WorldWideScience

Sample records for chemical modification screen

  1. Chemical Modification of Food Proteins

    Institute of Scientific and Technical Information of China (English)

    Allaoua Achouri; Wang Zhang; Xu Shiying

    1999-01-01

    Acylation has been shown to be an effective tool for improving surface functional properties of plant proteins.Soy bean protein has been extensively modified through chemical and enzymatic treatments. Their effectiveness lies in their high nutritional value and low cost, which promote their use as ingredients for the formulation of food products.This paper reports a complete review of chemical modification of various proteins from plant and animal sources. The nutritive and toxicological aspects through in vitro and in vivo tests are also described.

  2. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  3. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  4. Chemical compatibility screening test results

    International Nuclear Information System (INIS)

    A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60 degrees C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m2 for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals

  5. Chemical modification of polymeric microchip devices.

    Science.gov (United States)

    Muck, Alexander; Svatos, Ales

    2007-12-15

    Analytical polymeric microchips in both fluidic and array formats offer short analysis times, coupling of many sample processing and chemical reaction steps on one platform with minimal sample and reagent consumption, as well as low cost, minimal fabrication times and disposability. However, the invariable bulk properties of most commercial polymers have driven researchers to develop new modification strategies. This article critically reviews the scope and development of chemical modifications of such polymeric chips since 2003. Surface modifications were based on chemical derivatization or activation of surface layers with reagent solutions, reactive gases and irradiation. Bulk modification of polymer chips used newly incorporation of monomers with selective chemical functionalities throughout the bulk polymer material and integrated the chip modification and fabrication into a single step. Such modifications hold a great promise for establishing a true 'lab-on-chip' as can be seen from many novel applications for modulating electroosmosis, suppressing protein adsorption in microchip capillary electrophoretic separations, extraction of analytes and for zone-specific binding of enzymes and other biomolecules. PMID:18371647

  6. Chemical modification of cellulose for electrospinning applications

    OpenAIRE

    Martín Ferrer, Elena

    2013-01-01

    The aim of the thesis is to develop technology for producing cellulose fatty acid esters that later will be used to produce fibrous materials by means of electrospinning. Main material of the study is cellulose-stearate which is a polymer synthesised by reaction between stearoyl chloride and cellulose. The experimental part consists of synthesis of it by chemical modification of cellulose using ionic liquid as a reaction media. In addition, ionic liquid is also synthesised from the beginning....

  7. Compositional, physical and chemical modification of polylactide

    Directory of Open Access Journals (Sweden)

    M. Żenkiewicz

    2010-11-01

    Full Text Available Purpose: The purpose of this article was to review some of the modification methods applied to improve mechanical, barrier and/or surface properties of polylactide (PLA.Design/methodology/approach: The presented modification methods were classified into three groups due to the dominant role of compositional, physical or chemical factor effecting the most PLA properties.Findings: It was found that incorporation of small amounts of montmorillonite up to 5% leads to formation of a nanocomposite with enhanced tensile strength and improved barrier properties. Corona treatment of pure PLA and PLA contained MMT nanofiller causes a significant decrease in the water contact angle and does not essentially affect the diiodomethane contact angle. This treatment leads to an increase in surface free energy that is much more significant for pure PLA than for PLA containing MMT nanofiller. It was also found that with increasing number up to 1000 of laser pulses of energies 5 mJ/cm2 an increase in surface free energy was observed, while the next laser pulses caused decrease of this energy. The determination and comparison of the influence of 3 wt.% of trimethylopropane trimethacylate (TMPTA and 3 wt.% of trially isocyanurate (TAIC crosslinking agents on the thermomechanical properties of electron beam irradiated PLA was reported.Research limitations/implications: A number of various modification methods are widely reported in literature. In this article a review of only such modification methods is presented, which are in line with the newest trends in polymer industry and science.Practical implications: There are a number of PLA properties, which need to be improved to satisfy specific application conditions. For that reasons researches are leading to find suitable modification methods to improve selected properties of PLA.Originality/value: This article presents some of modification methods, which are in line with the newest trends in polymer industry and

  8. Chemical sensors based on the modification of a resonator cavity

    Science.gov (United States)

    Hennig, Oliver; Mendes, Sergio B.; Fallahi, Mahmoud; Peyghambarian, Nasser

    1999-02-01

    In this paper, we present a chemical sensor based on the modification of an optical resonator: the optical path length of the resonant cavity is changed by the chemical in question, thus shifting its resonant frequency.

  9. 75 FR 77869 - Endocrine Disruptor Screening Program; Second List of Chemicals for Tier 1 Screening; Extension...

    Science.gov (United States)

    2010-12-14

    ... (75 FR 70248) (FRL-8848-7). In that notice, EPA announced the second list of chemicals and substances... AGENCY Endocrine Disruptor Screening Program; Second List of Chemicals for Tier 1 Screening; Extension of... Endocrine Disruptor Screening Program's (EDSP) second list of chemicals for Tier 1 screening. This...

  10. Chemical Modification of Poly(Vinyl Alcohol in Water

    Directory of Open Access Journals (Sweden)

    Houssein Awada

    2015-10-01

    Full Text Available Partial chemical modification of poly(vinyl alcohol (PVA was performed through tosylation followed by azidation. Amine functional PVA was also prepared by grafting propargylamine using click chemistry reaction. Through this approach, a tosyl group (a good leaving group, azide group (a group used in click chemistry and amine group (a group used for amidation were attached to PVA polymer chains. The three chemical modifications were performed in water. FTIR and XPS analysis confirmed the chemical modification after each step. Thermogravimetric analysis (TGA was used to study the thermal stability of the modified PVA.

  11. A review of different behavior modification strategies designed to reduce sedentary screen behaviors in children.

    Science.gov (United States)

    Steeves, Jeremy A; Thompson, Dixie L; Bassett, David R; Fitzhugh, Eugene C; Raynor, Hollie A

    2012-01-01

    Previous research suggests that reducing sedentary screen behaviors may be a strategy for preventing and treating obesity in children. This systematic review describes strategies used in interventions designed to either solely target sedentary screen behaviors or multiple health behaviors, including sedentary screen behaviors. Eighteen studies were included in this paper; eight targeting sedentary screen behaviors only, and ten targeting multiple health behaviors. All studies used behavior modification strategies for reducing sedentary screen behaviors in children (aged 1-12 years). Nine studies only used behavior modification strategies, and nine studies supplemented behavior modification strategies with an electronic device to enhance sedentary screen behaviors reductions. Many interventions (50%) significantly reduced sedentary screen behaviors; however the magnitude of the significant reductions varied greatly (-0.44 to -3.1 h/day) and may have been influenced by the primary focus of the intervention, number of behavior modification strategies used, and other tools used to limit sedentary screen behaviors. PMID:21811678

  12. Cluster model of chemical modification of sapropelitic coals

    Energy Technology Data Exchange (ETDEWEB)

    Bodoev, N.V.; Kozlov, A.P.; Gruber, R.; Kucherenko, V.A.; Guet, J.-M. [Buryat State University, Ulan-Ude (Russian Federation)

    1999-07-01

    The possibility of active carbon preparation from sapropelitic coals was investigated. Chemical modification and structural alteration as well as thermolysis of modified sapropelite are described. 2 refs., 2 tabs.

  13. Chemical modification of pectin to improve its sorption properties

    International Nuclear Information System (INIS)

    The sorption properties of natural polysaccharide (apple pectin) with respect to heavy metals (M=Cd, Sr, Cu, Ni, Pb) in a Ringer salt solution were studied as influenced by the procedures and process parameters of its chemical modification. It is shown that chemical modification of pectin using hydrochloric and nitric acids and ammonium hydroxide permits improving (by 30-50%) its sorption properties as regards cadmium(II), lead(II), and copper(II) ions

  14. Regioselective chemical modification of monoclonal antibodies

    Science.gov (United States)

    Ranadive, G.; Rozenzweig, H.S.; Epperly, M.; Bloomer, W.

    1993-05-04

    A method is presented of selectively modifying an immunoglobulin having at least one Fab region and at least one Fc region. Each region has an isoelectric point where the isoelectric point of the Fab fragment of the immunoglobulin is different from the isoelectric point of the Fc fragment of the immunoglobulin. The method comprises of a modification of the immunoglobulin at a pH between the respective isoelectric points of the Fab and Fc fragments of the immunoglobulin.

  15. Chemical modification of antifungal polyene macrolide antibiotics

    International Nuclear Information System (INIS)

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  16. Chemical Modification of Tryptophan Residues in Pullulanase

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Tryptophan(Trp)residues in pullulanase have been chemically modified with N-bromossuccinimide(NBS). The results of ultraviolet spectra indicated that there are 18 Trp residues in pullulanase and nine of them are located on the surface of the enzyme. Three of these Trp residues are none-essential residues which showed the fastest reaction speed by Zhou's plot. Two of the seven relative faster reacting residues are essential for the activity of the enzyme. The other eight are none-reactive residues with lowest reaction speed.

  17. Active screen plasma surface modification of polycaprolactone to improve cell attachment.

    Science.gov (United States)

    Fu, Xin; Sammons, Rachel L; Bertóti, Imre; Jenkins, Mike J; Dong, Hanshan

    2012-02-01

    To tailor polycaprolactone (PCL) surface properties for biomedical applications, film samples of PCL were surface modified by the active screen plasma nitriding (ASPN) technique. The chemical composition and structure were characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The wettability of the surface modified polymers was investigated by contact angle and surface energy methods. Biocompatibility of the prepared PCL samples was evaluated in vitro using MC3T3-E1 osteoblast-like cells. The degradability was assessed by determining the self-degradation rate (catalyzed by lipase). The results show that ASPN surface modification can effectively improve osteoblast cell adhesion and spreading on the surface of PCL. The main change in chemical composition is the exchange of some carboxyl groups on the surface for hydroxyl groups. The active-screen plasma nitriding technique has been found to be an effective and practical method to effectively improve osteoblast cell adhesion and spreading on the PCL surface. Such changes have been attributed to the increase in wettablity and generation of new hydroxyl groups by plasma treatment. After active-screen plasma treatment, the PCL film is still degradable, but the enzymatic degradation rate is slower compared with untreated PCL film. PMID:22179939

  18. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  19. Direct chemical modification and voltammetric detection of glycans in glycoproteins

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2014-01-01

    Roč. 48, NOV2014 (2014), s. 52-55. ISSN 1388-2481 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081707 Keywords : Glycoproteins * Chemical modification * Os(VI)L complexes Subject RIV: BO - Biophysics Impact factor: 4.847, year: 2014

  20. Improvement of activity and stability of chloroperoxidase by chemical modification

    Directory of Open Access Journals (Sweden)

    Wang Min

    2007-05-01

    Full Text Available Abstract Background Enzymes show relative instability in solvents or at elevated temperature and lower activity in organic solvent than in water. These limit the industrial applications of enzymes. Results In order to improve the activity and stability of chloroperoxidase, chloroperoxidase was modified by citraconic anhydride, maleic anhydride or phthalic anhydride. The catalytic activities, thermostabilities and organic solvent tolerances of native and modified enzymes were compared. In aqueous buffer, modified chloroperoxidases showed similar Km values and greater catalytic efficiencies kcat/Km for both sulfoxidation and oxidation of phenol compared to native chloroperoxidase. Of these modified chloroperoxidases, citraconic anhydride-modified chloroperoxidase showed the greatest catalytic efficiency in aqueous buffer. These modifications of chloroperoxidase increased their catalytic efficiencies for sulfoxidation by 12%~26% and catalytic efficiencies for phenol oxidation by 7%~53% in aqueous buffer. However, in organic solvent (DMF, modified chloroperoxidases had lower Km values and higher catalytic efficiencies kcat/Km than native chloroperoxidase. These modifications also improved their thermostabilities by 1~2-fold and solvent tolerances of DMF. CD studies show that these modifications did not change the secondary structure of chloroperoxidase. Fluorescence spectra proved that these modifications changed the environment of tryptophan. Conclusion Chemical modification of epsilon-amino groups of lysine residues of chloroperoxidase using citraconic anhydride, maleic anhydride or phthalic anhydride is a simple and powerful method to enhance catalytic properties of enzyme. The improvements of the activity and stability of chloroperoxidase are related to side chain reorientations of aromatics upon both modifications.

  1. Chemical modification of RNA-based medicine can be used to reduce its induction of the innate immune response

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Kjems, Jørgen;

    2012-01-01

    trout and VHSV to screen siRNAs containing various chemical modifications of the RNA backbone and found that was possible to modify the backbone so as to reduce the antiviral effect of the RNA. Antiviral protection was also dependent upon localisation of the modified nucleotide residues in the RNA...

  2. Chemical modification of the electrolytes for lithium batteries

    International Nuclear Information System (INIS)

    The modern approaches to chemical modification of lithium battery electrolytes intended for optimization of charge transport in liquid-phase and solid (polymeric) media are reviewed and generalized. The main regularities of transport properties of lithium electrolyte solutions containing complex (capsulated) ions in aprotic solvents and polymers and future prospect in research and development of electrolyte solvosystems with relay (ionotropic) mechanism of conductivity of lithium ions are surveyed

  3. Surface chemical modification of fullerene by mechanochemical treatment

    International Nuclear Information System (INIS)

    In this study different encapsulating agents have been used for chemical modification of fullerenes. Fullerenes have reacted with tetrahydrofuran, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and ethylene vinyl acetate-ethylene vinyl versatate at room temperature under mechanical milling. The obtained powder has been dispersed in water by ultrasonication. The fullerene based colloids have been characterized by UV-vis, FTIR, Raman spectroscopy and atomic force microscopy. FTIR and Raman analysis have shown the presence of C60 after surface functionalization.

  4. Chemical modification of neoplastic cell transformation by heavy ion radiation

    International Nuclear Information System (INIS)

    Quantitative data on chemical modification of neoplastic cell transformation by heavy-ion radiation was obtained using in-vitro cell transformation technique. The specific aims were 1) to test the potential effects of various chemicals on the expression of cell transformation, and 2) to systematically collect information on the mechanisms of expression and progression of cell transformation by ionizing radiation. Recent experimental studies with DMSO, 5-azacytidine, and dexamethasone suggest that DMSO can effectively suppress the neoplastic cell transformation by high-LET radiation and that some nonmutagenic changes in DNA may be important in modifying the expression, and progression of radiation-induced cell transformation

  5. Surface chemical modification for exceptional wear life of MEMS materials

    Directory of Open Access Journals (Sweden)

    R. Arvind Singh

    2011-12-01

    Full Text Available Micro-Electro-Mechanical-Systems (MEMS are built at micro/nano-scales. At these scales, the interfacial forces are extremely strong. These forces adversely affect the smooth operation and cause wear resulting in the drastic reduction in wear life (useful operating lifetime of actuator-based devices. In this paper, we present a surface chemical modification method that reduces friction and significantly extends the wear life of the two most popular MEMS structural materials namely, silicon and SU-8 polymer. The method includes surface chemical treatment using ethanolamine-sodium phosphate buffer, followed by coating of perfluoropolyether (PFPE nanolubricant on (i silicon coated with SU-8 thin films (500 nm and (ii MEMS process treated SU-8 thick films (50 μm. After the surface chemical modification, it was observed that the steady-state coefficient of friction of the materials reduced by 4 to 5 times and simultaneously their wear durability increased by more than three orders of magnitude (> 1000 times. The significant reduction in the friction coefficients is due to the lubrication effect of PFPE nanolubricant, while the exceptional increase in their wear life is attributed to the bonding between the -OH functional group of ethanolamine treated SU-8 thin/thick films and the -OH functional group of PFPE. The surface chemical modification method acts as a common route to enhance the performance of both silicon and SU-8 polymer. It is time-effective (process time ≤ 11 min, cost-effective and can be readily integrated into MEMS fabrication/assembly processes. It can also work for any kind of structural material from which the miniaturized devices are/can be made.

  6. Surface chemical modification for exceptional wear life of MEMS materials

    Science.gov (United States)

    Singh, R. Arvind; Satyanarayana, N.; Sinha, Sujeet Kumar

    2011-12-01

    Micro-Electro-Mechanical-Systems (MEMS) are built at micro/nano-scales. At these scales, the interfacial forces are extremely strong. These forces adversely affect the smooth operation and cause wear resulting in the drastic reduction in wear life (useful operating lifetime) of actuator-based devices. In this paper, we present a surface chemical modification method that reduces friction and significantly extends the wear life of the two most popular MEMS structural materials namely, silicon and SU-8 polymer. The method includes surface chemical treatment using ethanolamine-sodium phosphate buffer, followed by coating of perfluoropolyether (PFPE) nanolubricant on (i) silicon coated with SU-8 thin films (500 nm) and (ii) MEMS process treated SU-8 thick films (50 μm). After the surface chemical modification, it was observed that the steady-state coefficient of friction of the materials reduced by 4 to 5 times and simultaneously their wear durability increased by more than three orders of magnitude (> 1000 times). The significant reduction in the friction coefficients is due to the lubrication effect of PFPE nanolubricant, while the exceptional increase in their wear life is attributed to the bonding between the -OH functional group of ethanolamine treated SU-8 thin/thick films and the -OH functional group of PFPE. The surface chemical modification method acts as a common route to enhance the performance of both silicon and SU-8 polymer. It is time-effective (process time ≤ 11 min), cost-effective and can be readily integrated into MEMS fabrication/assembly processes. It can also work for any kind of structural material from which the miniaturized devices are/can be made.

  7. Chemical modification of arginine residues in the lactose repressor

    International Nuclear Information System (INIS)

    The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino aced analysis or incorporation of 14C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of ∼ 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA

  8. Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches

    Directory of Open Access Journals (Sweden)

    Paola Laurienzo

    2008-09-01

    Full Text Available Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  9. Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

    KAUST Repository

    Zernickel, Anna

    2014-10-01

    With a few exceptions, all organisms are restricted to the 20 canonical amino acids for ribosomal protein biosynthesis. Addition of new amino acids to the genetic code can introduce novel functionalities to proteins, broadening the diversity of biochemical as well as chemical reactions and providing new tools to study protein structure, reactivity, dynamics and protein-protein-interactions. The site directed in vivo incorporation developed by P. G. SCHULTZ and coworkers, using an archeal orthogonal tRNA/aaRS (aminoacyl-tRNA synthase) pair, allows site-specifically insertion of a synthetic unnatural amino acid (UAA) by reprogramming the amber TAG stop codon. A variety of over 80 different UAAs can be introduced by this technique. However by now a very limited number can form kinetically stable bonds to late transition metals. This thesis aims to develop new catalytically active unnatural amino acids or strategies for a posttranslational modification of site-specific amino acids in order to achieve highly enantioselective metallorganic enzyme hybrids (MOEH). As a requirement a stable protein host has to be established, surviving the conditions for incorporation, posttranslational modification and the final catalytic reactions. mTFP* a fluorescent protein was genetically modified by excluding any exposed Cys, His and Met forming a variant mTFP*, which fulfills the required specifications. Posttranslational chemical modification of mTFP* allow the introduction of single site metal chelating moieties. For modification on exposed cysteines different maleiimid containing ligand structures were synthesized. In order to perform copper catalyzed click reactions, suitable unnatural amino acids (para-azido-(L)-phenylalanine, para-ethynyl-(L)-phenylalanine) were synthesized and a non-cytotoxic protocol was established. The triazole ring formed during this reaction may contribute as a moderate σ-donor/π-acceptor ligand to the metal binding site. Since the cell limits the

  10. Chemical modification of polyurethanes by radiation-induced grafting

    International Nuclear Information System (INIS)

    Basic methods of radiation-induced modification of polyurethanes for biomedical applications and of their characterization are briefly described. The most important works found in literature on radiation grafting of polyurethanes are discussed. The radiation grafting of polyetherurethane films and tubings by the preswelling method using various monomers and their physico-chemical characterization are discussed in detail with respect to the antithrombogenic properties of the materials. Novel applications for radiation-modified polyurethanes as drug delivery systems or antiinfectious materials are briefly mentioned. 52 references

  11. Identification of the estrogen receptor Cd-binding sites by chemical modification.

    Science.gov (United States)

    Nesatyy, Victor J; Rutishauser, Barbara V; Eggen, Rik I L; Suter, Marc J-F

    2005-07-01

    The widely reported interactions of the estrogen receptor (ER) with endocrine disrupting chemicals (EDCs) present in the environment gave raise to public concern and led to a number of screening and testing initiatives on the international level. Recent studies indicated that certain heavy metals, including cadmium, can mimic the effects of the endogenous estrogen receptor agonist 17beta-estradiol, and lead to estrogen receptor activation. Previous studies of the chimeric proteins, which incorporate the ligand-binding domain of the human ER, identified Cys 381, Cys 447, Glu 523, His 524 and Asp 538 as possible sites of interactions with cadmium. In the present study we utilized the rainbow trout ER ligand-binding domain fused to glutathione-S-transferase, and used Cd-shielding against various types of chemical modification of the fusion protein to study non-covalent interactions between the ER and Cd. The distribution of exposed and shielded residues allowed to identify amino acid residues involved in the interaction. Our data indicated preferential protection of Cys groups by cadmium, suggesting their involvement in the interaction. This supports data found in the literature on the strong binding affinity of the thiol group towards metals. However, not all Cys in the fusion protein sequence were protected against chemical modification, illustrating the importance of their chemical environment. In general, the location of rtER-LBD Cys residues implicated in Cd interactions did not confirm assignments made by alanine-scanning mutagenesis for the hER, probably due to differences in experimental setup and fusion proteins used. The involvement of other functional groups such as carboxylic acids in the Cd interactions, though not confirmed, can not be completely ruled out due to the general limitations of the chemical modification approach discussed in detail. Suggestions for an improved experimental setup were made. PMID:15965534

  12. Surface modification of silica-coated zirconia by chemical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Christie Ying Kei, E-mail: yklung@graduate.hku.hk [Dental Materials Science, Faculty of Dentistry, University of Hong Kong (Hong Kong); Kukk, Edwin, E-mail: ekukk@utu.fi [Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences, University of Turku (Finland); Haegerth, Toni, E-mail: tjhage@utu.fi [Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences, University of Turku (Finland); Matinlinna, Jukka Pekka, E-mail: jpmat@hku.hk [Dental Materials Science, Faculty of Dentistry, University of Hong Kong (Hong Kong)

    2010-12-01

    Zirconia surface modification by various chemical treatments after silica coating by sandblasting was investigated in this study. The surface of silica-coated dental zirconia was hydroxylated by treatment with different acids at room temperature for 4 h, rinsed with deionized water and air-dried. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Shifts in binding energies for Zr 3d{sub 5/2} and Si 2p peaks were observed after treatment with acids, thereby showing a change in the chemical states of zirconium and silicon on the surface layer of silica-coated zirconia. The XPS analysis revealed that the silica-coated zirconia (SiO{sub 2}-ZrO{sub 2}) surfaces had changed to hydrous silica-coated zirconia (SiO{sub 2}-ZrO{sub 2}.nH{sub 2}O). One-way ANOVA analysis revealed there was significant difference in both surface roughness parameters of silica-coated zirconia after chemical treatments and the surface topography varied depending on the acid treatment.

  13. Innovation in academic chemical screening: Filling the gaps in chemical biology

    OpenAIRE

    Hasson, Samuel A.; Inglese, James

    2013-01-01

    Academic screening centers across the world have endeavored to discover small molecules that can modulate biological systems. To increase the reach of functional-genomic and chemical screening programs, universities, research institutes, and governments have followed their industrial counterparts in adopting high-throughput paradigms. As academic screening efforts have steadily grown in scope and complexity, so have the ideas of what is possible with the union of technology and biology. This ...

  14. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    Science.gov (United States)

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  15. Chemical Modification of Poly(epichlorohydrin) Using Montmorillonite Clay

    Institute of Scientific and Technical Information of China (English)

    BEKKAR Fatima; BELBACHIR Mohamed

    2009-01-01

    Cationic ring opening polymerization of epichlorohydrin (1) and acetic anhydride in the presence of Maghnite-H (Mag-H') as a catalyst afforded, ω-diacetylated poly(epichlorohydrin) (P1) in a moderate yield and molecular weight without formation of side products and degradation. P1 was chemically modified with morpholine (2),piperidine (3) and pyrrolidine (4) into the corresponding new functional poly(epichlorohydrin)s (P2-P4) in a moderate reaction conversion. The conversion of P1 into P2-P4 was confirmed by using FTIR and NMR spec-troscopy and the yield was calculated from the elemental analysis data according to the mole fraction concept. The obtained functional polymers were further characterized by thermal analysis which showed a substantial increase of the glass transition temperature (Tg). Thus, the chemical modification of a,ω-acetylated PECH using Mag-H+ of-fers a simple method for obtaining functional polymers. Mag-H+ is a montmorillonite sheet silicate clay exchanged with proton.

  16. Chemical modification of hybrid nanostructures (POSS for application as lubricant

    Directory of Open Access Journals (Sweden)

    Caroline Luvison

    2014-08-01

    Full Text Available Polyhedral oligomeric silsesquioxanes (POSS are hybrid structures type RSiO15n, with n organic groups R. These molecules can be easily functionalized by simply changing the chemical constitution of the organic groups. In this work, chemical modification of POSS-NH2 was performed by amidation reaction with butyric acid at elevated temperature, 160°C. The formation of the amide group is evinced by the appearance of NH angular deformation band at 1540 cm-1 in the FTIR spectra. Approximately 40% of the amino groups reacted, according to titration results. The formation of the amide groups resulted in a shift of the glass transition temperature (Tg from -36.9°C to -25.6°C for the modified-POSS sample. Both POSS-NH2 and modified-POSS samples exhibited similar thermal degradation pattern. Analysis of the pairs distribution function (PDF has determined that the hybrid nanoparticles are separated by a periodic distance of approximately 1.32 nm. POSS-NH2 and modified-POSS exhibit newtonian behavior, which will range from 10-1 s-1 and 1000 s-1. The viscosity decreased with increasing temperature, a typical behavior of liquid lubricants.

  17. Innovation in academic chemical screening: filling the gaps in chemical biology.

    Science.gov (United States)

    Hasson, Samuel A; Inglese, James

    2013-06-01

    Academic screening centers across the world have endeavored to discover small molecules that can modulate biological systems. To increase the reach of functional-genomic and chemical screening programs, universities, research institutes, and governments have followed their industrial counterparts in adopting high-throughput paradigms. As academic screening efforts have steadily grown in scope and complexity, so have the ideas of what is possible with the union of technology and biology. This review addresses the recent conceptual and technological innovation that has been propelling academic screening into its own unique niche. In particular, high-content and whole-organism screening are changing how academics search for novel bioactive compounds. Importantly, we recognize examples of successful chemical probe development that have punctuated the changing technology landscape. PMID:23683346

  18. 75 FR 70248 - Endocrine Disruptor Screening Program; Second List of Chemicals for Tier 1 Screening

    Science.gov (United States)

    2010-11-17

    ... releases to the environment, pesticide application rates, and production volumes (73 FR 9628, February 21... Program (EDSP). EPA established the EDSP in response to section 408(p) of the Federal Food, Drug, and... less than 100 chemicals for screening that includes drinking water contaminants, such as...

  19. In Vivo Screening of Chemically Modified RNA duplexes for their Ability to Induce Innate Immune Responses

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Kjems, Jørgen; Wengel, Jesper; Lorenzen, Niels

    Due to their sequence specific gene targeting activity siRNAs are regarded as promising active compounds in gene medicine. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNA duplexes. Cellular reactions towards double stranded...... protection against a fish pathogenic virus. This protection corresponded with an interferon response in the fish. Here we use this fish model to screen siRNAs containing various chemical modifications of the RNA backbone for their antiviral activity, the overall aim being identification of an siRNA form with...

  20. Surface modification on PMMA : PVDF polyblend: hardening under chemical environment

    Indian Academy of Sciences (India)

    R Bajpai; V Mishra; Pragyesh Agrawal; S C Datt

    2002-02-01

    The influence of chemical environment on polymers include the surface alteration as well as other deep modifications in surface layers. The surface hardening, as an effect of organic liquids on poly(methyl methacrylate): poly(vinylidene fluoride) (PMMA: PVDF), which is one of the few known miscible blends, has been detected using microhardness testing. Organic liquids like acetone, toluene, xylene and benzene were introduced on the surface of blend specimens for different durations. Vickers microhardness (v) was measured for treated and untreated specimens. The study reveals both hardening and plasticization of specimens at different exposure times. The degree of surface hardening is maximum under acetone treatment. All the specimens exhibit surface hardening at an exposure time of 1 h with all the four liquids. This feature is prominent with longer exposures for specimens with increasing content of PVDF. However, the degree of hardening decreases with the time of exposure in the respective environments. In general, acetone and toluene impart surface hardening, whereas, xylene and benzene soften the specimen. PMMA: PVDF (83 : 17) blend exhibits surface hardening under all the four treatments when compared with the respective untreated specimens.

  1. Radiation modification of swollen and chemically modified cellulose

    International Nuclear Information System (INIS)

    Complete text of publication follows. Biodegradable hydrogel was produced by radiation-induced crosslinking of water soluble carboxymethyl cellulose. Mobility of the molecular chain was found to play an important role in the crosslinking reaction. In this work the role of cellulose chains' mobility in radiation-induced reactions of fibrous cellulose was studied. Mobility of chains was improved by swelling (in sodium hydroxide and tetramethylammonium hydroxide) and chemical modification (substitution of about 3 % of hydroxyl groups with carboxymethyl groups), respectively. All samples were neutralized after the treatments. Accessibility of cellulose characterized by water adsorption and retention was significantly improved by the treatments in the following order: sodium hydroxide < tetramethylammonium hydroxide < carboxymethylation. Less fibrillar structure of modified fibers was observed by electron microscope. Samples were irradiated in wet form in open air (10 kGy). Untreated sample coated with soluble CMC was also irradiated. Degree of polymerization, FTIR spectra, and water sorption of samples before and after irradiation are presented. Amount of water adsorbed on samples decreased after irradiation. It can be considered the consequence of crosslinks, which might improve the crease recovery ability of cotton fabric. High accessibility improved degradation rather than crosslinking of cellulose chains

  2. Chemical modification studies of the streptokinase-plasminogen interaction

    International Nuclear Information System (INIS)

    The streptokinase (SK) interaction with human plasminogen (Pg) was investigated by differential chemical modification. In separate experiments, available lysine residues in both free streptokinase and streptokinase in complex with Pg were trace labeled by reaction with high specific activity [3H]-acetic anhydride at a reagent-to-lysine molar ratio of 0.5%. The [3H]-acetyl-SK from the complex was reisolated. Both the free and complex forms of 3H-acetyl-SK were then each mixed with uniformly and quantitatively modified [14C]-acetyl-SK in a 3H/14C isotopic ratio of ten-to-one. Each of the SK forms was fragmented by reaction with CNBr. These CNBr fragments, which were purified by Sephadex G-75 chromatography, were further cleaved by proteases to produce peptides containing a minimum number of lysines. After the isolation of peptides by reversed-phase HPLC, the 3H/14C ratios of lysines were individually determined. By comparison of the 3H/14C ratio's in the free-SK and complex-SK it was found that the majority of lysines did not change its reactivities in free or complex forms. However, several lysines were relatively unreactive in the SK complexed with Pg as compared to that in free SK. This suggests that these residues are either in the complex binding interface or they were less reactive as a result of conformational change induced by complex formation

  3. Chemical modification of niobium layered oxide by tetraalkylammonium intercalation

    International Nuclear Information System (INIS)

    Chemical modification of the layered K4Nb6O17 material was systematically investigated through the reaction of its proton-exchanged form (H2K2Nb6O17) in alkaline solutions containing tetramethylammonium (tma+), tetraethylammonium (tea+) or tetrapropylammonium (tpa+) cations. The intercalated amount reaches 50% (for tma+), 25% (for tea+) and 15% (for tpa+) of the H2K2Nb6O17 negative charge (concerning the exchange at interlayer I) due to the steric hindrance of larger cations. Hexaniobate samples present (020) basal reflections equal to 23.0, 26.3 and 26.5 A once intercalated respectively with tma+, tea+ and tpa+. When samples are heated above 200-250 deg C, CO2 evolution is observed; Hofmann elimination reaction is also detected for hexaniobate-tpa+ samples. Scanning electron microscopy images show the predominance of plate-like particles; stick-like particles are also observed for samples containing bulky ions. The intercalation reaction is promoted in the order tma+ > tea+ > tpa+, while the formation of a dispersion of colloidal particles is facilitated in the inverse order. (author)

  4. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Science.gov (United States)

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. PMID:25407640

  5. The Use of Chemical Modification of Polymer Waste for Obtaining Polymer Flocculants

    Institute of Scientific and Technical Information of China (English)

    W.W.Sulkowski; K.Nowak; A.Sulkowska; A.Wolin; ska; S.Malanka; W.M.Baldur; D.Pentak

    2007-01-01

    1 Results Chemical modification of polymer plastic wastes to useful products can be one of the way of effective waste plastics management (chemical recycling). Chemical modification of polymers and polymer plastic wastes can yield products with suitable physical and chemical properties. In consequence they can be used as polyelectrolytes[1]. The variety of pollutants, universality of various water and sewage treatment technologies, introduction of new water quality improved technologies have caused a gr...

  6. Synthesis and chemical modification of carbon nanostructures for materials applications

    Science.gov (United States)

    Higginbotham, Amanda Lynn

    This dissertation explores the structure, chemical reactivities, electromagnetic response, and materials properties of various carbon nanostructures, including single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphite, and graphene nanoribbons (GNRs). Efficient production and modification of these unique structures, each with their own distinct properties, will make them more accessible for applications in electronics, materials, and biology. A method is reported for controlling the permittivity from 1--1000 MHz of SWCNT-polymer composites (0.5 wt%) for radio frequency applications including passive RF antenna structures and EMI shielding. The magnitude of the real permittivity varied between 20 and 3.3, decreasing as higher fractions of functionalized-SWCNTs were added. The microwave absorbing properties and subsequent heating of carbon nanotubes were used to rapidly cure ceramic composites. With less than 1 wt% carbon nanotube additives and 30--40 W of directed microwave power (2.45 GHz), bulk composite samples reached temperatures above 500°C within 1 min. Graphite oxide (GO) polymer nanocomposites were developed at 1, 5, and 10 wt% for the purpose of evaluating the flammability reduction and materials properties of the resulting systems. Microscale oxygen consumption calorimetry revealed that addition of GO reduced the total heat release in all systems, and GO-polycarbonate composites demonstrated very fast self-extinguishing times in vertical open flame tests. A simple solution-based oxidative process using potassium permanganate in sulfuric acid was developed for producing nearly 100% yield of graphene nanoribbons (GNRs) by lengthwise cutting and unraveling of MWCNT sidewalls. Subsequent chemical reduction of the GNRs resulted in restoration of electrical conductivity. The GNR synthetic conditions were investigated in further depth, and an improved method which utilized a two-acid reaction medium was found to produce GNRs with

  7. Chemical modification of b-lactoglobulin by quinones

    OpenAIRE

    DUSAN SLADIC; NENAD MILOSAVIC; NATASA BOZIC; TATJANA BOZIC; ZORAN VUJCIC; IRENA NOVAKOVIC

    2003-01-01

    The avarone/avarol quinone/hydroquinone couple, as well as their derivatives show considerable antitumor activity. In this work, covalent modifications of b-lactoglobulin, isolated from cow milk, by avarone, its model compound 2-tert-butyl-1,4-benzoquinone, and several of their alkylthio derivatives were studied. The techniques applied for assaying the modifications were: UV/VIS spectrophotometry, SDS PAGE and isoelectrofocusing. The results of the SDS PAGE suggest that polymerisation of the ...

  8. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid;

    2014-01-01

    -life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a...... monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of...

  9. Screening large numbers of recombinant plasmids: modifications and additions to alkaline lysis for greater efficiency

    Institute of Scientific and Technical Information of China (English)

    XU Yibing; N.V. CHANDRASEKHARAN; Daniel L. SIMMONS

    2006-01-01

    Selecting bacteria transformed with recombinant plasmid is a laborious step in gene cloning experiments. This selection process is even more tedious when large numbers of clones need to be screened. We describe here modifications to the ultra fast plasmid preparation method described previously by Law and Crickmore. The modified method is coupled to an efficient PCR step to rapidly determine orientation of the inserts. Compared to traditional methods of analysis requiring growth of overnight cultures, plasmid isolation and restriction enzyme digestion to determine orientation this procedure allows for the analysis and storage of a large number of recombinants within a few hours.

  10. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    Science.gov (United States)

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  11. Effects of aluminium surface morphology and chemical modification on wettability

    Science.gov (United States)

    Rahimi, M.; Fojan, P.; Gurevich, L.; Afshari, A.

    2014-03-01

    Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie-Baxter to Wenzel regime upon changing the surface roughness was also observed.

  12. DETERMINATION OF REGIMES FOR DIPHTHERIA EXOTOXIN MODIFICATION BY CHEMICAL AND PHYSICOCHEMICAL METHODS

    OpenAIRE

    Antusheva T.I.; Pluhator T.M.; Ryabovol O.V.; Sklyar N.I.,; Ryzhkova T.A.,; Kalinichenko S.V; Babych E.M.; Panova C.V.

    2011-01-01

    The possibility of diphtheria toxoid obtaining using chemical (amino sugars, organic acids) and physicochemical (amino sugars, organic acids, ultrasound, temperature) factors was studied. It was established that modifiers (including formaldehyde) volume content decreasing didn’t have significant influence on diphtheria toxin derived modifications specific activity. It was experimentally determined that diphtheria toxin modifications obtained by the instrumentality of modifier number 1 with or...

  13. Effects of aluminium surface morphology and chemical modification on wettability

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M., E-mail: mar@sbi.aau.dk [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Fojan, P.; Gurevich, L. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4, DK-9220 Aalborg East (Denmark); Afshari, A. [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2014-03-01

    Highlights: • Successful surface modification procedures on aluminium samples were performed involving formation of the layer of hydrophilic hyperbranched polyethyleneglycol (PEG) via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. • The groups of surfaces with hydrophobic behavior were found to follow the Wenzel model. • A transition from Cassie–Baxter's to Wenzel's regime was observed due to changing of the surface roughness upon mechanical polishing in aluminium samples. - Abstract: Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie–Baxter to Wenzel regime upon changing the surface

  14. Tuning the electronic structures of armchair graphene nanoribbons through chemical edge modification: A theoretical study

    OpenAIRE

    Wang, Z. F.; Zheng, Qunxiang Li. Huaixiu; Ren, Hao; Su, Haibin; Shi, Q. W.; Chen, Jie

    2007-01-01

    We report combined first-principle and tight-binding (TB) calculations to simulate the effects of chemical edge modifications on structural and electronic properties. The C-C bond lengths and bond angles near the GNR edge have considerable changes when edge carbon atoms are bounded to different atoms. By introducing a phenomenological hopping parameter $t_{1}$ for nearest-neighboring hopping to represent various chemical edge modifications, we investigated the electronic structural changes of...

  15. Chemical modification of nanocrystalline tin dioxide for selective gas sensors

    International Nuclear Information System (INIS)

    Chemical methods for enhancement of the selectivity of semiconductor metal oxide gas sensors are considered taking SnO2 as an example. Theoretical concepts concerning correlations between the metal oxide chemical composition, crystal structure, surface morphology and the oxide surface reactivity are discussed. Application of such concepts to the design of novel, highly selective sensor materials based on nanocrystalline SnO2 is discussed in detail. Experimental data on the determination of the chemical composition, structure, activity in gas–solid chemical interaction and the sensor properties of such materials are analyzed. The applicability of modern concepts of the chemical activity of the surface in gas–solid reactions to the design of novel metal oxide sensor materials with enhanced selectivity is substantiated. The bibliography includes 133 references

  16. Surface charging, discharging and chemical modification at a sliding contact

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Kusano, Yukihiro; Morgen, Per;

    2012-01-01

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X...... are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results...

  17. Cell Colonization Control by Physical and Chemical Modification of Materials

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Švorčík, V.

    New York : Nova Science Publisher, 2008 - (Kimura, D.), s. 5-56 ISBN 978-1-60456-132-6 R&D Projects: GA AV ČR(CZ) KAN400480701; GA AV ČR(CZ) KAN101120701; GA AV ČR(CZ) IAA5011301; GA AV ČR(CZ) 1QS500110564; GA ČR(CZ) GA204/06/0225; GA ČR(CZ) GA101/06/0226 Grant ostatní: GA Mšk(CZ) LC06041 Institutional research plan: CEZ:AV0Z50110509 Keywords : material surface modification * nanostructure * cell culture Subject RIV: EI - Biotechnology ; Bionics

  18. The TSCA interagency testing committee`s approaches to screening and scoring chemicals and chemical groups: 1977-1983

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.D. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    This paper describes the TSCA interagency testing committee`s (ITC) approaches to screening and scoring chemicals and chemical groups between 1977 and 1983. During this time the ITC conducted five scoring exercises to select chemicals and chemical groups for detailed review and to determine which of these chemicals and chemical groups should be added to the TSCA Section 4(e) Priority Testing List. 29 refs., 1 fig., 2 tabs.

  19. Chemical modification of the tryptophan residues of leucyl-tRNA synthetase by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide

    International Nuclear Information System (INIS)

    The accessibility for modification of the tryptophan residues in leucyl-tRNA synthetase from cow mammary glands has been studied with the aid of the specific chemical reagents N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide. UV absorption and the intrinsic fluorescence of the tryptophan residues of the enzymes were used for recording the course of the modification. It has been shown that under native conditions (pH 7.8) two superficial residues in each subunit of the dimeric enzyme undergo modification. Under denaturing conditions (6 M guanidine hydrochloride), the internal tryptophan residues are also modified. When the tryptophan residues are modified, the leucyl-tRNA synthetase is inactivated both in the aminoacylation reaction and in the ATP-PP/sub i/ exchange reaction. In the specific complex of leucyl-tRNA synthetase with tRNA/sup Leu/ one of the superficial tryptophan residues is screened and does not undergo modification by the reagents used

  20. Chemical Modifications of Hyaluronan using DMTMM-Activated Amidation

    OpenAIRE

    Rydergren, Sara

    2013-01-01

    An alternative approach to chemically modifying hyaluronan (HA) has been investigated. The triazine derivative 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium (DMTMM) has been used to activate carboxylic groups on HA, which react further to form stable amide bonds with primary and secondary amines. The reaction can either be used to couple monoamines to HA or to produce hydrogels by using diamines that form crosslinks between the HA chains. The reaction between HA and DMTMM has been...

  1. Flow method and apparatus for screening chemicals using micro x-ray fluorescence

    Science.gov (United States)

    Warner, Benjamin P.; Havrilla, George J.; Miller, Thomasin C.; Lewis, Cris; Mahan, Cynthia A.; Wells, Cyndi A.

    2009-04-14

    Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow-separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

  2. Laser and chemical surface modifications of titanium grade 2 for medical application

    International Nuclear Information System (INIS)

    Highlights: • DLIL technique and etching were used for functionalization of Ti grade 2 surface. • Modification was performed on semi-finished flat and curved Ti surfaces. • Modification results in periodic multimodal (micro and nano-size) Ti topography. - Abstract: The article presents combined, chemical and physical approach to titanium surface functionalization designed for biomedical applications. The topography modification has been obtained by employing the double laser beam interference technique and chemical etching. In the outcome, clean and smooth Ti surface as well as periodic striated topography with the roughness range from nano- to micrometers were created. The obtained structures were characterized in terms of shape, roughness, chemical composition, mechanical properties and microstructures. In order to achieve all information, numerous of research methods have been used: scanning electron microscopy, atomic force microscopy, optical profilometry and microhardness measurements. Demonstrated methodology can be used as an effective tool for manufacturing controlled surface structures improving the bone–implants interactions

  3. Laser and chemical surface modifications of titanium grade 2 for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Kwaśniak, P. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Pura, J., E-mail: jaroslawpura@gmail.com [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Zwolińska, M.; Wieciński, P. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Skarżyński, H.; Olszewski, L. [Institute of Physiology and Pathology of Hearing, Warsaw (Poland); World Hearing Center, Kajetany (Poland); Marczak, J. [Military University of Technology, Institute of Optoelectronics, Warsaw (Poland); Garbacz, H.; Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland)

    2015-05-01

    Highlights: • DLIL technique and etching were used for functionalization of Ti grade 2 surface. • Modification was performed on semi-finished flat and curved Ti surfaces. • Modification results in periodic multimodal (micro and nano-size) Ti topography. - Abstract: The article presents combined, chemical and physical approach to titanium surface functionalization designed for biomedical applications. The topography modification has been obtained by employing the double laser beam interference technique and chemical etching. In the outcome, clean and smooth Ti surface as well as periodic striated topography with the roughness range from nano- to micrometers were created. The obtained structures were characterized in terms of shape, roughness, chemical composition, mechanical properties and microstructures. In order to achieve all information, numerous of research methods have been used: scanning electron microscopy, atomic force microscopy, optical profilometry and microhardness measurements. Demonstrated methodology can be used as an effective tool for manufacturing controlled surface structures improving the bone–implants interactions.

  4. PWR sump screen chemical effect test in FY 2007

    International Nuclear Information System (INIS)

    Corrosion, pressure drop and integrated chemical effect assessment on NPSH (ICAN) test of insulations used in Japanese nuclear power plants were performed in FY 2007. In order to obtain basic data needed for taking into consideration of results of ICAN test, corrosion test was taken in sodium tetraborate (insulation) solution, hydrazine solution and pure water added with hydrochronic acid solution of BWR condition. Concentration of dissolved element of rock wool insulation became higher with increase of PH value while that of calcium sulfate insulation became lower with increase of PH value and showed highest PH value in hydrochronic acid solution, which increased up to 9.2 in 3 hrs after the start of experiment. Pressure drop test was to investigate effects of debris (accumulation of sump screen) state and colloid simulating corrosion products on pressure drop. Colloid particulates were apt to increase pressure drop compared with calcium sulfate. Iron hydroxide and aluminum hydroxide increased pressure drop more than copper oxide. Test using sodium tetraborate as PH control chemical was apt to increase pressure drop while test using hydrazine was difficult to increase. Test using ICAN test solution showed wet glass wool insulation increased pressure drop in short time. ICAN test under PWR containment vessel simulated condition was also performed in sodium tetraborate solution, hydrazine solution and pure water added with hydrochronic acid solution BWR condition. Solubility of aluminum, silicon, iron and copper could be almost calculated from thermodynamics data of each element's oxide or hydroxide. Pressure drop change was so complicated as to reflect respective experimental condition. (T. Tanaka)

  5. 76 FR 49473 - Petition to Maximize Practical Utility of List 1 Chemicals Screened Through EPA's Endocrine...

    Science.gov (United States)

    2011-08-10

    ... AGENCY Petition to Maximize Practical Utility of List 1 Chemicals Screened Through EPA's Endocrine... decisions on data received in response to the test orders issued under the Endocrine Disruptor Screening... may otherwise be involved in the testing of chemical substances for potential endocrine...

  6. Chemical modification and functionalisation of poly(ethylene terephthalate) fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.H.; Kim, S.H. [Sungkyunkwan University, Suwon (Korea)

    2002-05-01

    Poly(ethylene terephthalate ) (PET) fibers were modified by deep UV irradiation which was produced by a low pressure mercury lamp. FT-IR and XPS analyses were used to elucidate the surface chemical composition of PET fibers treated with UV. Relative O{sub 1s} intensity increased considerably and it was found that oxygen was incorporated in the form of COO on the fiber surface. FT-IR and XPS analyses proved the existence of carboxylic groups on the surfaces and the adsorption test of cationic compound further supported these results. The concentration of carboxylic acid group on the surface increased remarkably with increasing irradiation time. XPS analysis and adsorption experiments proved that the surface structure of the UV{sub i}rradiated PET fibers were stable for 12 months. Antibacterial property and the deodorization rate of UV-irradiated PET fibers adsorbed with the berberine compound were investigated. reduction rates of bacteria increased by about 21 to 99% compared to unradiated PET fiber. Deodorization rates of 23% for unradiated PET fiber increased to about 75% for 30 min irradiated samples. (author). 33 refs., 3 tabs., 11 figs.

  7. Immunobiological properties of sesquiterpene lactones obtained by chemically transformed structural modifications of trilobolide.

    Science.gov (United States)

    Harmatha, Juraj; Vokáč, Karel; Buděšínský, Miloš; Zídek, Zdeněk; Kmoníčková, Eva

    2015-12-01

    Our previous research on immunostimulatory properties of trilobolide and its structurally related natural analogues isolated from Laser trilobum (L.) Borkh., encouraged us to investigate structurally related guaianolides belonging to a specific group of sesquiterpene lactones with characteristic glycol moiety attached to the lactone ring. Ever increasing attention has been paid to certain guaianolides such as thapsigargin and trilobolide for their promising anti-inflammatory, anticancer, anti-infectious and SERCA inhibitory activities. However, due to their alkylation capabilities, they might be cytotoxic. Search for compounds with preserved immunobiological properties and decreased cytotoxicity led us to transform some of their structural features, particularly those related to their side chain functionality. For this reason, we prepared a series of over 20 various deacylated, acyl modified, or relactonized derivatives of trilobolide. The immunobiological effects were screened in vitro using the rat peritoneal cells primed with lipopolysaccharide. Secretion of interferon-γ (IFN-γ), interleukins (IL) IL-1β, IL-6 and tumour necrosis factor-α (TNF-α) were determined by ELISA, and nitric oxide (NO) production by Griess reagent. Relation between the molecular structure and immunobiological activity was investigated. Acetylation at 7-OH and 11-OH positions of the lactone ring, or acyl modification of the guaianolide functionalities (including relactonization) of trilobolide, led to inability to stimulate secretion of cytokines and production of NO. Interestingly, minor structural changes achieved by catalytic hydrogenation or hydrogenolysis retained the original immunoactivity of trilobolide. It can be concluded that several new chemically transformed sesquiterpene lactones resembling the immunobiological properties of trilobolide or thapsigargin were prepared and identified. The implication of the lactone vicinal diol (glycol) moiety, combined with other structure

  8. The application and use of chemical space mapping to interpret crystallization screening results

    OpenAIRE

    Snell, Edward H.; Nagel, Ray M.; Wojtaszcyk, Ann; O’Neill, Hugh; Wolfley, Jennifer L.; Joseph R Luft

    2008-01-01

    Macromolecular crystallization screening is an empirical process. It often begins by setting up experiments with a number of chemically diverse cocktails designed to sample chemical space known to promote crystallization. Where a potential crystal is seen a refined screen is set up, optimizing around that condition. By using an incomplete factorial sampling of chemical space to formulate the cocktails and presenting the results graphically, it is possible to readily identify trends relevant t...

  9. Chemical genetics and drug screening in Drosophila cancer models

    Institute of Scientific and Technical Information of China (English)

    Mara Gladstone; Tin Tin Su

    2011-01-01

    Drug candidates often fail in preclinical and clinical testing because of reasons of efficacy and/or safety.It would be time- and cost-efficient to have screening models that reduce the rate of such false positive candidates that appear promising at first but fail later.In this regard,it would be particularly useful to have a rapid and inexpensive whole animal model that can pre-select hits from high-throughput screens but before testing in costly rodent assays.Drosophila melanogaster has emerged as a potential whole animal model for drug screening.Of particular interest have been drugs that must act in the context of multi-cellularity such as those for neurological disorders and cancer.A recent review provides a comprehensive summary of drug screening in Drosophila,but with an emphasis on neurodegenerative disorders.Here,we review Drosophila screens in the literature aimed at cancer therapeutics.

  10. Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus.

    Science.gov (United States)

    Ma, Lishuai; Chen, Haixia; Zhang, Yu; Zhang, Ning; Fu, Lingling

    2012-06-20

    Chemical modification polysaccharides exerted potent biological property which was related to the physicochemical properties. In the present study, polysaccharides from Inonotus obliquus were modified by suflation, acetylation and carboxymethylation. The physicochemical and antioxidant properties of I. obliquus polysaccharide (IOPS) and its derivatives were comparatively investigated by chemical methods, gas chromatography, size exclusion chromatography, scanning electron micrograph, infrared spectra and circular dichroism spectra, and ferric reducing power assay and lipid peroxidation inhibition assay, respectively. Results showed that physicochemical and antioxidant properties of IOPS were differed each other after the chemical modification of suflation, acetylation and carboxymethylation. Among the three derivatives, acetylationed polysaccharide (Ac-IOPS) resulted in lower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, higher antioxidant abilities on ferric-reducing power and lipid peroxidation inhibition activity compared with the native polysaccharide IOPS. Ac-IOPS might be explored as a novel potential antioxidant for human consumption. PMID:24750732

  11. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  12. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    International Nuclear Information System (INIS)

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  13. A Review of Different Behavior Modification Strategies Designed to Reduce Sedentary Screen Behaviors in Children

    OpenAIRE

    Jeremy A. Steeves; Thompson, Dixie L; Bassett, David R.; Eugene C. Fitzhugh; Raynor, Hollie A.

    2011-01-01

    Previous research suggests that reducing sedentary screen behaviors may be a strategy for preventing and treating obesity in children. This systematic review describes strategies used in interventions designed to either solely target sedentary screen behaviors or multiple health behaviors, including sedentary screen behaviors. Eighteen studies were included in this paper; eight targeting sedentary screen behaviors only, and ten targeting multiple health behaviors. All studies used behavior mo...

  14. Chemical modification of poly(vinyl alcohol): evaluation of hydrophilic/lipophilic balance

    International Nuclear Information System (INIS)

    Poly(vinyl alcohol) terpolymers have been obtained by reaction of partially hydrolized poly(vinyl alcohol) with different acid chlorides. The objective is the preparation of polymers with slight differences in their hydrophilic/lipophilic balance and in the interfacial activities of their solutions. The chemical modifications were characterized by means of 1H NMR and the polymer properties were evaluated in terms of changes in solubility and surface tension. By chemical modification, polymers with low percentage of hydrophobic group were obtained. The water-soluble polymers obtained did not have the surface tension of their solutions altered. The solubility of the modified polymers decreased markedly, even with low contents of hydrophobic groups. (author)

  15. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases.

    Science.gov (United States)

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-04-20

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in anin vitrotranscription assay using RNA polymerase fromBacillus subtilisandEscherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by theE. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. PMID:27001521

  16. SCREENING CHEMICALS FOR ESTROGEN RECEPTOR BIOACTIVITY USING A COMPUTATIONAL MODEL

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) is considering the use high-throughput and computational methods for regulatory applications in the Endocrine Disruptor Screening Program (EDSP). To use these new tools for regulatory decision making, computational methods must be a...

  17. Chemical modification of a polyacrylamide. Enhanced decontamination of soils and surfaces after a nuclear accident

    International Nuclear Information System (INIS)

    This contribution concerns the decontamination of soils and surfaces polluted by cesium and strontium after a nuclear accident. The decontamination rate by means of an industrial polyacrylamide previously selected for its mechanical covering properties is studied. The characteristics of the polymer and its cation-exchange capacity (CEC) are specified. The chemical modification of the polymer, involving a crosslinking path and functional grafting, affords an improvement of its decontaminating properties. (author). 6 refs., 4 figs., 1 tab

  18. Chemical modification of viscose fibres by adsorption of carboxymethyl cellulose and click chemistry

    OpenAIRE

    Anufrijeva, Olga

    2014-01-01

    Functionalization of cellulosic materials to achieve new and advanced properties is a widely explored research area. This thesis is focused on the novel approach for modification of cellulosic materials by the combination of adsorption of carboxymethyl cellulose (CMC) onto cellulose surface and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) “click” reaction. The literature part gives an overview on the basics of cellulose chemistry, chemical functionalization of cellulose, as wel...

  19. Chemical Modification of Porous Alumina for Nanowire Templating and NEXAFS Spectroscopy of Aqueous ATP

    OpenAIRE

    Kelly, Daniel Nicholas

    2010-01-01

    Part One: Chemical Modification of Porous Alumina for Nanowire Templating: A modified sol-gel technique and subsequent polymer coating technique was used to modify the size of nanowires grown via electrodeposition in porous alumina templates. The porous alumina film is initially soaked in a water-containing solution prior to exposure to a different solution of 3-aminopropyltriethoxysilane in toluene. The amount of water in the aqueous solution correlates with the thickness of silane coating ...

  20. Dissection of the DNA Mimicry of the Bacteriophage T7 Ocr Protein using Chemical Modification

    OpenAIRE

    Stephanou, Augoustinos S.; Roberts, Gareth A.; Cooper, Laurie P.; Clarke, David J.; Thomson, Andrew R.; Mackay, C. Logan; Nutley, Margaret; Cooper, Alan; Dryden, David T. F.

    2009-01-01

    The homodimeric Ocr (overcome classical restriction) protein of bacteriophage T7 is a molecular mimic of double-stranded DNA and a highly effective competitive inhibitor of the bacterial type I restriction/modification system. The surface of Ocr is replete with acidic residues that mimic the phosphate backbone of DNA. In addition, Ocr also mimics the overall dimensions of a bent 24-bp DNA molecule. In this study, we attempted to delineate these two mechanisms of DNA mimicry by chemically modi...

  1. A quantitative strategy to detect changes in accessibility of protein regions to chemical modification on heterodimerization

    Science.gov (United States)

    Dreger, Mathias; Leung, Bo Wah; Brownlee, George G; Deng, Tao

    2009-01-01

    We describe a method for studying quantitative changes in accessibility of surface lysine residues of the PB1 subunit of the influenza RNA polymerase as a result of association with the PA subunit to form a PB1-PA heterodimer. Our method combines two established methods: (i) the chemical modification of surface lysine residues of native proteins by N-hydroxysuccinimidobiotin (NHS-biotin) and (ii) the stable isotope labeling of amino acids in cell culture (SILAC) followed by tryptic digestion and mass spectrometry. By linking the chemical modification with the SILAC methodology for the first time, we obtain quantitative data on chemical modification allowing subtle changes in accessibility to be described. Five regions in the PB1 monomer showed altered reactivity to NHS-biotin when compared with the [PB1-PA] heterodimer. Mutational analysis of residues in two such regions—at K265 and K481 of PB1, which were about three- and twofold, respectively, less accessible to biotinylation in the PB1-PA heterodimer compared with the PB1 monomer, demonstrated that both K265 and K481 were crucial for polymerase function. This novel assay of quantitative profiling of biotinylation patterns (Q-POP assay) highlights likely conformational changes at important functional sites, as observed here for PB1, and may provide information on protein–protein interaction interfaces. The Q-POP assay should be a generally applicable approach and may detect novel functional sites suitable for targeting by drugs. PMID:19517532

  2. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels.

    Science.gov (United States)

    George, Subin M; Moon, Hyejin

    2015-03-01

    Electro wetting-on-dielectric (EWOD) digital microfluidics (DMF) can be used to develop improved chemical screening platforms using 3-dimensional (3D) cell culture. Alginate hydrogels are one common method by which a 3D cell culture environment is created. This paper presents a study of alginate gelation on EWOD DMF and investigates designs to obtain uniform alginate hydrogels that can be repeatedly addressed by any desired liquids. A design which allows for gels to be retained in place during liquid delivery and removal without using any physical barriers or hydrophilic patterning of substrates is presented. A proof of concept screening platform is demonstrated by examining the effects of different concentrations of a test chemical on 3D cells in alginate hydrogels. In addition, the temporal effects of the various chemical concentrations on different hydrogel posts are demonstrated, thereby establishing the benefits of an EWOD DMF 3D cell culture and chemical screening platform using alginate hydrogels. PMID:25945142

  3. Effect of different chemical modification of carbon nanotubes for the oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    The electrochemical reduction of oxygen on chemically modified multi-walled carbon nanotubes (CNTs) electrodes in 1 M KOH solution has been studied using the rotating ring disc electrode (RDE). The surface modification of CNTs has been estimated by XPS and Raman spectroscopy. The effect of different oxygen functionalities on the surface of carbon nanotube for the oxygen reduction reaction (ORR) is considered in terms of the number of electrons (n) involved. Electrochemical studies indicate that in the case of the modification of CNTs with citric acid and diazonium salts the n values were close to two in the measured potential range, and the electrochemical reduction is limited to the production of peroxide as the final product. In the case of the modification of carbon nanotubes with peroxymonosulphuric acid, in the measured potential range, the n value is close to 4 indicating the four-electron pathway for the ORR. By correlating ORR measurements with the XPS analysis, we propose that the increase in electrocatalytic activity towards the ORR, for CNT can be attributed to the increase in C-O groups on the surface of CNTs after modification with peroxymonosulphuric acid

  4. First-principles investigation of chemical modification on two-dimensional iron—phthalocyanine sheet

    International Nuclear Information System (INIS)

    Successful synthesis of single iron—phthalocyanie (FePc) framework layer on substrate and its transferrable properties open the door for decorating the separately distributed transition metals for exploring the diverse properties. We have studied the effects of chemical modification on two-dimensional FePc organometallic framework with density functional theory. For simplicity, the non-metal atoms with variant valence electrons are used as prototypes to estimate the effects from chemical modifications with different functional groups. The thermo-stabilities of the non-metal atom decorated complex sheet materials have been estimated by the first-principles constant energy molecular dynamic simulations. Upon the non-metal atom adsorption, the magnetic moment could be changed from 2 μB to 0, 1, 2, and 3 μB per unit cell for the case of tetra-, penta-, hexa-, and hepta-valent non-metal modifications, respectively, showing interesting promise to tailor its magnetic properties for potential applications. (interdisciplinary physics and related areas of science and technology)

  5. Chemical modification of jute fibers for the production of green-composites

    Energy Technology Data Exchange (ETDEWEB)

    Corrales, F. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain)]. E-mail: farners.corrales@udg.es; Vilaseca, F. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain); Llop, M. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain); Girones, J. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain); Mendez, J.A. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain); Mutje, P. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain)

    2007-06-18

    Natural fiber reinforced composites is an emerging area in polymer science. Fibers derived from annual plants are considered a potential substitute for non-renewable synthetic fibers like glass and carbon fibers. The hydrophilic nature of natural fibers affects negatively its adhesion to hydrophobic polymeric matrices. To improve the compatibility between both components a surface modification has been proposed. The aim of the study is the chemical modification of jute fibers using a fatty acid derivate (oleoyl chloride) to confer hydrophobicity and resistance to biofibers. This reaction was applied in swelling and non-swelling solvents, pyridine and dichloromethane, respectively. The formation of ester groups, resulting from the reaction of oleoyl chloride with hydroxyl group of cellulose were studied by elemental analysis (EA) and Fourier Transform infrared spectroscopy (FTIR). The characterization methods applied has proved the chemical interaction between the cellulosic material and the coupling agent. The extent of the reactions evaluated by elemental analysis was calculated using two ratios. Finally electron microscopy was applied to evaluate the surface changes of cellulose fibers after modification process.

  6. An integrated hybrid microfluidic device for oviposition-based chemical screening of adult Drosophila melanogaster.

    Science.gov (United States)

    Leung, Jacob C K; Hilliker, Arthur J; Rezai, Pouya

    2016-02-21

    Chemical screening using Drosophila melanogaster (the fruit fly) is vital in drug discovery, agricultural, and toxicological applications. Oviposition (egg laying) on chemically-doped agar plates is an important read-out metric used to quantitatively assess the biological fitness and behavioral responses of Drosophila. Current oviposition-based chemical screening studies are inaccurate, labor-intensive, time-consuming, and inflexible due to the manual chemical doping of agar. In this paper, we have developed a novel hybrid agar-polydimethylsiloxane (PDMS) microfluidic device for single- and multi-concentration chemical dosing and on-chip oviposition screening of free-flying adult stage Drosophila. To achieve this, we have devised a novel technique to integrate agar with PDMS channels using ice as a sacrificial layer. Subsequently, we have conducted single-chemical toxicity and multiple choice chemical preference assays on adult Drosophila melanogaster using zinc and acetic acid at various concentrations. Our device has enabled us to 1) demonstrate that Drosophila is capable of sensing the concentration of different chemicals on a PDMS-agar microfluidic device, which plays significant roles in determining oviposition site selection and 2) investigate whether oviposition preference differs between single- and multi-concentration chemical environments. This device may be used to study fundamental and applied biological questions in Drosophila and other egg laying insects. It can also be extended in design to develop sophisticated and dynamic chemical dosing and high-throughput screening platforms in the future that are not easily achievable with the existing oviposition screening techniques. PMID:26768402

  7. In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project

    OpenAIRE

    Judson, Richard S.; Houck, Keith A.; Kavlock, Robert J.; Knudsen, Thomas B,; Martin, Matthew T.; Mortensen, Holly M.; Reif, David M.; Rotroff, Daniel M.; Shah, Imran; Richard, Ann M.; Dix, David J.

    2009-01-01

    Background Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency’s ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. Objectives This project aims to evaluate the use of in vitro assays for understanding the ty...

  8. Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review.

    Science.gov (United States)

    Zink, Joël; Wyrobnik, Tom; Prinz, Tobias; Schmid, Markus

    2016-01-01

    Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films. PMID:27563881

  9. Statistically designed experiments to screen chemical mixtures for possible interactions

    NARCIS (Netherlands)

    Groten, J.P.; Tajima, O.; Feron, V.J.; Schoen, E.D.

    1998-01-01

    For the accurate analysis of possible interactive effects of chemicals in a defined mixture, statistical designs are necessary to develop clear and manageable experiments. For instance, factorial designs have been successfully used to detect two-factor interactions. Particularly useful for this purp

  10. FTIR spectroscopy of cysteine as a ready-to-use method for the investigation of plasma-induced chemical modifications of macromolecules

    Science.gov (United States)

    Kogelheide, Friederike; Kartaschew, Konstantin; Strack, Martin; Baldus, Sabrina; Metzler-Nolte, Nils; Havenith, Martina; Awakowicz, Peter; Stapelmann, Katharina; Lackmann, Jan-Wilm

    2016-03-01

    A rapid screening method for the investigation of plasma-induced chemical modifications was developed by analyzing cysteine using Fourier Transform Infrared (FTIR) spectroscopy. Cysteine is a key amino acid in proteins due to the presence of a thiol group which provides unique structural features by offering the possibility to form disulfide bonds. Its chemical composition makes cysteine a well-suited model for the investigation of plasma-induced modifications at three functional groups—the amino, the carboxyl and the thiol group—all highly abundant in proteins. FTIR spectroscopy is present in most physical laboratories and offers a fast way to assess changes in the chemical composition of cysteine substrates due to plasma treatment and to compare different treatment conditions or plasma sources with each other. Significant changes in the fingerprint spectra of cysteine samples treated with a dielectric barrier discharge (DBD) compared to untreated controls were observed using a FTIR spectrometer. The loss of the thiol signal and the simultaneous increase of bands originating from oxidized sulfur and nitrogen species indicate that the thiol group of cysteine is modified by reactive oxygen and nitrogen species during DBD treatment. Furthermore, other plasma-induced modifications, such as changes of the amino and carbonyl groups, could be observed. Complementary mass spectrometry measurements confirmed these results.

  11. FTIR spectroscopy of cysteine as a ready-to-use method for the investigation of plasma-induced chemical modifications of macromolecules

    International Nuclear Information System (INIS)

    A rapid screening method for the investigation of plasma-induced chemical modifications was developed by analyzing cysteine using Fourier Transform Infrared (FTIR) spectroscopy. Cysteine is a key amino acid in proteins due to the presence of a thiol group which provides unique structural features by offering the possibility to form disulfide bonds. Its chemical composition makes cysteine a well-suited model for the investigation of plasma-induced modifications at three functional groups—the amino, the carboxyl and the thiol group—all highly abundant in proteins. FTIR spectroscopy is present in most physical laboratories and offers a fast way to assess changes in the chemical composition of cysteine substrates due to plasma treatment and to compare different treatment conditions or plasma sources with each other. Significant changes in the fingerprint spectra of cysteine samples treated with a dielectric barrier discharge (DBD) compared to untreated controls were observed using a FTIR spectrometer. The loss of the thiol signal and the simultaneous increase of bands originating from oxidized sulfur and nitrogen species indicate that the thiol group of cysteine is modified by reactive oxygen and nitrogen species during DBD treatment. Furthermore, other plasma-induced modifications, such as changes of the amino and carbonyl groups, could be observed. Complementary mass spectrometry measurements confirmed these results. (paper)

  12. Application of four bacterial screening procedures to assess changes in the toxicity of chemicals in mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dutka, B.J.; Kwan, K.K.

    1982-10-01

    Four microbiological acute toxicity screening test methods with Microtox, Spirillum volutans, Pseudomonas fluorescens and Aeromonas hydrophila were compared using solutions of mixed toxic chemicals. Each toxicity screening test appeared to have its own sensitivity pattern and it would appear unwise to try to assess the presence of toxicants in waters or effluents by a single species test. The battery approach, encompassing two or three genera and involving two to four species, is recommended to assess the potential presence of toxicants more thoroughly.

  13. A Chemical Mutagenesis Screen Identifies Mouse Models with ERG Defects.

    Science.gov (United States)

    Charette, Jeremy R; Samuels, Ivy S; Yu, Minzhong; Stone, Lisa; Hicks, Wanda; Shi, Lan Ying; Krebs, Mark P; Naggert, Jürgen K; Nishina, Patsy M; Peachey, Neal S

    2016-01-01

    Mouse models provide important resources for many areas of vision research, pertaining to retinal development, retinal function and retinal disease. The Translational Vision Research Models (TVRM) program uses chemical mutagenesis to generate new mouse models for vision research. In this chapter, we report the identification of mouse models for Grm1, Grk1 and Lrit3. Each of these is characterized by a primary defect in the electroretinogram. All are available without restriction to the research community. PMID:26427409

  14. Chemical modifications and stability of diamond nanoparticles resolved by infrared spectroscopy and Kelvin force microscopy

    Czech Academy of Sciences Publication Activity Database

    Kozak, Halyna; Remeš, Zdeněk; Houdková, Jana; Stehlík, Štěpán; Kromka, Alexander; Rezek, Bohuslav

    2013-01-01

    Roč. 15, č. 4 (2013), "1568-1"-"1568-9". ISSN 1388-0764 R&D Projects: GA ČR GAP108/12/0910; GA ČR GPP205/12/P331; GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : diamond nanoparticles * chemical modification * GAR-FTIR * AFM * KFM * XPS Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.278, year: 2013 http://link.springer.com/article/10.1007%2Fs11051-013-1568-7

  15. Chemical modification of B4C cap layers on Pd/B4C multilayers

    Science.gov (United States)

    Supruangnet, Ratchadaporn; Morawe, Christian; Peffen, Jean-Christophe; Nakajima, Hideki; Rattanasuporn, Surachet; Photongkam, Pat; Jearanaikoon, Nichada; Busayaporn, Wutthikri

    2016-03-01

    Chemical modifications of B4C cap layers on sputtered Pd/B4C multilayer coatings for X-ray optical applications were investigated using X-ray reflectivity, photoemission electron spectroscopy, photoemission electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results indicate oxidation down to probing depths of about 10 nm and strong evidence for the formation of B2O3 crystals at the sample surface, while B4C like compounds are absent.

  16. Anomalous Behaviour of a Protein During Sds/Page Corrected by Chemical Modification of Carboxylic Groups

    OpenAIRE

    Matagne, André; Joris, Bernard; Frère, Jean-Marie

    1991-01-01

    The 29,000-Mr Actinomadura R39 beta-lactamase exhibited a remarkably low electrophoretic mobility on SDS/PAGE, yielding an Mr value almost twice that computed from the corresponding gene sequence. We showed that chemical modification of the carboxylic groups of glutamic acid and aspartic acid residues restored a normal electrophoretic mobility and that the anomalous behaviour of that protein on SDS/PAGE was due to its very large negative charge at neutral pH. We also compared the behaviour of...

  17. Expanding the fragrance chemical space for virtual screening

    OpenAIRE

    Ruddigkeit, Lars; Awale, Mahendra; Reymond, Jean-Louis

    2014-01-01

    The properties of fragrance molecules in the public databases SuperScent and Flavornet were analyzed to define a “fragrance-like” (FL) property range (Heavy Atom Count ≤ 21, only C, H, O, S, (O + S) ≤ 3, Hydrogen Bond Donor ≤ 1) and the corresponding chemical space including FL molecules from PubChem (NIH repository of molecules), ChEMBL (bioactive molecules), ZINC (drug-like molecules), and GDB-13 (all possible organic molecules up to 13 atoms of C, N, O, S, Cl). The FL subsets of these data...

  18. Screening chemicals for thyroid-disrupting activity: A critical comparison of mammalian and amphibian models.

    Science.gov (United States)

    Pickford, Daniel B

    2010-11-01

    In order to minimize risks to human and environmental health, chemical safety assessment programs are being reinforced with toxicity tests more specifically designed for detecting endocrine disrupters. This includes the necessity to detect thyroid-disrupting chemicals, which may operate through a variety of modes of action, and have potential to impair neurological development in humans, with resulting deficits of individual and social potential. Mindful of these concerns, the consensus favors in vivo models for both hazard characterization (testing) and hazard identification (screening) steps, in order to minimize false negatives. Owing to its obligate dependence on thyroid hormones, it has been proposed that amphibian metamorphosis be used as a generalized vertebrate model for thyroid function in screening batteries for detection of thyroid disrupters. However, it seems unlikely that such an assay would ever fully replace in vivo mammalian assays currently being validated for human health risk assessment: in its current form the amphibian metamorphosis screening assay would not provide capacity for reliably detecting other modes of endocrine-disrupting activity. Conversely, several candidate mammalian screening assays appear to offer robust capacity to detect a variety of modes of endocrine-disrupting activity, including thyroid activity. To assess whether omission of an amphibian metamorphosis assay from an in vivo screening battery would generate false negatives, the response of amphibian and mammalian assays to a variety known thyroid disrupters, as reported in peer-reviewed literature or government agency reports, was critically reviewed. Of the chemicals investigated from the literature selected (41), more had been tested in mammalian studies with thyroid-relevant endpoints (32) than in amphibian assays with appropriate windows of exposure and developmental endpoints (27). One chemical (methoxychlor) was reported to exhibit thyroid activity in an appropriate

  19. Expanding the fragrance chemical space for virtual screening.

    Science.gov (United States)

    Ruddigkeit, Lars; Awale, Mahendra; Reymond, Jean-Louis

    2014-01-01

    The properties of fragrance molecules in the public databases SuperScent and Flavornet were analyzed to define a "fragrance-like" (FL) property range (Heavy Atom Count ≤ 21, only C, H, O, S, (O + S) ≤ 3, Hydrogen Bond Donor ≤ 1) and the corresponding chemical space including FL molecules from PubChem (NIH repository of molecules), ChEMBL (bioactive molecules), ZINC (drug-like molecules), and GDB-13 (all possible organic molecules up to 13 atoms of C, N, O, S, Cl). The FL subsets of these databases were classified by MQN (Molecular Quantum Numbers, a set of 42 integer value descriptors of molecular structure) and formatted for fast MQN-similarity searching and interactive exploration of color-coded principal component maps in form of the FL-mapplet and FL-browser applications freely available at http://www.gdb.unibe.ch. MQN-similarity is shown to efficiently recover 15 different fragrance molecule families from the different FL subsets, demonstrating the relevance of the MQN-based tool to explore the fragrance chemical space. PMID:24876890

  20. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    International Nuclear Information System (INIS)

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  1. The Evolution of Adenoviral Vectors through Genetic and Chemical Surface Modifications

    Directory of Open Access Journals (Sweden)

    Cristian Capasso

    2014-02-01

    Full Text Available A long time has passed since the first clinical trial with adenoviral (Ad vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.

  2. The evolution of adenoviral vectors through genetic and chemical surface modifications.

    Science.gov (United States)

    Capasso, Cristian; Garofalo, Mariangela; Hirvinen, Mari; Cerullo, Vincenzo

    2014-02-01

    A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges. PMID:24549268

  3. Chemical modification of carbohydrates in tissue sections may unmask mucin antigens.

    Science.gov (United States)

    Kirkeby, S

    2013-01-01

    Expression of mucins in cells and tissues is of great diagnostic and prognostic importance, and immunohistochemistry frequently is used to detect them. Reports concerning mucin localization in sections sometimes are conflicting, however, partly because immunogenic regions of the mucin molecule may be masked and thus not available for binding to an antibody. We modified carbohydrates in tissue sections chemically to enhance the binding of monoclonal mucin antibodies and of the lectin, Vicia villosa B4, to human tissue. The immunohistochemical localization of MUC1 and the simple mucin-type antigens, Tn and sialyl-Tn, was influenced by oxidation with periodic acid and by β-elimination before incubation. In some epithelial cells the staining was prevented by these procedures while in other cells it was evident. It appears that chemical modification can either destroy some antigen binding sites or unmask cryptic antigen binding sites in the mucin molecule and thereby make them accessible for immunohistochemical detection. PMID:22998734

  4. Chemical modification approaches for improved performance of Na-ion battery electrodes

    Science.gov (United States)

    Byles, Bryan; Clites, Mallory; Pomerantseva, Ekaterina

    2015-08-01

    Na-ion batteries have received considerable attention in recent years but still face performance challenges such as limited cycle lifetime and low capacities at high current rates. In this work, we propose novel combinations of preand post-synthesis treatments to modify known Na-ion battery electrode materials to achieve enhanced electrochemical performance. We work with two model metal oxide materials to demonstrate the effectiveness of the different treatments. First, wet chemical preintercalation is combined with post-synthesis aging, hydrothermal treatment, and annealing of α-V2O5, resulting in enhanced capacity retention in a Na-ion battery system. The hydrothermal treatment resulted in an increased specific capacity of nearly 300 mAh/g. Second, post-synthesis acid leaching is performed on α- MnO2, also resulting in improved electrochemical capacity. The chemical, structural, and morphological changes brought about by the modifications are fully characterized.

  5. Negative-tone block copolymer lithography by in situ surface chemical modification.

    Science.gov (United States)

    Kim, Bong Hoon; Byeon, Kyeong-Jae; Kim, Ju Young; Kim, Jinseung; Jin, Hyeong Min; Cho, Joong-Yeon; Jeong, Seong-Jun; Shin, Jonghwa; Lee, Heon; Kim, Sang Ouk

    2014-10-29

    Negative-tone block copolymer (BCP) lithography based on in situ surface chemical modification is introduced as a highly efficient, versatile self-assembled nanopatterning. BCP blends films consisting of end-functionalized low molecular weight poly(styrene-ran-methyl methacrylate) and polystyrene-block-Poly(methyl methacylate) can produce surface vertical BCP nanodomains on various substrates without prior surface chemical treatment. Simple oxygen plasma treatment is employed to activate surface functional group formation at various substrates, where the end-functionalized polymers can be covalently bonded during the thermal annealing of BCP thin films. The covalently bonded brush layer mediates neutral interfacial condition for vertical BCP nanodomain alignment. This straightforward approach for high aspect ratio, vertical self-assembled nanodomain formation facilitates single step, site-specific BCP nanopatterning widely useful for various substrates. Moreover, this approach is compatible with directed self-assembly approaches to produce device oriented laterally ordered nanopatterns. PMID:24912807

  6. Low energy oxygen ion beam modification of the surface morphology and chemical structure of polyurethane fibers

    International Nuclear Information System (INIS)

    Energetic O+ ions were implanted into polyurethane (PU) fiber filaments, at 60 and 100 keV with doses of 5 x 1014 and 1 x 1015 ions/cm2, to modify the near-surface fiber morphology. The implantations were performed at room temperature and at -197 deg. C, a temperature well below the glass transition temperature for this system. At room temperature, the lower energy implantation heats the fibers primarily near their surface, causing the fiber surface to smoothen and to develop a flattened shape. At the higher energy, the ion beam deposits its energy closer to the fiber core, heating the fiber more uniformly and causing them to re-solidify slowly. This favors a cylindrical equilibrium shape with a smooth fiber surface and no crack lines. The average fiber diameter reduced during 100 keV implantation from 3.1 to 2.3 μm. At -197 deg. C, the ion implantation does not provide enough heat to cause notable physical modifications, but the fibers crack and break during subsequent warming to room temperature. The dose dependence of the crack formation along the fiber intersections is presented. The ion beams further cause near-surface chemical modifications in the fibers, particularly introducing two new chemical functional groups (C-(C=O)-C and C-N-C)

  7. Low energy oxygen ion beam modification of the surface morphology and chemical structure of polyurethane fibers

    Science.gov (United States)

    Wong, K. H.; Zinke-Allmang, M.; Wan, W. K.; Zhang, J. Z.; Hu, P.

    2006-01-01

    Energetic O+ ions were implanted into polyurethane (PU) fiber filaments, at 60 and 100 keV with doses of 5 × 1014 and 1 × 1015 ions/cm2, to modify the near-surface fiber morphology. The implantations were performed at room temperature and at -197 °C, a temperature well below the glass transition temperature for this system. At room temperature, the lower energy implantation heats the fibers primarily near their surface, causing the fiber surface to smoothen and to develop a flattened shape. At the higher energy, the ion beam deposits its energy closer to the fiber core, heating the fiber more uniformly and causing them to re-solidify slowly. This favors a cylindrical equilibrium shape with a smooth fiber surface and no crack lines. The average fiber diameter reduced during 100 keV implantation from 3.1 to 2.3 μm. At -197 °C, the ion implantation does not provide enough heat to cause notable physical modifications, but the fibers crack and break during subsequent warming to room temperature. The dose dependence of the crack formation along the fiber intersections is presented. The ion beams further cause near-surface chemical modifications in the fibers, particularly introducing two new chemical functional groups (C-(Cdbnd O)-C and C-N-C).

  8. Review: Chemical and structural modifications of pulmonary collectins and their functional consequences.

    Science.gov (United States)

    Atochina-Vasserman, Elena N; Beers, Michael F; Gow, Andrew J

    2010-06-01

    The lung is continuously exposed to inhaled pathogens (toxic pollutants, micro-organisms, environmental antigens, allergens) from the external environment. In the broncho-alveolar space, the critical balance between a measured protective response against harmful pathogens and an inappropriate inflammatory response to harmless particles is discerned by the innate pulmonary immune system. Among its many components, the surfactant proteins and specifically the pulmonary collectins (surfactant proteins A [SP-A] and D [SP-D]) appear to provide important contributions to the modulation of host defense and inflammation in the lung. Many studies have shown that multimerization of SP-A and SP-D are important for efficient local host defense including neutralization and opsonization of influenza A virus, binding Pneumocystis murina and inhibition of LPS-induced inflammatory cell responses. These observations strongly imply that oligomerization of collectins is a critical feature of its function. However, during the inflammatory state, despite normal pool sizes, chemical modification of collectins can result in alteration of their structure and function. Both pulmonary collectins can be altered through proteolytic inactivation, nitration, S-nitrosylation, oxidation and/or crosslinking as a consequence of the inflammatory milieu facilitated by cytokines, nitric oxide, proteases, and other chemical mediators released by inflammatory cells. Thus, this review will summarize recent developments in our understanding of the relationship between post-translational assembly of collectins and their modification by inflammation as an important molecular switch for the regulation of local innate host defense. PMID:20423921

  9. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10−6 S cm−1 for carboxymethyl chitosan at room temperature and 3.7 × 10−4 S cm−1 at 60 °C

  10. Recent Progress in Chemical Modifications of Chlorophylls and Bacteriochlorophylls for the Applications in Photodynamic Therapy.

    Science.gov (United States)

    Staron, Jakub; Boron, Bożena; Karcz, Dariusz; Szczygieł, Małgorzata; Fiedor, Leszek

    2015-01-01

    Since photodynamic therapy emerged as a promising cancer treatment, the development of photosensitizers has gained great interest. In this context, the photosynthetic pigments, chlorophylls and bacteriochlorophylls, as excellent natural photosensitizers, attracted much attention. In effect, several (bacterio) chlorophyll-based phototherapeutic agents have been developed and (or are about to) enter the clinics. The aim of this review article is to give a survey of the advances in the synthetic chemistry of these pigments which have been made over the last decade, and which are pertinent to the application of their derivatives as photosensitizers for photodynamic therapy (PDT). The review focuses on the synthetic strategies undertaken to obtain novel derivatives of (bacterio)chlorophylls with both enhanced photosensitizing and tumorlocalizing properties, and also improved photo- and chemical stability. These include modifications of the C- 17-ester moiety, the isocyclic ring, the central binding pocket, and the derivatization of peripheral functionalities at the C-3 and C-7 positions with carbohydrate-, peptide-, and nanoparticle moieties or other residues. The effects of these modifications on essential features of the pigments are discussed, such as the efficiency of reactive oxygen species generation, photostability, phototoxicity and interactions with living organisms. The review is divided into several sections. In the first part, the principles of PDT and photosensitizer action are briefly described. Then the relevant photophysical features of (bacterio)chlorophylls and earlier approaches to their modification are summarized. Next, a more detailed overview of the progress in synthetic methods is given, followed by a discussion of the effects of these modifications on the photophysics of the pigments and on their biological activity. PMID:26282940

  11. Chemical genetic screening of KRAS-based synthetic lethal inhibitors for pancreatic cancer

    OpenAIRE

    Ji, Zhenyu; Mei, Fang C; Lory, Pedro L.; Gilbertson, Scott R.; Chen, Yijun; Cheng, Xiaodong

    2009-01-01

    Pancreatic cancer is one of the deadliest diseases largely due to difficulty in early diagnosis and the lack of effective treatments. KRAS is mutated in more than 90% of pancreatic cancer patients, and oncogenic KRAS contributes to pancreatic cancer tumorigenesis and progression. In this report, using an oncogenic KRASV12-based pancreatic cancer cell model, we developed a chemical genetic screen to identify small chemical inhibitors that selectively target pancreatic cancer cells with gain-of...

  12. Screening of perfluorinated chemicals (PFCs) in various aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanjuan, Maria; Meyer, Johan; Damasio, Joana; Faria, Melissa; Barata, Carlos; Lacorte, Silvia [IDAEA-CSIC, Department of Environmental Chemistry, Barcelona (Spain)

    2010-10-15

    The aim of this study was to evaluate the occurrence of five perfluorinated chemicals (perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorobutane sulfonic acid) in aquatic organisms dwelling in either freshwater or marine ecosystems. Organisms selected were insect larvae, oysters, zebra mussels, sardines, and crabs, which are widespread in the environment and may represent potential bioindicators of exposure to PFCs. The study comprises the optimization of a solid-liquid extraction method and determination by high-performance liquid chromatography coupled to tandem mass spectrometry. Using spiked zebra mussels at 10 and 100 ng/g level, the method developed provided recoveries of 96% and 122%, and 82% to 116%, respectively, and a limit of detection between 0.07 and 0.22 ng/g ww. The method was highly sensitivity and robust to determine PFC compounds in a wide array of biological matrices, and no matrix interferents nor blank contamination was observed. Among organisms studied, none of the bivalves accumulated PFCs, and contrarily, insect larvae, followed by fish and crabs contained levels ranging from 0.23 to 144 ng/g ww of PFOS, from 0.14 to 4.3 ng/g ww of PFOA, and traces of PFNA and PFHxS. Assessment of the potential use of aquatic organisms for biomonitoring studies is further discussed. (orig.)

  13. Recommendations for Developing Alternative Test Methods for Screening and Prioritization of Chemicals for Developmental Neurotoxicity

    Science.gov (United States)

    Developmental neurotoxicity testing (DNT) is perceived by many stakeholders to be an area in critical need of alternative methods to current animal testing protocols and gUidelines. An immediate goal is to develop test methods that are capable of screening large numbers of chemic...

  14. Evaluation of the chemical modifications in petroleum asphalt cement with the addition of polypropylene

    International Nuclear Information System (INIS)

    Studies show that the common distress mode in the Brazilian highway network are fatigue cracks and plastic deformation, which are associated with the type of material used in the pavement layers, structural project, excessive traffic load and weathering. To minimize these defects, research on modifiers such as polymers, added to asphalt binders have been developed to provide physical, chemical and rheological improvement. This paper investigates chemical modifications of the binders with the addition of PP by FTIR, NMR and DSC. FTIR spectra of pure and modified binder showed no differences in absorption. NMR analysis showed no strong chemical bonds between the binder and PP. DSC curve of PP showed a melting temperature of 160 deg C (ΔH = 94J/g) and the pure binder presented an endothermic transition between 20 and 40 deg C (ΔH = 2J/g). In the DSC curves of mixtures, these transitions are not significant, indicating possible interactions between asphalt binder and PP. (author)

  15. Physical and chemical basics of modification of poly(vinyl chloride) by means of polyisocyanate

    Science.gov (United States)

    Islamov, Anvar; Fakhrutdinova, Venera; Abdrakhmanova, Lyailya

    2016-01-01

    This research presents data relating to polyvinyl chloride (PVC) modification by means of reactive oligomer and measures technological, physical and mechanical properties of the modified composites. Polyisocyanate (PIC) has been chosen as the modifying reactive oligomer. It has been shown that insertion of the oligomer has a double effect on PVC. Primarily, PIC produces a plasticizing effect on PVC and in particular leads to an increase in thermal stability and melt flow index at the stage of processing. In addition, the molded PVC composites possess higher strength properties and lower deformability when exposed to temperature because of chemical transformations of PIC in polymer matrix and, as the result, the formation of cross-linked systems takes place. In this case, semi-interpenetrating structures are formed based on cross-linked products of PIC chemical transformations homogeneously distributed in the PVC matrix. It has been determined by means of IR-spectroscopy that the basic products of PIC curing are compounds with urea and biuret groups which leads to modifying effect on PVC especially: increase in strength, thermal and mechanical properties, and chemical resistance.

  16. Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment

    International Nuclear Information System (INIS)

    A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 ± 3 deg. to 30 ± 4 deg. treated at 100 deg. C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 deg. C for 3 h. Hydrophilic groups such as carbonyl (C=O) and hydroxyl (-OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K0.27MnO2.0.54H2O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.

  17. Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment

    Science.gov (United States)

    Wang, Shifang; Li, Juan; Suo, Jinping; Luo, Tianzhi

    2010-01-01

    A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 ± 3° to 30 ± 4° treated at 100 °C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 °C for 3 h. Hydrophilic groups such as carbonyl (C dbnd O) and hydroxyl ( sbnd OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K 0.27MnO 2·0.54H 2O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.

  18. Screening for Transglutaminase-Catalyzed Modifications by Peptide Mass Finger Printing Using Multipoint Recalibration on Recognized Peaks for High Mass Accuracy

    OpenAIRE

    Emanuelsson, Cecilia Sundby; Boros, Sandor; Hjernoe, Karin; Boelens, Wilbert C.; Hojrup, Peter

    2005-01-01

    Detection of posttranslational modifications is expected to be one of the major future experimental challenges for proteomics. We describe herein a mass spectrometric procedure to screen for protein modifications by peptide mass fingerprinting that is based on post-data acquisition improvement of the mass accuracy by exporting the peptide mass values into analytical software for multipoint recalibration on recognized peaks. Subsequently, the calibrated peak mass data set is used in searching ...

  19. Chemical modifications induced in bisphenol A polycarbonate by swift heavy ions

    International Nuclear Information System (INIS)

    The chemical modifications in bisphenol A polycarbonate induced by swift heavy ion irradiation are analyzed in situ by means of Fourier transform infrared (FTIR) spectroscopy. Four beams (13C, 20Ne, 48Ca, 129Xe) with energy of a few MeV/amu have been used. Irradiations were performed under vacuum with electronic stopping power in the range from 1.6 to 86 MeV mg-1 cm2. Deposited doses are less than or equal to 1 MGy. The FTIR spectra obtained after the irradiation exhibit an overall reduction of the intensities of the virgin PC typical vibration bands and the appearance of new bands. The analysis of the destruction and the new vibration bands points out that the energy deposition mechanisms are quite different depending on electronic stopping power

  20. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    International Nuclear Information System (INIS)

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to ∼3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of ∼1 g/m2/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals

  1. Basic and Reactive Dyes Sorption Enhancement of Rice Hull through Chemical Modification

    Directory of Open Access Journals (Sweden)

    Siew-Teng Ong

    2010-01-01

    Full Text Available Problem statement: Many studies have been conducted on the removal of either anionic or cationic dyes. However, as a mixture of dyes does commonly exist together in wastewater, therefore it is of great interest to have a material that can remove both types of dyes. Approach: To prepare an inexpensive and efficient sorbent by chemically modifying rice hull for the removal of both basic and reactive dyes. Different chemical modifications were performed on rice hull and a comparison study on the uptake of dyes was carried out. Optimization study was carried out on most promising modified rice hull. Surface morphology of modified rice hull was examined and the functional groups present were determined using FTIR. Results: From the results, it appeared that by using EDA modified rice hull, an appreciable amount of both dyes could be sorbed. Varying the EDA/NRH ratios and heating temperatures affected the uptake of BB3 and RO16. The investigated sorbents were non-porous materials, due to the absence of pores and cavities. Sorption-desorption study showed that a complete recovery of BB3 can be obtained using high concentrations of H2SO4 and HCl but the desorption experiments of RO16 using NH3 and NaOH were not successful. Conclusion: The modification of rice hull with EDA under the optimum conditions (in a ratio of 1.00 g of NRH to 0.02 mole of EDA in a well stirred water bath at 80°C for 2 h resulted in the formation of a sorbent (MRH that could be used successfully to remove Both Basic (BB3 and Reactive dyes (RO16.

  2. Reevaluation of 1999 Health-Based Environmental Screening Levels (HBESLs) for Chemical Warfare Agents

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Annetta Paule [ORNL; Dolislager, Fredrick G [ORNL

    2007-05-01

    This report evaluates whether new information and updated scientific models require that changes be made to previously published health-based environmental soil screening levels (HBESLs) and associated environmental fate/breakdown information for chemical warfare agents (USACHPPM 1999). Specifically, the present evaluation describes and compares changes that have been made since 1999 to U.S. Environmental Protection Agency (EPA) risk assessment models, EPA exposure assumptions, as well as to specific chemical warfare agent parameters (e.g., toxicity values). Comparison was made between screening value estimates recalculated with current assumptions and earlier health-based environmental screening levels presented in 1999. The chemical warfare agents evaluated include the G-series and VX nerve agents and the vesicants sulfur mustard (agent HD) and Lewisite (agent L). In addition, key degradation products of these agents were also evaluated. Study findings indicate that the combined effect of updates and/or changes to EPA risk models, EPA default exposure parameters, and certain chemical warfare agent toxicity criteria does not result in significant alteration to the USACHPPM (1999) health-based environmental screening level estimates for the G-series and VX nerve agents or the vesicant agents HD and L. Given that EPA's final position on separate Tier 1 screening levels for indoor and outdoor worker screening assessments has not yet been released as of May 2007, the study authors find that the 1999 screening level estimates (see Table ES.1) are still appropriate and protective for screening residential as well as nonresidential sites. As such, risk management decisions made on the basis of USACHPPM (1999) recommendations do not require reconsideration. While the 1999 HBESL values are appropriate for continued use as general screening criteria, the updated '2007' estimates (presented below) that follow the new EPA protocols currently under development

  3. Mining Natural-Products Screening Data for Target-Class Chemical Motifs.

    Science.gov (United States)

    Coma, Isabel; Bandyopadhyay, Deepak; Diez, Emilio; Ruiz, Emilio Alvarez; de los Frailes, Maria Teresa; Colmenarejo, Gonzalo

    2014-06-01

    In this article, we describe two complementary data-mining approaches used to characterize the GlaxoSmithKline (GSK) natural-products set (NPS) based on information from the high-throughput screening (HTS) databases. Both methods rely on the aggregation and analysis of a large set of single-shot screening data for a number of biological assays, with the goal to reveal natural-product chemical motifs. One of them is an established method based on the data-driven clustering of compounds using a wide range of descriptors,(1)whereas the other method partitions and hierarchically clusters the data to identify chemical cores.(2,3)Both methods successfully find structural scaffolds that significantly hit different groups of discrete drug targets, compared with their relative frequency of demonstrating inhibitory activity in a large number of screens. We describe how these methods can be applied to unveil hidden information in large single-shot HTS data sets. Applied prospectively, this type of information could contribute to the design of new chemical templates for drug-target classes and guide synthetic efforts for lead optimization of tractable hits that are based on natural-product chemical motifs. Relevant findings for 7TM receptors (7TMRs), ion channels, class-7 transferases (protein kinases), hydrolases, and oxidoreductases will be discussed. PMID:24518065

  4. Polymer Thin Films and Surface Modification by Chemical Vapor Deposition: Recent Progress.

    Science.gov (United States)

    Chen, Nan; Kim, Do Han; Kovacik, Peter; Sojoudi, Hossein; Wang, Minghui; Gleason, Karen K

    2016-06-01

    Chemical vapor deposition (CVD) polymerization uses vapor phase monomeric reactants to synthesize organic thin films directly on substrates. These thin films are desirable as conformal surface engineering materials and functional layers. The facile tunability of the films and their surface properties allow successful integration of CVD thin films into prototypes for applications in surface modification, device fabrication, and protective films. CVD polymers also bridge microfabrication technology with chemical and biological systems. Robust coatings can be achieved via CVD methods as antifouling, anti-icing, and antihydrate surfaces, as well as stimuli-responsive or biocompatible polymers and novel nanostructures. Use of low-energy input, modest vacuum, and room-temperature substrates renders CVD polymerization compatible with thermally sensitive substrates and devices. Compared with solution-based methods, CVD is particularly useful for insoluble materials, such as electrically conductive polymers and controllably crosslinked networks, and has the potential to reduce environmental, health, and safety impacts associated with solvents. This review discusses the relevant background and selected applications of recent advances by two methods that display and use the high retention of the organic functional groups from their respective monomers, initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization. PMID:27276550

  5. Laser structuring and modification of polymer surfaces for chemical and medical microcomponents

    Science.gov (United States)

    Bremus-Koebberling, Elke A.; Meier-Mahlo, Ulrike; Henkenjohann, Oliver; Beckemper, Stefan; Gillner, Arnold

    2004-10-01

    In the production of micro devices the surface properties become more and more important for chemistry, biotechnology and medical technology with respect to wetting properties and chemical composition of the surface. Typical applications are implants as well as micro fluidic systems or miniaturized devices for DNA- and proteome analysis (biochips). In this paper newly designed laser technologies based on UV-laser treatment of polymers for surface processing are described to manipulate wetting properties, cell growth and immobilization of functional molecules with high spatial resolution. Depending on the processing parameters and used polymers either hydrophobic or hydrophilic properties can be enhanced (i.e. laser induced lotus/anti-lotus effect). Enhanced roughness and changes of the chemical composition have also influence on cell growth on polymer surfaces. Thus guiding aids for cells e.g. on medical implants can be generated by laser irradiation. Due to photo oxidation processes while UV-treatment in air, functional groups are created that are suited for covalent bonding of (bio)moelcules onto the surfaces. A second process for the locally selective immobilization of anchor molecules based on azide functionalized templates suitable for further modification steps is presented by means of irradiating polymers under solutions of these linkers.

  6. A chemical screen for biological small molecule–RNA conjugates reveals CoA-linked RNA

    OpenAIRE

    Kowtoniuk, Walter Eugene; Shen, Yinghua; Heemstra, Jennifer M.; Agarwal, Isha; Liu, David Ruchien

    2009-01-01

    Compared with the rapidly expanding set of known biological roles for RNA, the known chemical diversity of cellular RNA has remained limited primarily to canonical RNA, 3'-aminoacylated tRNAs, nucleobase-modified RNAs, and 5'-capped mRNAs in eukaryotes. We developed two methods to detect in a broad manner chemically labile cellular small molecule-RNA conjugates. The methods were validated by the detection of known tRNA and rRNA modifications. The first method analyzes small molecules cleaved ...

  7. Influence of screening length modification on the scattering cross section in LEIS

    Energy Technology Data Exchange (ETDEWEB)

    Primetzhofer, D.; Markin, S.N. [Institut fuer Experimentalphysik, Abt., Atom- und Oberflaechenphysik, Johannes Kepler Universitaet, Altenbergerstr. 69, A-4040 Linz (Austria); Efrosinin, D.V. [Institut fuer Stochastik, Johannes Kepler Universitaet, Altenbergerstr. 69, A-4040 Linz (Austria); Steinbauer, E.; Andrzejewski, R. [Institut fuer Experimentalphysik, Abt., Atom- und Oberflaechenphysik, Johannes Kepler Universitaet, Altenbergerstr. 69, A-4040 Linz (Austria); Bauer, P., E-mail: peter.bauer@jku.at [Institut fuer Experimentalphysik, Abt., Atom- und Oberflaechenphysik, Johannes Kepler Universitaet, Altenbergerstr. 69, A-4040 Linz (Austria)

    2011-06-01

    Scattering cross sections for He{sup +} ions in the energy range of 100 eV to 100 keV and for Al, Cu and Au target atoms were calculated. Employing the Thomas-Fermi-Moliere model the potential strength was tuned by variation of the screening length. The resulting change in scattering cross section was analyzed and the absolute value is compared to cross sections obtained from potentials commonly employed in the medium-energy ion scattering (MEIS) regime. A large influence on the scattering cross section is observed for targets with large atomic number in the very low energy range. For instance, the scattering cross section for 100 eV He{sup +}-ions scattered from Au by 129 deg. changes by a factor of 2.5 between different potential strengths claimed in the literature to be suitable for low-energy ion scattering (LEIS) energies. An experiment to determine electronic energy loss of very slow ions in metals is presented. It shows how uncertainties in the scattering potential strength can lead to systematically wrong results, although perfect agreement between experimental data and simulations is found. The impact of these results on quantitative surface structure and composition analysis is discussed.

  8. Impact of Sulfuric Acid Treatment of Halloysite on Physico-Chemic Property Modification

    Directory of Open Access Journals (Sweden)

    Tayser Sumer Gaaz

    2016-07-01

    Full Text Available Halloysite (HNT is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1, 3 h (H3, 8 h (H8, and 21 h (H21. The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR. The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO6 octahedral layers and induces the disintegration of SiO4 tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO6 octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO4. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites.

  9. Chemical modifications accompanying blueschist facies metamorphism of Franciscan conglomerates, Diablo Range, California

    Science.gov (United States)

    Moore, Diane E.; Liou, J.G.; King, B.-S.

    1981-01-01

    As part of an investigation of blueschist-facies mineral parageneses in pebbles and matrix of some Franciscan metaconglomerates of the Diablo Range, California, textural and major-element chemical analyses were conducted on a number of igneous pebbles that comprise a range of rock types from granite and dacite to gabbro and basalt. Compositions of the igneous pebbles differ significantly from common igneous rocks, particularly with respect to Ca, K, Na, Si and H2O. The SiO2 and H2O contents are characteristically high and the K2O contents low. The CaO and Na2O contents may be relatively enriched or reduced in different pebbles. The igneous pebbles show little evidence of alteration prior to their incorporation into the Franciscan conglomerates, and the chemical modifications are considered to have been produced during metamorphism of the conglomerates to (lawsonite + albite + aragonite ?? jadeite)-bearing assemblages. The observed variations in the pebbles are shown to be functions of: (1) bulk chemistry; (2) the igneous mineral assemblage; (3) the stable metamorphic mineral assemblage; and (4) the composition of pore fluids in the conglomerates. The relative proportions of Mg and Fe in most of the pebbles apparently have been unaffected by the metamorphism, and these parameters, along with other textural and chemical factors, were used to determine the petrogenetic affinities of the igneous pebbles. The plutonic and most of the volcanic pebbles correspond to calc-alkaline rock series, whereas a few volcanic pebbles show apparent Fe-enrichment characteristic of tholeiitic rocks. A continental margin arc-batholith complex would be the best source for these igneous detrital assemblages. Conglomerates in local areas differ in igneous lithologies from conglomerates in other areas and probably differ somewhat in age, perhaps reflecting varying degrees of unroofing of such a complex during deposition of Franciscan sediments. ?? 1981.

  10. A chemical screen identifies class A G-protein coupled receptors as regulators of cilia

    OpenAIRE

    Avasthi, Prachee; Marley, Aaron; Lin, Henry; Gregori-Puigjane, Elisabet; Shoichet, Brian K.; von Zastrow, Mark; Marshall, Wallace F.

    2012-01-01

    Normal cilia length and motility are critical for proper cellular function. Prior studies of the regulation of ciliary structure and length have primarily focused on the intraflagellar transport machinery and motor proteins required for ciliary assembly and disassembly. However, several mutants with abnormal length flagella highlight the importance of signaling proteins as well. In this study, an unbiased chemical screen was performed to uncover signaling pathways that are critical for ciliog...

  11. Surface modification of poly(ethylene terephthalate) fabric via photo-chemical reaction of dimethylaminopropyl methacrylamide

    International Nuclear Information System (INIS)

    Highlights: ► PET fibers were UV-grafted with dimethylaminopropyl methacrylamide (DMAPMA). ► The graft yield could be controlled by irradiation time and monomer concentration. ► The tertiary amino groups of the grafted PDMAPMA were quaternized with alkyl bromides. ► The quaternization reaction had a high yield, when bromides with shorter alkyl chain were employed. ► The antimicrobial effect was highest, when samples were quaternized with 1-bromohexane and 1-bromooctane. - Abstract: Photo-chemical reactions and surface modifications of poly(ethylene terephthalate) (PET) fabrics with the monomer dimethylaminopropyl methacrylamide (DMAPMA) and benzophenone (BP) as photo-initiator using a broad-band UV lamp source were investigated. The tertiary amino groups of the grafted poly(DMAPMA) chains were subsequently quaternized with alkyl bromides of different chain lengths to establish antibacterial activity. The surface composition, structure and morphology of modified PET fabrics were characterized by Fourier transform infrared spectroscopy (FTIR/ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). To evaluate the amount of quaternary and tertiary ammonium groups on the modified surface, PET was dyed with an acid dye which binds to the ammonium groups. Therefore, the color depth is a direct indicator of the amount of ammonium groups. The resulting antibacterial activity of the modified PET fabrics was tested with Escherichia coli. The results of all experiments show that a photochemical modification of PET is possible using DMAPMA, benzophenone and UV light. Also, the quaternization of tertiary amino groups as well as the increase in antibacterial activity of the modified PET by the established quaternary ammonium groups were successful.

  12. Natural products-prompted chemical biology: phenotypic screening and a new platform for target identification.

    Science.gov (United States)

    Kakeya, Hideaki

    2016-05-01

    Covering: 1993 to 2016The exploitation of small molecules from natural sources, such as microbial metabolites, has contributed to the discovery of not only new drugs but also new research tools for chemical biology. My research team has discovered several novel bioactive small molecules using in vivo cell-based phenotypic screening, and has investigated their modes of action using chemical genetics and chemical genomics. This highlight focuses on our recent discoveries and chemical genetics approaches for bioactive microbial metabolites that target cancer cells, the cancer microenvironment and cell membrane signalling. In addition, the development of two new platforms, 5-sulfonyl tetrazole-based and thiourea-modified amphiphilic lipid-based probe technologies, to identify the cellular targets of these molecules is also discussed. PMID:26883503

  13. Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, J.M.; Webb, S.W.

    1997-06-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  14. Protein associated with L-lactate transport in rabbit erythrocytes: chemical modification, labeling, and purification

    International Nuclear Information System (INIS)

    The object of the present investigation was to identify, characterize, and isolate the protein responsible for mediating specific monocarboxylate transport across the rabbit erythrocyte membrane. Chemical modification of the transport protein indicates that transporter function probably involves lysine, cysteine, and arginyl resides at or near the active site. Amino-reactive modifiers, including 4,4'-diisothiocyano-2,2'-dihydrostilbene disulfonate (H2DIDS), isobutylcarbonyllactyl anhydride (iBCLA), reductive methylation, and a variety of sulfo-succinimidyl active esters were used in direct and indirect labeling experiments designed to identify the transport protein. Tritiated H2DIDS and active esters label a 40-55 kDalton (B and R) polypeptide under conditions where lactate transport is selectively inhibited in a concentration dependent manner. Also, iBCLA prevents the labeling of B and R by (3H)H2DIDS; sulfosuccinimidyl active esters prevent (3H)H2DIDS and other active esters from labeling the protein. These findings suggest that B and R is associated with lactate transport

  15. Chemical modification of polycarbonate induced by 1.4 GeV Ar ions

    International Nuclear Information System (INIS)

    Polycarbonate foil stacks were irradiated with 1.4 GeV Ar ions at room temperature. The induced modifications in chemical structure were studied by Fourier transform infrared (FTIR) and ultraviolet/visible absorption (UV/VIS) spectroscopies. FTIR measurements reveal that material degradation through bond breaking are the main effects. Significant reduction in absorbance of the typical infrared bands is observed at energy densities higher than 8x1022 eV/cm3. Alkyne end groups are produced by the irradiations and the electronic energy loss threshold for production of the alkyne end group is found to be below 0.61 keV/nm. UV/VIS measurements indicate a shifting of the absorption edge from ultraviolet towards visible and a strong increase of absorbance in the ultraviolet and visible regions. The irradiation induced changes in absorbance at wavelengths of 380, 450 and 500 nm follow roughly linear relationship with fluence and scale rather good with the square of electronic energy loss. The results are briefly discussed

  16. Surface modification, heterojunctions, and other structures: composing metal oxide nanocrystals for chemical sensors

    Science.gov (United States)

    Epifani, Mauro; Comini, Elisabetta; Díaz, Raül; Genç, Aziz; Arbiol, Jordi; Andreu, Teresa; Siciliano, Pietro; Faglia, Guido; Morante, Joan R.

    2014-03-01

    The modification of the surface reception properties of nanocrystalline structures is of great interest in environmental, catalysis and energy related applications. For instance, an oxide surface covered with a layer of another oxide opens the possibility of creating the nanosized counterparts of bulk catalytic systems. A relevant example is the TiO2-WO3, which is an active catalysts in a broad range of reactions. The chemical synthesis of the colloidal, nanocrystalline version of such system will first be exposed, by coupling suitable sol-gel chemistry with solvothermal processing. Then, the range of obtained structures will be discussed, ranging from WOx-surface modified TiO2 to TiO2-WO3 heterojunctions. The complex structural evolution of the materials will be discussed, depending on the W concentration. A summary of the acetone sensing properties of these systems will be shown. In particular, the surface activation of the otherwise almost inactive pure TiO2 by surface deposition of WO3-like layers will be highlighted. Addition of the smallest W concentration boosted the sensor response to values comparable to those of pure WO3, ranging over 2-3 orders of magnitude of conductance variation in presence of ethanol or acetone gases. Simple analysis of the sensing data will evidence that the combination of such nanocrystalline oxides results in catalytic activation effects, with exactly opposite trend, with respect to pure TiO2, of the activation energies and best responses.

  17. Advances in identification and validation of protein targets of natural products without chemical modification.

    Science.gov (United States)

    Chang, J; Kim, Y; Kwon, H J

    2016-05-01

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates. PMID:26964663

  18. CHEMICAL MODIFICATION OF CHITOSAN AND FORMULATION OF ITS NANOPARTICLES FOR PROTEIN DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Swastika Karwani

    2013-06-01

    Full Text Available The most common route of administration of proteins has been parenterals using invasive ways of administration but this route has many side effects like lack of patient compliance, cost, high drug levels etc. The development of an oral dosage form that improves the absorption of protein drugs is the most desirable formulation but one of the greatest challenges in the pharmaceutical field. The major barriers in developing oral formulations for peptides and proteins include poor intrinsic permeability, luminal and cellular enzymatic degradation and chemical and conformational stability. A number of innovative oral drug delivery approaches have been recently developed, including the drug entrapment within polymer nanoparticles. The various advantages of oral delivery of proteins are like ease of administration, can be used as cure in primary stages of disease eg. Thrombosis, no internal bleeding, patient compliance and economical Our formulation development approach is to develop the formulations targeted to bypass the stomach with an aim to release the drug in the intestine; with extended residence time in the GIT and for this polymer like Chitosan is used. To improve the lipophillic property of chitosan, to modify biodegradation pattern of polymer and for oral delivery of proteins (Insulin and serratiopeptidase, modification is done using lactic-acid and polyethyleneglycol by copolymerization.

  19. [Embryonic stem cell test in screening of medicine and other chemicals].

    Science.gov (United States)

    Zhao, Qing; Xu, Jinsen

    2005-02-01

    The technique of embryonic stem cell test (EST) has been developed and used in vitro to screen new medicines and other chemicals. According to toxicity, such medicines and chemicals can be classified as: non-toxic, weak toxic and/or strong toxic. EST shows merits such as no requirement of the sacrifice of pregnant animals, no side-effects on human or animals for candidate medicines and chemicals, higher sensitivity of embryonic stem cells when compared with the sensitivity of ordinary tissues of adult samples in toxicologic researches, higher accuracy when combined with computing techniques, and possible quantitation based on techniques of molecular biology. Advances in utility of EST technique were reviewed and the prospect of technique was also discussed in this paper. PMID:15762145

  20. Developing, Applying, and Evaluating Models for Rapid Screening of Chemical Exposures

    DEFF Research Database (Denmark)

    Arnot, J.; Shin, H.; Ernstoff, Alexi;

    2015-01-01

    limited exposure data there is limited information on chemical use patterns and production and emission quantities. These data gaps require the application of mass balance, statistical and quantitative structure-activity relationship (QSAR) models to predict exposure and exposure potential for humans and...... provides an introduction to underlying principles of some models used for exposure- and risk-based HTS for chemical prioritization for human health, including tools used in the ExpoDat project (USEtox, RAIDAR, CalTox) and other initiatives (SHEDS-HT). Case study examples of HTS include(i) model...... applications for screening thousands of chemicals for far-field human exposure, (ii) comparisons of far-field and near-field human exposure model results, and (iii) model evaluations with biomonitoring and monitoring data. These illustrations show how the current tools can be used in a regulatory setting and...

  1. Screening values for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals that Lack Established Occupational Exposure Limits

    Energy Technology Data Exchange (ETDEWEB)

    Poet, Torka S.; Mast, Terryl J.; Huckaby, James L.

    2006-02-06

    Over 1,500 different volatile chemicals have been reported in the headspaces of tanks used to store high-level radioactive waste at the U.S. Department of Energy's Hanford Site. Concern about potential exposure of tank farm workers to these chemicals has prompted efforts to evaluate their toxicity, identify chemicals that pose the greatest risk, and incorporate that information into the tank farms industrial hygiene worker protection program. Established occupation exposure limits for individual chemicals and petroleum hydrocarbon mixtures have been used elsewhere to evaluate about 900 of the chemicals. In this report headspace concentration screening values were established for the remaining 600 chemicals using available industrial hygiene and toxicological data. Screening values were intended to be more than an order of magnitude below concentrations that may cause adverse health effects in workers, assuming a 40-hour/week occupational exposure. Screening values were compared to the maximum reported headspace concentrations.

  2. An in vitro screening method to evaluate chemicals as potential chemotherapeutants to control Aeromonas hydrophila infection in channel catfish

    Science.gov (United States)

    Using catfish gill cells G1B and four chemicals (hydrogen peroxide, sodium chloride, potassium permanganate, and D-mannose), the feasibility of using an in vitro screening method to identify potential effective chemotherapeutants was evaluated in this study. In vitro screening results revealed that,...

  3. Evaluating the Impact of Uncertainties in Clearance and Exposure When Prioritizing Chemicals Screened in High-Throughput Assays

    Science.gov (United States)

    The toxicity-testing paradigm has evolved to include high-throughput (HT) methods for addressing the increasing need to screen hundreds to thousands of chemicals rapidly. Approaches that involve in vitro screening assays, in silico predictions of exposure concentrations, and phar...

  4. A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S.

    Science.gov (United States)

    Shiver, Anthony L; Osadnik, Hendrik; Kritikos, George; Li, Bo; Krogan, Nevan; Typas, Athanasios; Gross, Carol A

    2016-06-01

    Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens. PMID:27355376

  5. A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S.

    Directory of Open Access Journals (Sweden)

    Anthony L Shiver

    2016-06-01

    Full Text Available Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens.

  6. Chemical modification of polyvinyl chloride and silicone elastomer in inhibiting adhesion of Aeromonas hydrophila.

    Science.gov (United States)

    Kregiel, Dorota; Berlowska, Joanna; Mizerska, Urszula; Fortuniak, Witold; Chojnowski, Julian; Ambroziak, Wojciech

    2013-07-01

    Disease-causing bacteria of the genus Aeromonas are able to adhere to pipe materials, colonizing the surfaces and forming biofilms in water distribution systems. The aim of our research was to study how the modification of materials used commonly in the water industry can reduce bacterial cell attachment. Polyvinyl chloride and silicone elastomer surfaces were activated and modified with reactive organo-silanes by coupling or co-crosslinking silanes with the native material. Both the native and modified surfaces were tested using the bacterial strain Aeromonas hydrophila, which was isolated from the Polish water distribution system. The surface tension of both the native and modified surfaces was measured. To determine cell viability and bacterial adhesion two methods were used, namely plate count and luminometry. Results were expressed in colony-forming units (c.f.u.) and in relative light units (RLU) per cm(2). Almost all the chemically modified surfaces exhibited higher anti-adhesive and anti-microbial properties in comparison to the native surfaces. Among the modifying agents examined, poly[dimethylsiloxane-co-(N,N-dimethyl-N-n-octylammoniopropyl chloride) methylsiloxane)] terminated with hydroxydimethylsilyl groups (20 %) in silicone elastomer gave the most desirable results. The surface tension of this modifier, was comparable to the non-polar native surface. However, almost half of this value was due to the result of polar forces. In this case, in an adhesion analysis, only 1 RLU cm(-2) and less than 1 c.f.u. cm(-2) were noted. For the native gumosil, the results were 9,375 RLU cm(-2) and 2.5 × 10(8) c.f.u. cm(-2), respectively. The antibacterial activity of active organo-silanes was associated only with the carrier surface because no antibacterial compounds were detected in liquid culture media, in concentrations that were able to inhibit cell growth. PMID:23397109

  7. Characterization and assessment of chemical modifications of metal-bearing sludges arising from unsuitable disposal

    International Nuclear Information System (INIS)

    Highlights: ► Ettringite–gypsum sludges were characterized using sequential extraction. ► The dissolution of ettringite was modeled using the program PHREEQC. ► U, Ca, SO42− and F are present in the water-soluble fraction of the samples. ► Due to unsuitable disposal one sample underwent modifications to its structure. ► This finding was confirmed by the modeling of ettringite dissolution. - Abstract: Ettringite–gypsum sludge, formed by neutralization of acid mine drainage with lime, has been stored temporarily in the open pit of a uranium mine that floods periodically. The present study characterized samples of this sludge, named according to the time of placement as Fresh, Intermediate, and Old. Standard leaching and sequential extraction procedures assessed the associations and stabilities of U, Zn, Fe, Mn, and other contaminants in the solid phases. Corresponding mineralogical transformations associated with sludge weathering were modeled using PHREEQC. The main crystalline phases were ettringite, gypsum and calcite; the minor constituents were fluorite and gibbsite. This mineral assemblage could be attributed to the incongruent dissolution of ettringite to form gibbsite, calcite, and gypsum. Sequential extractions indicated high contents of U, Ca, SO4, and Zn in the water-soluble (exchangeable) and carbonate fractions. Thus, the analytical and modeling results indicated that despite being classified as non-toxic by standard leaching protocols, the minerals composing the sludge could be sources of dissolved F, SO4, Fe, Zn, Mn, U, and Al under various environmental conditions. Decommissioning strategies intended to prevent contaminant migration will need to consider the chemical stability of the sludge in various environments.

  8. Chemical Modification of Influenza CD8+ T-Cell Epitopes Enhances Their Immunogenicity Regardless of Immunodominance

    Science.gov (United States)

    van Beek, Josine; Hoppes, Rieuwert; Jacobi, Ronald H. J.; Hendriks, Marion; Kapteijn, Kim; Ouwerkerk, Casper; Rodenko, Boris; Ovaa, Huib; de Jonge, Jørgen

    2016-01-01

    T cells are essential players in the defense against infection. By targeting the MHC class I antigen-presenting pathway with peptide-based vaccines, antigen-specific T cells can be induced. However, low immunogenicity of peptides poses a challenge. Here, we set out to increase immunogenicity of influenza-specific CD8+ T cell epitopes. By substituting amino acids in wild type sequences with non-proteogenic amino acids, affinity for MHC can be increased, which may ultimately enhance cytotoxic CD8+ T cell responses. Since preventive vaccines against viruses should induce a broad immune response, we used this method to optimize influenza-specific epitopes of varying dominance. For this purpose, HLA-A*0201 epitopes GILGFVFTL, FMYSDFHFI and NMLSTVLGV were selected in order of decreasing MHC-affinity and dominance. For all epitopes, we designed chemically enhanced altered peptide ligands (CPLs) that exhibited greater binding affinity than their WT counterparts; even binding scores of the high affinity GILGFVFTL epitope could be improved. When HLA-A*0201 transgenic mice were vaccinated with selected CPLs, at least 2 out of 4 CPLs of each epitope showed an increase in IFN-γ responses of splenocytes. Moreover, modification of the low affinity epitope NMLSTVLGV led to an increase in the number of mice that responded. By optimizing three additional influenza epitopes specific for HLA-A*0301, we show that this strategy can be extended to other alleles. Thus, enhancing binding affinity of peptides provides a valuable tool to improve the immunogenicity and range of preventive T cell-targeted peptide vaccines. PMID:27333291

  9. A method for the chemical modification of polychlorinated biphenyls for improved affinity towards noble metal surfaces

    DEFF Research Database (Denmark)

    2015-01-01

    The present application discloses a method for the modification and analysis of a field sample suspected of containing contaminant(s) like polychlorinated biphenyls (PCBs). The invention also relates to a corresponding kit for the modification of samples suspected of containing such contaminant(s)....

  10. Novel method for chemical modification and patterning of the SU-8 photoresist

    DEFF Research Database (Denmark)

    Blagoi, Gabriela; Keller, Stephan Urs; Boisen, Anja; Jakobsen, Mogens Havsteen

    wetting behaviour of SU-8. The resolution limit of the AQ photopatterning method was 20 μm when using an uncollimated light source. AQ modification followed by a reaction with amino groups of Alexa-647 cadaverine and a Biotin-amino derivative proved possible modification and patterning of polymeric...

  11. Chemical Screening Method for the Rapid Identification of Microbial Sources of Marine Invertebrate-Associated Metabolites

    Directory of Open Access Journals (Sweden)

    Russell G. Kerr

    2011-03-01

    Full Text Available Marine invertebrates have proven to be a rich source of secondary metabolites. The growing recognition that marine microorganisms associated with invertebrate hosts are involved in the biosynthesis of secondary metabolites offers new alternatives for the discovery and development of marine natural products. However, the discovery of microorganisms producing secondary metabolites previously attributed to an invertebrate host poses a significant challenge. This study describes an efficient chemical screening method utilizing a 96-well plate-based bacterial cultivation strategy to identify and isolate microbial producers of marine invertebrate-associated metabolites.

  12. Volatile organic chemical emissions from carpet cushions: Screening measurements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, A.T.; Phan, T.A.

    1994-05-01

    The US Consumer Product Safety Commission (CPSC) has received complaints from consumers regarding the occurrence of adverse health effects following the installation of new carpeting (Schachter, 1990). Carpet systems are suspected of emitting chemicals which may be the cause of these complaints, as well as objectionable odors. Carpets themselves have been shown to emit a variety of volatile organic compounds (VOCs). The objective of this study was to screen the representative samples of carpet cushions for emissions of individual VOCS, total VOCs (TVOC), formaldehyde, and, for the two types of polyurethane cushions, isomers of toluene diisocyanate (TDI). The measurements of VOCS, TVOC and formaldehyde were made over six-hour periods using small-volume (4-L) dynamic chambers. Sensitive gas chromatography-mass spectrometry (GC-MS) techniques were used to identify many of the VOCs emitted by the cushion samples and to obtain quantitative estimates of the emission rates of selected compounds. Separate screening measurements were conducted for TDI. The data from the screening measurements were used by the CPSC`s Health Sciences Laboratory to help design and conduct week-long measurements of emission rates of selected compounds.

  13. Bio-oils from biomass slow pyrolysis: a chemical and toxicological screening.

    Science.gov (United States)

    Cordella, Mauro; Torri, Cristian; Adamiano, Alessio; Fabbri, Daniele; Barontini, Federica; Cozzani, Valerio

    2012-09-15

    Bio-oils were produced from bench-scale slow-pyrolysis of three different biomass samples (corn stalks, poplar and switchgrass). Experimental protocols were developed and applied in order to screen their chemical composition. Several hazardous compounds were detected in the bio-oil samples analysed, including phenols, furans and polycyclic aromatic hydrocarbons. A procedure was outlined and applied to the assessment of toxicological and carcinogenic hazards of the bio-oils. The following hazardous properties were considered: acute toxicity; ecotoxicity; chronic toxicity; carcinogenicity. Parameters related to these properties were quantified for each component identified in the bio-oils and overall values were estimated for the bio-oils. The hazard screening carried out for the three bio-oils considered suggested that: (i) hazards to human health could be associated with chronic exposures to the bio-oils; (ii) acute toxic effects on humans and eco-toxic effects on aquatic ecosystems could also be possible in the case of loss of containment; and (iii) bio-oils may present a marginal potential carcinogenicity. The approach outlined allows the collection of screening information on the potential hazards posed by the bio-oils. This can be particularly useful when limited time and analytical resources reduce the possibility to obtain detailed specific experimental data. PMID:22790394

  14. Site-specific labeling of proteins for single-molecule FRET by combining chemical and enzymatic modification

    OpenAIRE

    Jager, M; Nir, E; Weiss, S

    2006-01-01

    An often limiting factor for studying protein folding by single-molecule fluorescence resonance energy transfer (FRET) is the ability to site-specifically introduce a photostable organic FRET donor (D) and a complementary acceptor (A) into a polypeptide chain. Using alternating-laser excitation and chymotrypsin inhibitor 2 as a model, we show that chemical labeling of a unique cysteine, followed by enzymatic modification of a reactive glutamine in an N-terminally appended substrate sequence r...

  15. The Los Alamos controlled air incinerator for radioactive waste: Volume 3, Modifications for processing hazardous chemicals and mixed wastes

    International Nuclear Information System (INIS)

    This report describes the design and operation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI). This third volume addresses categories of information that pertain to modifications to the CAI in the period between 1981 and 1986. These later system changes were motivated by programmatic objectives to use the CAI for additionally studying combustion of low-level radioactive wastes and hazardous chemicals. 19 figs., 13 tabs

  16. Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS.

    Science.gov (United States)

    Sjerps, Rosa M A; Vughs, Dennis; van Leerdam, Jan A; ter Laak, Thomas L; van Wezel, Annemarie P

    2016-04-15

    For the prioritization of more than 5200 anthropogenic chemicals authorized on the European market, we use a large scale liquid chromatography-high resolution mass spectrometry (LC-HRMS) suspect screening study. The prioritization is based on occurrence in 151 water samples including effluent, surface water, ground water and drinking water. The suspect screening linked over 700 detected compounds with known accurate masses to one or multiple suspects. Using a prioritization threshold and removing false positives reduced this to 113 detected compounds linked to 174 suspects, 24 compounds reflect a confirmed structure by comparison with the pure reference standard. The prioritized compounds and suspects are relevant for detailed risk assessments after confirmation of their identity. Only one of the 174 prioritized compounds and suspects is mentioned in water quality regulations, and only 20% is mentioned on existing lists of potentially relevant chemicals. This shows the complementarity to commonly used target-based methods. The semi-quantitative total concentration, expressed as internal standard equivalents of detected compounds linked to suspects, in effluents is approximately 10 times higher than in surface waters, while ground waters and drinking waters show the lowest response. The average retention time, a measure for hydrophobicity, of the detected compounds per sample decreased from effluent to surface- and groundwater to drinking water, confirming the occurrence of more polar compounds in drinking water. The semi-quantitative total concentrations exceed the conservative and precautionary threshold of toxicological concern. Therefore, adverse effects of mixtures cannot be neglected without a more thorough risk assessment. PMID:26921851

  17. 78 FR 35922 - Endocrine Disruptor Screening Program; Final Second List of Chemicals and Substances for Tier 1...

    Science.gov (United States)

    2013-06-14

    ... water contaminants and pesticides previously identified by EPA. These priority chemicals included the... Screening Program (EDSP). The EDSP is established under section 408(p) of the Federal Food, Drug, and... the Federal Food, Drug, and Cosmetic Act (FFDCA), which requires EPA to develop a chemical...

  18. Phyto chemical and antioxidant screening of extracts of Aquilaria malaccensis leaves

    International Nuclear Information System (INIS)

    Aquilaria malaccensis is an endangered economic plant used for production of agar wood worldwide. The sequential maceration extraction methods utilizing solvents with different polarities namely hexane, ethyl acetate and methanol yielded the corresponding crude extract. The aqueous and methanol extracts along with dry powder of leaf of the plant was screened for the presence of phytochemicals. They were also tested for antioxidant activities. The result indicates the presence of alkaloids, flavanoids, triterpenoids, steroids and tannins. The phyto chemical screening suggests that flavanoids present in this species might provide a great value of antioxidant activity. Preliminary screenings of the free radical scavenging activity on the extracts of the plants with 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) were tested and showed positive result. Quarcetine was used as reference standard. The extracts exhibited strong antioxidant activity radical scavenging activity with IC50 value of 8.0 x 102 μg/ ml, 1.6 x 102 μg/ ml, 1.4 x 102 μg/ ml, 30.0 μg/ ml and 3.33 μg/ ml for hexane, DCM, ethyl acetate, methanol and quercetine respectively. Determination on antioxidant activity of each crude extract showed that methanol crude extract had the highest IC50 value than ethyl acetate, dichloromethane and hexane crude extract. This means that methanol possess the highest inhibition of DPPH radical scavenging activity compared to the other crudes but still lower than Quercetin (standard). Phyto chemical analysis on the hexane extract of Aquilaria malaccensis has been conducted. Several chromatographic methods have been employed to the hexane of the leaves which led to the isolation of three compounds namely Stigmasterol, β-sitosterol and 3-fridelanol. The present study has proved the usefulness of agar wood tree for medicinal purposes and its potential as a source of useful drugs. (author)

  19. Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kostaki, Vasiliki T.; Florou, Ageliki B. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece); Prodromidis, Mamas I., E-mail: mprodrom@cc.uoi.gr [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece)

    2011-10-01

    Highlights: > Electrochemical treatment endows analytical characteristics to SPEs. > A sensitive chemical sensor for uranium is described. > Performance is due to a synergy between electrochemical treatment and ink's solvents. > The amount of the solvent controls the achievable sensitivity. - Abstract: We report for the first time on the possibility to develop chemical sensors based on electrochemically treated, non-modified, graphite screen-printed electrodes (SPEs). The applied galvanostatic treatment (5 {mu}A for 6 min in 0.1 M H{sub 2}SO{sub 4}) is demonstrated to be effective for the development of chemical sensors for the determination of uranium in aqueous solutions. A detailed study of the effect of various parameters related to the fabrication of SPEs on the performance of the resulting sensors along with some diagnostic experiments on conventional graphite electrodes showed that the inducible analytical characteristics are due to a synergy between electrochemical treatment and ink's solvents. Indeed, the amount of the latter onto the printed working layer controls the achievable sensitivity. The preconcentration of the analyte was performed in an electroless mode in an aqueous solutions of U(VI), pH 4.6, and then, the accumulated species was reduced by means of a differential pulse voltammetry scan in 0.1 M H{sub 3}BO{sub 3}, pH 3. Under selected experimental conditions, a linear calibration curve over the range 5 x 10{sup -9} to 10{sup -7} M U(VI) was constructed. The 3{sigma} limit of detection at a preconcentration time of 30 min, and the relative standard deviation of the method were 4.5 x 10{sup -9} M U(VI) and >12% (n = 5, 5 x 10{sup -8} M U(VI)), respectively. The effect of potential interferences was also examined.

  20. Structural, chemical surface and transport modifications of regenerated cellulose dense membranes due to low-dose {gamma}-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.I. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Heredia-Guerrero, J.A., E-mail: jose.alejandro@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Galan, P. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Benitez, J.J. [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Benavente, J. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain)

    2011-04-15

    Research highlights: {yields} Low dose {gamma}-radiation causes slight structural, chemical and morphological changes on regenerated cellulose films. {yields} Induced structural changes increase the fragility of irradiated films. {yields} Structural modifications reduce ion permeability of films. - Abstract: Modifications caused in commercial dense regenerated cellulose (RC) flat membranes by low-dose {gamma}-irradiation (average photons energy of 1.23 MeV) are studied. Slight structural, chemical and morphological surface changes due to irradiation in three films with different RC content were determined by ATR-FTIR, XRD, XPS and AFM. Also, the alteration of their mechanical elasticity has been studied. Modification of membrane performance was determined from solute diffusion coefficient and effective membrane fixed charge concentration obtained from NaCl diffusion measurements. Induced structural changes defining new and effective fracture propagation directions are considered to be responsible for the increase of fragility of irradiated RC membranes. The same structural changes are proposed to explain the reduction of the membrane ion permeability through a mechanism involving either ion pathways elongation and/or blocking.

  1. Structural, chemical surface and transport modifications of regenerated cellulose dense membranes due to low-dose γ-radiation

    International Nuclear Information System (INIS)

    Research highlights: → Low dose γ-radiation causes slight structural, chemical and morphological changes on regenerated cellulose films. → Induced structural changes increase the fragility of irradiated films. → Structural modifications reduce ion permeability of films. - Abstract: Modifications caused in commercial dense regenerated cellulose (RC) flat membranes by low-dose γ-irradiation (average photons energy of 1.23 MeV) are studied. Slight structural, chemical and morphological surface changes due to irradiation in three films with different RC content were determined by ATR-FTIR, XRD, XPS and AFM. Also, the alteration of their mechanical elasticity has been studied. Modification of membrane performance was determined from solute diffusion coefficient and effective membrane fixed charge concentration obtained from NaCl diffusion measurements. Induced structural changes defining new and effective fracture propagation directions are considered to be responsible for the increase of fragility of irradiated RC membranes. The same structural changes are proposed to explain the reduction of the membrane ion permeability through a mechanism involving either ion pathways elongation and/or blocking.

  2. Automated screening for small organic ligands using DNA-encoded chemical libraries.

    Science.gov (United States)

    Decurtins, Willy; Wichert, Moreno; Franzini, Raphael M; Buller, Fabian; Stravs, Michael A; Zhang, Yixin; Neri, Dario; Scheuermann, Jörg

    2016-04-01

    DNA-encoded chemical libraries (DECLs) are collections of organic compounds that are individually linked to different oligonucleotides, serving as amplifiable identification barcodes. As all compounds in the library can be identified by their DNA tags, they can be mixed and used in affinity-capture experiments on target proteins of interest. In this protocol, we describe the screening process that allows the identification of the few binding molecules within the multiplicity of library members. First, the automated affinity selection process physically isolates binding library members. Second, the DNA codes of the isolated binders are PCR-amplified and subjected to high-throughput DNA sequencing. Third, the obtained sequencing data are evaluated using a C++ program and the results are displayed using MATLAB software. The resulting selection fingerprints facilitate the discrimination of binding from nonbinding library members. The described procedures allow the identification of small organic ligands to biological targets from a DECL within 10 d. PMID:26985574

  3. Identification of Maillard reaction induced chemical modifications on Ara h 1

    Science.gov (United States)

    The Maillard reaction is a non-enzymatic glycation reaction between proteins and reducing sugars that can modify nut allergens during thermal processing. These modifications can alter the structural and immunological properties of these allergens, and may result in increased IgE binding. Here, we ...

  4. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals

    DEFF Research Database (Denmark)

    Kitchin, J. R.; Nørskov, Jens Kehlet; Barteau, M. A.;

    2004-01-01

    The modification of the electronic and chemical properties of Pt(111) surfaces by subsurface 3d transition metals was studied using density-functional theory. In each case investigated, the Pt surface d-band was broadened and lowered in energy by interactions with the subsurface 3d metals......, resulting in weaker dissociative adsorption energies of hydrogen and oxygen on these surfaces. The magnitude of the decrease in adsorption energy was largest for the early 3d transition metals and smallest for the late 3d transition metals. In some cases, dissociative adsorption was calculated to be...... endothermic. The surfaces investigated in this study had no lateral strain in them, demonstrating that strain is not a necessary factor in the modification of bimetallic surface properties. The implications of these findings are discussed in the context of catalyst design, particularly for fuel cell...

  5. Chemical Library Screens Targeting an HIV-1 Accessory Factor/Host Cell Kinase Complex Identify Novel Anti-retroviral Compounds

    OpenAIRE

    Emert-Sedlak, Lori; Kodama, Toshiaki; Lerner, Edwina C.; Dai, Weixiang; Foster, Caleb; Day, Billy W.; Lazo, John S.; Smithgall, Thomas E

    2009-01-01

    Nef is an HIV-1 accessory protein essential for AIDS progression and an attractive target for drug discovery. Lack of a catalytic function makes Nef difficult to assay in chemical library screens. We developed a high-throughput screening assay for inhibitors of Nef function by coupling it to one of its host cell binding partners, the Src-family kinase Hck. Hck activation is dependent upon Nef in this assay, providing a direct readout of Nef activity in vitro. Using this screen, a unique diphe...

  6. Comparison of three marine screening tests and four Oslo and Paris Commission procedures to evaluate toxicity of offshore chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Weideborg, M.; Vik, E.A.; Oefjord, G.D.; Kjoennoe, O. [Aquateam-Norwegian Water Technology Centre A/S, Oslo (Norway)

    1997-02-01

    The results from the screening toxicity tests Artemia salina, Microtox{reg_sign}, and Mitochondria RET test were compared with those obtained from OSPAR (Oslo and Paris Commissions)-authorized procedures for testing of offshore chemicals (Skeletonema costatum, Acartia tonsa, Abra alba, and Corophium volutator). In this study 82 test substances (26 non-water soluble) were included. The Microtox test was found to be the most sensitive of the three screening tests. Microtox and Mitochondria RET test results showed good correlation with results from Acartia and Skeletonema testing, and it was concluded that the Microtox test was a suitable screening test as a base for assessment of further testing, especially regarding water-soluble chemicals. Sensitivity of Artemia salina to the tested chemicals was too low for it to be an appropriate bioassay organism for screening testing. A very good correlation was found between the results obtained with the Skeletonema and Acartia tests. The results indicated no need for more than one of the Skeletonema or Acartia tests if the Skeletonema median effective concentration or Acartia median lethal concentration was greater than 200 mg/L. The sediment-reworker tests (A. Alba or C. volutator) for chemicals that are likely to end up in the sediments (non-water soluble or surfactants) should be performed, independent of results from screening tests and other OSPAR species.

  7. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    International Nuclear Information System (INIS)

    Highlights: • We modified polylactide surface layer with chemical, plasma or laser methods. • We tested selected properties and surface structure of modified samples. • We stated that the plasma treatment appears to be the most beneficial. - Abstract: The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method

  8. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej–Curie 55, 87-100 Toruń (Poland); Żenkiewicz, Marian [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2015-08-15

    Highlights: • We modified polylactide surface layer with chemical, plasma or laser methods. • We tested selected properties and surface structure of modified samples. • We stated that the plasma treatment appears to be the most beneficial. - Abstract: The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm{sup 2} was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  9. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    DEFF Research Database (Denmark)

    Shin, Hyeong-Moo; Ernstoff, Alexi; Arnot, Jon;

    2015-01-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify...... intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models....

  10. Integration of plasma-assisted surface chemical modification, soft lithography, and protein surface activation for single-cell patterning

    Science.gov (United States)

    Cheng, Q.; Komvopoulos, K.

    2010-07-01

    Surface patterning for single-cell culture was accomplished by combining plasma-assisted surface chemical modification, soft lithography, and protein-induced surface activation. Hydrophilic patterns were produced on Parylene C films deposited on glass substrates by oxygen plasma treatment through the windows of polydimethylsiloxane shadow masks. After incubation first with Pluronic F108 solution and then serum medium overnight, surface seeding with mesenchymal stem cells in serum medium resulted in single-cell patterning. The present method provides a means of surface patterning with direct implications in single-cell culture.

  11. A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA.

    Science.gov (United States)

    Kowtoniuk, Walter E; Shen, Yinghua; Heemstra, Jennifer M; Agarwal, Isha; Liu, David R

    2009-05-12

    Compared with the rapidly expanding set of known biological roles for RNA, the known chemical diversity of cellular RNA has remained limited primarily to canonical RNA, 3'-aminoacylated tRNAs, nucleobase-modified RNAs, and 5'-capped mRNAs in eukaryotes. We developed two methods to detect in a broad manner chemically labile cellular small molecule-RNA conjugates. The methods were validated by the detection of known tRNA and rRNA modifications. The first method analyzes small molecules cleaved from RNA by base or nucleophile treatment. Application to Escherichia coli and Streptomyces venezuelae RNA revealed an RNA-linked hydroxyfuranone or succinyl ester group, in addition to a number of other putative small molecule-RNA conjugates not previously reported. The second method analyzes nuclease-generated mononucleotides before and after treatment with base or nucleophile and also revealed a number of new putative small molecule-RNA conjugates, including 3'-dephospho-CoA and its succinyl-, acetyl-, and methylmalonyl-thioester derivatives. Subsequent experiments established that these CoA species are attached to E. coli and S. venezuelae RNA at the 5' terminus. CoA-linked RNA cannot be generated through aberrant transcriptional initiation by E. coli RNA polymerase in vitro, and CoA-linked RNA in E. coli is only found among smaller (approximately < 200 nucleotide) RNAs that have yet to be identified. These results provide examples of small molecule-RNA conjugates and suggest that the chemical diversity of cellular RNA may be greater than previously understood. PMID:19416889

  12. A chemical screen for biological small molecule–RNA conjugates reveals CoA-linked RNA

    Science.gov (United States)

    Kowtoniuk, Walter E.; Shen, Yinghua; Heemstra, Jennifer M.; Agarwal, Isha; Liu, David R.

    2009-01-01

    Compared with the rapidly expanding set of known biological roles for RNA, the known chemical diversity of cellular RNA has remained limited primarily to canonical RNA, 3′-aminoacylated tRNAs, nucleobase-modified RNAs, and 5′-capped mRNAs in eukaryotes. We developed two methods to detect in a broad manner chemically labile cellular small molecule–RNA conjugates. The methods were validated by the detection of known tRNA and rRNA modifications. The first method analyzes small molecules cleaved from RNA by base or nucleophile treatment. Application to Escherichia coli and Streptomyces venezuelae RNA revealed an RNA-linked hydroxyfuranone or succinyl ester group, in addition to a number of other putative small molecule–RNA conjugates not previously reported. The second method analyzes nuclease-generated mononucleotides before and after treatment with base or nucleophile and also revealed a number of new putative small molecule–RNA conjugates, including 3′-dephospho-CoA and its succinyl-, acetyl-, and methylmalonyl-thioester derivatives. Subsequent experiments established that these CoA species are attached to E. coli and S. venezuelae RNA at the 5′ terminus. CoA-linked RNA cannot be generated through aberrant transcriptional initiation by E. coli RNA polymerase in vitro, and CoA-linked RNA in E. coli is only found among smaller (≲200 nucleotide) RNAs that have yet to be identified. These results provide examples of small molecule-RNA conjugates and suggest that the chemical diversity of cellular RNA may be greater than previously understood. PMID:19416889

  13. Modification of comet-FISH technique by using temperature instead of chemical denaturation

    OpenAIRE

    Marin Mladinic; Davor Zeljezic

    2014-01-01

    Comet-FISH technique is an extension of commonly used comet assay. Its purpose is to determine whether primary DNA damage which comet assay detects occurred within a sequence of interest that is visualized by hybridization of fluorescent probe. Presence of the signal in comet tail indicates impaired structural integrity of sequence. Our modifications to the original comet-FISH technique described by Rapp et al. (2000) [1] include: • increase in probe binding specificity, • increas...

  14. Chemical modification of polyvinyl chloride and silicone elastomer in inhibiting adhesion of Aeromonas hydrophila

    OpenAIRE

    Kregiel, Dorota; Berlowska, Joanna; Mizerska, Urszula; Fortuniak, Witold; Chojnowski, Julian; Ambroziak, Wojciech

    2013-01-01

    Disease-causing bacteria of the genus Aeromonas are able to adhere to pipe materials, colonizing the surfaces and forming biofilms in water distribution systems. The aim of our research was to study how the modification of materials used commonly in the water industry can reduce bacterial cell attachment. Polyvinyl chloride and silicone elastomer surfaces were activated and modified with reactive organo-silanes by coupling or co-crosslinking silanes with the native material. Both the native a...

  15. A novel green approach for the chemical modification of silica particles based on deep eutectic solvents.

    Science.gov (United States)

    Gu, Tongnian; Zhang, Mingliang; Chen, Jia; Qiu, Hongdeng

    2015-06-18

    Deep eutectic solvents (DESs), as a novel class of green solvents, were successfully applied as eco-friendly and sustainable reaction media for fast surface modification of spherical porous silica, resulting in stationary phases for high-performance liquid chromatography. The new reaction media were advantageous over organic solvents in many aspects, such as the high dispersibility of silica spheres and their non-volatility. PMID:25985926

  16. Improving Alcohol Screening for College Students: Screening for Alcohol Misuse amongst College Students with a Simple Modification to the CAGE Questionnaire

    Science.gov (United States)

    Taylor, Purcell; El-Sabawi, Taleed; Cangin, Causenge

    2016-01-01

    Objective: To improve the CAGE (Cut down, Annoyed, Guilty, Eye opener) questionnaire's predictive accuracy in screening college students. Participants: The sample consisted of 219 midwestern university students who self-administered a confidential survey. Methods: Exploratory factor analysis, confirmatory factor analysis, receiver operating…

  17. Chemical modification and pH dependence of kinetic parameters to identify functional groups in a glucosyltransferase from Strep. Mutans

    International Nuclear Information System (INIS)

    A glucosyltransferase, forming a predominantly al-6 linked glucan, was partially purified from the culture filtrate of S. mutans GS-5. The kinetic properties of the enzyme, assessed using the transfer of 14C glucose from sucrose into total glucan, were studied at pH values from pH 3.5 to 6.5. From the dependence of km on pH, a group with pKa = 5.5 must be protonated to maximize substrate binding. From plots of V/sub max/ vs pH two groups, with pKa's of 4.5 and 5.5 were indicated. The results suggest the involvement of either two carboxyl groups (one protonated, one unprotonated in the native enzyme) or a carboxyl group (unprotonated) and some other protonated group such as histidine, cysteine. Chemical modification studies showed that Diethylyrocarbonate (histidine specific) had no effect on enzyme activity while modification with p-phydroxy-mercuribenzoate or iodoacetic acid (sulfhydryl reactive) and carbodimide reagents (carboxyl specific) resulted in almost complete inactivation. Activity loss was dependent upon time of incubation and reagent concentration. The disaccharide lylose, (shown to be an inhibitor of the enzyme with similar affinity to sucrose) offers no protection against modification by the sulfhydryl reactive reagents

  18. Study of chemical, optical and thermal modifications induced by 100 MeV silicon ions in a polycarbonate film

    International Nuclear Information System (INIS)

    A thin film of polycarbonate was bombarded with 100 MeV Si8+ ions. Fourier transform infrared and ultraviolet/visible spectroscopic techniques were employed for studying the changes in chemical and optical properties whereas differential scanning calorimetry was used for studying the changes in the thermal properties. It was observed that there was a slight shift in the optical absorption edge towards the red end of the spectrum when the ion fluence was increased. It was further observed that there was a substantial chemical and thermal modification in the sample such as breaking of C-O single bond and formation of phenolic bond and gradual decrease in the glass transition temperature with the increase in ion fluence

  19. MEMIN: Chemical Modification of Projectile Spheres, Target Melts and Shocked Quartz in Hypervelocity Impact Experiments

    Science.gov (United States)

    Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.

    2011-03-01

    We present results of hypervelocity cratering experiments using iron meteorite as projectile and a sandstone target. The ejecta show shock features (melting, PDFs, lechatelierite) and physical as well as chemical mixing between projectile and target.

  20. An evaluation of chemical screening test kits for lead in paint

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, L.S.

    1996-04-01

    The Residential Lead-Based Paint Hazard Reduction Act (Title X) requires abatement and management of lead-based paint. The purpose of this study was to evaluate three chemical screening test kits using materials and methods from one study and subjecting the results to the statistical analysis of another. The three kits were used to predict the presence of lead in paint at ten weight concentrations from 0.04 to 3.97%. Paint was applied to four wood boards yielding a sample size of 40. Four boards were painted with lead-free paint and used as blanks. All of the boards were tested with the three test kits by an untrained individual having no knowledge of the actual lead content. Sensitivity, specificity, and false positive and negative rates were calculated for the test kit results. The manufactures` detection limits, the observed sensitivity ranged from 1.00 to 0.80, specificity ranged from 1.00 to 0.42, false positive ranged from 0 to 58%, and false negatives ranged from 0 to 20%. At the 0.5% Federal threshold level, the observed sensitivity ranged from 1.00 to 0.94, specificity ranged from 1.00 to 0.5, false positives ranged from 0 to 11.1%, and false negatives ranged from 0 to 20%. The observed false positive and false negative rates for all three kits were found to be significantly lower than those reported in a previous study. These results indicate that the kits perform very well at the Federal threshold, with two of the kits having false negative rates below 12.5% and false positive rates of 3.13%. These results indicate that these two kits would probably be acceptable screening tests for lead in paint.

  1. QUANTUM-CHEMICAL MODIFICATIONS OF SURFACE:NEW METHODS FOR PROTECTING MATERIALS FROM CORROSION

    Institute of Scientific and Technical Information of China (English)

    R. T. Malkhasyan

    2001-01-01

    A new method of corrosion-resistant coating of technical iron is presented. Processingby vibrationally excited hydrogen molecules of the iron surface covered with oxide filmof a-Fe2O3 results in modification of surface by creating a film of amorphous ironon it. The presence of iron films with crystalline and amorphous phases, having thedifferent Fermi levels, leads tO formation of potential differences between them. Thispotential difference is opposite to the external electric field, resulting in decrease ofanode current and increase of corrosion resistance.

  2. Tuning of the Electronic Levels of Oligothiophene-Naphthalimide Assemblies by Chemical Modification.

    Science.gov (United States)

    de la Peña, Alejandro; Arrechea-Marcos, Iratxe; Mancheño, María J; Ruiz Delgado, M Carmen; López Navarrete, J Teodomiro; Segura, José L; Ponce Ortiz, Rocío

    2016-09-12

    Inversion of the connections of amidine linkers combined with controlled oligothiophene chain catenation in oligothiophene-naphthalimide assemblies provides an efficient method to tune the HOMO and LUMO values in this type of assemblies. This modification also suppresses the intramolecular charge transfer (ICT) band normally found in this type of derivatives, also delocalizing the frontier molecular orbitals over the whole conjugated skeleton. The resultant assemblies were used in the fabrication of field-effect transistors, which showed well-balanced ambipolar transport. PMID:27430480

  3. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Science.gov (United States)

    Moraczewski, Krzysztof; Rytlewski, Piotr; Malinowski, Rafał; Żenkiewicz, Marian

    2015-08-01

    The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  4. Controllable end shape modification of ZnO nano-arrays/rods by a simple wet chemical etching technique

    International Nuclear Information System (INIS)

    The well-aligned ZnO nano-arrays/rods synthesized by a chemical bath deposition method on a highly conductive Si substrate were chemically etched in an ammonia chloride aqueous solution. An obvious end shape modification of ZnO nano-arrays/rods was realized in this report. The hexagonal frustum end of ZnO nano-arrays/rods changed into a pyramid and the diameter of ZnO nano-arrays/rods decreased gradually with the increasing etching time. The evolution mechanism of the wet etching process was discussed based on a proposed evolution model. Photoluminescence measurements indicated that the near band edge emissions of ZnO nano-arrays/rods increased greatly after wet etching. The controllable end shape modification of ZnO nano-arrays/rods on a highly conductive Si substrate by this simple wet etching technique will further explore the application of ZnO in field emission devices and 1D based nano-devices with various end shapes. (paper)

  5. Chemical modification of triplex-forming oligonucleotide to promote pyrimidine motif triplex formation at physiological pH.

    Science.gov (United States)

    Torigoe, Hidetaka; Nakagawa, Osamu; Imanishi, Takeshi; Obika, Satoshi; Sasaki, Kiyomi

    2012-04-01

    Extreme instability of pyrimidine motif triplex DNA at physiological pH severely limits its use in wide variety of potential applications, such as artificial regulation of gene expression, mapping of genomic DNA, and gene-targeted mutagenesis in vivo. Stabilization of pyrimidine motif triplex at physiological pH is, therefore, crucial for improving its potential in various triplex-formation-based strategies in vivo. To this end, we investigated the effect of 3'-amino-2'-O,4'-C-methylene bridged nucleic acid modification of triplex-forming oligonucleotide (TFO), in which 2'-O and 4'-C of the sugar moiety were bridged with the methylene chain and 3'-O was replaced by 3'-NH, on pyrimidine motif triplex formation at physiological pH. The modification not only significantly increased the thermal stability of the triplex but also increased the binding constant of triplex formation about 15-fold. The increased magnitude of the binding constant was not significantly changed when the number and position of the modification in TFO changed. The consideration of the observed thermodynamic parameters suggested that the increased rigidity of the modified TFO in the free state resulting from the bridging of different positions of the sugar moiety with an alkyl chain and the increased hydration of the modified TFO in the free state caused by the introduction of polar nitrogen atoms may significantly increase the binding constant at physiological pH. The study on the TFO viability in human serum showed that the modification significantly increased the resistance of TFO against nuclease degradation. This study presents an effective approach for designing novel chemically modified TFOs with higher binding affinity of triplex formation at physiological pH and higher nuclease resistance under physiological condition, which may eventually lead to progress in various triplex-formation-based strategies in vivo. PMID:22245184

  6. On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array.

    Science.gov (United States)

    Jang, Sungho; Lee, Byungjin; Jeong, Heon-Ho; Jin, Si Hyung; Jang, Sungyeon; Kim, Seong Gyeong; Jung, Gyoo Yeol; Lee, Chang-Soo

    2016-05-21

    Economic production of chemicals from microbes necessitates development of high-producing strains and an efficient screening technology is crucial to maximize the effect of the most popular strain improvement method, the combinatorial approach. However, high-throughput screening has been limited for assessment of diverse intracellular metabolites at the single-cell level. Herein, we established a screening platform that couples a microfluidic static droplet array (SDA) and an artificial riboswitch to analyse intracellular metabolite concentration from single microbial cells. Using this system, we entrapped single Escherichia coli cells in SDA to measure intracellular l-tryptophan concentrations. It was validated that intracellular l-tryptophan concentration can be evaluated by the fluorescence from the riboswitch. Moreover, high-producing strains were successfully screened from a mutagenized library, exhibiting up to 145% productivity compared to its parental strain. This platform will be widely applicable to strain improvement for diverse metabolites by developing new artificial riboswitches. PMID:27102263

  7. Screening ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay

    Science.gov (United States)

    An Adherent Cell Differentiation and Cytotoxicity (ACDC) in vitro assay with mouse embryonic stem cells was used to screen the ToxCast Phase I chemical library for effects on cellular differentiation and cell number. The U.S. Environmental Protection Agency (EPA) established the ...

  8. Screening of 397 chemicals and development of a quantitative structure-activity relationship model for androgen receptor antagonism

    DEFF Research Database (Denmark)

    Vinggaard, Annemarie; Niemelä, Jay Russell; Wedebye, Eva Bay; Jensen, Gunde Egeskov

    2008-01-01

    We have screened 397 chemicals for human androgen receptor (AR) antagonism by a sensitive reporter gene assay to generate data for the development of a quantitative structure-activity relationship (QSAR) model. A total of 523 chemicals comprising data on 292 chemicals from our laboratory and data...... synthetic androgen R1881. The MultiCASE expert system was used to construct a QSAR model for AR antagonizing potential. A "5 Times, 2-Fold 50% Cross Validation" of the model showed a sensitivity of 64%, a specificity of 84%, and a concordance of 76%. Data for 102 chemicals were generated for an external...... validation of the model resulting in a sensitivity of 57%, a specificity of 98%, and a concordance of 92% of the model. The model was run on a set of 176103 chemicals, and 47% were within the domain of the model. Approximately 8% of chemicals was predicted active for AR antagonism. We conclude that the...

  9. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    Science.gov (United States)

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. PMID:27344951

  10. Physico-chemical screening of accessions of Jatropha curcas for biodiesel production

    International Nuclear Information System (INIS)

    Biodiesel is an alternative environmentally friendly fuel made from renewable biological sources such as vegetable oils and animal fats. The present report deals with screening of 14 accessions of Jatropha curcas collected from all over India to find the most suitable ones for production of Biodiesel. From the 14 accessions of J. curcas located in the plantation at Osmania University, 4 accessions were initially selected on the basis of traits like general appearance, pest resistance, seed yield and seed-oil content. Further, the seed-oil of these 4 accessions was characterized by physico-chemical analysis to identify the elite accessions for production of biodiesel. Highest 1000-seed weight (640 g) and highest percentage seed-oil content (50.16) (extracted by Soxhlet method with hexane as the solvent) was recorded in the “KM” accession. The transesterification process is affected by the presence of high free fatty acids (recorded in “MB” accession) and high moisture content (recorded in “KM” accession) of the seed-oil which also interfere with the separation of fatty esters and glycerol during production of Biodiesel. Further, high phosphorus content and iodine number (recorded in “MB” accession) interfere with conversion of seed-oil to Biodiesel. In the above context, in spite of its yield being lower, the seed-oil of the “RSAD” accession was found to be most suitable for Biodiesel production followed by “KM”, “F.W.B” and “MB” accessions, since it contains lower free fatty acids, acid value, viscosity, diglycerides and iodine number. -- Highlights: ► We analyzed Indian Jatropha accessions for yield and quality. ► Elite accessions were selected for physico-chemical analysis of seed-oil. ► Four elite accessions identified as good candidates for Biodiesel production. ► The “RSAD” accession was found to be the best suited for biodiesel.

  11. Morphological and chemical modification of mineral dust: Observational insight into the heterogeneous uptake of acidic gases

    Science.gov (United States)

    Matsuki, Atsushi; Iwasaka, Yasunobu; Shi, Guangyu; Zhang, Daizhou; Trochkine, Dmitri; Yamada, Maromu; Kim, Yoon-Suk; Chen, Bin; Nagatani, Tetsuji; Miyazawa, Takeshi; Nagatani, Masahiro; Nakata, Hiroshi

    2005-11-01

    Aerosol samples were collected in the urban atmosphere of Beijing, China, by deploying a tethered balloon. Coarse particles (d > 1 μm) were individually analyzed using electron microscopes, to investigate the extent of dust modification by acidic gases in the atmosphere. Based on the elemental composition, irregularly shaped mineral dust was separated into carbonate and silicate groups. Both sulfate and nitrate were found to accumulate on carbonate more readily than silicate particles. Interestingly, spherical particles resembling Ca-carbonate in composition were spotted frequently in the samples. These Ca-rich spherical particles were more abundant under humid conditions, suggesting that they are deliquesced carbonate particles that formed in the atmosphere following the uptake of acidic gases. Sulfate and nitrate were more frequently detected in the Ca-rich spherical particles than in carbonate in the original solid form, indicating that the gas uptake efficiency of carbonate is further enhanced after the phase transition.

  12. Specific physical and chemical properties of two modifications of poly(N-vinylcaprolcatam)

    Science.gov (United States)

    Chihacheva, I. P.; Timaeva, O. I.; Kuz'micheva, G. M.; Dorohov, A. V.; Lobanova, N. A.; Amarantov, S. V.; Podbel'skiy, V. V.; Serousov, V. E.; Sadovskaya, N. V.

    2016-05-01

    Two modifications of poly(N-vinylcaprolactam)—PVCL25 and PVCL40 (drying of a PVCL solution at 25 and 40°C, respectively)—as powdered films and their solutions were systematically investigated for the first time. Powders were studied by X-ray diffraction, IR spectroscopy, scanning electron microscopy, low-temperature krypton adsorption, and differential scanning calorimetry. Solutions were studied by smallangle X-ray scattering and dynamic light scattering. It was demonstrated that powders of PVCL25 and PVCL40 differ in the characteristics of the sub- and microstructure and in the water content and the solutions differ in the particle size. The relationships between the characteristics of the systems in the solid and liquid state and between the hydrodynamic diameter of PVCL particles in solution and their coagulation time were found.

  13. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    International Nuclear Information System (INIS)

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO2 ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO2 films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO2 based thin film catalysts is discussed.

  14. Chemical modification of bitumen heavy ends and their non-fuel uses

    Energy Technology Data Exchange (ETDEWEB)

    Moschopedis, S.E.; Speight, J.G.

    1976-01-01

    Bitumen asphaltenes undergo a variety of simple chemical conversions. For example, asphaltenes can be oxidized, sulfonated, sulfomethylated, halogenated, and phosphorylated. The net result is the introduction of functional entities into the asphaltene structure which confers interesting properties on the products for which a variety of uses are proposed.

  15. Adiabatic Chemical Freeze-out and Wide Resonance Modification in a Thermal Medium

    CERN Document Server

    Bugaev, K A; Nikonov, E G; Sorin, A S; Zinovjev, G M

    2012-01-01

    Here we develop a model equation of state which successfully parameterizes the thermodynamic functions of hadron resonance gas model at chemical freeze-out and which allows us to naturally explain the adiabatic chemical freeze-out criterion. The present model enables us to clearly demonstrate that at chemical freeze-out the resulting hadronic mass spectrum used in the hadron resonance gas model is not an exponential-like, but a power-like. We argue that such a property of hadronic mass spectrum at chemical freeze-out can be explained by the two new effects found here for wide resonances existing in a thermal environment: the near threshold thermal resonance enhancement and the near threshold resonance sharpening. The effect of resonance sharpening is studied for a sigma meson and our analysis shows that for the temperatures well below 92 MeV the effective width of sigma meson is about 50 to 70 MeV. Thus, the effect of resonance sharpening justifies the usage of the sigma-like field-theoretical models for the ...

  16. Chemical Composition Analysis, Antimicrobial Activity and Cytotoxicity Screening of Moss Extracts (Moss Phytochemistry

    Directory of Open Access Journals (Sweden)

    Laura Klavina

    2015-09-01

    Full Text Available Mosses have been neglected as a study subject for a long time. Recent research shows that mosses contain remarkable and unique substances with high biological activity. The aim of this study, accordingly, was to analyze the composition of mosses and to screen their antimicrobial and anticancer activity. The total concentration of polyphenols and carbohydrates, the amount of dry residue and the radical scavenging activity were determined for a preliminary evaluation of the chemical composition of moss extracts. In order to analyze and identify the substances present in mosses, two types of extrahents (chloroform, ethanol and the GC/MS and LC-TOF-MS methods were used. The antimicrobial activity was tested on four bacteria strains, and the anticancer activity on six cancer cell lines. The obtained results show the presence of a high number of primary (fatty acids and amino acids, but mainly secondary metabolites in moss extracts—including, sterols, terpenoids, polyphenols and others—and a high activity with respect to the studied test organisms.

  17. A chemical screen to identify inducers of the mitochondrial unfolded protein response in C. elegans.

    Science.gov (United States)

    Rauthan, Manish; Pilon, Marc

    2015-01-01

    We previously showed that inhibition of the mevalonate pathway in C. elegans causes inhibition of protein prenylation, developmental arrest and lethality. We also showed that constitutive activation of the mitochondrial unfolded protein response, UPR(mt), is an effective way for C. elegans to become resistant to the negative effects of mevalonate pathway inhibition. This was an important finding since statins, a drug class prescribed to lower cholesterol levels in patients, act by inhibiting the mevalonate pathway, and it is therefore possible that some of their undesirable side effects could be alleviated by activating the UPR(mt). Here, we screened a chemical library and identified 4 compounds that specifically activated the UPR(mt). One of these compounds, methacycline hydrochloride (a tetracycline antibiotic) also protected C. elegans and mammalian cells from statin toxicity. Methacycline hydrochloride and ethidium bromide, a known UPR(mt) activator, were also tested in mice: only ethidium bromide significantly activate the UPR(mt) in skeletal muscles. PMID:27123370

  18. Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening

    Directory of Open Access Journals (Sweden)

    Selvameenal L

    2009-01-01

    Full Text Available An actinomycete strain, Streptomyces hygroscopicus subsp. ossamyceticus (strain D10 was isolated from Thar Desert soil, Rajasthan during the year 2006 and found to produce a yellow color pigment with antibiotic activity. Crude pigment was produced from strain D10 by solid state fermentation using wheat bran medium followed by extraction with ethyl acetate. The antimicrobial activity of the crude pigment was evaluated against drug resistant pathogens such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Staphylococcus aureus, extended spectrum b-lactamase producing cultures of Escherichia coli, Pseudomonas aeruginosa and Klebsiella sp. About 420 mg of crude pigment was produced per 10 g of wheat bran medium. In the disc diffusion method the crude ethyl acetate extract showed a minimum of 10 mm inhibition against Klebsiella sp. and maximum of 19 mm of inhibition against Escherichia coli. The crude pigment was partially purified using thin layer chromatography with the solvent system chloroform:methanol (30:70 and the Rf value was calculated as 0.768. Antimicrobial activity of the partially purified compound from thin layer chromatography was determined using the bioautography method. The purified pigment showed minimum of 15 mm inhibition against Klebsiella sp. and a maximum of 23 mm of inhibition against vancomycin-resistant Staphylococcus aureus in the disc diffusion method. Based on the results of chemical screening, the pigment was tentatively identified as group of sugar containing molecules.

  19. A highly stable and sensitive chemically modified screen-printed electrode for sulfide analysis

    International Nuclear Information System (INIS)

    We report here a highly stable and sensitive chemically modified screen-printed carbon electrode (CMSPE) for sulfide analysis. The CMSPE was prepared by first ion-exchanging ferricyanide into a Tosflex anion-exchange polymer and then sealing with a tetraethyl orthosilicate sol-gel layer. The sol-gel overlayer coating was crucial to stabilize the electron mediator (i.e., Fe(China)63-) from leaching. The strong interaction between the oxy-hydroxy functional group of sol-gel and the hydrophilic sites of Tosflex makes the composite highly rigid to trap the ferricyanide mediator. An obvious electrocatalytic sulfide oxidation current signal at ∼0.20 V versus Ag/AgCl in pH 7 phosphate buffer solution was observed at the CMSPE. A linear calibration plot over a wide range of 0.1 μM to 1 mM with a slope of 5.6 nA/μM was obtained by flow injection analysis. The detection limit (S/N = 3) was 8.9 nM (i.e., 25.6 ppt). Practical utility of the system was applied to the determination of sulfide trapped from cigarette smoke and sulfide content in hot spring water

  20. Zebrafish chemical screening reveals the impairment of dopaminergic neuronal survival by cardiac glycosides.

    Directory of Open Access Journals (Sweden)

    Yaping Sun

    Full Text Available Parkinson's disease is a neurodegenerative disorder characterized by the prominent degeneration of dopaminergic (DA neurons among other cell types. Here we report a first chemical screen of over 5,000 compounds in zebrafish, aimed at identifying small molecule modulators of DA neuron development or survival. We find that Neriifolin, a member of the cardiac glycoside family of compounds, impairs survival but not differentiation of both zebrafish and mammalian DA neurons. Cardiac glycosides are inhibitors of Na(+/K(+ ATPase activity and widely used for treating heart disorders. Our data suggest that Neriifolin impairs DA neuronal survival by targeting the neuronal enriched Na(+/K(+ ATPase α3 subunit (ATP1A3. Modulation of ionic homeostasis, knockdown of p53, or treatment with antioxidants protects DA neurons from Neriifolin-induced death. These results reveal a previously unknown effect of cardiac glycosides on DA neuronal survival and suggest that it is mediated through ATP1A3 inhibition, oxidative stress, and p53. They also elucidate potential approaches for counteracting the neurotoxicity of this valuable class of medications.

  1. Modification of polyetherurethane for biomedical application by radiation-induced grafting. I. Grafting procedure, determination of mechanical properties, and chemical modification of grafted films

    International Nuclear Information System (INIS)

    Radiation grafting of monomers onto suitable trunk polymers is a useful tool for tailoring new polymers for special purposes. This technique has been used in the past for the development of biocompatible materials, e.g., by grafting hydrogels onto mechanically stable polymers. In this first part of our work, the radiation grafting of hydrophilic or reactive monomers onto a polyetherurethane film using the pre-swelling technique is described. Following this technique the trunk polymer was swollen in the monomer before irradiation. As monomers 2-hydroxyethyl methacrylate (HEMA), 2,3-epoxypropyl methacrylate (GMA), 2,3-dihydroxypropyl methacrylate (GOMA), and acrylamide (AAm) were used. The kinetics of the grafting reactions were examined, and the distribution of the graft component inside the trunk polymer was investigated by means of infrared (IR) spectroscopy. Surface-grafted as well as bulk- and surface-grafted products could be obtained. The mechanical behavior of the grafted films--especially in the water-swollen state--was examined and compared with that of the pure trunk polymer. In nearly all cases it was found that the tensile strength sigma B and the elongation at break epsilon R decreases as the grafting yield increases. Modification of GMA- and AAm-grafted films via chemical reactions was performed to create new functional groups of biomedical interest. In this manner a diol structure, a carboxylic acid structure, and a sulfonic acid group could be introduced in the grafted polymer. The water uptake of such modified films is increased markedly when compared with that of the unmodified samples

  2. High-throughput Screening of ToxCast" Phase I Chemicals in an Embryonic Stem Cell Assay Reveals Potential Disruption of a Critical Developmental Signaling Pathway

    Science.gov (United States)

    Little is known about the developmental toxicity of the expansive chemical landscape in existence today. Significant efforts are being made to apply novel methods to predict developmental activity of chemicals utilizing high-throughput screening (HTS) and high-content screening (...

  3. Modification of the radiation resistance of Aspergillus flavus mycelial units by some chemicals

    International Nuclear Information System (INIS)

    Survival curves for the mycelium of Aspergillus flavus Link var. columnaris Raper and Fennell were constructed after irradiation with gamma rays in the presence of NaCl, NaBr, NaI, KCl, KBr, KI, CaCl2, CaBr2, CaI2, Ca(NO3)2, NaNO2, NaNO3, KNO2, iodoacetic acid, iodoacetamide and vitamin K5. In addition iodized salt was also tested. All the chemicals tested exhibited initial toxicity at zero dose. However, most of the chemicals demonstrated a synergism when present during irradiation. Compounds containing iodine were invariably the strongest radiosensitizers. The iodine present as an admixture in salt also retained its radiosensitizing character. Sodium bromide and calcium bromide behaved in a different way. The initial toxicity was reduced along with an increase in radiation dose resulting in more survival. (orig.)

  4. International coordinated research on the chemical modification of cancer treatment using AK-2123- clinical study

    International Nuclear Information System (INIS)

    The international coordinated clinical study on the AK-2123 sensitized radiotherapy demonstrated the promising results to improve the radiation response of various tumors such as oral cavity, head and neck, lung, esophagus, mammary, uterine cervical, endometrium and others. On the basis of the extensive fundamental studies on the multimodality treatment of cancer using AK-2123 and other chemical modifiers, further clinical study will achieve more higher curability in the radiotherapy of various cancers. 23 refs., tabs

  5. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  6. Cell-penetrating peptides; chemical modification, mechanism of uptake and formulation development

    OpenAIRE

    Ezzat, Kariem

    2012-01-01

    Gene therapy holds the promise of revolutionizing the way we treat diseases. By using recombinant DNA and oligonucleotides (ONs), gene functions can be restored, altered or silenced according to the therapeutic need. However, gene therapy approaches require the delivery of large and charged nucleic acid-based molecules to their intracellular targets across the plasma membrane, which is inherently impermeable to such molecules. In this thesis, two chemically modified cell-penetrating peptides ...

  7. Modifications of chemical functional groups of Pandanus amaryllifolius Roxb and its effect towards biosorption of heavy metals

    Science.gov (United States)

    Abdullah, Mohd. Zamri; Ismail, Siti Salwa

    2015-07-01

    The utilization of non-living biomass as an alternative biosorbent for heavy metal removal has gain a tremendous consideration through the years. Pandanus amaryllifolius Roxb or pandan leaves, which is widely used as food additives in the South East Asia region, has been selected for its viability in the said effort due to the presence of chemical functional groups on its cellular network that enables the sorption to occur. In order to elucidate the possible mechanisms participated during the heavy metal removal process, the biosorbent undergone a series of modification techniques to alter the chemical functional groups present on its constituent. From the outcome of the chemically-modified biosorbent being subjected to the contact with metal cations, nitrogen- and oxygen-containing groups present on the biosorbent are believed to be responsible for the metal uptake to occur through complexation mechanism. Modifying amine groups causes 14% reduction of Cu(II) uptake, whereas removing protein element increases the uptake to 26% as compared to the unmodified biosorbent. Also, scanning electron micrographs further suggested that the adsorption mechanism could perform in parallel, as attributed to the evidence of porous structure throughout the biosorbent fibrous nature.

  8. Modifications of chemical functional groups of Pandanus amaryllifolius Roxb and its effect towards biosorption of heavy metals

    International Nuclear Information System (INIS)

    The utilization of non-living biomass as an alternative biosorbent for heavy metal removal has gain a tremendous consideration through the years. Pandanus amaryllifolius Roxb or pandan leaves, which is widely used as food additives in the South East Asia region, has been selected for its viability in the said effort due to the presence of chemical functional groups on its cellular network that enables the sorption to occur. In order to elucidate the possible mechanisms participated during the heavy metal removal process, the biosorbent undergone a series of modification techniques to alter the chemical functional groups present on its constituent. From the outcome of the chemically-modified biosorbent being subjected to the contact with metal cations, nitrogen- and oxygen-containing groups present on the biosorbent are believed to be responsible for the metal uptake to occur through complexation mechanism. Modifying amine groups causes 14% reduction of Cu(II) uptake, whereas removing protein element increases the uptake to 26% as compared to the unmodified biosorbent. Also, scanning electron micrographs further suggested that the adsorption mechanism could perform in parallel, as attributed to the evidence of porous structure throughout the biosorbent fibrous nature

  9. Modifications of chemical functional groups of Pandanus amaryllifolius Roxb and its effect towards biosorption of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Mohd Zamri, E-mail: zamriab@petronas.com.my; Ismail, Siti Salwa [Chemical Engineering Department, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2015-07-22

    The utilization of non-living biomass as an alternative biosorbent for heavy metal removal has gain a tremendous consideration through the years. Pandanus amaryllifolius Roxb or pandan leaves, which is widely used as food additives in the South East Asia region, has been selected for its viability in the said effort due to the presence of chemical functional groups on its cellular network that enables the sorption to occur. In order to elucidate the possible mechanisms participated during the heavy metal removal process, the biosorbent undergone a series of modification techniques to alter the chemical functional groups present on its constituent. From the outcome of the chemically-modified biosorbent being subjected to the contact with metal cations, nitrogen- and oxygen-containing groups present on the biosorbent are believed to be responsible for the metal uptake to occur through complexation mechanism. Modifying amine groups causes 14% reduction of Cu(II) uptake, whereas removing protein element increases the uptake to 26% as compared to the unmodified biosorbent. Also, scanning electron micrographs further suggested that the adsorption mechanism could perform in parallel, as attributed to the evidence of porous structure throughout the biosorbent fibrous nature.

  10. Chemical screening of guggul (Commiphora wightii accessions collected from different natural habitats of Gujarat

    Directory of Open Access Journals (Sweden)

    N.A. Gajbhiye

    2011-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} (Abstract selected from presentation in National Conference on Biodiversity of Medicinal and Aromatic Plants: Collection, Characterization and Utilization, held at Anand, India during November 24-25, 2010   Guggul (Commiphora wightii is naturally distributed in the drier tracts of Gujarat. In the present study twenty six accessions collected from different part of Gujarat was used for chemical screening. Guggulsterone-Z, is an important secondary metabolite of C. wightii. Determination of guggulsterone-Z was conducted by High performance Liquid chromatography method. Chromatographic separation was achieved on a C18 column using mobile phase water– acetonitrile system. Detection was set at UV wavelength of 242 nm. The ethyl acetate extract of dried stem bark evaporated and dissolved in methanol used for HPLC analysis. The content of guggulsterones-Z was determined in stem bark of Gujarat collection. Guggulsterone-Z varied greatly among the accession and its range was 0.05± 0.01% to 0.92± 0.24 %. Percentage of guggulsterone-Z was lowest in Guj 15 and it was highest in Guj 2. The screening was done based on the sex of the plant also. It was found that among the females, guggulsterone-Z content varied from

  11. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization

    Science.gov (United States)

    Liu, Yang; Shen, Xin; Zhou, Huan; Wang, Yingjun; Deng, Linhong

    2016-05-01

    We develop a novel chitosan-citric acid film (abbreviated as CS-CA) suitable for biomedical applications in this study. In this CS-CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS-CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS-CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS-CA film. This CS-CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

  12. Isocyanate-terminated Polyethers Toughened Epoxy Resin: Chemical Modification, Thermal Properties, and Mechanical Strength

    Institute of Scientific and Technical Information of China (English)

    CAI Haopeng; WANG Jun; WANG Xiang; XU Renxin

    2007-01-01

    The toughening of the diglycidyl ether of bisphenol A epoxy resin with isocyanateterminated polyethers (ITPE) was investigated. The progress of the reaction and the structural changes during modification process were studied using FTIR spectroscopy. The studies support the proposition that TDI (tolylene diisocyanate) acts as a coupling agent between the epoxy and polyethers, forming a urethane linkage with the former and the latter, respectively. Me THPA-cured ER/ITPs blends were characterized using dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). It is indicated the glass transition temperature (Tg) of systems was lower than the Tg of pure epoxy resin and overfull ITPE separated from the modified epoxy resin and formed another phase at an ITPE-content of more than 10wt%. The thermal stability was decreased by the introduction of ITPE. The impact strength and the flexural strength of the cured modifiedepoxy increased with increasing the ITPE content and a maximum plateau value of about 24.03 kJ/m2 and 130.56 MPa was measured in 10wt% ITPE. From scanning electron microscopy (SEM) studies of the fractrue surfaces of ER/ITPE systems, the nature of the micromechanisms responsible for the increases in toughness of the systems was identified.

  13. Enzymatic modification of palmarosa essential oil: chemical analysis and olfactory evaluation of acylated products.

    Science.gov (United States)

    Ramilijaona, Jade; Raynaud, Elsa; Bouhlel, Charfeddine; Sarrazin, Elise; Fernandez, Xavier; Antoniotti, Sylvain

    2013-12-01

    We have developed an enzymatic protocol to modify the composition of palmarosa essential oil by acylation of its alcohol components by three different acyl donors at various rates. The resulting modified products were characterized by qualitative and quantitative analyses by gas chromatography, and their olfactory properties were evaluated by professional perfumers. We showed that our protocol resulted in two types of modifications of the olfactory properties. The first and most obvious effect observed was the decrease of the alcohol content, with the concomitant increase of the corresponding esters, along with their fruity notes (pear, most notably). The second and less obvious effect was the expression of notes from minor components ((E)-β-ocimene, linalool, β-caryophyllene, and farnesene), originally masked by the sweet-floral-rose odor of geraniol, present in 70% in the palmarosa essential oil used, and emergence of citrus, green, spicy and clove characters in the modified products. This methodology might be considered in the future as a sustainable route to new natural ingredients for the perfumer. PMID:24327448

  14. In vitro OECD test methods applied to screen the estrogenic effect of chemicals, used in Korea.

    Science.gov (United States)

    Lee, Hee-Seok; Park, Eun-Jung; Han, Songyi; Oh, Gyeong-Yong; Kim, Min-Hee; Kang, Hui-Seung; Suh, Jin-Hyang; Oh, Jae-Ho; Lee, Kwang-Soo; Hwang, Myung-Sil; Moon, Guiim; Hong, Jin-Hwan; Hwang, In-Gyun

    2016-09-01

    In this study, 27 chemicals found in household products, which became an issue in Korea were screened for the agonistoc and antagonistic effects against human estrogen receptor using official Organization for Economic Cooperation and Development (OECD) in vitro assays, STTA assay using ERα-HeLa-9903 cell line and BG1Luc ER TA assay. In the case of human ER agonist screening by two assays, all tested chemicals did not show agonist effect against ER. In ER antagonist test by BG1Luc ER TA assay, five surfactants α-dodecyl-ω-hydroxypoly(oxyethylene), alcohols C16-18 ethoxylated, nonylphenol, ethoxylated, 3,6,9,12,15,18,21-heptaoxatritriacontan-1-ol, and α-dodecyl-ω-hydroxypoly(oxy-1,2-ethanediyl)) were found to exhibit weak antagonistic activities. The agonist/antagonist effects against human estrogen receptor of various chemicals, used in Korea by OECD test guideline are reported in this study. These results indicated that two OECD in vitro assays will can be applied in Korea by screening of agonistic/antagonistic effects against human ER of various chemicals. PMID:27317829

  15. Studies on chemical modification of papain by 5-chlorosulfonyl-2-oxobenzimidazole as biotin model compound

    OpenAIRE

    石橋, 文秀; 森藤, 昌樹; 根来, 千晴; 園田, 章; 片山, あずさ; 武部, 靖

    2009-01-01

     5-chlorosulfonyl-2-oxobenzimidazole(1) was synthesized.  On adding 1 to the suspension of papain in acetonitrile containing formamide, 1 was introduced into the papain in a yield of 7%, suggesting that 1 modified papain chemically to give 2-oxobenzimidazolesulfonyl papain(OBI- papain).  Also, it was found in-terestingly that papain activity of OBI-papain was maintained and that SH group in the active center in the large cleft of papain was free.  Accordingly, It expects that OBI-papain might...

  16. Infrared spectroscopic imaging detects chemical modifications in liver fibrosis due to diabetes and disease

    Science.gov (United States)

    Sreedhar, Hari; Varma, Vishal K.; Gambacorta, Francesca V.; Guzman, Grace; Walsh, Michael J.

    2016-01-01

    The importance of stroma as a rich diagnostic region in tissue biopsies is growing as there is an increasing understanding that disease processes in multiple organs can affect the composition of adjacent connective tissue regions. This may be especially true in the liver, since this organ’s central metabolic role exposes it to multiple disease processes. We use quantum cascade laser infrared spectroscopic imaging to study changes in the chemical status of hepatocytes and fibrotic regions of liver tissue that result from the progression of liver cirrhosis to hepatocellular carcinoma and the potentially confounding effects of diabetes mellitus. PMID:27375956

  17. Modification of fiber properties through grafting of acrylonitrile to rayon by chemical and radiation methods

    OpenAIRE

    Inderjeet Kaur; Neelam Sharma; Vandna Kumari

    2013-01-01

    Fibrous properties of rayon has been modified through synthesis of graft copolymers of rayon with acrylonitrile (AN) by chemical method using ceric ammonium nitrate (CAN/HNO3) as a redox initiator and gamma radiation mutual method. Percentage of grafting (Pg) was determined as a function of initiator concentration, monomer concentration, irradiation dose, temperature, time of reaction and the amount of water. Maximum percentage of grafting (160.01%) using CAN/HNO3 was obtained at [CAN] = 22.8...

  18. Wet-chemical approach for the cell-adhesive modification of polytetrafluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Matthias; Dahm, Manfred; Vahl, Christian-F, E-mail: mgabriel@uni-mainz.de [Department of Cardiothoracic and Vascular Surgery, Johannes Gutenberg-University School of Medicine, Mainz (Germany)

    2011-06-15

    Polytetrafluoroethylene (PTFE), a frequently utilized polymer for the fabrication of synthetic vascular grafts, was surface-modified by means of a wet-chemical process. The inherently non-cell-adhesive polymer does not support cellular attachment, a prerequisite for the endothelialization of luminal surface grafts in small diameter applications. To impart the material with cell-adhesive properties a treatment with sodium-naphthalene provided a basis for the subsequent immobilization of the adhesion promoting RGD-peptide using a hydroxy- and amine-reactive crosslinker. Successful conjugation was shown with cell culture experiments which demonstrated excellent endothelial cell growth on the modified surfaces.

  19. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    1990-02-01

    This report summarizes research progress made during the period October 1, 1988--September 30, 1989. We report advances in the following general areas: (1) chemical-steam simulation model, (2) vapor-liquid flow in porous media, (3) foam flow in porous media, (4) caustic flooding at elevated temperatures, and (5) reservoir heterogeneity. Additional efforts have been devoted in the last quarter of the past year in upgrading and debugging the simulator. New features were added in three-phase relative permeabilities, the vertical equilibrium and the phase behavior subroutines. 123 refs., 79 figs., 2 tabs.

  20. Chemical surface modification of glass beads for the treatment of paper machine process waters

    Energy Technology Data Exchange (ETDEWEB)

    Jradi, Khalil, E-mail: khalil.jradi@uqtr.c [Centre de Recherche en Pates et Papiers, Universite du Quebec a Trois Rivieres, 3351 boul. des forges, C.P. 500, Trois Rivieres, QC, G9A-5H7 (Canada); Daneault, Claude [Canada Research Chair in Value-Added Paper Manufacturing (Canada); Chabot, Bruno [Centre de Recherche en Pates et Papiers, Universite du Quebec a Trois Rivieres, 3351 boul. des forges, C.P. 500, Trois Rivieres, QC, G9A-5H7 (Canada)

    2011-04-29

    Adsorption of detrimental contaminants on a solid sorbent is proposed to remove these contaminants from process waters to increase water recycling and reduce effluent loads in the papermaking industry. A self-assembly process of attaching (covalent grafting) cationic aminosilane molecules to glass beads was investigated. The existence and the hydrolytic stability of self-assembled monolayers and multilayers were confirmed by X-Ray Photoelectron Spectroscopy and contact angle measurements. Effects of reaction time and curing on aminosilane layer structures are also discussed. The curing step after silanization seems to be crucial in the hydrophobization of the quaternary ammonium silane coated onto glass beads, and curing could affect the final chemical structure of the ammonium groups of grafted organosilane. Results indicated that modified glass beads have a strong hydrophobicity, which is attributed to the hydrophobic property of the longest carbon chain grafted onto the glass surface. Adsorption of a model contaminant (stearic acid) onto chemically modified glass beads was determined using colloidal titration. Hydrophobic interactions could be the main driving force involved between the long carbon chains of stearic acid and the carbon chains of the aminosilane layers on glass bead surfaces. Finally, self-assembly processes applied onto glass beads may have two promising applications for papermaking and self-cleaning systems.

  1. Chemical surface modification of glass beads for the treatment of paper machine process waters

    International Nuclear Information System (INIS)

    Adsorption of detrimental contaminants on a solid sorbent is proposed to remove these contaminants from process waters to increase water recycling and reduce effluent loads in the papermaking industry. A self-assembly process of attaching (covalent grafting) cationic aminosilane molecules to glass beads was investigated. The existence and the hydrolytic stability of self-assembled monolayers and multilayers were confirmed by X-Ray Photoelectron Spectroscopy and contact angle measurements. Effects of reaction time and curing on aminosilane layer structures are also discussed. The curing step after silanization seems to be crucial in the hydrophobization of the quaternary ammonium silane coated onto glass beads, and curing could affect the final chemical structure of the ammonium groups of grafted organosilane. Results indicated that modified glass beads have a strong hydrophobicity, which is attributed to the hydrophobic property of the longest carbon chain grafted onto the glass surface. Adsorption of a model contaminant (stearic acid) onto chemically modified glass beads was determined using colloidal titration. Hydrophobic interactions could be the main driving force involved between the long carbon chains of stearic acid and the carbon chains of the aminosilane layers on glass bead surfaces. Finally, self-assembly processes applied onto glass beads may have two promising applications for papermaking and self-cleaning systems.

  2. Direct synthesis of hydrophobic graphene-based nanosheets via chemical modification of exfoliated graphene oxide.

    Science.gov (United States)

    Wang, Jigang; Wang, Yongsheng; He, Dawei; Liu, Zhiyong; Wu, Hongpeng; Wang, Haiteng; Zhao, Yu; Zhang, Hui; Yang, Bingyang; Xu, Haiteng; Fu, Ming

    2012-08-01

    Hydrophobic graphene-based material at the nanoscale was prepared by treatment of exfoliated graphene oxide with organic isocyanates. The lipophilic modified graphene oxide (LMGO) can then be exfoliated into the functionalized graphene nanoplatelets that can form a stable dispersion in polar aprotic solvents. AFM image shows the thickness of LMGO is approximately 1 nm. Characterization of LMGO by elemental analysis suggested that the chemical treatment results in the functionalization of the carboxyl and hydroxyl groups in GO via formation of amides and carbamate esters, respectively. The degree of GO functionalization can be controlled via either the reactivity of the isocyanate or the reaction time. Then we investigated the thermal properties of the SPFGraphene by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the TGA curve shows a greater weight loss of approximately 20% occurred indicating removal of functional groups from the LMGO sheets and an obvious exothermic peak at 176 degrees can be observed from 150 to 250 degrees. We also compared the structure of graphene oxide with the structure of chemical treated graphene oxide by FT-IR spectroscopy. The morphology and microstructure of the LMGO nanosheets were also characterized by SEM and XRD. Graphene can be used to fabricate a wide range of simple electronic devices such as field-effect transistors, resonators, quantum dots and some other extensive industrial manufacture such as super capacitor, li ion battery, solar cells and even transparent electrodes in device applications. PMID:22962765

  3. Chemical modification of poly (lactic acid) and its research progress%聚乳酸的化学改性及研究进展

    Institute of Scientific and Technical Information of China (English)

    唐志民; 马新宾

    2016-01-01

    综述了PLA化学改性的主要方法及研究发展现状,主要包括缩合共聚改性和开环共聚改性,并重点概述了PLA的接枝改性研究现状,对各种改性方法的改性效果进行了论述.%The main modification methods of PLA including condensation copolymerization and ring-opening copolymerization,and their research progress are reviewed.The chemical grafting modification of PLA are highlighted.The modification effects of each method are also compared.

  4. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    International Nuclear Information System (INIS)

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate daily intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models

  5. Epigenome: A Biomarker or Screening Tool to Evaluate Health Impact of Cumulative Exposure to Chemical and Non-Chemical Stressors.

    Science.gov (United States)

    Olden, Kenneth; Lin, Yu-Sheng; Bussard, David

    2016-06-01

    Current risk assessment practices and toxicity information are hard to utilize for assessing the health impact of combined or cumulative exposure to multiple chemical and non-chemical stressors encountered in the "real world" environment. Non-chemical stressors such as heat, radiation, noise, humidity, bacterial and viral agents, and social factors, like stress related to violence and socioeconomic position generally cannot be currently incorporated into the risk assessment paradigm. The Science and Decisions report released by the National Research Council (NRC) in 2009 emphasized the need to characterize the effects of multiple stressors, both chemical and non-chemical exposures. One impediment to developing information relating such non-chemical stressors to health effects and incorporating them into cumulative assessment has been the lack of analytical tools to easily and quantitatively monitor the cumulative exposure to combined effects of stressors over the life course. PMID:27534725

  6. Epigenome: A Biomarker or Screening Tool to Evaluate Health Impact of Cumulative Exposure to Chemical and Non-Chemical Stressors

    OpenAIRE

    Kenneth Olden; Yu-Sheng Lin; David Bussard

    2016-01-01

    Current risk assessment practices and toxicity information are hard to utilize for assessing the health impact of combined or cumulative exposure to multiple chemical and non-chemical stressors encountered in the “real world” environment. Non-chemical stressors such as heat, radiation, noise, humidity, bacterial and viral agents, and social factors, like stress related to violence and socioeconomic position generally cannot be currently incorporated into the risk assessment paradigm. The Scie...

  7. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    International Nuclear Information System (INIS)

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  8. International coordinated research on the chemical modification of cancer treatment using AK-2123- fundamental study

    International Nuclear Information System (INIS)

    AK-2123 sensitized a little CDDP (1.5 mg/kg) chemotherapy of MM46 tumor bearing mouse. Hyperthermia alone was effective for this tumor and sensitized by both AK-2123 (200 mg/kg) and CDDP (1.5 mg/kg). AK-2123 enhanced the chemo (CDDP) -thermotherapy. AK-2123 was less toxic than miso and sensitized radiotherapy, hyperthermia, chemotherapy and combined modalities of radiothermotherapy, chemo-radiotherapy, chemo-thermotherapy and chemo-radio-thermotherapy caused by the sensitization of cell killing and tumor blood flow suppression effect. Recent results of ultra low dose effect of AK-2123 on the survival time of leukemic mice and inhibition of lung metastasis implies the stimulation of certain immune function. Further fundamental study will make clear the physiologic action mechanism of AK-2123 as a chemical modifier of cancer treatment. 16 refs., tabs

  9. Tuning the Electrical Properties of Graphene via Nitrogen Plasma-Assisted Chemical Modification.

    Science.gov (United States)

    Jung, Min Wook; Song, Wooseok; Jung, Dae Sung; Lee, Sun Sook; Park, Chong-Yun; An, Ki-Seok

    2016-03-01

    The control in electrical properties of graphene is essentially required in order to realize graphenebased nanoelectronics. In this study, N-doped graphene was successfully obtained via nitrogen plasma treatment. Graphene was synthesized on copper foil using thermal chemical vapor deposition. After N2 plasma treatment, the G-band of the graphene was blueshifted and the intensity ratio of 2D- to G-bands decreased with increasing the plasma power. Pyrrolic-N bonding configuration induced by N2 plasma treatment was studied by X-ray photoelectron spectroscopy. Remarkably, electrical characterization including Hall measurement and I-V characteristics of the N-doped graphene exhibit semiconducting behavior as well as the n-type doping effect. PMID:27455703

  10. Selective charge doping of chemical vapor deposition-grown graphene by interface modification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengnan, E-mail: wang.shengnan@lab.ntt.co.jp; Suzuki, Satoru; Furukawa, Kazuaki; Orofeo, Carlo M.; Takamura, Makoto; Hibino, Hiroki [NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198 (Japan)

    2013-12-16

    The doping and scattering effect of substrate on the electronic properties of chemical vapor deposition (CVD)-grown graphene are revealed. Wet etching the underlying SiO{sub 2} of graphene and depositing self-assembled monolayers (SAMs) of organosilane between graphene and SiO{sub 2} are used to modify various substrates for CVD graphene transistors. Comparing with the bare SiO{sub 2} substrate, the carrier mobility of CVD graphene on modified substrate is enhanced by almost 5-fold; consistently the residual carrier concentration is reduced down to 10{sup 11} cm{sup −2}. Moreover, scalable and reliable p- and n-type graphene and graphene p-n junction are achieved on various silane SAMs with different functional groups.

  11. Selective charge doping of chemical vapor deposition-grown graphene by interface modification

    International Nuclear Information System (INIS)

    The doping and scattering effect of substrate on the electronic properties of chemical vapor deposition (CVD)-grown graphene are revealed. Wet etching the underlying SiO2 of graphene and depositing self-assembled monolayers (SAMs) of organosilane between graphene and SiO2 are used to modify various substrates for CVD graphene transistors. Comparing with the bare SiO2 substrate, the carrier mobility of CVD graphene on modified substrate is enhanced by almost 5-fold; consistently the residual carrier concentration is reduced down to 1011 cm−2. Moreover, scalable and reliable p- and n-type graphene and graphene p-n junction are achieved on various silane SAMs with different functional groups

  12. Selective charge doping of chemical vapor deposition-grown graphene by interface modification

    Science.gov (United States)

    Wang, Shengnan; Suzuki, Satoru; Furukawa, Kazuaki; Orofeo, Carlo M.; Takamura, Makoto; Hibino, Hiroki

    2013-12-01

    The doping and scattering effect of substrate on the electronic properties of chemical vapor deposition (CVD)-grown graphene are revealed. Wet etching the underlying SiO2 of graphene and depositing self-assembled monolayers (SAMs) of organosilane between graphene and SiO2 are used to modify various substrates for CVD graphene transistors. Comparing with the bare SiO2 substrate, the carrier mobility of CVD graphene on modified substrate is enhanced by almost 5-fold; consistently the residual carrier concentration is reduced down to 1011 cm-2. Moreover, scalable and reliable p- and n-type graphene and graphene p-n junction are achieved on various silane SAMs with different functional groups.

  13. Chemical modification of Sago starch by solvent less esterification with fatty acid chlorides

    International Nuclear Information System (INIS)

    Sago starch was chemically modified by esterification reaction with fatty acid chlorides to produce a non-polar sago ester in the absence of an organic solvent. The sago esters were prepared by first pretreatment of sago starch with excess formic acid at 90 degree Celsius for 40 minutes followed by acetylation with acid chloride (octanoyl and lauroyl chlorides). The maximum yields of 80 % and 73 % with the same degree of substitution (DS) of 1.2 for octanoate and lauroate sago esters were obtained respectively. The presence of ester carbonyl group in the FT-IR spectra of the ester products showed that the sago starch has been esterified. The intensities of carbonyl and methyl peaks were decreased with the increasing of DS. (author)

  14. Regularities of development of unspecific reaction of cells, and modification of chemical protection

    International Nuclear Information System (INIS)

    Regularities of development of a unspecific reaction of cells under the effect of different substances belonging to weak electrolytes have been studied. It was demonstrated that the rate of the unspecific reaction development under the effect of cysteamine and caffeine-benzoate depends on the agent concentration, temperature and pH of a medium. It was established that the response of a cell is determined by the overall intracellular concentration of the agent rather than by its specific character. The total concentration of the substance inside the cell depends on its physico-chemical characteristics and, with a pH gradient between cell and medium, can markedly vary from that in the medium. With similar intracellular content, both substances proved to be virtually equally effective. This suggests that it is possible to assess the effectiveness of some other biologically active substances many of which are weak electrolytes

  15. Modification of Chemically Exfoliated Graphene to Produce Efficient Piezoresistive Polystyrene-Graphene Composites

    Science.gov (United States)

    Nasirpouri, Farzad; Pourmahmoudi, Hassan; Abbasi, Farhang; Littlejohn, Samuel; Chauhan, Ashok S.; Nogaret, Alain

    2015-10-01

    We report the chemical exfoliation of grapheneoxide from graphite and its subsequent reduction to graphene nanosheets (GN) to obtain highly conducting composites of graphene sheets in a polymer matrix. The effect of using graphite nanoparticles or flakes as precursors, and different drying methods, was investigated to obtain multilayer graphene sheets of atomically controlled thickness, which was essential to optimizing their dispersion in a polystyrene (PS) polymer matrix. In situ emulsion polymerization of the styrene monomer in the presence of GN was performed to obtain thin composite films with highly uniform dispersion and fewer graphene layers when GN were obtained from graphite flakes then freeze drying. The highest electrical conductivity of PS-GN composites was ~0.01 S/m for a graphene filling fraction of 2%. The piezoresistance of the PS-GN composites was evaluated and used in pressure sensor arrays with pressure field imaging capability.

  16. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E., E-mail: geiza.oliveira@ufes.br [Universidade Federal do Espirito Santo (CCE/DQUI/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Souza Junior, F.G. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-11-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  17. Physical and chemical modifications of surface properties lead to alterations in osteoblast behavior

    Science.gov (United States)

    Dorst, Kathryn Elizabeth

    Proper formation of the bone extracellular matrix (ECM), or osteoid, depends on the surface properties of pre-existing tissue and the aqueous chemical environment. Both of these factors greatly influence osteoblast migration, cytoskeletal organization, and calcium nodule production, important aspects when considering the biocompatibility of bone implants. By perturbing the physical and/or chemical micro-environment, it may be possible to elucidate effects on cellular function. To examine these factors, murine pre-osteoblasts (MC3T3-E1 subclones 4 and 24) were seeded on polydimethylsiloxane (PDMS) substrates containing "wide" micro-patterned ridges (20 mum width, 30 mum pitch, & 2 mum height), "narrow" micro-patterned ridges (2 mum width, 10 mum pitch, 2 mum height), no patterns (flat PDMS), and standard tissue culture (TC) polystyrene as a control. Zinc concentration was adjusted to mimic deficient (0.23 muM), serum-level (3.6 muM), and zinc-rich (50 muM) conditions. It was found that cells exhibited distinct anisotropic migration in serum-level zinc and zinc-deficient media on the wide PDMS patterns, however this was disrupted under zinc-rich conditions. Production of differentiation effectors, activated metalloproteinase-2 (MMP-2) and transforming growth factor - beta 1 (TGF-beta1), was increased with the addition of exogenous zinc. Early stage differentiation, via alkaline phosphatase, was modified by zinc levels on patterned polydimethylsiloxane (PDMS) surfaces, but not on flat PDMS or tissue culture polystyrene (TC). Late stage differentiation, visualized through calcium phosphate nodules, was markedly different at various zinc levels when the cells were cultured on TC substrates. This susceptibility to zinc content can lead to differences in bone mineral production on certain substrates if osteoblasts are not able to maintain and remodel bone effectively, a process vital to successful biomaterial integration.

  18. Effect of MWCNT surface and chemical modification on in vitro cellular response

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs with diameter in the range of 10–30 nm) before and after chemical surface functionalisation on macrophages response. The study has shown that the detailed analysis of the physicochemical properties of this particular form of carbon nanomaterial is a crucial issue to interpret properly its impact on the cellular response. Effects of carbon nanotubes (CNTs) characteristics, including purity, dispersity, chemistry and dimension upon the nature of the cell environment–material interaction were investigated. Various techniques involving electron microscopy (SEM, TEM), infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy have been employed to evaluate the physicochemical properties of the materials. The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell–nanotube interaction. Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process. The results indicate that MWCNT-F in macrophages may decrease the cell proliferation process by interfering with the mitotic apparatus without negative consequences on cell viability. On the contrary, the as-prepared MWCNTs, without any surface treatment produce the least reduction in cell proliferation with reference to control, and the viability of cells exposed to this sample was substantially reduced with respect to control. A possible explanation of such a phenomenon is the presence of MWCNT’s agglomerates surrounded by numerous cells releasing toxic substances.

  19. Electrochemical study on screen-printed carbon electrodes with modification by iron nanoparticles in Fe(CN)(6) (4-/3-) redox system.

    Science.gov (United States)

    Lee, Shyh-Hwang; Fang, Hung-Yuan; Chen, Wen-Chang; Lin, Hong-Ming; Chang, C Allen

    2005-10-01

    The remarkable enhancement of electron transfer on screen-printed carbon electrodes (SPCEs) with modification by iron nanoparticles (Fe(nano)), coupled with Fe(CN)(6) (4-/3-) redox species, was characterized with an increase of electroactive area (A (ea)) at electrode surface together with a decrease of heterogeneous electron transfer rate constant (k degrees ) in the system. Hence, Fe(nano)-Fe(CN)(6) (3-) SPCEs with deposition of glucose oxidase (GOD) demonstrated a higher sensitivity to various glucose concentrations than Fe(CN)(6) (3-)/GOD-deposited SPCEs. In addition, an inhibited diffusion current from cyclic voltammograms was also observed with an increase in redox concentration and complicated the estimation of A (ea). Further analysis by the electrochemical impedance method, it was shown that this effect might be resulted from the electrode surface blocking by the products of activated complex decomposition. PMID:16136306

  20. Big Data in Chemical Toxicity Research: The Use of High-Throughput Screening Assays To Identify Potential Toxicants

    OpenAIRE

    Zhu, Hao; Zhang, Jun; Kim, Marlene T.; Boison, Abena; Sedykh, Alexander; Moran, Kimberlee

    2014-01-01

    High-throughput screening (HTS) assays that measure the in vitro toxicity of environmental compounds have been widely applied as an alternative to in vivo animal tests of chemical toxicity. Current HTS studies provide the community with rich toxicology information that has the potential to be integrated into toxicity research. The available in vitro toxicity data is updated daily in structured formats (e.g., deposited into PubChem and other data-sharing web portals) or in an unstructured way ...

  1. Guided self-assembly of block-copolymer for CMOS technology: a comparative study between grapho-epitaxy and surface chemical modification

    Science.gov (United States)

    Oria, Lorea; Ruiz de Luzuriaga, Alaitz; Chevalier, Xavier; Alduncin, Juan A.; Mecerreyes, David; Tiron, Raluca; Gaugiran, Stephanie; Perez-Murano, Francesc

    2011-04-01

    Recent progress in Block Copolymer lithography has shown that guided self-assembly is a viable alternative for pushing forward the resolution limits of optical lithography. The main two self assembly methods considered so far have been the surface chemical modification, which is based on the chemical modification of a brush grafted to the silicon, and the grapho-epitaxy, which is based on creating topographic patterns on the surface. We have tested these two approaches for the 22 nm node and beyond CMOS technology, using PS-PMMA block copolymers synthesized by RAFT (Reversible Addition-Fragmentation Chain Transfer) polymerization.

  2. A study of chemical modifications of a Nafion membrane by incorporation of different room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de Yuso, M.V.; Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga (Spain); Neves, L.A.; Coelhoso, I.M.; Crespo, J.G. [REQUIMTE/CQFB, Departamento de Quimica, Universidade Nova de Lisboa, Caparica (Portugal); Benavente, J. [Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga (Spain)

    2012-08-15

    Surface and bulk chemical changes in a Nafion membrane as a result of room temperature ionic liquids (RTILs) incorporation were determined by X-ray photoelectron spectroscopy (XPS) and elemental analysis, respectively. RTILs with different physicochemical properties were selected. Two imidazolium based RTIL-cations (1-octyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) were used to detect the effect of cation size on membrane modification, while the effect of the RTIL hydrophilic/hydrophobic character was also considered by choosing different anions. Angle resolved XPS measurements (ARXPS) were carried out varying the angle of analysis between 15 and 75 to get elemental information on the Nafion/RTIL-modified membranes interactions for a deepness of around 10 nm. Moreover, changes in the RTIL-modified membranes associated to thermal effect were also considered by analyzing the samples after their heating at 120 C for 24 h. Agreement between both chemical techniques, bulk and destructive elemental analysis and surface and non-destructive XPS, were obtained. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A superhydrophobic and oleophilic sorbent powder was developed by surface modification of commercially available hygroscopic magnesium carbonate with palmitic acid. • The sorbent powder is capable of scavenging oil for about three times its weight. • Reusability test of the sorbent powder infers the retention of hydrophobic as well as oleophilic character even after three times of re-use. • The powder was found to possess sufficient buoyancy, high rate of uptake and selectivity towards oil which is necessary for oil spill clean-ups. - Abstract: The wettability of hygroscopic magnesium carbonate has been modified to develop a superhydrophobic and oleophilic sorbent for oil spill clean-ups via a simple chemical process using palmitic acid. The prepared material was characterized using X-ray diffraction, Fourier transform infra-red spectroscopy, and scanning electron microscopy. Wettability test infers that the sorbent has a static water contact angle of 154 ± 1°, thereby indicating its superhydrophobic character. The sorbent was capable of scavenging oil for about three times its weight, as determined from oil sorption studies, carried out using the sorbent on model oil-water mixture. Interestingly, the chemically modified sorbent has high selectivity, buoyancy, and rate of uptake of oil. Further, the reusability studies confirm the repeatable usage of the sorbent and its efficacy in oil spill remediation

  4. Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water

    Energy Technology Data Exchange (ETDEWEB)

    Patowary, Manoj [Advanced Technology Development Center, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Ananthakrishnan, Rajakumar, E-mail: raja.iitchem@yahoo.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Pathak, Khanindra [Department of Mining Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302 (India)

    2014-11-30

    Graphical abstract: - Highlights: • A superhydrophobic and oleophilic sorbent powder was developed by surface modification of commercially available hygroscopic magnesium carbonate with palmitic acid. • The sorbent powder is capable of scavenging oil for about three times its weight. • Reusability test of the sorbent powder infers the retention of hydrophobic as well as oleophilic character even after three times of re-use. • The powder was found to possess sufficient buoyancy, high rate of uptake and selectivity towards oil which is necessary for oil spill clean-ups. - Abstract: The wettability of hygroscopic magnesium carbonate has been modified to develop a superhydrophobic and oleophilic sorbent for oil spill clean-ups via a simple chemical process using palmitic acid. The prepared material was characterized using X-ray diffraction, Fourier transform infra-red spectroscopy, and scanning electron microscopy. Wettability test infers that the sorbent has a static water contact angle of 154 ± 1°, thereby indicating its superhydrophobic character. The sorbent was capable of scavenging oil for about three times its weight, as determined from oil sorption studies, carried out using the sorbent on model oil-water mixture. Interestingly, the chemically modified sorbent has high selectivity, buoyancy, and rate of uptake of oil. Further, the reusability studies confirm the repeatable usage of the sorbent and its efficacy in oil spill remediation.

  5. Chemical and structural modifications in a 193-nm photoresist after low-k dry etch

    International Nuclear Information System (INIS)

    Wet processes are gaining renewed interest for the removal of post-etch photoresist on porous dielectrics in semiconductor manufacturing. However, specifications on material loss and k-value integrity considerably reduce formulation space for a purely wet-chemical clean. Hence characterization of photoresist degradation by etch is needed to support the selection of wet cleaning chemistries. In this work, the degradation of a DUV (deep ultra-violet) photoresist by a dielectric etch plasma is characterized by spectroscopic as well as by polymer science characterization techniques. Results show that degradation of the DUV photoresist under study does not follow the mechanisms previously proposed for etched DUV photoresist films, but is rather comparable to the degradation of PMMA under low energy radiation. Degradation is more intense in the photoresist top layer, forming a cross-linked crust that is insoluble in organic solvents. Based on FTIR and 1H NMR analysis of isolated crust samples, a cross-linking mechanism is proposed that is based on the reaction between intra-chain radicals and/or between intra-chain radicals and end-chain propagating radicals. Implications for the wet removal of photoresist layers are discussed

  6. Chemical modification of projectile residues and target material in a MEMIN cratering experiment

    Science.gov (United States)

    Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas

    2013-01-01

    In the context of the MEMIN project, a hypervelocity cratering experiment has been performed using a sphere of the iron meteorite Campo del Cielo as projectile accelerated to 4.56 km s-1, and a block of Seeberger sandstone as target material. The ejecta, collected in a newly designed catcher, are represented by (1) weakly deformed, (2) highly deformed, and (3) highly shocked material. The latter shows shock-metamorphic features such as planar deformation features (PDF) in quartz, formation of diaplectic quartz glass, partial melting of the sandstone, and partially molten projectile, mixed mechanically and chemically with target melt. During mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co yielding a Fe/Ni that is generally higher than Fe/Ni in the projectile. This fractionation results from the differing siderophile properties, specifically from differences in reactivity of Fe, Ni, and Co with oxygen during projectile-target interaction. Projectile matter was also detected in shocked quartz grains. The average Fe/Ni of quartz with PDF (about 20) and of silica glasses (about 24) are in contrast to the average sandstone ratio (about 422), but resembles the Fe/Ni-ratio of the projectile (about 14). We briefly discuss possible reasons of projectile melting and vaporization in the experiment, in which the calculated maximum shock pressure does not exceed 55 GPa.

  7. Identification of the active site histidine in Staphylococcus hyicus lipase using chemical modification and mass spectrometry.

    Science.gov (United States)

    Boots, J W; van Dongen, W D; Verheij, H M; de Haas, G H; Haverkamp, J; Slotboom, A J

    1995-04-01

    Staphylococcus hyicus lipase is a serine hydrolase. In order to identify the active site histidine of S. hyicus lipase we have chemically modified S. hyicus lipase with 1-bromo-octan-2-one. The enzyme is rapidly inactivated by this inhibitor with a half-time of 578 s at pH 6.5 and 30 degrees C. Addition of the enzyme's cofactor calcium increases the inactivation rate approx. 2-fold. When n-hexadecylphosphocholine, a non-hydrolysable substrate analogue, is added the inactivation rate decreases about 3-fold, suggesting that a residue in the active site of S. hyicus lipase is involved in the inactivation reaction. Inactivation of S. hyicus lipase with 14C-labelled 1-bromo-octan-2-one shows that 1.4 moles of inhibitor per mole of lipase are incorporated. The results of an electrospray mass spectrometric study of the inactivated enzyme are consistent with this finding. In order to identify the modified residue, both the inactivated and the unmodified lipase were digested with cyanogen bromide followed by trypsin. The resulting peptides were analysed using HPLC and fast atom bombardment mass spectrometry. The results allow the modified residue to be assigned to the peptide Gly597-Lys612. Collision induced dissociation mass spectrometry allowed the modified residue to be identified as His-600. From these results we conclude that this residue forms part of the catalytic triad of S. hyicus lipase. PMID:7711054

  8. Characterization and assessment of chemical modifications of metal-bearing sludges arising from unsuitable disposal.

    Science.gov (United States)

    Gomes, Abda F S; Lopez, Dina L; Ladeira, Ana Cláudia Q

    2012-01-15

    Ettringite-gypsum sludge, formed by neutralization of acid mine drainage with lime, has been stored temporarily in the open pit of a uranium mine that floods periodically. The present study characterized samples of this sludge, named according to the time of placement as Fresh, Intermediate, and Old. Standard leaching and sequential extraction procedures assessed the associations and stabilities of U, Zn, Fe, Mn, and other contaminants in the solid phases. Corresponding mineralogical transformations associated with sludge weathering were modeled using PHREEQC. The main crystalline phases were ettringite, gypsum and calcite; the minor constituents were fluorite and gibbsite. This mineral assemblage could be attributed to the incongruent dissolution of ettringite to form gibbsite, calcite, and gypsum. Sequential extractions indicated high contents of U, Ca, SO(4), and Zn in the water-soluble (exchangeable) and carbonate fractions. Thus, the analytical and modeling results indicated that despite being classified as non-toxic by standard leaching protocols, the minerals composing the sludge could be sources of dissolved F, SO(4), Fe, Zn, Mn, U, and Al under various environmental conditions. Decommissioning strategies intended to prevent contaminant migration will need to consider the chemical stability of the sludge in various environments. PMID:22138170

  9. Colour and chemical changes of the lime wood surface due to CO2 laser thermal modification

    International Nuclear Information System (INIS)

    Highlights: • Influences of CO2 laser on lime wood surface were studied. • With growth of the irradiation dose brightness decrease and increase of the total colour difference were observed. • Cellulose degradation and loss of hemicelluloses were observed. • Higher values at the input energy lead to accelerating the mutual reaction of the functional groups resulting in the subsequent condensation of lignin. • CO2 laser irradiation can be used as a new colouring method. - Abstract: We studied colour and main wood components changes of lime wood caused by CO2 laser beam irradiation. The dry surface of lime wood (Tilia vulgaris L.) was irradiated with the CO2 laser beam (wavelength of 10.6 μm) at different exposures (expressed as the irradiation dose). Colour changes were monitored by the spectrophotometer, chemical changes were observed by the ATR-FTIR spectroscopy and carbohydrates were analysed by the HPLC method. With the growth of the irradiation dose (from 8.1 to 28.7 J cm−2) lightness (ΔL*) decrease and increase of the total colour difference (ΔE*) were observed. Higher values of the input energy lead to accelerating the mutual reaction of the functional groups resulting in the subsequent condensation of lignin. The total decrease in saccharides at the highest irradiation dose reaches 27.39% of the initial amount of saccharides in the reference sample. We have observed degradation and loss of hemicelluloses

  10. A Density Functional Theory study of the chemical surface modification of {beta}-SiC nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Calvino, M.; Trejo, A.; Cuevas, J.L.; Carvajal, E.; Duchen, G.I. [Instituto Politecnico Nacional, ESIME-Culhuacan, Av. Santa Ana 1000, 04430, D.F. (Mexico); Cruz-Irisson, M., E-mail: irisson@ipn.mx [Instituto Politecnico Nacional, ESIME-Culhuacan, Av. Santa Ana 1000, 04430, D.F. (Mexico)

    2012-09-20

    The dependence of the electronic band structure and density of states on the chemical surface passivation of cubic porous silicon carbide (PSiC) is investigated by means of the ab-initio Density Functional Theory and the supercell method in which pores with different sizes and morphologies were created. The porous structures were modeled by removing atoms in the [0 0 1] direction producing two different surface chemistries; one with both Silicon (Si) and Carbon (C) atoms and the other with only Si or C atoms. The changes in the electronic band gap due to a Si-rich and C-rich phase in the porous surfaces are studied with two kind of surface passivation, one with hydrogen atoms and other with a combination between hydrogen and oxygen atoms. The calculations show that for the hydrogenated case, the band gap is larger for the C-rich than for the Si-rich case. For the partial oxygenation the tendency is contrary, by decreasing and increasing the band gap for the C-rich and Si-rich configuration, respectively, according to the percentage of oxygen in the pore surface.

  11. Mechanisms of chemical modification of neoplastic cell transformation by ionizing radiation

    International Nuclear Information System (INIS)

    During space travel, astronauts will be continuously exposed to ionizing radiation; therefore, it is necessary to minimize the radiation damage by all possible means. The authors' studies show that DMSO (when present during irradiation) can protect cells from being killed and transformed by X rays and that low concentration of DMSO can reduce the transformation frequency significantly when it is applied to cells, even many days after irradiation. The process of neoplastic cell transformation is a complicated one and includes at least two different stages: induction and expression. DMSO apparently can modify the radiation damage during both stages. There are several possible mechanisms for the DMSO effect: (1) changing the cell membrane structure and properties; (2) inducing cell differentiation by acting on DNA; and (3) scavanging free radicals in the cell. Recent studies with various chemical agents, e.g., 5-azacytidine, dexamethane, rhodamin-123, etc., indicate that the induction of cell differentiation by acting on DNA may be an important mechanism for the suppression of expression of neoplastic cell transformation by DMSO

  12. Modification of tolerance of oats to crown rust induced by chemical mutagens

    International Nuclear Information System (INIS)

    Seeds of crown rust (Puccinia coronata) susceptible cultivated oats (Avena sativa) were treated with the mutagenic chemical ethyl methanesulphonate (EMS), and pure lines derived from these treated seeds were tested in later generations for the relative amount of reduction in yield and seed weight caused by crown rust infection. In the absence of crown rust, the yield of most of the treated lines was greatly reduced. The overall means of the treated lines for both yield and seed weight response to infection were significantly lower than the control, but 10 lines significantly exceeded the control for yield response and 15 exceeded it for seed weight response. Recurrent EMS treatment of once-treated lines rated as tolerant resulted in groups of lines that were more tolerant, on the average, than groups of lines from recurrently treated lines rated as susceptible. A few of the recurrently treated individual lines derived from tolerant parents had a higher degree of tolerance than their parental lines. EMS treatment of diploid (A. strigosa) and tetraploid (A. abyssinica) oats resulted in groups of lines showing significant genetic variance for response to crown rust, indicating that treatment had induced real genetic change. A few diploid lines were a little more tolerant than their control, but none of the tetraploid lines showed any consistent improvement. (author)

  13. Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate

    International Nuclear Information System (INIS)

    To improve their chemical mechanical polishing (CMP) performance, ceria nanoparticles were surface modified with γ-aminopropyltriethoxysilane (APS) through silanization reaction with their surface hydroxyl group. The compositions, structures and dispersibility of the modified ceria particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), laser particle size analyzer, zeta potential measurement and stability test, respectively. The results indicated that APS had been successfully grafted onto the surface of ceria nanoparticles, which led to the modified ceria nanoparticles with better dispersibility and stability than unmodified ceria particles in aqueous fluids. Then, CMP performance of the modified ceria nanoparticles on glass substrate was investigated. Experimental results showed that the modified ceria particles exhibited lower material removal rate (MRR) but much better surface quality than unmodified ceria particles, which may be explained by the hardness reduction of ceria particles, the enhancement of lubrication of the particles and substrate surfaces, and the elimination of the agglomeration among the ceria particles.

  14. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish

    Science.gov (United States)

    Harper, Bryan J.; Clendaniel, Alicea; Sinche, Federico; Way, Daniel; Hughes, Michael; Schardt, Jenna; Simonsen, John; Stefaniak, Aleksandr B.

    2016-01-01

    Cellulose is an abundant and renewable resource currently being investigated for utility in nanomaterial form for various promising applications ranging from medical and pharmaceutical uses to mechanical reinforcement and biofuels. The utility of nanocellulose and wide implementation ensures increasing exposure to humans and the environment as nanocellulose-based technologies advance. Here, we investigate how differences in aspect ratio and changes to surface chemistry, as well as synthesis methods, influence the biocompatibility of nanocellulose materials using the embryonic zebrafish. Investigations into the toxicity of neutral, cationic and anionic surface functionalities revealed that surface chemistry had a minimal influence on the overall toxicity of nanocellulose materials. Higher aspect ratio cellulose nanofibers produced by mechanical homogenization were, in some cases, more toxic than other cellulose-based nanofibers or nanocrystals produced by chemical synthesis methods. Using fluorescently labeled nanocellulose we were able to show that nanocellulose uptake did occur in embryonic zebrafish during development. We conclude that the benign nature of nanocellulose materials makes them an ideal platform to systematically investigate the inherent surface features driving nanomaterial toxicity in order to create safer design principles for engineered nanoparticles. PMID:27468180

  15. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    1991-04-01

    Three aspects of vapor-liquid flow in porous media were addressed: (i) Extension of a previous vapor-liquid model for solution gas-drive to a water liquid-water vapor (steam) system in a pore network; (ii) Visualization of steam injection in Hele-Shaw cells and glass micromodels; and (iii) Macroscopic description of concurrent vapor-liquid flow in porous media. Significant progress was made in the study of reservoir heterogeneity and its effects on flow processes. The authors have considered three general areas: (i) The representation of naturally fractured systems; (ii) The large-scale averaging (derivation of pseudo-functions) for displacement in macroscopically heterogeneous systems; and (iii) The study of parallel flow, typically encountered in long and narrow reservoirs. The third area of research in this report involves chemical additives for the improvement of recovery efficiencies. The authors have been studying the following three aspects: (i) Caustic additives at elevated temperatures; (ii) Foam generation; and (iii) Non-Newtonian flow in porous media. The study of caustic injection at elevated temperatures, specifically the silica dissolution and caustic consumption, has been terminated. A technical report will summarize the results obtained. Here, the authors address the remaining aspects (ii) and (iii). 107 refs., 87 figs., 4 tabs.

  16. The chinese version of the modification of diet in renal disease (MDRD) equation is a superior screening tool for chronic kidney disease among middle-aged taiwanese than the original MDRD and Cockcroft-Gault equations

    OpenAIRE

    Chang-Fu Kuo; Kuang-Hui Yu; Yu-Ming Shen; Lai-Chu See

    2014-01-01

    Background: Three equations have been often used to estimate glomerular filtration rate (GFR), namely, Modification of Diet in Renal Disease (MDRD), MDRD for Chinese (MDRDc), and Cockcroft-Gault (CG), for the purpose of screening individuals with chronic kidney disease (CKD). However, neither of these equations has been tested in a large Asian population. The aim of this study was to determine which equations were suitable for screening CKD in a large Taiwanese population. Methods: The app...

  17. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods

    Science.gov (United States)

    Cao, Zhi; Daly, Michael; Clémence, Lopez; Geever, Luke M.; Major, Ian; Higginbotham, Clement L.; Devine, Declan M.

    2016-08-01

    Calcium carbonate (CaCO3) is often treated with stearic acid (SA) to decrease its polarity. However, the method of application of the SA treatments has a strong influence on CaCO3 thermoplastic composite's interfacial structure and distribution. Several of papers describe the promising effects of SA surface treatment, but few compare the treatment process and its effect on the properties of the final thermoplastic composite. In the current study, we assessed a new SA treatment method, namely, complex treatment for polymer composite fabrication with HDPE. Subsequently, a comparative study was performed between the "complex" process and the other existing methods. The composites were assessed using different experiments included scanning electron microscopy (SEM), void content, density, wettability, differential scanning calorimetry (DSC), and tensile tests. It was observed that the "complex" surface treatment yielded composites with a significantly lower voids content and higher density compared to other surface treatments. This indicates that after the "complex" treatment process, the CaCO3 particles and HDPE matrix are more tightly packed than other methods. DSC and wettability results suggest that the "wet" and "complex" treated CaCO3 composites had a significantly higher heat of fusion and moisture resistance compared to the "dry" treated CaCO3 composites. Furthermore, "wet" and "complex" treated CaCO3 composites have a significantly higher tensile strength than the composites containing untreated and "dry" treated CaCO3. This is mainly because the "wet" and "complex" treatment processes have increased adsorption density of stearate, which enhances the interfacial interaction between matrix and filler. These results confirm that the chemical adsorption of the surfactant ions at the solid-liquid interface is higher than at other interface. From this study, it was concluded that the utilization of the "complex" method minimised the negative effects of void

  18. MODIFICATIONS OF CHEMICAL PROPERTIES OF MANURE IN THE PROCESS OF COMPOSTING

    Directory of Open Access Journals (Sweden)

    Marija Vukobratović

    2008-12-01

    Full Text Available Apart from the production of sufficient food quantities modern agricultural production should produce high- quality food, but also preserve the environment, primarily by preserving the soil as a natural, renewable, but also exhaustible resource. Preservation of soil directly emphasizes the concern about elementary properties of soil affecting its fertility. One of the measures is usage of organic manure. Manure is used most often in practice, and the processes of decomposition depending on the way of maintenance and manure removal of the cattle, and the conditions in which such stack is amassed and kept are not often desirably directed. During implementation of such manure, the expected positive effects appear to be the negative ones. Five different manure types have been composted in the experiment (cattle manure, horse, pig and poultry and the changes in the chemical properties have been monitored. During the process of composting significant changes have occured: pH level of initial compost materials has grown in all the composts (from 8 to over 9, except for the pig, which had the pH level below 7; EC had an average increase of 69%, and at the end of the research a very high EC was found out in the poultry (12.15 d•Sm-1 which is three times above the borderline values for substrates of container production and horse (8.75 d•Sm-1 which is almost twice the value. The entire process of composting is characterized by the decrease of the portion of organic carbon (on the average for 19.62%, while the dynamics of the portion of the total N is vice versa (average increase by 38%. C•N ratio in the composts decreased, as expected, below 20:1 and the highest decrease is with the cattle manure with the highest initial C•N ratio. The increase of NO3- and decrease of NH4+ were established.

  19. Modification of fiber properties through grafting of acrylonitrile to rayon by chemical and radiation methods

    Directory of Open Access Journals (Sweden)

    Inderjeet Kaur

    2013-11-01

    Full Text Available Fibrous properties of rayon has been modified through synthesis of graft copolymers of rayon with acrylonitrile (AN by chemical method using ceric ammonium nitrate (CAN/HNO3 as a redox initiator and gamma radiation mutual method. Percentage of grafting (Pg was determined as a function of initiator concentration, monomer concentration, irradiation dose, temperature, time of reaction and the amount of water. Maximum percentage of grafting (160.01% using CAN/HNO3 was obtained at [CAN] = 22.80 × 10−3 mol/L, [HNO3] = 112.68 × 10−2 mol/L and [AN] = 114.49 × 10−2 mol/L in 20 mL of water at 45 °C within 120 min while in case of gamma radiation method, maximum Pg (90.24% was obtained at an optimum concentration of AN of 76.32 × 10−2 mol/L using 10 mL of water at room temperature with total dose exposure of 3.456 kGy/h. The grafted fiber was characterized by FTIR, SEM, TGA and XRD studies. Swelling behavior of grafted rayon in different solvents such as water, methanol, ethanol, DMF and acetone was studied and compared with the unmodified rayon. Dyeing behavior of the grafted fiber was also investigated.

  20. Enhanced performance of electrostatic precipitators through chemical modification of particle resistivity and cohesion

    Energy Technology Data Exchange (ETDEWEB)

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J. [ADA Technologies, Inc., Englewood, CO (United States)

    1995-11-01

    Control of fine particles, including particulate air toxics, from utility boilers is required near-term by state and federal air regulations. Electrostatic precipitators (ESP) serve as the primary air pollution control device for the majority of coal-fired utility boilers in the Eastern and Midwestern united States. Cost-effective retrofit technologies for fine particle control, including flue gas conditioning, are needed for the large base of existing ESPs. Flue has conditioning is an attractive option because it requires minimal structural changes and lower capital costs. For flue gas conditioning to be effective for fine particle control, cohesive and particle agglomerating agents are needed to reduce reentrainment losses, since a large percentage of particulate emissions from well-performing ESPs are due to erosion, rapping, and non-rapping reentrainment. A related and somewhat ironic development is that emissions reductions of SO{sub 2} from utility boilers, as required by the Title IV acid rain program of the 1990 Clean Air Act amendments, has the potential to substantially increase particulate air toxics from existing ESPs. The switch to low-sulfur coals as an SO{sub 2} control strategy by many utilities has exacerbated ESP performance problems associated with high resistivity flyash. The use of flue gas conditioning has increased in the past several years to maintain adequate performance in ESPs which were not designed for high resistivity ash. However, commercially available flue gas conditioning systems, including NH{sub 3}/SO{sub 3} dual gas conditioning systems, have problems and inherent drawbacks which create a need for alternative conditioning agents. in particular, NH{sub 3}/SO{sub 3} systems can create odor and ash disposal problems due to ammonia outgassing. In addition, there are concerns over chemical handling safety and the potential for accidental releases.

  1. Chemical modification of titanium isopropoxide for producing stable dispersion of titania nano-particles

    International Nuclear Information System (INIS)

    Stable colloidal TiO2 nano-particles are synthesized through the controlled hydrolysis of chemically modified titanium (Ti) isopropoxide with acetylacetone and acetic acid whereas ammonium salts of poly(acrylic acid) is used as a dispersing agent. Acetylacetone and acetic acid used as chelating ligand to retard the hydrolysis and condensation rates. The process is found promising for producing homogeneous aqueous phase colloidal dispersion of TiO2 particles. Fourier transformed infrared and nuclear magnetic resonance spectra reveal the formation of monodentate bridging of ligands with Ti-isopropoxide. UV–Vis spectroscopy confirms the effective adsorption of poly(acrylic acid) within the modified Ti precursor. Zeta potential of modified titanium isopropoxide precursor is measured to understand its stability in different pH. The thermal stability of the precursors modified with different chelating ligands and dispersing agent has been studied using thermo-gravimetric in conjunction to differential thermal analysis (TG-DTA). Phase formation behavior and the morphological features of the synthesized particles are studied using X-ray diffraction and electron microscopy techniques. The sizes of the anatase phase particles are found in the range of 12–20 nm. - Highlights: • Nanosized colloidal TiO2 is prepared by controlled hydrolysis of Ti-isopropoxide. • Effect of chelating and dispersing agent on stability of colloidal TiO2 is studied. • Phase, morphology and stability of colloidal TiO2 are investigated. • The sizes of synthesized TiO2 particles are found in the range of 12–20 nm. • Suitable chelating and dispersing agent can improve particle loading in sol

  2. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    Directory of Open Access Journals (Sweden)

    Bussy Cyrill

    2012-11-01

    Full Text Available Abstract Given the increasing use of carbon nanotubes (CNT in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT specifically synthesized following a similar production process (aerosol-assisted CVD, and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects and chemical (i.e. oxidation modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized compared to long (pristine MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.

  3. Modifications in the chemical compounds and sensorial attributes of Engraulis anchoita fillet during marinating process

    Directory of Open Access Journals (Sweden)

    Maria Isabel Yeannes

    2008-12-01

    Full Text Available Marinated fish are fish products preserved by the combined action of salt and organic acids. The objective of this work was to analyze the variations in the chemical compounds of anchovy fillets that give them sensorial characteristics during the marinating process of Engraulis anchoita. The protein content decreased slightly and the TVB-N level decreased significantly in both the brining and marinating stages. In the marinating stage an increase in the total free aminoacids was observed. The NBV level in the brining and marinating solutions increased during these stages due to the solubilization of the non-protein nitrogenous compounds and the degradation of some protein compounds.The decrease of the contents of protein and TVB-N, and the increase of the acidity and the free aminoacids content during the marinating process give the marinated fillets the characteristic texture and aroma.Peixes marinados são produtos obtidos pela ação combinada de sal e ácidos orgânicos. O presente estudo teve como objetivo avaliar as alterações químicas e sensoriais em filés de anchoita (Engraulis anchoita durante o processo de marinado. O conteúdo de proteína apresentou decréscimo significativo durante a salga. O teor de Bases Voláteis Totais-N-BVT, apresentou uma diminuição considerável durante a salga e marinacão. Na fase de marinado, foi observado um aumento em aminoácidos livres totais. Foi constatada a presença de N-BVT na salmoura e na solução oriunda do processo de obtenção de marinado, devido à solubilização de nitrogênio não protéico, que podem ter sido acrescidos de alguns compostos de degradação protéica. A redução do conteúdo de proteína e N-BVT e o aumento de acidez e de aminoácidos livres gerados durante ou processo de elaboração do marinado fazem com que os filés marinados adquiram textura e aroma característicos.

  4. Chemical and mineralogical modifications of simplified radioactive waste calcine during heat treatment

    International Nuclear Information System (INIS)

    understanding chemical reactions between the calcined waste and the glass precursor

  5. Chemical and mineralogical modifications of simplified radioactive waste calcine during heat treatment

    Science.gov (United States)

    Monteiro, A.; Schuller, S.; Toplis, M. J.; Podor, R.; Ravaux, J.; Clavier, N.; Brau, H. P.; Charpentier, T.; Angeli, F.; Leterrier, N.

    2014-05-01

    chemical reactions between the calcined waste and the glass precursor.

  6. Examination of chemical and physical effects on sump screen clogging of containment materials used in Korean plants

    International Nuclear Information System (INIS)

    Highlights: • Chemical and physical effect on sump screen clogging mechanism was investigated. • Firstly, sump screen was sparsely covered with needle-shaped silicon fiber debris. • It was finally clogged by filling the gap between fibers with metal hydroxide precipitate. - Abstract: In this study, we have investigated the chemical and physical effects on the mechanism of sump screen clogging of containment materials that are used in most Korean nuclear power plants, such as N-102, N-108 as coating materials, NUKON as insulating materials, and CLP and SSLP as pipe materials. The experimental conditions for dissolution were pH = 8.0 at 88 °C, and those for precipitation were pH = 8.5 at 60 °C. The concentration of both dissolved and precipitated species were evaluated by using an ICP-AES and a particle size analyzer, respectively. From the obtained dissolution/precipitation data, we derived a unique two-step mechanism for the sump screen clogging process. In the first step, the screen was sparsely covered with needle-shaped silicon fiber debris that formed from the insulating materials; in the second step, it was finally clogged with a few micrometer-sized metal hydroxide precipitate particles (predominantly calcium hydroxide) that were generated from the dissolved metal ions. Hence, it can be concluded that the silicon fibers deployed for the insulating materials should be replaced with alternative materials that generate no needle-shaped debris after breakage, and the gypsum component in the coating should be reduced as much as possible

  7. Chemical and mineralogical modifications of simplified radioactive waste calcine during heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, A. [CEA, DEN, DTCD/SECM/LDMC Marcoule, BP 17171, F-30207 Bagnols-sur-Cèze cedex (France); Schuller, S., E-mail: sophie.schuller@cea.fr [CEA, DEN, DTCD/SECM/LDMC Marcoule, BP 17171, F-30207 Bagnols-sur-Cèze cedex (France); Toplis, M.J. [CNRS, Observatoire Midi Pyrénées, IRAP (UMR 5277), F-31400 Toulouse (France); Podor, R.; Ravaux, J.; Clavier, N.; Brau, H.P. [ICSM UMR 5257 CEA/CNRS/UMR/ENSCM Site de Marcoule, BP 17171, F-30207 Bagnols-sur-Cèze cedex (France); Charpentier, T. [UMR CEA/CNRS 3299, IRAMIS, SIS2M, LSDRM Saclay, F-91191 Gif-sur-Yvette cedex (France); Angeli, F. [CEA, DEN, DTCD/SECM/LCLT Marcoule, BP 17171, F-30207 Bagnols-sur-Cèze cedex (France); Leterrier, N. [CEA, DEN, DM2S/SFME/LSFT Saclay, F-91191 Gif-sur-Yvette cedex (France)

    2014-05-01

    influenced by the relative proportion of Al(NO{sub 3}){sub 3}⋅9H{sub 2}O in the calcine, larger amounts of Al leading to denitration at lower temperature. These results constitute the necessary background for understanding chemical reactions between the calcined waste and the glass precursor.

  8. ReportSites - A Computational Method to Extract Positional and Physico- Chemical Information from Large-Scale Proteomic Post-Translational Modification Datasets

    DEFF Research Database (Denmark)

    Edwards, Alistair; Edwards, Gregory; Larsen, Martin Røssel;

    2012-01-01

    Background: Extracting biological meaning from proteomic datasets containing post-translational modification is a central challenge of large scale proteomics and systems biology. We report the generation of a new program (Report Sites) to precisely identify the location and local chemical environ...

  9. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening

    International Nuclear Information System (INIS)

    High-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may be used in a battery of tests for detecting chemicals that could result in developmental neurotoxicity. Apoptosis contributes to nervous system development by regulating the size of the neuroprogenitor cell pool, and the balance between cellular proliferation and apoptosis during neuroprogenitor cell proliferation helps to determine the size and shape of the nervous system. Therefore, chemicals that affect apoptosis during neuronal development can have deleterious effects on the developing brain. The present study examined the utility of a high-throughput assay to detect chemical-induced apoptosis in mouse or human neuroprogenitor cells, as well as differentiated human neurons derived from induced pluripotent stem cells. Apoptosis was assessed using an assay that measures enzymatic activity of caspase-3/7 in a rapid and cost efficient manner. The results show that all three commercially available models generated a robust source of proliferating neuroprogenitor cells, and that the assay was sensitive and reproducible when used in a multi-well plate format. There were differences in the response of rodent and human neuroprogenitor cells to a set of chemicals previously shown to induce apoptosis in vitro. Neuroprogenitor cells were more sensitive to chemical-induced apoptosis than differentiated neurons, suggesting that neuroprogenitor cells are one of the cell models that should be considered for use in a developmental neurotoxicity screening battery

  10. Cobalt surface modification during γ-Fe{sub 2}O{sub 3} nanoparticle synthesis by chemical-induced transition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junming [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Jian, E-mail: aizhong@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Decai [School of Mechanical and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2015-02-01

    In the chemical-induced transition of FeCl{sub 2} solution, the FeOOH/Mg(OH){sub 2} precursor was transformed into spinel structured γ-Fe{sub 2}O{sub 3} crystallites, coated with a FeCl{sub 3}·6H{sub 2}O layer. CoCl{sub 2} surface modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding Co(NO{sub 3}){sub 2} during the synthesis. CoFe{sub 2}O{sub 4} modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding NaOH during the surface modification with Co(NO{sub 3}){sub 2}. The CoFe{sub 2}O{sub 4} layer grew epitaxially on the γ-Fe{sub 2}O{sub 3} crystallite to form a composite crystallite, which was coated by CoCl{sub 2}·6H{sub 2}O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe{sub 2}O{sub 4} and γ-Fe{sub 2}O{sub 3} possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe{sub 2}O{sub 3}-based nanoparticles were related to the grain size. - Highlights: • γ-Fe{sub 2}O{sub 3} nanoparticles were synthesized by chemical induced transition. • CoCl{sub 2} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} during synthesization. • CoFe{sub 2}O{sub 4} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} and NaOH. • The magnetism of the nanoparticles is related to the grain size.

  11. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) sol-gel process

    International Nuclear Information System (INIS)

    The present paper describes the comparative studies on the hydrophobic and physical properties of the tetraethoxysilane (TEOS) based silica aerogels prepared by two step sol-gel process followed by supercritical drying. Silica alcogels were prepared by keeping the molar ratio of TEOS:methanol (MeOH):H2O (acidic):H2O (basic) constant at 1:33:3.5:3.5 with oxalic acid and ammonium hydroxide concentrations fixed at 0.001 and 1 M, respectively. In all, nine different co-precursors (CP) of the type R nSiX4-n, have been used. The aerogels have been characterized by density, porosity, percentage of volume shrinkage, optical transmission, contact angle and thermal conductivity measurements. The surface chemical modification of silica aerogels was confirmed by the presence of C-H and Si-C peaks at 2900, 1450 and 840 cm-1, respectively, from the Fourier transform-infrared spectroscopy (FT-IR). The microstructure of the aerogels was studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. In addition to these studies, the stability of the hydrophobic aerogels against an organic impurity (methanol, in the present studies) in water has also been studied

  12. Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    McCann, R. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom); Roy, S.S. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom)]. E-mail: s.sinha-roy@ulster.ac.uk; Papakonstantinou, P. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom); Bain, M.F. [Queens University of Belfast, School of Elect and Elect Engineering, Belfast, Antrim, N. Ireland (United Kingdom); Gamble, H.S. [Queens University of Belfast, School of Elect and Elect Engineering, Belfast, Antrim, N. Ireland (United Kingdom); McLaughlin, J.A. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom)

    2005-06-22

    Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN {sub x}), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN {sub x} containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three {pi}* resonance peaks at the {sup '}N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains.

  13. Modification of 1018 carbon steel corrosion process in alkaline sour medium with a formulation of chemical corrosion inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Galicia, Policarpo [Universidad Autonoma Metropolitana - Iztapalapa, Departamento de Quimica, Area de Electroquimica, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico DF (Mexico); Gonzalez, Ignacio [Universidad Autonoma Metropolitana - Iztapalapa, Departamento de Quimica, Area de Electroquimica, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico DF (Mexico)]. E-mail: igm@xanum.uam.mx

    2005-08-10

    This work is focused on researching corrosion mechanism modifications of 1018 carbon steel in alkaline sour medium (0.1 M (NH{sub 4}){sub 2}S and 10 ppm CN{sup -}) using inhibitor formulation (IHF) composed of hydroxyoleic imidazoline (C{sub 12}H{sub 42}ON{sub 2}), HI, and aminoether (C{sub 20}H{sub 28}O{sub 3}N{sub 2}), AE. The accelerated formation of corrosion products was thereby carried out in the presence of the formulation alone and of each of its components separately; these films were subsequently characterized by electrochemical impedance spectroscopy and scanning electron microscopy. The study in the presence of the IHF components revealed that the films formed have different nature, because their physical and chemical properties such as thickness, porosity and (electronic and ionic) conductivity are determined by the media where they are grown. The film formed in the presence of HI has a homogeneous, non-porous topography that impairs the diffusion process of H{sup 0}, in addition, its electronic conductivity is above that observed in the film formed with AE. Then, it was determined that the film formed with IHF presents some distinctive component characteristics which interact in a complementary way improving film passivity.

  14. Modification of optical and electrical properties of chemical bath deposited SnS using O2 plasma treatments

    International Nuclear Information System (INIS)

    In this paper, we report modifications of structural and optical, electrical properties that occur in tin sulphide (SnS) treated in O2 plasma. The SnS thin films were deposited by chemical bath deposition technique. The samples were treated in an O2 plasma discharge at 3 Torr of pressure discharge, a discharge voltage of 2.5 kV and 20 mA of discharge current. The prepared and treated thin films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The photoconductivity and electrical effects of SnS have been studied. The SnS thin films had an orthorhombic crystalline structure. With the plasma treatment the optical gap and electrical properties of the SnS films changed from 1.61 to 1.84 eV, for 3.9 × 105 to 10.42 Ω cm, respectively. These changes can be attributed to an increase in electron density, percolation effects due to porosity, surface degradation/etching that is an increase in surface roughness, where some structural changes related to crystallinity occurs like a high grain size as revealed by SEM images.

  15. A tree based method for the rapid screening of chemical fingerprints

    DEFF Research Database (Denmark)

    Kristensen, Thomas Greve; Nielsen, Jesper; Pedersen, Christian Nørgaard Storm

    2009-01-01

    fingerprints similar to a query fingerprint. In this paper, we present a method which efficiently finds all fingerprints in a database with Tanimoto coefficient to the query fingerprint above a user defined threshold. The method is based on two novel data structures for rapid screening of large databases: the......The fingerprint of a molecule is a bitstring based on its structure, constructed such that structurally similar molecules will have similar fingerprints. Molecular fingerprints can be used in an initial phase for identifying novel drug candidates by screening large databases for molecules with...

  16. In silico Screening of Chemical Libraries to Develop Inhibitors That Hamper the Interaction of PCSK9 with the LDL Receptor

    Science.gov (United States)

    Min, Dong-Kook; Lee, Hyun-Sook; Lee, Narae; Lee, Chan Joo; Song, Hyun Joo; Yang, Ga Eul; Yoon, Dojun

    2015-01-01

    Purpose Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low density lipoprotein receptor (LDLR) and promotes degradation of the LDLR. Inhibition of PCSK9 either by reducing its expression or by blocking its activity results in the upregulation of the LDLR and subsequently lowers the plasma concentration of LDL-cholesterol. As a modality to inhibit PCSK9 action, we searched the chemical library for small molecules that block the binding of PCSK9 to the LDLR. Materials and Methods We selected 100 chemicals that bind to PCSK9 where the EGF-AB fragment of the LDLR binds via in silico screening of the ChemBridge chemical library, using the computational GOLD algorithm analysis. Effects of chemicals were evaluated using the PCSK9-LDLR binding assay, immunoblot analysis, and the LDL-cholesterol uptake assay in vitro, as well as the fast performance liquid chromatography assay for plasma lipoproteins in vivo. Results A set of chemicals were found that decreased the binding of PCSK9 to the EGF-AB fragment of the LDLR in a dose-dependent manner. They also increased the amount of the LDLR significantly and subsequently increased the uptake of fluorescence-labeled LDL in HepG2 cells. Additionally, one particular molecule lowered the plasma concentration of total cholesterol and LDL-cholesterol significantly in wild-type mice, while such an effect was not observed in Pcsk9 knockout mice. Conclusion Our findings strongly suggest that in silico screening of small molecules that inhibit the protein-protein interaction between PCSK9 and the LDLR is a potential modality for developing hypercholesterolemia therapeutics. PMID:26256967

  17. Using the pea aphid Acrythociphon pisum as a tool for screening biological responses to chemicals and drugs

    Directory of Open Access Journals (Sweden)

    Ledger Terence

    2009-09-01

    Full Text Available Abstract Background Though the biological process of aphid feeding is well documented, no one to date has sought to apply it as a tool to screen the biological responses to chemicals and drugs, in ecotoxicology, genotoxicology and/or for interactions in the cascade of sequential molecular events of embryogenesis. Parthenogenetic insect species present the advantage of an anatomical system composed of multiple germarium/ovarioles in the same mother with all the intermediate maturation stages of embryos from oocyte to first instar larva birth. This could be used as an interesting model to visualize at which step drugs interact with the cell signalling pathway during the ordered developmental process. Findings We designed a simple test for screening drugs by investigating simultaneously zygote mitotic division, the progression of embryo development, cell differentiation at early developmental stages and finally organogenesis and population growth rate. We aimed to analyze the toxicology effects of compounds and/or their interference on cellular signalling by examining at which step of the cascade, from zygote to mature embryo, the developmental process is perturbed. We reasoned that a parthenogenetic founder insect, in which the ovarioles shelter numerous embryos at different developmental stages, would allow us to precisely pinpoint the step of embryogenesis in which chemicals act through specific molecular targets as the known ordered homeobox genes. Conclusion Using this method we report the results of a genotoxicological and demographic analysis of three compound models bearing in common a bromo group: one is integrated as a base analog in DNA synthesis, two others activate permanently kinases. We report that one compound (Br-du altered drastically embryogenesis, which argues in favor of this simple technique as a cheap first screening of chemicals or drugs to be used in a number of genotoxicology applications.

  18. The genetic origins of biosynthesis and light-responsive control of the chemical UV screen of land plants

    International Nuclear Information System (INIS)

    Most land plants possess the capacity to protect themselves from UV light, and do so by producing pigments that absorb efficiently in the UV-A and UV-B regions of the spectrum while allowing transmission of nearly all photosynthetically useful wavelengths. These UV-absorbing pigments are mainly phenylpropanoids and flavonoids. This chapter summarizes current understanding of the mechanism of UV protection in higher land plants, evaluates the information available from lower land plants and their green-algal relatives, and then considers the possible evolutionary origins of this use of chemical filters for selectively screening UV light from solar radiation. It is proposed that photo control over the biosynthesis of UV-absorbing phenylpropanoids and flavonoids may have evolved in concert with the evolution of the high biosynthetic activity necessary for UV protection. The toxicity of phenylpropanoids and flavonoids has been postulated to have been a barrier to the evolution of an effective chemical UV screen, and that some means for sequestering these compounds and/or for controlling their synthesis probably evolved prior to, or in concert with, the evolution of high rates of biosynthesis. The original photoreceptor and signal transduction system is speculated to have been based on photo isomerization of a phenylpropanoid ester and a pre-existing product feedback mechanism for controlling phenylpropanoid biosynthesis. Understanding the original mechanism for photo control of the chemical UV screen of land plants could be valuable for understanding the adaptability of extant land plants to rising levels of solar UV-B radiation and may suggest genetic strategies for engineering improved UV tolerance in crop plants. (author)

  19. Preparation of conversion coating on Ti-6Al-4V alloy in mixed solution of phytic acid and ammonium fluoride through chemical modification

    Science.gov (United States)

    Li, Lanlan; He, Jian; Yang, Xu

    2016-05-01

    Conversion coatings on Ti-6Al-4V alloy was prepared through chemical modification in phytic acid and ammonium fluoride mixed solution. The influences of pH, time and the composition of solution on the microstructure of alloy surface were investigated. Scanning electron microscopy was used to observe the microstructure. The chemical composition of alloy surface before and after modification was investigated by energy dispersive X-ray spectroscopy. The results indicated that a conversion coating could be formed on the Ti-6Al-4V alloy in a mixed solution of phytic acid and ammonium fluoride, the growth and microstructure of the conversion coatings were critically dependent on the pH, time and concentration of phytic acid and ammonium fluoride. In 100 mg/ml phytic acid containing 125 mg/ml ammonium fluoride solution with a pH of 6, a compact conversion coating with the thickness of about 4.7 μm formed after 30 min immersion on Ti-6Al-4V alloy surface. The preliminary evaluation of bioactivity of conversion coating was performed by in vitro cell experiments. The results showed that this chemical modification method is a promising surface modification technique for Ti-6Al-4V alloy inplants.

  20. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States); Zhu, Hao [The Rutgers Center for Computational and Integrative Biology, Rutgers University, Camden, NJ (United States); Department of Chemistry, Rutgers University, Camden, NJ (United States); Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia [NovaMechanics Ltd., Nicosia (Cyprus); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States)

    2013-10-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R{sup 2} = 0.71, STL R{sup 2} = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R{sup 2} = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function.

  1. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    International Nuclear Information System (INIS)

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R2 = 0.71, STL R2 = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R2 = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function. • The results have

  2. HIGH-THROUGHPUT CHEMICAL SCREENING USING PROTEIN PROFILING OF FISH PLASMA

    Science.gov (United States)

    Compounds that affect the hormone system, referred to as "endocrine-disrupting chemicals" (EDCs), cause human and animal health problems. It is necessary to test putative EDC chemicals for such deleterious effects, though current testing methodologies are time/animal intensive an...

  3. IN SILICO SCREENING OF CHEMICAL COMPOUNDS FROM SWEET FLAG (ARACUS CALAMUS L AS α-GLUCOSIDASE INHIBITOR

    Directory of Open Access Journals (Sweden)

    Dewi Yuliana

    2013-03-01

    Full Text Available Research have been conducted screening in silico chemical compound inhibitor α-glucosidase from plants dringo (Acorus calamus L based on the binding site (binding site are owned by some of the compounds obtained respectively from the inhibition of enzyme / receptor (docking using the program Argus Lab. Model of the enzyme α-glucosidase was obtained through the protein data bank with the code 1lwj in the donwload NCBI website. Models of chemical compounds contained in dringo (A. Calamus L obtained through the site Take out "jamu" Knapsack and made in the formula structures of 2D and 3D using the program ACD / Chemsketch. Docking results showed activity in the compound 1-ethenyl-1-methyl-2,4-at (prop-1-en-2-yl Cyclohexane with free energy - 8.04385 kcal / mol, and the compound Isocaespitol with a free energy - 8.28388 kcal / mol.

  4. Dermal permeation data and models for the prioritization and screening-level exposure assessment of organic chemicals.

    Science.gov (United States)

    Brown, Trevor N; Armitage, James M; Egeghy, Peter; Kircanski, Ida; Arnot, Jon A

    2016-09-01

    High-throughput screening (HTS) models are being developed and applied to prioritize chemicals for more comprehensive exposure and risk assessment. Dermal pathways are possible exposure routes to humans for thousands of chemicals found in personal care products and the indoor environment. HTS exposure models rely on skin permeability coefficient (KP; cm/h) models for exposure predictions. An initial database of approximately 1000 entries for empirically-based KP data was compiled from the literature and a subset of 480 data points for 245 organic chemicals derived from testing with human skin only and using only water as a vehicle was selected. The selected dataset includes chemicals with log octanol-water partition coefficients (KOW) ranging from -6.8 to 7.6 (median=1.8; 95% of the data range from -2.5 to 4.6) and molecular weight (MW) ranging from 18 to 765g/mol (median=180); only 3% >500g/mol. Approximately 53% of the chemicals in the database have functional groups which are ionizable in the pH range of 6 to 7.4, with 31% being appreciably ionized. The compiled log KP values ranged from -5.8 to 0.1cm/h (median=-2.6). The selected subset of the KP data was then used to evaluate eight representative KP models that can be readily applied for HTS assessments, i.e., parameterized with KOW and MW. The analysis indicates that a version of the SKINPERM model performs the best against the selected dataset. Comparisons of representative KP models against model input parameter property ranges (sensitivity analysis) and against chemical datasets requiring human health assessment were conducted to identify regions of chemical properties that should be tested to address uncertainty in KP models and HTS exposure assessments. PMID:27282209

  5. Phyto chemical Screening, Antibacterial, Antifungal and Anthelmintic Activity of Morinda citrifolia stem

    OpenAIRE

    Dr. D. Gopala Krishna; C. H. Kethani Devi

    2013-01-01

    In the present study, the Petroleum Ether and Alcoholic extract of Morinda citrifolia L. (Noni) stem were subjected to preliminary screening for Antimicrobial and Aanthelmintic activity. The alcoholic extract exhibited significant Anti bacterial, Antifungal activity, comparable to the standard drug Tetracycline. The Petroleum Ether and Alcoholic extract were evaluated for Anthelmintic activity on adult Indian Earthworms, ‘Pheretima posithuma’. The Alcoholic extract produced more significant A...

  6. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis

    OpenAIRE

    Fazly, Ahmed; Jain, Charu; Dehner, Amie C.; Issi, Luca; Lilly, Elizabeth A.; Ali, Akbar; Cao, Hong; Fidel, Paul L.; P. Rao, Reeta; Kaufman, Paul D.

    2013-01-01

    Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm forma...

  7. Identification of a Disulfide Bridge in Sodium-Coupled Neutral Amino Acid Transporter 2(SNAT2) by Chemical Modification.

    Science.gov (United States)

    Chen, Chen; Wang, Jiahong; Cai, Ruiping; Yuan, Yanmeng; Guo, Zhanyun; Grewer, Christof; Zhang, Zhou

    2016-01-01

    Sodium-coupled neutral amino acid transporter 2 (SNAT2) belongs to solute carrier 38 (SLC38) family of transporters, which is ubiquitously expressed in mammalian tissues and mediates transport of small, neutral amino acids, exemplified by alanine(Ala, A). Yet structural data on SNAT2, including the relevance of intrinsic cysteine residues on structure and function, is scarce, in spite of its essential roles in many tissues. To better define the potential of intrinsic cysteines to form disulfide bonds in SNAT2, mutagenesis experiments and thiol-specific chemical modifications by N-ethylmaleimide (NEM) and methoxy-polyethylene glycol maleimide (mPEG-Mal, MW 5000) were performed, with or without the reducing regent dithiothreitol (DTT) treatment. Seven single mutant transporters with various cysteine (Cys, C) to alanine (Ala, A) substitutions, and a C245,279A double mutant were introduced to SNAT2 with a hemagglutinin (HA) tag at the C-terminus. The results showed that the cells expressing C245A or C279A were labeled by one equivalent of mPEG-Mal in the presence of DTT, while wild-type or all the other single Cys to Ala mutants were modified by two equivalents of mPEG-Mal. Furthermore, the molecular weight of C245,279A was not changed in the presence or absence of DTT treatment. The results suggest a disulfide bond between Cys245 and Cys279 in SNAT2 which has no effect on cell surface trafficking, as well as transporter function. The proposed disulfide bond may be important to delineate proximity in the extracellular domain of SNAT2 and related proteins. PMID:27355203

  8. Novel chemical method of Twaron fiber surface modification%Twaron纤维的新型化学活化方法

    Institute of Scientific and Technical Information of China (English)

    刘铁民; 赵久奋; 郑元锁

    2012-01-01

    以傅瑞德-克拉夫茨(Friedel-Crafts)反应为基础,活化处理Twaron纤维的惰性表面.对经过活化处理的Twaron 纤维进行了单丝拔出(SFP)、X射线衍射(XRD)、扫描电镜(SEM)、红外图谱(FHR)、表面电子能谱(XPS),以及表面自由能等测试.测试结果显示,经过活化处理后,Twaron纤维表面因环氧基团的接枝而使表面自由能显著增加;纤维表面的结晶结构未发生显著改变,纤维的本体强度未降低;相对应的环氧树脂基复合材料的单丝拔出强度提高了约50%.%Twaron fiber surface was modified via a novel chemical approach based on Friedel-Crafts reaction. After the modification treatment,the surface properties were investigated via SFP,XRD,SEM,FTIR,XPS and Surface Free Energy measurement,and so on. The results show that after the treatment, the oxygen/carbon ratio of Twaron fiber surface increases remarkably because of Ep-oxy group graft,and the crystal structure of Twaron fiber surface was not destroyed,moreover the single fiber pull-out strength value of Twaron fiber/Epoxy composites was enhanced by about SO %.

  9. High-content chemical and RNAi screens for suppressors of neurotoxicity in a Huntington's disease model.

    Directory of Open Access Journals (Sweden)

    Joost Schulte

    Full Text Available To identify Huntington's Disease therapeutics, we conducted high-content small molecule and RNAi suppressor screens using a Drosophila primary neural culture Huntingtin model. Drosophila primary neurons offer a sensitive readout for neurotoxicty, as their neurites develop dysmorphic features in the presence of mutant polyglutamine-expanded Huntingtin compared to nonpathogenic Huntingtin. By tracking the subcellular distribution of mRFP-tagged pathogenic Huntingtin and assaying neurite branch morphology via live-imaging, we identified suppressors that could reduce Huntingtin aggregation and/or prevent the formation of dystrophic neurites. The custom algorithms we used to quantify neurite morphologies in complex cultures provide a useful tool for future high-content screening approaches focused on neurodegenerative disease models. Compounds previously found to be effective aggregation inhibitors in mammalian systems were also effective in Drosophila primary cultures, suggesting translational capacity between these models. However, we did not observe a direct correlation between the ability of a compound or gene knockdown to suppress aggregate formation and its ability to rescue dysmorphic neurites. Only a subset of aggregation inhibitors could revert dysmorphic cellular profiles. We identified lkb1, an upstream kinase in the mTOR/Insulin pathway, and four novel drugs, Camptothecin, OH-Camptothecin, 18β-Glycyrrhetinic acid, and Carbenoxolone, that were strong suppressors of mutant Huntingtin-induced neurotoxicity. Huntingtin neurotoxicity suppressors identified through our screen also restored viability in an in vivo Drosophila Huntington's Disease model, making them attractive candidates for further therapeutic evaluation.

  10. Sulfonamides identified as plant immune-priming compounds in high-throughput chemical screening increase disease resistance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yoshiteru eNoutoshi

    2012-10-01

    Full Text Available Plant activators are agrochemicals that protect crops from diseases by activating the plant immune system. To isolate lead compounds for use as practical plant activators, we screened 2 different chemical libraries composed of various bioactive substances by using an established screening procedure that can selectively identify immune-priming compounds. We identified and characterized a group of sulfonamide compounds—sulfameter, sulfamethoxypyridazine, sulfabenzamide, and sulfachloropyridazine—among the various isolated candidate molecules. These sulfonamide compounds enhanced the avirulent Pseudomonas-induced cell death of Arabidopsis suspension cell cultures and increased disease resistance in Arabidopsis plants against both avirulent and virulent strains of the bacterium. These compounds did not prevent the growth of pathogenic bacteria in minimal liquid media at 200 µM. They also did not induce the expression of defense-related genes in Arabidopsis seedlings, at least not at 24 and 48 h after treatment, suggesting that they do not act as salicylic acid analogs. In addition, although sulfonamides are known to be folate biosynthesis inhibitors, the application of folate did not restore the potentiation effects of the sulfonamides on pathogen-induced cell death. Our data suggest that sulfonamides potentiate Arabidopsis disease resistance by their novel chemical properties.

  11. High-throughput Screening of ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell (mESC) Assay Reveals Disruption of Potential Toxicity Pathways

    Science.gov (United States)

    Little information is available regarding the potential for many commercial chemicals to induce developmental toxicity. The mESC Adherent Cell Differentiation and Cytoxicity (ACDC) assay is a high-throughput screen used to close this data gap. Thus, ToxCast™ Phase I chemicals wer...

  12. SCREENING OF CHEMICAL COMPOSITIONS OF CRUDE WATER EXTRACT OF DIFFERENT CASSAVA VARIETIES

    OpenAIRE

    Olajumoke Oke FAYINMINNU; Olubunmi Omowunmi FADINA; Alex Adeoluwa ADEDAPO

    2013-01-01

    Chemical composition of three sources of crude cassava water extract (CCWE) was evaluated in different varieties of cassava (MS6 Manihot Selection (local variety), TMS 30555 Tropical Manihot Selection (Improved variety) and Bulk (crude cassava water from cassava processing site). Crude cassava water extract from the pulp of cassava fresh roots was prepared and the chemical composition was determined in the analytical laboratory. The result of the analysis showed that, hydrocyanic acid (HCN) ...

  13. Gametocytocidal screen identifies novel chemical classes with Plasmodium falciparum transmission blocking activity.

    Directory of Open Access Journals (Sweden)

    Natalie G Sanders

    Full Text Available Discovery of transmission blocking compounds is an important intervention strategy necessary to eliminate and eradicate malaria. To date only a small number of drugs that inhibit gametocyte development and thereby transmission from the mosquito to the human host exist. This limitation is largely due to a lack of screening assays easily adaptable to high throughput because of multiple incubation steps or the requirement for high gametocytemia. Here we report the discovery of new compounds with gametocytocidal activity using a simple and robust SYBR Green I- based DNA assay. Our assay utilizes the exflagellation step in male gametocytes and a background suppressor, which masks the staining of dead cells to achieve healthy signal to noise ratio by increasing signal of viable parasites and subtracting signal from dead parasites. By determining the contribution of exflagellation to fluorescent signal and using appropriate cutoff values, we were able to screen for gametocytocidal compounds. After assay validation and optimization, we screened an FDA approved drug library of approximately 1500 compounds, as well as the 400 compound MMV malaria box and identified 44 gametocytocidal compounds with sub to low micromolar IC50s. Major classes of compounds with gametocytocidal activity included quaternary ammonium compounds with structural similarity to choline, acridine-like compounds similar to quinacrine and pyronaridine, as well as antidepressant, antineoplastic, and anthelminthic compounds. Top drug candidates showed near complete transmission blocking in membrane feeding assays. This assay is simple, reproducible and demonstrated robust Z-factor values at low gametocytemia levels, making it amenable to HTS for identification of novel and potent gametocytocidal compounds.

  14. Phyto chemical Screening, Antibacterial, Antifungal and Anthelmintic Activity of Morinda citrifolia stem

    Directory of Open Access Journals (Sweden)

    Dr. D. Gopala Krishna

    2013-05-01

    Full Text Available In the present study, the Petroleum Ether and Alcoholic extract of Morinda citrifolia L. (Noni stem were subjected to preliminary screening for Antimicrobial and Aanthelmintic activity. The alcoholic extract exhibited significant Anti bacterial, Antifungal activity, comparable to the standard drug Tetracycline. The Petroleum Ether and Alcoholic extract were evaluated for Anthelmintic activity on adult Indian Earthworms, ‘Pheretima posithuma’. The Alcoholic extract produced more significant Anthelmintic activity than Petroleum ether extract and the activities are comparable with the reference drug Piperazine citrate

  15. Theoretical and experimental spectroscopic analysis by FTIR in the effect of the silanes on the chemical modification of the surface of rice husk

    OpenAIRE

    Salgado-Delgado, R.; A.M. Salgado-Delgado

    2016-01-01

    The development of new fibrous composites with specific properties has attracted a big interest in the development of new technologies. One of the biggest problems in this area is the improvement of the fiber/matrix interface to increase the mechanical properties in the final composite. In this work, surface chemical modifications of the rice husk (by-product of the rice industry) were carried out to achieve a better compatibility with diverse polymeric matrices. These modificatio...

  16. Modification of alumina matrices through chemical etching and electroless deposition of nano-Au array for amperometric sensing

    Directory of Open Access Journals (Sweden)

    Valinčius Gintaras

    2007-01-01

    Full Text Available AbstractSimple nanoporous alumina matrix modification procedure, in which the electrically highly insulating alumina barrier layer at the bottom of the pores is replaced with the conductive layer of the gold beds, was described. This modification makes possible the direct electron exchange between the underlying aluminum support and the redox species encapsulated in the alumina pores, thus, providing the generic platform for the nanoporous alumina sensors (biosensors with the direct amperometric signal readout fabrication.

  17. Current issues involving screening and identification of chemical contaminants in foods by mass spectrometry

    Science.gov (United States)

    Although quantitative analytical methods must be empirically validated prior to their actual use in a variety of applications, including regulatory monitoring of chemical adulterants in foods, validation of qualitative method performance for the analytes and matrices of interest is frequently ignore...

  18. Current issues involving screening and identification of chemical contaminants in foods by mass spectrometry

    NARCIS (Netherlands)

    Lehotay, S.J.; Sapozhnikova, Y.; Mol, J.G.J.

    2015-01-01

    Although quantitative analytical methods must be empirically validated prior to their use in a variety of applications, including regulatory monitoring of chemical adulterants in foods, validation of qualitative method performance for the analytes and matrices of interest is frequently ignored, or g

  19. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    Science.gov (United States)

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  20. Screening-level models to estimate partition ratios of organic chemicals between polymeric materials, air and water.

    Science.gov (United States)

    Reppas-Chrysovitsinos, Efstathios; Sobek, Anna; MacLeod, Matthew

    2016-06-15

    Polymeric materials flowing through the technosphere are repositories of organic chemicals throughout their life cycle. Equilibrium partition ratios of organic chemicals between these materials and air (KMA) or water (KMW) are required for models of fate and transport, high-throughput exposure assessment and passive sampling. KMA and KMW have been measured for a growing number of chemical/material combinations, but significant data gaps still exist. We assembled a database of 363 KMA and 910 KMW measurements for 446 individual compounds and nearly 40 individual polymers and biopolymers, collected from 29 studies. We used the EPI Suite and ABSOLV software packages to estimate physicochemical properties of the compounds and we employed an empirical correlation based on Trouton's rule to adjust the measured KMA and KMW values to a standard reference temperature of 298 K. Then, we used a thermodynamic triangle with Henry's law constant to calculate a complete set of 1273 KMA and KMW values. Using simple linear regression, we developed a suite of single parameter linear free energy relationship (spLFER) models to estimate KMA from the EPI Suite-estimated octanol-air partition ratio (KOA) and KMW from the EPI Suite-estimated octanol-water (KOW) partition ratio. Similarly, using multiple linear regression, we developed a set of polyparameter linear free energy relationship (ppLFER) models to estimate KMA and KMW from ABSOLV-estimated Abraham solvation parameters. We explored the two LFER approaches to investigate (1) their performance in estimating partition ratios, and (2) uncertainties associated with treating all different polymers as a single "bulk" polymeric material compartment. The models we have developed are suitable for screening assessments of the tendency for organic chemicals to be emitted from materials, and for use in multimedia models of the fate of organic chemicals in the indoor environment. In screening applications we recommend that KMA and KMW be

  1. Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants.

    Science.gov (United States)

    Zhu, Hao; Zhang, Jun; Kim, Marlene T; Boison, Abena; Sedykh, Alexander; Moran, Kimberlee

    2014-10-20

    High-throughput screening (HTS) assays that measure the in vitro toxicity of environmental compounds have been widely applied as an alternative to in vivo animal tests of chemical toxicity. Current HTS studies provide the community with rich toxicology information that has the potential to be integrated into toxicity research. The available in vitro toxicity data is updated daily in structured formats (e.g., deposited into PubChem and other data-sharing web portals) or in an unstructured way (papers, laboratory reports, toxicity Web site updates, etc.). The information derived from the current toxicity data is so large and complex that it becomes difficult to process using available database management tools or traditional data processing applications. For this reason, it is necessary to develop a big data approach when conducting modern chemical toxicity research. In vitro data for a compound, obtained from meaningful bioassays, can be viewed as a response profile that gives detailed information about the compound's ability to affect relevant biological proteins/receptors. This information is critical for the evaluation of complex bioactivities (e.g., animal toxicities) and grows rapidly as big data in toxicology communities. This review focuses mainly on the existing structured in vitro data (e.g., PubChem data sets) as response profiles for compounds of environmental interest (e.g., potential human/animal toxicants). Potential modeling and mining tools to use the current big data pool in chemical toxicity research are also described. PMID:25195622

  2. Development of a stable cell line with an intact PGC-1α/ERRα axis for screening environmental chemicals

    International Nuclear Information System (INIS)

    Highlights: • We developed a stable cell line with intact PGC-1α/ERRα axis. • The ERRα repressor, XCT790, down regulates this pathway. • Phytoestrogen, genisten stimulates this pathway. - Abstract: The estrogen-related receptor α (ERRα) and the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) play critical roles in the control of several physiological functions, including the regulation of genes involved in energy homeostasis. However, little is known about the ability of environmental chemicals to disrupt or modulate this important bioenergetics pathway in humans. The goal of this study was to develop a cell-based assay system with an intact PGC-1α/ERRα axis that could be used as a screening assay for detecting such chemicals. To this end, we successfully generated several stable cell lines expressing PGC-1α and showed that the reporter driven by the native ERRα hormone response unit (AAB-Luc) is active in these cell lines and that the activation is PGC-1α-dependent. Furthermore, we show that this activation can be blocked by the ERRα selective inverse agonist, XCT790. In addition, we find that genistein and bisphenol A further stimulate the reporter activity, while kaempferol has minimal effect. These cell lines will be useful for identifying environmental chemicals that modulate this important pathway

  3. Development of a stable cell line with an intact PGC-1α/ERRα axis for screening environmental chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Christina T., E-mail: teng1@niehs.nih.gov [DNTP, BioMolecular Screening Branch, Division, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 (United States); Beames, Burton; Alex Merrick, B. [DNTP, BioMolecular Screening Branch, Division, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 (United States); Martin, Negin; Romeo, Charles [DIR, Viral Core Lab, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 (United States); Jetten, Anton M. [DIR Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 (United States)

    2014-02-07

    Highlights: • We developed a stable cell line with intact PGC-1α/ERRα axis. • The ERRα repressor, XCT790, down regulates this pathway. • Phytoestrogen, genisten stimulates this pathway. - Abstract: The estrogen-related receptor α (ERRα) and the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) play critical roles in the control of several physiological functions, including the regulation of genes involved in energy homeostasis. However, little is known about the ability of environmental chemicals to disrupt or modulate this important bioenergetics pathway in humans. The goal of this study was to develop a cell-based assay system with an intact PGC-1α/ERRα axis that could be used as a screening assay for detecting such chemicals. To this end, we successfully generated several stable cell lines expressing PGC-1α and showed that the reporter driven by the native ERRα hormone response unit (AAB-Luc) is active in these cell lines and that the activation is PGC-1α-dependent. Furthermore, we show that this activation can be blocked by the ERRα selective inverse agonist, XCT790. In addition, we find that genistein and bisphenol A further stimulate the reporter activity, while kaempferol has minimal effect. These cell lines will be useful for identifying environmental chemicals that modulate this important pathway.

  4. Facile high-throughput forward chemical genetic screening by in situ monitoring of glucuronidase-based reporter gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vivek eHalder

    2015-01-01

    Full Text Available The use of biologically active small molecules to perturb biological functions holds enormous potential for investigating complex signaling networks. However, in contrast to animal systems, the search for and application of chemical tools for basic discovery in the plant sciences, generally referred to as ‘chemical genetics’, has only recently gained momentum. In addition to cultured cells, the well-characterized, small-sized model plant Arabidopsis thaliana is suitable for cultivation in microplates, which allows employing diverse cell- or phenotype-based chemical screens. In such screens, a chemical’s bioactivity is typically assessed either through scoring its impact on morphological traits or quantifying molecular attributes such as enzyme or reporter activities. Here, we describe a facile forward chemical screening methodology for intact Arabidopsis seedlings harboring the β-glucuronidase (GUS reporter by directly quantifying GUS activity in situ with 4-methylumbelliferyl-β-D-glucuronide (4-MUG as substrate. The quantitative nature of this screening assay has an obvious advantage over the also convenient histochemical GUS staining method, as it allows application of statistical procedures and unbiased hit selection based on threshold values as well as distinction between compounds with strong or weak bioactivity. At the same time, the in situ bioassay is very convenient requiring less effort and time for sample handling in comparison to the conventional quantitative in vitro GUS assay using 4-MUG, as validated with several Arabidopsis lines harboring different GUS reporter constructs. To demonstrate that the developed assays is particularly suitable for large-scale screening projects, we performed a pilot screen for chemical activators or inhibitors of salicylic acid-mediated defense signaling using the Arabidopsis PR1p::GUS line. Importantly, the screening methodology provided here can be adopted for any inducible GUS reporter line.

  5. Chemical modification of chitosan in the absence of solvent for diclofenac sodium removal: pH and kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Kerlaine Alexandre Araujo; Osorio, Luizangela Reis; Silva, Marcos Pereira; Silva Filho, Edson Cavalcanti da, E-mail: edsonfilho@ufpi.edu.br [Universidade Federal do Piaui (UFPI/CCN), Teresina, PI (Brazil). Centro de Ciencias da Natureza. Lab. Interdisciplinar de Materiais Avancados; Sousa, Kaline Soares [Universidade Federal da Paraiba (UFPB/CCEN), Joao Pessoa, PB (Brazil). Centro de Ciencias Exatas e da Natureza. Dept. de Quimica

    2014-08-15

    Chitosan was modified with acetylacetone and ethylenediamine in the absence of solvent. The new biopolymer obtained from the modification was characterized by elemental analysis and NMR 13C and applied in the removal of diclofenac sodium aqueous solution varying the pH and time. Through elemental analysis was possible to verify a decreasing in C/N relation after reaction with acetylacetone and an increasing after modification with ethylenediamine. From NMR analysis was verified the appearance of peaks around 160-210 ppm in both materials due to free carbonyl groups in the first step of the modification, besides the formation of imine bonds. The adsorption tests showed that the highest value occurred at pH 4 and from the results of the kinetic study was found that maximum adsorption occurred within 45 minutes and experimental data adjusted better to linear adjustment, following pseudo second-order model. The results show a material efficient in the removal of emerging pollutants. (author)

  6. Identification of siRNA delivery enhancers by a chemical library screen.

    Science.gov (United States)

    Gilleron, Jerome; Paramasivam, Prasath; Zeigerer, Anja; Querbes, William; Marsico, Giovanni; Andree, Cordula; Seifert, Sarah; Amaya, Pablo; Stöter, Martin; Koteliansky, Victor; Waldmann, Herbert; Fitzgerald, Kevin; Kalaidzidis, Yannis; Akinc, Akin; Maier, Martin A; Manoharan, Muthiah; Bickle, Marc; Zerial, Marino

    2015-09-18

    Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2-5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types. PMID:26220182

  7. Identification of siRNA delivery enhancers by a chemical library screen

    Science.gov (United States)

    Gilleron, Jerome; Paramasivam, Prasath; Zeigerer, Anja; Querbes, William; Marsico, Giovanni; Andree, Cordula; Seifert, Sarah; Amaya, Pablo; Stöter, Martin; Koteliansky, Victor; Waldmann, Herbert; Fitzgerald, Kevin; Kalaidzidis, Yannis; Akinc, Akin; Maier, Martin A.; Manoharan, Muthiah; Bickle, Marc; Zerial, Marino

    2015-01-01

    Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2–5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types. PMID:26220182

  8. Chemical Composition and in Vitro Antifungal Activity Screening of the Allium ursinum L. (Liliaceae

    Directory of Open Access Journals (Sweden)

    Radu Vasile Bagiu

    2012-01-01

    Full Text Available The objective of the study was to summarize the methods for isolating and identifying natural sulfur compounds from Allium ursinum (ramson and to discuss the active constituents with regard to antifungal action. Using chromatographic techniques, the active constituents were isolated and subsequently identified. Analyses by high-performance liquid chromatography (HPLC suggested that these compounds were sulfur constituents, with a characteristic absorbance at 250 nm. Gas chromatography-mass spectrometry (GC-MS analyses allowed the chemical structures of the isolated constituents to be postulated. We adopted the same methods to identify the health-giving profiling of ramsons and the effects are thought to be primarily derived from the presence and breakdown of the alk(enylcysteine sulphoxide, alliin and its subsequent breakdown to allicin (sulfur-compounds of ramson in connection with antifungal action. The aim of the study was the characterization of the chemical composition of ramsons and the testing of the action of the in vitro extracts, on different strains of Candida albicans. The main goal was to highlight the most efficient extracts of Allium ursinum that can provide long-term antifungal activity without remissions. The extracts from Allium ursinum plants, inhibited growth of Candida spp. cells at concentrations ranging from 0.5 to 4.0 mg/mL, while that of adherent cells at concentrations ranging from 1.0 to > 4.0 mg/mL, depending on the yeast and plant species.

  9. Screening of adulterants in powdered foods and ingredients using line-scan Raman chemical imaging

    Science.gov (United States)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2015-05-01

    A newly developed line-scan Raman imaging system using a 785 nm line laser was used to authenticate powdered foods and ingredients. The system was used to collect hyperspectral Raman images in a wavenumber range of 102-2865 cm-1 from three representative food powders mixed with selected adulterants with a concentration of 0.5%, including milk and melamine, flour and benzoyl peroxide, and starch and maleic anhydride. An acoustic mixer was used to create food adulterant mixtures. All the mixed samples were placed in sample holders with a surface area of 50 mm×50 mm. Spectral and image processing algorithms were developed based on single-band images at unique Raman peaks of the individual adulterants. Chemical images were created to show identification, spatial distribution, and morphological features of the adulterant particles mixed in the food powders. The potential of estimating mass concentrations of the adulterants using the percentages of the adulterant pixels in the chemical images was also demonstrated.

  10. Pharmacological and chemical screening of Byrsonima crassifolia, a medicinal tree from Mexico. Part I.

    Science.gov (United States)

    Béjar, E; Malone, M H

    1993-06-01

    Leaf and bark extracts of Byrsonima crassifolia displayed concentration-dependent, spasmogenic effects on rat fundus in vitro and biphasic effects on rat jejunum and ileum in vitro. Dose-related in vivo effects in intact rats using hippocratic screening were: decrease in motor activity, mild analgesia, back tonus, enophthalmos, reversible palpebral ptosis, ear blanching, Robichaud positive, catalepsy (awake) and strong hypothermia. Rat fundus in vitro was used as the bioassay to carry out an activity-directed separation. Bioactive material was concentrated in a 2% acetic acid leaf extract (HOAcE). Potency of HOAcE was increased by the presence of pargyline in the bathing solution. HOAcE was antagonized noncompetively by 1(1-naphthyl) piperazine (1-NP) and cyproheptadine and antagonized competitively by atropine (ATR). Cumulative concentration-response curves of HOAcE and serotonin (5-HT) did not show significant departure from parallelism (P > 0.1) and 5-HT potency was 6040 times that of HOAcE (95% confidence limits: 4620-7850). Solvent extraction of HOAcE split the spasmogenic activity of HOAcE into two types: (i) high-efficacy, low-potency, n-butanol-extracted, pargyline- and 1-NP-sensitive, ATR-insensitive activity, and (ii) low-efficacy, high-potency, ethyl acetate-extracted, pargyline-insensitive, ATR- and 1-NP-sensitive activity. HOAcE lacked muscarinic and nicotinic effects on rat jejunum and frog rectus abdominis. Results suggest the presence of more than one spasmogenic compound in the plant. PMID:8412247

  11. Preliminary Phytochemical Screening and Physico-Chemical Parameters of Artemisia absinthium and Artemisia annua.

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Ashok

    2013-03-01

    Full Text Available The family Asteraceae or compositae known as the ester, daisy or sunflower family is the largest family of flowering plants. Artemisia is a large diverse genus of plants with between 100 to 150 species belonging to the family asteraceae (compositae. It comprises hardy herbs and shrubs known for their volatile oils. They grow in temperate climate of the northern hemisphere and southern hemisphere usually in dry or, semidry habitats. The collected herbs were authenticated, dried and extracted to calculate the percentage of yield. Phytochemical studies of the Hexane and alcoholic extracts showed the presence of various phytoconstituents i.e. carbohydrate, saponins, phytosterol, proteins and amino acid, tannin, phenolic compounds and flavonoids. It was observed that all the extracts show more important chemical constituents for various pharmacological activities. The determination of these characters will aid future investigators in their Pharmacological analysis of this species.

  12. Characterization of the onset asphaltenes by focused-beam laser reflectance : a tool for chemical additives screening

    Energy Technology Data Exchange (ETDEWEB)

    Marugan, J.; Calles, J.A.; Dufour, J.; Gimenez-Aguirre, R. [Univ. Rey Juan Carlos, Madrid (Spain). URJC-Repsol-YPF Flow Assurance Laboratory, Dept. of Chemical and Environmental Technology; Pena, J.L. [Univ. Rey Juan Carlos, Madrid (Spain). URJC-Repsol-YPF Flow Assurance Laboratory, Dept. of Chemical and Environmental Technology; Centro Tecnologico Repsol-YPF, Madrid (Spain); Merino-Garcia, D. [Centro Tecnologico Repsol-YPF, Madrid (Spain)

    2008-07-01

    The deposition of asphaltenes in crude oil can cause flow assurance problems. In this study, a laser reflectance technique known as Focused-Beam Reflectance Measurement (FBRM) was used to study the kinetics of asphaltenes aggregation near onset. The FBRM tool provides a very sensitive way of determining the onset n-alkane/oil mass ratio. The influence of the n-alkane solvent and temperature on the solvent/oil threshold ratio of 2 South American crude oils with 21 and 27 API were investigated. The FBRM technique provided kinetic information about the evolution with time of the size distribution of asphaltenes flocs. Additional FBRM experiments of asphaltene redissolution and reprecipitation were also performed for a comparative evaluation, beginning with the solids recovered following the IP- 143 standard, which were fractionated into 4 different polarity groups using n-pentane - chloroform mixtures. The objective was to find correlations between polarity of the asphaltenes and its instability near the onset. Metal content was determined through atomic emission spectroscopy. The solids were characterized by 1H NMR, FT-IR spectroscopy, and vapour-pressure osmometry in order to determine the chemical and structural features of the most unstable asphaltenes. The FBRM probe was used to screen commercial chemical additives to prevent asphaltenes deposits. This technique was shown to be a very powerful tool for examining the influence of additives on the aggregation kinetics and the particle size distribution of the first asphaltene solids.

  13. Anionic phenolic compounds bind stronger with transthyretin than their neutral forms: nonnegligible mechanisms in virtual screening of endocrine disrupting chemicals.

    Science.gov (United States)

    Yang, Xianhai; Xie, Hongbin; Chen, Jingwen; Li, Xuehua

    2013-09-16

    The molecular structures of many endocrine-disrupting chemicals (EDCs) contain groups that ionize under physiological pH conditions. It is unclear whether the neutral and ionic forms have different binding mechanisms with the macromolecular targets. We selected phenolic compounds and human transthyretin (hTTR) as a model system and employed molecular docking with quantum mechanics/molecular mechanics optimizations to probe the mechanisms. The binding patterns of ionizable ligands in hTTR crystal structures were also analyzed. We found that the anionic forms of the phenolic compounds bind stronger than the corresponding neutral forms with hTTR. Electrostatic and van de Waals interactions are the dominant forces for most of the anionic and neutral forms, respectively. Because of the dominant and orientational electrostatic interactions, the -O(-) groups point toward the entry port of the binding site. The aromatic rings of the compounds also form cation-π interactions with the -NH3(+) group of Lys 15 residues in hTTR. Molecular descriptors were selected to characterize the interactions and construct a quantitative structure-activity relationship model on the relative competing potency of chemicals with T4 binding to hTTR. It is concluded that the effects of ionization should not be neglected when constructing in silico models for screening of potential EDCs. PMID:23941687

  14. Potential of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry for screening and quantification of hexabromocyclododecane.

    Science.gov (United States)

    Sales, Carlos; Portolés, Tania; Sancho, Juan Vicente; Abad, Esteban; Ábalos, Manuela; Sauló, Jordi; Fiedler, Heidelore; Gómara, Belén; Beltrán, Joaquim

    2016-01-01

    A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/μL to 100 pg/μL for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/μL; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment. PMID:26554601

  15. A post-modification approach to independent component analysis for resolution of overlapping GC/MS signals: from independent components to chemical components

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; CAI WenSheng; SHAO XueGuang

    2007-01-01

    Independent component analysis (ICA) has demonstrated its power to extract mass spectra from overlapping GC/MS signal. However, there is still a problem that mass spectra with negative peaks at some m/z will be obtained in the resolved results when there are overlapping peaks in the mass spectra of a mixture. Based on a detail theoretical analysis of the preconditions for ICA and the non-negative property of GC/MS signals, a post-modification based on chemical knowledge (PMBK) strategy is proposed to solve this problem. By both simulated and experimental GC/MS signals, it was proved that the PMBK strategy can improve the resolution effectively.

  16. Tandem virtual screening targeting the SRA domain of UHRF1 identifies a novel chemical tool modulating DNA methylation.

    Science.gov (United States)

    Myrianthopoulos, Vassilios; Cartron, Pierre Francois; Liutkevičiūtė, Zita; Klimašauskas, Saulius; Matulis, Daumantas; Bronner, Christian; Martinet, Nadine; Mikros, Emmanuel

    2016-05-23

    Ubiquitin-like protein UHRF1 that contains PHD and RING finger domain 1 is a key epigenetic protein enabling maintenance of the DNA methylation status through replication. A tandem virtual screening approach was implemented for identifying small molecules able to bind the 5-methylcytosine pocket of UHRF1 and inhibit its functionality. The NCI/DTP small molecules Repository was screened in silico by a combined protocol implementing structure-based and ligand-based methodologies. Consensus ranking was utilized to select a set of 27 top-ranked compounds that were subsequently evaluated experimentally in a stepwise manner for their ability to demethylate DNA in cellulo using PCR-MS and HPLC-MS/MS. The most active molecules were further assessed in a cell-based setting by the Proximity Ligation In Situ Assay and the ApoTome technology. Both evaluations confirmed that the DNMT1/UHRF1 interactions were significantly reduced after 4 h of incubation of U251 glioma cells with the most potent compound NSC232003, showing a 50% interaction inhibition at 15 μM as well as induction of global DNA cytosine demethylation as measured by ELISA. This is the first report of a chemical tool that targets UHRF1 and modulates DNA methylation in a cell context by potentially disrupting DNMT1/UHRF1 interactions. Compound NSC232003, a uracil derivative freely available by the NCI/DTP Repository, provides a versatile lead for developing highly potent and cell-permeable UHRF1 inhibitors that will enable dissection of DNA methylation inheritance. PMID:27049577

  17. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils.

    Science.gov (United States)

    Lopes-Lutz, Daíse; Alviano, Daniela S; Alviano, Celuta S; Kolodziejczyk, Paul P

    2008-05-01

    The chemical composition of essential oils isolated from aerial parts of seven wild sages from Western Canada -Artemisia absinthium L., Artemisia biennis Willd., Artemisia cana Pursh, Artemisia dracunculus L., Artemisia frigida Willd., Artemisia longifolia Nutt. and Artemisia ludoviciana Nutt., was investigated by GC-MS. A total of 110 components were identified accounting for 71.0-98.8% of the oil composition. High contents of 1,8-cineole (21.5-27.6%) and camphor (15.9-37.3%) were found in Artemisia cana, A. frigida, A. longifolia and A. ludoviciana oils. The oil of A. ludoviciana was also characterized by a high content of oxygenated sesquiterpenes with a 5-ethenyltetrahydro-5-methyl-2-furanyl moiety, of which davanone (11.5%) was the main component identified. A. absinthium oil was characterized by high amounts of myrcene (10.8%), trans-thujone (10.1%) and trans-sabinyl acetate (26.4%). A. biennis yielded an oil rich in (Z)-beta-ocimene (34.7%), (E)-beta-farnesene (40.0%) and the acetylenes (11.0%) (Z)- and (E)-en-yn-dicycloethers. A. dracunculus oil contained predominantly phenylpropanoids such as methyl chavicol (16.2%) and methyl eugenol (35.8%). Artemisia oils had inhibitory effects on the growth of bacteria (Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis), yeasts (Candida albicans, Cryptococcus neoformans), dermatophytes (Trichophyton rubrum, Microsporum canis, and Microsporum gypseum), Fonsecaea pedrosoi and Aspergillus niger. A. biennis oil was the most active against dermatophytes, Cryptococcus neoformans, Fonsecaea pedrosoi and Aspergillus niger, and A. absinthium oil the most active against Staphylococcus strains. In addition, antioxidant (beta-carotene/linoleate model) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities were determined, and weak activities were found for these oils. PMID:18417176

  18. Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices.

    Science.gov (United States)

    Yagyu, Hitomi; Saito, Tsuguyuki; Isogai, Akira; Koga, Hirotaka; Nogi, Masaya

    2015-10-01

    Optically transparent cellulose nanopaper is one of the best candidate substrates for flexible electronics. Some types of cellulose nanopaper are made of mechanically or chemically modified cellulose nanofibers. Among these, nanopapers produced from chemically modified cellulose nanofibers are the most promising substrate because of their lower power consumption during fabrication and higher optical transparency (lower haze). However, because their thermal durability is as low as plastics, paper devices using chemically modified nanopaper often do not have sufficiently high performance. In this study, by decreasing the carboxylate content in the cellulose nanofibers, the thermal durability of chemically modified nanopaper was drastically improved while maintaining high optical transparency, low coefficient of thermal expansion, and low power consumption during fabrication. As a result, light-emitting diode lights illuminated on the chemically modified nanopaper via highly conductive lines, which were obtained by printing silver nanoparticle inks and high-temperature heating. PMID:26402324

  19. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Lopez, F.J.; Hernandez, F.

    2014-01-01

    A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acq

  20. Development of a bioassay to screen for chemicals mimicking the anti-aging effects of calorie restriction

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Takuya, E-mail: takuya@nagasaki-u.ac.jp [Department of Investigative Pathology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Tsuchiya, Tomoshi [Division of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501 (Japan); Komatsu, Toshimitsu; Mori, Ryoichi; Hayashi, Hiroko [Department of Investigative Pathology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Shimano, Hitoshi [Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8575 (Japan); Spindler, Stephen R. [Department of Biochemistry, Room 5478, Boyce Hall, University of California - Riverside, Riverside, CA 92521 (United States); Shimokawa, Isao [Department of Investigative Pathology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan)

    2010-10-15

    Research highlights: {yields} We identified four sequence motifs lying upstream of putative pro-longevity genes. {yields} One of these motifs binds to HNF-4{alpha}. {yields} HNF-4{alpha}/PGC-1{alpha} could up-regulate the transcription of a reporter gene linked to this motif. {yields} The reporter system described here could be used to screen candidate anti-aging molecules. -- Abstract: Suppression of the growth hormone/insulin-like growth factor-I pathway in Ames dwarf (DF) mice, and caloric restriction (CR) in normal mice extends lifespan and delays the onset of age-related disorders. In combination, these interventions have an additive effect on lifespan in Ames DF mice. Therefore, common signaling pathways regulated by DF and CR could have additive effects on longevity. In this study, we tried to identity the signaling mechanism and develop a system to assess pro-longevity status in cells and mice. We previously identified genes up-regulated in the liver of DF and CR mice by DNA microarray analysis. Motif analysis of the upstream sequences of those genes revealed four major consensus sequence motifs, which have been named dwarfism and calorie restriction-responsive elements (DFCR-REs). One of the synthesized sequences bound to hepatocyte nuclear factor-4{alpha} (HNF-4{alpha}), an important transcription factor involved in liver metabolism. Furthermore, using this sequence information, we developed a highly sensitive bioassay to identify chemicals mimicking the anti-aging effects of CR. When the reporter construct, containing an element upstream of a secreted alkaline phosphatase (SEAP) gene, was co-transfected with HNF-4{alpha} and its regulator peroxisome proliferator-activated receptor (PPAR) {gamma} coactivator-1{alpha} (PGC-1{alpha}), SEAP activity was increased compared with untransfected controls. Moreover, transient transgenic mice established using this construct showed increased SEAP activity in CR mice compared with ad libitum-fed mice. These data

  1. Development of a bioassay to screen for chemicals mimicking the anti-aging effects of calorie restriction

    International Nuclear Information System (INIS)

    Research highlights: → We identified four sequence motifs lying upstream of putative pro-longevity genes. → One of these motifs binds to HNF-4α. → HNF-4α/PGC-1α could up-regulate the transcription of a reporter gene linked to this motif. → The reporter system described here could be used to screen candidate anti-aging molecules. -- Abstract: Suppression of the growth hormone/insulin-like growth factor-I pathway in Ames dwarf (DF) mice, and caloric restriction (CR) in normal mice extends lifespan and delays the onset of age-related disorders. In combination, these interventions have an additive effect on lifespan in Ames DF mice. Therefore, common signaling pathways regulated by DF and CR could have additive effects on longevity. In this study, we tried to identity the signaling mechanism and develop a system to assess pro-longevity status in cells and mice. We previously identified genes up-regulated in the liver of DF and CR mice by DNA microarray analysis. Motif analysis of the upstream sequences of those genes revealed four major consensus sequence motifs, which have been named dwarfism and calorie restriction-responsive elements (DFCR-REs). One of the synthesized sequences bound to hepatocyte nuclear factor-4α (HNF-4α), an important transcription factor involved in liver metabolism. Furthermore, using this sequence information, we developed a highly sensitive bioassay to identify chemicals mimicking the anti-aging effects of CR. When the reporter construct, containing an element upstream of a secreted alkaline phosphatase (SEAP) gene, was co-transfected with HNF-4α and its regulator peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α (PGC-1α), SEAP activity was increased compared with untransfected controls. Moreover, transient transgenic mice established using this construct showed increased SEAP activity in CR mice compared with ad libitum-fed mice. These data suggest that because of its rapidity, ease of use, and specificity

  2. Rapid Screening Method for Mycobactericidal Activity of Chemical Germicides That Uses Mycobacterium terrae Expressing a Green Fluorescent Protein Gene

    Science.gov (United States)

    Zafer, Ahmed A.; Taylor, Yvonne E.; Sattar, Syed A.

    2001-01-01

    The slow growth of mycobacteria in conventional culture methods impedes the testing of chemicals for mycobactericidal activity. An assay based on expression of the green fluorescent protein (GFP) by mycobacteria was developed as a rapid alternative. Plasmid pBEN, containing the gene encoding a red-shifted, high-intensity GFP mutant, was incorporated into Mycobacterium terrae (ATCC 15755), and GFP expression was observed by epifluorescence microscopy. Mycobactericidal activity was assessed by separately exposing a suspension of M. terrae(pBEN) to several dilutions of test germicides based on 7.5% hydrogen peroxide, 2.4% alkaline glutaraldehyde, 10% acid glutaraldehyde, and 15.5% of a phenolic agent for contact times ranging from 10 to 20 min (22°C), followed by culture of the exposed cells in broth (Middlebrook 7H9) and measurement of fluorescence every 24 h. When the fluorescence was to be compared with CFU, the samples were plated on Middlebrook 7H11 agar and incubated for 4 weeks. No increase in fluorescence or CFU occurred in cultures in which the cells had been inactivated by the germicide concentrations tested. Where the test bacterium was exposed to ineffective levels of the germicides, fluorescence increased after a lag period of 1 to 7 days, corresponding to the level of bacterial inactivation. In untreated controls, fluorescence increased rapidly to reach a peak in 2 to 4 days. A good Pearson correlation coefficient (r ≥0.85) was observed between the intensity of fluorescence and the number of CFU. The GFP-based fluorescence assay reduced the turnaround time in the screening of chemical germicides for mycobactericidal activity to ≤7 days. PMID:11229916

  3. Estudo da modificação química de polidienos do tipo SBR e BR Study of chemical modification of SBR and BR polydiene

    Directory of Open Access Journals (Sweden)

    Tatiana L. A. C. Rocha

    2004-12-01

    Full Text Available A utilização de modificações químicas de polidienos comerciais tem sido estudada como um meio alternativo à síntese de novos polímeros, para otimização das propriedades finais destes materiais através da introdução de diferentes grupamentos reativos na cadeia polimérica. A modificação química pode ser feita através de diferentes métodos, os quais podem ser realizados tanto em solução como em massa, onde podem ser destacadas as reações de epoxidação, sulfonação, maleinização, carboxilação, etc. Neste trabalho foi estudado o método de epoxidação de borrachas do tipo SBR e BR. Foi possível observar que mesmo pequenos graus de modificação química causam mudanças marcantes nas propriedades finais dos polímeros, como determinado para a temperatura de transição vítrea.Chemical modification of polydiene has been studied as an alternative route to obtain modified polymers with improved final properties. This improvement is due to the introduction of different kinds of reactive groups into a polymer chain, and it can be done in solution as well as in bulk. The chemical modification can be carried out by different methods such as epoxidation, maleination, carboxylation, sulfonation etc. In this work we show that in the epoxidation of SBR and BR even a small degree of modification can change the final properties of the polymer, as it occurred for the glass transition temperature.

  4. Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film

    International Nuclear Information System (INIS)

    Poly(ethylene terephthalate) (PET) film was modified by reaction with hydrazine (HD), ethylenediamine (EDA), 1,2-diaminopropane (1,2-DAP) and 1,3-diaminopropane (1,3-DAP). The maximal amount of amine functionalities introduced in the chosen conditions on the surface was found as 0.07, 3.35, 0.76 and 1.99 nmol cm-2 for HD, EDA, 1,2-DAP and 1,3-DAP respectively. During the modification process etching of the sample and an increase of stiffness takes place. FTIR-ATR spectra prove that the surface chemistry after modification in amine solution is very complex. The lack of clear correlation between the surface tension and surface concentration of amine functionalities seems to confirm that. For immobilization purpose invertase, laccase and tyrosinase were used. The amount of covalently attached proteins at first increases with the increase of surface concentration of amine groups but after reaching a certain level of amine groups, decrease of the immobilization level was observed. All enzymes tested showed highest activity for a moderate level of aminolysis and this activity had the highest values for EDA-modified PET.

  5. Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film

    Energy Technology Data Exchange (ETDEWEB)

    Irena, Gancarz, E-mail: irena.gancarz@pwr.wroc.pl [Department of Chemistry, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Jolanta, Bryjak; Karolina, Zynek [Department of Chemistry, Wroclaw University of Technology, 50-370 Wroclaw (Poland)

    2009-07-15

    Poly(ethylene terephthalate) (PET) film was modified by reaction with hydrazine (HD), ethylenediamine (EDA), 1,2-diaminopropane (1,2-DAP) and 1,3-diaminopropane (1,3-DAP). The maximal amount of amine functionalities introduced in the chosen conditions on the surface was found as 0.07, 3.35, 0.76 and 1.99 nmol cm{sup -2} for HD, EDA, 1,2-DAP and 1,3-DAP respectively. During the modification process etching of the sample and an increase of stiffness takes place. FTIR-ATR spectra prove that the surface chemistry after modification in amine solution is very complex. The lack of clear correlation between the surface tension and surface concentration of amine functionalities seems to confirm that. For immobilization purpose invertase, laccase and tyrosinase were used. The amount of covalently attached proteins at first increases with the increase of surface concentration of amine groups but after reaching a certain level of amine groups, decrease of the immobilization level was observed. All enzymes tested showed highest activity for a moderate level of aminolysis and this activity had the highest values for EDA-modified PET.

  6. Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film

    Science.gov (United States)

    Irena, Gancarz; Jolanta, Bryjak; Karolina, Zynek

    2009-07-01

    Poly(ethylene terephthalate) (PET) film was modified by reaction with hydrazine (HD), ethylenediamine (EDA), 1,2-diaminopropane (1,2-DAP) and 1,3-diaminopropane (1,3-DAP). The maximal amount of amine functionalities introduced in the chosen conditions on the surface was found as 0.07, 3.35, 0.76 and 1.99 nmol cm -2 for HD, EDA, 1,2-DAP and 1,3-DAP respectively. During the modification process etching of the sample and an increase of stiffness takes place. FTIR-ATR spectra prove that the surface chemistry after modification in amine solution is very complex. The lack of clear correlation between the surface tension and surface concentration of amine functionalities seems to confirm that. For immobilization purpose invertase, laccase and tyrosinase were used. The amount of covalently attached proteins at first increases with the increase of surface concentration of amine groups but after reaching a certain level of amine groups, decrease of the immobilization level was observed. All enzymes tested showed highest activity for a moderate level of aminolysis and this activity had the highest values for EDA-modified PET.

  7. Study of Physical and Colloid-Chemical Properties of Acrylic Polyelectrolytes of “M-PAA” Series and Their Modification

    Directory of Open Access Journals (Sweden)

    N.O Dzhakipbekova

    2015-12-01

    Full Text Available The aim of this study is to search for the best basic technology to replace the base in the metallization of dielectrics. We studied conducting polymers – acrylic polyelectrolytes. Polyelectrolytes include high molecular weight compounds containing macromolecules and ionogenic groups. Experimental studies have shown that the rational use of HSP for the regulation of colloid-chemical processes in the production should take into account the functional structure of the polymer, its conformational state of macromolecules in solution, the degree of association, dissociation of functional groups, and other factors, which necessitates studying the physical and colloidal chemical characteristics of HSP solutions depending on the concentration.

  8. A new strategy for the selective determination of D-amino acids: enzymatic and chemical modifications for pre-column derivatization.

    Science.gov (United States)

    Oguri, Shigeyuki; Nomura, Michiko; Fujita, Youko

    2005-06-17

    A new strategy for the selective determination of D-amino acids (DAAs) employing a pre-column derivatization was designed with concepts based on both enzymatic and chemical modifications. Selective determination of DAAs was accomplished by following: DAA was enzymatically modified with D-amino acid oxidase (DAAO: EC 1.4.3.3) to form an alpha-keto acid. Subsequently, resulting alpha-keto acid was detected by high-performance liquid chromatography (HPLC) after chemical modification with o-phenylenediamine (PDA) in the presence of 2-mercaptoethanol (2ME) to give the corresponding quinoxalinol derivative (PDA-alpha-keto acid derivative). After optimizing the pre-column derivatization and HPLC separation, five peaks corresponding to DAAs (D-alanine, D-leucine, D-methionine, D-phenylalanine, D-valine (as the standard mixture of DAAs in this paper) were separately eluted and monitored by means of a conventional HPLC system with a gradient elution on octadecyl silica gel (ODS) column and a fluorescence detector (Ex.: 341 nm, Em.: 413 nm), respectively. It was confirmed that the present method was incapable of detecting L-amino acids (LAA) when a sample solution consisting of both LAAs and DAAs was examined. The linearity of the peak-area responses to their concentration range of DAAs from 10 to 500 microM is 0.994-1.000, and their detection limits were 0.2-1 microM (signal/noise = 3). When this method was applied to a methanolic extract of short-necked clams, Ruditapes philippinarum (in Japanese, Asari), a big peak, corresponding to D-alanine was detected, corresponding to 2.9 mg/g D-alanine. In this paper, we present an example of pre-column derivatization method that was newly configured to take into account both the biological and chemical properties of the substances in question. PMID:16007981

  9. Chemical constituents of Parmotrema lichexanthonicum Eliasaro and Alder: isolation, structure modification and evaluation of antibiotic and cytotoxic activities

    International Nuclear Information System (INIS)

    From the lichen Parmotrema lichexantonicum were isolated the depsidone salazinic acid, the xanthone lichexanthone, and the depside atranorin. The two major compounds, salazinic acid and lichexanthone, were selected for structure modifications. Salazinic acid afforded O-alkyl salazinic acids, some of them potentially cytotoxic against tumor cell lines (HCT-8, SF-295 and MDA/ MB - 435). From lichexanthone were obtained norlichexanthone, 3-O-methylnorlichexanthone, 3-O-methyl-6-O-prenylnorlichexanthone, 3,6-di-O-prenyl-norlichexanthone, 3,6-bis[(3,3-dimethyloxyran-2-il)methoxy] -1-hydroxy-8-methyl-9H-xanten-9-one and 3,6-bis[3-(dimethylamine)propoxy]-1-hydroxy-8-methyl- 9H-xanten-9-one. The last compound was the most active against S. aureus. (author)

  10. Chemical modification of silica gel with synthesized new Schiff base derivatives and sorption studies of cobalt (II) and nickel (II)

    International Nuclear Information System (INIS)

    In this study, three Schiff base ligands and their complexes were synthesized and characterized by infrared spectroscopy (IR), thermogravimetric analyses (TGA), nuclear magnetic resonance (NMR), elemental analysis and magnetic susceptibility apparatuses. Silica gel was respectively modified with Schiff base derivatives, (E)-2-[(2-chloroethylimino)methyl]phenol, (E)-4-[(2-chloroethylimino)methyl]phenol and N,N'-[1,4-phenilendi(E)methylidene]bis(2-chloroethanamine), after silanization of silica gel by (3-aminopropyl)trimethoxysilane (APTS) by using a suitable method. Characterization of the surface modification was also performed with IR, TGA and elemental analysis. The immobilized surfaces were used for Co(II) and Ni(II) sorption from aqueous solutions and values of sorption were detected by atomic absorption spectrometer (AAS).

  11. Establishment of IL-7 Expression Reporter Human Cell Lines, and Their Feasibility for High-Throughput Screening of IL-7-Upregulating Chemicals.

    Science.gov (United States)

    Cho, Yeon Sook; Kim, Byung Soo; Sim, Chan Kyu; Kim, Inki; Lee, Myeong Sup

    2016-01-01

    Interleukin-7 (IL-7) is a cytokine essential for T cell homeostasis, and is clinically important. However, the regulatory mechanism of IL-7 gene expression is not well known, and a systematic approach to screen chemicals that regulate IL-7 expression has not yet been developed. In this study, we attempted to develop human reporter cell lines using CRISPR/Cas9-mediated genome editing technology. For this purpose, we designed donor DNA that contains an enhanced green fluorescent protein (eGFP) gene, drug selection cassette, and modified homologous arms which are considered to enhance the translation of the eGFP reporter transcript, and also a highly efficient single-guide RNA with a minimal off-target effect to target the IL-7 start codon region. By applying this system, we established IL-7 eGFP reporter cell lines that could report IL-7 gene transcription based on the eGFP protein signal. Furthermore, we utilized the cells to run a pilot screen campaign for IL-7-upregulating chemicals in a high-throughput format, and identified a chemical that can up-regulate IL-7 gene transcription. Collectively, these results suggest that our IL-7 reporter system can be utilized in large-scale chemical library screening to reveal novel IL-7 regulatory pathways and to identify potential drugs for development of new treatments in immunodeficiency disease. PMID:27589392

  12. Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water

    Science.gov (United States)

    Patowary, Manoj; Ananthakrishnan, Rajakumar; Pathak, Khanindra

    2014-11-01

    The wettability of hygroscopic magnesium carbonate has been modified to develop a superhydrophobic and oleophilic sorbent for oil spill clean-ups via a simple chemical process using palmitic acid. The prepared material was characterized using X-ray diffraction, Fourier transform infra-red spectroscopy, and scanning electron microscopy. Wettability test infers that the sorbent has a static water contact angle of 154 ± 1°, thereby indicating its superhydrophobic character. The sorbent was capable of scavenging oil for about three times its weight, as determined from oil sorption studies, carried out using the sorbent on model oil-water mixture. Interestingly, the chemically modified sorbent has high selectivity, buoyancy, and rate of uptake of oil. Further, the reusability studies confirm the repeatable usage of the sorbent and its efficacy in oil spill remediation.

  13. Fracture Toughness, Mechanical Property, And Chemical Characterization Of A Critical Modification To The NASA SLS Solid Booster Internal Material System

    Science.gov (United States)

    Pancoast, Justin; Garrett, William; Moe, Gulia

    2015-01-01

    A modified propellant-liner-insulation (PLI) bondline in the Space Launch System (SLS) solid rocket booster required characterization for flight certification. The chemical changes to the PLI bondline and the required additional processing have been correlated to mechanical responses of the materials across the bondline. Mechanical properties testing and analyses included fracture toughness, tensile, and shear tests. Chemical properties testing and analyses included Fourier transform infrared (FTIR) spectroscopy, cross-link density, high-performance liquid chromatography (HPLC), gas chromatography (GC), gel permeation chromatography (GPC), and wave dispersion X-ray fluorescence (WDXRF). The testing identified the presence of the expected new materials and found the functional bondline performance of the new PLI system was not significantly changed from the old system.

  14. Study of Physical and Colloid-Chemical Properties of Acrylic Polyelectrolytes of “M-PAA” Series and Their Modification

    OpenAIRE

    N.O Dzhakipbekova; A. B. Isa; M. F Fatkullina; E. O Dzhakipbekov

    2015-01-01

    The aim of this study is to search for the best basic technology to replace the base in the metallization of dielectrics. We studied conducting polymers – acrylic polyelectrolytes. Polyelectrolytes include high molecular weight compounds containing macromolecules and ionogenic groups. Experimental studies have shown that the rational use of HSP for the regulation of colloid-chemical processes in the production should take into account the functional structure of the polymer, its conformatio...

  15. Chemical modification of recombinant interleukin 2 by polyethylene glycol increases its potency in the murine Meth A sarcoma model.

    OpenAIRE

    Katre, N V; Knauf, M J; Laird, W J

    1987-01-01

    Recombinant human interleukin 2 purified from Escherichia coli has limited solubility at neutral pH and a short circulatory half-life. This recombinant interleukin 2 was chemically modified by an active ester of polyethylene glycol. The modified interleukin 2 was purified by hydrophobic interaction chromatography and characterized by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and isoelectric focusing. This conjugate was compared to unmodified recombinant interleukin 2 in vitro ...

  16. MODIFICATION OF JACK PINE TMP LONG FIBERS BY ALKALINE PEROXIDE – PART 1. CHEMICAL CHARACTERISTICS OF FIBERS AND SPENT LIQUOR

    Directory of Open Access Journals (Sweden)

    Ying Han

    2008-08-01

    Full Text Available The purpose of this work was to improve the quality of jack pine TMP long fibers, particularly with respect to the strength properties, by alkaline peroxide treatment. This paper reports the chemical characteristics of the treated long fibers and the spent liquors originating from various treatments. It was observed that, in comparison with hydrogen peroxide, the alkalinity of the treatment solutions had a greater influence on most fibre characteristics and spent liquor properties.

  17. Characterization of pellicle inhibition in Gluconacetobacter xylinus 53582 by a small molecule, pellicin, identified by a chemical genetics screen.

    Directory of Open Access Journals (Sweden)

    Janice L Strap

    Full Text Available Pellicin ([2E]-3-phenyl-1-[2,3,4,5-tetrahydro-1,6-benzodioxocin-8-yl]prop-2-en-1-one was identified in a chemical genetics screen of 10,000 small molecules for its ability to completely abolish pellicle production in Gluconacetobacter xylinus. Cells grown in the presence of pellicin grew 1.5 times faster than untreated cells. Interestingly, growth in pellicin also caused G. xylinus cells to elongate. Measurement of cellulose synthesis in vitro showed that cellulose synthase activity was not directly inhibited by pellicin. Rather, when cellulose synthase activity was measured in cells that were pre-treated with the compound, the rate of cellulose synthesis increased eight-fold over that observed for untreated cells. This phenomenon was also apparent in the rapid production of cellulose when cells grown in the presence of pellicin were washed and transferred to media lacking the inhibitor. The rate at which cellulose was produced could not be accounted for by growth of the organism. Pellicin was not detected when intracellular contents were analyzed. Furthermore, it was found that pellicin exerts its effect extracellularly by interfering with the crystallization of pre-cellulosic tactoidal aggregates. This interference of the crystallization process resulted in enhanced production of cellulose II as evidenced by the ratio of acid insoluble to acid soluble product in in vitro assays and confirmed in vivo by scanning electron microscopy and powder X-ray diffraction. The relative crystallinity index, RCI, of pellicle produced by untreated G. xylinus cultures was 70% while pellicin-grown cultures had RCI of 38%. Mercerized pellicle of untreated cells had RCI of 42%, which further confirms the mechanism of action of pellicin as an inhibitor of the cellulose I crystallization process. Pellicin is a useful tool for the study of cellulose biosynthesis in G. xylinus.

  18. Screening of Modified RNA duplexes

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Kjems, Jørgen;

    Because of sequence specific gene targeting activity siRNAs are regarded as promising active compounds in gene medicine. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNA duplexes. Cellular reactions towards double stranded...... protection against a fish pathogenic virus. This protection corresponded with an interferon response in the fish. Here we use this fish model to screen siRNAs containing various chemical modifications of the RNA backbone for their antiviral activity, the overall aim being identification of an siRNA form with...

  19. Evaluation of the chemical modifications in petroleum asphalt cement with the addition of polypropylene; Avaliacao das modificacoes quimicas no cimento asfaltico de petroleo com a adicao de polipropileno

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, C.P.; Sales, M.J.A.; Resck, I.S., E-mail: mjsales@unb.b [Universidade de Brasilia (LabPol/UnB), DF (Brazil). Inst. de Quimica. Lab. de Pesquisa em Polimeros; Farias, M.M.; Souza, M.V.R. [Universidade de Brasilia (UnB), DF (Brazil). Dept. de Engenharia Civil e Ambiental

    2010-07-01

    Studies show that the common distress mode in the Brazilian highway network are fatigue cracks and plastic deformation, which are associated with the type of material used in the pavement layers, structural project, excessive traffic load and weathering. To minimize these defects, research on modifiers such as polymers, added to asphalt binders have been developed to provide physical, chemical and rheological improvement. This paper investigates chemical modifications of the binders with the addition of PP by FTIR, NMR and DSC. FTIR spectra of pure and modified binder showed no differences in absorption. NMR analysis showed no strong chemical bonds between the binder and PP. DSC curve of PP showed a melting temperature of 160 deg C ({Delta}H = 94J/g) and the pure binder presented an endothermic transition between 20 and 40 deg C ({Delta}H = 2J/g). In the DSC curves of mixtures, these transitions are not significant, indicating possible interactions between asphalt binder and PP. (author)

  20. Imaging gas and plasma interactions in the surface-chemical modification of polymers using micro-plasma jets

    International Nuclear Information System (INIS)

    This paper reports on the correlation between gas flow and plasma behaviour in the outflow of a micro-atmospheric pressure plasma jet operating in helium using both 2D optical imaging and Schlieren photography. Schlieren photography shows that the helium outflow changes from laminar to turbulent conditions after distances between 20 and 50 mm from the nozzle. Above a flow rate of 1.4 slm, the length of the laminar region decreases with increasing flow rate. However, by contrast the visible plasma plume increases in length with increasing flow rate until its extension just exceeds that of the laminar region. At this point, the plasma becomes turbulent and its length decreases. Exposing polystyrene (PS) samples to the plasma jet significantly alters the water contact angle in a defined area, with the hydrophobic PS surface becoming more hydrophilic. This modification occurs both with and without direct contact of the visible glow on the surface. The radius of the treated area is much larger than the width of the visible jet but much smaller than the area of the turbulence on the surface. The treated area reduces with increasing nozzle-substrate distance.

  1. Maladies auto-immunes : conception, synthèse et screening immunologique de peptides porteurs de modifications post-traductionnelles pour la caractérisation d'autoanticorps dans les sérums de patients

    OpenAIRE

    Rentier, Cédric

    2015-01-01

    This research work aims to apply the novel concept of “Chemical Reverse Approach” to the design, the production, and the immunological screening of synthetic antigens able to specifically detect autoantibodies in sera of patients affected by immune-mediated diseases. Such specific autoantibodies are considered disease biomarkers and can be used to develop novel diagnostic/prognostic tools for the aforementioned pathologies.In particular, three diseases have been investigated.Primary Biliary C...

  2. Studies on Wheat Gluten and Its Chemical Modification%小麦面筋蛋白及其化学改性研究

    Institute of Scientific and Technical Information of China (English)

    钟耕; 陈宗道; 闵燕萍; 艾平

    2001-01-01

    介绍了国际上小麦面筋蛋白的研究开发途径,阐述了面筋蛋白进行深度加工与利用的目的意义,并且对化学改性小麦面筋蛋白的原理、方法及非食品应用进行了重点介绍。%The international exploitation ways of wheat gluten were presented. The targets of the deep processing and the utilization of wheat gluten were expounded. The principles and methods for chemical modification of wheat gluten as well as the non-food application were introduced emphatically.

  3. A post-modification approach to independent compo-nent analysis for resolution of overlapping GC/MS signals:from independent components to chemical components

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Independent component analysis (ICA) has demonstrated its power to extract mass spectra from over-lapping GC/MS signal. However, there is still a problem that mass spectra with negative peaks at some m/z will be obtained in the resolved results when there are overlapping peaks in the mass spectra of a mixture. Based on a detail theoretical analysis of the preconditions for ICA and the non-negative property of GC/MS signals, a post-modification based on chemical knowledge (PMBK) strategy is pro-posed to solve this problem. By both simulated and experimental GC/MS signals, it was proved that the PMBK strategy can improve the resolution effectively.

  4. Chemical Modification of Recombinant Interleukin 2 by Polyethylene Glycol Increases Its Potency in the Murine Meth A Sarcoma Model

    Science.gov (United States)

    Katre, Nandini V.; Knauf, Michael J.; Laird, Walter J.

    1987-03-01

    Recombinant human interleukin 2 purified from Escherichia coli has limited solubility at neutral pH and a short circulatory half-life. This recombinant interleukin 2 was chemically modified by an active ester of polyethylene glycol. The modified interleukin 2 was purified by hydrophobic interaction chromatography and characterized by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and isoelectric focusing. This conjugate was compared to unmodified recombinant interleukin 2 in vitro and in vivo. Covalent attachment of the hydrophilic polymer polyethylene glycol enhanced the solubility of interleukin 2, decreased its plasma clearance, and increased its antitumor potency in the Meth A murine sarcoma model.

  5. Description of the type of chemical restraint used by French veterinarians to perform hip dysplasia screening radiographs. A retrospective study based on 3302 radiographs.

    Science.gov (United States)

    Maitre, P; Genevois, J-P; Remy, D; Carozzo, C; Arnault, F; Buttin, P; Viguier, E; Fau, D

    2010-01-01

    The objective of this study was to investigate the type of chemical restraint used by French practitioners to perform official hip screening radiographs, to determine the proportion of dogs under general anesthesia versus dogs under sedation, and to search for a difference in hip dysplasia (HD) prevalence between the two groups. From September 2005 to August 2008, 3302 conventional ventrodorsal hip extended radiographs sent for official scoring to the same panellist were selected because information related to the type of chemical restraint had been provided. There were 2825 dogs under general anesthesia and 477 were sedated. Chemical restraint used by French veterinarians to perform HD screening radiographs is mainly based on general intra-venous anesthesia with an alpha2 agonist associated with ketamine. A single injection of alpha2 agonist is also mostly used for dogs which are radiographed while under sedation. A very low (1.7%) difference in HD prevalence was noted between the anesthetized and the sedated group. Except for acepromazine, which has been demonstrated to provide insufficient muscle relaxation to show evidence of hip laxity, the protocols seem acceptable as regards the Federation Cynologique Internationale requirements for HD screening. PMID:20585709

  6. Tailoring of interfacial mechanical shear strength by surface chemical modification of silicon microwires embedded in Nafion membranes.

    Science.gov (United States)

    Gallant, Betar M; Gu, X Wendy; Chen, David Z; Greer, Julia R; Lewis, Nathan S

    2015-05-26

    The interfacial shear strength between Si microwires and a Nafion membrane has been tailored through surface functionalization of the Si. Acidic (-COOH-terminated) or basic (-NH2-terminated) surface-bound functionality was introduced by hydrosilylation reactions to probe the interactions between the functionalized Si microwires and hydrophilic ionically charged sites in the Nafion polymeric side chains. Surfaces functionalized with SiOx, Si-H, or Si-CH3 were also synthesized and investigated. The interfacial shear strength between the functionalized Si microwire surfaces and the Nafion matrix was quantified by uniaxial wire pull-out experiments in an in situ nanomechanical instrument that allowed simultaneous collection of mechanical data and visualization of the deformation process. In this process, an axial load was applied to the custom-shaped top portions of individual wires until debonding occurred from the Nafion matrix. The shear strength obtained from the nanomechanical measurements correlated with the chemical bond strength and the functionalization density of the molecular layer, with values ranging from 7 MPa for Si-CH3 surfaces to ∼16-20 MPa for oxygen-containing surface functionalities. Hence surface chemical control can be used to influence the mechanical adhesion forces at a Si-Nafion interface. PMID:25872455

  7. An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability.

    Science.gov (United States)

    Chang, Shinn-Jen; Liao, Wei-Sheng; Ciou, Ci-Jin; Lee, Jyh-Tsung; Li, Chia-Chen

    2009-01-15

    Highly hydroxylated barium titanate (BaTiO(3)) nanoparticles have been prepared via an easy and gentle approach which oxidizes BaTiO(3) nanoparticles using an aqueous solution of hydrogen peroxide (H(2)O(2)). The hydroxylated BaTiO(3) surface reacts with sodium oleate (SOA) to form oleophilic layers that greatly enhance the dispersion of BaTiO(3) nanoparticles in organic solvents such as tetrahydrofuran, toluene, and n-octane. The results of Fourier transform infrared spectroscopy confirmed that the major functional groups on the surface of H(2)O(2)-treated BaTiO(3) nanoparticles are hydroxyl groups which are chemically active, favoring chemical bonding with SOA. The results of transmission electron microscopy of SOA-modified BaTiO(3) nanoparticles suggested that the oleate molecules were bonded to the surfaces of nanoparticles and formed a homogeneous layer having a thickness of about 2 nm. Furthermore, the improved dispersion capability of the modified BaTiO(3) nanoparticles in organic solvents was verified through analytic results of its settling and rheological behaviors. PMID:18977001

  8. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    International Nuclear Information System (INIS)

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH+, CH3+, and inert-gas ion (He+, Ne+, and Ar+) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CHx+) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH+ and CH3+ ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH3+ ions than CH+ ions. Although the surface is covered more with metallic In by low-energy incident CH3+ ions than CH+ ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH3+ ions is found to be lower than that by incident CH+ ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas

  9. Self-assembly and chemical modifications of bisphenol a on Cu(111): interplay between ordering and thermally activated stepwise deprotonation.

    Science.gov (United States)

    Fischer, Sybille; Papageorgiou, Anthoula C; Lloyd, Julian A; Oh, Seung Cheol; Diller, Katharina; Allegretti, Francesco; Klappenberger, Florian; Seitsonen, Ari Paavo; Reichert, Joachim; Barth, Johannes V

    2014-01-28

    Bisphenol A (BPA) is a chemical widely used in the synthesis pathway of polycarbonates for the production of many daily used products. Besides other adverse health effects, medical studies have shown that BPA can cause DNA hypomethylation and therefore alters the epigenetic code. In the present work, the reactivity and self-assembly of the molecule was investigated under ultra-high-vacuum conditions on a Cu(111) surface. We show that the surface-confined molecule goes through a series of thermally activated chemical transitions. Scanning tunneling microscopy investigations showed multiple distinct molecular arrangements dependent on the temperature treatment and the formation of polymer-like molecular strings for temperatures above 470 K. X-ray photoelectron spectroscopy measurements revealed the stepwise deprotonation of the hydroxy groups, which allows the molecules to interact strongly with the underlying substrate as well as their neighboring molecules and therefore drive the organization into distinct structural arrangements. On the basis of the combined experimental evidence in conjunction with density functional theory calculations, structural models for the self-assemblies after the thermal treatment were elaborated. PMID:24341488

  10. Modification of the titanium oxide morphology and composition by a combined chemical-electrochemical treatment on cp Ti

    Directory of Open Access Journals (Sweden)

    Ernesto Peláez-Abellán

    2012-02-01

    Full Text Available A combined chemical-electrochemical oxidation method to obtain porous bioactive TiO2 films on titanium is reported. In this case, a titanium chemical pre-etching followed by the micro-arc oxidation (MAO treatment is proposed and optimized, to obtain a high-roughness and porous surface which benefits the titanium/bone integration. The MAO treatment at various rates (different current densities allowed to define the influence of the oxide growth rate on the surface morphology and to design the best features for each case. Titanium samples were pre-etched using a 2% HF solution as a function of the etching time, and then anodized by the MAO treatment in a 0.5 M H3PO4 solution at current densities in the 10 to 90 mA.cm-2 range. High porosity (0.5 to 1 µm-diameter pores and higher phosphorous content for TiO2 films were achieved by first etching the Ti sample for 180 seconds in the HF solution, and then applying current densities in the 80 to 90 mA.cm-2 range for the micro-arc oxidation process.

  11. Simultaneous chemical modification and structural transformation of Stöber silica spheres for integration of nanocatalysts

    KAUST Repository

    Yao, Kexin

    2012-01-10

    A synthetic approach has been devised to convert conventional Stöber silica (SiO 2) spheres into a new type of porous structural platform for supporting multicomponent catalysts. With this approach, we have first prepared zinc-doped SiO 2 (Zn-SiO 2) hollow spheres, on which zinc oxide (ZnO) phase and ruthenium (Ru) nanoparticles have been deposited and assembled sequentially in solution phase. A series of complex Ru/ZnO/Zn-SiO 2 nanocatalysts has been thus been integrated onto the zinc-doped SiO 2 supports after additional thermal treatment and reduction. To test their workability under harsh reactive environments, we have further evaluated the above prepared catalysts using arene hydrogenation as model reactions. These integrated nanocatalysts have shown superior activity, high robustness, and easy recovery in the studied heterogeneous catalysis. © 2011 American Chemical Society.

  12. Measurement of chemical emissions under the influence of low-NO{sub x} combustion modifications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dismukes, E.B.

    1993-10-08

    Effect of low-NO{sub x} firing. There was no clear-cut effect on the emission of trace metals or acid gases. The data give marginal evidence for a decreased emission of Cr(VI), which would be a favorable change but is not certain by any means. The effect on aldehydes and ketones cannot be stated because of the loss of samples for baseline conditions; no credible data on these compounds were obtained for baseline conditions. The change in volatile organics appeared to be a reduction in emissions, whereas that for semi-volatiles seemed to be an increase. Inasmuch as low-NO{sub x} firing is sometimes accompanied by large increases in the amount of unburned carbon in the ash, the result for semi-volatiles is more in line with expectation. Effect of the hot-side ESP. As indicated above, the hot-side ESP lowered trace-element emissions to the range roughly from 1 to 5% of the levels found in the inlet gas stream. Not surprisingly, the hot-side ESP had no measurable influence on the emissions of SO{sub x}, HF, and HCl. Quite surprisingly, on the other hand, the ESP seemed to suppress the emission of certain organic substances. Suppression of the emission of formaldehyde is particularly difficult to explain. Presumably, the apparent disappearance of organics in the vapor state may be due in part to chemical changes at the high temperature of the ESP or in the corona regions, where ozone and other high-energy reactants are present. Perhaps chemical destruction was aided in the instance of semi-volatile compounds by relatively long residence times at high temperature while the compounds were adsorbed on ash particles in the hoppers. Effect of the cold-side ESP. Limited data with the cold-side ESP in operation made it difficult to detect any but the most emphatic effect of that ESP. No dramatic effect was seen.

  13. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan); Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya [Device and Material R& D Group, RDS Platform, Sony Corporation, Kanagawa 243-0014 (Japan)

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +} ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.

  14. In vitro study of morphological and chemical modification threshold of bovine dental enamel irradiated by the holmium laser

    International Nuclear Information System (INIS)

    The aim of this study is to investigate the Ho:YLF laser effects on the dental enamel surface with regards to its morphology, thermal variations during its irradiation in the pulp chamber and its increased resistance to demineralization through quantitative analysis of calcium and phosphorous atoms reactive concentrations in samples. Twenty samples of bovine enamel were used and divided in four groups: control - acidulated phosphate fluoride (APF) application followed by demineralization treatment with lactic acid; irradiation with Ho:YLF laser (100 J/cm2) followed by APF topic application and demineralization treatment with lactic acid; irradiation with Ho:YLF laser (350 J/cm2) followed by APF topic application and demineralization treatment with lactic acid: and irradiation with Ho:YLF laser ( 450 J/cm2) followed by APF topic application and demineralization treatment with lactic acid. Ali samples were quantified according to their calcium and phosphorous atoms relative concentrations before and after the treatments above. X-Ray fluorescence spectrochemical analysis and scanning electron microscopy were carried out. It was observed an increase on the calcium and phosphorous atoms concentration ratio and therefore the enamel demineralization reduction as a result of the lactic acid treatment in the samples irradiated with the holmium laser followed by the APF application. In order to evaluate the feasibility of this study for clinical purposes, morphological changes caused by the holmium laser irradiation were analyzed. Such modifications were characterized by melted and re-solidified regions of the enamel with consequent changes on its permeability and solubility. Temperature changes of ten human pre-molars teeth irradiated with 350 J/cm2 and 450 J/cm2 were also monitored in the pulp chamber in real time. Temperature increases over 4,20 C did not occur. The results obtained from this study along with the results from previous researches developed at 'Center for

  15. A novel approach for enhancing the catalytic efficiency of a protease at low temperature: reduction in substrate inhibition by chemical modification.

    Science.gov (United States)

    Siddiqui, Khawar Sohail; Parkin, Don M; Curmi, Paul M G; De Francisci, Davide; Poljak, Anne; Barrow, Kevin; Noble, Malcolm H; Trewhella, Jill; Cavicchioli, Ricardo

    2009-07-01

    The alkaline protease, savinase was chemically modified to enhance the productivity of the enzyme at low temperatures on a complex polymeric protein (azocasein) substrate. At 5 and 15 degrees C, savinase modified with ficol or dextran hydrolyzed fivefold more azocasein than the unmodified savinase. Kinetic studies showed that the catalytic improvements are associated with changes in uncompetitive substrate inhibition with K(i) values of modified savinases sixfold higher than the unmodified savinase. Modeling of small-angle scattering data indicates that two substrate molecules bind on opposing sides of the enzyme. The combined kinetic and structural data indicate that the polysaccharide modifier sterically blocks the allosteric site and reduces substrate inhibition. In contrast to the properties of cold-active enzymes that generally manifest as low activation enthalpy and high flexibility, this study shows that increased activity and productivity at low temperature can be achieved by reducing uncompetitive substrate inhibition, and that this can be achieved using chemical modification with an enzyme in a commercial enzyme-formulation. PMID:19288442

  16. Cell-Based Chemical Genetic Screen Identifies Damnacanthal as an Inhibitor of HIV-1 Vpr Induced Cell Death

    OpenAIRE

    Kamata, Masakazu; Wu, Raymond P.; An, Dong Sung; Saxe, Jonathan P; Damoiseaux, Robert; Phelps, Michael E.; Huang, Jing; Chen, Irvin S. Y.

    2006-01-01

    Viral protein R (Vpr), one of the human immunodeficiency virus type 1 (HIV-1) accessory proteins, contributes to multiple cytopathic effects, G2 cell cycle arrest and apoptosis. The mechanisms of Vpr have been intensely studied because it is believed that they underlie HIV-1 pathogenesis. We here report a cell-based small molecule screen on Vpr induced cell death in the context of HIV-1 infection. From the screen of 504 bioactive compounds, we identified Damnacanthal (Dam), a component of non...

  17. 碱基的化学修饰与功能核酸研究%Chemical modifications of nucleobases in functional nucleic acids

    Institute of Scientific and Technical Information of China (English)

    何军林

    2014-01-01

    The diversity of functional nucleic acids is being explored from nature and in vitro selections,including ribozyme catalysis,aptamer binding to target molecules with high specific and affinity,and RNA interference and modulation of gene expression. The great potential of chemical and biological activity of four nucleobases and the sugar-phosphate backbone in various specific tertiary structures is beyond our present imagination,and more functions remain to be found. Therefore,developing insight into the structural basis of these functional nucleic acids is invaluable in understanding their mechanisms and exploring the applications. With a special focus on the four nucleobases,we learnt that nucleobases could contribute to the functions by base stacking,electrostatic interactions,complexion with metal ions,hydrogen bonding,and even act as general acid-base in specific functions. Deletion and substitution of each nucleobases demonstrated the conservation of all the natural and unnatural functional nucleic acids. But from the success of chemical modifications at the level of functional groups on 10-23 DNAzyme,there is still room for the optimization of functional nucleic acids,for practical applications as research tools and genetic therapeutics. It is a big challenge for any functional nucleic acids,to conduct the chemical modification in a right way in the complex tertiary structures, including which residue could be used for chemical modification and which functional groups could be introduced for an expected positive effect.%核酸的多样化功能正在逐渐被揭示出来,从核酶的催化功能,适配体特异性结合靶分子,到小 RNA 分子对于基因的干扰和调控,4种碱基和核糖-磷酸单元骨架借助多样化的高级结构展现出的化学活性和生物活性远非我们现在的认识水平,或许还有更多的功能等待开发出来。从这些天然和非天然功能核酸的结构和机制研究中,碱基替换和消

  18. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  19. Comprehensive profiling of zebrafish hepatic proximal promoter CpG island methylation and its modification during chemical carcinogenesis

    Directory of Open Access Journals (Sweden)

    Gong Zhiyuan

    2011-01-01

    Full Text Available Abstract Background DNA methylation is an epigenetic mechanism associated with regulation of gene expression and it is modulated during chemical carcinogenesis. The zebrafish is increasingly employed as a human disease model; however there is a lack of information on DNA methylation in zebrafish and during fish tumorigenesis. Results A novel CpG island tiling array containing 44,000 probes, in combination with immunoprecipitation of methylated DNA, was used to achieve the first comprehensive methylation profiling of normal adult zebrafish liver. DNA methylation alterations were detected in zebrafish liver tumors induced by the environmental carcinogen 7, 12-dimethylbenz(aanthracene. Genes significantly hypomethylated in tumors were associated particularly with proliferation, glycolysis, transcription, cell cycle, apoptosis, growth and metastasis. Hypermethylated genes included those associated with anti-angiogenesis and cellular adhesion. Of 49 genes that were altered in expression within tumors, and which also had appropriate CpG islands and were co-represented on the tiling array, approximately 45% showed significant changes in both gene expression and methylation. Conclusion The functional pathways containing differentially methylated genes in zebrafish hepatocellular carcinoma have also been reported to be aberrantly methylated during tumorigenesis in humans. These findings increase the confidence in the use of zebrafish as a model for human cancer in addition to providing the first comprehensive mapping of DNA methylation in the normal adult zebrafish liver.

  20. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts.

    Science.gov (United States)

    Geh, Stefan; Yücel, Raif; Duffin, Rodger; Albrecht, Catrin; Borm, Paul J A; Armbruster, Lorenz; Raulf-Heimsoth, Monika; Brüning, Thomas; Hoffmann, Eik; Rettenmeier, Albert W; Dopp, Elke

    2006-02-01

    Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Øbentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane. PMID:16059726

  1. Modification of chemical, optical and structural properties of Bayfol CR-6-2 using gamma and neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shehata, Mohamed M.; Radwan, Samh I.; Hassan, Amin [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Centre; Waly, Sayed A. [Atomic Energy Authority, Cairo (Egypt). Second Research Reactor; Badawy, Zaynab M. [Atomic Energy Authority, Cairo (Egypt). Experimental Nuclear Physics Dept.

    2016-08-01

    The effects of gamma and neutron irradiations on the chemical, optical and structural properties of Bayfol CR-6-2 were investigated. The samples were irradiated by γ-rays from a {sup 60}Co source at various doses ranging between 16 and 900 kGy at room temperature in atmospheric air. For neutrons, an Am-Be neutron facility was used for the sample irradiation in thermal mode which had an activity of 185 GBq. Samples were irradiated with different doses of neutrons ranging from 15.7 to 564.2 mGy. The changes induced were analyzed using UV-Vis and Fourier transform infrared (FTIR) spectrometry. The results demonstrated an occurrence of oxidative degradation, resulting in the formation of carbonyl groups at 1700 cm{sup -1}. Simultaneous thermo-gravimetric investigation (TGA) has been performed on the samples of 0.3 mm thickness. The results obtained indicate that cross-linking predominates at small neutron doses and main chain scission happens at higher doses.

  2. Surface modification of cadmium sulfide thin film honey comb nanostructures: Effect of in situ tin doping using chemical bath deposition

    Science.gov (United States)

    Wilson, K. C.; Basheer Ahamed, M.

    2016-01-01

    Even though nanostructures possess large surface to volume ratio compared to their thin film counterpart, the complicated procedure that demands for the deposition on a substrate kept them back foot in device fabrication techniques. In this work, a honey comb like cadmium sulfide (CdS) thin films nanostructure are deposited on glass substrates using simple chemical bath deposition technique at 65 °C. Energy band gaps, film thickness and shell size of the honey comb nanostructures are successfully controlled using tin (Sn) doping and number of shells per unit area is found to be maximum for 5% Sn doped (in the reaction mixture) sample. X-ray diffraction and optical absorption analysis showed that cadmium sulfide and cadmium hydroxide coexist in the samples. TEM measurements showed that CdS nanostructures are embedded in cadmium hydroxide just like "plum pudding". Persistent photoconductivity measurements of the samples are also carried out. The decay constants found to be increased with increases in Sn doping.

  3. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    International Nuclear Information System (INIS)

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling

  4. Modification on epoxy-based adhesive

    Institute of Scientific and Technical Information of China (English)

    ZhengXiaoxia; QianChunxiang

    2003-01-01

    This research adopted four methods to toughen epoxy adhesives. They were liquid hydroxyl group terminated polybutadiene (HTPB) rubber modification, silicon rubber modification, polyacrylate multiplicity elastomer particulates emulsion modification and chemical grafting modification. After modification, the shearing strength and the rapture elongation were tested. The interface and the chemical reaction between the modifiers and the epoxy were analyzed by scanning electron microscope (SEM) and infrared optical spectrum. The results show that the elastomer particulates modification and the chemical grafting modification can reach the better toughening effects.

  5. Colour and chemical changes of the lime wood surface due to CO{sub 2} laser thermal modification

    Energy Technology Data Exchange (ETDEWEB)

    Kubovský, Ivan, E-mail: kubovsky@tuzvo.sk; Kačík, František

    2014-12-01

    Highlights: • Influences of CO{sub 2} laser on lime wood surface were studied. • With growth of the irradiation dose brightness decrease and increase of the total colour difference were observed. • Cellulose degradation and loss of hemicelluloses were observed. • Higher values at the input energy lead to accelerating the mutual reaction of the functional groups resulting in the subsequent condensation of lignin. • CO{sub 2} laser irradiation can be used as a new colouring method. - Abstract: We studied colour and main wood components changes of lime wood caused by CO{sub 2} laser beam irradiation. The dry surface of lime wood (Tilia vulgaris L.) was irradiated with the CO{sub 2} laser beam (wavelength of 10.6 μm) at different exposures (expressed as the irradiation dose). Colour changes were monitored by the spectrophotometer, chemical changes were observed by the ATR-FTIR spectroscopy and carbohydrates were analysed by the HPLC method. With the growth of the irradiation dose (from 8.1 to 28.7 J cm{sup −2}) lightness (ΔL{sup *}) decrease and increase of the total colour difference (ΔE{sup *}) were observed. Higher values of the input energy lead to accelerating the mutual reaction of the functional groups resulting in the subsequent condensation of lignin. The total decrease in saccharides at the highest irradiation dose reaches 27.39% of the initial amount of saccharides in the reference sample. We have observed degradation and loss of hemicelluloses.

  6. Improved electrochemical stability at the surface of La(0.8)Sr(0.2)CoO3 achieved by surface chemical modification.

    Science.gov (United States)

    Tsvetkov, Nikolai; Lu, Qiyang; Yildiz, Bilge

    2015-01-01

    The degradation of the surface chemistry on perovskite (ABO3) oxides is a critical issue for their performance in energy conversion systems such as solid oxide fuel/electrolysis cells and in splitting of H2O and CO2 to produce fuels. This degradation is typically in the form of segregation and phase separation of dopant cations from the A-site, driven by elastic and electrostatic energy minimization and kinetic demixing. In this study, deposition of Ti at the surface was found to hinder the dopant segregation and the corresponding electrochemical degradation on a promising SOFC cathode material, La(0.8)Sr(0.2)CoO3 (LSC). The surface of the LSC films was modified by Ti (denoted as LSC-T) deposited from a TiCl4 solution. The LSC and LSC-T thin films were investigated by electrochemical impedance spectroscopy, nano-probe Auger electron spectroscopy, and X-ray photoelectron spectroscopy (XPS), upon annealing at 420-530 °C in air up to about 90 hours. The oxygen exchange coefficient, k(q), on LSC-T cathodes was found to be up to 8 times higher than that on LSC cathodes at 530 °C and retained its stability. Sr-rich insulating particles formed at the surface of the annealed LSC and LSC-T films, but with significantly less coverage of such particles on the LSC-T. From this result, it appears that modification of the LSC surface with Ti reduces the segregation of the blocking Sr-rich particles at the surface, and a larger area on LSC surface (with a higher Sr doping level in the lattice) is available for the oxygen reduction reaction. The stabilization of the LSC surface through Ti-deposition can open a new route for designing surface modifications on perovskite oxide electrodes for high temperature electro- and thermo-chemical applications. PMID:26227310

  7. Observation of chemical modification of Asian Dust particles during long-range transport by the combined use of quantitative ED-EPMA and ATR-FT-IR imaging

    Directory of Open Access Journals (Sweden)

    Young-Chul Song

    2012-10-01

    Full Text Available In our previous works, it was demonstrated that the combined use of quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA, which is also known as low-Z particle EPMA, and attenuated total reflectance FT-IR (ATR-FT-IR imaging has great potential for a detailed characterization of individual aerosol particles. In this study, individual Asian Dust particles collected during an Asian Dust storm event on 11 November 2011 in Korea were characterized by the combined use of low-Z particle EPMA and ATR-FT-IR imaging. The combined use of the two single-particle analytical techniques on the same individual particles showed that Asian Dust particles had experienced extensive chemical modification during long-range transport. Overall, 109 individual particles were classified into four particle types based on their morphology, elemental concentrations, and molecular species and/or functional groups of individual particles available from the two analytical techniques: Ca-containing (38%; NaNO3-containing (30%; silicate (22%; and miscellaneous particles (10%. Among the 41 Ca-containing particles, 10, 8, and 14 particles contained nitrate, sulfate, and both, respectively, whereas only two particles contained unreacted CaCO3. Airborne amorphous calcium carbonate (ACC particles were observed in this Asian Dust sample for the first time, where their IR peaks for the insufficient symmetric environment of CO32− ions of ACC were clearly differentiated from those of crystalline CaCO3. This paper also reports the field observations of CaCl2 particles converted from CaCO3 for the Asian Dust sample collected in the planetary boundary layer. Thirty three particles contained NaNO3, which are the reaction products of sea-salt and NOx/HNO3, whereas no genuine sea-salt particles were encountered, indicating that sea-salt particles

  8. Profiling Environmental Chemicals in the Antioxidant Response Element Pathway using Quantitative High Throughput Screening (qHTS)

    Science.gov (United States)

    The antioxidant response element (ARE) signaling pathway plays an important role in the amelioration of oxidative stress, which can contribute to a number of diseases, including cancer. We screened 1408 NTP-provided substances in 1536-well qHTS format at concentrations ranging fr...

  9. Top Value Added Chemicals from Biomass - Volume I, Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-08-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.

  10. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  11. Use of chemical modification and mass spectrometry to identify substrate-contacting sites in proteinaceous RNase P, a tRNA processing enzyme.

    Science.gov (United States)

    Chen, Tien-Hao; Tanimoto, Akiko; Shkriabai, Nikoloz; Kvaratskhelia, Mamuka; Wysocki, Vicki; Gopalan, Venkat

    2016-06-20

    Among all enzymes in nature, RNase P is unique in that it can use either an RNA- or a protein-based active site for its function: catalyzing cleavage of the 5'-leader from precursor tRNAs (pre-tRNAs). The well-studied catalytic RNase P RNA uses a specificity module to recognize the pre-tRNA and a catalytic module to perform cleavage. Similarly, the recently discovered proteinaceous RNase P (PRORP) possesses two domains - pentatricopeptide repeat (PPR) and metallonuclease (NYN) - that are present in some other RNA processing factors. Here, we combined chemical modification of lysines and multiple-reaction monitoring mass spectrometry to identify putative substrate-contacting residues in Arabidopsis thaliana PRORP1 (AtPRORP1), and subsequently validated these candidate sites by site-directed mutagenesis. Using biochemical studies to characterize the wild-type (WT) and mutant derivatives, we found that AtPRORP1 exploits specific lysines strategically positioned at the tips of it's V-shaped arms, in the first PPR motif and in the NYN domain proximal to the catalytic center, to bind and cleave pre-tRNA. Our results confirm that the protein- and RNA-based forms of RNase P have distinct modules for substrate recognition and cleavage, an unanticipated parallel in their mode of action. PMID:27166372

  12. Use of chemical modification and mass spectrometry to identify substrate-contacting sites in proteinaceous RNase P, a tRNA processing enzyme

    Science.gov (United States)

    Chen, Tien-Hao; Tanimoto, Akiko; Shkriabai, Nikoloz; Kvaratskhelia, Mamuka; Wysocki, Vicki; Gopalan, Venkat

    2016-01-01

    Among all enzymes in nature, RNase P is unique in that it can use either an RNA- or a protein-based active site for its function: catalyzing cleavage of the 5′-leader from precursor tRNAs (pre-tRNAs). The well-studied catalytic RNase P RNA uses a specificity module to recognize the pre-tRNA and a catalytic module to perform cleavage. Similarly, the recently discovered proteinaceous RNase P (PRORP) possesses two domains – pentatricopeptide repeat (PPR) and metallonuclease (NYN) – that are present in some other RNA processing factors. Here, we combined chemical modification of lysines and multiple-reaction monitoring mass spectrometry to identify putative substrate-contacting residues in Arabidopsis thaliana PRORP1 (AtPRORP1), and subsequently validated these candidate sites by site-directed mutagenesis. Using biochemical studies to characterize the wild-type (WT) and mutant derivatives, we found that AtPRORP1 exploits specific lysines strategically positioned at the tips of it's V-shaped arms, in the first PPR motif and in the NYN domain proximal to the catalytic center, to bind and cleave pre-tRNA. Our results confirm that the protein- and RNA-based forms of RNase P have distinct modules for substrate recognition and cleavage, an unanticipated parallel in their mode of action. PMID:27166372

  13. Can Small Chemical Modifications of Natural Pan-inhibitors Modulate the Biological Selectivity? The Case of Curcumin Prenylated Derivatives Acting as HDAC or mPGES-1 Inhibitors.

    Science.gov (United States)

    Iranshahi, Mehrdad; Chini, Maria Giovanna; Masullo, Milena; Sahebkar, Amirhossein; Javidnia, Azita; Chitsazian Yazdi, Mahsa; Pergola, Carlo; Koeberle, Andreas; Werz, Oliver; Pizza, Cosimo; Terracciano, Stefania; Piacente, Sonia; Bifulco, Giuseppe

    2015-12-24

    Curcumin, or diferuloylmethane, a polyphenolic molecule isolated from the rhizome of Curcuma longa, is reported to modulate multiple molecular targets involved in cancer and inflammatory processes. On the basis of its pan-inhibitory characteristics, here we show that simple chemical modifications of the curcumin scaffold can regulate its biological selectivity. In particular, the curcumin scaffold was modified with three types of substituents at positions C-1, C-8, and/or C-8' [C5 (isopentenyl, 5-8), C10 (geranyl, 9-12), and C15 (farnesyl, 13, 14)] in order to make these molecules more selective than the parent compound toward two specific targets: histone deacetylase (HDAC) and microsomal prostaglandin E2 synthase-1 (mPGES-1). From combined in silico and in vitro analyses, three selective inhibitors by proper substitution at position 8 were revealed. Compound 13 has improved HDAC inhibitory activity and selectivity with respect to the parent compound, while 5 and 9 block the mPGES-1 enzyme. We hypothesize about the covalent interaction of curcumin, 5, and 9 with the mPGES-1 binding site. PMID:26588603

  14. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization

    International Nuclear Information System (INIS)

    Highlights: • Applicability of GC-(APCI)QTOF MS as new tool for wide-scope screening of pesticides in fruits and vegetables demonstrated. • Validation of screening method according to SANCO/12571/2013. • Detection of the pesticides based on the presence of M+·/MH+ in most cases. • Screening detection limit 0.01 mg kg−1 for 77% of the pesticides investigated. • Successful identification at 0.01 mg kg−1 for 70% of the pesticides/matrix combinations. - Abstract: A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MSE). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20 mg kg−1. For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01 mg kg−1 level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01 mg kg−1 for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ≤±5 ppm and an ion-ratio deviation ≤±30%, were investigated. At the 0.01 mg kg−1 level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20 mg kg−1 level, respectively. Insufficient sensitivity for the second ion was the main reason for the inability to

  15. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization

    Energy Technology Data Exchange (ETDEWEB)

    Portolés, T. [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain); RIKILT Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen (Netherlands); Mol, J.G.J. [RIKILT Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen (Netherlands); Sancho, J.V.; López, Francisco J. [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain); Hernández, F., E-mail: hernandf@uji.es [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain)

    2014-08-01

    Highlights: • Applicability of GC-(APCI)QTOF MS as new tool for wide-scope screening of pesticides in fruits and vegetables demonstrated. • Validation of screening method according to SANCO/12571/2013. • Detection of the pesticides based on the presence of M+·/MH+ in most cases. • Screening detection limit 0.01 mg kg{sup −1} for 77% of the pesticides investigated. • Successful identification at 0.01 mg kg{sup −1} for 70% of the pesticides/matrix combinations. - Abstract: A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MS{sup E}). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20 mg kg{sup −1}. For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01 mg kg{sup −1} level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01 mg kg{sup −1} for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ≤±5 ppm and an ion-ratio deviation ≤±30%, were investigated. At the 0.01 mg kg{sup −1} level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20 mg kg{sup −1} level, respectively. Insufficient sensitivity for the second

  16. PROLIFERATION AS A KEY EVENT IN DEVELOPMENTAL TOXICITY: "CHEMICAL SCREENING IN HUMAN NEURAL STEM CELLS USING HIGH CONTENT IMAGING

    Science.gov (United States)

    New toxicity testing approaches will rely on in vitro assays to assess chemical effects at the cellular and molecular level. Cell proliferation is imperative to normal development, and chemical disruption of this process can be detrimental to the organism. As part of an effort to...

  17. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells

    Science.gov (United States)

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples...

  18. Prioritizing Environmental Chemicals for Obesity and Diabetes Outcomes Research: A Screening Approach Using ToxCast High Throughput Data

    Science.gov (United States)

    Background: Diabetes and obesity are major threats to public health in the US and abroad. Understanding the role chemicals in our environment play in the development of these conditions is an emerging issue in environmental health, although identifying and prioritizing chemicals ...

  19. Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Werpy, Todd A.; Holladay, John E.; White, James F.

    2004-11-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, the report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.

  20. Acanthocephalan fish parasites (Rhadinorhynchidae Lühe, 1912) as potential biomarkers: Molecular-chemical screening by pyrolysis-field ionization mass spectrometry

    Science.gov (United States)

    Kleinertz, S.; Eckhardt, K.-U.; Theisen, S.; Palm, H. W.; Leinweber, P.

    2016-07-01

    The present study represents the first molecular-chemical screening by pyrolysis-field ionization mass spectrometry applied on fish parasites. A total of 71 fishes from Balinese fish markets, 36 Auxis rochei (Risso, 1810) and 35 A. thazard (Lacepède, 1800), were studied for their acanthocephalan parasites. This is the first record of Rhadinorhynchus zhukovi in Balinese waters, Indonesia, and we describe for the first time A. rochei and A. thazard as R. zhukovi hosts. Using this method, small scale variations within the chemical compounds of acanthocephalans could be detected. Using this methodology it will be possible to generate additional, pollutant specific information from aquatic habitats in future with the potential of a new bioindicator application for parasite/host origin and/or environmental pollution.

  1. QSAR model for human pregnane X receptor (PXR) binding: Screening of environmental chemicals and correlations with genotoxicity, endocrine disruption and teratogenicity

    Energy Technology Data Exchange (ETDEWEB)

    Dybdahl, Marianne, E-mail: mdyb@food.dtu.dk; Nikolov, Nikolai G.; Wedebye, Eva Bay; Jónsdóttir, Svava Ósk; Niemelä, Jay R.

    2012-08-01

    The pregnane X receptor (PXR) has a key role in regulating the metabolism and transport of structurally diverse endogenous and exogenous compounds. Activation of PXR has the potential to initiate adverse effects, causing drug–drug interactions, and perturbing normal physiological functions. Therefore, identification of PXR ligands would be valuable information for pharmaceutical and toxicological research. In the present study, we developed a quantitative structure–activity relationship (QSAR) model for the identification of PXR ligands using data based on a human PXR binding assay. A total of 631 molecules, representing a variety of chemical structures, constituted the training set of the model. Cross-validation of the model showed a sensitivity of 82%, a specificity of 85%, and a concordance of 84%. The developed model provided knowledge about molecular descriptors that may influence the binding of molecules to PXR. The model was used to screen a large inventory of environmental chemicals, of which 47% was found to be within domain of the model. Approximately 35% of the chemicals within domain were predicted to be PXR ligands. The predicted PXR ligands were found to be overrepresented among chemicals predicted to cause adverse effects, such as genotoxicity, teratogenicity, estrogen receptor activation and androgen receptor antagonism compared to chemicals not causing these effects. The developed model may be useful as a tool for predicting potential PXR ligands and for providing mechanistic information of toxic effects of chemicals. -- Highlights: ► Global QSAR model for the identification of PXR ligands was developed. ► Molecular descriptors that may influence PXR binding were identified. ► 35% of a large set of environmental chemicals were predicted to be PXR ligands. ► Predicted PXR binding was associated with various adverse effects.

  2. QSAR model for human pregnane X receptor (PXR) binding: Screening of environmental chemicals and correlations with genotoxicity, endocrine disruption and teratogenicity

    International Nuclear Information System (INIS)

    The pregnane X receptor (PXR) has a key role in regulating the metabolism and transport of structurally diverse endogenous and exogenous compounds. Activation of PXR has the potential to initiate adverse effects, causing drug–drug interactions, and perturbing normal physiological functions. Therefore, identification of PXR ligands would be valuable information for pharmaceutical and toxicological research. In the present study, we developed a quantitative structure–activity relationship (QSAR) model for the identification of PXR ligands using data based on a human PXR binding assay. A total of 631 molecules, representing a variety of chemical structures, constituted the training set of the model. Cross-validation of the model showed a sensitivity of 82%, a specificity of 85%, and a concordance of 84%. The developed model provided knowledge about molecular descriptors that may influence the binding of molecules to PXR. The model was used to screen a large inventory of environmental chemicals, of which 47% was found to be within domain of the model. Approximately 35% of the chemicals within domain were predicted to be PXR ligands. The predicted PXR ligands were found to be overrepresented among chemicals predicted to cause adverse effects, such as genotoxicity, teratogenicity, estrogen receptor activation and androgen receptor antagonism compared to chemicals not causing these effects. The developed model may be useful as a tool for predicting potential PXR ligands and for providing mechanistic information of toxic effects of chemicals. -- Highlights: ► Global QSAR model for the identification of PXR ligands was developed. ► Molecular descriptors that may influence PXR binding were identified. ► 35% of a large set of environmental chemicals were predicted to be PXR ligands. ► Predicted PXR binding was associated with various adverse effects.

  3. A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci

    LENUS (Irish Health Repository)

    Prendergast, James G D

    2012-05-19

    AbstractBackgroundChromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).ResultsUsing a statistically rigorous protocol, we investigated the genomic distribution of ASHM in hESCs, and their relationship to sites of allele-specific expression (ASE) and DNA methylation. We found that, although they were rare, sites of ASHM were substantially enriched at loci displaying ASE. Many were also found at known imprinted regions, hence sites of ASHM are likely to be better markers of imprinted regions than sites of ASM. We also found that sites of ASHM and ASE in hESCs colocalize at risk loci for developmental syndromes mediated by deletions, providing insights into the etiology of these disorders.ConclusionThese results demonstrate the potential importance of ASHM patterns in the interpretation of disease loci, and the protocol described provides a basis for similar studies of ASHM in other cell types to further our understanding of human disease susceptibility.

  4. A Chemical Genetic Screen for Modulators of Exocytic Transport Identifies Inhibitors of a Transport Mechanism Linked to GTR2 Function▿

    OpenAIRE

    Zhang, Lisha; Huang, Min; Harsay, Edina

    2009-01-01

    Membrane and protein traffic to the cell surface is mediated by partially redundant pathways that are difficult to perturb in ways that yield a strong phenotype. Such robustness is expected in a fine-tuned process, regulated by environmental cues, that is required for controlled cell surface growth and cell proliferation. Synthetic genetic interaction screens are especially valuable for investigating complex processes involving partially redundant pathways or mechanisms. In a previous study, ...

  5. Formaldehyde in Alcoholic Beverages: Large Chemical Survey Using Purpald Screening Followed by Chromotropic Acid Spectrophotometry with Multivariate Curve Resolution

    OpenAIRE

    Jendral, Julien A.; Monakhova, Yulia B.; Lachenmeier, Dirk W

    2011-01-01

    A strategy for analyzing formaldehyde in beer, wine, spirits, and unrecorded alcohol was developed, and 508 samples from worldwide origin were analyzed. In the first step, samples are qualitatively screened using a simple colorimetric test with the purpald reagent, which is extremely sensitive for formaldehyde (detection limit 0.1 mg/L). 210 samples (41%) gave a positive purpald reaction. In the second step, formaldehyde in positive samples is confirmed by quantitative spectrophotometry of th...

  6. Neuroblastoma Screening

    Science.gov (United States)

    ... Health Professional Neuroblastoma Treatment Neuroblastoma Screening Research Neuroblastoma Screening (PDQ®)–Patient Version What is screening? Go to Health Professional Version Screening is looking ...

  7. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  8. Modification of the in vitro hydra assay developmental toxicity screen for evaluation of airborne toxicants: Assessment of ammonium perchlorate and vapor expos. Final report, 15 December 1995-30 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, R.E.

    1996-12-01

    When the Combat Exclusion Law was repealed, military women`s duties were expanded to include duties that formally were exclusively performed by men. These military women are occupationally exposed to chemicals, including airborne toxicants, for which no developmental or reproductive toxicity testing has been performed. The reproductive toxicity of these chemical compounds needs serious consideration so that military women can continue to perform their mission responsibilities and remain healthy. An in vitro developmental toxicity screen was performed to determine the developmental hazard index (A/D ratio) for ammonium perchlorate (AP), tricresyl phosphate vapor phase lubricant (TCP), and diethyleneglycol monomethylether (DGME) using the hydra assay. The screen employed exposing both adult Hydra attenuate and `artificial embryos` composed of disassociated hydra cells to these military compounds to investigate potential developmental toxicity. AID ratios of 1.71, <0.055, and 1.75, obtained for AP, TCP, and DGME, respectively, would indicate that these military compounds should not be considered primary developmental toxins in the context of this assay.

  9. Genome-wide Screening of Regulators of Catalase Expression: ROLE OF A TRANSCRIPTION COMPLEX AND HISTONE AND tRNA MODIFICATION COMPLEXES ON ADAPTATION TO STRESS.

    Science.gov (United States)

    García, Patricia; Encinar Del Dedo, Javier; Ayté, José; Hidalgo, Elena

    2016-01-01

    In response to environmental cues, the mitogen-activated protein kinase Sty1-driven signaling cascade activates hundreds of genes to induce a robust anti-stress cellular response in fission yeast. Thus, upon stress imposition Sty1 transiently accumulates in the nucleus where it up-regulates transcription through the Atf1 transcription factor. Several regulators of transcription and translation have been identified as important to mount an integral response to oxidative stress, such as the Spt-Ada-Gcn5-acetyl transferase or Elongator complexes, respectively. With the aim of identifying new regulators of this massive gene expression program, we have used a GFP-based protein reporter and screened a fission yeast deletion collection using flow cytometry. We find that the levels of catalase fused to GFP, both before and after a threat of peroxides, are altered in hundreds of strains lacking components of chromatin modifiers, transcription complexes, and modulators of translation. Thus, the transcription elongation complex Paf1, the histone methylase Set1-COMPASS, and the translation-related Trm112 dimers are all involved in full expression of Ctt1-GFP and in wild-type tolerance to peroxides. PMID:26567340

  10. Homogeneous screening assay for human tankyrase.

    Science.gov (United States)

    Narwal, Mohit; Fallarero, Adyary; Vuorela, Pia; Lehtiö, Lari

    2012-06-01

    Tankyrase, a member of human PARP protein superfamily, catalyzes a covalent post-translational modification of substrate proteins. This modification, poly(ADP-ribos)ylation, leads to changes in protein interactions and modifies downstream signaling events. Tankyrase 1 is a potential drug target due to its functions in telomere homeostasis and in Wnt signaling. We describe here optimization and application of an activity-based homogenous assay for tankyrase inhibitors in a high-throughput screening format. The method measures the consumption of substrate by the chemical conversion of the remaining NAD(+) into a stable fluorescent condensation product. Conditions were optimized to measure the enzymatic auto-modification of a recombinant catalytic fragment of tankyrase 1. The fluorescence assay is inexpensive, operationally easy and performs well according to the statistical analysis (Z'= 0.7). A validatory screen with a natural product library confirmed suitability of the assay for finding new tankyrase inhibitors. Flavone was the most potent (IC(50)=325 nM) hit from the natural compounds. A flavone derivative, apigenin, and isopropyl gallate showed potency on the micromolar range, but displayed over 30-fold selectivity for tankyrase over the studied isoenzymes PARP1 and PARP2. The assay is robust and will be useful for screening new tankyrase inhibitors. PMID:22357873

  11. Behavior modification.

    Science.gov (United States)

    Pelham, W E; Fabiano, G A

    2000-07-01

    Attention deficit/hyperactivity disorder (ADHD) is a chronic and substantially impairing disorder. This means that treatment must also be chronic and substantial. Behavior Modification, and in many cases, the combination of behavior modification and stimulant medication, is a valid, useful treatment for reducing the pervasive impairment experienced by children with ADHD. Based on the research evidence reviewed, behavior modification should be the first line of treatment for children with ADHD. PMID:10944662

  12. Chemical modification as an approach for the identification of UDPG-binding polypeptides of UDPG-glucose: (1,3)-Beta-glucan synthase

    International Nuclear Information System (INIS)

    The lysine-reactive chemical modification reagents uridine diphosphate pyridoxal (UDP-pyridoxal) and formaldehyde (HCHO) were used to identify UDPG-binding polypeptides of UDP-glucose: (1,3)-β-D-glucan synthase (GS) from red beet storage tissue. Complete enzyme inactivation occurred after exposure to micromolar levels of UDP-pyridoxal and millimolar levels of HCHO. Divalent cations (Mg2+ and Ca2+, particularly Ca2+) were required by both for inactivation. Substrate (UDPG) and chelators (EDTA and EGTA) protected plasma membrane GS (PMGS) against UDP-pyridoxal and HCHO inhibition. UDPG protected CHAPS solubilized GS (CSGS) against UDP-pyridoxal inactivation, but not against HCHO. It was concluded that beet GS contains a lysine residue at the UDPG-binding site. When PMGS was directly labeled with UDP[3H]-pyridoxal or [14C]HCHO, random labeling occurred. Therefore, a multi-step labeling procedure was developed. Nonessential lysine residues were first blocked with HCHO while 5 mM UDPG protected the active site lysine. Background labeling was reduced 4-fold. Membranes were recovered by centrifugation and the active site lysine exposed to [14C] HCHO. Major labeled polypeptides were at 200, 76, and 54 kD. Minor polypeptides were seen at 94, 82, 68, 60, and 20-25 kD. CSGS was labeled by a modified multi-step procedure. CSGS was blocked by reaction with UDP-pyridoxal in the presence of UDPG. CSGS was then recovered by product entrapment and labeled with [14C]HCHO. Background labeling was reduced by 8-fold and potential UDPG-binding polypeptides narrowed to 68, 54, 25 and 22 kD

  13. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    OpenAIRE

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-01-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N2/H2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment...

  14. Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening.

    Science.gov (United States)

    Orr, Adam L; Ashok, Deepthi; Sarantos, Melissa R; Shi, Tong; Hughes, Robert E; Brand, Martin D

    2013-12-01

    Mitochondrial production of reactive oxygen species is often considered an unavoidable consequence of aerobic metabolism and currently cannot be manipulated without perturbing oxidative phosphorylation. Antioxidants are widely used to suppress effects of reactive oxygen species after formation, but they can never fully prevent immediate effects at the sites of production. To identify site-selective inhibitors of mitochondrial superoxide/H2O2 production that do not interfere with mitochondrial energy metabolism, we developed a robust small-molecule screen and secondary profiling strategy. We describe the discovery and characterization of a compound (N-cyclohexyl-4-(4-nitrophenoxy)benzenesulfonamide; CN-POBS) that selectively inhibits superoxide/H2O2 production from the ubiquinone-binding site of complex I (site I(Q)) with no effects on superoxide/H2O2 production from other sites or on oxidative phosphorylation. Structure/activity studies identified a core structure that is important for potency and selectivity for site I(Q). By employing CN-POBS in mitochondria respiring on NADH-generating substrates, we show that site I(Q) does not produce significant amounts of superoxide/H2O2 during forward electron transport on glutamate plus malate. Our screening platform promises to facilitate further discovery of direct modulators of mitochondrially derived oxidative damage and advance our ability to understand and manipulate mitochondrial reactive oxygen species production under both normal and pathological conditions. PMID:23994103

  15. Screening of nanoparticle embryotoxicity using embryonic stem cells.

    Science.gov (United States)

    Campagnolo, Luisa; Fenoglio, Ivana; Massimiani, Micol; Magrini, Andrea; Pietroiusti, Antonio

    2013-01-01

    Due to the increasing use of engineered nanoparticles in many consumer products, rapid and economic tests for evaluating possible adverse effects on human health are urgently needed. In the present chapter the use of mouse embryonic stem cells as a valuable tool to in vitro screen nanoparticle toxicity on embryonic tissues is described. This in vitro method is a modification of the embryonic stem cell test, which has been widely used to screen soluble chemical compounds for their embryotoxic potential. The test offers an alternative to animal experimentation, reducing experimental costs and ethical issues. PMID:23592031

  16. Profiling Environmental Chemicals for Activity in the Antioxidant Response Element Signaling Pathway Using a High-Throughput Screening Approach

    Science.gov (United States)

    1 ABSTRACT 2 3 BACKGROUND: Oxidative stress has been implicated in the pathogenesis of a variety 4 of diseases ranging from cancer to neurodegeneration, highlighti.ng the need to identify 5 chemicals that can induce this effect. The antioxidant response element (ARE)...

  17. Double-stranded DNA-templated cleavage of oligonucleotides containing a P3'->N5' linkage triggered by triplex formation: the effects of chemical modifications and remarkable enhancement in reactivity.

    Science.gov (United States)

    Ito, Kosuke Ramon; Kodama, Tetsuya; Tomizu, Masaharu; Negoro, Yoshinori; Orita, Ayako; Osaki, Tomohisa; Hosoki, Noritsugu; Tanaka, Takaya; Imanishi, Takeshi; Obika, Satoshi

    2010-11-01

    We recently reported double-stranded DNA-templated cleavage of oligonucleotides as a sequence-specific DNA-detecting method. In this method, triplex-forming oligonucleotides (TFOs) modified with 5'-amino-2',4'-BNA were used as a DNA-detecting probe. This modification introduced a P3'→N5' linkage (P-N linkage) in the backbone of the TFO, which was quickly cleaved under acidic conditions when it formed a triplex. The prompt fission of the P-N linkage was assumed to be driven by a conformational strain placed on the linkage upon triplex formation. Therefore, chemical modifications around the P-N linkage should change the reactivity by altering the microenvironment. We synthesized 5'-aminomethyl type nucleic acids, and incorporated them into TFOs instead of 5'-amino-2',4'-BNA to investigate the effect of 5'-elongation. In addition, 2',4'-BNA/LNA or 2',5'-linked DNA were introduced at the 3'- and/or 5'-neighboring residues of 5'-amino-2',4'-BNA to reveal neighboring residual effects. We evaluated the triplex stability and reaction properties of these TFOs, and found out that chemical modifications around the P-N linkage greatly affected their reaction properties. Notably, 2',5'-linked DNA at the 3' position flanking 5'-amino-2',4'-BNA brought significantly higher reactivity, and we succeeded in indicating that a TFO with this modification is promising as a DNA analysis tool. PMID:20615902

  18. Canine toys and training devices as sources of exposure to phthalates and bisphenol A: quantitation of chemicals in leachate and in vitro screening for endocrine activity.

    Science.gov (United States)

    Wooten, Kimberly J; Smith, Philip N

    2013-11-01

    Chewing and mouthing behaviors exhibited by pet dogs are likely to lead to oral exposures to a variety of environmental chemicals. Products intended for chewing and mouthing uses include toys and training devices that are often made of plastics. The goal of the current study was to determine if a subset of phthalates and bisphenol A (BPA), endocrine disrupting chemicals commonly found in plastics, leach out of dog toys and training devices (bumpers) into synthetic canine saliva. In vitro assays were used to screen leachates for endocrine activity. Bumper leachates were dominated by di-2-ethylhexyl phthalate (DEHP) and BPA, with concentrations reaching low μg mL(-1) following short immersions in synthetic saliva. Simulated chewing of bumpers during immersion in synthetic saliva increased concentrations of phthalates and BPA as compared to new bumpers, while outdoor storage had variable effects on concentrations (increased DEHP; decreased BPA). Toys leached substantially lower concentrations of phthalates and BPA, with the exception of one toy which leached considerable amounts of diethyl phthalate. In vitro assays indicated anti-androgenic activity of bumper leachates, and estrogenic activity of both bumper and toy leachates. These results confirm that toys and training devices are potential sources of exposure to endocrine disrupting chemicals in pet dogs. PMID:24007620

  19. EPIGENETIC MODIFICATIONS OF SWINE GENOME

    OpenAIRE

    Kristina Budimir; Gordana Kralik; Vladimir Margeta

    2013-01-01

    Epigenetics is represents a new way of genome analysis, respectively gene expression that occurs without DNA sequence change. Changes that occur are epigenetic modifications and they include post-translational histone modification and DNA methylation. Chemical groups that are added on DNA molecule cause changes in DNA and create epigenome. The consequence of that is appearance of imprinted genes in genome. Genetic imprinting is epigenetic modification in which one of inherited alleles inactiv...

  20. State-of-the-art of screening methods for the rapid identification of chemicals in drinking water Deliverable D1

    OpenAIRE

    Llorca, Marta; Rodríguez-Mozaz, Sara

    2013-01-01

    The contamination of drinking water is potentially harmful and poses a risk to public health. If any observation suggests a potential contamination of drinking water, such as consumer complaints about the alteration of the water’s organoleptic properties, the appearance of health problems or an alarm triggered by sensors, a rapid identification of the hazard causing the problem is necessary. With regards to chemical contamination, EU Member States have several strategies to deal with the pres...

  1. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    Science.gov (United States)

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-01-01

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically. PMID:26132533

  2. Chemical inducible promoter used to obtain transgenic plants with a silent marker and organisms and cells and methods of using same for screening for mutations

    Science.gov (United States)

    Zuo, Jianru; Chua, Nam-Hai

    2007-06-12

    Disclosed is a chemically inducible promoter for transforming plants or plant cells with genes which are regulatable by adding the plants or cells to a medium containing an inducer or by removing them from such medium. The promoter is inducible by a glucocorticoid, estrogen or inducer not endogenous to plants. Such promoters may be used with any plant genes that can promote shoot regeneration and development to induce shoot formation in the presence of a glucocorticoid, estrogen or inducer. The promoter may be used with antibiotic or herbicide resistance genes or other genes which are regulatable by the presence or absence of a given inducer. Also presented are organisms or cells comprising a gene wherein the natural promoter of the gene is disrupted and the gene is placed under the control of a transgenic inducible promoter. These organisms and cells and their progeny are useful for screening for conditional gain of function and loss of function mutations.

  3. Chemical modification of PDMS surface without impacting the viscoelasticity: Model systems for a better understanding of elastomer/elastomer adhesion and friction

    OpenAIRE

    DIRANY, Mohammed; DIES, Laëtitia; Restagno, Frédéric; Léger, Liliane; Poulard, Christophe; MIQUELARD-GARNIER, Guillaume

    2015-01-01

    The influence of both viscoelastic and interfacial parameters on the surface properties of elastomers is difficult to study. Here, we describe a simple route to achieve surface modification of PDMS without impacting the viscoelastic properties of the bulk. PEG modified PDMS surfaces were synthesized by two step surface modification based on hydrosilylation. The covalent grafting of PEG on the surface has been evidenced by AFM and ATR-FTIR, and its effect on the hydrophilicity characterized by...

  4. Evaluation of an hPXR reporter gene assay for the detection of aquatic emerging pollutants: screening of chemicals and application to water samples

    Energy Technology Data Exchange (ETDEWEB)

    Creusot, Nicolas; Kinani, Said; Maillot-Marechal, Emmanuelle; Porcher, Jean-Marc; Ait-Aissa, Selim [Unite Ecotoxicologie, INERIS, Verneuil-en-Halatte (France); Balaguer, Patrick [IRCM-UM1-CRLC Val d' Aurelle, INSERM U896, Montpellier (France); Tapie, Nathalie; LeMenach, Karyn; Budzinski, Helene [ISM/LPTC-UMR 5255 CNRS Universite Bordeaux 1, Talence (France)

    2010-01-15

    Many environmental endocrine-disrupting compounds act as ligands for nuclear receptors. Among these receptors, the human pregnane X receptor (hPXR) is well described as a xenobiotic sensor to various classes of chemicals, including pharmaceuticals, pesticides, and steroids. To assess the potential use of PXR as a sensor for aquatic emerging pollutants, we employed an in vitro reporter gene assay (HG5LN-hPXR cells) to screen a panel of environmental chemicals and to assess PXR-active chemicals in (waste) water samples. Of the 57 compounds tested, 37 were active in the bioassay and 10 were identified as new PXR agonists: triazin pesticides (promethryn, terbuthryn, terbutylazine), pharmaceuticals (fenofibrate, bezafibrate, clonazepam, medazepam) and non co-planar polychlorobiphenyls (PCBs; PCB101, 138, 180). Furthermore, we detected potent PXR activity in two types of water samples: passive polar organic compounds integrative sampler (POCIS) extracts from a river moderately impacted by agricultural and urban inputs and three effluents from sewage treatment works (STW). Fractionation of POCIS samples showed the highest PXR activity in the less polar fraction, while in the effluents, PXR activity was mainly associated with the dissolved water phase. Chemical analyses quantified several PXR-active substances (i.e., alkylphenols, hormones, pharmaceuticals, pesticides, PCBs, bisphenol A) in POCIS fractions and effluent extracts. However, mass-balance calculations showed that the analyzed compounds explained only 0.03% and 1.4% of biological activity measured in POCIS and STW samples, respectively. In effluents, bisphenol A and 4-tert-octylphenol were identified as main contributors of instrumentally derived PXR activities. Finally, the PXR bioassay provided complementary information as compared to estrogenic, androgenic, and dioxin-like activity measured in these samples. This study shows the usefulness of HG5LN-hPXR cells to detect PXR-active compounds in water samples

  5. Preliminary screening of alternative technologies to incineration for treatment of chemical-agent-contaminated soil, Rocky Mountain Arsenal

    Energy Technology Data Exchange (ETDEWEB)

    Shem, L.M.; Rosenblatt, D.H.; Smits, M.P.; Wilkey, P.L.; Ballou, S.W.

    1995-12-01

    In support of the U.S. Army`s efforts to determine the best technologies for remediation of soils, water, and structures contaminated with pesticides and chemical agents, Argonne National Laboratory has reviewed technologies for treating soils contaminated with mustard, lewisite, sarin, o-ethyl s-(2- (diisopropylamino)ethyl)methyl-phosphonothioate (VX), and their breakdown products. This report focuses on assessing alternatives to incineration for dealing with these contaminants. For each technology, a brief description is provided, its suitability and constraints on its use are identified, and its overall applicability for treating the agents of concern is summarized. Technologies that merit further investigation are identified.

  6. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities

    International Nuclear Information System (INIS)

    Prediction of human response to potential therapeutic drugs is through conventional methods of in vitro cell culture assays and expensive in vivo animal testing. Alternatives to animal testing require sophisticated in vitro model systems that must replicate in vivo like function for reliable testing applications. Advancements in biomaterials have enabled the development of three-dimensional (3D) cell encapsulated hydrogels as in vitro drug screening tissue model systems. In this study, we have developed an in vitro platform to enable high density 3D culture of liver cells combined with a monolayer growth of target breast cancer cell line (MCF-7) in a static environment as a representative example of screening drug compounds for hepatotoxicity and drug efficacy. Alginate hydrogels encapsulated with serial cell densities of HepG2 cells (105-108 cells/ml) are supported by a porous poly-carbonate disc platform and co-cultured with MCF-7 cells within standard cell culture plates during a 3 day study period. The clearance rates of drug transformation by HepG2 cells are measured using a coumarin based pro-drug. The platform was used to test for HepG2 cytotoxicity 50% (CT50) using commercially available drugs which further correlated well with published in vivo LD50 values. The developed test platform allowed us to evaluate drug dose concentrations to predict hepatotoxicity and its effect on the target cells. The in vitro 3D co-culture platform provides a scalable and flexible approach to test multiple-cell types in a hybrid setting within standard cell culture plates which may open up novel 3D in vitro culture techniques to screen new chemical entity compounds. - Graphical abstract: Display Omitted Highlights: → A porous support disc design to support the culture of desired cells in 3D hydrogels. → Demonstrated the co-culture of two cell types within standard cell-culture plates. → A scalable, low cost approach to toxicity screening involving multiple cell types.

  7. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions.

    Science.gov (United States)

    Kuechler, Erich R; Giese, Timothy J; York, Darrin M

    2016-04-28

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state. PMID:27131539

  8. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions

    Science.gov (United States)

    Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.

    2016-04-01

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.

  9. Effect of Amino Acid Residue and Oligosaccharide Chain Chemical Modifications on Spectral and Hemagglutinating Activity of Millettia dielsiana Harms. ex Diels. Lectin

    Institute of Scientific and Technical Information of China (English)

    Shun GAO; Jie AN; Chuan-Fang WU; Ying GU; Fang CHEN; Yuan YU; Qia-Qing WU; Jin-Ku BAO

    2005-01-01

    The effects of modifying the carbohydrate chain and amino acids on the conformation and activity of Millettia dielsiana Harms. ex Diels. lectin (MDL) were studied by hemagglutination, fluorescence and circular dichroism analysis. The modification of tryptophan residues led to a compete loss of hemagglutinating activity; however, the addition of mannose was able to prevent this loss of activity. The results indicate that two tryptophan residues are involved in the carbohydrate-binding site. Modifications of the carboxyl group residues produced an 80% loss of activity, but the presence of mannose protected against the modification. The results suggest that the carboxyl groups of aspartic and glutamic acids are involved in the carbohydrate-binding site of the lectin. However, oxidation of the carbohydrate chain and modification of the histidine and arginine residues did not affect the hemagglutinating activity of MDL. Fluorescence studies of MDL indicate that tryptophan residues are present in a relatively hydrophobic region, and the binding of mannose to MDL could quench tryptophan fluorescence without any change in λmax. The circular dichroism spectrum showed that all of these modifications affected the conformation of the MDL molecule to different extents, except the modification of arginine residues. Fluorescence quenching showed that acrylamide and iodoacetic acids are able to quench 77% and 98% of the fluorescence of tryptophan in MDL, respectively.However, KI produced a barely perceptible effect on the fluorescence of MDL, even when the concentration of I- was 0.15 M. This demonstrates that most of tryptophan residues are located in relatively hydrophobic or negatively charged areas near the surface of the MDL molecule.

  10. Vision Screening

    Science.gov (United States)

    ... offer vision screening programs for children. At what age should a child have his or her vision screened? Vision screening ... a child fails a vision screening at any age, the child should be referred for a comprehensive eye examination. ...

  11. Newborn Screening

    Science.gov (United States)

    ... Role of Laboratories Meet the Scientist Newborn Screening: Family Stories Newborn Screening: Public Health Stories Screening Newborns for Critical ... Quality Assurance Program Newborn Screening Translation Research Initiative Newborn ... Stay Connected Twitter Facebook ...

  12. In-bead screening

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to screening of one-bead-one-compound (OBOC) combinatorial libraries which is useful for the discovery of compounds displaying molecular interactions with a biological or a physicochemical system, such as substrates and inhibitors of enzymes and the like. The invention...... provides a method for screening a library of compounds for their interaction with a physico- chemical or biological system and a corresponding kit for performing the method of screening a one-bead-one-compound library of compounds....

  13. A method for the amplification of chemically induced transformation in C3H/10T1/2 clone 8 cells: its use as a potential screening assay.

    Science.gov (United States)

    Schechtman, L M; Kiss, E; McCarvill, J; Nims, R; Kouri, R E; Lubet, R A

    1987-09-01

    dimethylnitrosamine, 2-naphthylamine, 2-aminoanthracene, and aflatoxin B1. With the use of this revised assay, 14 coded and 23 model compounds were tested. Agreement with in vivo results was observed to be over 85%. The marked sensitivity and discriminatory ability of this revised assay procedure suggest its usefulness as a screen for potential carcinogens of diverse chemical structure. PMID:3114533

  14. A Modular Approach to Triazole-Containing Chemical Inducers of Dimerisation for Yeast Three-Hybrid Screening

    Directory of Open Access Journals (Sweden)

    Nicholas J. Westwood

    2013-09-01

    Full Text Available The yeast three-hybrid (Y3H approach shows considerable promise for the unbiased identification of novel small molecule-protein interactions. In recent years, it has been successfully used to link a number of bioactive molecules to novel protein binding partners. However despite its potential importance as a protein target identification method, the Y3H technique has not yet been widely adopted, in part due to the challenges associated with the synthesis of the complex chemical inducers of dimerisation (CIDs. The development of a modular approach using potentially “off the shelf” synthetic components was achieved and allowed the synthesis of a family of four triazole-containing CIDs, MTX-Cmpd2.2-2.5. These CIDs were then compared using the Y3H approach with three of them giving a strong positive interaction with a known target of compound 2, TgCDPK1. These results showed that the modular nature of our synthetic strategy may help to overcome the challenges currently encountered with CID synthesis and should contribute to the Y3H approach reaching its full potential as an unbiased target identification strategy.

  15. Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol

    Directory of Open Access Journals (Sweden)

    Meng Y

    2012-06-01

    virus-1. Furthermore, both PEGylated proteins showed about 60%–70% antitumor and antivirus activities, and at the same time decreased 50%–70% immunogenicity when compared with their unmodified counterparts.Conclusion/significance: α-MMC and MAP30 obtained from this novel purification strategy can meet the requirement of a large amount of samples for research. Their chemical modification can solve the problem of strong immunogenicity and meanwhile preserve moderate activities. All these findings suggest the potential application of PEGylated α-MMC and PEGylated MAP30 as antitumor and antivirus agents. According to these results, PEGylated RIPs can be constructed with nanomaterials to be a targeting drug that can further decrease immunogenicity and side effects. Through nanotechnology we can make them low-release drugs, which can further prolong their half-life period in the human body.Keywords: ribosome-inactivating proteins, alpha-momorcharin, momordica anti-HIV protein, antitumor, antivirus, (mPEG2-Lys-NHS (20 kDa, immunogenicity

  16. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spetrometry for screening and identification of organic pollutants in waters

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Hernandez, F.

    2014-01-01

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC–(APCI)QTOF MS). The soft ionization promo

  17. Double-stranded DNA-templated cleavage of oligonucleotides containing a P3′→N5′ linkage triggered by triplex formation: the effects of chemical modifications and remarkable enhancement in reactivity

    Science.gov (United States)

    Ito, Kosuke Ramon; Kodama, Tetsuya; Tomizu, Masaharu; Negoro, Yoshinori; Orita, Ayako; Osaki, Tomohisa; Hosoki, Noritsugu; Tanaka, Takaya; Imanishi, Takeshi; Obika, Satoshi

    2010-01-01

    We recently reported double-stranded DNA-templated cleavage of oligonucleotides as a sequence-specific DNA-detecting method. In this method, triplex-forming oligonucleotides (TFOs) modified with 5′-amino-2′,4′-BNA were used as a DNA-detecting probe. This modification introduced a P3′→N5′ linkage (P–N linkage) in the backbone of the TFO, which was quickly cleaved under acidic conditions when it formed a triplex. The prompt fission of the P–N linkage was assumed to be driven by a conformational strain placed on the linkage upon triplex formation. Therefore, chemical modifications around the P–N linkage should change the reactivity by altering the microenvironment. We synthesized 5′-aminomethyl type nucleic acids, and incorporated them into TFOs instead of 5′-amino-2′,4′-BNA to investigate the effect of 5′-elongation. In addition, 2′,4′-BNA/LNA or 2′,5′-linked DNA were introduced at the 3′- and/or 5′-neighboring residues of 5′-amino-2′,4′-BNA to reveal neighboring residual effects. We evaluated the triplex stability and reaction properties of these TFOs, and found out that chemical modifications around the P–N linkage greatly affected their reaction properties. Notably, 2′,5′-linked DNA at the 3′ position flanking 5′-amino-2′,4′-BNA brought significantly higher reactivity, and we succeeded in indicating that a TFO with this modification is promising as a DNA analysis tool. PMID:20615902

  18. Top Value-Added Chemicals from Biomass - Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, John E.; White, James F.; Bozell, Joseph J.; Johnson, David

    2007-10-01

    roughly align with the three “product types.” From this analysis a list of technical barriers was developed which can be used to identify research needs. Lignin presents many challenges for use in the biorefinery. Chemically it differs from sugars having a complex aromatic substructure. Unlike cellulose, which has a relatively simple substructure of glucose subunits, lignin has a high degree of variability in its structure which differs both from biomass source and from the recovery process used. In addition to its variability lignin is also reactive and to some degree less stable thermally and oxidatively to other biomass streams. What this means is that integrating a lignin process stream within the biorefinery will require identifying the best method to separate lignin from biomass cost-effectively.

  19. PES fabric plasma modification

    Science.gov (United States)

    Vatuňa, T.; Špatenka, P.; Píchal, J.; Koller, J.; Aubrecht, L.; Wiener, J.

    2004-03-01

    Polyester ranks the upper position in the world fiber production — nearly 54% of the total production of synthetic fibers. Troubles connected with minimizing of the textile hydrophobicity are usually being solved by the textile fibers’ surface chemical modification, but from ecological point of view modification of fabric with low temperature plasma is superior to classical chemical wet processes. Application of various plasmas for PES treatment has been already described. To compare the effectiveness of different plasma sources we performed a series of experiment both in RF and MW plasmas. For working gas nitrogen, oxygen and their mixtures were employed. Internal plasma control was provided by measurement of optical emission spectra. The hydrophilicity degree was determined by the drop test. Paper discusses optimal conditions of the PES fabric plasma treatment.

  20. FINAL REPORT ON THE EVALUATION OF FOUR TOXIC CHEMICALS IN AN 'IN VIVO/IN VITRO' TOXICOLOGICAL SCREEN: ACRYLAMIDE, CHLORDECONE, CYCLOPHOSPHAMIDE, AND DIETHYLSTILBESTROL

    Science.gov (United States)

    An in vivo/in vitro Toxicological Screen (Tox Screen) has been developed for screening large numbers of wastes for biological activity. Emphasis is placed on identifying a wide range of potential toxic responses by employing diverse test methods with toxic endpoints in mutagenesi...

  1. A Combinatorial Library of Micro-Topographies and Chemical Compositions for Tailored Surface Wettability

    DEFF Research Database (Denmark)

    Kolind, Kristian; Bennetsen, Dines Tilsted; Arpanaei, Ayyoob; Duch, Mogens R.; Lovmand, Jette; Besenbacher, Flemming; Kingshott, Peter; Foss, Morten

    2011-01-01

    chemical modifications with 1H, 1H, 2H, 2H perfluoroethyltriethoxy-silane (PFS) and n-octadecyltriethoxysilane (ODS) on standard silicon wafers it was possible to include both superhydrophobic and very hydrophilic pad arrays in the same screening platform. Surfaces modified with PFS were more hydrophobic...

  2. A new in vitro screening bioassay for the ecotoxicological evaluation of the estrogenic responses of environmental chemicals using roach (Rutilus rutilus) liver explant culture.

    Science.gov (United States)

    Gerbron, Marie; Geraudie, Perrine; Rotchell, Jeanette; Minier, Christophe

    2010-10-01

    There is growing evidence that many chemicals released in the environment are able to disturb the normal endocrinology of organisms affecting the structure and function of their reproductive system. This has prompted the scientific community to develop appropriate testing methods to identify active compounds and elucidate mechanisms of action. Of particular interest are in vitro screening methods that can document the effects of these endocrine disrupting compounds on fish. In this study, an in vitro bioassay was developed in the roach (Rutilus rutilus) for evaluating the estrogenicity or antiestrogenicity potency of environmental pollutants by measuring vitellogenin (VTG) induction in cultured liver explants. The cell viability was assessed by the measurement of nonspecific esterase activity using a fluorescein diacetate hydrolysis assay. Results showed that explants could be cultured for 72 h without any significant loss of activity. Dose-dependent responses have been measured with estrogenic model compounds such as 17-β-estradiol (E2) and 17-α-ethynylestradiol (EE2) or antiestrogenic compounds such as tamoxifen. Lowest observable effective concentrations were 1 nM for E2, 1 nM for EE2, and 100 nM for tamoxifen, showing a good sensitivity of the test system. Estrogenicity of butyl 4-hydroxybenzoate, 4-nonylphenol, and bisphenol A was tested. bisphenol A (100 μM) or butylparaben induced a twofold increase in VTG production when compared with 100 nM E2, whereas this production was only 20% with 100 μM 4-nonylphenol. Overall, this study shows that the bioassay could provide valuable information on endocrine disrupting chemicals including metabolites and mixtures of compounds. PMID:20549626

  3. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    OpenAIRE

    Chii-Ruey Lin; Da-Hua Wei; Minh-Khoa BenDao; Hong-Ming Chang; Wei-En Chen; Jen-Ai Lee

    2014-01-01

    The seedings of the substrate with a suspension of nanodiamond particles (NDPs) were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. H...

  4. Characterization of acetohydroxyacid synthase from Mycobacterium tuberculosis and the identification of its new inhibitor from the screening of a chemical library.

    Science.gov (United States)

    Choi, Kyoung-Jae; Yu, Yeon Gyu; Hahn, Hoh Gyu; Choi, Jung-Do; Yoon, Moon-Young

    2005-08-29

    Acetohydroxyacid synthase (AHAS) is a thiamin diphosphate- (ThDP-) and FAD-dependent enzyme that catalyzes the first common step in the biosynthetic pathway of the branched-amino acids such as leucine, isoleucine, and valine. The genes of AHAS from Mycobacterium tuberculosis were cloned, and overexpressed in E. coli and purified to homogeneity. The purified AHAS from M. tuberculosis is effectively inhibited by pyrazosulfuron ethyl (PSE), an inhibitor of plant AHAS enzyme, with the IC(50) (inhibitory concentration 50%) of 0.87 microM. The kinetic parameters of M. tuberculosis AHAS were determined, and an enzyme activity assay system using 96-well microplate was designed. After screening of a chemical library composed of 5600 compounds using the assay system, a new class of AHAS inhibitor was identified with the IC(50) in the range of 1.8-2.6 microM. One of the identified compounds (KHG20612) further showed growth inhibition activity against various strains of M. tuberculosis. The correlation of the inhibitory activity of the identified compound against AHAS to the cell growth inhibition activity suggested that AHAS might be served as a target protein for the development of novel anti-tuberculosis therapeutics. PMID:16111681

  5. Identification of essential residues in 2',3'-cyclic nucleotide 3'-phosphodiesterase. Chemical modification and site-directed mutagenesis to investigate the role of cysteine and histidine residues in enzymatic activity.

    Science.gov (United States)

    Lee, J; Gravel, M; Gao, E; O'Neill, R C; Braun, P E

    2001-05-01

    2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP; EC ) catalyzes in vitro hydrolysis of 3'-phosphodiester bonds in 2',3'-cyclic nucleotides to produce 2'-nucleotides exclusively. N-terminal deletion mapping of the C-terminal two-thirds of recombinant rat CNP1 identified a region that possesses the catalytic domain, with further truncations abolishing activity. Proteolysis and kinetic analysis indicated that this domain forms a compact globular structure and contains all of the catalytically essential features. Subsequently, this catalytic fragment of CNP1 (CNP-CF) was used for chemical modification studies to identify amino acid residues essential for activity. 5,5'-Dithiobis-(2-nitrobenzoic acid) modification studies and kinetic analysis of cysteine CNP-CF mutants revealed the nonessential role of cysteines for enzymatic activity. On the other hand, modification studies with diethyl pyrocarbonate indicated that two histidines are essential for CNPase activity. Consequently, the only two conserved histidines, His-230 and His-309, were mutated to phenylalanine and leucine. All four histidine mutants had k(cat) values 1000-fold lower than wild-type CNP-CF, but K(m) values were similar. Circular dichroism studies demonstrated that the low catalytic activities of the histidine mutants were not due to gross changes in secondary structure. Taken together, these results demonstrate that both histidines assume critical roles for catalysis. PMID:11278504

  6. Chemical modification of HTPB for application as polymeric additives for diesel fuel. 1 - phenyl ethers; Modificacao quimicado PBLH para aplicacao como aditivos polimericos para oleo diesel. 1. eteres fenilicos

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Agne R.; Prezibella, Alysson M.; Ferraz, Fernando A.; Soldi, Rafael A.; Oliveira, Angelo R.S.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos

    2007-07-01

    The petroleum industry faces several problems related to the crystallization of paraffins, in petroleum and its derivatives, with the reduction of the service temperature. To solve this problem polymeric additives are used, of which the esters have been enough studied in several areas of the world, except in Brazil. In this work, this class of pour point depressant additives it was obtained through the chemical modification of Hydroxyl Terminate Polybutadiene (HTPB) that present a hydrocarbon chemical structure containing one double bound in each repetitive unit and hydroxyl groups of the primary and secondary allylic types - functional groups potentially reactive. The obtained products were characterized by Fourier transformed infrared spectroscopy and nuclear magnetic resonance, and they are being tested as additive for the pour point reduction of a diesel oil samples (REPAR-PETROBRAS). (author)

  7. Effects of natural and chemical stressors on Enchytraeus albidus: can oxidative stress parameters be used as fast screening tools for the assessment of different stress impacts in soils?

    Science.gov (United States)

    Howcroft, C F; Amorim, M J B; Gravato, C; Guilhermino, L; Soares, A M V M

    2009-02-01

    Enchytraeids are important organisms of the soil biocenosis. They improve the soil pore structure and the degradation of organic matter. These organisms are used in standardized testing, using survival and reproduction (6 weeks) as endpoints. The use of biomarkers, linked to ecologically relevant alterations at higher levels of biological organization, is a promising tool for Environmental Risk Assessment. Here, enchytraeids were exposed for different time periods (two days and three weeks) to different soils (OECD artificial soil, different compositions in its organic matter, clay or pH value, and LUFA 2.2 natural soil) and different chemicals (Phenmedipham and copper). The main question addressed in the present study was if the effects of chemicals and different soil properties are preceded by alterations at the sub-cellular level, and if these endpoints may be used reliantly as faster screening tools for the assessment of different stress conditions in soils. The parameters measured in E. albidus whole body were: lipid peroxidation (LPO), total glutathione (TG), as well as the enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST). The results showed that biomarker responses in E. albidus were significantly affected by the soil type (GST, CAT, GPx, GR and LPO) and the duration of exposure in OECD artificial soil (GST, GPx, GR, CAT and LPO) but not in LUFA 2.2 natural soil. For the abiotic factors studied, after 2 days, low pH decreased significantly the TG levels and the activities of CAT and GR,and low OM also significantly decreased CAT and GR activities. After 3 weeks, differences in soil properties caused a decrease in GR and GPx activities, whereas increased GST activity was observed due to low organic matter and pH. Copper significantly increased the activities of CAT, GPx and GR, and decreased the activity of GST after 2 days as well as inscreasing

  8. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  9. OPTIMIZATION OF THE CONDITIONS REQUIRED FOR CHEMICAL AND BIOLOGICAL MODIFICATION OF THE YEAST WASTE FROM BEER MANUFACTURING TO PRODUCE ADHESIVE COMPOSITIONS

    OpenAIRE

    Davud Kadimaliev,; Vladimir Telyatnik,; Victor Revin,; Alexander Parshin,; Surhay Allahverdi,; Gokhan Gunduz; Elena Kezina,; Nejla Asık

    2012-01-01

    During the production of beer large amounts of yeast waste are generated. This paper considers the possible making of environmentally friendly adhesive compositions from such wastes. Chemical treatment of yeast wastes increases their adhesive characteristics. Chemical cross-linking with glutaric aldehyde and biological cross-linking by enzyme transglutaminase improves the moisture resistance of the adhesive compositions. In terms of their physical and mechanical parameters they are not inferi...

  10. Health Screening

    Science.gov (United States)

    Screenings are tests that look for diseases before you have symptoms. Screening tests can find diseases early, when they're easier to treat. You can get some screenings in your doctor's office. Others need special equipment, ...

  11. Chemical processes of galvanized steel corrosion in the post-LOCA phase of a PWR and the prevention of sump screen clogging

    International Nuclear Information System (INIS)

    from those of the formation and deposition of corrosion products. Changes of the chemical composition of the circulating media were determined by chemical analysis (ICP-MS) of samples taken at defined times, and general parameters such as conductivity and pH were measured. Galvanized samples and fiber beds were examined after each experiment by means of photographic methods, light-microscopy and different kinds of chemical analysis. The chemical analyses of the depositions on fiber beds showed that the clogging is predominantly caused by the corrosion products of iron and lower amounts of zinc compounds. Thus, the corrosion of galvanized steel in boric acid is explained by a mechanism starting at the surface with fast Zn dissolution but without solid corrosion product formation. The Zn corrosion is mainly influenced by pH and concentration of zinc ions in the coolant. Since boric acid/borate acts as a buffer system, the pH value increases faster at the beginning and reaches up to 6.8 in case of sufficient Zn amount (dissolution of compact zinc or large zinc surface). A local (flow induced) corrosion occurs if a fast liquid flow strikes the top face of a horizontal galvanized coupon (small sample area). Precondition for this process is a sufficiently low pH of solution in connection with a high hydrodynamic impact of the liquid flow on the corroding surface. For a limited period, the risk of strainer clogging due to formation of corrosion products of galvanized steel may be reduced by an additional amount of submerged Zn or changing the coolant chemistry by alkaline additions. These two possibilities were investigated by test series using galvanized steel coupons. The addition of borax seems to be the most effective method to reduce the corrosion rate and the risk of sump screen clogging. The results were validated with galvanized gratings in a further test series since the flow conditions of a liquid jet on flat coupons significantly differ from those on gratings

  12. Surface etching, chemical modification and characterization of silicon nitride and silicon oxide—selective functionalization of Si3N4 and SiO2

    Science.gov (United States)

    Liu, Li-Hong; Michalak, David J.; Chopra, Tatiana P.; Pujari, Sidharam P.; Cabrera, Wilfredo; Dick, Don; Veyan, Jean-François; Hourani, Rami; Halls, Mathew D.; Zuilhof, Han; Chabal, Yves J.

    2016-03-01

    The ability to selectively chemically functionalize silicon nitride (Si3N4) or silicon dioxide (SiO2) surfaces after cleaning would open interesting technological applications. In order to achieve this goal, the chemical composition of surfaces needs to be carefully characterized so that target chemical reactions can proceed on only one surface at a time. While wet-chemically cleaned silicon dioxide surfaces have been shown to be terminated with surficial Si-OH sites, chemical composition of the HF-etched silicon nitride surfaces is more controversial. In this work, we removed the native oxide under various aqueous HF-etching conditions and studied the chemical nature of the resulting Si3N4 surfaces using infrared absorption spectroscopy (IRAS), x-ray photoelectron spectroscopy (XPS), low energy ion scattering (LEIS), and contact angle measurements. We find that HF-etched silicon nitride surfaces are terminated by surficial Si-F and Si-OH bonds, with slightly subsurface Si-OH, Si-O-Si, and Si-NH2 groups. The concentration of surficial Si-F sites is not dependent on HF concentration, but the distribution of oxygen and Si-NH2 displays a weak dependence. The Si-OH groups of the etched nitride surface are shown to react in a similar manner to the Si-OH sites on SiO2, and therefore no selectivity was found. Chemical selectivity was, however, demonstrated by first reacting the -NH2 groups on the etched nitride surface with aldehyde molecules, which do not react with the Si-OH sites on a SiO2 surface, and then using trichloro-organosilanes for selective reaction only on the SiO2 surface (no reactivity on the aldehyde-terminated Si3N4 surface).

  13. Effect of water glass modification with nanoparticles of zinc oxide on selected physical and chemical properties of binder and mechanical properties of sand mixture

    Directory of Open Access Journals (Sweden)

    A. Kmita

    2012-12-01

    Full Text Available In this paper, an attempt was made to use the ZnO nanoparticles as a modifier of foundry binder - water glass. The modifier was a colloidal suspension of the ZnO zinc oxide nanoparticles in propanol. A thermal method to obtain metal oxide nanoparticles was adopted. The modifier was product of the thermal decomposition of the basic zinc carbonate ([ZnCO3]2•[Zn(OH2]3, and was introduced into the water glass in an amount of 1 and 3 wt%. To determine the interfacial reactions taking place in a quartz - modified water glass system, the binder wettability of the quartz grains was measured. The effect of water glass modification on the mechanical properties of moulding sands was verified by testing the tensile strength Rm u of moulding sands with the modified binders. Water glass modification with the colloidal solution of ZnO nanoparticles in propanol confirmed the effect of modifier on the water glass wettability of sand grains and on the mechanical properties of the sand mixtures with this additive.

  14. EPIGENETIC MODIFICATIONS OF SWINE GENOME

    Directory of Open Access Journals (Sweden)

    Kristina Budimir

    2013-06-01

    Full Text Available Epigenetics is represents a new way of genome analysis, respectively gene expression that occurs without DNA sequence change. Changes that occur are epigenetic modifications and they include post-translational histone modification and DNA methylation. Chemical groups that are added on DNA molecule cause changes in DNA and create epigenome. The consequence of that is appearance of imprinted genes in genome. Genetic imprinting is epigenetic modification in which one of inherited alleles inactivates. Its influence can be seen on productive and reproductive traits. Discovering new imprinted genes is important because of their conservation and understanding their function.

  15. OPTIMIZATION OF THE CONDITIONS REQUIRED FOR CHEMICAL AND BIOLOGICAL MODIFICATION OF THE YEAST WASTE FROM BEER MANUFACTURING TO PRODUCE ADHESIVE COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    Davud Kadimaliev,

    2012-02-01

    Full Text Available During the production of beer large amounts of yeast waste are generated. This paper considers the possible making of environmentally friendly adhesive compositions from such wastes. Chemical treatment of yeast wastes increases their adhesive characteristics. Chemical cross-linking with glutaric aldehyde and biological cross-linking by enzyme transglutaminase improves the moisture resistance of the adhesive compositions. In terms of their physical and mechanical parameters they are not inferior to glues of natural origin and can be used for bonding paper, cardboard, and wood. The bonding strength of paper was 421.8 N / m, and that of wood was 27.8 MPa.

  16. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids.

    Science.gov (United States)

    Raro, M; Portolés, T; Pitarch, E; Sancho, J V; Hernández, F; Garrostas, L; Marcos, J; Ventura, R; Segura, J; Pozo, O J

    2016-02-01

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid-liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H](+) or [M + H-2TMSOH](+) ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL(-1). Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected. PMID:26772132

  17. Mechanism of chemical modification for fabricating superhydrophobic aluminum alloy%铝合金表面构建超疏水性的化学改性机理

    Institute of Scientific and Technical Information of China (English)

    吴洁; 余新泉; 张友法; 周荃卉

    2011-01-01

    The influence of evaporation process in a two-step modification approach of aluminum alloy was studied systematically. A one-step approach is proposed by combining roughening and modification in two-step method. Results show that, in the evaporation process of the two-step method, the carboxyls of stearic acid covalently bond with the hydroxyls on aluminum surface, generating a superhydrophobic film with low surface energy. Water droplet contacts the sample in Cassie state, which shows a high contact angle of 160°. While in the one-step approach, dissolved aluminum ion can be caught by the myristic acid, and thereafter carboxylate deposits, leaving the hydrophobic long-chain alkanes outwards. The aluminum substrates again display water repellency. Both optimized modification processes are proved to be universal for other kinds of long-chain fatty acids to prepare low-adhesion superhydrophobic surface on aluminum alloy.%系统研究了刻蚀一化学改性两步法中的蒸镀改性工艺对铝合金表面形貌和润湿性的影响,提出了刻蚀与化学改性同时进行的一步浸泡法制备超疏水铝合金.结果表明,两步法蒸镀改性工艺中,硬脂酸端部的极性亲水羧基与铝合金表面羟基以共价键结合,从而在铝合金表面形成一层硬脂酸膜,使铝合金实现低表面能化,水滴在其表面处于Cassie状态,接触角为160°.一步法中,高能区域优先溶解形成的铝离子与肉豆蔻酸分子结合,形成外部具有疏水长烷烃链的羧酸盐,沉积在基片表面,同样使得铝合金表面具有低黏附和超疏水性.该工艺优化后对其他长链脂肪酸均具有普适性.

  18. Effect of thermal and chemical modifications on the mechanical and release properties of paracetamol tablet formulations containing corn, cassava and sweet potato starches as filler-binders

    Institute of Scientific and Technical Information of China (English)

    Mariam; Vbamiunomhene; Lawal; Michael; Ayodele; Odeniyi; Oludele; Adelanwa; Itiola

    2015-01-01

    Objective: To investigate the effects of acetylation and pregelatinization of cassava and sweet potato starches on the mechanical and release properties of directly compressed paracetamol tablet formulations in comparison with official corn starch.Methods: The native starches were modified by acetylation and pregelatinization. The tablets were assessed using friability(Fr), crushing strength(Cs), disintegration time(Dt) and dissolution parameters. Results: Starch acetylation produced paracetamol tablets that were stronger and had the best balance of mechanical and disintegration properties, while pregelatinization produced tablets that were more friable but had a better overall strength in relation to disintegration than formulations made from natural starches. Correlations mainly existed between Dt and the dissolution parameters t80, t2 and k1 in the formulations. Conclusions: Modification of the experimental starches improved the mechanical and release properties of directly compressed paracetamol tablet formulations. Thus, they can be developed for use as pharmaceutical excipients in specific formulations.

  19. Chemical modification of a bitumen and its non-fuel uses. [Reactions of tar sand asphaltenes in synthesis of non-fuel products

    Energy Technology Data Exchange (ETDEWEB)

    Moschopedis, S.E.; Speight, J.G.

    1974-01-01

    Simple reactions are described whereby tar sand bitumen can be converted to a whole range of materials. Examples are given to illustrate the non-fuel uses of the products. The following reactions of Athabasca asphaltenes are considered: oxidation, halogenation, sulfonation and sulfomethylation, phosphorylation, hydrogenation, reactions with S and O, reactions with metal salts, and miscellaneous chemical conversions. (JGB)

  20. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since it...... is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very...... high substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by...

  1. The effect of substrate modification on microbial growth on surfaces

    CERN Document Server

    Brown, A A

    1998-01-01

    The principle aim of the program was to produce a novel, non-leaching antimicrobial surface for commercial development and future use in the liquid food packaging industry. Antimicrobial surfaces which exist presently have been produced to combat the growth of prokaryotic organisms and usually function as slow release systems. A system which could inhibit eukaryotic growth without contaminating the surrounding 'environment' with the inhibitor was considered of great commercial importance. The remit of this study was concerned with creating a surface which could control the growth of eukaryotic organisms found in fruit juice with particular interest in the yeast, Saccharomyces cerevisiae. Putative antimicrobial surfaces were created by the chemical modification of the test substrate polymers; nylon and ethylvinyl alcohol (EVOH). Surfaces were chemically modified by the covalent coupling of antimicrobial agents known to be active against the yeast Saccharomyces cerevisiae as ascertained by the screening process...

  2. Minor modifications of the C-terminal helix reschedule the favored chemical reactions catalyzed by theta class glutathione transferase T1-1.

    Science.gov (United States)

    Shokeer, Abeer; Mannervik, Bengt

    2010-02-19

    Adaptive responses to novel toxic challenges provide selective advantages to organisms in evolution. Glutathione transferases (GSTs) play a pivotal role in the cellular defense because they are main contributors to the inactivation of genotoxic compounds of exogenous as well as of endogenous origins. GSTs are promiscuous enzymes catalyzing a variety of chemical reactions with numerous alternative substrates. Despite broad substrate acceptance, individual GSTs display pronounced selectivities such that only a limited number of substrates are transformed with high catalytic efficiency. The present study shows that minor structural changes in the C-terminal helix of mouse GST T1-1 induce major changes in the substrate-activity profile of the enzyme to favor novel chemical reactions and to suppress other reactions catalyzed by the parental enzyme. PMID:20022951

  3. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties

    KAUST Repository

    Pandey, Laxman

    2012-08-28

    We systematically investigate at the density functional theory level how changes to the chemical structure of donor-acceptor copolymers used in a number of organic electronics applications influences the intrinsic geometric, electronic, and optical properties. We consider the combination of two distinct donors, where a central five-membered ring is fused on both sides by either a thiophene or a benzene ring, with 12 different acceptors linked to the donor either directly or through thienyl linkages. The interplay between the electron richness/deficiency of the subunits as well as the evolution of the frontier electronic levels of the isolated donors/acceptors plays a significant role in determining the electronic and optical properties of the copolymers. © 2012 American Chemical Society.

  4. Minor Modifications of the C-terminal Helix Reschedule the Favored Chemical Reactions Catalyzed by Theta Class Glutathione Transferase T1-1*

    OpenAIRE

    Shokeer, Abeer; Mannervik, Bengt

    2009-01-01

    Adaptive responses to novel toxic challenges provide selective advantages to organisms in evolution. Glutathione transferases (GSTs) play a pivotal role in the cellular defense because they are main contributors to the inactivation of genotoxic compounds of exogenous as well as of endogenous origins. GSTs are promiscuous enzymes catalyzing a variety of chemical reactions with numerous alternative substrates. Despite broad substrate acceptance, individual GSTs display pronounced selectivities ...

  5. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences

    International Nuclear Information System (INIS)

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (''screening'' sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. (orig.)

  6. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, B.; Rauch, S.; Schocke, M.; Jaschke, W.; Kremser, C. [Medical University of Innsbruck, Department of Radiology, Innsbruck (Austria); Zoller, H. [Medical University of Innsbruck, Department of Internal Medicine, Innsbruck (Austria); Kannengiesser, S. [Siemens AG, Healthcare Sector, MR Applications Development, Erlangen (Germany); Zhong, X. [Siemens Healthcare, MR R and D Collaborations, Atlanta, GA (United States); Reiter, G. [Siemens AG, Healthcare Sector, MR R and D Collaborations, Graz (Austria)

    2015-05-01

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (''screening'' sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. (orig.)

  7. Influence of the chemical modification and content of the clay on the mechanical properties of polypropylene and national bentonite composites; Influencia da modificacao quimica e do teor de argila nas propriedades mecanicas de compositos de polipropileno e bentonita nacional

    Energy Technology Data Exchange (ETDEWEB)

    Libano, Elaine V.D.G., E-mail: elainelibano@uezo.rj.gov.br [Centro Universitario Estadual da Zona Oeste - UEZO - RJ (Brazil); Pacheco, Elen B.A.V.; Visconte, Leila L.Y. [Universidade Federal do Rio de Janeiro - UFRJ, Instituto de Macromoleculas Professora Eloisa Mano - IMA, RJ (Brazil)

    2011-07-01

    The polypropylene/national clay composite was prepared by melt intercalation in a counter-rotating twin screw extruder, using bentonite as filler either in the natural (BENT) form or modified with the ammonium salt, cetyltrimethylammonium chloride (BENT-org). The clay was used in 1, 3 and 5%w. The influence of the modification and content of clay on the mechanical properties of this system was analysed. The analyses of infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that clay organophilization did occur. The tensile modulus and the tensile strength at the yield point were not affected by chemical modification (BENT and BENT-org) or clay content. On the other hand, it was evidenced that the elongation at the yield point decreased with the addition of BENT and BENT-org to polypropylene. According to the thermogravimetric results, it was evidenced that the incorporation of clay into polypropylene improved thermal stability of the polymer in the composites with 5%w of BENT and 3 and 5%w of BENT-org. (author)

  8. Integrated Model of Chemical Perturbations of a Biological PathwayUsing 18 In Vitro High Throughput Screening Assays for the Estrogen Receptor

    Science.gov (United States)

    We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation and ER-dependent cell proliferation. The network model uses activity pa...

  9. Surface free energy ( γsd) of active carbons determined by inverse gas chromatography: influences of the origin of precursors, the burn off level and the chemical modification

    Science.gov (United States)

    Cossarutto, L.; Vagner, C.; Finqueneisel, G.; Weber, J. V.; Zimny, T.

    2001-06-01

    The dispersive component of the surface free energies ( γsd) of commercial active carbons (AC) from various origins were determined by inverse gas chromatography at infinite dilution (IGC-ID). This method discriminates clearly the AC produced from wood (and activated/carbonised with phosphoric acid) and those from coconut-shell (carbonised and steam activated at 850°C). The values for the last AC (from coconut) are twice higher than the values for AC of wood origin. The structure and shape of the pores have to be considered to explain these values. It seems that for AC, IGC-ID globally characterises the most energetic micropores. This can be observed, in this work, by two ways: (i) washing of commercial AC (chemically activated) allows to liberate a part of the micropores blocked by soluble phosphate and consequently increases the γsd value; (ii) modifying coconuts AC by chemical treatment (formamide) results in a strong decrease of both microporosity and γsd value. On the contrary, thermal activation of the modified AC increases at the same time the microporosity and the surface free energy. Finally, we demonstrate that the IGC method is also an useful tool to monitor in situ the evolutions of the surface properties of carbonaceous materials.

  10. Probing the Binding Pocket of the Broadly Tuned Human Bitter Taste Receptor TAS2R14 by Chemical Modification of Cognate Agonists.

    Science.gov (United States)

    Karaman, Rafik; Nowak, Stefanie; Di Pizio, Antonella; Kitaneh, Hothaifa; Abu-Jaish, Alaa; Meyerhof, Wolfgang; Niv, Masha Y; Behrens, Maik

    2016-07-01

    Sensing potentially harmful bitter substances in the oral cavity is achieved by a group of (˜) 25 receptors, named TAS2Rs, which are expressed in specialized sensory cells and recognize individual but overlapping sets of bitter compounds. The receptors differ in their tuning breadths ranging from narrowly to broadly tuned receptors. One of the most broadly tuned human bitter taste receptors is the TAS2R14 recognizing an enormous variety of chemically diverse synthetic and natural bitter compounds, including numerous medicinal drugs. This suggests that this receptor possesses a large readily accessible ligand binding pocket. To allow probing the accessibility and size of the ligand binding pocket, we chemically modified cognate agonists and tested receptor responses in functional assays. The addition of large functional groups to agonists was usually possible without abolishing agonistic activity. The newly synthesized agonist derivatives were modeled in the binding site of the receptor, providing comparison to the mother substances and rationalization of the in vitro activities of this series of compounds. PMID:26825540

  11. Control of oil-wetting on technical textiles by means of photo-chemical surface modification and its relevance to the performance of compressed air filters

    Energy Technology Data Exchange (ETDEWEB)

    Bahners, Thomas, E-mail: bahners@dtnw.de [Deutsches Textilforschungszentrum Nord-West gGmbH (DTNW), Adlerstr. 1, 47798 Krefeld (Germany); Mölter-Siemens, Wolfgang; Haep, Stefan [Institut für Energie- und Umwelttechnik e.V. (IUTA), Bliersheimer Str. 60, 47229 Duisburg (Germany); Gutmann, Jochen S. [Deutsches Textilforschungszentrum Nord-West gGmbH (DTNW), Adlerstr. 1, 47798 Krefeld (Germany); Universität Duisburg-Essen, Physikalische Chemie and CENIDE, Universitätsstr. 2, 45141 Essen (Germany)

    2014-09-15

    Highlights: • The oil repellence of textile fabrics was increased following the Wenzel concept. • Fiber surfaces were micro-roughened by means of pulsed UV laser irradiation. • Subsequent UV-induced grafting yielded pronounced oil repellence. • The grafting process conserved the delicate topography of the fiber surfaces. • The modified fabrics showed favorable drainage behavior in oil droplet separation. - Abstract: A two-step process comprising a surface roughening step by excimer laser irradiation and a post-treatment by photo-grafting to decrease the surface free energy was employed to increase the oil repellence of technical fabrics made of poly(ethylene terephthalate) (PET). The modification was designed to improve the performance of multi-layer filters for compressed air filtration, in which the fabrics served to remove, i.e. drain, oil separated from the air stream. In detail, the fibers surfaces were roughened by applying several laser pulses at a wavelength of 248 nm and subsequently photo-grafted with 1H,1H,2H,2H-perfluoro-decyl acrylate (PPFDA). The oil wetting behavior was increased by the treatments from full wetting on the as-received fabrics to highly repellent with oil contact angles of (131 ± 7)°. On surfaces in the latter state, oil droplets did not spread or penetrate even after one day. The grafting of PPFDA alone without any surface roughening yielded an oil contact angle of (97 ± 11)°. However, the droplet completely penetrated the fabric over a period of one day. The drainage performance was characterized by recording the pressure drop over a two-layer model filter as a function of time. The results proved the potential of the treatment, which reduced the flow resistance after 1-h operation by approximately 25%.

  12. Control of oil-wetting on technical textiles by means of photo-chemical surface modification and its relevance to the performance of compressed air filters

    International Nuclear Information System (INIS)

    Highlights: • The oil repellence of textile fabrics was increased following the Wenzel concept. • Fiber surfaces were micro-roughened by means of pulsed UV laser irradiation. • Subsequent UV-induced grafting yielded pronounced oil repellence. • The grafting process conserved the delicate topography of the fiber surfaces. • The modified fabrics showed favorable drainage behavior in oil droplet separation. - Abstract: A two-step process comprising a surface roughening step by excimer laser irradiation and a post-treatment by photo-grafting to decrease the surface free energy was employed to increase the oil repellence of technical fabrics made of poly(ethylene terephthalate) (PET). The modification was designed to improve the performance of multi-layer filters for compressed air filtration, in which the fabrics served to remove, i.e. drain, oil separated from the air stream. In detail, the fibers surfaces were roughened by applying several laser pulses at a wavelength of 248 nm and subsequently photo-grafted with 1H,1H,2H,2H-perfluoro-decyl acrylate (PPFDA). The oil wetting behavior was increased by the treatments from full wetting on the as-received fabrics to highly repellent with oil contact angles of (131 ± 7)°. On surfaces in the latter state, oil droplets did not spread or penetrate even after one day. The grafting of PPFDA alone without any surface roughening yielded an oil contact angle of (97 ± 11)°. However, the droplet completely penetrated the fabric over a period of one day. The drainage performance was characterized by recording the pressure drop over a two-layer model filter as a function of time. The results proved the potential of the treatment, which reduced the flow resistance after 1-h operation by approximately 25%

  13. Hazard screening application guide

    International Nuclear Information System (INIS)

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information

  14. Development of a high-throughput screening assay for chemical effects on proliferation and viability of immortalized human neural progenitor cells

    Science.gov (United States)

    There is considerable public concern that the majority of commercial chemicals have not been evaluated for their potential to cause developmental neurotoxicity. Although several chemicals are assessed annually under the current developmental neurotoxicity guidelines, time, resour...

  15. Chemical Modification of Oryza sativa Linnaeus Husk with Urea for Removal of Brilliant Vital Red and Murexide Dyes from Water by Adsorption in Environmentally Benign Way

    International Nuclear Information System (INIS)

    Oryza sativa Linnaeus is an important food item all around the world. Due to its huge consumption, a large amount of rice husk is generated as agrowaste which can be used for water treatment by adsorption. Its adsorption capacity further can be enhanced by chemical medication. In the present study, urea modified rice husk has been used for removing Brilliant Vital Red and Murexide form water in an efficient way. After optimizing operating conditions, isothermal and thermodynamical studies were carried out, which showed that maximum adsorption capacity of urea modified rice husk for removing Brilliant Vital Red and Murexide dyes were 28.93 and 30.74 mg.g/sup -1/. Adsorbent characterization was carried out by recording its FT-IR spectra. (author)

  16. Chemical modification of silica gel with synthesized Schiff base hydrazone derivative and application for preconcentration and separation of U(VI) ions from aqueous solutions

    International Nuclear Information System (INIS)

    Schiff base hydrazone derivative (HL) sorbent was synthesized according to the literature to be used in the adsorption and preconcentration of U(VI) ions from aqueous solution and it was exposed to immobilization, and new solid support material was obtained. For this purpose, Schiff base hydrazone derivative (HL) was chemically bonded to silica gel surface immobilized 3-aminopropyl trimethoxysilane, then analyzed by Fourier transform infrared, Brunauer-Emmett-Teller, scanning electron microscopy and elemental analysis. The influence of the solution pH, amount of sorbent, contact time, temperature, foreign ion effect and initial U(VI) concentration was investigated. The maximum U(VI) uptake capacity was found to be 8.46 mg/g. (author)

  17. Modification of electrical properties induced by annealing of ZnO:B thin films deposited by chemical vapour deposition: Kinetic investigation of evolution

    Energy Technology Data Exchange (ETDEWEB)

    David, C., E-mail: Clement.david@univ-poitiers.fr [Inventux Technologies AG, Wolfener Straße 23, 12681 Berlin (Germany); Institut Pprime, Département de Physique et Mécanique des Matériaux, CNRS – Université de Poitiers, F-86962 Futuroscope Chasseneuil Cedex (France); Paumier, F. [Institut Pprime, Département de Physique et Mécanique des Matériaux, CNRS – Université de Poitiers, F-86962 Futuroscope Chasseneuil Cedex (France); Tinkham, B.P. [Inventux Technologies AG, Wolfener Straße 23, 12681 Berlin (Germany); Eyidi, D.; Marteau, M.; Guérin, P.; Girardeau, T. [Institut Pprime, Département de Physique et Mécanique des Matériaux, CNRS – Université de Poitiers, F-86962 Futuroscope Chasseneuil Cedex (France)

    2013-05-15

    In this study temperature dependent Hall effect measurements combined with Fourier Transformed Infra-Red (FTIR) spectroscopy measurements is used to determine the evolution of the scattering mechanisms ascribable to in-grain and grain boundaries on Boron doped ZnO thin films deposited by Low Pressure Chemical Vapour Deposition (LPCVD). Through Hall effect measurements during in situ isothermal annealing, changes in electrical characteristics of zinc oxide could be followed in real time. Whereas only degradation is observed in air, an improvement of layer conductivity could be achieved at low temperatures by annealing under argon atmosphere. A study of the conductivity during isothermal annealing offers the possibility to extract activation energies, which have been compared to migration energies of the different intrinsic defects in ZnO.

  18. Modification of electrical properties induced by annealing of ZnO:B thin films deposited by chemical vapour deposition: Kinetic investigation of evolution

    International Nuclear Information System (INIS)

    In this study temperature dependent Hall effect measurements combined with Fourier Transformed Infra-Red (FTIR) spectroscopy measurements is used to determine the evolution of the scattering mechanisms ascribable to in-grain and grain boundaries on Boron doped ZnO thin films deposited by Low Pressure Chemical Vapour Deposition (LPCVD). Through Hall effect measurements during in situ isothermal annealing, changes in electrical characteristics of zinc oxide could be followed in real time. Whereas only degradation is observed in air, an improvement of layer conductivity could be achieved at low temperatures by annealing under argon atmosphere. A study of the conductivity during isothermal annealing offers the possibility to extract activation energies, which have been compared to migration energies of the different intrinsic defects in ZnO

  19. MRSA Screening

    Science.gov (United States)

    ... limited. Home Visit Global Sites Search Help? MRSA Screening Share this page: Was this page helpful? Formal name: Methicillin resistant Staphylococcus aureus Screening Related tests: Wound Culture At a Glance Test ...

  20. Cancer screening

    OpenAIRE

    Krishna Prasad

    1987-01-01

    Cancer screening is a means to detect cancer early with the goal of decreasing morbidity and mortality. At present, there is a reasonable consensus regarding screening for breast, cervical and colorectal cances and the role of screening is under trial in case of cancers of the lung,  ovaries and prostate. On the other hand, good screening tests are not available for some of the commonest cancers in India like the oral, pharyngeal, esophageal and stomach cancers.

  1. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters.

    Science.gov (United States)

    Portolés, Tania; Mol, Johannes G J; Sancho, Juan V; Hernández, Félix

    2014-04-25

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC-(APCI)QTOF MS). The soft ionization promoted by the APCI source allows effective and wide-scope screening based on the investigation of the molecular ion and/or protonated molecule. This is in contrast to electron ionization (EI) where ionization typically results in extensive fragmentation, and diagnostic ions and/or spectra need to be known a priori to facilitate detection of the analytes in the raw data. Around 170 organic contaminants from different chemical families were initially investigated by both approaches, i.e. GC-(EI)TOF and GC-(APCI)QTOF, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and a notable number of pesticides and relevant metabolites. The new GC-(APCI)QTOF MS approach easily allowed widening the number of compounds investigated (85 additional compounds), with more pesticides, personal care products (UV filters, musks), polychloronaphthalenes (PCNs), antimicrobials, insect repellents, etc., most of them considered as emerging contaminants. Both GC-(EI)TOF and GC-(APCI)QTOF methodologies have been applied, evaluating their potential for a wide-scope screening in the environmental field. PMID:24674644

  2. Modification of chemical and physical factors in steamflood to increase heavy oil recovery. Annual report, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    1994-10-01

    Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. Objectives of this work contract are to carry out new studies in the following areas: displacement and flow properties of fluids involving phase change in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. Specific projects address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. In the area of vapor-liquid flow, we present the continuation of work on the pore network modeling of bubble growth in porous media driven by the application of a prescribed heat flux or superheat. The scaling of bubble growth in porous media is also discussed. In another study we study the problem of steam injection in fractured systems using visualization in micromodels. The interplay of drainage, imbibition and bubble growth problems is discussed.

  3. Physico-chemical and mechanical modifications of polyethylene and polypropylene by ion implantation, micro-wave plasma, electron beam radiation and gamma ray irradiation

    International Nuclear Information System (INIS)

    A polyolefin surface becomes wettable when treated by micro-wave plasma or low-dose nitrogen ion implantation. A short time argon plasma treatment is sufficient to obtain polarizable peroxides on a polyolefin. X-ray photoelectron spectroscopy analyses, paramagnetic electronic resonance analyses, peroxides decomposition, wettability measurements and infrared active spectra analyses have shown that oxidized structures obtained from different treatment techniques play an important role in the interpretation of surface chemical properties of the polymer. Micro-wave plasma treatment, and in particular argon plasma treatment, yields more polarizable groups than ion implantation and is interesting for grafting. Hardness and elasticity modulus, measured by nano-indentation on a polyolefin, increase with an appropriate ion implantation dose. A 1.4 x 1017 ions.cm-2 dose can multiply by 15 the hardness of high molecular weight polyethylene, and by 7 the elasticity modulus for a 30 nm depth. The viscous-plastic to quasi-elastic transition is shown. The thickness of the modified layer is over 300 nm. The study of friction between a metal sphere and a polyethylene cupula shows that ion implantation in the polymer creates a reticulated hard and elastic layer which improves its mechanical properties and reduces the erosion rate. Surface treatments on polymers used as biomaterials allow to adapt the surface properties to specific applications. 107 refs., 66 figs., 19 tabs., 4 annexes

  4. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH3 plasma

    Science.gov (United States)

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak

    2015-09-01

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH3 plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (Rbulk) and the sheath region (Rsheath). Reduction and nitridation of the GO films began as soon as the NH3 plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the Rbulk, NH3 plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the Rsheath, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the Rbulk using capacitively coupled NH3 plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  5. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH3 plasma

    International Nuclear Information System (INIS)

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH3 plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (Rbulk) and the sheath region (Rsheath). Reduction and nitridation of the GO films began as soon as the NH3 plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the Rbulk, NH3 plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the Rsheath, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the Rbulk using capacitively coupled NH3 plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films

  6. Thermal Modification of a-SiC:H Films Deposited by Plasma Enhanced Chemical Vapour Deposition from CH4+SiH4 Mixtures

    Institute of Scientific and Technical Information of China (English)

    刘玉学; 王宁会; 刘益春; 申德振; 范希武; 李灵燮

    2001-01-01

    The effects of thermal annealing on photoluminescence (PL) and structural properties of a-Si1-xCx :H films deposited by plasma enhanced chemical vapour deposition from CH4+SiH4 mixtures are studied by using infrared, PL and transmittance-reflectance spectra. In a-SiC:H network, high-temperature annealing gives rise to the effusion of hydrogen from strongly bonded hydrogen in SiH, SiH2, (SiH2)n, SiCHn and CHn configurations and the break of weak C-C, Si-Si and C-Si bonds. A structural rearrangement will occur, which causes a significant correlation of the position and intensity of the PL signal with the annealing temperature. The redshift of the PL peak is related to the destruction of the confining power of barriers. However, the PL intensity does not have a significant correlation with the annealing temperature for a C-rich a-SiC:H network, which refers to the formation of π-bond cluster as increasing carbon content. It is indicated that the thermal stability of C-rich a-Si1-xCx:H films is better than that of Si-like a-Si1-xCx :H films.

  7. Modification of chemical and physical factors in steamflood to increase heavy oil recovery. Annual report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Y.C.

    1993-07-01

    This report covers work performed in the various physicochemical factors for the improvement of oil recovery efficiency. In this context, three general areas were studied: (i) The understanding of vapor-liquid flow in porous media, whether the flow is internal (boiling), external (steam injection) or countercurrent (as in vertical heat pipes); (ii) The effect of reservoir heterogeneity, particularly as it regards fractured systems; (iii) The flow properties of additives for the improvement of recovery efficiency, in particular the injection of caustic and foams. The studies completed under this contract involved ap three research tools, analysis, computation and experiments. We have focused on pore level modeling using pore networks and on flow visualization using Hele-Shaw cells. Experiments involving core samples were conducted for the chemical additives investigation. Finally, simulation at the pore scale, pore network scale and reservoir scale were also undertaken. Part of the work has been detailed in five DOE Technical Reports as shown at the end of this report.

  8. Improvement in Si active material particle performance for lithium-ion batteries by surface modification of an inductivity coupled plasma-chemical vapor deposition

    International Nuclear Information System (INIS)

    The high capacity and optimal cycle characteristics of silicon render it essential in lithium-ion batteries. The authors have attempted to realize a composite material by coating individual silicon (Si) particles of a few micrometers in diameter with a silicon oxide film to serve as an active material in the anode and so optimize the charge–discharge characteristics of the lithium-ion battery. Particle coating was achieved using an inductively coupled plasma-chemical vapor deposition (ICP-CVD) process that realized a homogenous coating of silicon oxide film on each Si particle. The film was synthesized based on tetraethyl orthosilicate (TEOS), with hydrogen (H2) gas used as a reducing agent to deoxidize the silicon dioxide. This enabled the control of the silicon oxidation number in the layers produced by adjusting the H2 flow during the silicon oxidization deposition with ICP-CVD. The silicon oxide covering the Si particles included both silicon monoxide and suboxide, which served to optimize the charge–discharge characteristics. The authors have succeeded in realizing a favorable active material using Si which is abundant in nature in the anode of a lithium-ion battery with highly charged, optimized cycle properties.

  9. Chemical Transformation Simulator

    Science.gov (United States)

    The Chemical Transformation Simulator (CTS) is a web-based, high-throughput screening tool that automates the calculation and collection of physicochemical properties for an organic chemical of interest and its predicted products resulting from transformations in environmental sy...

  10. Chemical strategies for modifications of the solar cell process, from wafering to emitter diffusion; Chemische Ansaetze zur Neuordnung des Solarzellenprozesses ausgehend vom Wafering bis hin zur Emitterdiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Kuno

    2009-11-06

    The paper describes the classic standard industrial solar cell based on monocrystalline silicon and describes new methods of fabrication. The first is an alternative wafering concept using laser microjet cutting instead of multiwire cutting. This method originally uses pure, deionized water; it was modified so that the liquid jet will not only be a liquid light conductor but also a transport medium for etching fluids supporting thermal abrasion of silicon by the laser jet. Two etching fluids were tested experimentally; it was found that water-free fluids based on perfluorinated solvents with very slight additions of gaseous chlorine are superior to all other options. In the second section, the wet chemical process steps between wafering and emitter diffusion (i.e. the first high-temperature step) was to be modified. Alternatives to 2-propanol were to be found in the experimental part. Purification after texturing was to be rationalized in order to reduce the process cost, either by using less chemical substances or by achieving shorter process times. 1-pentanol and p-toluolsulfonic acid were identified as two potential alternatives to 2-propanol as texture additives. Finally, it could be shown that wire-cut substrates processed with the new texturing agents have higher mechanical stabilities than substrates used with the classic texturing agent 2-propanol. [German] Im ersten Kapitel wird die klassische Standard-Industrie-Solarzelle auf der Basis monokristallinen Siliziums vorgestellt. Der bisherige Herstellungsprozess der Standard-Industrie-Solarzelle, der in wesentlichen Teilen darauf abzielt, diese Verluste zu minimieren, dient als Referenz fuer die Entwicklung neuer Fertigungsverfahren, wie sie in dieser Arbeit vorgestellt werden. Den ersten thematischen Schwerpunkt bildet die Entwicklung eines alternativen Wafering-Konzeptes zum Multi-Drahtsaegen. Die Basis des neuen, hier vorgestellten Wafering-Prozesses bildet das Laser-Micro-Jet-Verfahren. Dieses System

  11. Microbiological, physico-chemical, and sensorial modifications during the useful life of the shrimps (Penaeus brasiliensis e Penaeus Paulensis) submitted to gamma radiation

    International Nuclear Information System (INIS)

    During the last years, there has been an increase in the consumption of seafood and freshwater fish as a healthier diet option. Shrimps are the most important product in the international trade market. This kind of food easily deteriorates due to autolysis, oxidation and microbial action. This research was carried out in order to study the effectiveness of radiation in preserving shrimps. Samples of shrimps (Penaeus brasiliensis and P. paulensi) were submitted to gamma radiation doses of O kGy, 1 kGy, 2 kGy, 2.5 kGy, 3 kGy and 3.5 kGy and stored under refrigeration. The microbiological analysis was performed on days O, 2, 4, 7 10 and 14 post processing. Simultaneously, the pH and total, volatile bases (TVBN) were determined. The psychotropic population varied from <2.0 log to 8.08 log CFU/g while the mesophilic ranged from <1.0 109 to 6.03 log CFU/g; pH varied from 7.52 to 8.33 and TVBN from 28.47 to 56.00 mg N/100g, according to the radiation dose and the day of analysis. Black spots, changes in the characteristic odour and TVBN levels showed the beginning of a chemical deterioration as of the 4 th day of analysis. Doses of 3 kGy and 3.5 kGy presented the best results. Pseudomonas spp. showed the highest sensitivity to radiation. Due to the lapse of time between capturing shrimps and returning to land together with inadequate manipulation and storage in the boat, the quality of raw material is prejudiced which makes the radiation process unfeasible. (author)

  12. Screening Pesticides for Neuropathogenicity

    OpenAIRE

    Doherty, John D.

    2006-01-01

    Pesticides are routinely screened in studies that follow specific guidelines for possible neuropathogenicity in laboratory animals. These tests will detect chemicals that are by themselves strong inducers of neuropathogenesis if the tested strain is susceptible relative to the time of administration and methodology of assessment. Organophosphate induced delayed neuropathy (OPIDN) is the only known human neurodegenerative disease associated with pesticides and the existing...

  13. Studies on pharmacological activation of human serum immunoglobulin G by chemical modification and active subfragments. IV. Induction of anti-inflammatory activity by chemical cleavage of interchain disulfide bonds in human immunoglobulin G and pharmacological activity of alkylated subfragments.

    Science.gov (United States)

    Mimura, T; Tsujikawa, K; Nakajima, H; Okabe, M; Kohama, Y; Iwai, M; Yokoyama, K

    1986-01-01

    Commercially available human serum immunoglobulin G (IgG, native IgG) was separated into two fractions (Fr.I and II) using a diethylaminoethyl cellulose column. Heavy and light chains containing fractions were obtained from these two fractions after carboxamide-methylation. Thus, these fractions were subjected to an anti-inflammatory screening procedure and were shown to have a potent inhibitory activity against rat carrageenin induced paw edema, while no effect was observed in native IgG, Fr.I or II. The reduction and alkylation of the interchain disulfide bonds were essential to induce the anti-inflammatory activity. The anti-inflammatory activity of alkylated heavy and light chains of Fr.I (Fr.I-H and I-L) was also noted in subacute inflammation caused by the felt pellet and croton oil granuloma methods. Moreover, strong membrane stabilizing activities of Fr.I-H and I-L were demonstrated in vitro using rat red blood cell membrane and liver lysosomal membrane. PMID:3712209

  14. Photon attenuation by intensifying screens

    International Nuclear Information System (INIS)

    The photon attenuation by intensifying screens of different chemical composition has been determined. The attenuation of photons between 20 keV and 120 keV was measured by use of a multi-channel analyzer and a broad bremsstrahlung distribution. The attenuation by the intensifying screens was hereby determined simultaneously at many different monoenergetic photon energies. Experimentally determined attenuations were found to agree well with attenuation calculated from mass attenuation coefficients. The attenuation by the screens was also determined at various bremsstrahlung distributions, simulating those occurring behind the patient in various diagnostic X-ray examinations. The high attenuation in some of the intensifying screens form the basis for an analysis of the construction of asymmetric screen pairs. Single screen systems are suggested as a favourable alternative to thick screen pair systems. (Author)

  15. A Two-Tiered-Testing Decision Tree for Assays in the USEPA-EDSP Screening Battery: Using 15 years of experience to improve screening and testing for endocrine active chemicals.@@

    Science.gov (United States)

    In 1996 the Food Quality Protection and Safe Drinking Water Acts instructed the USEPA to determine “…whether the pesticide chemical may have an effect in humans that is similar to an effect produced by a naturally occurring estrogen or other endocrine effects;"*...

  16. Application of radiation technology in starch modification

    International Nuclear Information System (INIS)

    In order to commercialize the radiation modification of starch, corn starch was irradiated with different dose of 60Co gamma radiations. Some basic physical and chemical properties of the resulted modified starch paste were measured with emphasis on the viscosity stability and tensile strength. The results indicate that irradiation of corn starch with a dose of 4-10 kGy can decrease its viscosity to 5-14 mPa·s, and the tensile strength can meet the standard set up for textile paste. In comparison with chemical modification for starch, radiation modification is simpler in technology, more convenient in operation, more stable in modification quality, and easier to control. The mechanism of radiation modification of starch was also discussed. (authors)

  17. Discovery of Small Molecule Inhibitors of the PH Domain Leucine-Rich Repeat Protein Phosphatase (PHLPP) by Chemical and Virtual Screening

    OpenAIRE

    Sierecki, Emma; Sinko, William; McCammon, J. Andrew; Newton, Alexandra C.

    2010-01-01

    PH domain Leucine-rich repeat protein phosphatase (PHLPP) directly dephosphorylates and inactivates Akt and protein kinase C, poising it as a prime target for pharmacological intervention of two major survival pathways. Here we report on the discovery of small molecule inhibitors of the phosphatase activity of PHLPP, a member of the PP2C family of phosphatases for which there are no general pharmacological inhibitors. First, the Diversity Set of the NCI was screened for inhibition of the puri...

  18. A screening study of leaf terpene emissions of 43 rainforest species in Danum Valley Conservation Area (Borneo) and their relationships with chemical and morphological leaf traits

    OpenAIRE

    Llusia, Joan; Sardans, Jordi; Niinemets, Ülo; Owen, Susan M.; Peñuelas, Josep

    2014-01-01

    We have conducted a screening study of leaf terpene emissions for 43 rainforest woody species of Borneo. To the best of our knowledge, this study reports for first time the terpene emission capacity of 43 species belonging to 22 genera of rainforest woody plant species. We have used a general lineal model with phylogenetic control by the phylogenetic distance matrix when necessary. The proportion of the species that emitted terpenes in this set of Borneo woody species was 95% and the species ...

  19. Readers of histone modifications

    Institute of Scientific and Technical Information of China (English)

    Miyong Yun; Jun Wu; Jerry L Workman; Bing Li

    2011-01-01

    Histone modifications not only play important roles in regulating chromatin structure and nuclear processes but also can be passed to daughter cells as epigenetic marks.Accumulating evidence suggests that the key function of histone modifications is to signal for recruitment or activity of downstream effectors. Here, we discuss the latest discovery of histone-modification readers and how the modification language is interpreted.

  20. A Workflow to Investigate Exposure and Pharmacokinetic Influences on High-Throughput in Vitro Chemical Screening Based on Adverse Outcome Pathways

    Science.gov (United States)

    Background: Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowled...

  1. A screening method for ranking chemicals by their fate and behaviour in the environment and potential toxic effects in humans following non-occupational exposure

    OpenAIRE

    Troisi, G.; Duarte-Davidson, R.; Capelton, A

    2004-01-01

    A large number of chemicals are released intentionally or unintentionally into the environment each year. These include thousands of substances that are currently listed worldwide and several hundred new substances added annually (Mücke et al., 1986). When these compounds are used, they can reach microorganisms, plants, animals and man either in their original state or in the form of reaction and degradation products via air, water, soil or foodstuffs. Hence environmental chemicals can occur ...

  2. Research advances on toxicological screening techniques for chemical food poisoning accidents%化学性食物中毒因子检测技术研究进展

    Institute of Scientific and Technical Information of China (English)

    邵兵; 张晶; 高馥蝶; 郭娟

    2013-01-01

      Toxicological screening for chemical food poisoning accident is always a big challenge in the field of analytical chemistry, due to not only the unknown non-target poisoning substance but also the complex sample matrix. This article summarized the main research advance on target toxin detection (nitrites, pesticides, rodenticides, narcotics and psychotropic drugs, biological toxins and other drugs) and non-target toxin screen-ing techniques (sample pretreatment technologies and instrument analytical methodologies) for chemical food poisoning accident. Principles, applications, limitations as well as possible tendency have been discussed. It will provide useful information for the response of poisoning incident and relevant study in future.%  化学性食物中毒因子的确证因其毒物的不确定性和基质的复杂性一直是卫生检验领域的一个难题。本文从目标毒物分析(亚硝酸盐、农药、杀鼠剂、麻醉品及精神药品、生物毒素以及其它药物等)和非目标毒物筛查(样本前处理技术和仪器筛查技术)两个方面综述了当前化学性毒物检测技术的的主要研究进展,介绍了相关方法的原理、应用、不足及发展方向,以期为化学性食物中毒事件处置及未来研究提供借鉴。

  3. 化学性食物中毒因子检测技术研究进展%Research advances on toxicological screening techniques for chemical food poisoning accidents

    Institute of Scientific and Technical Information of China (English)

    邵兵; 张晶; 高馥蝶; 郭娟

    2013-01-01

      化学性食物中毒因子的确证因其毒物的不确定性和基质的复杂性一直是卫生检验领域的一个难题。本文从目标毒物分析(亚硝酸盐、农药、杀鼠剂、麻醉品及精神药品、生物毒素以及其它药物等)和非目标毒物筛查(样本前处理技术和仪器筛查技术)两个方面综述了当前化学性毒物检测技术的的主要研究进展,介绍了相关方法的原理、应用、不足及发展方向,以期为化学性食物中毒事件处置及未来研究提供借鉴。%  Toxicological screening for chemical food poisoning accident is always a big challenge in the field of analytical chemistry, due to not only the unknown non-target poisoning substance but also the complex sample matrix. This article summarized the main research advance on target toxin detection (nitrites, pesticides, rodenticides, narcotics and psychotropic drugs, biological toxins and other drugs) and non-target toxin screen-ing techniques (sample pretreatment technologies and instrument analytical methodologies) for chemical food poisoning accident. Principles, applications, limitations as well as possible tendency have been discussed. It will provide useful information for the response of poisoning incident and relevant study in future.

  4. Surface Modification for Microreactor Fabrication

    OpenAIRE

    Wladyslaw Torbicz; Jerzy Kruk; Konrad Dudziński; Roberto Canteri; Michele Vendano; Lorenzo Lunelli; Cecilia Pederzolli; Elżbieta Remiszewska; Pijanowska, Dorota G.

    2006-01-01

    In this paper, methods of surface modification of different supports, i.e. glass and polymeric beads for enzyme immobilisation are described. The developed method of enzyme immobilisation is based on Schiff's base formation between the amino groups on the enzyme surface and the aldehyde groups on the chemically modified surface of the supports. The surface of silicon modified by APTS and GOPS with immobilised enzyme was characterised by atomic force microscopy (AFM), time-of-flight secondary ...

  5. Breast Cancer Screening

    Science.gov (United States)

    ... of Breast & Gynecologic Cancers Breast Cancer Screening Research Breast Cancer Screening (PDQ®)–Patient Version What is screening? Screening ... cancer screening: Cancer Screening Overview General Information About Breast Cancer Key Points Breast cancer is a disease in ...

  6. Screening for Panic Disorder

    Science.gov (United States)

    ... Conference & Education Membership Journal & Multimedia Resources Awards Consumers Screening for Panic Disorder Main navigation FAQs Screen Yourself Screening for Depression Screening for Generalized Anxiety Disorder (GAD) ...

  7. Cost effectiveness of shortening screening interval or extending age range of NHS breast screening programme: computer simulation study

    NARCIS (Netherlands)

    R. Boer (Rob); A. Threlfall; P. Warmerdam (Peter); A. Street (Andrew); E. Friedman (Eitan); C. Woodman; H.J. de Koning (Harry)

    1998-01-01

    markdownabstract__OBJECTIVE__: To compare the cost effectiveness of two possible modifications to the current UK screening programme: shortening the screening interval from three to two years and extending the age of invitation to a final screen from 64 to 69. __DESIG

  8. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways, OpenTox USA 2015 Poster

    Science.gov (United States)

    Adverse outcome pathways (AOP) link known population outcomes to a molecular initiating event (MIE) that can be quantified using high-throughput in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires consideration of exposure and absorption,...

  9. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity.

    Science.gov (United States)

    Ramírez, Vicente; Gonzalez, Beatriz; López, Ana; Castelló, María José; Gil, María José; Etherington, Graham J; Zheng, Bo; Chen, Peng; Vera, Pablo

    2015-10-01

    tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA) signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response. PMID:26492405

  10. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity.

    Directory of Open Access Journals (Sweden)

    Vicente Ramírez

    2015-10-01

    Full Text Available tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9. Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response.

  11. Hypertension screening

    Science.gov (United States)

    Foulke, J. M.

    1975-01-01

    An attempt was made to measure the response to an announcement of hypertension screening at the Goddard Space Center, to compare the results to those of previous statistics. Education and patient awareness of the problem were stressed.

  12. Airport Screening

    Science.gov (United States)

    ... ionizing radiation for security screening individuals [online]. Health Physics Society Position Statement. 2009. Available at http: / / hps. org/ documents/ securityscreening_ ps017- 1. pdf. Accessed 7 January 2011. Interagency Steering Committee on ...

  13. Single newborn screen or routine second screening for primary congenital hypothyroidism.

    Science.gov (United States)

    Shapira, Stuart K; Hinton, Cynthia F; Held, Patrice K; Jones, Elizabeth; Harry Hannon, W; Ojodu, Jelili

    2015-11-01

    Routine second screening of most newborns at 8-14 days of life for a panel of newborn conditions occurs in 12 U.S. states, while newborns in the other states typically undergo only a single routine newborn screen. The study objective was to evaluate screening consequences for primary congenital hypothyroidism (CH) in one- and two-screen states according to laboratory practices and medical or biochemical characteristics of screen-positive cases. Individual-level medical and biochemical data were retrospectively collected and analyzed for 2251 primary CH cases in one-screen (CA, WI) and two-screen (AL, DE, MD, OR, TX) states. Aggregate data were collected and analyzed for medical and biochemical characteristics of all screened newborns in the states. Among the states evaluated in this study, the detection rate of primary CH was higher in the one-screen states. In the two-screen states, 11.5% of cases were detected on the second screen. In multivariate analyses, only race/ethnicity was a significant predictor of cases identified on the first versus second screen, which likely reflects a physiologic difference in primary CH presentation. Newborn screening programs must heed the potential for newborns with CH not being detected by a single screen, particularly newborns of certain races/ethnicities. If the two-screen states converted to a single screen using their current algorithms, newborns currently identified on the routine second screen would presumably not be detected, resulting in probable delayed diagnosis and treatment. However, based on the one-screen state experiences, with appropriate modifications in screening method and algorithm, the two-screen states might convert to single screen operation for CH without loss in performance. PMID:26293295

  14. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    International Nuclear Information System (INIS)

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N2/H2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  15. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    Science.gov (United States)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-05-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N2/H2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of Csbnd N, Cdbnd N, and Ctbnd N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  16. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kaklamani, Georgia, E-mail: g.kaklamani@bham.ac.uk [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Bowen, James; Mehrban, Nazia [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Dong, Hanshan [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom); Grover, Liam M. [University of Birmingham, College of Engineering and Physical Sciences, School of Chemical Engineering, Edgbaston, Birmingham B15 2TT (United Kingdom); Stamboulis, Artemis [University of Birmingham, College of Engineering and Physical Sciences, School of Metallurgy and Materials, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2013-05-15

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N{sub 2}/H{sub 2} ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  17. Lattice energy calculation - A quick tool for screening of cocrystals and estimation of relative solubility. Case of flavonoids

    Science.gov (United States)

    Kuleshova, L. N.; Hofmann, D. W. M.; Boese, R.

    2013-03-01

    Cocrystals (or multicomponent crystals) have physico-chemical properties that are different from crystals of pure components. This is significant in drug development, since the desired properties, e.g. solubility, stability and bioavailability, can be tailored by binding two substances into a single crystal without chemical modification of an active component. Here, the FLEXCRYST program suite, implemented with a data mining force field, was used to estimate the relative stability and, consequently, the relative solubility of cocrystals of flavonoids vs their pure crystals, stored in the Cambridge Structural Database. The considerable potency of this approach for in silico screening of cocrystals, as well as their relative solubility, was demonstrated.

  18. Radiation Modification of Textiles

    International Nuclear Information System (INIS)

    The application of ionizing radiation to textile finishing operations has become a commercial reality. Electron accelerators are currently being used in a process which imparts durable press, stain-releasing properties to a polyester-cotton blend fabric (Deering-Milliken Co., USA). There are other textile and chemical companies which have announced laboratory or pilot plant development of radiation-textile finishing processes. During the past ten years there has also been a tremendous number of research publications on radiation initiated reactions in fibres or fibre-monomer systems. This paper first briefly reviews the principles of radiation modification of textiles. The important molecular factors controlling such processes and their interaction will be considered. These factors include the G-values for radical formation, local propagation, transfer and termination rate constants, local monomer concentration and its coefficient of diffusion within the polymer matrix, radiation dose rate, temperature, and the presence of non-reactive (e.g. solvent) species. Economic factors will also be considered. Following this there is a review;of the most pertinent recent published work in this field, including the patent literature. This survey will be broken into two parts: bulk effects and surface effects. Emphasis will be placed on durable press and stain release properties. The chemistry of durable press and its application within the field of radiation chemistry will be covered. The principles of surface chemistry will then be discussed, as they relate to important wetting phenomena in textile fibres and fabrics. Data will be presented from a series of studies which the author has been conducting on the radiation modification of surface wettability of textile materials. (author)

  19. Behavior Modification is not...

    Science.gov (United States)

    Tawney, James W.; And Others

    1973-01-01

    Identified are misconceptions of behavior modification procedures according to which behavior modification is connected mistakenly with noncontingent reinforcement, partial change of a teacher's behavior, decelerations of inappropriate behaviors only, dependency producing technology, teacher dominated activity, a single type of classroom…

  20. HCC screening; HCC-Screening

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, T. [Charite-Unversitaetsmedizin,Freie Universitaet und Humboldt-Universitaet zu Berlin, Klinik und Hochschulambulanz fuer Radiologie und Nuklearmedizin,Campus Benjamin Franklin, Berlin (Germany)

    2008-01-15

    Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed tumour diseases throughout the world. In the vast majority of cases those affected are high-risk patients with chronic viral hepatitis and/or liver cirrhosis, which means there is a clearly identifiable target group for HCC screening. With resection, transplantation, and interventional procedures for local ablation, following early diagnosis curative treatment options are available with which 5-year survival rates of over 60% can be reached. Such early diagnosis is a reality only in a minority of patients, however, and in the majority of cases the disease is already in an advanced stage at diagnosis. One of the objects of HCC screening is diagnosis in an early stage when curative treatment is still possible. Precisely this is achieved by screening, so that the proportion of patients treated with curative intent is decisively higher. There is not yet any clear evidence as to whether this leads to a lowering of the mortality of HCC. As lower mortality is the decisive indicator of success for a screening programme the benefit of HCC screening has so far been neither documented nor refuted. Nonetheless, in large regions of the world it is the practice for high-risk patients to undergo HCC screening in the form of twice-yearly ultrasound examination and determination of AFP. (orig.) [German] Das hepatozellulaere Karzinom (HCC) ist eine der weltweit haeufigsten Tumorerkrankungen. Es tritt in der grossen Mehrzahl der Faelle bei Hochrisikopatienten mit chronischer Virushepatitis bzw. Leberzirrhose auf, woraus sich eine klar identifizierbare Zielgruppe fuer das HCC-Screening ergibt. Mit der Resektion, der Transplantation und interventionellen lokal ablativen Verfahren stehen bei rechtzeitiger Diagnosestellung kurative Therapieoptionen zur Verfuegung, die 5-Jahres-Ueberlebensraten von >60% erreichen. Diese rechtzeitige Diagnosestellung erfolgt jedoch nur bei einer Minderzahl der Patienten, waehrend die