activity of the microbial cells when the injected nutrient passed through the bioreactor. The decrease in DO (DeltaDO) was intensified with the amount of microbial cells packed in the bioreactor. However, the specific DeltaDO decreased as the amount of cells loaded in the bioreactor increased. The DeltaDO value was dependent on the pH and temperature of the mobile phase and reached its maximum value at 35 degrees C and pH 7-8. Also, DeltaDO became larger at longer response times as the flow rate of the mobile phase decreased. The measurement of DeltaDO was repeated more than six times consecutively using a 20-ppm standard glucose and glutamic acid solution, which confirmed the reproducibility with a standard deviation of 0.95%. A strong linear correlation between DeltaDO and BOD was also observed. The 5-day BOD values of actual water and wastewater samples were in accordance with the BOD values obtained by this FIA method using encapsulated S. cerevisiae cells. Unlike the cell-immobilized bead system, there was no contamination of the bioreactor resulting from any leak of yeast cells from the sensor capsules during BOD measurements. PMID:19153729

  6. Kinetic bottlenecks to chemical exchange rates for deep-sea animals – Part 1: Oxygen

    Directory of Open Access Journals (Sweden)

    E. T. Peltzer

    2012-10-01

    Full Text Available Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the

  7. THE "CHEMICAL OXYGEN DEMAND / TOTAL VOLATILE ACIDS" RATIO AS AN ANAEROBIC TREATABILITY INDICATOR FOR LANDFILL LEACHATES

    Directory of Open Access Journals (Sweden)

    R. C. Contrera

    2015-03-01

    Full Text Available Abstract In some operational circumstances a fast evaluation of landfill leachate anaerobic treatability is necessary, and neither Biochemical Methane Potential nor BOD/COD ratio are fast enough. Looking for a fast indicator, this work evaluated the anaerobic treatability of landfill leachate from São Carlos-SP (Brazil in a pilot scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR. The experiment was conducted at ambient temperature in the landfill area. After the acclimation, at a second stage of operation, the AnSBBR presented efficiency above 70%, in terms of COD removal, utilizing landfill leachate without water dilution, with an inlet COD of about 11,000 mg.L-1, a TVA/COD ratio of approximately 0.6 and reaction time equal to 7 days. To evaluate the landfill leachate biodegradability variation over time, temporal profiles of concentration were performed in the AnSBBR. The landfill leachate anaerobic biodegradability was verified to have a direct and strong relationship to the TVA/COD ratio. For a TVA/CODTotal ratio lower than 0.20, the biodegradability was considered low, for ratios between 0.20 and 0.40 it was considered medium, and above 0.40 it was considered high.

  8. Penentuan Kadar COD (Chemical Oxygen Demand) Pada Limbah Cair Pabrik Kelapa Sawit, Pabrik Karet Dan Domestik

    OpenAIRE

    Nurhasanah

    2009-01-01

    Telah dilakukan penentuan kadar COD pada limbah cair pabrik kelapa sawit, industri karet, dan domestik dengan metode titrimetri. Dari hasil analisa COD diperoleh kadar limbah kelapa sawit sebesar 206,33mg/l, limbah industri karet sebesar 31,74 mg/l, dan limbah domestik sebesar 162,68 mg/l. dimana menurut Standart baku mutu yang telah ditetapkan oleh Menteri Lingkungan Hidup Nomor: Kep-51/MENLH/10/1995, kadar maksimum COD dalam air limbah industri kelapa sawit sebesar 350 mg/l, dalam indust...

  9. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  10. Constructed Wetlands Systems Batch: removal of Biochemical Oxygen Demand and pH regulation for treatment dairy effluent

    Directory of Open Access Journals (Sweden)

    Henrique Vieira de Mendonça

    2015-04-01

    Full Text Available This work assessed the effectiveness of using constructed wetlands (CW's to treat dairy effluent. The purpose of the research was to evaluate the influence of substrates and cultivated plants on the efficiency of Biochemical Oxygen Demand (BOD removal and pH regulation in six experimental units operating at pilot scale. Six CW's for dairy sewage treatment were constructed in 100-liter High-Density Polyethylene Ethylene (HDPE tanks. Three constructed wetlands containing fine gravel (0 mm and another three with a mix of 20% sand and 80% fine gravel (0 mm were used in the filtering stage. Four experimental units were planted with the macrophytes Typha dominguensis (cattail and Hedychium coronarium (pond lily, the selected plants for this study, and two others were maintained as control units. A minimum average of 77.8% and a maximum of 95.2% BOD efficiency removal were achieved and a pH range of 5 to 9 was maintained as required by the Brazilian Resolution CONAMA N. 430 /2011 in order to release the effluent into a waterway. The six treatments showed similar removal of biodegradable carbonaceous compounds with no significant differences between the treatments at a 95% confidence level. This work showed that CW’s operating in batch can be used to treat dairy raw water for BOD removal and pH regulation.

  11. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents.

    Science.gov (United States)

    Jordan, Mark A; Welsh, David T; John, Richard; Catterall, Kylie; Teasdale, Peter R

    2013-02-01

    Representative and fast monitoring of wastewater influent and effluent biochemical oxygen demand (BOD) is an elusive goal for the wastewater industry and regulatory bodies alike. The present study describes a suitable assay, which incorporates activated sludge as the biocatalyst and ferricyanide as the terminal electron acceptor for respiration. A number of different sludges and sludge treatments were investigated, primarily to improve the sensitivity of the assay. A limit of detection (LOD) (2.1 mg BOD₅ L⁻¹) very similar to that of the standard 5-day BOD₅ method was achieved in 4 h using raw influent sludge that had been cultured overnight as the biocatalyst. Reducing the microbial concentration was the most effective means to improve sensitivity and reduce the contribution of the sludge's endogenous respiration to total ferricyanide-mediated (FM) respiration. A strong and highly significant relationship was found (n = 33; R = 0.96; p treatment plant (WWTP) influent and treated effluent, as well as several grey water samples. The activated sludge FM-BOD assay presented here is an exceptional surrogate method to the standard BOD₅ assay, providing representative, same-day BOD analysis of WWTP samples with a comparable detection limit, a 4-fold greater analytical range and much faster analysis time. The industry appeal of such an assay is tremendous given that ~90% of all BOD₅ analysis is dedicated to measurement of WWTP samples, for which this assay is specifically designed. PMID:23200506

  12. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents.

    Science.gov (United States)

    Jordan, Mark A; Welsh, David T; John, Richard; Catterall, Kylie; Teasdale, Peter R

    2013-02-01

    Representative and fast monitoring of wastewater influent and effluent biochemical oxygen demand (BOD) is an elusive goal for the wastewater industry and regulatory bodies alike. The present study describes a suitable assay, which incorporates activated sludge as the biocatalyst and ferricyanide as the terminal electron acceptor for respiration. A number of different sludges and sludge treatments were investigated, primarily to improve the sensitivity of the assay. A limit of detection (LOD) (2.1 mg BOD₅ L⁻¹) very similar to that of the standard 5-day BOD₅ method was achieved in 4 h using raw influent sludge that had been cultured overnight as the biocatalyst. Reducing the microbial concentration was the most effective means to improve sensitivity and reduce the contribution of the sludge's endogenous respiration to total ferricyanide-mediated (FM) respiration. A strong and highly significant relationship was found (n = 33; R = 0.96; p BOD₅ and FM-BOD equivalent values for a diverse range of samples including wastewater treatment plant (WWTP) influent and treated effluent, as well as several grey water samples. The activated sludge FM-BOD assay presented here is an exceptional surrogate method to the standard BOD₅ assay, providing representative, same-day BOD analysis of WWTP samples with a comparable detection limit, a 4-fold greater analytical range and much faster analysis time. The industry appeal of such an assay is tremendous given that ~90% of all BOD₅ analysis is dedicated to measurement of WWTP samples, for which this assay is specifically designed.

  13. Study of dimensional changes during redox cycling of oxygen carrier materials for chemical looping combustion

    NARCIS (Netherlands)

    Fossdal, A.; Darell, O.; Lambert, A.; Schols, E.; Comte, E.; Leenman, R.N.; Blom, R.

    2015-01-01

    Dimensional and phase changes of four candidate oxygen carrier materials for chemical looping combustion are investigated by dilatometry and high-temperature X-ray diffraction during four redox cycles. NiO/Ni2AlO4 does not exhibit significant dimensional changes during cycling, and it is shown that

  14. [Studying the influence of some reactive oxygen species on physical and chemical parameters of blood].

    Science.gov (United States)

    Martusevich, A K; Martusevich, A A; Solov'eva, A G; Peretyagin, S P

    2014-01-01

    The aim of this work was to estimate the dynamics of blood physical and chemical parameters when blood specimens were processed by singlet oxygen in vitro. Our experiments were executed with whole blood specimens of healthy people (n=10). Each specimen was divided into five separate portions of 5 ml. The first portion was a control (without any exposures). The second one was processed by an oxygen-ozone mixture (at ozone concentration of 500 mcg/l, the third portion--by oxygen, and the fourth and fifth ones were processed by a gas mixture with singlet oxygen (50 and 100% of generator power). In blood samples after processing we studied the activity of lactate dehydrogenase, aldehyde dehydrogenase and superoxide dismutase, erythrocyte and plasma levels of glucose and lactate, acid-base balance and the partial pressure of gases in blood. It was found out, that blood processing by singlet oxygen leads to optimization of energy, detoxication and antioxidant enzymes functioning with changes in plasma and erythrocyte level of glucose and lactate, normalization of blood gases level and acid-base balance. Our results show, that the effect of singlet oxygen on enzyme activity is more pronounced than exposure to an oxygen-ozone gas mixture. PMID:25702489

  15. Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene

    Science.gov (United States)

    Terasawa, Tomo-o.; Saiki, Koichiro

    2015-03-01

    To obtain a large-area single-crystal graphene, chemical vapor deposition (CVD) growth on Cu is considered the most promising. Recently, the surface oxygen on Cu has been found to suppress the nucleation of graphene. However, the effect of oxygen in the vapor phase was not elucidated sufficiently. Here, we investigate the effect of O2 partial pressure (PO2) on the CVD growth of graphene using radiation-mode optical microscopy. The nucleation density of graphene decreases monotonically with PO2, while its growth rate reaches a maximum at a certain pressure. Our results indicate that PO2 is an important parameter to optimize in the CVD growth of graphene.

  16. Chemical homogeneity in the Orion Association: Oxygen abundances of B stars

    Directory of Open Access Journals (Sweden)

    Lanz T.

    2012-02-01

    Full Text Available We present non-LTE oxygen abundances for a sample of B stars in the Orion association. The abundance calculations included non-LTE line formation and used fully blanketed non-LTE model atmospheres. The stellar parameters were the same as adopted in the previous study by Cunha & Lambert (1994. We find that the young Orion stars in this sample of 10 stars are described by a single oxygen abundance with an average value of A(O = 8.78 and a small dispersion of ±0.05, dex which is of the order of the uncertainties in the analysis. This average oxygen abundance compares well with the average oxygen abundance obtained previously in Cunha & Lambert (1994: A(O = 8.72 ± 0.13 although this earlier study, based upon non-blanketed model atmospheres in LTE, displayed larger scatter. Small scatter of chemical abundances in Orion B stars had also been found in our previous studies for neon and argon; all based on the same effective temperature scale. The derived oxygen abundance distribution for the Orion association compares well with other results for the oxygen abundance in the solar neighborhood.

  17. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  18. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  19. Nanostructured palladium tailored via carbonyl chemical route towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Graphical Abstract: Mass-depending morphologies of nanostructured Palladium obtained via the carbonyl chemical route. Display Omitted -- Highlights: •Mass-depending morphology was observed in nanostructured palladium supported on carbon prepared by the carbonyl chemical route. •The Morphological effect of carbon supported Pd was investigated towards ORR. -- Abstract: Carbon supported palladium nanostructures were synthesized via the carbonyl chemical route. Compared with nanostructured platinum, prepared via carbonyl chemical route, Pd nanomaterials showed mass-loading morphology, whereas particle size and morphology of Pt nanostructures was constant. The oxygen reduction reaction (ORR) on nanostructured Pd, with different morphology in both acid and alkaline medium was investigated. A relationship, based on X-ray diffraction structural analysis pattern, transmission electron microscope, with the Pd morphological effect on ORR activity was identified

  20. Mathematical modeling of chemical composition modification and etching of polymers under the atomic oxygen influence

    Science.gov (United States)

    Chirskaia, Natalia; Novikov, Lev; Voronina, Ekaterina

    2016-07-01

    Atomic oxygen (AO) of the upper atmosphere is one of the most important space factors that can cause degradation of spacecraft surface. In our previous mathematical model the Monte Carlo method and the "large particles" approximation were used for simulating processes of polymer etching under the influence of AO [1]. The interaction of enlarged AO particles with the polymer was described in terms of probabilities of reactions such as etching of polymer and specular and diffuse scattering of the AO particles on polymer. The effects of atomic oxygen on protected polymers and microfiller containing composites were simulated. The simulation results were in quite good agreement with the results of laboratory experiments on magnetoplasmadynamic accelerator of the oxygen plasma of SINP MSU [2]. In this paper we present a new model that describes the reactions of AO interactions with polymeric materials in more detail. Reactions of formation and further emission of chemical compounds such as CO, CO _{2}, H _{2}O, etc. cause the modification of the chemical composition of the polymer and change the probabilities of its consequent interaction with the AO. The simulation results are compared with the results of previous simulation and with the results of laboratory experiments. The reasons for the differences between the results of natural experiments on spacecraft, laboratory experiments and simulations are discussed. N. Chirskaya, M. Samokhina, Computer modeling of polymer structures degradation under the atomic oxygen exposure, WDS'12 Proceedings of Contributed Papers: Part III - Physics, Matfyzpress Prague, 2012, pp. 30-35. E. Voronina, L. Novikov, V. Chernik, N. Chirskaya, K. Vernigorov, G. Bondarenko, and A. Gaidar, Mathematical and experimental simulation of impact of atomic oxygen of the earth's upper atmosphere on nanostructures and polymer composites, Inorganic Materials: Applied Research, 2012, vol. 3, no. 2, pp. 95-101.

  1. Mass, energy, and exergy balance analysis of chemical looping with oxygen uncoupling (CLOU) process

    International Nuclear Information System (INIS)

    Highlights: • A CLOU reactor system using a CuO-based OC and coal as fuel is analyzed. • Possible operational regions for the chosen OC are identified. • Different heat balance scenarios are investigated. • The second-law efficiency of the system is evaluated. • Various design aspects and process modelling relationships are discussed. - Abstract: Chemical looping with oxygen uncoupling (CLOU) is a promising concept for efficient combustion of solid fuels with an inherent capture of the greenhouse gas CO2. This paper presents a CLOU process scheme with stoichiometric mass, energy, and exergy balances. A CLOU reactor system using medium volatile bituminous coal as fuel and silica-supported CuO as an oxygen carrier is analyzed. The analysis includes the estimation of various design and operational parameters, thermal considerations, and evaluation of the overall performance. The operation of a reactor system of two interacting circulating fluidized beds (CFBs) is greatly influenced by the hydrodynamics. For the CuO oxygen carrier, the hydrodynamic operating range appeared feasible considering the maximum solid circulation rates in current CFB boilers. Depending upon the reactor temperatures, oxygen carrier inventories of 400–680 kg/MW in the system were found necessary for stoichiometric combustion of the fuel. The temperature difference between the reactors should not exceed 50 °C, as otherwise, problems may arise with the heat balance. Exergetic efficiencies in the range of 63–70% were obtained for different combinations of relevant design parameters. It is evident that the possible operating conditions in the system are closely related to the properties of the chosen oxygen carrier. However, the calculation procedure and design criteria presented here are applicable to any oxygen carrier to be used in the process

  2. Semi-gas kinetics model for performance modeling of flowing chemical oxygen-iodine lasers (COIL)

    Institute of Scientific and Technical Information of China (English)

    GAO Zhi; HU Limin; SHEN Yiqing

    2004-01-01

    A semi-gas kinetics (SGK) model for performance analyses of flowing chemical oxygen-iodine laser (COIL) is presented. In this model, the oxygen-iodine reaction gas flow is treated as a continuous medium, and the effect of thermal motions of particles of different laser energy levels on the performances of the COIL is included and the velocity distribution function equations are solved by using the double-parameter perturbational method. For a premixed flow, effects of different chemical reaction systems, different gain saturation models and temperature, pressure, yield of excited oxygen, iodine concentration and frequency-shift on the performances of the COIL are computed, and the calculated output power agrees well with the experimental data. The results indicate that the power extraction of the SGK model considering 21 reactions is close to those when only the reversible pumping reaction is considered, while different gain saturation models and adjustable parameters greatly affect the output power, the optimal threshold gain range, and the length of power extraction.

  3. Chemical vapour deposition of praseodymium oxide films on silicon: influence of temperature and oxygen pressure

    International Nuclear Information System (INIS)

    Metal-organic chemical vapour deposition (MOCVD) of various phases in PrOx system has been studied in relation with deposition temperature (450-750 deg. C) and oxygen partial pressure (0.027-100 Pa or 0.2-750 mTorr). Depositions were carried out by pulsed liquid injection MOCVD using Pr(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) precursor dissolved in toluene or monoglyme. By varying deposition temperature and oxygen partial pressure amorphous films or various crystalline PrOx phases (Pr2O3, Pr7O12, Pr6O11) and their mixtures can be grown. The pure crystalline Pr2O3 phase grows only in a narrow range of partial oxygen pressure and temperature, while high oxygen pressure (40-100 Pa) always leads to the most stable Pr6O11 phase. The influence of annealing under vacuum at 750 deg. C on film phase composition was also studied. Near 90% step coverage conformity was achieved for PrOx films on structured silicon substrates with aspect ratio 1:10. In air degradation of Pr2O3 films with transformation to Pr(OH)3 was observed in contrast to Pr6O11 films

  4. 中国化肥需求弹性计算%The elasticity of chemical fertilizer demand in China

    Institute of Scientific and Technical Information of China (English)

    黄文芳; John K.Dagsvik

    2012-01-01

    为了分析国家政策对化肥消费的影响,选取1998 - 2007年不同省份单位面积化肥消费量、化肥价格指数以及农民纯收入为变量,对化肥支出函数进行了回归分析,计算出10年间不同省份化肥需求的价格弹性和收入弹性.结果表明:目前我国农业发展的化肥基本消费量为0.35 t/hm2,部分省份化肥消费过度;化肥市场还没有真正建立,价格对需求的影响较小.这表明化肥是农业经济发展的必需品,化肥施用量随农民收入的增加而增加,国家政策对化肥价格的干预是其需求不断上升的根本原因之一.这也在一定程度上说明仅通过环境税方式来改变农民化肥消费的政策效果有限,还需要转变现有的单纯促进农业经济发展的政策,朝着依据农民施肥方式是否有利于环境给予差异性补贴转变.%In order to study the effects of the national policies on chemical fertilizer consumption, the regression analysis of chemical fertilizer-expenditure function was made according to the per unit area consumptions and price indexes of chemical fertilizer and the farmers'net revenues from different Chinese provinces between 1998 and 2007,and the price elasticity and income elasticity of chemical fertilizer demand for the provinces in the 10 years were also calculated. The results showed that the current basic chemical fertilizer consumption was 0.35 t/hm2 in China's agricultural development, while in some provinces the chemical fertilizer consumption was excessive;The price had little effect on the demand since the market of chemical fertilizer had not really been set up. This implied that chemical fertilizer was essential for the development of agricultural economy and the national policies to intervene in chemical fertilizer price was an ultimate cause of the increasing demand for chemical fertilizer with the farmers'net revenues rising. Also this indicated to some extent that the effect of the environmental

  5. Feasibility of constructing a laser thermonuclear fusion driver based on an oxygen-iodine chemical laser

    International Nuclear Information System (INIS)

    A study is made of the feasibility of constructing a driver for laser thermonuclear fusion in which the second harmonic of an oxygen-iodine chemical laser is used to pump solid-state lasers (for example, Cr3+-activated crystals). In contrast to the existing systems, a separate master oscillator is proposed for each channel of the driver. The proposal has the advantages of relative technological simplicity, high degree of uniformity of target irradiation, and providing optimal profile of a heating pulse at 0.8, 0.4, and 0.27 μm. 35 refs., 13 figs., 1 tab

  6. Renal Doppler Resistive Index as a Marker of Oxygen Supply and Demand Mismatch in Postoperative Cardiac Surgery Patients

    Directory of Open Access Journals (Sweden)

    Francesco Corradi

    2015-01-01

    Full Text Available Background and Objective. Renal Doppler resistive index (RDRI is a noninvasive index considered to reflect renal vascular perfusion. The aim of this study was to identify the independent hemodynamic determinants of RDRI in mechanically ventilated patients after cardiac surgery. Methods. RDRI was determined in 61 patients by color and pulse Doppler ultrasonography of the interlobar renal arteries. Intermittent thermodilution cardiac output measurements were obtained and blood samples taken from the tip of pulmonary artery catheter to measure hemodynamics and mixed venous oxygen saturation (SvO2. Results. By univariate analysis, RDRI was significantly correlated with SvO2, oxygen extraction ratio, left ventricular stroke work index, and cardiac index, but not heart rate, central venous pressure, mean artery pressure, pulmonary capillary wedge pressure, systemic vascular resistance index, oxygen delivery index, oxygen consumption index, arterial lactate concentration, and age. However, by multivariate analysis RDRI was significantly correlated with SvO2 only. Conclusions. The present data suggests that, in mechanically ventilated patients after cardiac surgery, RDRI increases proportionally to the decrease in SvO2, thus reflecting an early vascular response to tissue hypoxia.

  7. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors

    International Nuclear Information System (INIS)

    Steam reforming with oxygen (SRO) is a combination of non-catalytic partial oxidation and steam reforming of methane, industrially used for syngas production. There are several models of the chemical reactors used for this purpose but in the last decade a new direction has developed - plasma devices. The aim of the present paper is to make a comparative analysis between the autothermal reformers, including their improved variants, and the plasma reactors. The study is conceived in terms of advantages and disadvantages coming from the exploitation parameters, methane conversion, selectivity, energy efficiency and investment costs. Although SRO by means of chemical reactors may be the most efficient, plasma reactors represent an incisive approach by their simplicity, compactness and low price. (author)

  8. Nanocomposite oxygen carriers for chemical-looping combustion of sulfur-contaminated synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Rahul D. Solunke; Goetz Veser [United States Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2009-09-15

    Chemical-looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC, which combine the high reactivity of metals with the high-temperature stability of ceramics. In the present study, we investigate the effect of H{sub 2}S in a typical coal-derived syngas on the stability and redox kinetics of Ni- and Cu-based nanostructured oxygen carriers. Both carriers show excellent structural stability and only mildly changed redox kinetics upon exposure to H{sub 2}S, despite a significant degree of sulfide formation. Surprisingly, partial sulfidation of the support results in a strong increase in oxygen carrier capacity in both cases because of the addition of a sulfide-sulfate cycle. Overall, the carriers show great potential for use in CLC of high-sulfur fuels. 21 refs., 13 figs. 1 tab.

  9. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  10. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    Science.gov (United States)

    Takeuchi, N.; Ishii, Y.; Yasuoka, K.

    2012-02-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  11. Plasma chemical and electrical modelling of a negative DC corona in pure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Soria, C [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de FIsica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain)

    2004-02-01

    A complex plasma chemical and electrical model of a negative stationary wire-to-cylinder corona discharge in pure oxygen is presented. The corona discharge is assumed to have axial and azimuthal symmetry. The experimental current-voltage characteristic is required as input data, but there are no other adjustable or empirical parameters. The experimental validation of the results of the model comes from its prediction of the ozone concentration. The role played by different reactions and species is analysed in detail using the results of the simulation. The effect of the gas temperature and of the decomposition of ozone at the electrodes is also investigated. The agreement between the model and the experiments is excellent when the effect of ozone decomposition at the electrodes is taken into account.

  12. Phase retarder in chemical oxygen-iodine laser at 45° incidence

    Institute of Scientific and Technical Information of China (English)

    Fang Wang; Jianbing Huang; Yingjian Wang; Zhengxiu Fan

    2006-01-01

    @@ A phase retarder used in chemical oxygen-iodine laser (COIL) system has been fabricated by ion beam sputtering (IBS). When the incident angle is 45° the reflectivity is about 99.9% from 1290 to 1340 nm and about 83.8% at 632.8 nm, and the phase retardance between the parallel and perpendicular polarization components is -92.8° at 1315 nm. In order to get the influence of temperature on the phase retarder, six samples have been annealed from 523 to 648 K at interval of 25 K in air respectively, and the results show good temperature performance. With increasing temperature, phase retardance becomes smaller, and the variation is within 4° at 1315 nm. At the same time, the variation maintains within ±10° for the incidence from 44° to 49°.

  13. Can Galactic chemical evolution explain the oxygen isotopic variations in the Solar System?

    CERN Document Server

    Lugaro, Maria; Ireland, Trevor R; Maddison, Sarah T

    2012-01-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced 16O-rich CO and 16O-poor H2O, where the H2O subsequently combined with interstellar dust to form relatively 16O-poor solids within the Solar Nebula. Another model for creating the different reservoirs of 16O-rich gas and 16O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the Solar System dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the Solar System. The GCE scenario is in contradiction with observations of the 18O/17O ratios in nearby molecular clouds and young stellar objects. ...

  14. On the oxygen and nitrogen chemical abundances and the evolution of the "green pea" galaxies

    CERN Document Server

    Amorín, Ricardo O; Vílchez, J M

    2010-01-01

    We have investigated the oxygen and nitrogen chemical abundances in extremely compact star-forming galaxies with redshifts between $\\sim$0.11-0.35, popularly referred to as "green peas". Direct and strong-line methods sensitive to the N/O ratio applied to their SDSS spectra reveals that these systems are genuine metal-poor galaxies, with mean oxygen abundances 20% solar. At a given metallicity these galaxies display systematically large N/O ratios compared to normal galaxies, which can explain the strong difference between our metallicities measurements and previous ones. While their N/O ratios follow the relation with stellar mass of local star-forming galaxies in the SDSS, we find that the mass--metallicity relation of the "green peas" is offset $\\ga$0.3 dex to lower metallicities. We argue that recent interaction-induced inflow of gas, possibly coupled with a selective metal-rich gas loss, driven by supernova winds, may explain our findings and the known galaxy properties, namely high specific star formati...

  15. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  16. Gill morphometrics of the thresher sharks (Genus Alopias): Correlation of gill dimensions with aerobic demand and environmental oxygen.

    Science.gov (United States)

    Wootton, Thomas P; Sepulveda, Chugey A; Wegner, Nicholas C

    2015-05-01

    Gill morphometrics of the three thresher shark species (genus Alopias) were determined to examine how metabolism and habitat correlate with respiratory specialization for increased gas exchange. Thresher sharks have large gill surface areas, short water-blood barrier distances, and thin lamellae. Their large gill areas are derived from long total filament lengths and large lamellae, a morphometric configuration documented for other active elasmobranchs (i.e., lamnid sharks, Lamnidae) that augments respiratory surface area while limiting increases in branchial resistance to ventilatory flow. The bigeye thresher, Alopias superciliosus, which can experience prolonged exposure to hypoxia during diel vertical migrations, has the largest gill surface area documented for any elasmobranch species studied to date. The pelagic thresher shark, A. pelagicus, a warm-water epi-pelagic species, has a gill surface area comparable to that of the common thresher shark, A. vulpinus, despite the latter's expected higher aerobic requirements associated with regional endothermy. In addition, A. vulpinus has a significantly longer water-blood barrier distance than A. pelagicus and A. superciliosus, which likely reflects its cold, well-oxygenated habitat relative to the two other Alopias species. In fast-swimming fishes (such as A. vulpinus and A. pelagicus) cranial streamlining may impose morphological constraints on gill size. However, such constraints may be relaxed in hypoxia-dwelling species (such as A. superciliosus) that are likely less dependent on streamlining and can therefore accommodate larger branchial chambers and gills. PMID:25703507

  17. The Metropolis-Hastings algorithm, a handy tool for the practice of environmental model estimation : illustration with biochemical oxygen demand data

    Directory of Open Access Journals (Sweden)

    Franck Torre

    2001-02-01

    Full Text Available Environmental scientists often face situations where: (i stimulus-response relationships are non-linear; (ii data are rare or imprecise; (iii facts are uncertain and stimulus-responses relationships are questionable. In this paper, we focus on the first two points. A powerful and easy-to-use statistical method, the Metropolis-Hastings algorithm, allows the quantification of the uncertainty attached to any model response. This stochastic simulation technique is able to reproduce the statistical joint distribution of the whole parameter set of any model. The Metropolis-Hastings algorithm is described and illustrated on a typical environmental model: the biochemical oxygen demand (BOD. The aim is to provide a helpful guideline for further, and ultimately more complex, models. As a first illustration, the MH-method is also applied to a simple regression example to demonstrate to the practitioner the ability of the algorithm to produce valid results.

  18. Chemical diffusion coefficient of oxygen in thoria-urania mixed oxide

    Science.gov (United States)

    Matsui, Tsuneo; Naito, Keiji

    1985-10-01

    The chemical diffusion coefficients of oxygen ( D˜) in sintered samples of ( Th1- yUy) O2+ x ( y = 0.2 and 0.4) were measured by means of thermogravimetry in the temperature range 1282 ⩽ T ⩽ 1373 K. The defect diffusion coefficients ( Dd) were also calculated from the chemical diffusion coefficients obtained in this study. The activation energies of D˜ or Dd for the two samples ( Th1- yUy) O2+ xwithy = 0.2 and 0.4 were observed to be nearly the same, irrespective of the y value. These activation energies also nearly coincided with those of UO 2+x reported previously, suggesting the presence of a similar diffusion mechanism to that found in UO 2+x. The magnitude of both diffusion coefficients D˜ and Dd of ( Th1- yUy) O2+ x increased with increasing uranium content and approached that of UO 2+x. The increase of Dd of ( Th1- yUy) O2+ x with y value was considered to be due to the increase of both the vibrational frequency of lattice and the entropy change of migration produced by the substitution of a U ion for a Th ion.

  19. CAN GALACTIC CHEMICAL EVOLUTION EXPLAIN THE OXYGEN ISOTOPIC VARIATIONS IN THE SOLAR SYSTEM?

    Energy Technology Data Exchange (ETDEWEB)

    Lugaro, Maria [Monash Centre for Astrophysics (MoCA), Building 28, Monash University, Clayton, VIC 3800 (Australia); Liffman, Kurt [CSIRO/MSE, P.O. Box 56, Highett, VIC 3190 (Australia); Ireland, Trevor R. [Planetary Science Institute and Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Maddison, Sarah T., E-mail: maria.lugaro@monash.edu [Centre for Astrophysics and Supercomputing, Swinburne University, H39, P.O. Box 218, Hawthorn, VIC 3122 (Australia)

    2012-11-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced {sup 16}O-rich CO and {sup 16}O-poor H{sub 2}O, where the H{sub 2}O subsequently combined with interstellar dust to form relatively {sup 16}O-poor solids within the solar nebula. Another model for creating the different reservoirs of {sup 16}O-rich gas and {sup 16}O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the solar system dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the solar system. The GCE scenario is in contradiction with observations of the {sup 18}O/{sup 17}O ratios in nearby molecular clouds and young stellar objects. It is very unlikely for GCE to produce a line of slope one when considering the effect of incomplete mixing of stellar ejecta in the interstellar medium. Furthermore, the assumption that the solar system dust was younger than the gas requires unusual timescales or the existence of an important stardust component that is not theoretically expected to occur nor has been identified to date.

  20. Performance of coal fly-ash based oxygen carrier for the chemical looping combustion of synthesis gas

    International Nuclear Information System (INIS)

    Highlights: • Fly-ash based oxygen carriers were synthesised for chemical looping combustion of synthesis gas. • Using fly-ash as the support of the oxygen carrier enhanced the thermal stability and oxidant transfer for fuel oxidation. • Fly-ash based nickel oxide reformed hydrocarbons into carbon monoxide with the presence of carbon dioxide. - Abstract: The performance of coal fly-ash based oxygen carriers for chemical looping combustion of synthesis gas has been investigated using both a thermogravimetric analyser and a packed bed reactor. Oxygen carriers with 50 wt% active metal compounds, including copper, nickel and iron oxides, supported on coal fly-ash were synthesised using the deposition–precipitation method. Copper oxide and nickel oxide supported on fly-ash showed high oxygen transfer efficiency and oxygen carrying capacity at 800 °C. The fly-ash based nickel oxide was effective in reforming hydrocarbons and for the conversion of carbon dioxide into carbon monoxide; a nickel complex with silicate was identified as a minor phase following the reduction reaction. The fly-ash based iron oxide showed various reduction steps and resulted in an extended reduction time. The carbon emission at the oxidation stage was avoided by reducing the length of the exposure to the reduction gas

  1. Realizing controllable graphene nucleation by regulating the competition of hydrogen and oxygen during chemical vapor deposition heating.

    Science.gov (United States)

    Zhang, Haoran; Zhang, Yaqian; Zhang, Yanhui; Chen, Zhiying; Sui, Yanping; Ge, Xiaoming; Deng, Rongxuan; Yu, Guanghui; Jin, Zhi; Liu, Xinyu

    2016-08-24

    Oxygen can passivate Cu surface active sites when graphene nucleates. Thus, the nucleation density is decreased. The CuO/Cu substrate was chosen for graphene domain synthesis in our study. The results indicate that the CuO/Cu substrate is beneficial for large-scale, single-crystal graphene domain synthesis. Graphene grown on the CuO/Cu substrate exhibits fewer nucleation sites than on Cu foils, suggesting that graphene follows an oxygen-dominating growth. Hydrogen treatment via a heating process could weaken the surface oxygen's role in limiting graphene nucleation under the competition of hydrogen and oxygen and could transfer the synthesis of graphene into a hydrogen-dominating growth. However, the competition only exists during the chemical vapor deposition heating process. For non-hydrogen heated samples, oxygen-dominating growth is experienced even though the samples are annealed in hydrogen for a long time after the heating process. With the temperature increases, the role of hydrogen gradually decreases. The balance of hydrogen and oxygen is adjusted by introducing hydrogen gas at a different heating temperatures. The oxygen concentration on the substrate surface is believed to determine the reactions mechanisms based on the secondary ion mass spectrometry test results. This study provides a new method for the controllable synthesis of graphene nucleation during a heating process. PMID:27506467

  2. Galactic Chemical Evolution and the Oxygen Isotopic Composition of the Solar System

    CERN Document Server

    Nittler, Larry R

    2012-01-01

    We review current observational and theoretical constraints on the Galactic chemical evolution (GCE) of oxygen isotopes in order to explore whether GCE plays a role in explaining the lower 17O/18O ratio of the Sun, relative to the present-day interstellar medium, or the existence of distinct 16O-rich and 16O-poor reservoirs in the Solar System. Although the production of both 17O and 18O are related to the metallicity of progenitor stars, 17O is most likely produced in stars that evolve on longer timescales than those that produce 18O. Therefore the 17O/18O ratio need not have remained constant over time, contrary to preconceptions and the simplest models of GCE. An apparent linear, slope-one correlation between delta17O and delta18O in the ISM need not necessarily reflect an O isotopic gradient, and any slope-one galactocentric gradient need not correspond to evolution in time. Instead, increasing 17O/18O is consistent both with observational data from molecular clouds and with modeling of the compositions o...

  3. Chemical oxygen-iodine laser for decommissioning and dismantlement of nuclear facilities

    Science.gov (United States)

    Tei, Kazuyoku; Sugimoto, Daichi; Endo, Masamori; Takeda, Shuzaburo; Fujioka, Tomoo

    2000-01-01

    Conceptual designs of a chemical oxygen-iodine laser (COIL) facility for decommissioning and dismantlement (DD) of nuclear facility is proposed. The requisite output power and beam quality was determined base don our preliminary experiments of nonmetal material processing. Assuming the laser power of 30kW, it is derived that the beam quality of M2 equals 36 required to cut a biological shield wall of a nuclear power plant at a cutting speed of 10mm/min. Then the requisite specification of an optical fiber to deliver the laser is calculated. It turned to be quite extreme, core diameter of 1.7mm and NA equals 0.018. The mass flow and heat balance of proposed facility is calculated based on our recent COIL studies. With the high-pressure subsonic mode, the vacuum pump size is minimized compared to the supersonic operation. Finally, the size of the facility is estimated assuming tow-hour continuous operation. It is revealed that such a system can be packed in five railway containers.

  4. Effect of Gasifying Medium on the Coal Chemical Looping Gasification with CaSO4 as Oxygen Carrier☆

    Institute of Scientific and Technical Information of China (English)

    Yongzhuo Liu; Weihua Jia; Qingjie Guo; Hojung Ryu

    2014-01-01

    The chemical looping gasification uses an oxygen carrier for solid fuel gasification by supplying insufficient lattice oxygen. The effect of gasifying medium on the coal chemical looping gasification with CaSO4 as oxygen carrier is investigated in this paper. The thermodynamical analysis indicates that the addition of steam and CO2 into the system can reduce the reaction temperature, at which the concentration of syngas reaches its maximum value. Experimental result in thermogravimetric analyzer and a fixed-bed reactor shows that the mixture sample goes through three stages, drying stage, pyrolysis stage and chemical looping gasification stage, with the temper-ature for three different gaseous media. The peak fitting and isoconversional methods are used to determine the reaction mechanism of the complex reactions in the chemical looping gasification process. It demonstrates that the gasifying medium (steam or CO2) boosts the chemical looping process by reducing the activation energy in the overall reaction and gasification reactions of coal char. However, the mechanism using steam as the gasifying medium differs from that using CO2. With steam as the gasifying medium, parallel reactions occur in the begin-ning stage, followed by a limiting stage shifting from a kinetic to a diffusion regime. It is opposite to the reaction mechanism with CO2 as the gasifying medium.

  5. Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand: Closed microwaves, open microwaves and ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Domini, Claudia E. [Departamento de Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Hidalgo, Montserrat [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, Apdo. 99, 03080 Alicante (Spain); Marken, Frank [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Canals, Antonio [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, Apdo. 99, 03080 Alicante (Spain)]. E-mail: a.canals@ua.es

    2006-03-02

    In the present work, experimental design was used for the fast optimization of three kinds of sample digestion procedures with the final aim of obtaining the COD value of wastewater samples. The digestion methods evaluated were 'closed microwave-assisted' (CMWD), 'open microwave-assisted' (OMWD) and 'ultrasound-assisted' (USD). Classical digestion was used as reference method. The optimum values for the different variables studied in each method were: 90 psi pressure, 475 W power and 4 min irradiation time (CMWD); 150 deg. C temperature and 4 min irradiation time (OMWD); 90% of maximum nominal power (180 W), 0.9 s (s{sup -1}) cycles and 1 min irradiation time (USD). In all cases, interference concentration that produces a deviation of 10% in COD values is 13.4, 23.4, 21.1 and 2819 mg/L for S{sup 2-}, Fe{sup 2+}, NO{sub 2} {sup -} and Cl{sup -}, respectively. Under optimum conditions, the proposed digestion methods have been successfully applied, with the exception of pyridine, to several pure organic compounds and COD recoveries for 10 real wastewater samples were ranged between 88 and 104% of the values obtained with the classical (open reflux) method used as reference, with R.S.D. lower than 4% in most cases. Thus, the use of ultrasound energy for COD determination seems to be an interesting and promising alternative to conventional open reflux and microwave-assisted digestion methods used for the same purpose since the instrumentation is simpler, cheaper and safer and the digestion step faster than the ones used for the same purpose.

  6. From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater

    OpenAIRE

    Erable, Benjamin; Etcheverry, Luc; Bergel, Alain

    2011-01-01

    The paper introduces the concept of the microbial electrochemical snorkel (MES), a simplified design of a “short-circuited” microbial fuel cell (MFC). The MES cannot provide current but it is optimized for wastewater treatment. An electrochemically active biofilm (EAB) was grown on graphite felt under constant polarization in an urban wastewater. Controlling the electrode potential and inoculating the bioreactor with a suspension of an established EAB improved the performance and the reproduc...

  7. A new method for determination of chemical oxygen demand values in livestock wastewater by near-infrared spectroscopy

    Science.gov (United States)

    Cen, Haiyan; Bao, Yidan; He, Yong

    2006-09-01

    The objective of this research was to analyze NIR spectroscopy potential to estimate COD in livestock wastewater. A total of 20 wastewater samples were taken from the Animal Institution of Zhejiang Agricultural Science Organization. We selected two kinds of containers with the sizes of l000mL and 2000mL for samples, because of the high absorption peaks in the near-infrared region (350-11OOnm) around 635nm. 14 samples spectra were used during the calibration and cross-validation stage. Five samples spectra were used to predict COD concentration in wastewater. NW spectra and constituents were related using partial least square (PLS) technique. The r2 between measured and predicted values of COD of wastewater with l000mL and 2000mL, 0.9895 and 0.9985, as well as SEP showed table l, 22 and 32, respectively, demonstrated that NIR method have potential to predict COD in wastewater. While SEP and SEC is high, because the magnitude of COD value in livestock wastewater is high. In other words, higher magnitudes will result in high standard error values. However, the result also shows that NIR could be a good tool to be combined with environmental monitoring of water quality.

  8. APPLICATION OF ELECTROCHEMICAL METHODS FOR DECREASING OF CHEMICAL OXYGEN DEMAND (COD) AND TOTAL SUSPENDED SOLID (TSS) OF TOFU INDUSTRIAL WASTEWATER

    OpenAIRE

    Suyata; Irmanto; Undri Rastuti

    2015-01-01

    Tofu industrial wastewater has high COD and TSS level, which it cause an environmental pollution. Therefore, it is necessary to decrease the value of COD and TSS of tofu industrial wastewater before discharge into the water body. Decreasing of COD and TSS values can be carried out using an electrochemical method. The purpose of this research was to determine the effect of potential, electrode distance, pH, and time to decrease of COD and TSS value of the tofu industrial wastewater. The experi...

  9. Research into Uncertainty in Measurement of Seawater Chemical Oxygen Demand by Potassium Iodide-Alkaline Potassium Permanganate Determination Method.

    OpenAIRE

    Zhang, Shiqiang; Guo, Changsong

    2007-01-01

    Using the glucose and L-glutamic-acid to prepare the standard substance according to the ratio of 1:1, and the artificial seawater and the standard substance to prepare a series of standard solutions, the distribution pattern of uncertainty in measurement of seawater COD is obtained based on the measured results of the series of standard solutions by the potassium iodide-alkaline potassium permanganate determination method. The distribution pattern is as follows: Uncertainty in measurement is...

  10. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor.

    Science.gov (United States)

    Kuşçu, Ozlem Selçuk; Sponza, Delia Teresa

    2009-01-30

    A laboratory scale anaerobic migrating blanket reactor (AMBR) was operated at different HRTs (1-10.38 days) in order to determine the para-nitrophenol (p-NP) and COD removal kinetic constants. The reactor was fed with 40 mg L(-1)p-NP and 3000 mg L(-1) glucose-COD. Modified Stover-Kincannon and Grau second-order kinetic models were applied to the experimental data. The predicted p-NP and COD concentrations were calculated using the kinetic constants. It was found that these data were in better agreement with the observed ones in the modified Stover-Kincannon compared to Grau second-order model. The kinetic constants calculated according to Stover-Kincannon model are as follows: the saturation value constant (K(B)) and maximum utilization rate constants (R(max)) were found as 31.55 g CODL(-1)day(-1), 29.49 g CODL(-1)day(-1) for COD removal and 0.428 g p-NPL(-1)day(-1), 0.407 g p-NPL(-1)day(-1) for p-NP removal, respectively (R(2)=1). The values of (a) and (b) were found to be 0.096 day and 1.071 (dimensionless) with high correlation coefficients of R(2)=0.85 for COD removal. Kinetic constants for specific gas production rate were evaluated using modified Stover-Kincannon, Van der Meer and Heerrtjes and Chen and Hasminoto models. It was shown that Stover-Kincannon model is more appropriate for calculating the effluent COD, p-NP concentrations in AMBR compared to the other models. The maximum specific biogas production rate, G(max), and proportionality constant, G(B), were found to be 1666.7 mL L(-1) day(-1) and 2.83 (dimensionless), respectively in modified Stover-Kincannon gas model. The bacteria had low Haldane inhibition constants (K(ID)=14 and 23 mg L(-1)) for p-NP concentrations higher than 40 mg L(-1) while the half velocity constant (K(s)) increased from 10 to 60 and 118 mg L(-1) with increasing p-NP concentrations from 40 to 85 and 125 mg L(-1).

  11. A comparative study of technologies for the continuous measurements of the biochemical demand for oxygen and toxicity of water; Estudio comparativo de tecnologias de medicion en continuo de la demanda bioquimica de oxigeno y de la toxicidad en aguas

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Caballero Arnau, T.; Rodriguez Albalat, G.; Rosa de la Garcia, S.; Jimenez Bono, M.; Millan Navarro, C.; prats, R.; Serramia, A.; Miguel, S. de

    2002-07-01

    The Prevention and Integrated Control of Contamination Act (Ley de Prevencion y control Integrado de la Contaminacion) was passed by the Spanish parliament on 13 June. the basic purpose of this law is to prevent, reduce and control contamination of the atmosphere, water and soil caused by the most contaminating industrial activities. Public sector bodies and private companies in Spanish have been invited by the European Union to adopt new technologies in their production processes with a view to cutting down emissions, minimising or re-using waste, and pre-treating or purifying effluents. I t is therefore extremely appropriate to make available information on new tools of analysis that allow users to take preventive measures to reduce the impact their activity may have on the environment. A fundamental parameter in monitoring water is the Biological Demand for Oxygen (BOD). Various different chemical, physical and biological techniques have been developed to solve the problem of continuously monitoring the BOD and toxicity of water. This study carried out a comparative analysis of these techniques, describing the advantages and disadvantages of applying them to water quality control. At the present time it can be said that the BOD microbiosensor. Multisens 304 is the best available technology for monitoring this parameter. The articles tells us why. (Author) 8 refs.

  12. Oxygenated Organic Chemicals in the Pacific Troposphere: Distribution, Sources and Chemistry

    Science.gov (United States)

    Singh, Hanwant B.; Salas, L.; Chatfield, R.; Czech, E.; Fried, A.; Evans, M.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.

    2003-01-01

    Airborne measurements of a large number of oxygenated organic chemicals (Oxorgs) were carried out in the Pacific troposphere (0.1-12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measuremen ts included acetone, methylethyl ketone (MEK), methanol, ethanol, ace taldehyde, propionaldehyde, PANS, and organic nitrates. Complementary measurements of formaldehyde, organic peroxides, and tracers were al so available. Ox-orgs were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Their mixing ratios were typically highest in the lower troposphere and declined toward s the upper troposphere and the lowermost stratosphere. Their total a bundance (Ox-orgs) significantly exceeded that of NMHC (C2-C8 NMHC). A comparison of these data with observations collected some seven yea rs earlier (Feb.-March, 1994), did not reveal any significant changes . Throughout the troposphere mixing ratios of Ox-orgs were strongly c orrelated with each other as well as with tracers of fossil and bioma sshiof'uel combustion. Analysis of the relative enhancement of selected Oxorgs with respect to CH3Cl and CO in twelve sampled plumes, origi nating from fires, is used to assess their primary and secondary sour ces from biomass combustion. The composition of these plumes also ind icates a large shift of reactive nitrogen into the PAN reservoir ther eby limiting ozone formation. The Harvard 3-D photochemical model, th at uses state of the art chemistry and source information, is used to compare simulated and observed mixing ratios of selected species. A 1 -D model is used to explore the chemistry of aldehydes. These results will be presented.

  13. OVOC (Oxygenated Volatile Organic Chemicals) in the Global Atmosphere: Atmospheric Budgets, Oceanic Concentrations, and Uncertainties

    Science.gov (United States)

    Singh, Hanwant B.

    2004-01-01

    Airborne measurements of oxygenated volatile organic chemicals (OVOC), OH free radicals, and tracers of pollution were performed over the Pacific during Winter/Spring of 2001. Large concentrations of OVOC are present in the global troposphere and are expected to play an important role in atmospheric chemistry. Their total abundance (SIGMAOVOC) was nearly twice that of non-methane hydrocarbons (SIGMAC2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NHMC. A comparison of these data with western Pacific observations collected some seven years earlier (Feb.-March, 1994) did not reveal significant differences. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in twelve plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. These data are combined with other observations and interpreted with the help of a global 3-D model to assess OVOC global sources and sinks. We further interpret atmospheric observations with the help of an air-sea exchange model io show that oceans can be both net sorces and sinks. An extremely large oceanic reservoir of OVOC, that exceeds the atmospheric reservoir by more than an order of magnitude, can be inferred to be present. We conclude that OVOC sources are extremely large (150-500 TgC y-1) but remain poorly quantified. In many cases, measured concentrations are uncertain and incompatible with our present knowledge of atmospheric chemistry. Results based on observations from several field studies and critical gaps will be discussed.

  14. Highly vibrationally excited CO generated in a low-temperature chemical reaction between carbon vapor and molecular oxygen

    Science.gov (United States)

    Jans, E.; Frederickson, K.; Yurkovich, M.; Musci, B.; Rich, J. W.; Adamovich, I. V.

    2016-08-01

    A chemical flow reactor is used to study the vibrational population distribution of CO produced by a reaction between carbon vapor generated in an arc discharge and molecular oxygen. The results demonstrate formation of highly vibrationally excited CO, up to vibrational level v = 14, at low temperatures, T = 400-450 K, with population inversion at v = 4-7, in a collision-dominated environment, 15-20 Torr. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of reaction enthalpy. The results show feasibility of development of a new CO chemical laser using carbon vapor and oxygen as reactants.

  15. ZnO nanoparticles : synthesis of Ga-doped ZnO, oxygen gas sensing and quantum chemical investigation

    OpenAIRE

    Hagelin, Alexander

    2011-01-01

    Doped ZnO nanoparticles were synthesized by three different methods – electrochemical deposition under oxidizing conditions (EDOC) , combustion method and wet chemical synthesis – for investigating the oxygen gas sensing response. Ga-doped ZnO was mostly synthesized but also In-doped ZnO was made. The samples were analyzed by XRD, SEM, EDX and TEM. Gas response curves are given alongside with Langmuir fitted curves and data for pure ZnO and Ga-doped ZnO. DFT quantum chemical investigation of ...

  16. A quantum-chemical study of oxygen-vacancy defects in PbTiO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids [Laboratorio de Fisica, Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)]. E-mail: arvids@utpl.edu.ec; Serrano, Sheyla [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador); Escuela de Ingenierias, Universidad Politecnica Salesiana, Campus Sur, Rumichaca s/n y Moran Valverde, Apartado 17-12-536, Quito (Ecuador); Medina, Paul [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador)

    2006-05-31

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO{sub 3} crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results.

  17. A quantum-chemical study of oxygen-vacancy defects in PbTiO3 crystals

    International Nuclear Information System (INIS)

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO3 crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results

  18. Feasibility study of sulfates as oxygen carriers for chemical looping processes

    Directory of Open Access Journals (Sweden)

    Ganesh Kale

    2012-12-01

    Full Text Available The operational feasibility temperature range of chemical looping combustion (CLC and chemical looping reforming (CLR of the fuels methane, propane, iso-octane and ethanol was explored using the common sulphates

  19. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    Science.gov (United States)

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-09-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  20. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract.

    Science.gov (United States)

    Lakey, Pascale S J; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air. PMID:27605301

  1. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    Science.gov (United States)

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air. PMID:27605301

  2. High-pressure gravity-independent singlet oxygen generator, laser nozzle, and iodine injection system for the chemical oxygen-iodine laser

    Science.gov (United States)

    Emanuel, George

    2004-09-01

    A novel approach is outlined for a singlet oxygen generator (SOG), a laser minimum length nozzle (MLN), and an iodine injector system for a chemical oxygen-iodine laser (COIL). A unified approach, referred to as a SOG/MLN/I2 system, is partly based on past experimental work. For instance, the SOG concept stems from sparger technology and a KSY fesibility experiment. A MLN with a curved sonic line is used for the laser nozzle, and slender struts are used for the injection, in the downstream direction, of iodine/helium vapor. The heated struts are located downstream of the nozzle's throat. The engineering logic behind the approach is discussed; it has a diversity of potential system benefits relative to current technology. These include a compact, scalable laser that can operate in space. The SOG operates at a significantly higher pressure with a high O2(1Δ) yield. In addition, basic hydrogen peroxide reconditioning is not required, a water vapor removal system is not required, and diluent may be unnecessary, although useful for pressure recovery. The impact on a COIL system in terms of power, efficiency, and pressure recovery is briefly assessed.

  3. Application of Fe2O3/Al2O3 Composite Particles as Oxygen Carrier of Chemical Looping Combustion

    Institute of Scientific and Technical Information of China (English)

    Fang He; Hua Wang; Yongnian Dai

    2007-01-01

    Chemical looping combustion (CLC) of carbonaceous compounds has been proposed, in the past decade, as an efficient method for CO2 capture without cost of extra energy penalties. The technique involves the use of a metal oxide as an oxygen carrier that transfers oxygen from combustion air to fuels.The combustion is carried out in a two-step process: in the fuel reactor, the fuel is oxidized by a metal oxide, and in the air reactor, the reduced metal is oxidized back to the original phase. The use of iron oxide as an oxygen carrier has been investigated in this article. Particles composed of 80 wt% Fe2O3,together with Al2O3 as binder, have been prepared by impregnation methods. X-ray diffraction (XRD) analysis reveals that Fe2O3 does not interact with the Al2O3 binder after multi-cycles. The reactivity of the oxygen carrier particles has been studied in twenty-cycle reduction-oxidation tests in a thermal gravimetrical analysis (TGA) reactor. The components in the outlet gas have been analyzed. It has been observed that about 85% of CH4 converted to CO2 and H2O during most of the reduction periods. The oxygen carrier has kept quite a high reactivity in the twenty-cycle reactions. In the first twenty reaction cycles, the reaction rates became slightly higher with the number of cyclic reactions increasing, which was confirmed by the scanning electron microscopy (SEM) test results. The SEM analysis revealed that the pore size inside the particle had been enlarged by the thermal stress during the reaction, which was favorable for diffusion of the gaseous reactants into the particles. The experimental results suggested that the Fe2O3/Al2O3 oxygen carrier was a promising candidate for a CLC system.

  4. Experimental Investigation of CaMnO3−δ Based Oxygen Carriers Used in Continuous Chemical-Looping Combustion

    Directory of Open Access Journals (Sweden)

    Peter Hallberg

    2014-01-01

    Full Text Available Three materials of perovskite structure, CaMn1−xMxO3−δ (M = Mg or Mg and Ti, have been examined as oxygen carriers in continuous operation of chemical-looping combustion (CLC in a circulating fluidized bed system with the designed fuel power 300 W. Natural gas was used as fuel. All three materials were capable of completely converting the fuel to carbon dioxide and water at 900°C. All materials also showed the ability to release gas phase oxygen when fluidized by inert gas at elevated temperature (700–950°C; that is, they were suitable for chemical looping with oxygen uncoupling (CLOU. Both fuel conversion and oxygen release improved with temperature. All three materials also showed good mechanical integrity, as the fraction of fines collected during experiments was small. These results indicate that the materials are promising oxygen carriers for chemical-looping combustion.

  5. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    Science.gov (United States)

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.

  6. Three Dimensional P-doped Graphene Synthesized by Eco-Friendly Chemical Vapor Deposition for Oxygen Reduction Reactions.

    Science.gov (United States)

    Li, Xiaoguang; Qiu, Yunfeng; Hu, Ping An

    2016-06-01

    Heteroatom doping provides possibilities for changing the electronic properties of graphene. Three Dimensional P-doped graphene (3DPG) was fabricated via chemical vapor deposition (CVD) using nickel foam as template and triphenylphosphine (TPP) as C and P sources simultaneously without using toxic organic solvent as carrier liquid. The invasion of P atoms into graphene networks make them non-electroneutral and consequently favor the adsorption of oxygen and O-O bond cleavage due to the charge polarization increase of the P-C bond. Thus, the as-prepared 3DPG served as an efficient electrocatalyst for oxygen reduction reaction (ORR). Additionally, the 3D porous structure is favorable for the mass transfer of electrolytes ions, hence 3DPG exhibit better electrocatalytic activity, long-term stability, and tolerance to crossover effect of methanol than pristine 3D graphene and Pt/C for ORR. PMID:27427693

  7. Oxygen Consumption by Red Wines. Part II: Differential Effects on Color and Chemical Composition Caused by Oxygen Taken in Different Sulfur Dioxide-Related Oxidation Contexts.

    Science.gov (United States)

    Carrascon, Vanesa; Fernandez-Zurbano, Purificación; Bueno, Mónica; Ferreira, Vicente

    2015-12-30

    Chemical changes caused by oxidation of red wines during 5 consecutive air-saturation cycles have been assessed. In order to investigate the existing relationship between the effects caused by O2 and the levels and consumption rates of wine SO2, the total oxygen consumed by the wines (16-25 mg/L) was subdivided into different nonmutually exclusive categories. The ones found most influential on chemical changes were the O2 consumed in the first saturation without equivalent SO2 consumption (O2preSO2) and the O2 consumed when levels of free SO2 were below 5 mg/L (radical forming O2). Chromatic changes were strongly related to both O2 categories, even though anthocyanidin degradation was not related to any O2 category. Radical forming O2 prevented both formation of red pigments and reduction of epigallocatechin and other proanthocyanidins, induced accumulation of phenolic acids, and caused losses of β-damascenone and whiskylactone without evidence of acetaldehyde formation. O2preSO2 seemed to play a key role in the formation of blue pigments and in the decrease of Folin index and of many important aroma compounds. PMID:26646423

  8. Análise da demanda por defensivos pela fruticultura brasileira 1997-2000 Fruit tree demand for chemicals 1997-2000

    Directory of Open Access Journals (Sweden)

    Evaristo Marzabal Neves

    2002-12-01

    Full Text Available Este estudo estima a demanda relativa por defensivos pela fruticultura brasileira, principalmente para banana, laranja, maçã, melão e uva, por dispêndio total e volume de princípio ativo por hectare, para o período de 1997 a 2000. Efetua, também, uma análise comparativa destas demandas com as obtidas para as principais culturas brasileiras (soja, milho, cana-de-açúcar e café, as quais são predominantes em termos de área cultivada e dominantes, em termos absolutos, nos dispêndios totais e volumes demandados por princípio ativo em defensivos no Brasil. Determina, ainda, em termos absolutos, a participação da fruticultura nos dispêndios totais e no consumo de princípio ativo, especialmente em acaricidas e fungicidas. Conclui sobre a importância da estimativa da demanda relativa para a fruticultura, que supera significativamente as principais culturas comerciais do País, fornecendo indicadores para o comportamento de mercado para as diferentes classes de defensivos pela fruticultura brasileira.This study estimates for the Brazilian fruit trees, mainly banana, orange, apple, melon and grape, the relative demand for chemicals, considering total expenses and quantity demanded for active principle per hectare, from 1997 to 2000. It is also established a comparative analysis among this demand with ones made by the main Brazilian crops (soybean, maize, sugar cane and coffee, that are predominating in terms of grown area and dominating, in absolute terms, of chemicals total expenses and consume of active principle volume in Brazil. Yet, determines, in absolute terms, the importance of fruit trees in chemicals total expenses and active principle consume, especially acaricides and fungicides. It concludes, about the importance of estimated relative demand for fruit trees, that it is higher than the ones by the mainly commercial crops in the country, offering indicators for the demand and market behavior to chemicals different classes by

  9. 78 FR 1765 - Requirements for Chemical Oxygen Generators Installed on Transport Category Airplanes

    Science.gov (United States)

    2013-01-09

    ..., Security Considerations for Lavatory Oxygen Systems (76 FR 12550, March 8, 2011), Docket No. FAA-2011-0186... Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as... Airplanes (77 FR 38000, June 26, 2012). Several years ago in an unrelated initiative, the FAA tasked...

  10. Physico Chemical Analysis of Municipal Wastewater Discharge in Ganga River,Haridwar District of Uttarakhand, India

    OpenAIRE

    Saba Shirin; Akhilesh Kumar Yadav

    2014-01-01

    This study was aimed to screen the water quality of Ganga River in Haridwar city, Uttarakhand, India. The study was conducted based on their water source, origin of pollution such as utilisation by human and animals. Monthly changes in physico-chemical parameters such as pH, Temperature, Total Dissolved Solids, Total Solids, Total Suspended Solids, Chemical Oxygen Demand, Dissolved oxygen, Biochemical Oxygen Demand and Volatile Suspended Solids were analyzed for a period of twoyear fromJanuar...

  11. Carbon and oxygen isotope separation by plasma chemical reactions in carbon monoxide glow discharge

    International Nuclear Information System (INIS)

    The separation of carbon and oxygen isotopes in CO glow discharge has been studied. The isotope enrichment in the products was measured by quadru-pole mass spectrometer. The reaction yield and empirical formula of solid phase products were determined by the gas-volumetric analysis. The stable products obtained in our experiment are CO2 and solid polymers formed on the discharge wall. The polymer consists of both carbon and oxygen and the oxygen/carbon mole ratio in the polymer is 0.35±0.05. Thi isotope enrichment coefficients show a strong negative dependence on discharge current though the relative reaction yields have an opposite tendency. Consequently, the maximum isotope enrichment coefficients for 13C in wall deposit of 2.31 and for 18O in CO2 of 1.37 are obtained when the discharge current and the reaction yields are minimum in our experimental range. The experimental results of isotope enrichment have been compared with theoretical values estimated by an analytical model of literature. The dilution mechanism of the isotope enrichment of stable products is inferred from the isotopic distributions of 13C and 18O in products and theoretical predictions for isotope enrichment. (author)

  12. Chemical Analysis of a "Miller-Type" Complex Prebiotic Broth. Part I: Chemical Diversity, Oxygen and Nitrogen Based Polymers

    Science.gov (United States)

    Wollrab, Eva; Scherer, Sabrina; Aubriet, Frédéric; Carré, Vincent; Carlomagno, Teresa; Codutti, Luca; Ott, Albrecht

    2016-06-01

    In a famous experiment Stanley Miller showed that a large number of organic substances can emerge from sparking a mixture of methane, ammonia and hydrogen in the presence of water (Miller, Science 117:528-529, 1953). Among these substances Miller identified different amino acids, and he concluded that prebiotic events may well have produced many of Life's molecular building blocks. There have been many variants of the original experiment since, including different gas mixtures (Miller, J Am Chem Soc 77:2351-2361, 1955; Oró Nature 197:862-867, 1963; Schlesinger and Miller, J Mol Evol 19:376-382, 1983; Miyakawa et al., Proc Natl Acad Sci 99:14,628-14,631, 2002). Recently some of Miller's remaining original samples were analyzed with modern equipment (Johnson et al. Science 322:404-404, 2008; Parker et al. Proc Natl Acad Sci 108:5526-5531, 2011) and a total of 23 racemic amino acids were identified. To give an overview of the chemical variety of a possible prebiotic broth, here we analyze a "Miller type" experiment using state of the art mass spectrometry and NMR spectroscopy. We identify substances of a wide range of saturation, which can be hydrophilic, hydrophobic or amphiphilic in nature. Often the molecules contain heteroatoms, with amines and amides being prominent classes of molecule. In some samples we detect ethylene glycol based polymers. Their formation in water requires the presence of a catalyst. Contrary to expectations, we cannot identify any preferred reaction product. The capacity to spontaneously produce this extremely high degree of molecular variety in a very simple experiment is a remarkable feature of organic chemistry and possibly prerequisite for Life to emerge. It remains a future task to uncover how dedicated, organized chemical reaction pathways may have arisen from this degree of complexity.

  13. Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance

    KAUST Repository

    Watson, Valerie J.

    2013-06-03

    Commercially available activated carbon (AC) powders made from different precursor materials (coal, peat, coconut shell, hardwood, and phenolic resin) were electrochemically evaluated as oxygen reduction catalysts and tested as cathode catalysts in microbial fuel cells (MFCs). AC powders were characterized in terms of surface chemistry and porosity, and their kinetic activities were compared to carbon black and platinum catalysts in rotating disk electrode (RDE) tests. Cathodes using the coal-derived AC had the highest power densities in MFCs (1620 ± 10 mW m-2). Peat-based AC performed similarly in MFC tests (1610 ± 100 mW m-2) and had the best catalyst performance, with an onset potential of Eonset = 0.17 V, and n = 3.6 electrons used for oxygen reduction. Hardwood based AC had the highest number of acidic surface functional groups and the poorest performance in MFC and catalysis tests (630 ± 10 mW m-2, Eonset = -0.01 V, n = 2.1). There was an inverse relationship between onset potential and quantity of strong acid (pKa < 8) functional groups, and a larger fraction of microporosity was negatively correlated with power production in MFCs. Surface area alone was a poor predictor of catalyst performance, and a high quantity of acidic surface functional groups was determined to be detrimental to oxygen reduction and cathode performance. © 2013 American Chemical Society.

  14. Performance of Ni-based, Fe-based and Co-based Oxygen Carriers in Chemical-Looping Hydrogen Generation

    Institute of Scientific and Technical Information of China (English)

    Liang Hao; Zhang Xiwen; Fang Xiangchen; Yuan Honggang

    2013-01-01

    Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method. The oxygen carriers were characterized by thermal analysis, H2-temperature-programmed reduction and X-ray diffraction methods. Performance tests were evaluated through Chemical-Looping Hydrogen Genera-tion in a ifxed-bed reactor operating at atmospheric pressure. The characterization results showed that all samples were composed of metal oxides and perovskite oxides. Performance results indicated that CH4 conversion over the oxygen car-riers decreased in the following order:NiO/LaNiO3>Co2O3/LaCoO3>Fe2O3/LaFeO3. The ability of NiO/LaNiO3 and Fe2O3/LaFeO3 to decompose water was stronger than that of Co2O3/LaCoO3 as evidenced by our experiments. H2 amounting to 80 mL upon reacting on methane in every cycle could be completely oxidized by NiO/LaNiO3 at 900℃in the period from the third cycle to the eighth cycle.

  15. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils.

    Science.gov (United States)

    Archanjo, Braulio S; Araujo, Joyce R; Silva, Alexander M; Capaz, Rodrigo B; Falcão, Newton P S; Jorio, Ado; Achete, Carlos A

    2014-07-01

    Carbon particles containing mineral matter promote soil fertility, helping it to overcome the rather unfavorable climate conditions of the humid tropics. Intriguing examples are the Amazonian Dark Earths, anthropogenic soils also known as "Terra Preta de Índio'' (TPI), in which chemical recalcitrance and stable carbon with millenary mean residence times have been observed. Recently, the presence of calcium and oxygen within TPI-carbon nanoparticles at the nano- and mesoscale ranges has been demonstrated. In this work, we combine density functional theory calculations, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, and high resolution X-ray photoelectron spectroscopy of TPI-carbons to elucidate the chemical arrangements of calcium-oxygen-carbon groups at the molecular level in TPI. The molecular models are based on graphene oxide nanostructures in which calcium cations are strongly adsorbed at the oxide sites. The application of material science techniques to the field of soil science facilitates a new level of understanding, providing insights into the structure and functionality of recalcitrant carbon in soil and its implications for food production and climate change. PMID:24892495

  16. Chemical reaction of atomic oxygen with evaporated films of copper, part 4

    Science.gov (United States)

    Fromhold, A. T.; Williams, J. R.

    1990-01-01

    Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).

  17. Chemisorption of hydrogen and oxygen atoms on a cobalt surface: A quantum chemical cluster model study

    International Nuclear Information System (INIS)

    The chemisorption of atomic hydrogen and oxygen on a cobalt surface has been studied on a five-atom cluster model using one-electron effective core potential (le- ECP) and all-electron calculations at the ab initio SCF and MCPF levels. Also, density functional calculations have been carried out. The different approaches are evaluated. The le- ECP has been compared to similar ECPS for nickel and copper. Our results indicate that this approach is valid also for cobalt. Different contributions to the cluster-adsorbate bonding energy are discussed. 31 refs., 1 fig., 1 tab

  18. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef;

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi...... increased the barrier property of the modified low-density polyethylene, polyethylene terephthalate, and polylactide by 96.48%, 99.69%, and 99.25%, respectively....

  19. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    Science.gov (United States)

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  20. Pulse Operation of Chemical Oxygen-Iodine Laser by Pulsed Gas Discharge with the Assistance of Spark Pre-ionization

    Institute of Scientific and Technical Information of China (English)

    LI Guo-Fu; YU Hai-Jun; DUO Li-Ping; JIN Yu-Qi; WANG Jian; SANG Feng-Ting; FANG Ben-Jie; WANG De-Zhen

    2009-01-01

    The continuous wavelength chemical oxygen-iodine laser can be turned into pulse operation mode in order to obtain high energy and high pulse power. We propose an approach to produce iodine atoms instantaneously by pulsed gas discharge with the assistance of spark pre-ionization to achieve the pulsed goal. The influence of spark pre-ionization on discharge homogeneity is discussed. Voltage-current characteristics are shown and discussed in existence of the pre-ionization capacitor and peaking capacitor. The spark pre-ionization and peaking capacitor are very helpful in obtaining a stable and homogeneous discharge. The lasing is achieved at the total pressure of 2.2-2.9 kPa and single pulse energy is up to 180m J, the corresponding specific output energy is 1.0 J/L.

  1. Data acquisition and control system with a programmable logic controller (PLC) for a pulsed chemical oxygen-iodine laser

    Science.gov (United States)

    Yu, Haijun; Li, Guofu; Duo, Liping; Jin, Yuqi; Wang, Jian; Sang, Fengting; Kang, Yuanfu; Li, Liucheng; Wang, Yuanhu; Tang, Shukai; Yu, Hongliang

    2015-02-01

    A user-friendly data acquisition and control system (DACS) for a pulsed chemical oxygen -iodine laser (PCOIL) has been developed. It is implemented by an industrial control computer,a PLC, and a distributed input/output (I/O) module, as well as the valve and transmitter. The system is capable of handling 200 analogue/digital channels for performing various operations such as on-line acquisition, display, safety measures and control of various valves. These operations are controlled either by control switches configured on a PC while not running or by a pre-determined sequence or timings during the run. The system is capable of real-time acquisition and on-line estimation of important diagnostic parameters for optimization of a PCOIL. The DACS system has been programmed using software programmable logic controller (PLC). Using this DACS, more than 200 runs were given performed successfully.

  2. Pulsed Chemical Oxygen Iodine Lasers Excited by Pulse Gas Discharge with the Assistance of Surface Sliding Discharge Pre-ionization

    International Nuclear Information System (INIS)

    Continuous-wave chemical oxygen-iodine lasers (COILs) can be operated in a pulsed operation mode to obtain a higher peak power. The key point is to obtain a uniform and stable glow discharge in the mixture of singlet delta oxygen and iodide. We propose using an electrode system with the assistance of surface sliding pre-ionization to solve the problem of the stable glow discharge with a large aperture. The pre-ionization unit is symmetrically fixed on the plane of the cathode surface. A uniform and stable glow discharge is obtained in a mixture of iodide (such as CH3I) and nitrogen at the specific deposition energy of 4.5 J/L, pressure of 1.99–3.32 kPa, aperture size of 11 cm × 10 cm. The electrode system is applied in a pulsed COIL. Laser energy up to 4.4 J is obtained and the specific energy output is 2 J/L. (fundamental areas of phenomenology(including applications))

  3. The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure : The role of microvascular growth and abnormalities

    NARCIS (Netherlands)

    De Boer, RA; Pinto, YM; van Veldhuisen, DJ

    2003-01-01

    In heart failure., a deficient oxygen supply often is a primary cause for myocardial dysfunction. The reverse however, may also be true; the changes that occur in the failing heart may predispose for the existence of tissue hypoxia, which further affects the function of the heart. Specifically, myoc

  4. Chemical reactivity of Li17Pb83 with nitrogen and oxygen, and its compatibility with AISI 316L under known partial pressure of these gases

    International Nuclear Information System (INIS)

    The chemical reactivity of the lithium-lead eutectic with nitrogen and oxygen has been studied. While nitrogen is inert towards Li17Pb83 up to 1073 K, oxygen reacts, already at 750 K, with the lithium contained in the alloy. Compatibility tests at 873 K between AISI 316L stainless steel and Li17Pb83 under known partial pressures of nitrogen and oxygen have shown that the former gas does not influence the corrosion phenomenon while the latter greatly enhances it. (author)

  5. Chemical compatibility of a TiAl-Nb melt with oxygen-free crucible ceramics made of aluminum nitride

    Science.gov (United States)

    Kartavykh, A. V.; Cherdyntsev, V. V.

    2008-12-01

    The problem of uncontrolled oxygen contamination of intermetallic TiAl ingots is considered for the application of crucibles and molds based on traditional oxide ceramics. A synthesized Ti-45.9Al-8Nb (at %) alloy is solidified in alternative oxygen-free crucibles made of high-purity aluminum nitride (99.99% AlN) upon holding at 1670°C for 5, 12, and 25 min and subsequent quenching in a high-purity argon atmosphere. The initial material and the solidified ingots are studied by scanning electron microscopy, optical microscopy, X-ray diffraction, electron-probe microanalysis, and gas-content chemical analysis. The key features of the interaction of the TiAl-Nb melt with AlN ceramics are revealed. Partial thermal dissociation of the crucible material according to the reaction AlN → Al + N and the reaction of atomic nitrogen with the melt lead to the formation of a solid 6.4-μm-thick TiN coating on the ingot surface and provide perfect wettability of the crucible by the melt and easy removal of solidified casting items from the mold. The TiN coating serves as a diffusion barrier that hinders the diffusion of nitrogen and residual oxygen from the pores in the crucible toward the melt. As a result, no oxide particles are detected in the ingots. However, few single microprecipitates of two nitride phases ((Ti,Al) x N y , NbN) are detected in the near-bottom region, 300 μm thick, in the alloy after holding at 1670°C for 25 min. The total oxygen contamination in a two-phase α2 + γ ingot does not exceed 1100 wt ppm, which is 1.5-2 times lower than that obtained in the experiments performed with modern advanced oxide crucibles made of yttrium ceramics Y2O3. AlN is shown to be a promising crucible material that can be considered as an alternative to oxide ceramics in the metallurgy of TiAl intermetallics.

  6. Energy Demand

    NARCIS (Netherlands)

    Stehfest, E. et al.

    2014-01-01

    Key policy issues – How will energy demand evolve particularly in emerging and medium- and low- income economies? – What is the mix of end-use energy carriers to meet future energy demand? – How can energy efficiency contribute to reducing the growth rate of energy demand and mitigate pressures on t

  7. Energy Demand

    OpenAIRE

    Stehfest, E. et al.

    2014-01-01

    Key policy issues – How will energy demand evolve particularly in emerging and medium- and low- income economies? – What is the mix of end-use energy carriers to meet future energy demand? – How can energy efficiency contribute to reducing the growth rate of energy demand and mitigate pressures on the global environment?

  8. The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition.

    Science.gov (United States)

    Paul, Rajat K; Badhulika, Sushmee; Niyogi, Sandip; Haddon, Robert C; Boddu, Veera M; Costales-Nieves, Carmen; Bozhilov, Krassimir N; Mulchandani, Ashok

    2011-10-01

    Large-area mono- and bilayer graphene films were synthesized on Cu foil (~ 1 inch(2)) in about 1 min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2-5 nm individual crystallite size which is a function of temperature up to 1000°C. X-ray photoelectron spectroscopy investigations showed about 3 atomic% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel (L(c)=10 μm; W(c)=50 μm) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ~35 V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices. PMID:22408276

  9. Reversible control of magnetism in La0.67Sr0.33MnO3 through chemically-induced oxygen migration

    Science.gov (United States)

    Grutter, A. J.; Gilbert, D. A.; Alaan, U. S.; Arenholz, E.; Maranville, B. B.; Borchers, J. A.; Suzuki, Y.; Liu, Kai; Kirby, B. J.

    2016-02-01

    We demonstrate reversible control of magnetization and anisotropy in La0.67Sr0.33MnO3 films through interfacial oxygen migration. Gd metal capping layers deposited onto La0.67Sr0.33MnO3 leach oxygen from the film through a solid-state redox reaction to form porous Gd2O3. X-ray absorption and polarized neutron reflectometry measurements show Mn valence alterations consistent with high oxygen vacancy concentrations, resulting in suppressed magnetization and increased coercive fields. Effects of the oxygen migration are observed both at the interface and also throughout the majority of a 40 nm thick film, suggesting extensive diffusion of oxygen vacancies. After Gd-capped La0.67Sr0.33MnO3 is exposed to atmospheric oxygen for a prolonged period of time, oxygen diffuses through the Gd2O3 layer and the magnetization of the La0.67Sr0.33MnO3 returns to the uncapped value. These findings showcase perovskite heterostructures as ideal candidates for developing functional interfaces through chemically-induced oxygen migration.

  10. Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Alic, M.; Brown, J.A.; Gold, M.H. [Oregon Graduate Institute of Science and Technology, Portland, OR (United States)

    1995-01-01

    The expression of manganese peroxidase (MnP) in nitrogen-limited cultures of the lignin-degrading fungus Phanerochaete chrysosporium is regulated at the level of gene transcription by H{sub 2}O{sub 2} and various chemicals, including ethanol, sodium arsenite, and 2,4-dichlorophenol, as well as by Mn(II) and heat shock. Northern (RNA) blot analysis demonstrates that the addition of 1.0 mM H{sub 2}O{sub 2} to 5-day-old cultures grown in the absence of Mn results in the appearance of mnp mRNA within 15 min. Higher levels of mnp mRNA are obtained with simultaneous induction by Mn and H{sub 2}O{sub 2} than with H{sub 2}O{sub 2} alone. Although neither MnP activity nor associated protein is detectable in H{sub 2}O{sub 2}-induced cultures grown in the absence of Mn, simultaneous induction with Mn and H{sub 2}O{sub 2} results in a 1.6-fold increase in MnP activity compared with the MnP activity resulting resulting from Mn induction alone. In the presence of Mn, purging of low-nitrogen cultures with 100% O{sub 2}, in contrast to incubation under air, results in an increase in the accumulation of mnp mRNA and a 13-fold increase in MnP activity on day 5. However, in contrast to the effects of H{sub 2}O{sub 2} and heat shock, O{sub 2} purging of Mn-deficient cultures results in negligible accumulation of mnp mRNA. 48 refs., 6 figs.

  11. The role of hydrogen in oxygen-assisted chemical vapor deposition growth of millimeter-sized graphene single crystals

    Science.gov (United States)

    Zhao, Pei; Cheng, Yu; Zhao, Dongchen; Yin, Kun; Zhang, Xuewei; Song, Meng; Yin, Shaoqian; Song, Yenan; Wang, Peng; Wang, Miao; Xia, Yang; Wang, Hongtao

    2016-03-01

    Involving oxygen in the traditional chemical vapor deposition (CVD) process has proven a promising approach to achieve large-scale graphene single crystals (GSCs), but its many relevant fundamental aspects are still not fully understood. Here we report a systematic study on the role of hydrogen in the growth of millimeter-sized GSCs using enclosure-like Cu structures via the oxygen-assisted CVD process. Results show that GSCs have different first layer growth behaviors on the inside and outside surfaces of a Cu enclosure when the H2 environment is varied, and these behaviors will consequently and strongly influence the adlayer formation in these GSCs, leading to two entirely different growth modes. Low H2 partial pressure (PH2) tends to result in fast growth of dendritically shaped GSCs with multiple small adlayers, but high PH2 can modify the GSC shape into hexagons with single large adlayer nuclei. This difference of adlayers is attributed to the different C diffusion paths determined by the shapes of their host GSCs. On the basis of these observations, we developed an isothermal two-step method to obtain GSCs with significantly improved growth rate and sample quality, in which low PH2 is first set to accelerate the growth rate followed by high PH2 to restrict the adlayer nuclei. Our results prove that the growth of GSCs can reach a reasonable optimization between their growth rates and sample quality by simply adjusting the CVD H2 environment, which we believe will lead to more improvements in graphene synthesis and fundamental insight into the related growth mechanisms.Involving oxygen in the traditional chemical vapor deposition (CVD) process has proven a promising approach to achieve large-scale graphene single crystals (GSCs), but its many relevant fundamental aspects are still not fully understood. Here we report a systematic study on the role of hydrogen in the growth of millimeter-sized GSCs using enclosure-like Cu structures via the oxygen-assisted CVD

  12. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials.

    Science.gov (United States)

    Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander; Malik, Rahul; Kang, ShinYoung; Ceder, Gerbrand

    2016-07-01

    Lithium-ion batteries are now reaching the energy density limits set by their electrode materials, requiring new paradigms for Li(+) and electron hosting in solid-state electrodes. Reversible oxygen redox in the solid state in particular has the potential to enable high energy density as it can deliver excess capacity beyond the theoretical transition-metal redox-capacity at a high voltage. Nevertheless, the structural and chemical origin of the process is not understood, preventing the rational design of better cathode materials. Here, we demonstrate how very specific local Li-excess environments around oxygen atoms necessarily lead to labile oxygen electrons that can be more easily extracted and participate in the practical capacity of cathodes. The identification of the local structural components that create oxygen redox sets a new direction for the design of high-energy-density cathode materials. PMID:27325096

  13. Screening of NiFe2O4 Nanoparticles as Oxygen Carrier in Chemical Looping Hydrogen Production

    DEFF Research Database (Denmark)

    Liu, Shuai; He, Fang; Huang, Zhen;

    2016-01-01

    ) porosity test. The performance of the prepared materials was first evaluated in a TGA reactor through a CO reduction and subsequent steam oxidation process. Then a complete redox process was conducted in a fixed-bed reactor, where the NiFe2O4 oxygen carrier was first reduced by simulated biomass pyrolysis...... gas (24% H2 + 24% CO + 12% CO2 + N2 balance), then reacted with steam to produce H2, and finally fully oxidized by air. The NiFe2O4 oxygen carrier prepared by the sol gel method showed the best capacity for hydrogen production and the highest recovery degree of lattice oxygen, in agreement with the......The objective of this paper is to systematically investigate the influences of different preparation methods on the properties of NiFe2O4 nanoparticles as oxygen carrier in chemical looping hydrogen production (CLH). The solid state (SS), coprecipitation (CP), hydrothermal (HT), and sol-gel (SG...

  14. Zn/O ratio and oxygen chemical state of nanocrystalline ZnO films grown at different temperatures

    Institute of Scientific and Technical Information of China (English)

    Fan Hai-Bo; Zheng Xin-Liang; Wu Si-Cheng; Liu Zhi-Gang; Yao He-Bao

    2012-01-01

    ZnO nanocrystalline films are prepared on Si substrates at different temperatures by using metal-organic chemical vapour deposition (MOCVD).It is observed that when the growth temperature is low,the stoichiometric ratio between Zn and O atoms has a large deviation from the ideal ratio of 1:1.The ZnO grains in the film have small sizes and are not well crystallized,resulting in a poor photoluminescence (PL) property.When the temperature is increased to an appropriate value,the Zn/O ratio becomes optimized,and most of Zn and O atoms are combined into Zn-O bonds.Then the film has good crystal quality and good PL property.If the temperature is fairly high,the interfacial mutual diffusion of atoms between the substrate and the epitaxial film appears,and the desorption process of the oxygen atoms is enhanced.However,it has no effect on the film property.The film still has the best crystal quality and PL property.

  15. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydén, Magnus

    2011-03-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor system. For the oxygen uncoupling experiments, it was found that the particles released O2 in gas phase at temperatures above 720°C when the fuel reactor was fluidized with CO2. The effect increased with increased temperature, and with the O2 partial pressure in the air reactor. At 950°C, the O2 concentration in the outlet from the fuel reactor was in the order of 4.0vol%, if the particles were oxidized in air. For the chemical-looping combustion experiments the combustion efficiency with standard process parameters was in the order of 95% at 950°C, using 1000kg oxygen carrier per MW natural gas, of which about 30% was located in the fuel reactor. Reducing the fuel flow so that 1900kg oxygen carrier per MW natural gas was used improved the combustion efficiency to roughly 99.8%. The particles retained their physical properties, reactivity with CH4 and ability to release gas-phase O2 reasonably well throughout the testing period and there were no problems with the fluidization or formation of solid carbon in the reactor. X-ray diffraction showed that the particles underwent changes in their phase composition though. © 2010 Elsevier Ltd.

  16. Experiments on biomass gasification using chemical looping with nickel-based oxygen carrier in a 25 kWth reactor

    International Nuclear Information System (INIS)

    Biomass gasification using chemical looping (BGCL) is an innovative biomass gasification technology, which utilizes lattice oxygen from oxygen carrier instead of molecular oxygen from air. This work attempted to investigate the BGCL performance with nickel-based oxygen carrier in a 25 kWth reactor. The new prototype is composed of a high velocity fluidized bed as an air reactor, a cyclone, a bubbling fluidized bed as a fuel reactor, and a loop-seal. At first, the major reactions in the process were presented and chemical reaction thermodynamics in the fuel reactor was analyzed. The NiO/Al2O3 oxygen carrier was then applied in the reactor. Different variables, such as gasification temperature, steam-to-biomass (S/B) ratio and NiO content, were analyzed. The carbon conversion efficiency increased smoothly within the temperature range of 650–850 °C, while the syngas yield reached the maximum of 0.33 Nm3kg−1 at 750 °C. Additionally, based on the tradeoff between carbon conversion efficiency and syngas yield, it was concluded that 30 wt.% was the optimal NiO content. Besides, in order to get high quality syngas with low CO2 emission, CaO-decorated NiO/Al2O3 oxygen carrier was investigated. Experimental results showed that the addition of CaO enhanced the biomass gasification process and increased the syngas yield. - Highlights: • A new 25 kWth prototype was made in this study. • NiO was selected as oxygen carrier in the new prototype. • Gasification temperature, steam-to-biomass ratio and NiO content were investigated. • CaO-decorated NiO/Al2O3 was tested to produce high quality syngas

  17. Examination of Perovskite Structure CaMnO3-δ with MgO Addition as Oxygen Carrier for Chemical Looping with Oxygen Uncoupling Using Methane and Syngas

    Directory of Open Access Journals (Sweden)

    Dazheng Jing

    2013-01-01

    Full Text Available Perovskite structure oxygen carriers with the general formula CaMnxMg1-xO3-δ were spray-dried and examined in a batch fluidized bed reactor. The CLOU behavior, reactivity towards methane, and syngas were investigated at temperature 900°C to 1050°C. All particles showed CLOU behavior at these temperatures. For experiments with methane, a bed mass corresponding to 57 kg/MW was used in the reactor, and the average CH4 to CO2 conversion was above 97% for most materials. Full syngas conversion was achieved for all materials utilizing a bed mass corresponding to 178 kg/MW. SEM/EDX and XRD confirmed the presence of MgO in the fresh and used samples, indicating that the Mg cation is not incorporated into the perovskite structure and the active compound is likely pure CaMnO3-δ. The very high reactivity with fuel gases, comparable to that of baseline oxygen carriers of NiO, makes these perovskite particles highly interesting for commercial CLC application. Contrary to NiO, oxygen carriers based on CaMnO3-δ have no thermodynamic limitations for methane oxidation to CO2 and H2O, not to mention that the materials are environmentally friendly and can utilize much cheaper raw materials for production. The physical properties, crystalline phases, and morphology information were also determined in this work.

  18. Physico-chemical characterization of surface waters of the west coast of Algeria: Bay of Mostaganem and Cheliff estuary

    OpenAIRE

    Fatima Kies; Ahmed Kerkouf

    2014-01-01

    A follow-up in 2013 of the indicators of pollution (temperature, hydrogen potential, salinity, dissolved oxygen, ammonium, nitrites, nitrates, orthophosphates, ortho silicates, biological oxygen demand, chemical oxygen demand, suspended solids) in surface water was performed, in order to estimate the physicochemical quality of the west coast of Algeria. The results obtained revealed the existence of a water contamination by domestic and industrial waste water conveyed to the north by the Chel...

  19. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    Science.gov (United States)

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  20. Chemical-looping gasification of biomass in a 10k Wth interconnected fluidized bed reactor using Fe2 O3/Al2 O3 oxygen carrier

    Institute of Scientific and Technical Information of China (English)

    HUSEYIN Sozen; WEI Guo-qiang; LI Hai-bin; HE Fang; HUANG Zhen

    2014-01-01

    The aim of this research is to design and operate a 10 kW hot chemical-looping gasification ( CLG) unit using Fe2 O3/Al2 O3 as an oxygen carrier and saw dust as a fuel. The effect of the operation temperature on gas composition in the air reactor and the fuel reactor, and the carbon conversion of biomass to CO2 and CO in the fuel reactor have been experimentally studied. A total 60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina. The results show that CO and H2 concentrations are increased with increasing temperature in the fuel reactor. It is also found that with increasing fuel reactor temperature, both the amount of residual char in the fuel reactor and CO2 concentration of the exit gas from the air reactor are degreased. Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2 production at 870 ℃reaches the highest rate. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles. The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.

  1. Preparation and analysis of zirconia oxygen sensors

    Institute of Scientific and Technical Information of China (English)

    LUO Zhi-an; XIAO Jian-zhong; XIA Feng

    2006-01-01

    Thimble zirconia oxygen sensors were prepared with yttria stabilized zirconia(YSZ). The surfaces of the electrode,electrolyte and their interface were observed by scanning electron microscope(SEM). The sensor was examined with engine bench test to evaluate the essential performance. The results show that the oxygen sensor has good performance,which can meet the demand of practical applications. Chemical equilibrium theory was introduced to explain electromotive force of the sensors and the influence of temperature on the signals. The educed theoretical model of electromotive force agrees well with testing results.

  2. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. PMID:26446274

  3. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected.

  4. Investigation of the performance of a copper based oxygen carrier for chemical looping combustion in a 120 kW pilot plant for gaseous fuels

    International Nuclear Information System (INIS)

    Highlights: • A Cu based oxygen carrier for chemical looping combustion has been tested. • A 120 kW pilot plant designed as dual circulating fluidized bed has been used. • Solids inventory and circulation have been identified as critical for performance. • The results are compared with other pilot plants using the same oxygen carrier. • Recommendations for improved reactor designs have been made based on the results. - Abstract: A copper based oxygen carrier prepared by impregnation on a highly porous alumina support (14.2 wt% active CuO) has been tested in a 120 kW chemical looping pilot plant. This oxygen carrier has already been under investigation in other pilot plants up to 10 kW fuel power and showed very good performance, i.e. full fuel conversion was achieved. During the experiments, natural gas has been used as fuel and variations of several process parameters like temperature, fuel power, solids inventory and solids circulation rate have been performed. The copper particles showed good performance regarding conversion of CO and H2 (almost full conversion) but only moderate conversion of CH4 (up to 80%) was achieved. The three process parameters fuel reactor temperature, solids circulation between air and fuel reactor and solids inventory have been identified as significant parameters for fuel conversion, i.e. increasing one of these parameters improves fuel conversion. Continuous analysis of the oxygen carrier particles revealed an initial decay of active CuO content caused by attrition on the external surface of the particles. The CuO content stabilized after 30 h of operation at around 9 wt% and no further decrease was observed

  5. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shen Dongsheng [Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029 (China)]. E-mail: shends@zju.edu.cn; He Ruo [Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029 (China); Liu Xinwen [Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029 (China); Department of Chemical engineering, Ningbo University of Technology, 20 Cuibai Road, NingBo 315016 (China); Long Yan [Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029 (China)

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L{sup -1} PCP and 1250-10000 mg L{sup -1} COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L{sup -1}. [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L{sup -1} in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L{sup -1} to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L{sup -1}, respectively. With the increase of [PCP] in influent, the range of variation of [COD] in influent endured by the UASB reactor was decreasing. The ratios of [COD] and [PCP] in influent could affect removal efficiency of PCP and COD, the concentration of total volatile fatty acids (VFA) in effluent, biogas quantity and methane content in biogas. [PCP] in influent was linearly or semi-logarithmically correlated to [COD] in effluent when [COD] in influent was 5750 {+-} 250 mg L{sup -1}, and so was the relationship between [COD] in influent and [PCP] in effluent when [PCP] in influent was 100.4 or 151.6 mg L{sup -1}, less than the maximum permissible [PCP]. The sources of seeded sludge, the way of sludge acclimation and the characteristics of anaerobic sludge could all affect the UASB reactor capacity treating PCP. When [PCP] were less than 180.8 mg L{sup -1} for Reactor I and 151.6 mg L{sup -1} for Reactor II, the variation of [PCP] in influent had little effect on the UASB reactor volume gas production rate and substrate gas production rate. And [VFA] and pH value in effluent were affected a little. Volume biogas production rate and substrate biogas production rate of the UASB reactor were only affected by [COD] and loading rate in influent. But when [PCP] was more than 151.6 mg L{sup -1} for Reactor II, the biogas production fell quickly and was over 3 days later. [VFA] in effluent from Reactor II increased up to 2198.1 mg L{sup -1} quickly and the pH value fell to less than 7. Reactor II could not run normally. The component of VFA accumulated quickly was mainly acetate (above 50%). With [PCP] increased from 7.9 to 180.8 mg L{sup -1} gradually in influent, the methane content in biogas from Reactor II decreased from 70% to 60%, but the reactor could still run normally. Then as for Reactor II, the content of methane have fallen from 75% to 45% or so quickly. And Reactor II could not run steadily. So the conclusion could be drown that too high [PCP] in influent for UASB reactor mainly inhibited the activity of methane-producing bacteria cultures utilizing the acetate.

  6. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    International Nuclear Information System (INIS)

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  7. Analytical determination of Chemical Oxygen Demand in samples considered to be difficult to analyse: solid substrates and liquid samples with high suspended solid concentrations

    DEFF Research Database (Denmark)

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.;

    of a general standard method and high quality certified reference materials (CRMs), currently the traceability of the COD determination in such samples is not easy to check. Proficiency testing (PT) is a powerful tool that can be used to test the performance that the participant’s laboratories can achieve. Two...

  8. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine.

    Science.gov (United States)

    Sponza, Delia Teresa; Demirden, Pinar

    2010-04-15

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  9. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Shen, Dong-Sheng; He, Ruo; Liu, Xin-Wen; Long, Yan

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L(-1) PCP and 1250-10000 mg L(-1) COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L(-1). [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L(-1) in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L(-1) to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L(-1), respectively. With the increase of [PCP] in influent, the range of variation of [COD] in influent endured by the UASB reactor was decreasing. The ratios of [COD] and [PCP] in influent could affect removal efficiency of PCP and COD, the concentration of total volatile fatty acids (VFA) in effluent, biogas quantity and methane content in biogas. [PCP] in influent was linearly or semi-logarithmically correlated to [COD] in effluent when [COD] in influent was 5750+/-250 mg L(-1), and so was the relationship between [COD] in influent and [PCP] in effluent when [PCP] in influent was 100.4 or 151.6 mg L(-1), less than the maximum permissible [PCP]. The sources of seeded sludge, the way of sludge acclimation and the characteristics of anaerobic sludge could all affect the UASB reactor capacity treating PCP. When [PCP] were less than 180.8 mg L(-1) for Reactor I and 151.6 mg L(-1) for Reactor II, the variation of [PCP] in influent had little effect on the UASB reactor volume gas production rate and substrate gas production rate. And [VFA] and pH value in effluent were affected a little. Volume biogas production rate and substrate biogas production rate of the UASB reactor were only affected by [COD] and loading rate in influent. But when [PCP] was more than 151.6 mg L(-1) for Reactor II, the biogas production fell quickly and was over 3 days later. [VFA] in effluent from Reactor II increased up to 2198.1 mg L(-1) quickly and the pH value fell to less than 7. Reactor II could not run normally. The component of VFA accumulated quickly was mainly acetate (above 50%). With [PCP] increased from 7.9 to 180.8 mg L(-1) gradually in influent, the methane content in biogas from Reactor II decreased from 70% to 60%, but the reactor could still run normally. Then as for Reactor II, the content of methane have fallen from 75% to 45% or so quickly. And Reactor II could not run steadily. So the conclusion could be drown that too high [PCP] in influent for UASB reactor mainly inhibited the activity of methane-producing bacteria cultures utilizing the acetate.

  10. Oxygen 17 NMR in the evaluation of oxygen bounding with central ion using hydrolysis products of niobium, tantalum, arsenic, antimony pentafluorides as an example. Symbasis in the change of 17O and 19F chemical shifts

    International Nuclear Information System (INIS)

    Hydrolysis products of niobium, tantalum, antimony and arsenic pentafluorides in acetonitrile solution were studied by the methods of 17O and 19F NMR. In 17O NMR spectra of niobium and tantalum pentafluorides hydrolysis products resonance signals of oxo-, hydroxo- and aquafluorocomplexes were defined. Considerable shift of 17O NMR resonance signals towards weak field making up about 300 m.p., may indicate a higher covalency (Π-character) of Nb-O bond compared to Ta-O one. Symbasis in the change of chemical shifts in 17O NMR and 19F NMR of the relevant hexafluorides and hydrolysis products was detected implying similarity of chemical bond nature in oxygen and fluorine

  11. Shelf Life of Oxygen Moisture Bottle after Chemical Disinfection%氧气湿化瓶消毒后保存期的研究

    Institute of Scientific and Technical Information of China (English)

    李少英; 李碧坚; 何丽媚

    2013-01-01

      目的通过对氧气湿化瓶化学消毒后保存期进行研究,以明确其保存有效期。方法将240个氧气湿化瓶化学消毒后分别保存于5个临床科室,保存时间180 d,每月进行细菌学监测。结果氧气湿化瓶化学消毒后保存30、60、90、120、150、180 d细菌监测结果均≤20 CFU/件,未检出致病菌,合格率100%。结论氧气湿化瓶化学消毒后用保鲜袋单独包装,做好保存环境管理,其保存期最少6个月。%Objective To explore the shelf life of oxygen moisture bottle after chemical disinfection and to make clear its validity. Methods A total of 240 oxygen moisture bottles after chemical disinfection had been stored in clinical departments for 180 days and bacteriological monitoring was carried out every month. Results Bacteria monitoring 30, 60, 90, 120, 150 and 180 days after chemical disinfection showed there was 20 or less cfu/per piece and no pathogenic bacteria was found, with a qualification rate of 100%. Conclusion Once oxygen moisture bottle is packaged by plastic bag individually and stored in friendly environment, the shelf life of it after chemical disinfection could last for at least 6 months.

  12. Chemical Looping Pilot Plant Results Using a Nickel-Based Oxygen Carrier; Resultats de l'experimentation sur un pilote operant en boucle chimique avec un materiau transporteur d'oxygene a base de nickel

    Energy Technology Data Exchange (ETDEWEB)

    Proll, T.; Kolbitsch, P.; Bolhar-Nordenkampf, J.; Hofbauer, H. [Vienna University of Technology, Institute of Chemical Engineering, Getreidemarkt 9/166, Vienna 1060 (Austria)

    2011-03-15

    A chemical looping pilot plant was designed, built and operated with a design fuel power of 120 kW (lower heating value, natural gas). The system consists of two Circulating Fluidized Bed (CFB) reactors. Operating results are presented and evaluated for a highly reactive nickel-based oxygen carrier, total system inventory 65 kg. The performance in fuel conversion achieved is in the range of 99.8% (CH{sub 4} conversion) and 92% (CO{sub 2} yield). In chemical looping reforming operation, it can be reported that thermodynamic equilibrium is reached in the fuel reactor and that all oxygen is absorbed in the air reactor as soon as the global stoichiometric air/fuel ratio is below 1 and the air reactor temperature is 900 C or more. Even though pure natural gas (98.6 vol.% CH{sub 4}) without steam addition was fed to the fuel reactor, no carbon formation has been found as long as the global stoichiometric air/fuel ratio was larger than 0.4. Based on the experimental findings and on the general state of the art, it is concluded that niche applications such as industrial steam generation from natural gas or CO{sub 2}-ready coupled production of H{sub 2} and N{sub 2} can be interesting pathways for immediate scale-up of the technology. (authors)

  13. Demand Uncertainty

    DEFF Research Database (Denmark)

    Nguyen, Daniel Xuyen

    This paper presents a model of trade that explains why firms wait to export and why many exporters fail. Firms face uncertain demands that are only realized after the firm enters the destination. The model retools the timing of uncertainty resolution found in productivity heterogeneity models...... the high rate of exit seen in the first years of exporting. Finally, when faced with multiple countries in which to export, some firms will choose to sequentially export in order to slowly learn more about its chances for success in untested markets....

  14. STUDY OF PHYSIO-CHEMICAL CHARACTERISTICS AND BIOLOGICAL TREATMENT OF MOLASSES-BASED DISTILLERY EFFLUENT

    OpenAIRE

    Anupama Chaudhary* AK Sharma and Birbal Singh

    2013-01-01

    Molasses based distilleries are recognized as of major polluting industries with a large amount of annual effluent production. Modi Distillery, located at Modi Nagar in western Uttar Pradesh, is a molasses-based distillery with a capacity of 26 KLPD. Being an alcohol-processing unit, we estimated capacity and efficiency of Modi distillery that discharges highly polluted effluent to small drainage with a very high biological oxygen demand (BOD) (42,000-51,000mg/ltr) and chemical oxygen demand ...

  15. Circumstellar molecular composition of the oxygen-rich AGB star IK Tau: I. Observations and LTE chemical abundance analysis

    CERN Document Server

    Kim, Hyunjoo; Menten, Karl M; Decin, Leen

    2010-01-01

    The aim of this paper is to study the molecular composition in the circumstellar envelope around the oxygen-rich star IK Tau. We observed IK Tau in several (sub)millimeter bands using the APEX telescope during three observing periods. To determine the spatial distribution of the $\\mathrm{^{12}CO(3-2)}$ emission, mapping observations were performed. To constrain the physical conditions in the circumstellar envelope, multiple rotational CO emission lines were modeled using a non local thermodynamic equilibrium radiative transfer code. The rotational temperatures and the abundances of the other molecules were obtained assuming local thermodynamic equilibrium. An oxygen-rich Asymptotic Giant Branch star has been surveyed in the submillimeter wavelength range. Thirty four transitions of twelve molecular species, including maser lines, were detected. The kinetic temperature of the envelope was determined and the molecular abundance fractions of the molecules were estimated. The deduced molecular abundances were com...

  16. Brain Oxygenation Monitoring.

    Science.gov (United States)

    Kirkman, Matthew A; Smith, Martin

    2016-09-01

    A mismatch between cerebral oxygen supply and demand can lead to cerebral hypoxia/ischemia and deleterious outcomes. Cerebral oxygenation monitoring is an important aspect of multimodality neuromonitoring. It is increasingly deployed whenever intracranial pressure monitoring is indicated. Although there is a large body of evidence demonstrating an association between cerebral hypoxia/ischemia and poor outcomes, it remains to be determined whether restoring cerebral oxygenation leads to improved outcomes. Randomized prospective studies are required to address uncertainties about cerebral oxygenation monitoring and management. This article describes the different methods of monitoring cerebral oxygenation, their indications, evidence base, limitations, and future perspectives. PMID:27521197

  17. Oxygen Therapy

    Science.gov (United States)

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body ... machine in your home. A different kind of oxygen therapy is called hyperbaric oxygen therapy. It uses oxygen ...

  18. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  19. Chemical compatibility of B-4C/Na/S.S. system. Pt.2: Effects of test period and oxygen content in sodium

    International Nuclear Information System (INIS)

    The simulation specimens of the fast breeder reactor' control rod were put into the thermal convection sodium loop, and the out of pile tests for B4C/Na/S.S. system chemical compatibility were performed at 550 degree C, and the effects of the test period and oxygen content in sodium on the compatibility characters were investigated. The appearance of B4C pellets is integral, and crack or break are not found after compatible test. There is B penetration in cladding inner surface, the amount of B penetration is proportional to the square root of the test period. The depth of B penetration is not changed with the add of the test period. The microhardness at the cladding inner surface increases clearly, its increment is increasing slightly with the add of the test period. The depth of the hardening layers is about 40 μm for different test periods. The reaction products Cr2B, Na4B10O17, B6Fe23, CrB, Nib and NiB12 are formed according to priority at the cladding inner surface for 80 to 400 d. The diffusion of B into the cladding relates to the temperature, test period and the oxygen content, and the oxygen promotes the B diffusion

  20. Oxygen-aromatic contacts in intra-strand base pairs: analysis of high-resolution DNA crystal structures and quantum chemical calculations.

    Science.gov (United States)

    Jain, Alok; Krishna Deepak, R N V; Sankararamakrishnan, Ramasubbu

    2014-07-01

    Three-dimensional structures of biomolecules are stabilized by a large number of non-covalent interactions and some of them such as van der Waals, electrostatic and hydrogen bond interactions are well characterized. Delocalized π-electron clouds of aromatic residues are known to be involved in cation-π, CH-π, OH-π and π-π interactions. In proteins, many examples have been found in which the backbone carbonyl oxygen of one residue makes close contact with the aromatic center of aromatic residues. Quantum chemical calculations suggest that such contacts may provide stability to the protein secondary structures. In this study, we have systematically analyzed the experimentally determined high-resolution DNA crystal structures and identified 91 examples in which the aromatic center of one base is in close contact (interactions between the bases in base pairs with oxygen-aromatic contacts are energetically favorable. Decomposition of interaction energies indicates that dispersion forces are the major cause for energetically stable interaction in these base pairs. We speculate that oxygen-aromatic contacts in intra-strand base pairs in a DNA structure may have biological significance. PMID:24816369

  1. Removal and fate of endocrine disruptors chemicals under lab-scalepostreatment stage. Removal assessment using light, oxygen and microalgae

    OpenAIRE

    MIGUEL RAFAEL ABARGUES LLAMAS; Ferrer, J; ALBERTO BOUZAS BLANCO; SECO TORRECILLAS, AURORA

    2013-01-01

    [EN] The aim of this study was to assess the effect of light, oxygen and microalgae on micropollutants removal. The studied micropollutants were 4-(1,1,3,3-tetramethylbutyl)phenol (OP), technical-nonylphenol (t-NP), 4-n-nonylphenol (4-NP), Bisphenol-A (BPA). In order to study the effect of the three variables on the micropollutants removal, a factorial design was developed. The experiments were carried out in four batch reactors which treated the effluent of an anaerobic membrane bioreactor. ...

  2. Removal and fate of endocrine disruptors chemicals under lab-scale postreatment stage. Removal assessment using light, oxygen and microalgae.

    Science.gov (United States)

    Abargues, M R; Ferrer, J; Bouzas, A; Seco, A

    2013-12-01

    The aim of this study was to assess the effect of light, oxygen and microalgae on micropollutants removal. The studied micropollutants were 4-(1,1,3,3-tetramethylbutyl)phenol (OP), technical-nonylphenol (t-NP), 4-n-nonylphenol (4-NP), Bisphenol-A (BPA). In order to study the effect of the three variables on the micropollutants removal, a factorial design was developed. The experiments were carried out in four batch reactors which treated the effluent of an anaerobic membrane bioreactor. The gas chromatography mass spectrometry was used for the measurement of the micropollutants. The results showed that light, oxygen and microalgae affected differently to the degradation ratios of each micropollutant. The results showed that under aerated conditions removal ratios higher than 91% were achieved, whereas for non-aerated conditions the removal ratios were between 50% and 80%, except for 4-NP which achieved removal ratios close to 100%. Besides, mass balance showed that the degradation processes were more important than the sorption processes. PMID:24096281

  3. Studies on the preparation of active oxygen-deficient copper ferrite and its application for hydrogen production through thermal chemical water splitting

    Institute of Scientific and Technical Information of China (English)

    YU Bo; ZHANG Ping; ZHANG Lei; CHEN Jing; XU JingMing

    2008-01-01

    Hydrogen generation through thermal chemical water splitting technology has recently received in-creasingly international interest in the nuclear hydrogen production field. Besides the main known sulfur-iodine (S-I) cycle developed by the General Atomics Company and the UT3 cycle (iron, calcium, and bromine) developed at the University of Tokyo, the thermal cycle based on metal oxide two-step water splitting methods is also receiving research and development attention worldwide. In this work, copper ferrite was prepared by the co-precipitation method and oxygen-deficient copper ferrite was synthesized through first and second calcination steps for the application of hydrogen production by a two-step water splitting process. The crystal structure, properties, chemical composition and δwere investigated in detail by utilizing X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal analysis (DTA), atomic absorption spectrometer (AAS), ultraviolet spectrophotometry (UV), gas chro-matography (GC), and so on. The experimental two-step thermal chemical cycle reactor for hydrogen generation was designed and developed in this lab. The hydrogen generation process of water splitting through CuFe2O4-δ and the cycle performance of copper ferrite regeneration were firstly studied and discussed.

  4. Studies on the preparation of active oxygen-deficient copper ferrite and its application for hydrogen production through thermal chemical water splitting

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hydrogen generation through thermal chemical water splitting technology has recently received in- creasingly international interest in the nuclear hydrogen production field. Besides the main known sulfur-iodine (S-I) cycle developed by the General Atomics Company and the UT3 cycle (iron, calcium, and bromine) developed at the University of Tokyo, the thermal cycle based on metal oxide two-step water splitting methods is also receiving research and development attention worldwide. In this work, copper ferrite was prepared by the co-precipitation method and oxygen-deficient copper ferrite was synthesized through first and second calcination steps for the application of hydrogen production by a two-step water splitting process. The crystal structure, properties, chemical composition and δ were investigated in detail by utilizing X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal analysis (DTA), atomic absorption spectrometer (AAS), ultraviolet spectrophotometry (UV), gas chro- matography (GC), and so on. The experimental two-step thermal chemical cycle reactor for hydrogen generation was designed and developed in this lab. The hydrogen generation process of water splitting through CuFe2O4-δ and the cycle performance of copper ferrite regeneration were firstly studied and discussed.

  5. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    Science.gov (United States)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  6. Oxygen therapy reduces postoperative tachycardia

    DEFF Research Database (Denmark)

    Stausholm, K; Kehlet, H; Rosenberg, J

    1995-01-01

    Concomitant hypoxaemia and tachycardia in the postoperative period is unfavourable for the myocardium. Since hypoxaemia per se may be involved in the pathogenesis of postoperative tachycardia, we have studied the effect of oxygen therapy on tachycardia in 12 patients randomly allocated to blinded...... air or oxygen by facemask on the second or third day after major surgery. Inclusion criteria were arterial hypoxaemia (oxygen saturation 90 beat.min-1). Each patient responded similarly to oxygen therapy: an increase in arterial oxygen saturation and a decrease...... in heart rate (p oxygen has a positive effect on the cardiac oxygen delivery and demand balance....

  7. Oxygen safety margins set thermal limits in an insect model system.

    Science.gov (United States)

    Boardman, Leigh; Terblanche, John S

    2015-06-01

    A mismatch between oxygen availability and metabolic demand may constrain thermal tolerance. While considerable support for this idea has been found in marine organisms, results from insects are equivocal and raise the possibility that mode of gas exchange, oxygen safety margins and the physico-chemical properties of the gas medium influence heat tolerance estimates. Here, we examined critical thermal maximum (CTmax) and aerobic scope under altered oxygen supply and in two life stages that varied in metabolic demand in Bombyx mori (Lepidoptera: Bombycidae). We also systematically examined the influence of changes in gas properties on CTmax. Larvae have a lower oxygen safety margin (higher critical oxygen partial pressure at which metabolism is suppressed relative to metabolic demand) and significantly higher CTmax under normoxia than pupae (53°C vs 50°C). Larvae, but not pupae, were oxygen limited with hypoxia (2.5 kPa) decreasing CTmax significantly from 53 to 51°C. Humidifying hypoxic air relieved the oxygen limitation effect on CTmax in larvae, whereas variation in other gas properties did not affect CTmax. Our data suggest that oxygen safety margins set thermal limits in air-breathing invertebrates and the magnitude of this effect potentially reconciles differences in oxygen limitation effects on thermal tolerance found among diverse taxa to date. PMID:26041031

  8. 利用微生物电解池构建新型BOD快速测定生物传感器%A NovelBiosensor Based on Microbial Electrolysis Cells for Rapid Determination of Biochemical Oxygen Demand

    Institute of Scientific and Technical Information of China (English)

    蒋海明; 司万童; 潘建刚

    2015-01-01

    基于微生物电解池构建了新型生化需氧量(BOD)快速测定生物传感器,以葡萄糖-谷氨酸溶液为模拟废水对传感器的性能进行了评估。结果表明:(1)当外加电压保持为0.7 V,传感器的最大电流与BOD浓度在10~400 mgL1内符合Monod方程,且传感器的最大电流和BOD浓度在10~100 mgL1呈线性关系;(2)传感器的测量时间短,BOD浓度在10~400 mgL1测量时间约为10 min;(3)传感器的重复性(±SD<±12.2%,n=6)和稳定性(±SD<±6%,12 d)好。结论:基于微生物电解池开发新型 BOD 生物传感器是可行的,且传感器具有灵敏度高、线性范围宽、检测时间短、重复性及稳定性好等优点,并能快速测定BOD。%A novel microbial electrolysis cell (MEC) based biosensor for rapid determination of biochemical oxygen demand (BOD) was developed, and its performance was evaluated with glucose-glutamic acid containing artificial wastewater. The results show that when the applied voltage is kept at 0.7 V, the maximum current of the biosensor follows Monod equation under BOD concentration of 10~400 mgL1, and the maximum current has linear relationship with BOD when the BOD concentration is in the range of 10~100 mgL1. The results also indicate that the measurement time is about 10 min when the BOD concentration is in the range of 10~400 mgL1. The relative standard deviation of repeatability was less than ±12.2%, while the relative standard deviation of stability was less than ±6% over a period of 12 days. These results demonstrate that the development of novel biosensors based on MEC for rapid determination of BOD is feasible, and the biosensor has advantages of high sensitivity, wide linear range, short detection time, good repeatability and good stability.

  9. Microbial sensor for measurement of biochemical oxygen demand based on ferrocene-grafted mediator%基于接枝二茂铁介体的BOD微生物传感器

    Institute of Scientific and Technical Information of China (English)

    胡磊; 李轶

    2012-01-01

    开发出以接枝二茂铁为介体的微生物传感器测量BOD,将二茂铁(ferrocene,Fc)通过缩合反应接枝到大分子介孔材料SBA-15的表面,作为微生物生化反应传递电子的介体,与活性污泥微生物 混合固定化于聚乙烯醇(PVA)里,制备成微生物敏感膜,并与玻碳电极耦合,构建三电极传感系统,用于快速测量水样的BOD质量浓度.结果表明,传感器测量的质量浓度线性范围为2~ 300 mg/L,连续测量20个样品的精密度为4.2%,能连续工作35 d.讨论pH、温度和重金属对传感器响应的影响.实际水样的测试结果表明,由微生物传感器测得的BOD与BOD5的具有良好的相关度.%A novel microbial sensor using a ferrocene (Fc)-grafted SBA-15 mediator immobilized in a PVA matrix was developed for measurement of the biochemical oxygen demand (BOD). Fc was grafted onto the SBA-15 surface via ion-association and the product was labeled as SBA-15-Fc, and applied to a modified glassy carbon electrode for measuring BOD rapidly in the three-electrode system. The results showed a linear relationship between the anodic current responses and glucose/glutamate (GGA) concentration ranging from 2 mg/L to 300 mg/L. The reproducibility of a single sensor measuring 20 samples was less than 4.2%, and the sensor could continuously work for 35 days. The effects of pH, temperature, and heavy metal on the BOD response were studied. The detection results of real samples show that the BOD measured by the microbial sensor was in good correlation with that obtained with the BOD5 method.

  10. Rapid Determination of Biochemical Oxygen Demand(BOD) in Wastewater with Ferrocene (Fc) Grafted Mediator Microbial Sensor%接枝二茂铁介体微生物传感器对污水BOD的快速测定

    Institute of Scientific and Technical Information of China (English)

    胡磊; 李轶

    2012-01-01

    采用接枝二茂铁为介体的微生物传感器测量污水的BOD.将二茂铁(ferrocene,Fc)通过缩合反应接枝到大分子介孔材料SBA-15的表面用作微生物生化反应传递电子的介体,与活性污泥提取的微生物混合,并用聚乙烯醇(PVA)进行固定化,以此制备成微生物敏感膜,并与玻碳电极耦合,构建三电极传感系统,用于快速测量污水水样的BOD.结果表明,传感器的线性范围为2~300 mg/L,连续测量20个样品的精密度为4.2%,能连续工作35 d.并讨论了pH,温度和重金属对传感器响应的影响.通过对实际水样的测试表明,测得的BOD与BOD5的具有良好的相关性.%A novel biochemical oxygen demand(BOD) detecting method employing a ferrocene(Fc) grafted SBA-1S mediator immobilized in PVA matrix was developed. Fc was combined with SBA-15 via ion-association and the product was labeled as SBA-15-Fc, which was employed for a modified glassy carbon electrode. In a three-electrode system, a linear relationship between the anodic current responses and glucose/glutamate(GGA) concentration was 2~300 mg/L. Single sensor (measuring 20 samples) reproducibility were less than 4.2 %, and the sensor can works for 35 days continuously. The effects of pH, temperature and heavy metal on the BOD responses were studied. Comparaiion of detecting the BOD and BOD; of real samples showed a good correlation

  11. Pressure-induced electrical and structural anomalies in Pb1-xCaxTiO3 thin films grown at various oxygen pressures by chemical solution route

    International Nuclear Information System (INIS)

    Lead calcium titanate (Pb1-xCaxTiO3 or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm-1, whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure

  12. Determination of zinc speciation in basic oxygen furnace flying dust by chemical extractions and X-ray spectroscopy.

    Science.gov (United States)

    Sammut, M L; Rose, J; Masion, A; Fiani, E; Depoux, M; Ziebel, A; Hazemann, J L; Proux, O; Borschneck, D; Noack, Y

    2008-02-01

    There is a growing concern regarding the environmental and public health risks associated with airborne particulate matter (PM). The basic oxygen furnace is one of the most important atmospheric dust sources of the steel manufacturing process. It emits dust enriched in heavy metal such as Zn, which is assumed to contribute to the toxic potential of atmospheric PM. Dust collected before and after the filtration system was analyzed to determine Zn speciation. To this end, a variety of analytical tools were used and a sequential extraction protocol has been specifically developed for iron and steel dust. The Zn speciation results obtained by EXAFS and sequential extraction were in excellent agreement. Before filtration, the speciation of Zn in BOF was 43% ZnFe(2)O(4), 23% ZnCO(3) and 16% ZnO. The same species were detected after filtration with different proportions. BOF dust after filtration contains more soluble Zn phases which may play a role in the toxic effects of the emissions.

  13. Oxygen Stoichiometry and Chemical Expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-ä Measured by in Situ Neutron Diffraction

    NARCIS (Netherlands)

    McIntosh, Steven; Vente, Jaap F.; Haije, Wim G.; Blank, Dave H.A.; Bouwmeester, Henny J.M.

    2006-01-01

    The structure, oxygen stoichiometry, and chemical and thermal expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-ä (BSCF) between 873 and 1173 K and oxygen partial pressures of 1 10-3 to 1 atm were determined by in situ neutron diffraction. BSCF has a cubic perovskite structure, space group Pm3hm, across the whol

  14. Study of the influence of micro-oxygenation and oak chip maceration on wine composition using an electronic tongue and chemical analysis

    International Nuclear Information System (INIS)

    The influence of micro-oxygenation (MOX) and maceration with oak chips treatments on wine was studied on wine samples from three vintages produced in the Yarra Valley, Australia. A full factorial design was employed where two factors (MOX and oak chips treatments) had two levels and one factor (vintage) had three levels. Three replicated treatments were run for each factor's setting. Wine samples were analysed using conventional laboratory methods with respect to the phenolic wine compounds and colour attributes since the phenolic fraction of wine is most affected by both MOX and oak maceration treatments. The same wine samples were measured with an electronic tongue based on potentiometric chemical sensors. The significance of treatments and vintage effects on wine phenolic compounds was assessed using ANOVA and ANOVA-Simultaneous Component Analysis (ASCA). Cross-validation was used for the ASCA sub-model optimisations and permutation test for evaluations of the significance of the factors. Main effects of vintage and maceration with oak chips were found to be significant for both physicochemical and the ET data. Main effect of MOX treatment was also found significant for the physicochemical parameters. The largest effect on the phenolic composition of wine was due to its vintage, which accounted for 70% and 33% of total variance in the physicochemical and ET data respectively. The ET was calibrated with respect to the total phenolic content, colour density and hue and chemical ages 1 and 2 and could predict these parameters of wine with good precision.

  15. Preparation of atomic oxygen resistant polymeric materials

    Science.gov (United States)

    Tortorelli, Victor J.; Hergenrother, P. M.; Connell, J. W.

    1991-01-01

    Polyphenyl quinoxalines (PPQs) are an important family of high performance polymers that offer good chemical and thermal stability coupled with excellent mechanical properties. These aromatic heterocyclic polymers are potentially useful as films, coatings, adhesives, and composite materials that demand stability in harsh environments. Our approach was to prepare PPQs with pendent siloxane groups using the appropriate chemistry and then evaluate these polymers before and after exposure to simulated atomic oxygen. Either monomer, the bis(o-diamine)s or the bis(alpha-diketone)s can be synthesized with a hydroxy group to which the siloxane chain will be attached. Several novel materials were prepared.

  16. Oxygen Therapy

    Science.gov (United States)

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  17. Future butanes supply/demand

    International Nuclear Information System (INIS)

    This paper graphically depicts, through in-depth supply/demand analysis, how environmental regulations can be both bad and good for an industry. In the case of n-butane, the Environmental Protection Agency (EPA) summertime gasoline volatility regulations are a culprit - threatening to ultimately destroy refinery demand for the product as a gasoline blendstock. Waiting in the wings are environmental regulations that should eventually prove to be n-butane's savior. The regulations referred to here are the Clean Air Act (CAA) of 1990's mandate for motor fuel oxygenates. The negative impact of gasoline volatility regulations on U.S. n-butane demand and the positive impact that should come from the use of n-butane as a MTBE precursor are covered. Many variables exist which make studying the effects of these environmental regulations very difficult. Over the past three years RPC Group has conducted numerous studies on n-butane supply/demand, as impacted by both EPA gasoline volatility and fuel oxygenate regulations

  18. Atomic Oxygen Effects

    Science.gov (United States)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  19. 动物性食品化学品投入与市场需求诱导关联性探析%Analysis on the Relative of Animal Food Chemical Investment and the Market Demand Induction

    Institute of Scientific and Technical Information of China (English)

    孙言雅

    2011-01-01

    Security problem of animal food and its product was virtually the chemical investment question; It would bring problems to the physical and psychological health of residents and the quality of future people. Starts from the market demand and the incentive of food security problem drived by present marketing concept was analyzed, then it indicated that the company ethnic risk growed from the benefit pursuit satisfied the market demand mechanism.%动物性食品及其制品的安全问题实质是化学品投入问题,它给居民身心健康及未来人类素质带来较大的问题.从市场需求入手,分析了现行营销观念驱动下食品安全问题的诱因,揭示了企业道德风险产生于市场需求机制满足的利益追求.

  20. Controle de estoque de materiais com diferentes padrões de demanda: estudo de caso em uma indústria química Inventory control of items with different demand patterns: a case study in the chemical industry

    Directory of Open Access Journals (Sweden)

    Antônio Marcos dos Santos

    2006-05-01

    Full Text Available O desafio do gestor de estoques é saber quando e quanto ressuprir de cada material e quanto deve manter em estoque de segurança. Com o crescente número de itens com diferentes padrões de demanda e características específicas, a complexidade na administração de materiais aumenta devido à necessidade de controle diferenciado. Este trabalho, por meio de um estudo de caso em uma empresa química, propõe um método de classificação dos materiais em famílias afins com a adoção de políticas distintas de ressuprimento e estoques de segurança, com o objetivo de garantir o balanceamento dos estoques e atender aos níveis de serviço requeridos à produção.The main challenge of inventory managers is to define when and how many of each item to replenish and how much to keep in a safety stock. The increasing number of items with different demand patterns and specific characteristics requires different policies to ensure a good performance in this area. Based on a case study of a chemical company, this paper proposes a method for classifying materials with different demand patterns into families, using specific replenishment and safety stock policies aimed at maintaining a balance of stocks and meeting the service levels required for production.

  1. Work function variation of MoS2 atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules

    International Nuclear Information System (INIS)

    The electrical properties of two-dimensional atomic sheets exhibit remarkable dependences on layer thickness and surface chemistry. Here, we investigated the variation of the work function properties of MoS2 films prepared with chemical vapor deposition (CVD) on SiO2 substrates with the number of film layers. Wafer-scale CVD MoS2 films with 2, 4, and 12 layers were fabricated on SiO2, and their properties were evaluated by using Raman and photoluminescence spectroscopies. In accordance with our X-ray photoelectron spectroscopy results, our Kelvin probe force microscopy investigation found that the surface potential of the MoS2 films increases by ∼0.15 eV when the number of layers is increased from 2 to 12. Photoemission spectroscopy (PES) with in-situ annealing under ultra high vacuum conditions was used to directly demonstrate that this work function shift is associated with the screening effects of oxygen or water molecules adsorbed on the film surface. After annealing, it was found with PES that the surface potential decreases by ∼0.2 eV upon the removal of the adsorbed layers, which confirms that adsorbed species have a role in the variation in the work function

  2. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.

    Science.gov (United States)

    Ivanov, M F; Kiverin, A D; Liberman, M A

    2011-05-01

    The features of flame acceleration in channels with wall friction and the deflagration to detonation transition (DDT) are investigated theoretically and using high resolution numerical simulations of two-dimensional reactive Navier-Stokes equations, including the effects of viscosity, thermal conduction, molecular diffusion, and a detailed chemical reaction mechanism for hydrogen-oxygen gaseous mixture. It is shown that in a wide channel, from the beginning, the flame velocity increases exponentially for a short time and then flame acceleration decreases, ending up with the abrupt increase of the combustion wave velocity and the actual transition to detonation. In a thin channel with a width smaller than the critical value, the exponential increase of the flame velocity is not bounded and ends up with the transition to detonation. The transition to detonation occurs due to the pressure pulse, which is formed at the tip of the accelerating flame. The amplitude of the pressure pulse grows exponentially due to a positive feedback coupling between the pressure pulse and the heat released in the reaction. Finally, large amplitude pressure pulse steepens into a strong shock coupled with the reaction zone forming the overdriven detonation. The evolution from a temperature gradient to a detonation via the Zeldovich gradient mechanism and its applicability to the deflagration-to-detonation transition is investigated for combustible materials whose chemistry is governed by chain-branching kinetics. The results of the high resolution simulations are fully consistent with experimental observations of the flame acceleration and DDT.

  3. A primordial origin for molecular oxygen in comets: A chemical kinetics study of the formation and survival of O$_2$ ice from clouds to disks

    CERN Document Server

    Taquet, Vianney; Walsh, Catherine; van Dishoeck, Ewine F

    2016-01-01

    Molecular oxygen has been confirmed as the fourth most abundant molecule in cometary material O$_2$/H$_2$O $\\sim 4$ %) and is thought to have a primordial nature, i.e., coming from the interstellar cloud from which our solar system was formed. However, interstellar O$_2$ gas is notoriously difficult to detect and has only been observed in one potential precursor of a solar-like system. Here, the chemical and physical origin of O$_2$ in comets is investigated using sophisticated astrochemical models. Three origins are considered: i) in dark clouds, ii) during forming protostellar disks, and iii) during luminosity outbursts in disks. The dark cloud models show that reproduction of the observed abundance of O$_2$ and related species in comet 67P/C-G requires a low H/O ratio facilitated by a high total density ($\\geq 10^5$ cm$^{-3}$), and a moderate cosmic ray ionisation rate ($\\leq 10^{-16}$ s$^{-1}$) while a temperature of 20 K, slightly higher than the typical temperatures found in dark clouds, also enhances t...

  4. Phloroglucinols inhibit chemical mediators and xanthine oxidase, and protect cisplatin-induced cell death by reducing reactive oxygen species in normal human urothelial and bladder cancer cells.

    Science.gov (United States)

    Lin, Kai-Wei; Huang, A-Mei; Tu, Huang-Yao; Weng, Jing-Ru; Hour, Tzyh-Chyuan; Wei, Bai-Luh; Yang, Shyh-Chyun; Wang, Jih-Pyang; Pu, Yeong-Shiau; Lin, Chun-Nan

    2009-10-14

    Phloroglucinols, garcinielliptones HA-HE (1-5), and C (6) were studied in vitro for their inhibitory effects on chemical mediators released from mast cells, neutrophils, and macrophages. Compound 6 revealed significant inhibitory effect on release of lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP)/cytochalasin B (CB). Compounds 3, 4, and 6 showed significant inhibitory effects on superoxide anion generation in rat neutrophils stimulated with (fMLP)/(CB), while compounds 1 and 5 revealed inhibitory effects on tumor necrosis factor-alpha (TNF-alpha) formation in macrophages stimulated with lipopolysaccharide (LPS). Compounds 1 and 3-6 showed inhibitory effects on xanthine oxidase (XO) and could inhibit the DNA breakage caused by O2(-*). Treatment of NTUB1 with 2 to 60 microM compound 3 and 5 microM cisplatin and SV-HUC1 with 9 to 60 microM 3 and 5 microM cisplatin, respectively, resulted in an increase of viability of cells. These results indicated that compounds 1 and 3-6 showed anti-inflammatory effects and antioxidant activities. Compound 3 mediates through the suppression of XO activity and reduction of reactive oxygen species (ROS), and protection of subsequent cell death. PMID:19754119

  5. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Harsh [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Husain, Mushahid, E-mail: mush-reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India)

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  6. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Science.gov (United States)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-02-01

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm2 at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O2) plasma for 5 min and again field emission characteristics were measured. The O2 plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm2 at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O2 plasma treatment and the findings are being reported in this paper.

  7. Chemical competition in target radical reactions: numerical simulation of the theory and comparison with measured oxygen effect on DNA damage in cells

    International Nuclear Information System (INIS)

    The rate equations for this competing reaction scheme were written and programmed for computer simulations of changes in oxygen, thiol and electronaffinic sensitizer concentrations. A reaction scheme that also includes some non-radical target damage was also simulated. Simulations were made using available experimental data concerning intranuclear concentrations and reaction rate constants, respectively, ksub(o), ksub(s), and k1 for the reactions T + O2 → TO2, T + S → TS and T + F → TF, which produce uncommitted chemical damage. Experimental data on strand-break induction in glutathione-proficient and glutathione-deficient cells, in cells treated with thiol active agents, and in cells treated with hypoxic sensitizers, along with the computer simulations, generally agree that thiol molecules can react with target radicals to reverse T in competition with O2 and/or electronaffinic sensitizers. Forward reaction rate constants ksub(o), ksub(s) (dithiothreitol), ksub(s) (glutathione) and k1 (misonidazole) in the approximate ratio 10:0.3:0.02:0.4 satisfied the above reaction scheme, and approximately 5% non-radical target molecule damage could be included with satisfactory agreement with experimental data. (author)

  8. The crystal structure, oxygen nonstoichiometry and chemical stability of Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF).

    Science.gov (United States)

    Wang, Fang; Nakamura, Takashi; Yashiro, Keiji; Mizusaki, Junichiro; Amezawa, Koji

    2014-04-28

    The oxygen nonstoichiometry and the crystal structure of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) were investigated by using coulometric titration, high-temperature gravimetry and in situ HT-XRD. The chemical stability diagram of BSCF was established as a function of temperature between room temperature and 1373 K and oxygen partial pressure, p(O2), between 1 and 1 × 10(-21) bar. The results showed that the cubic BSCF had poor chemical stability both under highly oxidative conditions at low temperatures and highly reductive conditions at high temperatures. The phase analysis of the decomposition products showed that the chemical instability of BSCF was mainly owing to the oxidation/reduction of trivalent Co ions. PMID:24619453

  9. Application of high resolution Chemical Ionization Mass Spectrometry (CI-ToFMS to study SOA composition: focus on formation of oxygenated species via aqueous phase processing

    Directory of Open Access Journals (Sweden)

    D. Aljawhary

    2013-07-01

    Full Text Available This paper demonstrates the capabilities of Chemical Ionization Mass Spectrometry (CIMS to study secondary organic aerosol (SOA composition with a high resolution (HR time-of-flight mass analyzer (aerosol-CI-ToFMS. In particular, by studying aqueous oxidation of Water Soluble Organic Compounds (WSOC extracted from α-pinene ozonolysis SOA, we assess the capabilities of three common CIMS reagent ions: (a protonated water clusters (H2OnH+, (b acetate CH3C(OO− and (c iodide water clusters I(H2On− to monitor SOA composition. As well, we report the relative sensitivity of these reagent ions to a wide range of common organic aerosol constituents. We find that (H2OnH+ is more selective to the detection of less oxidized species, so that the range of O/C and OSC (carbon oxidation state in the SOA spectra is considerably lower than those measured using CH3C(OO− and I(H2On−. Specifically, (H2OnH+ ionizes organic compounds with OSC ≤ 1.3, whereas CH3C(OO− and I(H2On− both ionize highly oxygenated organics with OSC up to 4 with I(H2On− being more selective towards multi-functional organic compounds. In the bulk O/C and H/C space, i.e. in a Van Krevelen plot, there is a remarkable agreement in both absolute magnitude and oxidation trajectory between CI-ToFMS data and those from a high resolution aerosol mass spectrometer (HR-AMS. This indicates that the CI-ToFMS data captures much of the chemical change occurring in the particle and that gas phase species, which are not detected by the HR-AMS, do not dominate the overall ion signal. Finally, the data illustrate the capability of aerosol-CI-ToFMS to monitor specific chemical change, including the fragmentation and functionalization reactions that occur during organic oxidation, and the oxidative conversion of dimeric SOA species into monomers. Overall, aerosol-CI-ToFMS is a valuable, selective complement to some common SOA characterization methods, such as AMS and spectroscopic techniques. Both

  10. Chemical Characterization and Formation of Reactive Oxygen Species by PM2.5 during Summer in North China Plain of China

    Science.gov (United States)

    Zheng, M.; Li, X.; Kuang, X.; Yan, C.; Guo, X.; Paulson, S. E.

    2015-12-01

    Ambient particulate matter (PM) could cause adverse health effects by generating reactive oxygen species (ROS) including superoxide (·O2-), hydrogen peroxide (HOOH), and hydroxyl radical (·OH). A number of studies have shown that transition metals, quinones, as well as other unknown organics in particles, may contribute to ROS formation. North China Plain (NCP) is one of the most populated and polluted areas in the world, where Beijing, the capital of China, is located. NCP have been suffering from severe air pollution, and health effects of fine PM have drawn great attentions of both the government and the public. To study the chemical characterization and ROS generation of PM, airborne PM2.5 was collected at two sites, with one urban site on the campus of Peking University in Beijing and one suburban site in Wangdu, Hebei Province, which is located in the south of Beijing and was significantly influenced by biomass burning during the study period. Previous studies have shown that Beijing can be more influenced by regional transport when the prevailing wind is from the south. PM2.5 samples were collected on 47 mm Teflon filter and Quartz filter using the four-channel low-volume sampler, and organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC), soluble ions and trace metals have been analyzed. The formation of ·OH induced by PM2.5 was also measured to characterize the chemical generation of ROS from ambient particles in a cell-free solution. Preliminary analysis showed that during biomass burning periods, OC and EC concentrations in Wangdu were significantly higher than that in Beijing. The average concentration of WSOC in Beijing was comparable to that in Wangdu, while during biomass burning period, that in Wangdu was much higher than that in Beijing. Positive matrix factorization (PMF) was applied to identify the major contributing sources of PM2.5. More detailed information about chemical compositions, sources and ROS generation of

  11. Modelación numérica de la hidrodinámica, del oxígeno disuelto y la demanda bioquímica de oxígeno en sistemas con vegetación Numerical modeling of hydrodynamics, dissolved oxygen and biochemical oxygen demand in systems with vegetation

    Directory of Open Access Journals (Sweden)

    Ricardo González-López

    2011-08-01

    Full Text Available El presente trabajo trata sobre la implementación de un modelo numérico para simular la hidrodinámica y el transporte de contaminantes en sistemas donde existe vegetación, tanto sumergida como emergente. Dicho modelo se basa en las ecuaciones de aguas someras para el cálculo de las velocidades del flujo, haciendo énfasis en la evaluación del esfuerzo cortante de arrastre de las plantas y en la turbulencia; así como en la ecuación de advección-difusión-reacción para la simulación del transporte de sustancias disueltas. En este trabajo se presenta el cálculo del transporte de la Demanda Bioquímica de Oxígeno y del Oxígeno Disuelto. El objetivo principal es reproducir las funciones de filtrado de contaminación y reaereación que cumplen las plantas en cuerpos de agua, como los humedales. En los resultados obtenidos del campo de velocidades se aprecia el cambio de comportamiento por la restricción al flujo que impone la vegetación. Las concentraciones de DBO y OD varían debido al tiempo de residencia y a la reaereación producida por el intercambio atmosférico y la respiración de las plantas. Se concluye que el modelo representa de manera óptima el comportamiento del transporte de sustancias disueltas en flujos con presencia de vegetación y que se puede aplicar a la gran variedad de ecosistemas, siendo capaz de predecir la ruta y destino de la contaminación.This work deals with the implementation of a numerical model to simulate hydrodynamics and transport of pollutants in flows where submerged vegetation is present. The model is based on the Shallow-Water Equations to calculate the mean velocities, emphasizing calculations of the shear stress produced by both the vegetation and turbulence. The Advection-Diffusion-Reaction Equation is used to calculate the transport of the Biochemical Oxygen Demand and the Dissolved Oxygen. The main objective is to simulate the transport of these substances and the pollution filtering and

  12. Supplemental Oxygen

    Science.gov (United States)

    ... Disease Lookup > COPD > Diagnosing and Treating COPD Supplemental Oxygen Sometimes with chronic obstructive pulmonary disease (COPD), lung ... in people with severe lung disease Three Ways Oxygen Therapy Is Supplied Compressed oxygen gas and liquid ...

  13. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane.

    Science.gov (United States)

    Corbella, Beatriz M; de Diego, Luis F; García-Labiano, Francisco; Adánez, Juan; Palaciost, José M

    2005-08-01

    Recent investigations have shown that in the combustion of carbonaceous compounds CO2 and NOx emissions to the atmosphere can be substantially reduced by using a two stage chemical-looping process. In this process, the reduction stage is undertaken in a first reactor in which the framework oxygen of a reducible inorganic oxide is used, instead of the usual atmospheric oxygen, for the combustion of a carbonaceous compound, for instance, methane. The outlet gas from this reactor is mostly composed of CO2 and steam as reaction products and further separation of these two components can be carried out easily by simple condensation of steam. Then, the oxygen carrier found in a reduced state is transported to a second reactor in which carrier regeneration with air takes place at relatively low temperatures, consequently preventing the formation of thermal NOx. Afterward, the regenerated carrier is carried to the first reactor to reinitiate a new cycle and so on for a number of repetitive cycles, while the carrier is able to withstand the severe chemical and thermal stresses involved in every cycle. In this paper, the performance of titania-supported nickel oxides has been investigated in a fixed-bed reactor as oxygen carriers for chemical-looping combustion of methane. Samples with different nickel oxide contents were prepared by successive incipient wet impregnations, and their performance as oxygen carriers was investigated at 900 degrees C and atmospheric pressure in five-cycle fixed-bed reactor tests using pure methane and pure air for the respective reduction and regeneration stages. The evolution of the outlet gas composition in each stage was followed by gas chromatography, and the involved chemical, structural, and textural changes of the carrier in the reactor bed were studied by using different characterization techniques. From the study, it is deduced that the reactivity of these nickel-based oxygen carriers is in the two involved stages and almost independent

  14. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  15. The Influence of Micropore Oxygen Aeration on the Pond Water Quality Environment

    Directory of Open Access Journals (Sweden)

    Xiao-Jiang Chen

    2013-11-01

    Full Text Available In order to know the effects of micropore oxygen aeration on the water quality and economic output, take each 3 of micropore oxygen aeration (experimental pond and impeller oxygenation (control pond to make the comparison, indexs of two different aeration methods water were detected from May, 2012 to October, 2012. Such as water temperature, dissolved oxygen, ammonia nitrogen and nitrite, phytoplankton, chemical oxygen demand (CODMn. Results showed that, (1 the indexes of the dissolved oxygen, ammonia nitrogen, chemical oxygen demand(CODMn and nitrite of the experimental pond are all superior to that of the control pond, of which the concentration of the dissolved oxygen of the experimental pond is 8.37 mg/L which is higher than that of the control pond (5.7 mg/L. And, (CODMn in the experimental pond is 7.54 mg/L, lower than that in the control pond (10.19 mg/L. The difference between the control pond and the experimental pond was statistically significant (p<0.01. The ammonia nitrogen of the experimental pond is 0.1 mg/L, obviously lower than the control pond (0.16 mg/L. Besides, the nitrite is 0.13 mg/L in the experimental pond, lower than that of the control pond (0.21 mg/L. (2 Compared with the control pond, the experimental pond has quite higher general abundance of algae, with about 5.69×108 ind/L. Yet, there is no obvious difference between them. (3 Compared to the impeller oxygenation, the micropore oxygen aeration technology can be better to increase the dissolved oxygen in the aquaculture pond and improve the water quality. However, there is no significant influence to the phytoplankton abundance and diversity.

  16. Operational experience with a system of coupled fluidized beds for chemical looping combustion of solid fuels using ilmenite as oxygen carrier

    International Nuclear Information System (INIS)

    Highlights: • Successful operation of a coupled fluidized bed system for CLC of coal. • Two-stage design worked well, i.e. the 2nd stage has an significant effect on fuel conversion. • Solids circulation rates were determined. • High carbon capture rate (ηCC > 96%), which might be attributed to the very fine coal. - Abstract: A system of coupled fluidized beds for chemical looping combustion of solid fuels was successfully commissioned. The facility has a rated thermal power of 25 kW and consists of a circulating fluidized bed coupled with a two-stage bubbling fluidized bed. The two-stage bubbling fluidized bed is the fuel reactor and the riser of the circulating fluidized bed is the air reactor. In the experiments Australian ilmenite with a particle size in the range of 100–400 μm was used as the oxygen carrier. The solid fuel was lignite dust with more than 70% of the mass having a particle size smaller than 150 μm. The influence of the operational parameters, i.e. reactor temperature, coal feed rate and composition of the fuel reactor feed gas on the operational behaviour of the system was investigated. The two-stage fuel reactor performed well and CO2-concentrations in the dry fuel reactor off-gas of above 90 vol.% were achieved. The reason for the appearance of unconverted combustible gases in the fuel reactor off-gas needs further investigation. Solids circulation rates based on the riser cross-section were determined under hot operating conditions and turned out to be between 56 and 70 kg/m2 s. The carbon slip to the air reactor was small in all tests: only 1.5–6.5 wt.% of the fixed carbon introduced with the coal were oxidized in the air reactor

  17. A primordial origin for molecular oxygen in comets: A chemical kinetics study of the formation and survival of O2 ice from clouds to disks

    Science.gov (United States)

    Taquet, V.; Furuya, K.; Walsh, C.; van Dishoeck, E. F.

    2016-09-01

    Molecular oxygen has been confirmed as the fourth most abundant molecule in cometary material (O2/H2O ˜4 %) and is thought to have a primordial nature, i.e., coming from the interstellar cloud from which our solar system was formed. However, interstellar O2 gas is notoriously difficult to detect and has only been observed in one potential precursor of a solar-like system. Here, the chemical and physical origin of O2 in comets is investigated using sophisticated astrochemical models. Three origins are considered: i) in dark clouds, ii) during forming protostellar disks, and iii) during luminosity outbursts in disks. The dark cloud models show that reproduction of the observed abundance of O2 and related species in comet 67P/C-G requires a low H/O ratio facilitated by a high total density (≥105 cm-3), and a moderate cosmic ray ionisation rate (≤10-16 s-1) while a temperature of 20 K, slightly higher than the typical temperatures found in dark clouds, also enhances the production of O2. Disk models show that O2 can only be formed in the gas phase in intermediate disk layers, and cannot explain the strong correlation between O2 and H2O in comet 67P/C-G together with the weak correlation between other volatiles and H2O. However, primordial O2 ice can survive transport into the comet-forming regions of disks. Taken together, these models favour a dark cloud (or "primordial") origin for O2 in comets, albeit for dark clouds which are warmer and denser than those usually considered as solar system progenitors.

  18. A primordial origin for molecular oxygen in comets: a chemical kinetics study of the formation and survival of O2ice from clouds to discs

    Science.gov (United States)

    Taquet, V.; Furuya, K.; Walsh, C.; van Dishoeck, E. F.

    2016-11-01

    Molecular oxygen has been confirmed as the fourth most abundant molecule in cometary material O$_2$/H$_2$O $\\sim 4$ %) and is thought to have a primordial nature, i.e., coming from the interstellar cloud from which our solar system was formed. However, interstellar O$_2$ gas is notoriously difficult to detect and has only been observed in one potential precursor of a solar-like system. Here, the chemical and physical origin of O$_2$ in comets is investigated using sophisticated astrochemical models. Three origins are considered: i) in dark clouds, ii) during forming protostellar disks, and iii) during luminosity outbursts in disks. The dark cloud models show that reproduction of the observed abundance of O$_2$ and related species in comet 67P/C-G requires a low H/O ratio facilitated by a high total density ($\\geq 10^5$ cm$^{-3}$), and a moderate cosmic ray ionisation rate ($\\leq 10^{-16}$ s$^{-1}$) while a temperature of 20 K, slightly higher than the typical temperatures found in dark clouds, also enhances the production of O$_2$. Disk models show that O$_2$ can only be formed in the gas phase in intermediate disk layers, and cannot explain the strong correlation between O$_2$ and H$_2$O in comet 67P/C-G together with the weak correlation between other volatiles and H$_2$O. However, primordial O$_2$ ice can survive transport into the comet-forming regions of disks. Taken together, these models favour a dark cloud (or "primordial") origin for O$_2$ in comets, albeit for dark clouds which are warmer and denser than those usually considered as solar system progenitors.

  19. Chemical Looping with Copper Oxide as Carrier and Coal as Fuel; Boucle chimique pour la combustion du charbon avec un transporteur d'oxygene a base d'oxyde de cuivre

    Energy Technology Data Exchange (ETDEWEB)

    Eyring, E.M.; Konya, G. [Department of Chemistry, Institute for Clean and Secure Energy, University of Utah, Salt Lake City, UT 84112 (United States); Lighty, J.S.; Sahir, A.H.; Sarofim, A.F.; Whitty, K. [Department of Chemical Engineering, Institute for Clean and Secure Energy, University of Utah, Salt Lake City, UT 84112 (United States)

    2011-03-15

    A preliminary analysis has been conducted of the performance of a Chemical Looping system with Oxygen Uncoupling (CLOU) with copper oxide as the oxygen carrier and coal approximated by carbon as the fuel. The advantages of oxygen uncoupling are demonstrated by providing the energy balances, the circulation rate of oxygen carrier, the oxygen carrier mass loadings, the carbon burnout and oxygen partial pressure in the fuel reactor. Experimental data on the cycling of cuprous oxide to cupric oxide and kinetics for the oxidation and decomposition reactions of the oxides were obtained for use in the analysis. For this preliminary study unsupported oxides were utilized. The decomposition temperatures were rapid at the high temperature of 950 C selected for the fuel reactor. The oxidation kinetics peaked at about 800 C with the decrease in rate at higher temperatures, a decrease which is attributed in the literature to the temperature dependence of the diffusional resistance of the CuO layer surrounding the Cu{sub 2}O; the diffusion occurs through grain boundaries in the CuO layers and the rate of diffusion decreases as a consequence of growth of CuO grains with increasing temperature. The analysis shows the advantages of CLOU in providing rapid combustion of the carbon with carbon burnout times lower than the decomposition times of the oxygen carrier. For the full potential of CLOU to be established additional data are needed on the kinetics of supported oxides at the high temperatures ({>=}850 C) at which oxygen is released by the CuO in the fuel reactor. (authors)

  20. Physical demands during folk dancing.

    Science.gov (United States)

    Wigaeus, E; Kilbom, A

    1980-01-01

    This investigation was undertaken to evaluate the aerobic demands during one of the most popular and demanding Swedish folk dances the "hambo". Six men and six women, ranging in age from 22 to 32, participated. Their physical work capacity was investigated on a bicycle ergometer and a treadmill, using two to three submaximal and one maximal loads. All subjects were moderately well-trained and their average maximal oxygen uptake on the treadmill were 2.5 and 3.7 l/min (42.8 and 53.2 ml/kg . min-1) for women and men, respectively. When dancing the "hambo" the heart rate was telemetered, and the Douglas bag technique was used for measurements of pulmonary ventilation and oxygen uptake. The physical demand during "hambo" dancing was high in all subjects. Oxygen uptake was 38.5 and 37.3 ml/kg . min-1 and heart rate 179 and 172 in women and men, respectively. Women used 90% and men 70% of their maximal aerobic power obtained on the treadmill. The pulmonary ventilation and respiratory quotient of the female subjects were lower when dancing as compared to running, possibly because of voluntary restriction of the movements of the thoracic cage. Some popular Scandinavian folk dances are performed at a speed and with an activity pattern resembling the "hambo", while others are performed at a slower pace. The exercise intensity used in "hambo" is more than sufficient to induce training effects in the average individual provided that the dancing is performed at the frequency and for length of time usually recommended for physical training. For older or less fit people dances with a slow pace can be used for training purposes.

  1. Physico Chemical Analysis of Municipal Wastewater Discharge in Ganga River,Haridwar District of Uttarakhand, India

    Directory of Open Access Journals (Sweden)

    Saba Shirin

    2014-08-01

    Full Text Available This study was aimed to screen the water quality of Ganga River in Haridwar city, Uttarakhand, India. The study was conducted based on their water source, origin of pollution such as utilisation by human and animals. Monthly changes in physico-chemical parameters such as pH, Temperature, Total Dissolved Solids, Total Solids, Total Suspended Solids, Chemical Oxygen Demand, Dissolved oxygen, Biochemical Oxygen Demand and Volatile Suspended Solids were analyzed for a period of twoyear fromJanuary2010 toDecember 2011.The results of this study reveal the status of water quality of Ganga Riverit may helpful to protect the water resources and create awareness about the water pollution among the people living around the city.The results indicated thatphysico-chemical parameters of the water were within the permissible limits.

  2. The Kinked Demand Curve When Demand Shifts.

    Science.gov (United States)

    Frasco, Gregg P.

    1993-01-01

    Reviews recent research into the theory of the kinked demand curve in economics. Applies this theory to economic concepts such as marginal cost and price flexibility. Discusses the implications for corporations and government policymakers. (CFR)

  3. Clinical review : use of venous oxygen saturations as a goal - a yet unfinished puzzle

    NARCIS (Netherlands)

    van Beest, Paul; Wietasch, Gotz; Scheeren, Thomas; Spronk, Peter; Kuiper, Michael

    2011-01-01

    Shock is defined as global tissue hypoxia secondary to an imbalance between systemic oxygen delivery and oxygen demand. Venous oxygen saturations represent this relationship between oxygen delivery and oxygen demand and can therefore be used as an additional parameter to detect an impaired cardiores

  4. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  5. Using oxygen at home

    Science.gov (United States)

    Oxygen - home use; COPD - home oxygen; Chronic obstructive airways disease - home oxygen; Chronic obstructive lung disease - home oxygen; Chronic bronchitis - home oxygen; Emphysema - home oxygen; Chronic respiratory ...

  6. Oxygen levels versus chemical pollutants: do they have similar influence on macrofaunal assemblages? A case study in a harbour with two opposing entrances.

    Science.gov (United States)

    Guerra-García, J M; García-Gómez, J C

    2005-05-01

    Generally, harbours are polluted zones characterised by low values of hydrodynamism and oxygen in the water column and high concentrations of pollutants in sediments. The harbour of Ceuta, North Africa, has an unusual structure; it is located between two bays connected by a channel, which increases the water movement and exchange in the harbour, maintaining moderate oxygen levels in the water-sediment interface. Nevertheless, high concentration of organic matter, nutrients and heavy metals were measured in sediments from this harbour. Under these unusual conditions (high levels of pollution but total saturation of oxygen in the water column) we studied the responses of soft-bottom macrobenthic communities using uni and multivariate analyses. The number of species was similar inside and outside the harbour but the species composition differed between internal and external stations; oxygen levels seem to control the "quantity" of species whereas pollutants control the "quality" of them. PMID:15734588

  7. Oxygen analyzer

    Science.gov (United States)

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  8. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  9. Electricity demand in Kazakhstan

    International Nuclear Information System (INIS)

    Properties of electricity demand in transition economies have not been sufficiently well researched mostly due to data limitations. However, information on the properties of electricity demand is necessary for policy makers to evaluate effects of price changes on different consumers and obtain demand forecasts for capacity planning. This study estimates Kazakhstan's aggregate demand for electricity as well as electricity demand in the industrial, service, and residential sectors using regional data. Firstly, our results show that price elasticity of demand in all sectors is low. This fact suggests that there is considerable room for price increases necessary to finance generation and distribution system upgrading. Secondly, we find that income elasticity of demand in the aggregate and all sectoral models is less than unity. Of the three sectors, electricity demand in the residential sector has the lowest income elasticity. This result indicates that policy initiatives to secure affordability of electricity consumption to lower income residential consumers may be required. Finally, our forecast shows that electricity demand may grow at either 3% or 5% per year depending on rates of economic growth and government policy regarding price increases and promotion of efficiency. We find that planned supply increases would be sufficient to cover growing demand only if real electricity prices start to increase toward long-run cost-recovery levels and policy measures are implemented to maintain the current high growth of electricity efficiency

  10. Chemical State of Surface Oxygen on Carbon and Its Effects on the Capacity of the Carbon Anode in a Lithium-Ion Battery Investigated

    Science.gov (United States)

    Hung, Ching-Cheh

    2001-01-01

    In a lithium-ion battery, the lithium-storage capacity of the carbon anode is greatly affected by a surface layer formed during the first half cycle of lithium insertion and release into and out of the carbon anode. The formation of this solid-electrolyte interface, in turn, is affected by the chemistry of the carbon surface. A study at the NASA Glenn Research Center examined the cause-and-effect relations. Information obtained from this research could contribute in designing a high-capacity lithium-ion battery and, therefore, small, powerful spacecraft. In one test, three types of surfaces were examined: (1) a surface with low oxygen content (1.5 at.%) and a high concentration of active sites, (2) a surface with 4.5 at.% -OH or -OC type oxygen, and (3) a surface with 6.5 at.% O=C type oxygen. The samples were made from the same precursor and had similar bulk properties. They were tested under a constant current of 10 mA/g in half cells that used lithium metal as the counter electrode and 0.5 M lithium iodide in 50/50 (vol%) ethylene carbonate and dimethyl carbonate as the electrolyte. For the first cycle of the electrochemical test, the graph describes the voltage of the carbon anode versus the lithium metal as a function of the capacity (amount of lithium insertion or release). From these data, it can be observed that the surface with low oxygen and a high concentration of active sites could result in a high irreversible capacity. Such a high irreversible capacity could be prevented if the active sites were allowed to react with oxygen in air, producing -OH or -OC type oxygen. The O=C type oxygen, on the other hand, could greatly reduce the capacity of lithium intercalation and, therefore, needs to be avoided during battery fabrication.

  11. Oxygen levels versus chemical pollutants: do they have similar influence on macrofaunal assemblages? A case study in a harbour with two opposing entrances

    Energy Technology Data Exchange (ETDEWEB)

    Guerra-Garcia, J.M. [Laboratorio de Biologia Marina, Departamento de Fisiologia y Zoologia, Facultad de Biologia, Universidad de Sevilla, Avda Reina Mercedes 6, 41012 Sevilla (Spain)]. E-mail: jmguerra@us.es; Garcia-Gomez, J.C. [Laboratorio de Biologia Marina, Departamento de Fisiologia y Zoologia, Facultad de Biologia, Universidad de Sevilla, Avda Reina Mercedes 6, 41012 Sevilla (Spain)

    2005-05-01

    Generally, harbours are polluted zones characterised by low values of hydrodynamism and oxygen in the water column and high concentrations of pollutants in sediments. The harbour of Ceuta, North Africa, has an unusual structure; it is located between two bays connected by a channel, which increases the water movement and exchange in the harbour, maintaining moderate oxygen levels in the water-sediment interface. Nevertheless, high concentration of organic matter, nutrients and heavy metals were measured in sediments from this harbour. Under these unusual conditions (high levels of pollution but total saturation of oxygen in the water column) we studied the responses of soft-bottom macrobenthic communities using uni and multivariate analyses. The number of species was similar inside and outside the harbour but the species composition differed between internal and external stations; oxygen levels seem to control the 'quantity' of species whereas pollutants control the 'quality' of them. - A high diversity of benthic animals was found in a polluted harbour where high oxygen levels occurred.

  12. Law of Demand

    OpenAIRE

    Michael Jerison; John K.-H. Quah

    2006-01-01

    We formulate several laws of individual and market demand and describe their relationship to neoclassical demand theory. The laws have implications for comparative statics and stability of competitive equilibrium. We survey results that offer interpretable sufficient conditions for the laws to hold and we refer to related empirical evidence. The laws for market demand are more likely to be satisfied if commodities are more substitutable. Certain kinds of heterogeneity across individuals make ...

  13. Stochastic Volatility Demand Systems

    OpenAIRE

    Apostolos Serletis; Maksim Isakin

    2014-01-01

    We address the estimation of stochastic volatility demand systems. In particular, we relax the homoscedasticity assumption and instead assume that the covariance matrix of the errors of demand systems is time-varying. Since most economic and fiÂ…nancial time series are nonlinear, we achieve superior modeling using parametric nonlinear demand systems in which the unconditional variance is constant but the conditional variance, like the conditional mean, is also a random variable depending on c...

  14. ELASTICITY OF PARTY DEMAND

    OpenAIRE

    Yaskova L.V.

    2012-01-01

    On basis of sociological researches political parties as social organizations in Russia (on the example of regional branches of Lipetsk region political parties) on the entry into force of the law «About political parties» 2001 till the present moment are analyzed. It is underlined the change of volume of party space actors during various elective periods, characterized by elasticity of party demand. The factors defining elasticity of party demand are concluded. The estimation of party demand...

  15. Demand and Supply Surfaces

    OpenAIRE

    Ruiz Estrada, M.A.

    2008-01-01

    This paper shows a new optical visualization of demand and supply based on the application of surfaces. The objective of initiating the demand and supply surfaces is to propose the application of multi-dimensional graphs among academics, economists and policy makers in the study of microeconomics and macroeconomics analyses in the short and long term. To create the demand and supply surfaces, this research suggests applying “the Infinity Cartesian space (I-Cartesian space)” (Ruiz 2006). In ap...

  16. Divers of Passenger Demand

    OpenAIRE

    Wittmer, Andreas

    2011-01-01

    -Overview drivers of passenger demand -Driver 1: Economic growth in developing countries -Driver 2: International business travel in developed countries -Driver 3: International leisure travel in developed countries

  17. Influence of oxygen pressure on critical current density and magnetic flux pinning structures in YBa2Cu3O7-x fabricated by chemical solution deposition

    Institute of Scientific and Technical Information of China (English)

    Ding Fa-Zhu; Gu Hong-Wei; Zhang Teng; Dai Shao-Tao; Xiao Li-Ye

    2011-01-01

    This paper studies the effect of oxygen partial pressure on the fabrication of YBa2Cu3O7-x films on (00/) LaAlO3 substrates by metalorganic deposition using trifluoroacetates (TFA-MOD). As the oxygen partial pressure increases to 1500 Pa, a great increase in the superconducting properties is observed at high magnetic fields parallel to the YBCO c axis. The cross-sectional transmission electron microscope images show that a high density of stacking faults in the size range of 10-15 nm may act as flux pinning centres to enhance the critical current density of the YBCO films

  18. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    OpenAIRE

    P.-H. Rao; W.-Q. Zhang; Yao, W.; A.-Y. Zhu; J.-L. Xia; Y.-F. Tan; T.-Z. Liu

    2015-01-01

    Carboxymethyl cellulose (CMC) is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD) and salinity (>10 %), which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover val...

  19. Causality in demand

    DEFF Research Database (Denmark)

    Nielsen, Max; Jensen, Frank; Setälä, Jari;

    2011-01-01

    to fish demand. On the German market for farmed trout and substitutes, it is found that supply sources, i.e. aquaculture and fishery, are not the only determinant of causality. Storing, tightness of management and aggregation level of integrated markets might also be important. The methodological......This article focuses on causality in demand. A methodology where causality is imposed and tested within an empirical co-integrated demand model, not prespecified, is suggested. The methodology allows different causality of different products within the same demand system. The methodology is applied...... implication is that more explicit focus on causality in demand analyses provides improved information. The results suggest that frozen trout forms part of a large European whitefish market, where prices of fresh trout are formed on a relatively separate market. Redfish is a substitute on both markets. The...

  20. Asian oil demand

    International Nuclear Information System (INIS)

    This conference presentation examined global oil market development and the role of Asian demand. It discussed plateau change versus cyclical movement in the global oil market; supply and demand issues of OPEC and non-OPEC oil; if high oil prices reduce demand; and the Asian oil picture in the global context. Asian oil demand has accounted for about 50 per cent of the global incremental oil market growth. The presentation provided data charts in graphical format on global and Asia-Pacific incremental oil demand from 1990-2005; Asia oil demand growth for selected nations; real GDP growth in selected Asian countries; and, Asia-Pacific oil production and net import requirements. It also included charts in petroleum product demand for Asia-Pacific, China, India, Japan, and South Korea. Other data charts included key indicators for China's petroleum sector; China crude production and net oil import requirements; China's imports and the share of the Middle East; China's oil exports and imports; China's crude imports by source for 2004; China's imports of main oil products for 2004; India's refining capacity; India's product balance for net-imports and net-exports; and India's trade pattern of oil products. tabs., figs

  1. Influence of oxygen pressure on critical current density and magnetic flux pinning structures in YBa2Cu3O7−x fabricated by chemical solution deposition

    International Nuclear Information System (INIS)

    This paper studies the effect of oxygen partial pressure on the fabrication of YBa2Cu3O7−x films on (00l) LaAlO3 substrates by metalorganic deposition using trifluoroacetates (TFA-MOD). As the oxygen partial pressure increases to 1500 Pa, a great increase in the superconducting properties is observed at high magnetic fields parallel to the YBCO c axis. The cross-sectional transmission electron microscope images show that a high density of stacking faults in the size range of 10–15 nm may act as flux pinning centres to enhance the critical current density of the YBCO films (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Oxygen content modulation by nanoscale chemical and electrical patterning in epitaxial SrCoO3-δ (0 < δ ≤ 0.5) thin films

    Science.gov (United States)

    Hu, S.; Seidel, J.

    2016-08-01

    Fast controllable redox reactions in solid materials at room temperature are a promising strategy for enhancing the overall performance and lifetime of many energy technology materials and devices. Easy control of oxygen content is a key concept for the realisation of fast catalysis and bulk diffusion at room temperature. Here, high quality epitaxial brownmillerite SrCoO2.5 thin films have been oxidised to perovskite (P) SrCoO3 with NaClO. X-ray diffraction, scanning probe microscopy and x-ray photoelectron spectroscopy measurements were performed to investigate the structural and electronic changes of the material. The oxidised thin films were found to exhibit distinct morphological changes from an atomically flat terrace structure to forming small nanosized islands with boundaries preferentially in [100] or [010] directions all over the surface, relaxing the in-plane strain imposed by the substrate. The conductivity, or oxygen content, of each single island is confined by these textures, which can be locally patterned even further with electric poling. The high charging level at the island boundaries indicates a magnified electric capacity of SCO thin films, which could be exploited in future device geometries. This finding represents a new way of oxygen modulation with associated self-assembled charge confinement to nanoscale boundaries, offering interesting prospects in nanotechnology applications.

  3. Chemical and microstructural study in radio frequency sputtered CdTe oxide films prepared at different N{sub 2}O pressures. Oxygen incorporation and film resputtering

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Briones, F. [CICATA-IPN Unidad Altamira, Km 14.5 Carretera Tampico-Puerto Industrial Altamira, 89600, Altamira, Tamps (Mexico)], E-mail: fcaballerobriones@ub.edu; Oliva, A.I.; Bartolo-Perez, P. [Applied Physics Department, CINVESTAV-IPN Unidad Merida, A.P. 73 Cordemex, 97310 Merida, Yucatan (Mexico); Zapata-Navarro, A. [CICATA-IPN Unidad Legaria, Legaria 694 Col. Irrigacion 11500, Mexico, D.F. (Mexico); Pena, J.L. [Applied Physics Department, CINVESTAV-IPN Unidad Merida, A.P. 73 Cordemex, 97310 Merida, Yucatan (Mexico)

    2008-10-01

    CdTe oxide films were grown by radio frequency sputtering in Ar-N{sub 2}O plasma at different N{sub 2}O partial pressures. The film oxygen content determined by Auger electron spectroscopy ranged from 15 to 60 at.%. The free O{sub 2} production during film deposition was monitored by in situ mass spectroscopy and it was found that it increases linearly over a critical N{sub 2}O pressure {approx} 4.7 x 10{sup -3} Pa alike the oxygen in the films. Film microstructure was studied by Raman spectroscopy and atomic force microscopy. Evidence of bands related to terminal Te-O vibrations was found in films prepared below the N{sub 2}O critical pressure, becoming predominant in films with higher oxygen content. The morphology and roughness evolution of the films confirm that they consist of a mixture of phases. Surface structures of the Ia-type and of the Ib-type were observed below and above the critical N{sub 2}O pressure. Eventually, ion bombardment process caused film resputtering.

  4. Chemical and microstructural study in radio frequency sputtered CdTe oxide films prepared at different N2O pressures. Oxygen incorporation and film resputtering

    International Nuclear Information System (INIS)

    CdTe oxide films were grown by radio frequency sputtering in Ar-N2O plasma at different N2O partial pressures. The film oxygen content determined by Auger electron spectroscopy ranged from 15 to 60 at.%. The free O2 production during film deposition was monitored by in situ mass spectroscopy and it was found that it increases linearly over a critical N2O pressure ∼ 4.7 x 10-3 Pa alike the oxygen in the films. Film microstructure was studied by Raman spectroscopy and atomic force microscopy. Evidence of bands related to terminal Te-O vibrations was found in films prepared below the N2O critical pressure, becoming predominant in films with higher oxygen content. The morphology and roughness evolution of the films confirm that they consist of a mixture of phases. Surface structures of the Ia-type and of the Ib-type were observed below and above the critical N2O pressure. Eventually, ion bombardment process caused film resputtering

  5. Domestic Demand Will Work

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China can invigorate its economy by expanding domestic demand and boosting consumption chinese bankers are preparing to set up finance companies that provide consumer loans in major cities like Beijing and Shanghai.

  6. Intelligent energy demand forecasting

    CERN Document Server

    Hong, Wei-Chiang

    2013-01-01

    This book offers approaches and methods to calculate optimal electric energy allocation, using evolutionary algorithms and intelligent analytical tools to improve the accuracy of demand forecasting. Focuses on improving the drawbacks of existing algorithms.

  7. Appreciating Oxygen

    Science.gov (United States)

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  8. Persulfate activation during exertion of total oxidant demand.

    Science.gov (United States)

    Teel, Amy L; Elloy, Farah C; Watts, Richard J

    2016-09-01

    Total oxidant demand (TOD) is a parameter that is often measured during in situ chemical oxidation (ISCO) treatability studies. The importance of TOD is based on the concept that the oxidant demand created by soil organic matter and other reduced species must be overcome before contaminant oxidation can proceed. TOD testing was originally designed for permanganate ISCO, but has also recently been applied to activated persulfate ISCO. Recent studies have documented that phenoxides activate persulfate; because soil organic matter is rich in phenolic moieties, it may activate persulfate rather than simply exerting TOD. Therefore, the generation of reactive oxygen species was investigated in three soil horizons of varied soil organic carbon content over 5-day TOD testing. Hydroxyl radical may have been generated during TOD exertion, but was likely scavenged by soil organic matter. A high flux of reductants + nucleophiles (e.g. alkyl radicals + superoxide) was generated as TOD was exerted, resulting in the rapid destruction of the probe compound hexachloroethane and the common groundwater contaminant trichloroethylene (TCE). The results of this research document that, unlike permanganate TOD, contaminant destruction does occur as TOD is exerted in persulfate ISCO systems and is promoted by the activation of persulfate by soil organic matter. Future treatability studies for persulfate ISCO should consider contaminant destruction as TOD is exerted, and the potential for persulfate activation by soil organic matter. PMID:27269993

  9. Demand for public safety

    OpenAIRE

    Pradhan, Menno; Ravallion, Martin

    1999-01-01

    In public safety of less concern to poor people? What about people in poor areas? How is demand for public safety affected by income inequality? Is there a self-correcting mechanism whereby higher crime increases demand for public safety? The authors study subjective assessments of public safety using a comprehensive socioeconomic survey of living standards in Brazil. They find public safety to be a normal good at the household level. Marginal income effects are higher for the poor, so inequa...

  10. Food Demand in Slovenia

    OpenAIRE

    Regorsek, Darja; Erjavec, Emil

    2007-01-01

    The objective of this research is to analyse food consumption patterns in Slovenia for households segmented by quartile income levels and for whole Slovenian population. Food items are divided into seven commodity groups. Cross-sectional household data from Household Budget Survey 2001 were used. We apply the linearly approximated Almost Ideal Demand System (LA/AIDS). Empirical results show positive expenditure elasticities being close to one where in general demands for dairy products and fo...

  11. Maximum power demand cost

    International Nuclear Information System (INIS)

    The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some

  12. Synthesis Gas Production by Chemical-Looping Reforming of Methane Using Lattice Oxygen%基于晶格氧的甲烷化学链重整制合成气

    Institute of Scientific and Technical Information of China (English)

    黄振; 何方; 赵坤; 郑安庆; 李海滨; 赵增立

    2012-01-01

    Chemical looping reforming (CLR) of methane to obtain synthesis gas using lattice oxygen of oxygen carriers instead of molecular oxygen is a novel technology for producing synthesis gas from methane, which has higher economic benefits and environmental benign. CLR has several advantages, such as, saving oxygen generation equipment, capable of self-heating, suitable hydrogen/carbon ratio, useful by-products and realizing industrialization easily, so, it has been growing interest for researchers at home and aboard. Firstly, the basic concept and characteristics of CLR are introduced, which is partial oxidation of methane through controlling the value of lattice oxygen/fuel, thus, the synthesis gas is produced through the gas-solid reaction between methane and oxygen carriers, and the reduced oxygen carriers are re-oxidized by air or H20 to restore its lattice oxygen. Direct contact between fuel and combustion air is avoided in the CLR. Instead, an oxygen carrier performs the task of bringing 02 from the air to the fuel. In particular, it is summarized for the research progress of monometallic and composite metal oxygen carriers. And the same time, several kinds of typical representative reactor in CLR are discussed, among which interconnected fluidized bed reactor will be most effective for CLR to realize industrialization in the future. Finally, the expand application of CLR and the trends coupled with other technology are prospected.%利用氧载体中的晶格氧代替分子氧进行的甲烷化学链重整制合成气,是一种新颖的甲烷制合成气技术,具有较高经济效益和环境效应。它具有省却纯氧设备、能自热、合适的氢碳比、有用的副产物以及过程易于工业化等优点,因此受到国内外研究者的普遍关注。本文介绍了化学链重整技术的基本原理及其特点;重点总结了用于甲烷化学链重整的单金属氧载体和复合金属氧载体的研究进展;同时,探讨了几种具有

  13. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation.

    Science.gov (United States)

    Kao, C M; Chen, S C; Su, M C

    2001-08-01

    The industrial solvent trichloroethylene (TCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. The objective of this study was to develop a biobarrier system containing oxygen-organic releasing material to enhance the aerobic cometabolism of TCE in situ. The oxygen-organic material, which contains calcium peroxide and peat, is able to release oxygen and primary substrates continuously upon contact with water. Batch experiments were conducted to design and identify the components of the oxygen-organic releasing material, and evaluate the oxygen and organic substrate (presented as COD equivalent) release from the designed oxygen-organic material. The observed oxygen and chemical oxygen demand (COD) release rates were approximately 0.0246 and 0.052 mg/d/g of material, respectively. A laboratory-scale column experiment was then conducted to evaluate the feasibility of this proposed system for the bioremediation of TCE-contaminated groundwater. This system was performed using a series of continuous-flow glass columns including a soil column, an oxygen-organic material column, followed by two consecutive soil columns. Aerobic acclimated sludges were inoculated in all three soil columns to provide microbial consortia for TCE biodegradation. Simulated TCE-contaminated groundwater with a flow rate of 0.25 l/day was pumped into this system. Effluent samples from each column were analyzed for TCE and other indicating parameters (e.g., pH, dissolved oxygen). Results show that the decreases in TCE concentrations were observed over a 4-month operating period. Up to 99% of TCE removal efficiency was obtained in this passive system. Results indicate that the continuously released oxygen and organic substrates from the oxygen-organic materials enhanced TCE biotransformation. Thus, the biobarrier treatment scheme has the potential to be developed into an environmentally and economically acceptable remediation technology.

  14. Oxygen-18 kinetic isotope effects in the dopamine beta-monooxygenase reaction: evidence for a new chemical mechanism in non-heme metallomonooxygenases.

    Science.gov (United States)

    Tian, G; Berry, J A; Klinman, J P

    1994-01-11

    Previous studies of dopamine beta-monooxygenase (D beta M) have implicated the formation of a substrate-derived benzylic radical via a hydrogen atom abstraction mechanism [Miller & Klinman (1985) Biochemistry 24, 2114]. We now address the nature of the oxygen species catalyzing C-H bond cleavage through the measurement of oxygen-18 isotope effects as a function of substrate structure. Using deuterium isotope effects, together with experimental O-18 isotope effects with protonated and deuterated substrates, it has been possible to calculate intrinsic O-18 isotope effects. Since the D beta M mechanism includes many steps which may involve changes in bond order at dioxygen, e.g., the reversible binding of O2 to the active-site copper and its reductive activation to a copper-hydroperoxide species, the intrinsic O-18 isotope effect is expected to be the product of two terms: (1) an overall equilibrium O-18 isotope effect on steps leading from O2 binding to the formation of the intermediate which catalyzes C-H bond cleavage and (2) a kinetic O-18 isotope effect on the C-H bond cleavage step. Thus, the magnitude of a single O-18 isotope effect measurement cannot reveal the nature of the bonding at oxygen during substrate activation. In the present study we have measured the change in O-18 isotope effect as a function of substrate structure and reactivity, finding values of 18(V/K) which decrease from 1.0281 +/- 0.001 to 1.0216 +/- 0.0003 as the rate of the C-H bond cleavage step decreases from 680 to 2 s-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8286345

  15. Design and operation of a 1 MWth chemical looping plant

    International Nuclear Information System (INIS)

    Highlights: • First chemical looping combustion tests worldwide in 1 MWth scale were performed in a pilot plant in Darmstadt. • The oxygen demand required for oxidizing unconverted gases is in line with previous experiments at smaller scale. • A system for oxygen injection to fully oxidize unconverted gases in the flue gas duct proved to work successfully. - Abstract: Chemical looping combustion (CLC) is an efficient combustion technology with inherent separation of CO2. A metal oxide is used to transport oxygen from air to the fuel, thus avoiding direct contact between fuel and air. The CLC process imposes a very low energy penalty and low CO2 capture costs. The largest CLC pilot plant worldwide with a nominal power of 1 MWth has been erected at Technische Universität Darmstadt. This paper presents the layout of the 1 MWth pilot plant and first operational results using ilmenite and hard coal as fuel. The fuel reactor was fluidized with a mixture of air and steam, so that partial CLC operation was achieved. Conversion of coal was gradually shifted from combustion to gasification by decreasing the air ratio from 1 to 0.55 in the fuel reactor, leading to production of unconverted gases at the fuel reactor exit. The oxygen demand required for fully oxidizing the unconverted gases varied between 12 and 17. Relating the unconverted gases to the remaining 45% of the fuel that have not been oxidized by air, the oxygen demand would be in the range of 26–38%. A system for oxygen injection to fully convert the unconverted gases in the flue gas duct was proven to work successfully

  16. 水质指标化学需氧量(COD)的检测方法分析%Analysis on the Detection Method of Chemical Oxygen Demand (COD) of Water Quality Index

    Institute of Scientific and Technical Information of China (English)

    冉光静; 闵维康; 张恒

    2015-01-01

    In order to ensure whether the water is or notpolluted after environmental pollution accidents,we need to detect related index of water quality in water and judge the contaminate dextent. Water quality indexesusually use the composite indicator COD of water pollution degree for measurement, the specific detection method is oxidation meth-od,and the oxidation method has the defects of incomplete or no oxidation.It is suggested to detect the main pollutant indexes after the water pollution, so can achieve the goal of comprehensive judgment and analysis.%水质指标通常采用的是水体污染程度的综合指标化学需氧量(COD)来衡量,具体检测方法为氧化法,而氧化法存在氧化不完全或无法氧化的缺点.当发生水体污染事件后,建议对主要污染物指标进行检测,才能达到综合判断和分析的目的.

  17. 液相臭氧氧化法测定海水化学耗氧量%Determination of Chemical Oxygen Demand in Seawater Based on the Technique of Aqueous-Phase Ozone Oxidation

    Institute of Scientific and Technical Information of China (English)

    靳保辉; 庄峙厦; 王小如; Frank S.C.Lee

    2005-01-01

    基于溶解臭氧在水体中能够氧化鲁米诺产生发光现象,建立了一种利用流动注射液相化学发光技术(FI-CL)测定化学耗氧量(COD)的新方法.COD测定范围在0.6~24mg/L之间,适合海水监测.对实际海水水样的测定结果与碱性高锰酸钾法具有一致趋势,测定的相对标准偏差小于10%.

  18. Lesson on Demand. Lesson Plan.

    Science.gov (United States)

    Weaver, Sue

    This lesson plan helps students understand the role consumer demand plays in the market system, i.e., how interactions in the marketplace help determine pricing. Students will participate in an activity that demonstrates the concepts of demand, demand schedule, demand curve, and the law of demand. The lesson plan provides student objectives;…

  19. Biomass pyrolysis for chemicals

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.

    2011-07-15

    The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for materials and energy where biomass provides the only renewable source for chemicals. In a biorefinery, biomass is converted via different technologies into heat, power and various products. Here, pyrolysis (thermal degradation without added oxygen) of lignocellulosic biomass can play an important role, because it leads to an array of useful chemicals. Examples are furfural and acetic acid from hemicellulose, levoglucosan from cellulose and phenols and biochar from lignin. Since the three major biomass polymers hemicellulose, cellulose and lignin possess dissimilar thermal stabilities and reactivities, type and amount of degradation products are tunable by proper selection of the pyrolysis conditions. To determine if step-wise pyrolysis would be suitable for the production of chemicals, staged degasification of lignocellulosic biomass was studied. Due to limited yields, a hot pressurized water pre-treatment (aquathermolysis) followed by pyrolysis was subsequently developed as an improved version of a staged approach to produce furfural and levoglucosan from the carbohydrate fraction of the biomass. Lignin is the only renewable source for aromatic chemicals. Lignocellulosic biorefineries for bio-ethanol produce lignin as major by-product. The pyrolysis of side-streams into valuable chemicals is of prime importance for a profitable biorefinery. To determine the added-value of lignin side-streams other than their use as fuel for power, application research including techno-economic analysis is required. In this thesis, the pyrolytic valorisation of lignin into phenols and biochar was investigated and proven possible.

  20. Synthesis gas production using oxygen storage materials as oxygen carrier over circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    DAI Xiaoping; YU Changchun; LI Ranjia; WU Qiong; HAO Zhengping

    2008-01-01

    A novel process for synthesis gas production over Circulating Fluidized Bed (CFB) using oxygen storage materials as oxygen carrier was reported. First, oxygen in the air was chemically fixed and converted to lattice oxygen of oxygen storage materials over regenerator, and then methane was selectively oxidized to synthesis gas with lattice oxygen of oxygen storage materials over riser reactor. The results from simulation reaction of CFB by sequential redox reaction on a fixed bed reactor using lanthanum-based perovskite LaFeO3 and La0.8Sr0.2Fe0.9Co0.1O3 oxides prepared by sol-gel, suggested that the depleted oxygen species could be regenerated, and methane could be oxidized to synthesis gas by lattice oxygen with high selectivity. The partial oxidation of methane to synthesis gas over CFB using lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable.

  1. Hospital demand for physicians.

    Science.gov (United States)

    Morrisey, M A; Jensen, G A

    1990-01-01

    This article develops a derived demand for physicians that is general enough to encompass physician control, simple profit maximization and hospital utility maximization models of the hospital. The analysis focuses on three special aspects of physician affiliations: the price of adding a physician to the staff is unobserved; the physician holds appointments at multiple hospitals, and physicians are not homogeneous. Using 1983 American Hospital Association data, a system of specialty-specific demand equations is estimated. The results are consistent with the model and suggest that physicians should be concerned about reduced access to hospitals, particularly as the stock of hospitals declines. PMID:10104050

  2. Demand Modelling in Telecommunications

    Directory of Open Access Journals (Sweden)

    M. Chvalina

    2009-01-01

    Full Text Available This article analyses the existing possibilities for using Standard Statistical Methods and Artificial Intelligence Methods for a short-term forecast and simulation of demand in the field of telecommunications. The most widespread methods are based on Time Series Analysis. Nowadays, approaches based on Artificial Intelligence Methods, including Neural Networks, are booming. Separate approaches will be used in the study of Demand Modelling in Telecommunications, and the results of these models will be compared with actual guaranteed values. Then we will examine the quality of Neural Network models. 

  3. Biochemical oxygen demand in Malta Lake, Poznan, Poland

    OpenAIRE

    Mustapha, Kehinde

    2010-01-01

    Lots of research was done by different departments in Poznan region for many years which have been put together in this project. The departments that carried out the tests on Malta Lake were Laboratory tests of water, wastewater and air pollution in Poznan, Department of Environmental Protection Office of City Hall, Water and Soil Testing Laboratory of Voivodeship Sanitary and Epidemiological Station in Poznan. The aim of this work was to analyse the environmental condition of Malta Lake,...

  4. Electrical conductivity and oxygen exchange kinetics of La2NiO4+delta thin films grown by chemical vapor deposition

    DEFF Research Database (Denmark)

    Garcia, G.; Burriel, M.; Bonanos, Nikolaos;

    2008-01-01

    Epitaxial c-axis oriented La2NiO4+delta films were deposited onto SrTiO3 and NdGaO3 substrates by the pulsed injection metal organic chemical vapor deposition technique. Experimental conditions were optimized in order to accurately control the composition, thickness, and texture of the layers. X-...... by the electrical conductivity relaxation technique, from which the surface exchange coefficient was determined. (C) 2008 The Electrochemical Society.......Epitaxial c-axis oriented La2NiO4+delta films were deposited onto SrTiO3 and NdGaO3 substrates by the pulsed injection metal organic chemical vapor deposition technique. Experimental conditions were optimized in order to accurately control the composition, thickness, and texture of the layers. X...

  5. Chemical Radioprotectors

    Directory of Open Access Journals (Sweden)

    S. N. Upadhyay

    2005-10-01

    Full Text Available Protection of biological systems against radiation damage is of paramount importance during accidental and unavoidable exposure to radiation. Several physico-chemical and biological factors collectively contribute to the damage caused by radiation and are, therefore, targets for developing radioprotectors. Work on the development of chemicals capable of protecting biological systemsfrom radiation damage was initiated nearly six decades ago with cysteine being the first molecule to be reported. Chemicals capable of scavenging free radicals, inducing oxygen depletion,antioxidants and modulators of immune response have been some of the radioprotectors extensively investigated with limited success. Mechanism of action of some chemical radioprotectors and their combinations have been elucidated, while further understanding is required in many instances. The present review elaborates on structure-activity relationship of some of the chemical radioprotectors, their evaluation, and assessment, limitation, and future prospects.

  6. Oil supply and demand

    Energy Technology Data Exchange (ETDEWEB)

    Rech, O

    2004-07-01

    World oil demand, driven by economic development in China, posted the highest growth rate in 20 years. In a context of geopolitical uncertainty, prices are soaring, encouraged by low inventory and the low availability of residual production capacity. Will 2004 bring a change in the oil market paradigm? (author)

  7. Education on Demand

    DEFF Research Database (Denmark)

    Boysen, Lis; Hende, Merete

    2015-01-01

    Dette notat beskriver nogle af resultaterne fra programmet "Education on Demand' i projektet Det erhvervsrettede Uddannelseslaboratorium. Programmet har haft fokus på udfordringer og forandringsbehov i uddannelsesinstitutioner og -systemet. Herunder har det beskæftiget sig særligt med de to...

  8. Oil supply and demand

    Energy Technology Data Exchange (ETDEWEB)

    Babusiaux, D

    2004-07-01

    Following the military intervention in Iraq, it is taking longer than expected for Iraqi exports to make a comeback on the market. Demand is sustained by economic growth in China and in the United States. OPEC is modulating production to prevent inventory build-up. Prices have stayed high despite increased production by non-OPEC countries, especially Russia. (author)

  9. Oil supply and demand

    International Nuclear Information System (INIS)

    The year 2004 saw a change in the oil market paradigm that was confirmed in 2005. Despite a calmer geopolitical context, prices continued to rise vigorously. Driven by world demand, they remain high as a result of the saturation of production and refining capacity. The market is still seeking its new equilibrium. (author)

  10. Oil supply and demand

    Energy Technology Data Exchange (ETDEWEB)

    Rech, O

    2006-07-01

    The year 2004 saw a change in the oil market paradigm that was confirmed in 2005. Despite a calmer geopolitical context, prices continued to rise vigorously. Driven by world demand, they remain high as a result of the saturation of production and refining capacity. The market is still seeking its new equilibrium. (author)

  11. Oil supply and demand

    International Nuclear Information System (INIS)

    Following the military intervention in Iraq, it is taking longer than expected for Iraqi exports to make a comeback on the market. Demand is sustained by economic growth in China and in the United States. OPEC is modulating production to prevent inventory build-up. Prices have stayed high despite increased production by non-OPEC countries, especially Russia. (author)

  12. Oil supply and demand

    International Nuclear Information System (INIS)

    World oil demand, driven by economic development in China, posted the highest growth rate in 20 years. In a context of geopolitical uncertainty, prices are soaring, encouraged by low inventory and the low availability of residual production capacity. Will 2004 bring a change in the oil market paradigm? (author)

  13. The demand for euros

    NARCIS (Netherlands)

    Arnold, I.J.M.; Roelands, S.

    2010-01-01

    This paper investigates the demand for euros using panel data for 10 euro area countries covering the period from 1999 to 2008. Monetary aggregates are constructed to ensure that money is a national concept by excluding deposits owned by non-residents and including external deposits owned by residen

  14. Textbook Factor Demand Curves.

    Science.gov (United States)

    Davis, Joe C.

    1994-01-01

    Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)

  15. DEMAND AND PRICES

    Directory of Open Access Journals (Sweden)

    VĂDUVA MARIA

    2014-08-01

    Full Text Available Studying the consumer’s behavior by the ordinal approach of utility with the help of indifference curves allows us to deduce the two “movement laws of demand” in this chapter: the demand for a “normal” good is decreasing function of its price and an increasing function of income. We will use the elasticity concept to measure the intensity of the relation that is established between the demand, on the one hand, and prices or income, on the other hand: elasticity – price, direct and crossed, and elasticity – income. We can classify the goods in many categories, depending on the values that this elasticity takes. The demand elasticity can be determined depending on price and income. It reflects the proportion in which the demand for different products changes with the modification of the consumers’ income, the other factors remaining constant. The elasticity compared to the income is a demonstration of legality from the consumer’s sphere, which determines a certain hierarchy of the needs of each population category in a certain level of income. The movement of prices orients both the options and decisions of producers, namely the most useful productions and the most efficient investments, as well as the consumers’ options and decisions on the most advantageous buying of goods and services that they need. The prices appear as a “signal system” coordinating and making coherence the economic agents’ decisions – producers, consumers and population.

  16. Electricity demand in Tunisia

    International Nuclear Information System (INIS)

    This paper examines the global electricity demand in Tunisia as a function of gross domestic product in constant price, the degree of urbanization, the average annual temperature, and the real electricity price per Kwh. This demand will be examined employing annual data over a period spanning almost thirty one years from 1976 to 2006. A long run relationship between the variables under consideration is determined using the Vector Autoregressive Regression. The empirical results suggest that the electricity demand in Tunisia is sensitive to its past value, any changes in gross domestic product and electricity price. The electricity price effects have a negative impact on long-run electricity consumption. However, the gross domestic product and the past value of electricity consumption have a positive effect. Moreover, the causality test reveals a unidirectional relationship between price and electricity consumption. Our empirical findings are effective to policy makers to maintain the electricity consumption in Tunisia by using the appropriate strategy. - Highlights: ► This paper examined the electricity demand in Tunisia in the long-run. ► The empirical analysis revealed that in the long-run the electricity demand is affected by changes in its past value, GDP in constant price and real electricity price. ► There is a unidirectional relationship between price and electricity consumption, that is to say, that the electricity price causes the consumption. ► Those results suggest that a pricing policy can be an effective instrument to rationalize the electricity consumption in Tunisia in the long-run.

  17. Chemical and structural changes in Ln{sub 2}NiO{sub 4+δ} (Ln=La, Pr or Nd) lanthanide nickelates as a function of oxygen partial pressure at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Flura, Aurélien; Dru, Sophie; Nicollet, Clément; Vibhu, Vaibhav; Fourcade, Sébastien; Lebraud, Eric; Rougier, Aline; Bassat, Jean-Marc; Grenier, Jean-Claude, E-mail: grenier@icmcb-bordeaux.cnrs.fr

    2015-08-15

    The chemical stability of lanthanide nickelates Ln{sub 2}NiO{sub 4+δ} (Ln=La, Pr or Nd) has been studied in the temperature range 25–1300 °C, either in air or at low pO{sub 2} (down to 10{sup −4} atm). Thermal gravimetry analysis (TGA) measurements coupled with X-ray diffraction (XRD) characterization have shown that all compounds retain their K{sub 2}NiF{sub 4}-type structure in these conditions, while remaining over-stoichiometric in oxygen up to 1000 °C. Only Nd{sub 2}NiO{sub 4+δ} starts to decompose into Nd{sub 2}O{sub 3} and NiO above 1000 °C, at pO{sub 2}=10{sup −4} atm. In addition, a careful analysis of the lanthanide nickelates structural features has been performed by in situ XRD, as a function of temperature and pO{sub 2}. For all compounds, a structural transition has been always observed in the temperature range 200–400 °C, in air or at pO{sub 2}=10{sup −4} atm. In addition, their cell volume did not vary upon the variation of the oxygen partial pressure. Therefore, these materials do not exhibit a chemical expansion in these conditions, which is beneficial for a fuel cell application as cathode layers. Additional dilatometry measurements have revealed that a temperature as high as 950 °C for Pr{sub 2}NiO{sub 4+δ} or 1100 °C for La{sub 2}NiO{sub 4+δ} and Nd{sub 2}NiO{sub 4+δ} has to be reached in order to begin the sintering of the material particles, which is of primary importance to obtain an efficient electronic/ionic conduction in the corresponding designed cathode layers. Besides, excellent matching was found between the thermal expansion coefficients of lanthanide nickelates and SOFC electrolytes such as 8wt% yttria stabilized zirconia (8YSZ) or Ce{sub 0.8}Gd{sub 0.2}O{sub 2−δ} (GDC), at least from 400 °C up to 1400 °C in air or up to 1200 °C at pO{sub 2}=10{sup −4} atm. - Graphical abstract: This study reports the good chemical stability of oxygen overstoichiometric Ln2NiO4+δ(Ln = La, Pr or Nd) at high temperatures

  18. 酸性高锰酸钾法测定化学需氧量的方法及技巧%The method and skill of measuring chemical oxygen consumption with acid kali permanganate method

    Institute of Scientific and Technical Information of China (English)

    孙永秀

    2009-01-01

    It pointed out that Acid Kali Permanganate method was common method to measure chemical oxygen consumption (COD) in water. Several methods of measuring COD were compared and analyzed experirnentally, combined with working experience, and some operating sug-gestions were proposed, so as to make measured result error reduce to minimum.%指出酸性高锰酸钾法测定化学需氧量是饮用水中COD测定的常用方法,就该测定的几种方法进行了对比试验和分析,结合工作经验,提出了一些操作建议,从而使得测定结果的相对误差减小.

  19. Pressure-induced electrical and structural anomalies in Pb{sub 1-x}Ca{sub x}TiO{sub 3} thin films grown at various oxygen pressures by chemical solution route

    Energy Technology Data Exchange (ETDEWEB)

    Pontes, F M; Galhiane, M S; Santos, L S; Rissato, S R [Department of Chemistry, Universidade Estadual Paulista (UNESP), PO Box 473, 17033-360, Bauru, SP (Brazil); Pontes, D S L; Longo, E [Chemistry Institute, Universidade Estadual Paulista (UNESP), PO Box 355, 14801-970 Araraquara, SP (Brazil); Leite, E R [LIEC-CMDMC, Department of Chemistry, UFSCar, Via Washington Luiz, km 235, CP-676, CEP-13565-905, Sao Carlos, SP (Brazil); Chiquito, A J; Pizani, P S [Department of Physics, UFSCar-Via Washington Luiz, km 235, CEP-13565-905, Sao Carlos, SP (Brazil); Jardim, R F [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo, SP (Brazil); Escote, M T [Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas, Universidade Federal do ABC, Rua Catequese, 242, CEP 09090-400, Santo Andre, SP (Brazil)], E-mail: fenelon@fc.unesp.br

    2008-06-07

    Lead calcium titanate (Pb{sub 1-x}Ca{sub x}TiO{sub 3} or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm{sup -1}, whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.

  20. In situ reactive oxygen species production for tertiary wastewater treatment.

    Science.gov (United States)

    Guitaya, Léa; Drogui, Patrick; Blais, Jean François

    2015-05-01

    The goal of this research was to develop a new approach for tertiary water treatment, particularly disinfection and removal of refractory organic compounds, without adding any chemical. Hydrogen peroxide can indeed be produced from dissolved oxygen owing to electrochemical processes. Using various current intensities (1.0 to 4.0 A), it was possible to in situ produce relatively high concentration of H2O2 with a specific production rate of 0.05 × 10(-5) M/min/A. Likewise, by using ultraviolet-visible absorption spectroscopy method, it was shown that other reactive oxygen species (ROS) including HO(*) radical and O3 could be simultaneously formed during electrolysis. The ROS concentration passed from 0.45 × 10(-5) M after 20 min of electrolysis to a concentration of 2.87 × 10(-5) M after 100 min of electrolysis. The disinfection and the organic matter removal were relatively high during the tertiary treatment of municipal and domestic wastewaters. More than 90 % of organic compounds (chemical oxygen demand) can be removed, whereas 99 % of faecal coliform abatement can be reached. Likewise, the process was also effective in removing turbidity (more than 90 % of turbidity was removed) so that the effluent became more and more transparent.

  1. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    CERN Document Server

    Stasinska, G; Tovmassian, G; Rauch, T; Richer, M G; Pena, M; Szczerba, R; Decressin, T; Charbonnel, C; Yungelson, L; Napiwotzki, R; Simon-Diaz, S; Jamet, L

    2009-01-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A), with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h), is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range in order to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling taking into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Both stellar components contribute to the ionization: the ``cool'' one provides the bulk of hydrogen ionization, and the ``hot'' one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are f...

  2. 22分钟化学氧气在乌鲁木齐高原航段的应用%The application of 22-minute chemical oxygen supply upon the platean route to ZWWW

    Institute of Scientific and Technical Information of China (English)

    张序; 黄宇丰; 陈琳; 周川; 谭力; 侯勇; 陈彬

    2015-01-01

    This thesis makes an analysis on the schedule flights whose destination is ZWWW from Air China Southwest,and then,takes a comparison between the plateau route segment and the plain part,finds the ad-vantages of operating plateau-leg in Urumqi airline with the aircraft equipped with a 22-minute chemical ox-ygen system and applying for the X18 route for the normal airlines. Finally with the case study of a certain day′s operation of Air China,the paper analyzes the plateau-leg operation control of Urumchi airlines by air-craft with a 22-minute chemical oxygen system.%对国航在西南区域执行乌鲁木齐航线一般高原航线和平原航线进行了对比和分析,总结氧气改装以后运行一般高原航段乌鲁木齐航线的优势,并分析目前国航机组在执行一般高原航段运行过程中申请直飞X18航路的优势所在,最后以国航某日航班实际的运行情况为案例,着重分析了22分钟化学氧气系统飞机在乌鲁木齐航线高原航段运行的运行控制方式。

  3. Zhenhai to Boost Crude on Rising Demand

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Zhenhai Refining & Chemical plans to boost July crude throughput by at least 5 percent from June due to expectations of a rise in domestic demand, an industry official said on June 24. The forecast July level could match the refinery's April throughput at 1.06 million tons, the highest so far in 2003, an official close to the refinery's operations said, adding "China could see a big rise in demand from domestic travels next month especially after Beijing was dropped off the travel warning list."

  4. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    K. C. CHONG

    2016-07-01

    Full Text Available The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA. Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology in gas separation as it requires low energy consumption and relatively moderate production volume, if compared to the conventional gas production techniques. These advantages have spurred much interest from industries and academics to speed up the commercial viability of the O2/N2 separation via membrane technology. In this review, the conventional and membrane technologies in O2/N2 separation, as well as recent development of membrane fabrication techniques and materials are reviewed. The latest membrane performance in O2/N2 separation is also tabulated and discussed.

  5. Demand surge following earthquakes

    Science.gov (United States)

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  6. Innovation and Demand

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    2007-01-01

    Economic evolution is an immensely complex phenomenon, so there is an obvious need of simplifying the way we handle this phenomenon. Since Nelson and Winter's pioneering formalisation of the Schumpeterian vision of innovation-driven evolution, the major simplification has been obtained by modelli....... Second, firms' innovative activities relate, directly or indirectly, to the structure of expected and actual demand. Third, the demand side represents the most obvious way of turning to the much-needed analysis of macro-evolutionary change of the economic system.......Economic evolution is an immensely complex phenomenon, so there is an obvious need of simplifying the way we handle this phenomenon. Since Nelson and Winter's pioneering formalisation of the Schumpeterian vision of innovation-driven evolution, the major simplification has been obtained by modelling...

  7. Scientific Demand for CAMEA

    OpenAIRE

    Freeman, Paul

    2014-01-01

    To document the enthusiasm for the CAMEA spectrometer, we provide in this document: i) Letters of support from leading scientists representing several of the fields of science that will be enabled by CAMEA. ii) A list of scientists who wished to be listed as supporters of CAMEA, because they are keen to see CAMEA built. iii) Statistics from a survey to identify the need for CAMEA, and the demand for each of the advanced measurement capabilities CAMEA will enable.

  8. Demand scenarios, worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A. [Massachusetts Inst. of Technology, Center for Technology, Policy and Industrial Development and the MIT Joint Program on the Science and Policy of Global Change, Cambridge, MA (United States)

    1996-11-01

    Existing methods are inadequate for developing aggregate (regional and global) and long-term (several decades) passenger transport demand scenarios, since they are mainly based on simple extensions of current patterns rather than causal relationships that account for the competition among transport modes (aircraft, automobiles, buses and trains) to provide transport services. The demand scenario presented in this paper is based on two empirically proven invariances of human behavior. First, transport accounts for 10 to 15 percent of household total expenditures for those owning an automobile, and around 5 percent for non-motorized households on average (travel money budget). Second, the mean time spent traveling is approximately one hour per capita per day (travel time budget). These two budgets constraints determine the dynamics of the scenario: rising income increases per capita expenditure on travel which, in turn, increase demand for mobility. Limited travel time constraints travelers to shift to faster transport systems. The scenario is initiated with the first integrated historical data set on traffic volume in 11 world regions and the globe from 1960 to 1990 for all major modes of motorized transport. World average per capita traffic volume, which was 1,800 kilometers in 1960 and 4,2090 in 1990, is estimated to rise to 7,900 kilometers in 2020 - given a modest average increase in Gross World Product of 1.9% per year. Higher economic growth rates in Asian regions result in an increase in regional per capita traffic volume up to a factor of 5.3 from 1990 levels. Modal splits continue shifting to more flexible and faster modes of transport. At one point, passenger cars can no longer satisfy the increasing demand for speed (i.e. rising mobility within a fixed time budget). In North America it is estimated that the absolute traffic volume of automobiles will gradually decline starting in the 2010s. (author) 13 figs., 6 tabs., 35 refs.

  9. Demographics in demand systems

    OpenAIRE

    Blow, Laura

    2003-01-01

    Household composition can be expected to affect the allocation of household expenditure among goods, at the very least because of economies of scale as household size increases and because different people have different needs (adults versus children, for example). Specifying demographic effects correctly in demand analysis is important both in order to estimate correct price and expenditure elasticities and for the purpose of making household welfare comparisons. A common way of including de...

  10. Ontario demand response scenarios

    International Nuclear Information System (INIS)

    Strategies for demand management in Ontario were examined via 2 scenarios for a commercial/institutional building with a normal summertime peak load of 300 kW between 14:00 and 18:00 during a period of high electricity demand and high electricity prices. The first scenario involved the deployment of a 150 kW on-site generator fuelled by either diesel or natural gas. The second scenario involved curtailing load by 60 kW during the same periods. Costs and benefits of both scenarios were evaluated for 3 groups: consumers, system operators and society. Benefits included electricity cost savings, deferred transmission capacity development, lower system prices for electricity, as well as environmental changes, economic development, and a greater sense of corporate social responsibility. It was noted that while significant benefits were observed for all 3 groups, they were not substantial enough to encourage action, as the savings arising from deferred generation capacity development do not accrue to individual players. The largest potential benefit was identified as lower prices, spread across all users of electricity in Ontario. It was recommended that representative bodies cooperate so that the system-wide benefits can be reaped. It was noted that if 10 municipal utilities were able to have 250 commercial or institutional customers engaged in distributed response, then a total peak demand reduction of 375 MW could be achieved, representing more than 25 per cent of Ontario's target for energy conservation. It was concluded that demand response often involves the investment of capital and new on-site procedures, which may affect reactions to various incentives. 78 refs., 10 tabs., 5 figs

  11. Market Expects Demand Increase

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In the recent releasing Textile Industry Invigorating Plan,"givingattention to both domestlc and overseas markets"is put into a keyposition.Under a series policies,such as increasing the tax rebaterate for textile and garment exports,and granting loan for SME,thefurther development of this industry is expectative.Otherwise,weshould know that it costs time for demand driving.This need ourpatients.The only questionis how much time we have to wait.

  12. Adjusting supply to demand

    OpenAIRE

    Trindade, Armando Rocha

    2005-01-01

    Este artigo, publicado na revista da EADTU (European Association of Distance Teaching Universities), em 1993, dá continuidade ao trabalho de A.Rocha Trindade, intitulado The Demand Side of the Distance Education Market, publicado no número anterior. Ambos os artigos contribuíram para o debate, então em curso, sobre Opening the Distance Learning Market in Europe.

  13. Effect of Lakhara chemical power station (LPTS) effluents on the river Indus water quality

    International Nuclear Information System (INIS)

    The variation of the quality of river Indus water with respect to the seasonal changes, discharge of water and dilution with the effluents of Lakhra Thermal Power Station (LTPS), has been monitored. The studies were focussed on the river Indus water quality before and after mixing the effluents of the power station. The samples were collected monthly from the representative locations of the river Indus, and analyzed for the residues (total, filterable, non-filterable, volatile and fixed), pH, temperature (air and water), conductance, chloride, hardness, alkalinity, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD) /sub 5/- nitrate, phosphate, sulfate, ammonia, ammonium, silicates, magnesium, potassium, calcium and sodium. The results have been compared with the permissible limits of ECC (European Economic Community) standards for drinking and surface water. (author)

  14. Cardiac oxygen supply is compromised during the night in hypertensive patients

    OpenAIRE

    Westerhof, B E; Lieshout, van, J.J.; Parati, G.; Montfrans, van, G.A.; Guelen, I.; Spaan, J.A.E.; Westerhof, N.; Karemaker, J. M.; W J W Bos

    2011-01-01

    The enhanced heart rate and blood pressure soon after awaking increases cardiac oxygen demand, and has been associated with the high incidence of acute myocardial infarction in the morning. The behavior of cardiac oxygen supply is unknown. We hypothesized that oxygen supply decreases in the morning and to that purpose investigated cardiac oxygen demand and oxygen supply at night and after awaking. We compared hypertensive to normotensive subjects and furthermore assessed whether pressures mea...

  15. Determination of Oxygen Transport Properties from Flux and Driving Force Measurements

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Søgaard, Martin; Hendriksen, Peter Vang

    2007-01-01

    We demonstrate that an electrolyte probe can be used to measure the difference in oxygen chemical potential across the surface, when an oxygen flux is forced through an oxygen permeable membrane disk. The oxygen flux as well as the total oxygen chemical potential difference is carefully controlle...

  16. A Discussion of Oxygen Recovery Definitions and Key Performance Parameters for Closed-Loop Atmosphere Revitalization Life Support Technology Development

    Science.gov (United States)

    Abney, Morgan B.; Perry, Jay L.

    2016-01-01

    Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.

  17. Do large predatory fish track ocean oxygenation?

    Science.gov (United States)

    Dahl, Tais W; Hammarlund, Emma U

    2011-01-01

    The Devonian appearance of 1-10 meter long armored fish (placoderms) coincides with geochemical evidence recording a transition into fully oxygenated oceans.1 A comparison of extant fish shows that the large individuals are less tolerant to hypoxia than their smaller cousins. This leads us to hypothesize that Early Paleozoic O(2) saturation levels were too low to support >1 meter size marine, predatory fish. According to a simple model, both oxygen uptake and oxygen demand scale positively with size, but the demand exceeds supply for the largest fish with an active, predatory life style. Therefore, the largest individuals may lead us to a lower limit on oceanic O(2) concentrations. Our presented model suggests 2-10 meter long predators require >30-50% PAL while smaller fish would survive at oxygen pressure acted as an evolutionary barrier for fish to grow much above ∼1 meter before the Devonian oxygenation.

  18. Comparison of airline passenger oxygen systems.

    Science.gov (United States)

    Byrne, N J

    1995-08-01

    The principal sources of oxygen for inflight passenger use, scheduled and unscheduled, are examined. Present practices of assessment of the passenger's "fitness to fly" are described. Three partner airlines, British Airways, U.S. Air, and Qantas, catering for more than 8000 oxygen requests annually, are compared. Analysis of customer use suggests that medical oxygen requests are frequently not clinically justified. The growth in demand, for both scheduled and unscheduled use of an expensive resource, supports the need for a "recommended best practice" among carriers. Passengers with respiratory disorders who will most benefit from inflight oxygen are vulnerable either to hypoxia or asthma. PMID:7487813

  19. Road infrastructure and demand induction

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Hovgesen, Henrik Harder; Lahrmann, Harry

    2006-01-01

    a long screenline is used to measure the development in aggregate demand in selected corridors. The paper analyses demand induction by establishing time series of aggregate demand that is compared with the national traffic index. Significant trend breaks in the association between aggregate demand...... in the corridors and the national index, following the opening of motorways or bridges, indicates demand induction by infrastructure expansion in a number of instances. Lack of significant trend breaks following opening year is found in peripheral areas where major population centres are missing. This indicates...... the necessity of some latent demand within suitable travel range for new infrastructure elements to produce significant amounts of induced demand. Estimates of demand induction as a percentage of the realised demand five years after opening are between 10% and 67% for new motorway sections depending...

  20. Aggregate Demand and Supply

    OpenAIRE

    Farmer, Roger E.A.

    2007-01-01

    This paper is part of a broader project that provides a microfoundation to the General Theory of J.M. Keynes. I call this project 'old Keynesian economics' to distinguish it from new-Keynesian economics, a theory that is based on the idea that to make sense of Keynes we must assume that prices are sticky. I describe a multi-good model in which I interpret the definitions of aggregate demand and supply found in the General Theory through the lens of a search theory of the labor market. I argue...

  1. Pulmonary hematological parameters, energetic flight demands and their correlation with oxygen diffusion capacity in the lungs Parámetros hematológicos pulmonares, demandas energéticas del vuelo y su correlación la capacidad de difusión de oxígeno en los pulmones

    Directory of Open Access Journals (Sweden)

    M CANALS

    2007-09-01

    Full Text Available Hematological parameters of birds and mammals seem to respond to environmental requirements, such as hypoxia at high altitude and the energetic demands of locomotion and flight. In this work we hypothesize that lung capillary hematocrit and red blood size may be influenced by the energetic requirements of flight. Also, we propose that hematological parameters should vary together with the morphological parameters that determine oxygen diffusion capacity. We analyzed the red blood cell size and the local characteristics of the pulmonary capillary hematocrit correlating these with the pulmonary factors that determines the oxygen diffusion capacity. We deal with seven species, non-flying and flying birds and mammals, with different energetic requirements. The capillary hematocrit was not different in each taxon, but the red blood cell size was smaller in flying mammals and birds than non-flying ones. Correlation of erythrocyte size with the diffusing characteristics of the lungs produced a non-phylogenetic clustering with a group constituting by the bats Tadarida brasiliensis y Myotis chiloensis, and the bird Z. auriculata; revealing similar functional response in unrelated species. Finally, in mammals, a negative correlation between the red blood cell size and the mass-specific oxygen diffusion capacity was obtained. These results suggest that the direction of the hematological and pulmonary adjustments is governed mainly by the requirements of flight independent of phylogenetic origin of the species studiedLos parámetros hematológicos y pulmonares parecen responder a las exigencias ambientales como la hipoxia y la alta altitud y a los requerimientos energéticos de la locomoción. En este trabajo sometemos a prueba la hipótesis que el hematocrito del capilar pulmonar y el tamaño del glóbulo rojo pueden ser influidos por los requerimientos energéticos del vuelo. También proponemos que los parámetros hematológicos varían en conjunto con

  2. Design of a rotary reactor for chemical-looping combustion. Part 2: Comparison of copper-, nickel-, and iron-based oxygen carriers

    KAUST Repository

    Zhao, Zhenlong

    2014-04-01

    Chemical-looping combustion (CLC) is a novel and promising option for several applications including carbon capture (CC), fuel reforming, H 2 generation, etc. Previous studies demonstrated the feasibility of performing CLC in a novel rotary design with micro-channel structures. Part 1 of this series studied the fundamentals of the reactor design and proposed a comprehensive design procedure, enabling a systematic methodology of designing and evaluating the rotary CLC reactor with different OCs and operating conditions. This paper presents the application of the methodology to the designs with three commonly used OCs, i.e., copper, nickel, and iron. The physical properties and the reactivities of the three OCs are compared at operating conditions suitable for the rotary CLC. Nickel has the highest reduction rate, but relatively slow oxidation reactivity while the iron reduction rate is most sensitive to the fuel concentration. The design parameters and the operating conditions for the three OCs are selected, following the strategies proposed in Part 1, and the performances are evaluated using a one-dimensional plug-flow model developed previously. The simulations show that for all OCs, complete fuel conversion and high carbon separation efficiency can be achieved at periodic stationary state with reasonable operational stabilities. The nickel-based design includes the smallest dimensions because of its fast reduction rate. The operation of nickel case is mainly limited to the slow oxidation rate, and hence a relatively large share of air sector is used. The iron-based design has the largest size, due to its slow reduction reactivity near the exit or in the fuel purge sector where the fuel concentration is low. The gas flow temperature increases monotonically for all the cases, and is mainly determined by the solid temperature. In the periodic state, the local temperature variation is within 40 K and the thermal distortion is limited. The design of the rotary CLC is

  3. A simple QuEChERS-like extraction approach for molecular chemical characterization of organic aerosols: application to nitrated and oxygenated PAH derivatives (NPAH and OPAH) quantified by GC-NICIMS.

    Science.gov (United States)

    Albinet, A; Nalin, F; Tomaz, S; Beaumont, J; Lestremau, F

    2014-05-01

    An extraction procedure based on the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) approach has been developed and used for analysis of particle-bound nitrated and oxygenated PAH derivatives (NPAH and OPAH, respectively). Several analytical conditions, for example GC injection temperature and MS detection settings, were optimized. This analytical procedure enabled simultaneous GC-NICIMS quantification of 32 NPAH and 32 OPAH (or other oxygenated compounds), including typical components of secondary organic aerosol (SOA) formed by photooxidation of PAH (e.g. 2-formyl-trans-cinnamaldehyde and 6H-dibenzo[b,d]pyran-6-one). The QuEChERS-like approach was optimized, including the nature of the extraction solvent, the sorbent used for clean-up, and extraction time. The final extraction procedure was based on brief mechanical agitation (vortex mixing for 1.5 min), with 7 mL acetonitrile as solvent. Because dispersive solid-phase extraction (d-SPE) did not provide satisfactory results, SPE using SiO2 was selected for sample purification. Identical results were obtained when the QuEChERS-like and traditional pressurised solvent extraction (PLE) procedures were compared for analysis of fortified ambient air particle samples. The procedure was validated by analysis of two aerosol standard reference materials (NIST SRM 1649b (urban dust) and SRM 2787 (fine particulate matter, <10 μm)). For numerous NPAH and OPAH, this is the first report of their quantification in both SRMs. Compared with other extraction methods, including PLE, the QuEChERS-like procedure resulted in increased productivity and reduced extraction cost. This paper shows that QuEChERS-like extraction procedures can be suitably adapted for molecular chemical characterization of aerosol samples and could be extended to other categories of compound. PMID:24705956

  4. Pulsations of massive ZZ Ceti stars with carbon/oxygen and oxygen/neon cores

    OpenAIRE

    Corsico, A. H.; Garcia-Berro, E.; L. G. Althaus; Isern, J.

    2004-01-01

    We explore the adiabatic pulsational properties of massive white dwarf stars with hydrogen-rich envelopes and oxygen/neon and carbon/oxygen cores. To this end, we compute the cooling of massive white dwarf models for both core compositions taking into account the evolutionary history of the progenitor stars and the chemical evolution caused by time-dependent element diffusion. In particular, for the oxygen/neon models, we adopt the chemical profile resulting from repeated carbon-burning shell...

  5. Supplement and Consumption of Dissolved Oxygen and Their Seasonal Variations in Shrimp Pond

    Institute of Scientific and Technical Information of China (English)

    孙耀; 张淑芳; 陈聚法; 宋云利

    2001-01-01

    On the basis of the research of DO budget or kinetics in shrimp pond, the main influence process of DO and its seasonal variations are quantitatively described through redividing the budget process and modifying the quantitative method of the process. The percentages of oxygen demand of various processes in the total oxygen demand are different in shrimp cultivation seasons. It is showed that the dissolved oxygen demand of mini-organisms is the major affected factor of DO in this environment and approximately accounts for 64.1~74.1% of the total oxygen demand. In the early period of shrimp culture, the dissolved oxygen demand of allotrophic bacteria degrading organic matters is much lower than that of phytoplankton respiration. But in the midterrn and later period, it is about 50% of the total oxygen demand because of the higher water temperature and more serious self-pollution. The dissolved oxygen demand of sediment is lower and just 19.1~28.8%, while the percentage of shrimp oxygen demand is lower. The effect of phytoplankton on DO in shrimp culturing water has dualism. One is the oxygen producing process of photosynthesis and the other is the oxygen consumption process of respiration. It is estimated that the dissolved oxygen demand of phytoplankton respiration is approximately one-fifth of the oxygen produced by photosynthesis under normal illumination conditions. The dissolved oxygen demand of al lotrophic bacteria degrading organic matters and the total oxygen demand of sediment increase 4 times and 1.7 times respectively from the early period to the midterm and later period.Obviously, the DO of culturing water can be also greatly improved by controlling the selfpollution of organic matters during shrimp culture.

  6. I. Airglow on Mars: Model predictions for the oxygen IR atmospheric band at 1.27 micrometers, the hydroxyl radical Meinel bands and the hydroxyl radical A-X band system. II. Physical and chemical aeronomy of HD 209458b

    Science.gov (United States)

    Garcia Munoz, Antonio

    The first part of this dissertation is concerned with model predictions of airglow from the O2 IR atmospheric band at 1.27 mum, the OH Meinel bands and the OH A-X band system in the low-latitude neutral atmosphere of Mars. As an observable feature, airglow provides a means to remotely probe the composition, dynamics and energetics of the Martian atmosphere. The daytime emission from the O2 IR atmospheric band, a direct result of ozone photodissociation, has long been known to be a prominent emission of the Martian airglow. The motivation for pursuing the modelling of the nighttime components of the O2 IR atmospheric band and the OH Meinel bands is the potential of these two processes for characterizing the atomic oxygen profile in the 50-80 km region of the atmosphere. Likewise, the OH A-X band system may be useful to constrain the abundance of the hydroxyl radical on the illuminated side of the planet below 60 km. Both, O and OH are indicators of the photochemical state of the atmosphere. The results reported herein are expected to serve as guidelines for prospective observations of the atmosphere of Mars. The second part of the dissertation investigates the physical and chemical aeronomy of HD 209458b. The discovery of this extrasolar planet by radial velocity measurements was announced in 2000. Shortly afterwards, the inference of the mean planetary density from transit observations indicated the plausible gaseous nature of the planet. Later in-transit spectrally-resolved photometric observations revealed a cloud of hydrogen, carbon and oxygen atoms extending to a few planetary radii above the surface of the planet, which has been interpreted as evidence for an escaping atmosphere around HD 209458b. At an orbital distance of 0.05 AU, intense EUV stellar irradiation may lead to the massive escape of the atmosphere. In this work, the composition, escape and energy balance of the atmosphere are consistently modelled. Escape rates and abundances of the main hydrogen

  7. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  8. Physical demands in worklife.

    Science.gov (United States)

    Astrand, I

    1988-01-01

    Industrial occupations which are physically strenuous in the traditional sense of the word have decreased in number. They have partly been replaced by "light," repetitive, monotonous work tasks performed in a sitting position. The number of heavy work tasks within the service sector has increased. Specialization has been intensified. The individual's capacity for strenuous work is still of importance to successful work performance. Many studies show that an optional choice of work pace in physically demanding occupational work results in an adaptation of pace or intensity until the worker is utilizing 40-50% of her or his capacity. When the work rate is constrained, the relative strain of the individual varies inversely with the physical work capacity. The frequency of musculoskeletal disorders has concurrently increased with the implementation of industrial mechanization. New, wise, ergonomic moves are needed to stop this development.

  9. Water demand and supply

    International Nuclear Information System (INIS)

    Major international conferences have dealt with the growing concern over the ever increasing use of limited fresh water resources on the planet, including the United Nations Water Conference held in Mar del Plata (1977), the Dublin Conference (1992) and the UN Conference on Environment and Development held in Rio de Janeiro (1992). In April 1997, the UN Commission on Sustainable Development was presented with a report on a Comprehensive Assessment of the Freshwater Resources of the World, in which all UN agencies concerned with water participated. Matching the ever growing demands with the limited supply of a finite resource has led to tremendous stress on natural fresh water. This starts with low water stress, when about 10% of the available fresh water is being used. Use of more than 40% of the available water indicates serious scarcity, and usually increasing dependence on desalination and overexploitation of aquifers. On the basis of population increase projections for the year 2025, and extrapolating current trends, as much as two-thirds of the world's population may be living in moderate or high water stress situations. With increasing water stress and scarcity, drastic changes in the way water business is being done will have to be introduced, particularly in low income countries. Agricultural practices, in particular, have to be introduced that reduce losses. Improved strategies have to make use of rigorously enforced demand management, better resource management, waste water reuse to the extent possible, and finally desalination of sea water and brackish groundwaters. Some of the current water intensive patterns of development may even have to be abandoned. (author)

  10. Participatory Demand-supply Systems

    NARCIS (Netherlands)

    Rezaee, S.A.; Oey, M.A.; Nevejan, C.I.M.; Brazier, F.M.

    2015-01-01

    Introducing the notion of Participatory Demand-Supply (PDS) systems as socio-technical systems, this paper focuses on a new approach to coordinating demand and supply in dynamic environments. A participatory approach to demand and supply provides a new frame of reference for system design, for which

  11. Production and Consumption of Reactive Oxygen Species by Fullerenes

    Science.gov (United States)

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  12. Oxygen isotopes and lakes

    OpenAIRE

    Leng, Melanie; Dean, Jonathan

    2014-01-01

    Isotopes are variations of a particular chemical element. It is all to do with the number of neutrons. Oxygen has two main isotopes: 18O which has 10 neutrons and 8 protons; and 16O which has 8 neutrons and 8 protons. Although these variants have a different number of neutrons (and therefore a different atomic mass), the number of protons remains the same, and they are still classed as the same element. Isotopes are analysed in terms of ratios such as 18O/16O which is shortened to δ18O (δ...

  13. Monitoring oxygenation.

    Science.gov (United States)

    Severinghaus, John W

    2011-06-01

    Cyanosis was used for a century after dentists began pulling teeth under 100% N(2)O in 1844 because brief (2 min) severe hypoxia is harmless. Deaths came with curare and potent anesthetic respiratory arrest. Leland Clark's invention of a polarographic blood oxygen tension electrode (1954) was introduced for transcutaneous PO2 monitoring to adjust PEEP and CPAP PO2 to prevent premature infant blindness from excess O2 (1972). Oximetry for warning military aviators was tried after WW II but not used for routine monitoring until Takuo Aoyagi (1973) discovered an equation to measure SaO2 by the ratio of ratios of red and IR light transmitted through tissue as it changed with arterial pulses. Pulse oximetry (1982) depended on simultaneous technology improvements of light emitting red and IR diodes, tiny cheap solid state sensors and micro-chip computers. Continuous monitoring of airway anesthetic concentration and oxygen also became very common after 1980. Death from anesthesia fell 10 fold between 1985 and 2000 as pulse oximetry became universally used, but no proof of a causative relationship to pulse oximetry exists. It is now assumed that all anesthesiologist became much more aware of the dangers of prolonged hypoxia, perhaps by using the pulse oximeters. PMID:21717228

  14. Sounding of the Atmosphere using Broadband Emission Radiometry observations of daytime mesospheric O2(1Δ) 1.27 μm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates

    Science.gov (United States)

    Mlynczak, Martin G.; Marshall, B. Thomas; Martin-Torres, F. Javier; Russell, James M.; Thompson, R. Earl; Remsberg, Ellis E.; Gordley, Larry L.

    2007-08-01

    We report observations of the daytime O2(1Δ) airglow emission at 1.27 μm recorded by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. The measured limb radiances are inverted to yield vertical profiles of the volume emission rate of energy from the O2 molecule. From these emission rates we subsequently derive the mesospheric ozone concentrations using a nonlocal thermodynamic equilibrium (non-LTE) radiative and kinetic model. Rates of energy deposition due to absorption of ultraviolet radiation in the Hartley band of ozone are also derived, independent of knowledge of the ozone abundance and solar irradiances. Atomic oxygen concentrations are obtained from the ozone abundance using photochemical steady state assumptions. Rates of energy deposition due to exothermic chemical reactions are also derived. The data products illustrated here are from a test day (4 July 2002) of SABER Version 1.07 data which are now becoming publicly available. This test day illustrates the high quality of the SABER O2(1Δ) airglow and ozone data and the variety of fundamental science questions to which they can be applied.

  15. Treatment test of supernatant from sewage sludge by irradiation of high energy electron beams under supersaturation with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Hosono, Masakazu; Arai, Hidehiko (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Aizawa, Masaki; Shimooka, Toshio; Yamamoto, Ichiro; Shimizu, Ken; Sugiyama, Masashi.

    1993-02-01

    Supernatant comes from dewaterization of sewage sludge, and contains biologically nondegradable organics. Therefore, it is hard to be treated by conventional activated sludge method. The development of a new technology is required to decrease the chemical oxygen demand (COD) effectively below 30 mg/l. Irradiation of high energy electron beams can convert nondegradable organics in water into substances which are biodegradable. However, sufficient dissolved oxygen in water is needed to induce oxidation effectively. In the present study, the treatment of supernatant was studied using an apparatus which can be irradiated by high intensity electron beams in flow system under supersaturation with oxygen by pressurization up to 3 atms. The dependence of oxygen concentration on the reduction in absorbance at 230 nm of azo dye (Acid Red 265) aqueous solution was examined, and it was clarified that sufficient oxygen was supplied in the solution up to about 14 kGy under 3 atms of oxygen. Radiation treatment of supernatant which came from the leather works was carried out using the above apparatus. However, as this supernatant contained high concentration of nitrite, the nitrite was removed by limited aeration activated sludge method. By this pretreatment, COD was reduced from 200 mg/l to 53 mg/l. Then, the biodegradability of supernatant irradiated under supersaturation with oxygen was examined. The final COD of the supernatant was reduced below 30 mg/l by the combined method of irradiation of 7 kGy and biological treatment. (author).

  16. Pulsations of massive ZZ Ceti stars with carbon/oxygen and oxygen/neon cores

    CERN Document Server

    Corsico, A H; Althaus, L G; Isern, J

    2004-01-01

    We explore the adiabatic pulsational properties of massive white dwarf stars with hydrogen-rich envelopes and oxygen/neon and carbon/oxygen cores. To this end, we compute the cooling of massive white dwarf models for both core compositions taking into account the evolutionary history of the progenitor stars and the chemical evolution caused by time-dependent element diffusion. In particular, for the oxygen/neon models, we adopt the chemical profile resulting from repeated carbon-burning shell flashes expected in very massive white dwarf progenitors. For carbon/oxygen white dwarfs we consider the chemical profiles resulting from phase separation upon crystallization. For both compositions we also take into account the effects of crystallization on the oscillation eigenmodes. We find that the pulsational properties of oxygen/neon white dwarfs are notably different from those made of carbon/oxygen, thus making asteroseismological techniques a promising way to distinguish between both types of stars and, hence, t...

  17. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  18. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    Energy Technology Data Exchange (ETDEWEB)

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. (Univ. of Illinois, Urbana (United States))

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  19. Information Demand Pattern for Teams

    Directory of Open Access Journals (Sweden)

    Dirk Stamer

    2016-04-01

    Full Text Available Modern organizations face the challenge of having to manage an increasing amount of information. The resulting information overload leads more and more to problems in decision making with potentially negative economic consequences. Decision-makers and knowledge intensive workers are especially affected. To address this problem, information demand patterns were proposed which capture organizational knowledge about the information demand of single roles. This work extends the concept of information demand patterns from single roles to teams. Using the knowledge intensive field of project management, the paper shows how to apply the concept of information demand patterns for a whole team. The contributions of this work are (1 the methodical approach to develop information demand patterns for teams, (2 an actual information demand pattern for a steering committee in the context of project management, (3 reflections on the differences between role patterns and team patterns.

  20. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  1. Metonymy and Cross Section Demand

    OpenAIRE

    Evstigneev, Igor V.; Hildenbrand, Werner; Jerison, Michael

    1996-01-01

    Cross section consumer expenditure data are frequently used to make conclusions about consumer demand behavior. Such conclusions, however, can only be justified under certain assumptions, which are often left unstated in the empirical demand literature. An assumption of this type, the metonymy hypothesis, was stated rigorously and then exploited by Hardle, Hildenbrand and Jerison when analyzing the monotonicity property of aggregate demand functions. The purpose of the present paper is to exa...

  2. Participatory Demand-supply Systems

    OpenAIRE

    Rezaee, S.A.; Oey, M.A.; Nevejan, C.I.M.; Brazier, F.M.

    2015-01-01

    Introducing the notion of Participatory Demand-Supply (PDS) systems as socio-technical systems, this paper focuses on a new approach to coordinating demand and supply in dynamic environments. A participatory approach to demand and supply provides a new frame of reference for system design, for which the engagement of all stakeholders plays an important role, as does distributed ICT. This approach has been applied to an industrial case to explore new opportunities enabled by distributed ICT fo...

  3. OXYGEN-18 + OXYGEN-18 Reactions.

    Science.gov (United States)

    Yuan, Ren-Feng

    Cross sections for the ^{18 }O + ^{18}O reactions (fusion, inelastic excitation and transfer reactions) have been determined in the range 6.73 <=q E_{c.m}<=q 13.24 MeV by measuring the low-lying gamma-ray transitions in the residual nuclei with a high resolution Ge detector. A statistical model calculation of the populations of the residual nuclear states was employed in deducing cross sections from the measured gamma -yields. gamma-ray angular distributions were determined at E_{lab} = 20.0 MeV. The total fusion cross sections were compared with an IWBC calculation employing a parameter set obtained from fitting elastic scattering data. The interaction barrier shape has been obtained by means of the BKN inversion procedure and compared with the barriers for other oxygen isotopes. The inelastic scattering cross section and the two-neutron transfer reaction cross section are reproduced well by the DWBA approach.

  4. Treatment of Actual Chemical Wastewater by a Heterogeneous Fenton Process Using Natural Pyrite

    OpenAIRE

    Liang Sun; Yan Li; Aimin Li

    2015-01-01

    Wastewater from chemical plants has remarkable antibiotic effects on the microorganisms in traditional biological treatment processes. An enhanced Fenton system catalyzed by natural pyrite was developed to degrade this kind of wastewater. Approximately 30% chemical oxygen demand (COD) was removed within 120 min when 50 mmol/L H2O2 and 10 g/L natural pyrite were used at initial pH from 1.8 to 7. A BOD5/COD enhancement efficiency of 210% and an acute biotoxicity removal efficiency of 84% were a...

  5. An integrated communications demand model

    Science.gov (United States)

    Doubleday, C. F.

    1980-11-01

    A computer model of communications demand is being developed to permit dynamic simulations of the long-term evolution of demand for communications media in the U.K. to be made under alternative assumptions about social, economic and technological trends in British Telecom's business environment. The context and objectives of the project and the potential uses of the model are reviewed, and four key concepts in the demand for communications media, around which the model is being structured are discussed: (1) the generation of communications demand; (2) substitution between media; (3) technological convergence; and (4) competition. Two outline perspectives on the model itself are given.

  6. North American oil demand outlook

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, M.B. [National Economic Research Associates, White Plains, NY (United States)

    1995-11-01

    An understanding of the relationship of economic growth and potential petroleum product demand is needed to forecast the potential for North American oil demand growth as well as knowledge of world supply and price. The bullish expectations for economic growth in the US and Canada auger well for North American refiners and marketeers. The growth in world economic output forecast, however, means a larger oil demand and an increase in OPEC`s pricing power. Such price increases could depress North American oil demand growth. (author)

  7. North American oil demand outlook

    International Nuclear Information System (INIS)

    An understanding of the relationship of economic growth and potential petroleum product demand is needed to forecast the potential for North American oil demand growth as well as knowledge of world supply and price. The bullish expectations for economic growth in the US and Canada auger well for North American refiners and marketeers. The growth in world economic output forecast, however, means a larger oil demand and an increase in OPEC's pricing power. Such price increases could depress North American oil demand growth. (author)

  8. Global energy demand outlook

    International Nuclear Information System (INIS)

    Perhaps the most compelling issue the world will face in the next century is the quality of life of the increasing populations of the poorer regions of the world. Energy is the key to generating wealth and protecting the environment. Today, most of the energy generated comes from fossil fuels and there should be enough for an increase in consumption over the next half century. However, this is likely to be impacted by the Kyoto Protocol on carbon dioxide emissions. Various authoritative studies lead to a global energy demand projection of between 850 to 1070 EJ per year in the mid-21st century, which is nearly three times as much as the world uses today. The studies further indicate that, unless there is a major thrust by governments to create incentives and/or to levy heavy taxes, the use of fossil fuels will continue to increase and there will be a major increase in carbon dioxide emissions globally. Most of the increase will come from the newly industrializing countries which do not have the technology or financial resources to install non-carbon energy sources such as nuclear power, and the new renewable energy technologies. The real issue for the nuclear industry is investment cost. Developing countries, in particular will have difficulty in raising capital for energy projects with a high installed cost and will have difficulties in raising large blocks of capital. A reduction in investment costs of the order of 50% with a short construction schedule is in order if nuclear power is to compete and contribute significantly to energy supply and the reduction of carbon dioxide emissions. Current nuclear power plants and methods are simply not suited to the production of plants that will compete in this situation. Mass production designs are needed to get the benefits of cost reduction. Water cooled reactors are well demonstrated and positioned to achieve the cost reduction necessary but only via some radical thinking on the part of the designers. The reactors of

  9. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.

    2003-01-01

    1. The solubility of oxygen in water increases with decreasing temperature. This has led to a general perception of cold, high mountain streams as more oxygen rich than warmer lowland streams, and that macroinvertebrates inhabiting high altitude streams have had no need to adapt to critical oxygen...... streams from sea level to 4000 m a.s.l. in Ecuador, we determined predicted oxygen availability, oxygen demand and macroinvertebrate assemblage structure along this wide altitudinal gradient. 3. We show that the predicted oxygen availability at 4000 m a.s.l. is only one fifth of that at sea level, whereas...... relatively few groups normally regarded as oxygen-sensitive. Nevertheless, high altitude assemblages react more strongly to lowering of oxygen saturation, and are thus more sensitive to organic pollution. 5. Oxygen deficiency has been overlooked completely in studies of the altitudinal distribution...

  10. 生物质灰对铁矿石载氧体性能的影响%Effect of biomass ash on performance of iron ore as oxygen carrier in chemical looping combustion

    Institute of Scientific and Technical Information of China (English)

    周玉飞; 沈来宏; 顾海明; 牛欣

    2015-01-01

    在小型固定床上以铁矿石为载氧体、CO为燃料,进行了化学链燃烧试验。通过在铁矿石中加入生物质灰,探讨了生物质灰的种类(玉米秆灰、油菜秆灰和稻草灰)、灰的添加量(5%~20%)及灰中碱金属对铁矿石载氧体反应活性的影响。试验结果表明:生物质灰中无机组分不同,对铁矿石载氧体反应活性的影响也不同。由于玉米秆灰和油菜秆灰中碱金属K含量较高,高温下K以气态形式迁移到铁矿石表面,生成了K3 FeO2,从而提高了铁矿石的还原反应活性。稻草灰中Si含量很高,高温下碱金属K及FeO与铁矿石反应,生成低熔点共晶体,加剧了铁矿石表面的烧结,减少了气固反应的接触面积,导致CO总转化率急剧下降。%Experiment on chemical looping combustion was conducted in a fixed bed reactor with iron ore as oxygen carrier and CO as fuel.The effect of biomass ash addition on the performance of the iron ore oxygen carrier was investigated.Several key factors were discussed, including the bio-mass ash type (corn stalk ash, rape stalk ash, straw ash), the ash ratio (5%to 20%) and the alkali metal in the ash.The results indicate that the effect of the biomass ash on the reactivity of iron ore depends on the chemical composition of the ash.The alkali metal K abundant in corn ash and rape ash is released in gaseous state and captured by iron ore through complicated reactions, forming K3 FeO2 which enhances the reduction reactivity of the iron ore.However, the high content of Si in the straw ash leads to a reaction of Si with K and FeO under high temperature to form low melting point compounds which causes serious sintering on the surface of the iron ore.The decrease of con-tact surface causes the decrease of the total CO conversion.

  11. 活性氧类物质在化学物诱导的细胞凋亡中的调节作用%Regulatory effect of reactive oxygen species on apoptosis induced by chemicals

    Institute of Scientific and Technical Information of China (English)

    傅文宇; 徐立红; 张甬元; 林群声

    2002-01-01

    细胞凋亡是在生理或病理条件下,为维持内环境的稳定的一种程序性细胞死亡.诱导细胞凋亡的因素可分为物理性、化学性和生物性因素.很多实验数据表明氧化应激在细胞凋亡的发生过程中具有重要作用.各种活性氧类物质如超氧阴离子、过氧化氢、羟自由基和一氧化氮均与细胞凋亡的发生有关.但是活性氧类物质诱导凋亡发生的机理尚未阐明.本综述在对细胞凋亡和氧化应激描述的基础上着重讨论活性氧类物质诱导细胞凋亡发生的可能机理.在以后的研究中,将着重于探讨化学物质通过产生活性氧类物质而影响细胞凋亡的机理及建立相关的生物标志物.%Apoptosis is a genetically programmed active cell death process for maintaining homeostasis under phy- siological conditions and for responding to various stimuli. Apoptosis can be induced by a wide variety of physical, chemical and biological stimuli. There is compelling evidence for the central role of oxidative stress in the apoptotic process. Various reactive oxygen species (ROS) and nitrogen species such as superoxide anion, hydrogen peroxide, hydroxyl radical and nitric oxide are involved in apoptosis. But the mechanism through which ROS plays an important role in inducing apoptosis is not fully understood. This review will address some of the current paradigms for oxidative stress and apoptosis, and discuss the possible mechanism by which oxidants can modulate the apoptotic pathway. In the future research, the research will emphasized on the mechanisms of apoptosis induced by chemicals and the regulatory effect of ROS involved in this process, moreover, the finding will provide new insights into the related biomarkers.

  12. Enhanced optical oxygen sensing using a newly synthesized ruthenium complex together with oxygen carriers.

    Science.gov (United States)

    Ertekin, Kadriye; Kocak, Suleyman; Sabih Ozer, M; Aycan, Sule; Cetinkaya, Bekir

    2003-11-12

    In this article, an emission based, simple and fast method is proposed for the determination of gaseous oxygen. A newly synthesized fluorophore, dichloro-{2,6-bis[1-(4-dimethylamino-phenylimino) ethyl]pyridine}ruthenium(II) has been used for oxygen sensing together with oxygen carrier perfluorochemicals (PFCs) in silicon matrix. It should be noted that the solubility of oxygen in fluorocarbons is about three to ten times large as that observed in the parent hydrocarbons or in water, respectively. Employed PFCs are chemically and biochemically inert, have high dissolution capacities for oxygen, and, once doped into sensing film, considerably enhance the response of sensing agent. PMID:18969220

  13. Demand Response in Smart Grids

    DEFF Research Database (Denmark)

    Hansen, Jacob; Knudsen, Jesper Viese; Annaswamy, Anuradha M.

    2014-01-01

    In recent decades, moves toward higher integration of Renewable Energy Resources have called for fundamental changes in both the planning and operation of the overall power grid. One such change is the incorporation of Demand Response (DR), the process by which consumers can adjust their demand...

  14. On constant elasticities of demand

    OpenAIRE

    Andrés Vázquez

    1998-01-01

    While the Slutsky matrix and duality theory have been used to establish that constant elasticity demand functions imply unitary income elasticities, zero cross price elasticities and own price elasticities equal to minus one, this note shows that these results can also be straightforwardly derived from the simple assumption that demand functions satisfy the budget constraint with strict equality.

  15. CAREER GUIDE FOR DEMAND OCCUPATIONS.

    Science.gov (United States)

    LEE, E.R.; WELCH, JOHN L.

    THIS PUBLICATION UPDATES THE "CAREER GUIDE FOR DEMAND OCCUPATIONS" PUBLISHED IN 1959 AND PROVIDES COUNSELORS WITH INFORMATION ABOUT OCCUPATIONS IN DEMAND IN MANY AREAS WHICH REQUIRE PREEMPLOYMENT TRAINING. IT PRESENTS, IN COLUMN FORM, THE EDUCATION AND OTHER TRAINING USUALLY REQUIRED BY EMPLOYERS, HIGH SCHOOL SUBJECTS OF PARTICULAR PERTINENCE TO…

  16. Job demands-resources model

    NARCIS (Netherlands)

    A.B. Bakker (Arnold); E. Demerouti (Eva)

    2013-01-01

    markdownabstract* The question of what causes job stress and what motivates people has received a lot of research attention during the past five decades. In this paper, we discuss Job Demands-Resources (JD-R) theory, which represents an extension of the Job Demands-Resources model (Bakker & Demerout

  17. Technical Workers in Great Demand

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Labor and Social Security Ministry conducted a survey on 81 labor markets across China in the second quarter of this year, the results of which showed that the demand for technical workers, especially those of middle and senior titles, far outnumbers the supply.The survey shows that the demand/supply

  18. Learning to face stochastic demand

    OpenAIRE

    Flåm, Sjur Didrik; Sandsmark, Maria

    2000-01-01

    We consider repeated interaction among several producers of a homogenous, divisible good, traded at a common market. Demand is uncertain, and its law is unknown. We explore an adaptive scheme leading such producers over time, to face correct demand data. Extensions include non-cooperative games in which strategic interaction is felt via exactly two real parameters.

  19. Uranium resources, demand and production

    International Nuclear Information System (INIS)

    Estimations of the demand and production of principal uranium resource categories are presented. The estimations based on data analysis made by a joint 'NEA/IAEA Working Party on Uranium Resources' and the corresponding results are published by the OECD (Organization for Economic Co-operation and Development) in the 'Uranium Resources, Production and Demand' Known as 'Red Book'. (M.C.K.)

  20. Credit demand in Mozambican manufacturing

    DEFF Research Database (Denmark)

    Byiers, Bruce; Rand, John; Tarp, Finn;

    2010-01-01

    This paper uses two industrial firm surveys to identify the key determinants of credit demand in Mozambican manufacturing. We construct five different measures of being credit constrained and estimate desired debt demand. Besides firm size and ownership structure, we find evidence that general...

  1. Demand-Supply Gap Analysis

    OpenAIRE

    Aized H. Mir; Abidi, Sohail; Amer Z. Durrani

    2007-01-01

    An essential part of the Pakistan Infrastructure Implementation Capacity Assessment (PIICA) was an assessment of available resources and the demand generated for these resources by the proposed infrastructure projects. A demand-supply gap analysis for Human Resources (HR), major construction materials and equipment keeping in view the Medium Term Development Framework (MTDF) for up to 2010...

  2. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: Blood-oxygen binding

    Science.gov (United States)

    Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.

  3. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities

    OpenAIRE

    J. J. Childress; Peter R. Girguis

    2011-01-01

    While chemoautotrophic endosymbioses of hydrothermal vents and other reducing environments have been well studied, little attention has been paid to the magnitude of the metabolic demands placed upon the host by symbiont metabolism and the adaptations necessary to meet such demands. Here we make the first attempt at such an evaluation, and show that moderate to high rates of chemoautotrophic or methanotrophic metabolism impose oxygen uptake and proton equivalent elimination demands upon the h...

  4. Home Oxygen Therapy

    Science.gov (United States)

    ... Oxygen Therapy Font: Aerosol Delivery Oxygen Resources Immunizations Pollution Nutrition Exercise Coming Of Age Older Adults Allergy ... oxygen is so cold it can hurt your skin. Keep a fire extinguisher close by, and let ...

  5. Demand as Frequency Controlled Reserve

    DEFF Research Database (Denmark)

    Xu, Zhao; Togeby, Mikael; Østergaard, Jacob

    This report summaries the research outcomes of the project ‘Demand as Frequency Controlled Reserve (DFR)’, which has received the support from Energinet.dk’s PSO program, Grant no. 2005-2-6380. The objective of this project is to investigate the technology of using electricity demands for providing...... frequency reserve to power systems. The project consists of five work packages, including: Background and perspective Dynamical simulation of chosen concepts Monitoring demand as frequency controlled reserve Strategy and practical implementation Conclusion and evaluation Within the project, the frequency...

  6. Oxygen Incorporation in Rubrene Single Crystals

    Science.gov (United States)

    Mastrogiovanni, Daniel D. T.; Mayer, Jeff; Wan, Alan S.; Vishnyakov, Aleksey; Neimark, Alexander V.; Podzorov, Vitaly; Feldman, Leonard C.; Garfunkel, Eric

    2014-05-01

    Single crystal rubrene is a model organic electronic material showing high carrier mobility and long exciton lifetime. These properties are detrimentally affected when rubrene is exposed to intense light under ambient conditions for prolonged periods of time, possibly due to oxygen up-take. Using photoelectron, scanning probe and ion-based methods, combined with an isotopic oxygen exposure, we present direct evidence of the light-induced reaction of molecular oxygen with single crystal rubrene. Without a significant exposure to light, there is no reaction of oxygen with rubrene for periods of greater than a year; the crystal's surface (and bulk) morphology and chemical composition remain essentially oxygen-free. Grand canonical Monte Carlo computations show no sorbtion of gases into the bulk of rubrene crystal. A mechanism for photo-induced oxygen inclusion is proposed.

  7. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  8. Saving Electricity and Demand Response

    Science.gov (United States)

    Yamaguchi, Nobuyuki

    A lot of people lost their lives in the tremendous earthquake in Tohoku region on March 11. A large capacity of electric power plants in TEPCO area was also damaged and large scale power shortage in this summer is predicted. In this situation, electricity customers are making great effort to save electricity to avoid planned outage. Customers take actions not only by their selves but also by some customers' cooperative movements. All actions taken actually are based on responses to request form the government or voluntary decision. On the other hand, demand response based on a financial stimulus is not observed as an actual behavior. Saving electricity by this demand response only discussed in the newspapers. In this commentary, the events regarding electricity-saving measure after this disaster are described and the discussions on demand response, especially a raise in power rate, are put into shapes in the context of this electricity supply-demand gap.

  9. Voltage Controlled Dynamic Demand Response

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar;

    2013-01-01

    central or dispersed generations might not be sufficient for future scenario. One of the effective methods to cope with this scenario is to enable demand response. This paper proposes a dynamic voltage regulation based demand response technique to be applied in low voltage (LV) distribution feeders......Future power system is expected to be characterized by increased penetration of intermittent sources. Random and rapid fluctuations in demands together with intermittency in generation impose new challenges for power balancing in the existing system. Conventional techniques of balancing by large....... An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...

  10. Television Advertising and Soda Demand

    OpenAIRE

    Rigoberto A. Lopez; Liu, Yizao; Zhu, Chen

    2012-01-01

    This study examines the effects of television advertising on consumer demand for carbonated soft drinks using a random coefficients logit model (BLP) with household and advertising data from seven U.S. cities over a three year period. We find that advertising decreases the price elasticity of demand, indicating that advertising plays predominantly a persuasive, therefore anti-competitive role in this market. Further results show that brand spillover effects are significant and that measuring ...

  11. The Strong Law of Demand

    OpenAIRE

    Brown, Donald J.; Caterina Calsamiglia

    2003-01-01

    We show that a demand function is derived from maximizing a quasilinear utility function subject to a budget constraint if and only if the demand function is cyclically monotone. On finite data sets consisting of pairs of market prices and consumption vectors, this result is equivalent to a solution of the Afriat inequalities where all the marginal utilities of income are equal. We explore the implications of these results for maximization of a random quasilinear utility function subject to a...

  12. Consumer preferences and demand systems

    OpenAIRE

    Barnett, William A.; Serletis, Apostolos

    2008-01-01

    This paper is an up-to-date survey of the state-of-the-art in consumer demand modelling. We review and evaluate advances in a number of related areas, including different approaches to empirical demand analysis, such as the differential approach, the locally �flexible functional forms approach, the semi-nonparametric approach, and a nonparametric approach. We also address estimation issues, including sampling theoretic and Bayesian estimation methods, and discuss the limitations of the curren...

  13. Demand Response Spinning Reserve Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  14. Information Demand Pattern for Teams

    OpenAIRE

    Dirk Stamer; Kurt Sandkuhl; Veronika Zeiner

    2016-01-01

    Modern organizations face the challenge of having to manage an increasing amount of information. The resulting information overload leads more and more to problems in decision making with potentially negative economic consequences. Decision-makers and knowledge intensive workers are especially affected. To address this problem, information demand patterns were proposed which capture organizational knowledge about the information demand of single roles. This work extends the concept of informa...

  15. Living with the extreme demand

    OpenAIRE

    Teppo Eskelinen

    2013-01-01

    Most of the ethical literature on extreme poverty suggests, that some, if not most, of the incomes of the residents of rich countries ought to be donated to the global poor. Yet complying with this ethical demand becomes increasingly more difficult as the changes in lifestyle in the (post)industrial north demand ever more consumption in order to obtain the necessities for survival in such societies. In this article, I will discuss Peter Singer's famous arguments for the ethical duty to donate...

  16. Personalized Demand Responsive Transit Systems

    OpenAIRE

    Yim, Y. B.; Khattak, Asad J.

    2000-01-01

    An aging population in the US, low-density urban sprawl and the accessibility needs of certain groups (particularly disabled and aged) increasingly point to more flexible demand-responsive transit systems in the future. This paper describes the important aspects of a consumer-oriented Personalized Demand Responsive Transit (PDRT) service. The system will provide services to the traveling public for journeys to work and for journeys to other destinations. A PDRT that responds to the travelers'...

  17. Optimal supply against fluctuating demand

    OpenAIRE

    Nobuyuki Sakai; Hisanori Kudoh

    2005-01-01

    Sornette et al. claimed that the optimal supply does not agree with the average demand, by analyzing a bakery model where a daily demand fluctuates with a uniform distribution. In this note, we extend the model to general probability distributions, and obtain the formula of the optimal supply for Gaussian distribution, which is more realistic. Our result is useful in a real market to earn the largest income on average.

  18. Optimal Supply against Fluctuating Demand

    OpenAIRE

    SAKAI, Nobuyuki; Kudo, Hisanori

    2006-01-01

    Contrary to the common sense in economy, the optimal supply does not always agree with the average demand. This was pointed out by Sornette et al. (1999), who analyzed a bakery model where a daily demand fluctuates with a uniform distribution. In this note, we extend the model to general probability distributions, and obtain the formula of the optimal supply for Gaussian distribution, which is more realistic. Our result is useful in a real market to earn the largest income on average.

  19. Scientific Opinion on the safety and efficacy of aliphatic and aromatic mono- and di-thiols and mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups (chemical group 20 when used as flavourings for all animal species

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-05-01

    Full Text Available Chemical group 20 consists of aliphatic and aromatic mono- and di-thiols and mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups, of which 31 are currently authorised for use as flavours in food. The FEEDAP Panel was unable to perform an assessment of six compounds (methanethiol, methyl propyl disulphide, dipropyl trisulphide, 3-mercaptobutan-2-one, 3-(methylthiobutanal and 3-methyl-1,2,4-trithiane because of issues related to the purity of the compounds. The FEEDAP Panel concludes that the following 25 compounds are safe for the target species at the proposed maximum dose level (0.05 mg/kg complete feed: 3-(methylthiopropionaldehyde, methyl 3-(methylthiopropionate, allylthiol, dimethyl sulphide, dibutyl sulphide, diallyl disulphide, diallyl trisulphide, dimethyl trisulphide, dipropyl disulphide, allyl isothiocyanate, dimethyl disulphide, 2-methylbenzene-1-thiol, S-methyl butanethioate, allyl methyl disulphide, 3-(methylthiopropan-1-ol, 3-(methylthiohexan-1-ol, 1-propane-1-thiol, diallyl sulphide, 2,4-dithiapentane, 2-methyl-2-(methyldithiopropanal, 2-methylpropane-1-thiol, methylsulfinylmethane, propane-2-thiol, 3,5-dimethyl-1,2,4-trithiolane and 2-methyl-4-propyl-1,3-oxathiane. No safety concern for the consumer would arise from the use of these 25 compounds of CG 20 up to the highest safe level in feedingstuffs for all animal species, with the exception of allyl isothiocyanate. Although additional exposure to this substance through its low use level in animal feeds would not substantially increase consumer exposure, the FEEDAP Panel notes that the estimated exposure of consumers is already higher than the acceptable daily intake (ADI. All compounds should be considered irritant to skin, eyes and respiratory tract and as skin sensitisers. The proposed concentration of 0.05 mg flavour/kg feed is not expected to cause detrimental effects to the environment, except for 2-methylpropane-1-thiol, for which 0

  20. An update on the MTBE supply and demand picture

    International Nuclear Information System (INIS)

    The initial Clean Air Act to establish emissions standards for automobiles and light-duty trucks was passed in 1966. It was modified in 1970 and again in 1977. In 1990 it was amended to present a 20 year plan to achieve cleaner air through fuel composition and vehicle design. This paper discusses the supply and demand within the US of methyl tertiary butyl ether as an oxygenated fuel additive to gasoline to help control the ozone pollution problem

  1. Workload demand in police officers during mountain bike patrols.

    Science.gov (United States)

    Takken, T; Ribbink, A; Heneweer, H; Moolenaar, H; Wittink, H

    2009-02-01

    To the authors' knowledge this is the first paper that has used the training impulse (TRIMP) 'methodology' to calculate workload demand. It is believed that this is a promising method to calculate workload in a range of professions in order to understand the relationship between work demands and aerobic fitness. The aim of this study was to assess workload demand in police officers from the Utrecht police department in the Netherlands, during patrol by mountain bike. Maximum oxygen intake, maximum heart rate (HRmax), ventilatory threshold (VT)1 and VT2 were determined with a maximal exercise test on a bicycle ergometer. Heart rates were registered throughout three shifts in 20 subjects using a heart rate monitor. Exercise intensity was divided into three phases: phase I (between 40% of HRmax and VT1); phase II (between VT and the respiratory compensation point (RCP)); and phase III (>RCP). The total TRIMP score was obtained by summating the results of the three phases. Average daily workload demands of 355 TRIMPs per day and 1777 TRIMPs per week were measured. Workload demand approached and in some cases exceeded the upper limit of 2000 TRIMPs per week threshold level for physiological stress demands in professional male cyclists.

  2. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  3. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  4. Bifunctional electrocatalyst for oxygen/air electrodes

    International Nuclear Information System (INIS)

    Highlights: • Nano-Silver powder was prepared by chemical method. • Ag catalyst was characterized by SEM and XRD studies. • Ag was investigated as bi-functional electrocatalyst for oxygen/air electrodes. • Ag shows good electrochemical activity towards OER and ORR reactions. - Abstract: Nano-Silver powder has been studied as bi-functional electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline medium. Ag nano-powder has been prepared by a simple wet chemical method with Silver nitrate as precursor and Glucose as reducing agent. X-ray Diffraction and Scanning Electron Microscopy studies were carried out to characterize the Silver catalyst. Electrochemical oxygen evolution characterization shows anodic peak typically at the range between 0.350 and 0.514 V Vs Hg/HgO corresponding to Silver oxidation followed by the onset of oxygen evolution at 0.706 V. Oxygen reduction reaction studies carried out using Rotating Disc Electrode (RDE) confirm the four electron reaction mechanism. Ag catalyst shows promising characteristics for oxygen evolution and oxygen reduction

  5. Artificial oxygen transport protein

    Science.gov (United States)

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  6. Oxygen Isotopes in Meteorites

    Science.gov (United States)

    Clayton, R. N.

    2003-12-01

    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (radiation in the wavelength range 90-100 nm. The reaction proceeds by a predissociation mechanism, in which the excited electronic state lives long enough to have well-defined vibrational and rotational energy levels. As a consequence, the three isotopic species - C16O, C17O

  7. Effect of Dissolved Oxygen on Operation of EGSB

    Institute of Scientific and Technical Information of China (English)

    LI Hui-li; L(U) Bing-nan; LI Qing-wei

    2007-01-01

    An expanded granular sludge bed (EGSB) reactor was adopted to study the dissolved oxygen (DO) effect on the operation. With the chemical oxygen demand (COD) 800-1800mg/L, pH6.0-7.3, volume loading rate (VLR) 5.4-11.5kg COD/(m3·d), the operational behaviors of EGSB reactor was researched. And the max DO concentration which influenced steady operation of EGSB reactor was determined by contrasting the changes due to different concentrations of the influent DO. With the COD 1200-2000mg/L, VLR 7.2-12.0kg COD/(m3·d), the operational characteristic of EGSB reactor was researched by aerating the recycle effluent. The results was: when the DO concentration of influent was under 3.0mg/L, the removal efficiency of COD was 82%-90% and the operation of the EGSB reactor was steady; when the DO concentration of influent was over 3.0mg/L, the oxidationreduction potential (ORP) fluctuated greatly and the operation of the EGSB reactor was instable; the acidified wastewater of saccharide whose pH value was 5.1-6.5 could be treated by aerating the recycle effluent and the efficiency of COD was up to 85%-92%.

  8. Apparatus for chemical synthesis

    Science.gov (United States)

    Kong, Peter C.; Herring, J. Stephen; Grandy, Jon D.

    2011-05-10

    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  9. Oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system.

    Science.gov (United States)

    Meng, Yao; Jost, Carsten; Mumme, Jan; Wang, Kaijun; Linke, Bernd

    2016-07-01

    In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was investigated under batch conditions and in the UASS with AF system. Aeration intensities of 0-431mL O2/gvs were conducted as pretreatment under batch conditions. Aeration pretreatment obviously enhanced anaerobic digestion and an aeration intensity of 431mL O2/gvs increased the methane yield by 82.2%. Aeration intensities of 0-355mL O2/gvs were conducted in the process liquor circulation of the UASS with AF system. Dissolved oxygen (DO) of UASS and AF reactors kept around 1.39±0.27 and 0.99±0.38mg/L, respectively. pH was relatively stable around 7.11±0.04. Volatile fatty acids and soluble chemical oxygen demand concentration in UASS reactor were higher than those in AF reactor. Methane yield of the whole system was almost stable at 85±7mL/gvs as aeration intensity increased step by step. The UASS with AF system showed good oxygen tolerance capacity. PMID:27372134

  10. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  11. The impact of consumer demands and trends on food processing.

    OpenAIRE

    Zink, D L

    1997-01-01

    In the United States, consumer demand for new foods and changes in eating habits and food safety risks are affecting the food processing industry. The population is becoming older on average; moreover, consumers want fresh and minimally processed food without synthetic chemical preservatives. To address the need for safer food and compete for consumer acceptance, manufacturers are exploring new food processing and preservation methods.

  12. Consumer demand and quality assurance

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Wognum, Nel; Trienekens, Jacques;

    2011-01-01

    Consumers differ in their demands, and this mau have implications for the type of supply chain governance that is most suitable for serving them. We present a segmentation of pork consumers in the EU based on their food-related lifestyles and demand for different pork products. We then present an......, and that these implications are different for fresh meat and processed meat. The paper closes with a call for more collaboration between chain researchers and consumer researchers.......Consumers differ in their demands, and this mau have implications for the type of supply chain governance that is most suitable for serving them. We present a segmentation of pork consumers in the EU based on their food-related lifestyles and demand for different pork products. We then present...... an inventory of pork chain governance and quality management systems, also resulting from a pan-European study, and attempt to match types of chains to consumer segments, arguing that the type of quality demanded by the consumers has implications especially for the quality management system governing the chain...

  13. Chemical and infrared spectral details of reactions involving stereospecific incorporation of oxygen-18 into substituted manganese and rhenium carbonyl derivatives via exchange reactions with H/sub 2//sup 18/O

    Energy Technology Data Exchange (ETDEWEB)

    Darensbourg, D.J.; Froelich, J.A.

    1977-08-31

    The reactions of substituted group 7B metal carbonyl cationic derivatives, (M(CO)/sub 5/L)/sup +/ (M = Mn, Re and L = phosphine, C/sub 5/H/sub 5/N, CH/sub 3/CN) and (Mn(CO)/sub 4/(diphos))/sup +/, with labeled water are described. The carbonyl ligands in these derivatives are found to undergo facile oxygen-exchange reactions with H/sub 2//sup 18/O, presumably through hydroxycarbonyl intermediates, to afford C/sup 18/O enriched species. In all cases investigated, the carbonyl sites with the higher CO stretching force constant (implying more positive character at carbon as well as a more stable LUMO) were found to be more susceptible to oxygen exchange, thus leading to stereospecifically labeled species. In addition, the reactivity of the substrate toward oxygen exchange with water was found to decrease in the order (M(CO)/sub 6/)/sup +/ > (M(CO)/sub 5/L)/sup +/ >> (M(CO)/sub 4/(L - L))/sup +/. The preparation of cis-(Mn(CO)/sub 4/(/sup 13/CO)L)/sup +/ (L = PMe/sub 2/Ph, PPh/sub 3/, and AsPh/sub 3/) species is reported along with oxygen-18 exchange reactions of these derivatives to yield mixed labeled (/sup 13/C/sup 18/O) metal carbonyls. The incorporation of oxygen-18 into metal carbonyl cations was found to be greatly accelerated by the addition of small quantities of triethylamine.

  14. International Oil Supplies and Demands

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  15. Fundamental Travel Demand Model Example

    Science.gov (United States)

    Hanssen, Joel

    2010-01-01

    Instances of transportation models are abundant and detailed "how to" instruction is available in the form of transportation software help documentation. The purpose of this paper is to look at the fundamental inputs required to build a transportation model by developing an example passenger travel demand model. The example model reduces the scale to a manageable size for the purpose of illustrating the data collection and analysis required before the first step of the model begins. This aspect of the model development would not reasonably be discussed in software help documentation (it is assumed the model developer comes prepared). Recommendations are derived from the example passenger travel demand model to suggest future work regarding the data collection and analysis required for a freight travel demand model.

  16. International Oil Supplies and Demands

    International Nuclear Information System (INIS)

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence

  17. International Oil Supplies and Demands

    International Nuclear Information System (INIS)

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence

  18. International Oil Supplies and Demands

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  19. Oxygen nitrogen and ozone: application in wastewater treatment and environment protection

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Julio A.G. [Oxigenio do Brasil, Sao Paulo, SP (Brazil)

    1993-12-31

    Oxygen`s versatility as an oxidant and as a combustion atmosphere provides clean solutions to different industries. Oxygen also finds excellent application for the regeneration of eutrophic surface waters where high biochemical oxygen demand loading demands extra available oxygen for life support. When even stronger oxidizing properties are needed, ozone may act as a supplement. Nitrogen, on the other hand, has excellent cooling capacity, resulting in practical application in solvent recapture, enabling processes to meet emission standards while allowing solvent recycle for reuse. 7 figs., 1 tab.

  20. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    Science.gov (United States)

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  1. Pay for load demand - electricity pricing with load demand component

    International Nuclear Information System (INIS)

    This publication is part of a project called Direct and Indirect Load Control in Buildings. Peak load problems have attracted considerable attention in Sweden during last three winters, caused by a significant decrease in available reserve power, which is a consequence of political decisions and liberalisation of the electricity market. A possible way to lower peak loads, avoiding electricity shortages and reducing electricity costs both for users and utilities, is to make customers experience the price difference during peak load periods and, in this way, become more aware of their energy consumption pattern and load demand. As of January 1st 2001, one of the Swedish energy utilities - Sollentuna Energi - operating in the Stockholm area, introduced a new electricity tariff with differentiated grid fees based on a mean value of the peak load every month. This tariff was introduced for all residential customers in the service area. The objective of this study is to investigate the extent to which a Load Demand Component, included in electricity pricing, can influence energy use and load demand in residential buildings. What are the benefits and disadvantages for customers and utilities? This paper investigates the impact of the new tariff on the utility and different types of typical residential customers, making comparisons with previous tariff. Keywords Load demand, electricity pricing, tariff, residential customers, energy behaviour

  2. Comparative quantification of oxygen release by wetland plants: electrode technique and oxygen consumption model.

    Science.gov (United States)

    Wu, Haiming; Liu, Jufeng; Zhang, Jian; Li, Cong; Fan, Jinlin; Xu, Xiaoli

    2014-01-01

    Understanding oxygen release by plants is important to the design of constructed wetlands for wastewater treatment. Lab-scale systems planted with Phragmites australis were studied to evaluate the amount of oxygen release by plants using electrode techniques and oxygen consumption model. Oxygen release rate (0.14 g O2/m(2)/day) measured using electrode techniques was much lower than that (3.94-25.20 gO2/m(2)/day) calculated using the oxygen consumption model. The results revealed that oxygen release by plants was significantly influenced by the oxygen demand for the degradation of pollutants, and the oxygen release rate increased with the rising of the concentration of degradable materials in the solution. The summary of the methods in qualifying oxygen release by wetland plants demonstrated that variations existed among different measuring methods and even in the same measuring approach. The results would be helpful for understanding the contribution of plants in constructed wetlands toward actual wastewater treatment.

  3. Asymmetric Information and Consumer Demand

    OpenAIRE

    Ismagilova G. N.; Danilina E. I.; Gafurov I. R.; Ismagilov R. I.; Safiullin L. N.

    2014-01-01

    In the paper study the peculiarities of the formation the consumer demand for durable goods, the so-called «experience goods» in markets with asymmetric information. In the known literature sources studying of the demand is based on the assumption that at the moment of the purchase of goods and services people know exactly what price they are willing to pay for them and what utility they are going to obtain using those goods and services. Consider the signal model in which the initial price a...

  4. Demand as Frequency Controlled Reserve

    DEFF Research Database (Denmark)

    Xu, Zhao; Østergaard, Jacob; Togeby, Mikael

    2011-01-01

    Relying on generation side alone is deemed insufficient to fulfill the system balancing needs for future Danish power system, where a 50% wind penetration is outlined by the government for year 2025. This paper investigates using the electricity demand as frequency controlled reserve (DFR) as a new...... balancing measure, which has a high potential and can provide many advantages. Firstly, the background of the research is reviewed, including conventional power system reserves and the electricity demand side potentials. Subsequently, the control logics and corresponding design considerations for the DFR...

  5. Oxygen chemisorption cryogenic refrigerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  6. Rule of oxygen transmission in dump leaching

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    According to the chemical equations, the flux and concentration of oxygen required during bacterial leaching sulfuric mineral were investigated; the rule of air bubble transmitted in granular was researched in the Dump Leaching Plant of Dexing Copper Mine. The results show that lack of oxygen in dump leaching is the critical factor of restricting leaching reaction. Pyrite is the primary oxygen-consuming mineral in bioleaching. When its content is too high, it needs a great deal of oxygen for reaction and competes for the finite oxygen with objective minerals, and thus the leaching velocity decreases greatly. The average size of ore particles and diameter of bubbles are the key parameters affecting the mass transfer coefficient. Reverse analysis was adopted, and it shows that 44.8 m3 air per unit ore can meet the requirement of production if the molar ratio of pyrite to chalcopyrite is 10.

  7. Effects of extra oxygen on the structure and superconductivity of La2-xCaxCuO4+y prepared by chemical oxidation

    DEFF Research Database (Denmark)

    Rial, C.; Moran, E.; Alario Franco, M.A.;

    1998-01-01

    (c)s. This decrease of T-c is connected with the ability of these compounds to incorporate extra oxygen, which decreases as the Ca-doping increases and is controlled by a structural limit. The behavior of the La2-xCaxCuO4 materials under the oxidation process and the changes induced by the interstitial...... and the differences concerning the insertion of oxygen and the modifications induced in La2-xMxCuO4+y (M = Ca, Sr, Ba) are presented and discussed. (C) 1998 Elsevier Science B.V....

  8. Modeling impact of storage zones on stream dissolved oxygen

    Science.gov (United States)

    Chapra, S.C.; Runkel, R.L.

    1999-01-01

    The Streeter-Phelps dissolved oxygen model is modified to incorporate storage zones. A dimensionless number reflecting enhanced decomposition caused by the increased residence time of the biochemical oxygen demand in the storage zone parameterizes the impact. This result provides a partial explanation for the high decomposition rates observed in shallow streams. An application suggests that the storage zone increases the critical oxygen deficit and moves it closer to the point source. It also indicates that the storage zone should have lower oxygen concentration than the main channel. An analysis of a dimensionless enhancement factor indicates that the biochemical oxygen demand decomposition in small streams could be up to two to three times more than anticipated based on the standard Streeter-Phelps model without storage zones. For larger rivers, enhancements of up to 1.5 could occur.The Streeter-Phelps dissolved oxygen model is modified to incorporate storage zones. A dimensionless number reflecting enhanced decomposition caused by the increased residence time of the biochemical oxygen demand in the storage zone parameterizes the impact. This result provides a partial explanation for the high decomposition rates observed in shallow streams. An application suggests that the storage zone increases the critical oxygen deficit and moves it closer to the point source. It also indicates that the storage zone should have lower oxygen concentration than the main channel. An analysis of a dimensionless enhancement factor indicates that the biochemical oxygen demand decomposition in small streams could be up to two to three times more than anticipated based on the standard Streeter-Phelps model without storage zones. For larger rivers, enhancements of up to 1.5 could occur.

  9. The moral demands of affluence

    DEFF Research Database (Denmark)

    Sønderholm, Jørn

    2015-01-01

    in favor of the view that affluent individuals are justified in spending monetary resources on themselves at a level that lies well above what Peter Singer finds justified. The proposition I defend is that the premises leading to Cullity’s conclusion about the moderate, and not extremely demanding, nature...

  10. Faculty Demand in Higher Education

    Science.gov (United States)

    Rosenthal, Danielle

    2007-01-01

    The objective of this study is to identify the factors that shift the demand curve for faculty at not-for-profit private institutions. It is unique in that to the author's knowledge no other study has directly addressed the question of how the positive correlation between average faculty salaries and faculty-student ratios can be reconciled with…

  11. The Cognitive Demands of Writing

    NARCIS (Netherlands)

    Torrance, Mark; Jeffery, Gaynor

    1999-01-01

    Writing is a complex activity that places demands on cognitive resources. This volume presents original theory and research exploring the ways in which the sub-components of the writing process (generating and organizing content, producing grammatical sentences, etc.) differ in their cognitive deman

  12. Projecting Electricity Demand in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, Donna J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, David B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Markel, Tony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Marnay, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kintner-Meyer, Michael C. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  13. Rejection sampling in demand systems

    OpenAIRE

    Ley, Eduardo; Mark F.J. Steel

    1992-01-01

    We illustrate the method of rejection sampling in a Bayesian application of a new approach toı estimating Demand Systems. This approach, suggested by Varian (1990), is based on a generalization of Afriat's (1967) efficiency index. Rejection sampling is applied to the prior-to-posterior mapping enabling us to obtain posterior results in a nonstandard model.

  14. Cotton Demand Dropping in China

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The ICAC claimed, global cotton market outlook is bleak in the 2012/2013 annual. Global cotton production is estimated at 25.9 million tons and cotton usage is estimated at 23.4 million tons. Cotton supply will exceed demand; the excess volume will reach 2.4 million tons.

  15. Managed care demands flexibility, creativity.

    Science.gov (United States)

    1996-05-01

    The definition of hospice care is changing as home care providers come under managed care regulations. Hospice care for AIDS patients is demanding, requiring extra time from home care providers. The managed care cost-cutting measures require creativitity and patience. The Visiting Nurses and Hospice of San Francisco (VNH) has held seminars to help providers adapt to managed care.

  16. Employer Demands from Business Graduates

    Science.gov (United States)

    McMurray, Stephen; Dutton, Matthew; McQuaid, Ronald; Richard, Alec

    2016-01-01

    Purpose: The purpose of this paper is to report on research carried out with employers to determine demand for business and management skills in the Scottish workforce. Design/methodology/approach: The research used a questionnaire in which employers were interviewed (either telephone or face to face), completed themselves and returned by e-mail,…

  17. Workshop on Oxygen in the Terrestrial Planets

    Science.gov (United States)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  18. Water Quality Assessment Using Physico-Chemical Parameters and Heavy Metals of Gobind Sagar Lake, Himachal Pradesh (India

    Directory of Open Access Journals (Sweden)

    Vandana Sharma

    2015-12-01

    Full Text Available Today the environment has become harmful for the health of living organisms due to excessive pollution and contamination of natural resources. The present investigation has been carried out with the objective to assess the water quality of the Gobind Sagar Lake, Bilaspur, Himachal Pradesh (India using physico-chemical parameters with heavy metals of the lake. For this study, three sampling sites were identified and samples from different sites were collected in summer season and important parameters [Water Temperature , pH, Total Hardness, Dissolved Carbon Dioxide (CO2, Dissolved Oxygen (DO, Chemical Oxygen Demand (COD, Biological Oxygen Demand (BOD, Chloride, Total Alkalinity, Total Dissolved Solid (TDS] with heavy metals [ Lead (P, Copper (Co, Iron (Fe, Cadmium (Cd, Nickel (Ni and Manganese (Mn, Chromium (Cr were analyzed. The results revealed that the different conditions of Gobind Sagar Lake in different sampling stations showed fluctuations in some physico-chemical parameters and also in heavy metals. These result depicted that water of lake was polluted in the form of nutrient enrichment which is due to agricultural activities and its runoff in and around catchment area of the lake. There are other many ways that things can end up in the lake as the free style way of disposal of industrial and domestic effluents etc. Results of studies on heavy metals in pollution are well documented revealing the toxic effects of these metals on aquatic organisms.

  19. Metabolic Demands of Heavy Metal Drumming

    Directory of Open Access Journals (Sweden)

    Bryan Romero

    2016-07-01

    Full Text Available Background: The drum set involves dynamic movement of all four limbs. Motor control studies have been done on drum set playing, yet not much is known about the physiological responses to this activity. Even less is known about heavy metal drumming. Aims: The purpose of this study was to determine metabolic responses and demands of heavy metal drumming. Methods: Five semi-professional male drummers (mean ± SD age = 27.4 ± 2.6 y, height = 177.2 ± 3.8 cm, body mass = 85.1 ± 17.8 kg performed four prescribed and four self-selected heavy metal songs. Oxygen consumption (VO2, minute ventilation (VE and respiratory exchange ratio (RER were measured using a metabolic cart.  Heart rate (HR was measured using a heart rate monitor. VO2max was determined using a graded cycle ergometer test. Results: The results indicated a metabolic cost of 6.3 ± 1.4 METs and heart rate of 145.1 ± 15.7 beats·min-1 (75.4 ± 8.3% of age-predicted HRmax. VO2 peak values reached approximately 90% of the drummer’s VO2max when performing at the fastest speeds. According to these results, heavy metal drumming may be considered vigorous intensity activity (≥ 6.0 METs. The relative VO2max of 40.2 ± 9.5 mL·kg·min-1 leads to an aerobic fitness classification of “average” for adult males. Conclusions: The metabolic demands required during heavy metal drumming meet the American College of Sports Medicine guidelines for the development of health related fitness. Keywords: Drum set, Exercise physiology, VO2, Music

  20. The alchemy of demand response: turning demand into supply

    Energy Technology Data Exchange (ETDEWEB)

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  1. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane

    Science.gov (United States)

    2014-01-01

    Background Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and, therefore, fermentative glycolysis is an emergency back-up for periods of hypoxia. Though several hypotheses have been proposed for the origin of aerobic glycolysis, its biological basis in cancer and normal cells is still not well understood. Results We examined changes in glucose metabolism following perturbations in membrane activity in different normal and tumor cell lines and found that inhibition or activation of pumps on the cell membrane led to reduction or increase in glycolysis, respectively, while oxidative phosphorylation remained unchanged. Computational simulations demonstrated that these findings are consistent with a new model of normal physiological cellular metabolism in which efficient mitochondrial oxidative phosphorylation supplies chronic energy demand primarily for macromolecule synthesis and glycolysis is necessary to supply rapid energy demands primarily to support membrane pumps. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. The predictions were confirmed experimentally. Conclusions Our results show that glycolytic metabolism serves a critical physiological function under normoxic conditions by responding to rapid energetic demand, mainly from membrane transport activities, even in the presence of oxygen. This supports a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Cells use efficient but

  2. Addressing Energy Demand through Demand Response. International Experiences and Practices

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ghatikar, Girish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ni, Chun Chun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dudley, Junqiao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Martin, Phil [Enernoc, Inc., Boston, MA (United States); Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  3. Biogeochemistry: Oxygen burrowed away

    NARCIS (Netherlands)

    Meysman, F.J.R.

    2014-01-01

    Multicellular animals probably evolved at the seafloor after a rise in oceanic oxygen levels. Biogeochemical model simulations suggest that as these animals started to rework the seafloor, they triggered a negative feedback that reduced global oxygen.

  4. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  5. Hyperbaric oxygen therapy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002375.htm Hyperbaric oxygen therapy To use the sharing features on this page, please enable JavaScript. Hyperbaric oxygen therapy uses a special pressure chamber to increase ...

  6. Oxygen evolution reaction catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  7. Demand chain management - The evolution

    Directory of Open Access Journals (Sweden)

    D Ericsson

    2011-06-01

    Full Text Available The concepts of Supply Chain Management (SCM and Demand Chain Management (DCM are among the new and debated topics concerning logistics in the literature. The question considered in this paper is: “Are these concepts needed or will they just add to the confusion?” Lasting business concepts have always evolved in close interaction between business and academia. Different approaches start out in business and they are then, more or less si- multaneously, aligned, integrated, systemised and structured in academia. In this way a terminology (or language is provided that helps in further diffusion of the concepts. There is a lack of consensus on the definition of the concept of SCM. This may be one of the major reasons for the difficulty in advancing the science and measuring the results of implementation in business. Relationships in SCM span from rather loose coalitions to highly structured virtual network integrations. DCM is a highly organised chain in which the key is mutual interdependence and partnership. The purpose is to create a distinctive competence for the chain as a whole that helps to identify and satisfy customer needs and wishes. The classical research concerning vertical marketing systems is very helpful in systemising the rather unstructured discussions in current SCM research. The trend lies in increasing competition between channels rather than between companies, which in turn leads to the creation of channels with a high degree of partnership and mutual interdependence between members. These types of channels are known as organised vertical marketing systems in the classic marketing channel research. The behaviour in these types of channels, as well as the formal and informal structures, roles in the network, power and dependence relations, etc. are well covered topics in the literature. The concept of vertical marketing systems lies behind the definition of demand chains and demand chain management proposed in this paper. A

  8. DataBase on Demand

    Science.gov (United States)

    Gaspar Aparicio, R.; Gomez, D.; Coterillo Coz, I.; Wojcik, D.

    2012-12-01

    At CERN a number of key database applications are running on user-managed MySQL database services. The database on demand project was born out of an idea to provide the CERN user community with an environment to develop and run database services outside of the actual centralised Oracle based database services. The Database on Demand (DBoD) empowers the user to perform certain actions that had been traditionally done by database administrators, DBA's, providing an enterprise platform for database applications. It also allows the CERN user community to run different database engines, e.g. presently open community version of MySQL and single instance Oracle database server. This article describes a technology approach to face this challenge, a service level agreement, the SLA that the project provides, and an evolution of possible scenarios.

  9. DataBase on Demand

    International Nuclear Information System (INIS)

    At CERN a number of key database applications are running on user-managed MySQL database services. The database on demand project was born out of an idea to provide the CERN user community with an environment to develop and run database services outside of the actual centralised Oracle based database services. The Database on Demand (DBoD) empowers the user to perform certain actions that had been traditionally done by database administrators, DBA's, providing an enterprise platform for database applications. It also allows the CERN user community to run different database engines, e.g. presently open community version of MySQL and single instance Oracle database server. This article describes a technology approach to face this challenge, a service level agreement, the SLA that the project provides, and an evolution of possible scenarios.

  10. DataBase on demand

    CERN Document Server

    Aparicio, Ruben Gaspar; Coterillo Coz, I

    2012-01-01

    At CERN a number of key database applications are running on user-managed MySQL database services. The database on demand project was born out of an idea to provide the CERN user community with an environment to develop and run database services outside of the actual centralised Oracle based database services. The Database on Demand (DBoD) empowers the user to perform certain actions that had been traditionally done by database administrators, DBA's, providing an enterprise platform for database applications. It also allows the CERN user community to run different database engines, e.g. presently open community version of MySQL and single instance Oracle database server. This article describes a technology approach to face this challenge, a service level agreement, the SLA that the project provides, and an evolution of possible scenarios.

  11. Managing Demands for Social Engagement

    DEFF Research Database (Denmark)

    Glerup, Cecilie

    In recent years numerous calls have been made to enhance the social responsibility of biotechnology from both social scientists (e.g. Nowotny et. al. 2001) and political institutions (e.g. Royal Society 2004; U.S. Congress 2003; EEA 2002). The demands vary in form and content: From state incentives...... pressure on the biotech research organizations that find themselves in a jumble of demands to engage themselves with society. Mccarthy and Kelty, for instance, quote a nano-technologist for saying that he is afraid of “too much responsibility” (2010: 407). Based on a laboratory ethnography, this paper...... explores how two research organizations in the field of synthetic biology strategically manoeuvre among the many discourses on scientific responsibility. One of the labs defines itself through user-inspired science and focuses on the development of ‘products’ that benefit abstract stakeholders such as ‘the...

  12. Demands from the school inclusion

    OpenAIRE

    Selma Norberto Matos; Eniceia Gonçalves Mendes

    2014-01-01

    From the implementation of public policies on school inclusion, mainly those directed to the target audience of special education, the number of students with special educational needs in common classes has increased. This fact has helped to compose the picture in schools where the limitations and contradictions of the Brazilian educational system have appeared. Educational actors and authors are challenged to build knowledge able of responding to demands of daily school, concerning living an...

  13. Optimal Advertising with Stochastic Demand

    OpenAIRE

    George E. Monahan

    1983-01-01

    A stochastic, sequential model is developed to determine optimal advertising expenditures as a function of product maturity and past advertising. Random demand for the product depends upon an aggregate measure of current and past advertising called "goodwill," and the position of the product in its life cycle measured by sales-to-date. Conditions on the parameters of the model are established that insure that it is optimal to advertise less as the product matures. Additional characteristics o...

  14. Uranium resources, production and demand

    International Nuclear Information System (INIS)

    Nuclear power-generating capacity will continue to expand, albeit at a slower pace than during the past fifteen years. This expansion must be matched by an adequately increasing supply of uranium. This report compares uranium supply and demand data in free market countries with the nuclear industry's natural uranium requirements up to the year 2000. It also reviews the status of uranium exploration, resources and production in 46 countries

  15. Demand controlled ventilation; Behovsstyrt ventilasjon

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Henning Holm

    2006-07-01

    The terms CAV and VAV have been known terms for many years in the ventilation business. The terms are also included in building regulations, but the time is now right to focus on demand controlled ventilation (DCV). The new building regulations and the accompanying energy framework underline the need for a more nuanced thinking when it comes to controlling ventilation systems. Descriptions and further details of the ventilation systems are provided (ml)

  16. Alcohol demand and risk preference.

    Science.gov (United States)

    Dave, Dhaval; Saffer, Henry

    2008-12-01

    Both economists and psychologists have studied the concept of risk preference. Economists categorize individuals as more or less risk-tolerant based on the marginal utility of income. Psychologists categorize individuals' propensity towards risk based on harm avoidance, novelty seeking and reward dependence traits. The two concepts of risk are related, although the instruments used for empirical measurement are quite different. Psychologists have found risk preference to be an important determinant of alcohol consumption; however economists have not included risk preference in studies of alcohol demand. This is the first study to examine the effect of risk preference on alcohol consumption in the context of a demand function. The specifications employ multiple waves from the Panel Study of Income Dynamics (PSID) and the Health and Retirement Study (HRS), which permit the estimation of age-specific models based on nationally representative samples. Both of these data sets include a unique and consistent survey instrument designed to directly measure risk preference in accordance with the economist's definition. This study estimates the direct impact of risk preference on alcohol demand and also explores how risk preference affects the price elasticity of demand. The empirical results indicate that risk preference has a significant negative effect on alcohol consumption, with the prevalence and consumption among risk-tolerant individuals being 6-8% higher. Furthermore, the tax elasticity is similar across both risk-averse and risk-tolerant individuals. This suggests that tax policies are as equally effective in deterring alcohol consumption among those who have a higher versus a lower propensity for alcohol use. PMID:19956353

  17. Family physicians: supply and demand.

    OpenAIRE

    Bowman, M A

    1989-01-01

    The nation's supply of family physicians as estimated by the Graduate Medical Education National Advisory Committee appears fairly accurate. At the same time, the demands for family physicians appear to be strong, partially because case-management systems recognize the cost-effectiveness and appropriate training of family physicians for their needs. The largest factor inhibiting the supply of such physicians appears to be the relatively lower income of family practice compared to other specia...

  18. Demand and Supply Chain Management

    OpenAIRE

    Jack A.A. van der Veenl:; Robben, Henry S.J.

    1999-01-01

    In dit artikel wordt ingegaan op de recente ontwikkelingen met be-trekking tot de managementactiviteiten gericht op de keten die begint bij het winnen van grondstoffen en via toeleveranciers, fabrikanten en de (detail)handel loopt naar de eindgebruikers. De moderne denkbeelden op dit terrein worden samengevat met de term Demand & Supply Chain Management (DSCM); het management van de keten die onafhankelijke klanten en leveranciers verbindt als ware het een enkele en-titeit met het doel om waa...

  19. Fish demand and supply projections

    OpenAIRE

    Sverdrup-Jensen, S.

    1997-01-01

    It has been predicted that the global demand for fish for human consumption will increase by more than 50% over the next 15 years. The FAO has projected that the increase in supply will originate primarily from marine fisheries, aquaculture and to a lesser extent from inland fisheries, but with a commensurate price increase. However, there are constraints to increased production in both marine and inland fisheries, such as overfishing, overexploitation limited potential increase and environme...

  20. Endogenous Timing with Demand Uncertainty

    OpenAIRE

    Fei Shi

    2008-01-01

    This paper develops an endogenous timing model for a quantity-setting duopoly with imperfect information on market demand and costly market research. If the market research cost K is too high, market research never plays a role. For intermediate values of K, and independently of production costs, there are two SPNE with endogenous leadership. If K is low, SPNE with endogenous leadership appear if the production costs of the leader are low enough relative to market conditions (e.g. large expec...

  1. Demands from the school inclusion

    Directory of Open Access Journals (Sweden)

    Selma Norberto Matos

    2014-04-01

    Full Text Available From the implementation of public policies on school inclusion, mainly those directed to the target audience of special education, the number of students with special educational needs in common classes has increased. This fact has helped to compose the picture in schools where the limitations and contradictions of the Brazilian educational system have appeared. Educational actors and authors are challenged to build knowledge able of responding to demands of daily school, concerning living and learning in diversity. Whereas this inclusive process is new in the schools, the study aimed to analyze the demands of teachers from the school inclusion. The research was qualitative and exploratory, and six teachers, their students with special educational needs and three professionals in the Nucleus of Inclusive Education from the Municipal Department of Education took in it. Technique of participant observation, field diary, semi-structured interview and questionnaire were used for data collection, while analysis of content was used for discussion of the data. The results indicate that there are achievements and contradictions in the reality of schools that themselves propose inclusive; advances and limitations resulting from the municipal politics; that the model of performance of the group of special education, in the context analyzed, may be revised or expanded; and that the teachers has demands with regard to public policy, training, and the psychologist.

  2. Brisk Demand of Neopentyl Glycol

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Neopentyl glycol (NPG) is an important chemical raw material. It is mainly used to produce saturated polyester resin for powder coatings,unsaturated polyester resin, polyester polyols, esters for synthetic lubricants, plasticizers and alkyd resins.

  3. Ferritin Protein Nanocages Use Ion Channels, Catalytic Sites, and Nucleation Channels To Manage Iron/Oxygen Chemistry: A review for: Current Opinion In Chemical Biology/Bioinorganic Chemistry: Iron Biochemistry

    OpenAIRE

    Theil, Elizabeth C.

    2011-01-01

    The ferritin superfamily is composed of ancient, nanocage proteins with an internal cavity, 60% of total volume, that reversibly synthesize solid minerals of hydrated ferric oxide; the minerals are iron concentrates for cell nutrition as well as antioxidants due to ferrous and oxygen consumption during mineralization. The cages have multiple iron entry/exit channels, oxidoreductase enzyme sites, and, in eukaryotes, Fe(III)O nucleation channels with clustered exits that extend protein activity...

  4. Oxygen content modulation by nanoscale chemical and electrical patterning in epitaxial SrCoO3-δ (0 < δ ≤ 0.5) thin films.

    Science.gov (United States)

    Hu, S; Seidel, J

    2016-08-12

    Fast controllable redox reactions in solid materials at room temperature are a promising strategy for enhancing the overall performance and lifetime of many energy technology materials and devices. Easy control of oxygen content is a key concept for the realisation of fast catalysis and bulk diffusion at room temperature. Here, high quality epitaxial brownmillerite SrCoO2.5 thin films have been oxidised to perovskite (P) SrCoO3 with NaClO. X-ray diffraction, scanning probe microscopy and x-ray photoelectron spectroscopy measurements were performed to investigate the structural and electronic changes of the material. The oxidised thin films were found to exhibit distinct morphological changes from an atomically flat terrace structure to forming small nanosized islands with boundaries preferentially in [100] or [010] directions all over the surface, relaxing the in-plane strain imposed by the substrate. The conductivity, or oxygen content, of each single island is confined by these textures, which can be locally patterned even further with electric poling. The high charging level at the island boundaries indicates a magnified electric capacity of SCO thin films, which could be exploited in future device geometries. This finding represents a new way of oxygen modulation with associated self-assembled charge confinement to nanoscale boundaries, offering interesting prospects in nanotechnology applications. PMID:27347701

  5. Estimating oxygen needs for childhood pneumonia in developing country health systems: a new model for expecting the unexpected.

    Directory of Open Access Journals (Sweden)

    Beverly D Bradley

    Full Text Available BACKGROUND: Planning for the reliable and cost-effective supply of a health service commodity such as medical oxygen requires an understanding of the dynamic need or 'demand' for the commodity over time. In developing country health systems, however, collecting longitudinal clinical data for forecasting purposes is very difficult. Furthermore, approaches to estimating demand for supplies based on annual averages can underestimate demand some of the time by missing temporal variability. METHODS: A discrete event simulation model was developed to estimate variable demand for a health service commodity using the important example of medical oxygen for childhood pneumonia. The model is based on five key factors affecting oxygen demand: annual pneumonia admission rate, hypoxaemia prevalence, degree of seasonality, treatment duration, and oxygen flow rate. These parameters were varied over a wide range of values to generate simulation results for different settings. Total oxygen volume, peak patient load, and hours spent above average-based demand estimates were computed for both low and high seasons. FINDINGS: Oxygen demand estimates based on annual average values of demand factors can often severely underestimate actual demand. For scenarios with high hypoxaemia prevalence and degree of seasonality, demand can exceed average levels up to 68% of the time. Even for typical scenarios, demand may exceed three times the average level for several hours per day. Peak patient load is sensitive to hypoxaemia prevalence, whereas time spent at such peak loads is strongly influenced by degree of seasonality. CONCLUSION: A theoretical study is presented whereby a simulation approach to estimating oxygen demand is used to better capture temporal variability compared to standard average-based approaches. This approach provides better grounds for health service planning, including decision-making around technologies for oxygen delivery. Beyond oxygen, this approach

  6. Demand uncertainty in skill-based competition

    OpenAIRE

    Artinger, Sabrina

    2013-01-01

    How does demand uncertainty affect entry into skill-based competition? I investigate this question in a market entry experiment with skill-based payoffs by systematically varying two key elements of the market environment: demand risk and expected market size. Results show that people's reactions to demand risk depend on the market size: in small markets people enter more when demand is risky, in large markets they enter less when demand is risky. This leads to substantial inefficiencies in b...

  7. Hourly Electricity Demand in Italian Market

    OpenAIRE

    Simona Bigerna; Bollino, Carlo Andrea

    2013-01-01

    In the existing literature only recently there has been attention to consumer demand for electricity in organized markets. In this paper we assume a theoretical model of demand behavior and we estimate a complete system for hourly electricity demand. We use individual demand bid data in the Italian Power Exchange (IPEX). The novel contribution of this paper is twofold. Firstly we construct a theory based behavioral model of hourly electricity demand for agents acting in the Italian market; se...

  8. Study on Customer Demands for Product Innovation

    Institute of Scientific and Technical Information of China (English)

    XIONG Zhiyong; YANG Mingzhong; LI Yibing; LI Jun

    2006-01-01

    In order to improve the satisfaction degree of customers' individual demands for products and reduce the risk of the product innovation, the characteristics of customer demands for product innovation are analyzed, and the type and content of customer demands are discussed. Then the framework of customer demands acquisition for product innovation is established. Finally, the prototype system of customer demands information acquisition and product customization for product innovation which takes mobile phone as the example is developed successfully.

  9. Comparison on decolorization of palm oil mill effluent by biological, chemical and physical methods

    Directory of Open Access Journals (Sweden)

    Chantaphaso, S.

    2001-11-01

    Full Text Available Decolorization of palm oil mill effluent pretreated by enzyme from Aspergillus niger ATCC 6275 was investigated. The culture filtrate after separation of suspended solids was used for decolorization by biological, chemical and physical methods. Results indicated that the chemical method (using coagulant was more effective than the biological method (using commercial peroxidase, two strains of white-rot fungi Phanerochaete chrysosporium and Coriolus versicolor and physical method (using activated carbon, pararubber seed and sand filter. Studies on the effect of coagulant concentrations on decolorization revealed that using the combination of 10 ml/l polyferric sulphate and 10 g/l calcium oxide gave the highest color removal of 84.5% and organic matter (in term of chemical oxygen demand, COD removal of 86.5%.

  10. Oxygen uptake during modern dance class, rehearsal, and performance.

    Science.gov (United States)

    Wyon, Matthew A; Abt, Grant; Redding, Emma; Head, Andrew; Sharp, N Craig C

    2004-08-01

    The aim of the present study was to examine whether the workload, expressed in oxygen uptake and heart rate, during dance class and rehearsal prepared the dancer for performance. Previous research on the demands of class and performance has been affected by equipment limitations and could only provide limited insight into the physiological demands placed on the dancer. The present study noted that dance performance had significantly greater mean oxygen uptake and heart rate than noted in both class and rehearsal (p Dance performance placed a greater demand on the aerobic and anaerobic glycolytic energy systems than seen during class and rehearsal, which placed a greater emphasis on the adenosine triphosphate-creatine phosphate system. Practical implications suggest the need to supplement training within dance companies to overcome this deficit in training demand. PMID:15320648

  11. 批量制备Fe2O3/Al2O3氧载体及褐煤化学链燃烧实验研究%Batch Preparation of Fe2O3/Al2O3 Oxygen Carriers for Chemical Looping Combustion of Lignite

    Institute of Scientific and Technical Information of China (English)

    郭磊; 赵海波; 马琎晨; 梅道锋; 方彦飞; 郑楚光

    2013-01-01

    Freeze granulation,spray drying,impregnation and mechanical mixing methods were adopted to prepare Fe2O3/Al2O3 oxygen carriers.To identify the appropriate technologies for batch preparation of the oxygen carriers,the four preparation methods were compared in terms of yield rate,preparation period,physical and chemical characteristics and performance in chemical looping combustion (CLC) of lignite.The experimental results show that freeze granulation has the highest yield rate of carrier with the best mechanical strength.CLC tests of lignite demonstrate that the oxygen carriers prepared by freeze granulation and spray drying bring the highest carbon conversion rate,followed by impregnation and mechanical mixing; and the oxygen carriers prepared by the first two methods have higher chemical reactivity and more stable performance.In the four reduction processes with oxygen carriers prepared by all the four preparation methods,CO2 capture efficiencies exceed 88%; the yield rate of CO2 increases with the rate of carbon conversion,finally approaching 100%; and the combustion efficiencies are above 90%.These indicate that the oxygen carriers prepared by the four methods all have good performances for CO2 capture and high utilization degree of the combustible components.Freeze granulation and spray drying methods can be considered preferentially for batch preparation of oxygen carriers for the CLC of lignite.%采用冷冻成粒法、喷雾干燥法、浸渍法、机械混合法批量制备了Fe2O3/Al2O3氧载体,从氧载体产率、制备周期、物理化学表征、煤化学链燃烧中氧载体性能等角度比较各种批量制备方法,确定合适的批量制备技术.实验结果表明,冷冻成粒法的氧载体产率较高,机械性能最优;与褐煤的化学链燃烧实验中,喷雾干燥法和冷冻成粒法制备的氧载体导致碳转化速率较快,然后依次为浸渍法和机械混合法;且前两种方法制备的氧载体的循环稳定性

  12. How Does Oxygen Therapy Work?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. How Does Oxygen Therapy Work? Oxygen therapy provides you with extra ... be delivered to your lungs in several ways. Oxygen Therapy Systems Oxygen is supplied in three forms: ...

  13. Zooplankton diversity and physico-chemical conditions in three perennial ponds of Virudhunagar district, Tamilnadu.

    Science.gov (United States)

    Rajagopal, T; Thangamani, A; Sevarkodiyone, S P; Sekar, M; Archunan, G

    2010-05-01

    Plankton diversity and physico-chemical parameters are an important criterion for evaluating the suitability of water for irrigation and drinking purposes. In this study we tried to assess the zooplankton species richness, diversity and evenness and to predict the state of three perennial ponds according to physico-chemical parameters. A total of 47 taxa were recorded: 24 rotifers, 9 copepods, 8 cladocerans, 4 ostracods and 2 protozoans. More number of zooplankton species were recorded in Chinnapperkovil pond (47 species) followed by Nallanchettipatti (39 species) and Kadabamkulam pond (24 species). Among the rotifers, Branchionus sp. is abundant. Diaphanosoma sp. predominant among the cladocerans. Among copepods, numerical superiority was found in the case of Mesocyclopes sp. Cypris sp. repeated abundance among ostracoda. Present study revealed that zooplankton species richness (R1 and R2) was comparatively higher (R1: 4.39; R2: 2.13) in Chinnapperkovil pond. The species diversity was higher in the Chinnapperkovil pond (H': 2.53; N1: 15.05; N2: 15.75) as compared to other ponds. The water samples were analyzed for temperature, pH, electrical conductivity alkalinity salinity, phosphate, hardness, dissolved oxygen and biological oxygen demand. Higher value of physico-chemical parameters and zooplankton diversity were recorded in Chinnapperkovil pond as compared to other ponds. The zooplankton population shows positive significant correlation with physico-chemical parameters like, temperature, alkalinity phosphate, hardness and biological oxygen demand, whereas negatively correlated with rainfall and salinity. The study revealed that the presence of certain species like, Monostyla sp., Keratella sp., Lapadella sp., Leydigia sp., Moinodaphnia sp., Diaptomus sp., Diaphanosoma sp., Mesocyclopes sp., Cypris sp. and Brachionus sp. is considered to be biological indicator for eutrophication.

  14. LPG world supply and demand

    International Nuclear Information System (INIS)

    Over the course of this decade, the global LPG market has moved from being tight, where supply barely exceeded non-price sensitive demand, to the current market situation where supply growth has outstripped demand growth to such an extent that current fundamentals suggest that considerable length will prevail in the market over the near term. As is the case for many other energy commodity markets, the LPG industry has experienced a considerable transformation over the last five years with many new LPG supply projects coming on-stream and demand growth in many developing markets slowing in response to higher energy prices. The near term challenge for LPG producers will be securing outlets for output as the market becomes increasingly oversupplied. With expanding LPG supply and a worldwide tightness in the naphtha market, it is expected that petrochemical consumers will favor relatively low priced LPG over naphtha and the resulting increase in LPG cracking rates will go some way to reducing the expected supply surplus. However, the timing of several new LPG supply projects and the start-up of LPG-based petrochemical plants in the Middle-East are expected to impact global LPG trade and pricing over the next few years. Thus, at this point in time, the global LPG market has a high degree of uncertainty with questions remaining over the impact of high energy (and LPG) prices on traditional and developing market demand, the timing of new supply projects and the combined effect of these two factors on international LPG prices. World LPG production has been rising in nearly every region of the world over the last few years and totaled about 229 million tons in 2007, which is some 30 million tons per year higher than in 2000. The exception is North America which accounts for the largest share of global LPG supply at about 24% but production there has remained relatively flat in recent years. Strong LPG production growth in the Middle-East which contributed to about 19% of

  15. Uranium, resources, production and demand

    International Nuclear Information System (INIS)

    The thirteenth edition of the report looks at recent developments and their impact on the short term (i.e. to the year 2005) and presents a longer term (to 2030) analysis of supply possibilities in the context of a range of requirement scenarios. It presents results of a 1989 review of uranium supply and demand in the World Outside Centrally Planned Economies Areas. It contains updated information on uranium exploration activities, resources and production for over 40 countries including a few CPEs, covering the period 1987 and 1988

  16. Growing energy demand - environmental impact

    International Nuclear Information System (INIS)

    Scientists can bring information, insights, and analytical skills to bear on matters of public concern. Often they can help the public and its representatives to understand the likely causes of events (such as natural and technological disasters) and to estimate the possible effects of projected policies. Often they can testify to what is not possible. Even so, scientists can seldom bring definitive answers to matters of public debate. Some issues are too complex to fit within the current scope of science, or there may be little reliable information available, or the values involved may lie outside of science. Scientists and technologists strive to find an answer to the growing energy demand

  17. The Demand for Economic Goods

    OpenAIRE

    Claudia Mungiu-Pupăzan

    2009-01-01

    Satisfying the most needs of the consumer is done/achieved with economic assets. Each good has substitutes: using other goods where the original cost of using asset increases. The needs are desires. If needs are analyzed carefully, it is found to have various emergencies. People buy more or less a good since the price they have to pay reduced or increased. The concept of needs projects the concept of demand in the application that links quantities that are purchased by the sacrifices made to ...

  18. Credit, Money, and Aggregate Demand

    OpenAIRE

    Bernanke, Ben S.; Alan S. Blinder

    1988-01-01

    Standard models of aggregate demand treat money and credit asymmetrically; money is given a special status, while loans, bonds, and other debt instruments are lumped together in a "bond market" and suppressed by Walras' Law. This makes bank liabilities central to the monetary transmission mechanism, while giving no role to bank assets. We show how to modify a textbook IS-UI model so as to permit a more balanced treatment. As in Tobin (1969) and Brunner-Meltzer (1972), the key assumption is th...

  19. Adapting SimpleTreat for simulating behaviour of chemical substances during industrial sewage treatment.

    Science.gov (United States)

    Struijs, J; van de Meent, D; Schowanek, D; Buchholz, H; Patoux, R; Wolf, T; Austin, T; Tolls, J; van Leeuwen, K; Galay-Burgos, M

    2016-09-01

    The multimedia model SimpleTreat, evaluates the distribution and elimination of chemicals by municipal sewage treatment plants (STP). It is applied in the framework of REACH (Registration, Evaluation, Authorization and Restriction of Chemicals). This article describes an adaptation of this model for application to industrial sewage treatment plants (I-STP). The intended use of this re-parametrized model is focused on risk assessment during manufacture and subsequent uses of chemicals, also in the framework of REACH. The results of an inquiry on the operational characteristics of industrial sewage treatment installations were used to re-parameterize the model. It appeared that one property of industrial sewage, i.e. Biological Oxygen Demand (BOD) in combination with one parameter of the activated sludge process, the hydraulic retention time (HRT) is satisfactory to define treatment of industrial wastewater by means of the activated sludge process. The adapted model was compared to the original municipal version, SimpleTreat 4.0, by means of a sensitivity analysis. The consistency of the model output was assessed by computing the emission to water from an I-STP of a set of fictitious chemicals. This set of chemicals exhibit a range of physico-chemical and biodegradability properties occurring in industrial wastewater. Predicted removal rates of a chemical from raw sewage are higher in industrial than in municipal STPs. The latter have typically shorter hydraulic retention times with diminished opportunity for elimination of the chemical due to volatilization and biodegradation. PMID:27344605

  20. Investigating Comparative Advantages of Advance Demand Information in Presence of Heterogeneous Demand

    DEFF Research Database (Denmark)

    Du, Bisheng; Larsen, Christian

    The paper studies aspects of advance demand information and heterogeneous demand in a mathematical model of an inventory system. The concept advance demand information is that customers ahead in time of actual demand place their orders. The concept heterogeneous demand refers to that there are di...