WorldWideScience

Sample records for chemical modification screen

  1. Debye screening modifications in ponderomotive effects

    International Nuclear Information System (INIS)

    Sodha, M.S.; Subbarao, D.

    1979-01-01

    The effective Debye screening length is shown to be increased in the presence of a high-power electromagnetic wave. The consequent modifications in ponderomotive redistributive effects and strong violations of charge neutrality have been shown to be in agreement with recent laser-plasma experiments

  2. Screening vector field modifications of general relativity

    International Nuclear Information System (INIS)

    Beltrán Jiménez, Jose; Delvas Fróes, André Luís; Mota, David F.

    2013-01-01

    A screening mechanism for conformal vector–tensor modifications of general relativity is proposed. The conformal factor depends on the norm of the vector field and makes the field to vanish in high dense regions, whereas drives it to a non-null value in low density environments. Such process occurs due to a spontaneous symmetry breaking mechanism and gives rise to both the screening of fifth forces as well as Lorentz violations. The cosmology and local constraints are also computed

  3. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Lewicka, Kamila; Siemion, Przemysław; Kurcok, Piotr

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  4. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  5. A Review of Different Behavior Modification Strategies Designed to Reduce Sedentary Screen Behaviors in Children

    Directory of Open Access Journals (Sweden)

    Jeremy A. Steeves

    2012-01-01

    Full Text Available Previous research suggests that reducing sedentary screen behaviors may be a strategy for preventing and treating obesity in children. This systematic review describes strategies used in interventions designed to either solely target sedentary screen behaviors or multiple health behaviors, including sedentary screen behaviors. Eighteen studies were included in this paper; eight targeting sedentary screen behaviors only, and ten targeting multiple health behaviors. All studies used behavior modification strategies for reducing sedentary screen behaviors in children (aged 1–12 years. Nine studies only used behavior modification strategies, and nine studies supplemented behavior modification strategies with an electronic device to enhance sedentary screen behaviors reductions. Many interventions (50% significantly reduced sedentary screen behaviors; however the magnitude of the significant reductions varied greatly (−0.44 to −3.1 h/day and may have been influenced by the primary focus of the intervention, number of behavior modification strategies used, and other tools used to limit sedentary screen behaviors.

  6. A review of different behavior modification strategies designed to reduce sedentary screen behaviors in children.

    Science.gov (United States)

    Steeves, Jeremy A; Thompson, Dixie L; Bassett, David R; Fitzhugh, Eugene C; Raynor, Hollie A

    2012-01-01

    Previous research suggests that reducing sedentary screen behaviors may be a strategy for preventing and treating obesity in children. This systematic review describes strategies used in interventions designed to either solely target sedentary screen behaviors or multiple health behaviors, including sedentary screen behaviors. Eighteen studies were included in this paper; eight targeting sedentary screen behaviors only, and ten targeting multiple health behaviors. All studies used behavior modification strategies for reducing sedentary screen behaviors in children (aged 1-12 years). Nine studies only used behavior modification strategies, and nine studies supplemented behavior modification strategies with an electronic device to enhance sedentary screen behaviors reductions. Many interventions (50%) significantly reduced sedentary screen behaviors; however the magnitude of the significant reductions varied greatly (-0.44 to -3.1 h/day) and may have been influenced by the primary focus of the intervention, number of behavior modification strategies used, and other tools used to limit sedentary screen behaviors.

  7. Chemical modifications and reactions in DNA nanostructures

    DEFF Research Database (Denmark)

    Gothelf, Kurt Vesterager

    2017-01-01

    such as hydrocarbons or steroids have been introduced to change the surface properties of DNA origami structures, either to protect the DNA nanostructure or to dock it into membranes and other hydrophobic surfaces. DNA nanostructures have also been used to control covalent chemical reactions. This article provides......DNA nanotechnology has the power to form self-assembled and well-defined nanostructures, such as DNA origami, where the relative positions of each atom are known with subnanometer precision. Our ability to synthesize oligonucleotides with chemical modifications in almost any desired position...... provides rich opportunity to incorporate molecules, biomolecules, and a variety of nanomaterials in specific positions on DNA nanostructures. Several standard modifications for oligonucleotides are available commercially, such as dyes, biotin, and chemical handles, and such modified oligonucleotides can...

  8. High-throughput screening of chemicals as functional ...

    Science.gov (United States)

    Identifying chemicals that provide a specific function within a product, yet have minimal impact on the human body or environment, is the goal of most formulation chemists and engineers practicing green chemistry. We present a methodology to identify potential chemical functional substitutes from large libraries of chemicals using machine learning based models. We collect and analyze publicly available information on the function of chemicals in consumer products or industrial processes to identify a suite of harmonized function categories suitable for modeling. We use structural and physicochemical descriptors for these chemicals to build 41 quantitative structure–use relationship (QSUR) models for harmonized function categories using random forest classification. We apply these models to screen a library of nearly 6400 chemicals with available structure information for potential functional substitutes. Using our Functional Use database (FUse), we could identify uses for 3121 chemicals; 4412 predicted functional uses had a probability of 80% or greater. We demonstrate the potential application of the models to high-throughput (HT) screening for “candidate alternatives” by merging the valid functional substitute classifications with hazard metrics developed from HT screening assays for bioactivity. A descriptor set could be obtained for 6356 Tox21 chemicals that have undergone a battery of HT in vitro bioactivity screening assays. By applying QSURs, we wer

  9. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman; Ba Alawi, Wail; Afeef, Moataz A.; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  10. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  11. Application of chemical arrays in screening elastase inhibitors.

    Science.gov (United States)

    Gao, Feng; Du, Guan-Hua

    2006-06-01

    Protein chip technology provides a new and useful tool for high-throughput screening of drugs because of its high performance and low sample consumption. In order to screen elastase inhibitors on a large scale, we designed a composite microarray integrating enzyme chip containing chemical arrays on glass slides to screen for enzymatic inhibitors. The composite microarray includes an active proteinase film, screened chemical arrays distributed on the film, and substrate microarrays to demonstrate change of color. The detection principle is that elastase hydrolyzes synthetic colorless substrates and turns them into yellow products. Because yellow is difficult to detect, bromochlorophenol blue (BPB) was added into substrate solutions to facilitate the detection process. After the enzyme had catalyzed reactions for 2 h, effects of samples on enzymatic activity could be determined by detecting color change of the spots. When chemical samples inhibited enzymatic activity, substrates were blue instead of yellow products. If the enzyme retained its activity, the yellow color of the products combined with blue of BPB to make the spots green. Chromogenic differences demonstrated whether chemicals inhibited enzymatic activity or not. In this assay, 11,680 compounds were screened, and two valuable chemical hits were identified, which demonstrates that this assay is effective, sensitive and applicable for high-throughput screening (HTS).

  12. Chemical Risk Assessment Screening Tool of a Global Chemical Company

    OpenAIRE

    Evelyn Tjoe-Nij; Christophe Rochin; Nathalie Berne; Alessandro Sassi; Antoine Leplay

    2018-01-01

    Background: This paper describes a simple-to-use and reliable screening tool called Critical Task Exposure Screening (CTES), developed by a chemical company. The tool assesses if the exposure to a chemical for a task is likely to be within acceptable levels. Methods: CTES is a Microsoft Excel tool, where the inhalation risk score is calculated by relating the exposure estimate to the corresponding occupational exposure limit (OEL) or occupational exposure band (OEB). The inhalation exposure i...

  13. The Use of Chemical Modification of Polymer Waste for Obtaining Polymer Flocculants

    Institute of Scientific and Technical Information of China (English)

    W.W.Sulkowski; K.Nowak; A.Sulkowska; A.Wolin; ska; S.Malanka; W.M.Baldur; D.Pentak

    2007-01-01

    1 Results Chemical modification of polymer plastic wastes to useful products can be one of the way of effective waste plastics management (chemical recycling). Chemical modification of polymers and polymer plastic wastes can yield products with suitable physical and chemical properties. In consequence they can be used as polyelectrolytes[1]. The variety of pollutants, universality of various water and sewage treatment technologies, introduction of new water quality improved technologies have caused a gr...

  14. Developing the Biomolecular Screening Facility at the EPFL into the Chemical Biology Screening Platform for Switzerland.

    Science.gov (United States)

    Turcatti, Gerardo

    2014-05-01

    The Biomolecular Screening Facility (BSF) is a multidisciplinary laboratory created in 2006 at the Ecole Polytechnique Federale de Lausanne (EPFL) to perform medium and high throughput screening in life sciences-related projects. The BSF was conceived and developed to meet the needs of a wide range of researchers, without privileging a particular biological discipline or therapeutic area. The facility has the necessary infrastructure, multidisciplinary expertise and flexibility to perform large screening programs using small interfering RNAs (siRNAs) and chemical collections in the areas of chemical biology, systems biology and drug discovery. In the framework of the National Centres of Competence in Research (NCCR) Chemical Biology, the BSF is hosting 'ACCESS', the Academic Chemical Screening Platform of Switzerland that provides the scientific community with chemical diversity, screening facilities and know-how in chemical genetics. In addition, the BSF started its own applied research axes that are driven by innovation in thematic areas related to preclinical drug discovery and discovery of bioactive probes.

  15. High-throughput screening of chemical effects on ...

    Science.gov (United States)

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples on steroidogenesis via HPLC-MS/MS quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a three stage screening strategy. The first stage established the maximum tolerated concentration (MTC; >70% viability) per sample. The second stage quantified changes in hormone levels at the MTC while the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were pre-stimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2,060 chemical samples evaluated, 524 samples were selected for six-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into five distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A d

  16. Posttranscriptional RNA Modifications: playing metabolic games in a cell's chemical Legoland.

    Science.gov (United States)

    Helm, Mark; Alfonzo, Juan D

    2014-02-20

    Nature combines existing biochemical building blocks, at times with subtlety of purpose. RNA modifications are a prime example of this, where standard RNA nucleosides are decorated with chemical groups and building blocks that we recall from our basic biochemistry lectures. The result: a wealth of chemical diversity whose full biological relevance has remained elusive despite being public knowledge for some time. Here, we highlight several modifications that, because of their chemical intricacy, rely on seemingly unrelated pathways to provide cofactors for their synthesis. Besides their immediate role in affecting RNA function, modifications may act as sensors and transducers of information that connect a cell's metabolic state to its translational output, carefully orchestrating a delicate balance between metabolic rate and protein synthesis at a system's level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Chemical Strategies for the Covalent Modification of Filamentous Phage

    Directory of Open Access Journals (Sweden)

    Matthew B Francis

    2014-12-01

    Full Text Available Historically filamentous bacteriophage have been known to be the workhorse of phage display due to their ability to link genotype to phenotype. More recently, the filamentous phage scaffold has proved to be powerful outside the realms of phage display technology in fields such as molecular imaging, cancer research and materials and vaccine development. The ability of the virion to serve as a platform for a variety of applications heavily relies on the functionalization of the phage coat proteins with a wide variety of functionalities. Genetic modification of the coat proteins has been the most widely used strategy for functionalizing the virion; however complementary chemical modification strategies can help to diversify the range of materials that can be developed. This review emphasizes the recent advances that have been made in the chemical modification of filamentous phage as well as some of the challenges that are involved functionalizing the virion.

  18. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    Science.gov (United States)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  19. Chemical modification and blending of polymers in an extruder reactor

    International Nuclear Information System (INIS)

    Prut, Eduard V; Zelenetskii, Alexandr N

    2001-01-01

    Chemical modification and blending of polymers in an extruder reactor are discussed. Relationships between the parameters affecting the reaction kinetics, viz., mixing time, duration of a chemical reaction and the residence time of the system in the extruder reactor, and the structure of the materials produced are analysed. The mechanisms of (i) grafting of low-molecular-mass compounds onto polymers; (ii) reactions between terminal groups of different polymers and (iii) transesterification and interchange reactions are considered. The factors affecting the mechanism of dynamic vulcanisation and the properties of thermoplastic elastomers are identified. Solid-phase reactions of polysaccharides in an extruder are discussed. The priority aspects of studies on the chemical modification and blending of polymers are noted. The bibliography includes 90 references.

  20. Graphene: chemical approaches to the synthesis and modification

    Energy Technology Data Exchange (ETDEWEB)

    Grayfer, E D; Makotchenko, V G; Nazarov, Albert S; Kim, S J; Fedorov, Vladimir E

    2011-08-31

    Published data on the new carbon nanomaterial, graphene, are described systematically from the chemist's standpoint. The attention is focused on the chemical methods of the synthesis of graphene-like materials from various precursors: natural and expanded graphite, graphite oxide, graphite intercalation compounds, etc. Approaches to the chemical modification of the graphene plane by various reagents and routes for the preparation of colloidal dispersions of graphene are considered. The bibliography includes 220 references.

  1. Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling

    Science.gov (United States)

    Wu, Zhengliang L.; Lech, Miroslaw

    2005-01-01

    Chemical modification of biological molecules is a general mechanism for cellular regulation. A quantitative approach has been developed to measure the extent of modification on HS (heparan sulphates). Sulphation on HS by sulphotransferases leads to variable sulphation levels, which allows cells to tune their affinities to various extracellular proteins, including growth factors. With stable isotope labelling and HPLC-coupled MS, modification degrees at various O-sulphation sites could be determined. A bovine kidney HS sample was first saturated in vitro with 34S by an OST (O-sulphotransferase), then digested with nitrous acid and analysed with HPLC-coupled MS. The 34S-labelled oligosaccharides were identified based on their unique isotope clusters. The modification degrees at the sulphotransferase recognition sites were obtained by calculating the intensities of isotopic peaks in the isotope clusters. The modification degrees at 3-OST-1 and 6-OST-1 sites were examined in detail. This approach can also be used to study other types of chemical modifications on biological molecules. PMID:15743272

  2. Recent advances in the chemical modification of unsaturated polymers

    Science.gov (United States)

    Schulz, D. N.; Turner, S. R.; Golub, M. A.

    1982-01-01

    The present discussion has the objective to update the most comprehensive reviews on the considered subject and to fill in the gaps of less complete, but more modern treatments. Only simple chemical functionalization or structural modification of unsaturated polymers are covered, and the literature of diene polymer modification since 1974 is emphasized. Attention is given to hydrogenation, halogenation and hydrohalogenation, cyclization, cis-trans isomerization, epoxidation, ene and other cycloaddition reactions, sulfonation, carboxylation, phosphonylation, sulfenyl chloride addition, carbene addition, metalation, and silylation. It is pointed out that modern synthetic reagents and catalysts have been advantageously employed to improve process and/or product quality. Synthetic techniques have been refined to allow the selective modification of specific polymer microstructures or blocks.

  3. ScreenCube: A 3D Printed System for Rapid and Cost-Effective Chemical Screening in Adult Zebrafish.

    Science.gov (United States)

    Monstad-Rios, Adrian T; Watson, Claire J; Kwon, Ronald Y

    2018-02-01

    Phenotype-based small molecule screens in zebrafish embryos and larvae have been successful in accelerating pathway and therapeutic discovery for diverse biological processes. Yet, the application of chemical screens to adult physiologies has been relatively limited due to additional demands on cost, space, and labor associated with screens in adult animals. In this study, we present a 3D printed system and methods for intermittent drug dosing that enable rapid and cost-effective chemical administration in adult zebrafish. Using prefilled screening plates, the system enables dosing of 96 fish in ∼3 min, with a 10-fold reduction in drug quantity compared to that used in previous chemical screens in adult zebrafish. We characterize water quality kinetics during immersion in the system and use these kinetics to rationally design intermittent dosing regimens that result in 100% fish survival. As a demonstration of system fidelity, we show the potential to identify two known chemical inhibitors of adult tail fin regeneration, cyclopamine and dorsomorphin. By developing methods for rapid and cost-effective chemical administration in adult zebrafish, this study expands the potential for small molecule discovery in postembryonic models of development, disease, and regeneration.

  4. Chemical Risk Assessment Screening Tool of a Global Chemical Company

    Directory of Open Access Journals (Sweden)

    Evelyn Tjoe-Nij

    2018-03-01

    Full Text Available Background: This paper describes a simple-to-use and reliable screening tool called Critical Task Exposure Screening (CTES, developed by a chemical company. The tool assesses if the exposure to a chemical for a task is likely to be within acceptable levels. Methods: CTES is a Microsoft Excel tool, where the inhalation risk score is calculated by relating the exposure estimate to the corresponding occupational exposure limit (OEL or occupational exposure band (OEB. The inhalation exposure is estimated for tasks by preassigned ART1.5 activity classes and modifying factors. Results: CTES requires few inputs. The toxicological data, including OELs, OEBs, and vapor pressure are read from a database. Once the substance is selected, the user specifies its concentration and then chooses the task description and its duration. CTES has three outputs that may trigger follow-up: (1 inhalation risk score; (2 identification of the skin hazard with the skin warnings for local and systemic adverse effects; and (3 status for carcinogenic, mutagenic, or reprotoxic effects. Conclusion: The tool provides an effective way to rapidly screen low-concern tasks, and quickly identifies certain tasks involving substances that will need further review with, nevertheless, the appropriate conservatism. This tool shows that the higher-tier ART1.5 inhalation exposure assessment model can be included effectively in a screening tool. After 2 years of worldwide extensive use within the company, CTES is well perceived by the users, including the shop floor management, and it fulfills its target of screening tool. Keywords: occupational exposure, risk assessment, risk management

  5. Laser and chemical surface modifications of titanium grade 2 for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Kwaśniak, P. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Pura, J., E-mail: jaroslawpura@gmail.com [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Zwolińska, M.; Wieciński, P. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Skarżyński, H.; Olszewski, L. [Institute of Physiology and Pathology of Hearing, Warsaw (Poland); World Hearing Center, Kajetany (Poland); Marczak, J. [Military University of Technology, Institute of Optoelectronics, Warsaw (Poland); Garbacz, H.; Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland)

    2015-05-01

    Highlights: • DLIL technique and etching were used for functionalization of Ti grade 2 surface. • Modification was performed on semi-finished flat and curved Ti surfaces. • Modification results in periodic multimodal (micro and nano-size) Ti topography. - Abstract: The article presents combined, chemical and physical approach to titanium surface functionalization designed for biomedical applications. The topography modification has been obtained by employing the double laser beam interference technique and chemical etching. In the outcome, clean and smooth Ti surface as well as periodic striated topography with the roughness range from nano- to micrometers were created. The obtained structures were characterized in terms of shape, roughness, chemical composition, mechanical properties and microstructures. In order to achieve all information, numerous of research methods have been used: scanning electron microscopy, atomic force microscopy, optical profilometry and microhardness measurements. Demonstrated methodology can be used as an effective tool for manufacturing controlled surface structures improving the bone–implants interactions.

  6. Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

    KAUST Repository

    Zernickel, Anna

    2014-10-01

    With a few exceptions, all organisms are restricted to the 20 canonical amino acids for ribosomal protein biosynthesis. Addition of new amino acids to the genetic code can introduce novel functionalities to proteins, broadening the diversity of biochemical as well as chemical reactions and providing new tools to study protein structure, reactivity, dynamics and protein-protein-interactions. The site directed in vivo incorporation developed by P. G. SCHULTZ and coworkers, using an archeal orthogonal tRNA/aaRS (aminoacyl-tRNA synthase) pair, allows site-specifically insertion of a synthetic unnatural amino acid (UAA) by reprogramming the amber TAG stop codon. A variety of over 80 different UAAs can be introduced by this technique. However by now a very limited number can form kinetically stable bonds to late transition metals. This thesis aims to develop new catalytically active unnatural amino acids or strategies for a posttranslational modification of site-specific amino acids in order to achieve highly enantioselective metallorganic enzyme hybrids (MOEH). As a requirement a stable protein host has to be established, surviving the conditions for incorporation, posttranslational modification and the final catalytic reactions. mTFP* a fluorescent protein was genetically modified by excluding any exposed Cys, His and Met forming a variant mTFP*, which fulfills the required specifications. Posttranslational chemical modification of mTFP* allow the introduction of single site metal chelating moieties. For modification on exposed cysteines different maleiimid containing ligand structures were synthesized. In order to perform copper catalyzed click reactions, suitable unnatural amino acids (para-azido-(L)-phenylalanine, para-ethynyl-(L)-phenylalanine) were synthesized and a non-cytotoxic protocol was established. The triazole ring formed during this reaction may contribute as a moderate σ-donor/π-acceptor ligand to the metal binding site. Since the cell limits the

  7. Chemical modification of poly(vinyl alcohol): evaluation of hydrophilic/lipophilic balance

    International Nuclear Information System (INIS)

    Aranha, Isabele B.; Lucas, Elizabete F.

    2001-01-01

    Poly(vinyl alcohol) terpolymers have been obtained by reaction of partially hydrolized poly(vinyl alcohol) with different acid chlorides. The objective is the preparation of polymers with slight differences in their hydrophilic/lipophilic balance and in the interfacial activities of their solutions. The chemical modifications were characterized by means of 1 H NMR and the polymer properties were evaluated in terms of changes in solubility and surface tension. By chemical modification, polymers with low percentage of hydrophobic group were obtained. The water-soluble polymers obtained did not have the surface tension of their solutions altered. The solubility of the modified polymers decreased markedly, even with low contents of hydrophobic groups. (author)

  8. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization.

    Science.gov (United States)

    Cowan, Don A; Fernandez-Lafuente, Roberto

    2011-09-10

    The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Chemical modification of the lectin of the marine coral Gerardia savaglia by marine quinone avarone

    Directory of Open Access Journals (Sweden)

    IVANA PAJIC

    2007-12-01

    Full Text Available The quinone avarone, isolated from the marine sponge Dysidea avara, possesses the ability to chemically modify proteins. In this work, modification of lectin isolated from the coral Gerardia savaglia by avarone was examined. The techniques used for studying the modification were: SDS PAGE, isoelectric focusing and hemagglutination testing. The results of the SDS PAGE indicate dimerization of the protein. A shift of the pI toward lower value occurs upon modification. The change of the hemagglutination activity of the protein confirms that chemical modification of G. savaglia lectin by avarone changes its ability to interact with the membrane of erythrocytes.

  10. Artificial Specific Binders Directly Recovered from Chemically Modified Nucleic Acid Libraries

    Directory of Open Access Journals (Sweden)

    Yuuya Kasahara

    2012-01-01

    Full Text Available Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

  11. Artificial specific binders directly recovered from chemically modified nucleic acid libraries.

    Science.gov (United States)

    Kasahara, Yuuya; Kuwahara, Masayasu

    2012-01-01

    Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

  12. Chemical Modification of Boron-Doped Diamond Electrodes for Applications to Biosensors and Biosensing.

    Science.gov (United States)

    Svítková, Jana; Ignat, Teodora; Švorc, Ľubomír; Labuda, Ján; Barek, Jiří

    2016-05-03

    Boron-doped diamond (BDD) is a prospective electrode material that possesses many exceptional properties including wide potential window, low noise, low and stable background current, chemical and mechanical stability, good biocompatibility, and last but not least exceptional resistance to passivation. These characteristics extend its usability in various areas of electrochemistry as evidenced by increasing number of published articles over the past two decades. The idea of chemically modifying BDD electrodes with molecular species attached to the surface for the purpose of creating a rational design has found promising applications in the past few years. BDD electrodes have appeared to be excellent substrate materials for various chemical modifications and subsequent application to biosensors and biosensing. Hence, this article presents modification strategies that have extended applications of BDD electrodes in electroanalytical chemistry. Different methods and steps of surface modification of this electrode material for biosensing and construction of biosensors are discussed.

  13. Spasmogenic, Spasmolytic and Chemical Screening of Cigarettes

    African Journals Online (AJOL)

    guloona

    The aqueous and ethanolic extracts derived from cigarettes (Morven Gold) were screened for chemicals ... Pakistan, oral cancer is the second most common cancer ... E-mail: naveedjia@yahoo.com, naveedullahpharmacist@gmail.com.

  14. Surface chemical modification for exceptional wear life of MEMS materials

    Directory of Open Access Journals (Sweden)

    R. Arvind Singh

    2011-12-01

    Full Text Available Micro-Electro-Mechanical-Systems (MEMS are built at micro/nano-scales. At these scales, the interfacial forces are extremely strong. These forces adversely affect the smooth operation and cause wear resulting in the drastic reduction in wear life (useful operating lifetime of actuator-based devices. In this paper, we present a surface chemical modification method that reduces friction and significantly extends the wear life of the two most popular MEMS structural materials namely, silicon and SU-8 polymer. The method includes surface chemical treatment using ethanolamine-sodium phosphate buffer, followed by coating of perfluoropolyether (PFPE nanolubricant on (i silicon coated with SU-8 thin films (500 nm and (ii MEMS process treated SU-8 thick films (50 μm. After the surface chemical modification, it was observed that the steady-state coefficient of friction of the materials reduced by 4 to 5 times and simultaneously their wear durability increased by more than three orders of magnitude (> 1000 times. The significant reduction in the friction coefficients is due to the lubrication effect of PFPE nanolubricant, while the exceptional increase in their wear life is attributed to the bonding between the -OH functional group of ethanolamine treated SU-8 thin/thick films and the -OH functional group of PFPE. The surface chemical modification method acts as a common route to enhance the performance of both silicon and SU-8 polymer. It is time-effective (process time ≤ 11 min, cost-effective and can be readily integrated into MEMS fabrication/assembly processes. It can also work for any kind of structural material from which the miniaturized devices are/can be made.

  15. Chemical Modification of Waste Cotton Linters for Oil Spill Cleanup Application

    Science.gov (United States)

    Chattopadhyay, Debapriya; Umrigar, Keval

    2017-12-01

    The possibility of use of waste cotton linters as oil sorbents by chemical modification such as acetylation and cyanoethylation was studied. The acetylation process was carried out in presence of acetic anhydride using either H2SO4 or HClO4 as catalyst. The acetylation treatment time was 30, 60 and 120 min and treatment temperature was room temperature, 50 and 70 °C. For cyanoethylation, the waste cotton linters were pre-treated with 2, 5 and 10% NaOH. The treatment temperature for cyanoethylation was room temperature, 50 and 70 °C and treatment time was 30, 60 and 120 min. Both the chemical modification processes were optimized on the basis of oil absorption capacity of the chemically modified cotton fibre with the help of MATLAB software. The modified samples were tested for its oleophilicity in terms of oil absorption capacity, oil retention capacity, oil recovery capacity, reusability of sample and water uptake and buoyancy as oil sorbent. Chemically modified fibres were characterized by Fourier transform infra red spectrophotometer, scanning electron microscope and degree of substitutions.

  16. An open framework for automated chemical hazard assessment based on GreenScreen for Safer Chemicals: A proof of concept.

    Science.gov (United States)

    Wehage, Kristopher; Chenhansa, Panan; Schoenung, Julie M

    2017-01-01

    GreenScreen® for Safer Chemicals is a framework for comparative chemical hazard assessment. It is the first transparent, open and publicly accessible framework of its kind, allowing manufacturers and governmental agencies to make informed decisions about the chemicals and substances used in consumer products and buildings. In the GreenScreen® benchmarking process, chemical hazards are assessed and classified based on 18 hazard endpoints from up to 30 different sources. The result is a simple numerical benchmark score and accompanying assessment report that allows users to flag chemicals of concern and identify safer alternatives. Although the screening process is straightforward, aggregating and sorting hazard data is tedious, time-consuming, and prone to human error. In light of these challenges, the present work demonstrates the usage of automation to cull chemical hazard data from publicly available internet resources, assign metadata, and perform a GreenScreen® hazard assessment using the GreenScreen® "List Translator." The automated technique, written as a module in the Python programming language, generates GreenScreen® List Translation data for over 3000 chemicals in approximately 30 s. Discussion of the potential benefits and limitations of automated techniques is provided. By embedding the library into a web-based graphical user interface, the extensibility of the library is demonstrated. The accompanying source code is made available to the hazard assessment community. Integr Environ Assess Manag 2017;13:167-176. © 2016 SETAC. © 2016 SETAC.

  17. Aqueous polymer emulsions by chemical modifications of thermosetting alternating polyketones

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, A. A.; Picchioni, F.

    2007-01-01

    Aqueous polymer emulsions were prepared by chemical modifications of thermosetting alternating polyketones in a one-pot reaction. Polymeric amines derived from the polyketones can act as polymeric surfactants for the self-emulsification of polyketones. The stability and structure of the emulsions

  18. Thermal stability of Trichoderma reesei c30 cellulase and aspergillus niger; -glucosidase after ph and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  19. Chemical modification of jute fibers for the production of green-composites

    Energy Technology Data Exchange (ETDEWEB)

    Corrales, F. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain)]. E-mail: farners.corrales@udg.es; Vilaseca, F. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain); Llop, M. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain); Girones, J. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain); Mendez, J.A. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain); Mutje, P. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain)

    2007-06-18

    Natural fiber reinforced composites is an emerging area in polymer science. Fibers derived from annual plants are considered a potential substitute for non-renewable synthetic fibers like glass and carbon fibers. The hydrophilic nature of natural fibers affects negatively its adhesion to hydrophobic polymeric matrices. To improve the compatibility between both components a surface modification has been proposed. The aim of the study is the chemical modification of jute fibers using a fatty acid derivate (oleoyl chloride) to confer hydrophobicity and resistance to biofibers. This reaction was applied in swelling and non-swelling solvents, pyridine and dichloromethane, respectively. The formation of ester groups, resulting from the reaction of oleoyl chloride with hydroxyl group of cellulose were studied by elemental analysis (EA) and Fourier Transform infrared spectroscopy (FTIR). The characterization methods applied has proved the chemical interaction between the cellulosic material and the coupling agent. The extent of the reactions evaluated by elemental analysis was calculated using two ratios. Finally electron microscopy was applied to evaluate the surface changes of cellulose fibers after modification process.

  20. Direct chemical modification and voltammetric detection of glycans in glycoproteins

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2014-01-01

    Roč. 48, NOV2014 (2014), s. 52-55 ISSN 1388-2481 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081707 Keywords : Glycoproteins * Chemical modification * Os(VI)L complexes Subject RIV: BO - Biophysics Impact factor: 4.847, year: 2014

  1. Encoded libraries of chemically modified peptides.

    Science.gov (United States)

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries. Copyright © 2015. Published by Elsevier Ltd.

  2. High-Throughput Screening and Quantitative Chemical Ranking for Sodium-Iodide Symporter Inhibitors in ToxCast Phase I Chemical Library.

    Science.gov (United States)

    Wang, Jun; Hallinger, Daniel R; Murr, Ashley S; Buckalew, Angela R; Simmons, Steven O; Laws, Susan C; Stoker, Tammy E

    2018-05-01

    Thyroid uptake of iodide via the sodium-iodide symporter (NIS) is the first step in the biosynthesis of thyroid hormones that are critical for health and development in humans and wildlife. Despite having long been a known target of endocrine disrupting chemicals such as perchlorate, information regarding NIS inhibition activity is still unavailable for the vast majority of environmental chemicals. This study applied a previously validated high-throughput approach to screen for NIS inhibitors in the ToxCast phase I library, representing 293 important environmental chemicals. Here 310 blinded samples were screened in a tiered-approach using an initial single-concentration (100 μM) radioactive-iodide uptake (RAIU) assay, followed by 169 samples further evaluated in multi-concentration (0.001 μM-100 μM) testing in parallel RAIU and cell viability assays. A novel chemical ranking system that incorporates multi-concentration RAIU and cytotoxicity responses was also developed as a standardized method for chemical prioritization in current and future screenings. Representative chemical responses and thyroid effects of high-ranking chemicals are further discussed. This study significantly expands current knowledge of NIS inhibition potential in environmental chemicals and provides critical support to U.S. EPA's Endocrine Disruptor Screening Program (EDSP) initiative to expand coverage of thyroid molecular targets, as well as the development of thyroid adverse outcome pathways (AOPs).

  3. Chemical synthesis of membrane proteins by the removable backbone modification method.

    Science.gov (United States)

    Tang, Shan; Zuo, Chao; Huang, Dong-Liang; Cai, Xiao-Ying; Zhang, Long-Hua; Tian, Chang-Lin; Zheng, Ji-Shen; Liu, Lei

    2017-12-01

    Chemical synthesis can produce membrane proteins bearing specifically designed modifications (e.g., phosphorylation, isotope labeling) that are difficult to obtain through recombinant protein expression approaches. The resulting homogeneously modified synthetic membrane proteins are valuable tools for many advanced biochemical and biophysical studies. This protocol describes the chemical synthesis of membrane proteins by condensation of transmembrane peptide segments through native chemical ligation. To avoid common problems encountered due to the poor solubility of transmembrane peptides in almost any solvent, we describe an effective procedure for the chemical synthesis of membrane proteins through the removable-backbone modification (RBM) strategy. Two key steps of this protocol are: (i) installation of solubilizing Arg4-tagged RBM groups into the transmembrane peptides at any primary amino acid through Fmoc (9-fluorenylmethyloxycarbonyl) solid-phase peptide synthesis and (ii) native ligation of the full-length sequence, followed by removal of the RBM tags by TFA (trifluoroacetic acid) cocktails to afford the native protein. The installation of RBM groups is achieved by using 4-methoxy-5-nitrosalicyladehyde by reduction amination to incorporate an activated O-to-N acyl transfer auxiliary. The Arg4-tag-modified membrane-spanning peptide segments behave like water-soluble peptides to facilitate their purification, ligation and mass characterization.

  4. Glycan Reader is improved to recognize most sugar types and chemical modifications in the Protein Data Bank.

    Science.gov (United States)

    Park, Sang-Jun; Lee, Jumin; Patel, Dhilon S; Ma, Hongjing; Lee, Hui Sun; Jo, Sunhwan; Im, Wonpil

    2017-10-01

    Glycans play a central role in many essential biological processes. Glycan Reader was originally developed to simplify the reading of Protein Data Bank (PDB) files containing glycans through the automatic detection and annotation of sugars and glycosidic linkages between sugar units and to proteins, all based on atomic coordinates and connectivity information. Carbohydrates can have various chemical modifications at different positions, making their chemical space much diverse. Unfortunately, current PDB files do not provide exact annotations for most carbohydrate derivatives and more than 50% of PDB glycan chains have at least one carbohydrate derivative that could not be correctly recognized by the original Glycan Reader. Glycan Reader has been improved and now identifies most sugar types and chemical modifications (including various glycolipids) in the PDB, and both PDB and PDBx/mmCIF formats are supported. CHARMM-GUI Glycan Reader is updated to generate the simulation system and input of various glycoconjugates with most sugar types and chemical modifications. It also offers a new functionality to edit the glycan structures through addition/deletion/modification of glycosylation types, sugar types, chemical modifications, glycosidic linkages, and anomeric states. The simulation system and input files can be used for CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Glycan Fragment Database in GlycanStructure.Org is also updated to provide an intuitive glycan sequence search tool for complex glycan structures with various chemical modifications in the PDB. http://www.charmm-gui.org/input/glycan and http://www.glycanstructure.org. wonpil@lehigh.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches

    Directory of Open Access Journals (Sweden)

    Paola Laurienzo

    2008-09-01

    Full Text Available Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  6. Chemically Patterned Inverse Opal Created by a Selective Photolysis Modification Process.

    Science.gov (United States)

    Tian, Tian; Gao, Ning; Gu, Chen; Li, Jian; Wang, Hui; Lan, Yue; Yin, Xianpeng; Li, Guangtao

    2015-09-02

    Anisotropic photonic crystal materials have long been pursued for their broad applications. A novel method for creating chemically patterned inverse opals is proposed here. The patterning technique is based on selective photolysis of a photolabile polymer together with postmodification on released amine groups. The patterning method allows regioselective modification within an inverse opal structure, taking advantage of selective chemical reaction. Moreover, combined with the unique signal self-reporting feature of the photonic crystal, the fabricated structure is capable of various applications, including gradient photonic bandgap and dynamic chemical patterns. The proposed method provides the ability to extend the structural and chemical complexity of the photonic crystal, as well as its potential applications.

  7. Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody

    Science.gov (United States)

    2015-01-01

    Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called “acidic species” that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity. PMID:25136741

  8. Thermal stability of Trichoderma reesei C30 cellulase and Aspergillus niger. beta. -glucosidase after pH and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger ..beta..-glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  9. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bouwmeester, Manon C.; Ruiter, Sander; Lommelaars, Tobias; Sippel, Josefine; Hodemaekers, Hennie M. [Center for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Brandhof, Evert-Jan van den [Center for Environmental Quality, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Pennings, Jeroen L.A. [Center for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Kamstra, Jorke H. [Institute for Environmental Studies (IVM), VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Jelinek, Jaroslav [Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA (United States); Issa, Jean-Pierre J. [Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA (United States); Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Legler, Juliette [Institute for Environmental Studies (IVM), VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Ven, Leo T.M. van der, E-mail: leo.van.der.ven@rivm.nl [Center for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands)

    2016-01-15

    Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin, arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis. - Highlights: • Compound induced effects on DNA methylation in zebrafish embryos • Global methylation not an informative biomarker • Minimal genome

  10. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure

    International Nuclear Information System (INIS)

    Bouwmeester, Manon C.; Ruiter, Sander; Lommelaars, Tobias; Sippel, Josefine; Hodemaekers, Hennie M.; Brandhof, Evert-Jan van den; Pennings, Jeroen L.A.; Kamstra, Jorke H.; Jelinek, Jaroslav; Issa, Jean-Pierre J.; Legler, Juliette; Ven, Leo T.M. van der

    2016-01-01

    Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin, arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis. - Highlights: • Compound induced effects on DNA methylation in zebrafish embryos • Global methylation not an informative biomarker • Minimal genome

  11. Chemical compatibility screening test results

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1997-12-01

    A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60 degrees C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m 2 for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals

  12. The TSCA interagency testing committee`s approaches to screening and scoring chemicals and chemical groups: 1977-1983

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.D. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    This paper describes the TSCA interagency testing committee`s (ITC) approaches to screening and scoring chemicals and chemical groups between 1977 and 1983. During this time the ITC conducted five scoring exercises to select chemicals and chemical groups for detailed review and to determine which of these chemicals and chemical groups should be added to the TSCA Section 4(e) Priority Testing List. 29 refs., 1 fig., 2 tabs.

  13. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A.

    2013-01-01

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1 H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10 −6 S cm −1 for carboxymethyl chitosan at room temperature and 3.7 × 10 −4 S cm −1 at 60 °C

  14. Soft X-ray induced chemical modification of polysaccharides in vascular plant cell walls

    International Nuclear Information System (INIS)

    Cody, George D.; Brandes, Jay; Jacobsen, Chris; Wirick, Susan

    2009-01-01

    Scanning transmission X-ray microscopy and micro carbon X-ray Absorption Near Edge Spectroscopy (C-XANES) can provide quantitative information regarding the distribution of the biopolymers cellulose, hemicellulose, and lignin in vascular plant cell walls. In the case of angiosperms, flowering plants, C-XANES may also be able to distinguish variations in lignin monomer distributions throughout the cell wall. Polysaccharides are susceptible to soft X-ray irradiation induced chemical transformations that may complicate spectral analysis. The stability of a model polysaccharide, cellulose acetate, to variable doses of soft X-rays under conditions optimized for high quality C-XANES spectroscopy was investigated. The primary chemical effect of soft X-ray irradiation on cellulose acetate involves mass loss coincident with de-acetylation. A lesser amount of vinyl ketone formation also occurs. Reduction in irradiation dose via defocusing does enable high quality pristine spectra to be obtained. Radiation induced chemical modification studies of oak cell wall reveals that cellulose and hemicellulose are less labile to chemical modification than cellulose acetate. Strategies for obtaining pristine C-XANES spectra of polysaccharides are presented.

  15. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  16. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Pallavi; Maire, Pascal [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland); Novak, Petr, E-mail: petr.novak@psi.c [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland)

    2011-04-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH{sub 2}){sub 3}OCO{sub 2}Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C{sub 6}H{sub 4}NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C{sub 6}H{sub 4}CH{sub 2}OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  17. [Chemical modification of allergen leading to changes in its epitopic activity].

    Science.gov (United States)

    Babakhin, A A; Gushchin, I S; Andreev, S M; Petrukhina, A I; Viler, A V; Stokinger, B; Nolte, G; Dubuske, L M; Khaitov, R M; Petrpv, R V

    1999-01-01

    Modification of a model allergen ovalbumin (OA) with succinylation led to a decrease of its allergenicity measured by passive cutaneous anaphylaxis reaction, RAST inhibition assay and basophil histamine release. Modified OA stimulated OA-specific T-cell hybrid 3DO-548 to produce IL-2 at the same level as in case of non-modified OA. Modified OA did not induce anti-OA IgE, but did induce anti-OA IgG antibodies. This approach to chemical modification of allergen-selective blockade of B-cell epitopes while not affecting T-cell epitopes suggests new opportunities in creation of safe and effective allergovaccines.

  18. Eye irritancy screening for classification of chemicals.

    Science.gov (United States)

    van Erp, Y H; Weterings, P J

    1990-01-01

    A screening method was applied to determine the eye irritation potential of industrial chemicals. Bovine eyes (BE) were used to predict corneal damage and chicken egg chorioallantoic membranes (CAM) to estimate the irritancy potential of chemical substances towards the conjunctivae. Exposure of the BE to a test substance is followed by grading of the corneal opacity and epithelial injury. The CAM is inspected for signs of capillary injection, haemorrhages and coagulation. The tests are collectively called the BECAM assay. So far, almost 150 substances have been evaluated in this test system. A good correlation was observed between the BECAM assay and in vivo data; less than 5% of chemicals showed a clear disagreement. Also the assay is promising for labelling requirements according to the EEC criteria.

  19. Virtual screening methods as tools for drug lead discovery from large chemical libraries.

    Science.gov (United States)

    Ma, X H; Zhu, F; Liu, X; Shi, Z; Zhang, J X; Yang, S Y; Wei, Y Q; Chen, Y Z

    2012-01-01

    Virtual screening methods have been developed and explored as useful tools for searching drug lead compounds from chemical libraries, including large libraries that have become publically available. In this review, we discussed the new developments in exploring virtual screening methods for enhanced performance in searching large chemical libraries, their applications in screening libraries of ~ 1 million or more compounds in the last five years, the difficulties in their applications, and the strategies for further improving these methods.

  20. A plant-based chemical genomics screen for the identification of flowering inducers.

    Science.gov (United States)

    Fiers, Martijn; Hoogenboom, Jorin; Brunazzi, Alice; Wennekes, Tom; Angenent, Gerco C; Immink, Richard G H

    2017-01-01

    Floral timing is a carefully regulated process, in which the plant determines the optimal moment to switch from the vegetative to reproductive phase. While there are numerous genes known that control flowering time, little information is available on chemical compounds that are able to influence this process. We aimed to discover novel compounds that are able to induce flowering in the model plant Arabidopsis. For this purpose we developed a plant-based screening platform that can be used in a chemical genomics study. Here we describe the set-up of the screening platform and various issues and pitfalls that need to be addressed in order to perform a chemical genomics screening on Arabidopsis plantlets. We describe the choice for a molecular marker, in combination with a sensitive reporter that's active in plants and is sufficiently sensitive for detection. In this particular screen, the firefly Luciferase marker was used, fused to the regulatory sequences of the floral meristem identity gene APETALA1 (AP1) , which is an early marker for flowering. Using this screening platform almost 9000 compounds were screened, in triplicate, in 96-well plates at a concentration of 25 µM. One of the identified potential flowering inducing compounds was studied in more detail and named Flowering1 (F1). F1 turned out to be an analogue of the plant hormone Salicylic acid (SA) and appeared to be more potent than SA in the induction of flowering. The effect could be confirmed by watering Arabidopsis plants with SA or F1, in which F1 gave a significant reduction in time to flowering in comparison to SA treatment or the control. In this study a chemical genomics screening platform was developed to discover compounds that can induce flowering in Arabidopsis. This platform was used successfully, to identify a compound that can speed-up flowering in Arabidopsis.

  1. Chemical modification of arginine residues in the lactose repressor

    International Nuclear Information System (INIS)

    Whitson, P.A.; Matthews, K.S.

    1987-01-01

    The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino aced analysis or incorporation of 14 C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of ∼ 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA

  2. Bentonite chemical modification for use in industrial effluents

    International Nuclear Information System (INIS)

    Laranjeira, E.; Pinto, M.R.O.; Rodrigues, D.P.; Costa, B.P.; Guimaraes, P.L.F.

    2010-01-01

    The present work aims at synthesizing organoclays using a layered silicate of regional importance, bentonite clay, for the treatment of industrial effluents. The choice of clay to be organophilized was based on cation exchange capacity (CEC). Bentonite with higher CTC was called AN 35 (92 meq/100 g), and therefore was the one that suffered the chemical modification with salt cetyl trimethyl ammonium Cetremide, provided by Vetec.The unmodified and modified clays were characterized by FTIR and XDR. The data obtained through the characterizations confirmed the acquisition of bentonite organoclay thus suggesting its subsequent application in the treatment of industrial effluents. (author)

  3. Chemical modification of DNA: Molecular specificity studied by tandem mass spectrometry and liquid chromatography

    International Nuclear Information System (INIS)

    Chang, Ching-jer; Cooks, R.G.; Chae, Whi-Gun; Wood, J.M.

    1989-01-01

    Chemical modifications of DNA in vitro could be directly studied by C-13 NMR and P-31 NMR, which eliminated all degradation and separation processes. The prospects of utilized the NMR method in the in vitro experiments are limited because of the inherent low sensitivity of NMR and low level of DNA modification. We have developed a reverse-phase ion-paired HPLC method to study DNA modifications by methylating agents. The structural specificity of HPLC is significantly enhanced by conjunction with the specificity of enzymic transformations. The HPLC studies have also revealed the limitation of HPLC method for simultaneous determination of many minor modified nucleosides. This problem has been overcome by tandem mass spectrometry. In conjunction with the resolving power of HPLC in separating isomers, desorption chemical ionization tandem mass spectrometry has been utilized in the determination of the modified nucleosides at the picomole level using stable-isotope labeled compounds as internal references

  4. Chemical Modification of Uniform Soils and Soils with High/Low Plasticity Index

    OpenAIRE

    Li, Xuanchi; Tao, Fei; Bobet, Antonio

    2015-01-01

    Lime and/or cement are used to treat weak subgrade soils during construction of highways. These chemicals are mixed with the soil to improve its workability, compactability and engineering properties. INDOT (Indiana Department of Transportation) has been using chemical modification of native soils for the past 20 years. In fact, 90% of current subgrade is treated, typically with quick lime, lime byproducts or cement. For pavement design, it is customary to not include any improvement of the s...

  5. Novel Data Mining Methods for Virtual Screening of Biological Active Chemical Compounds

    KAUST Repository

    Soufan, Othman M.

    2016-11-23

    Drug discovery is a process that takes many years and hundreds of millions of dollars to reveal a confident conclusion about a specific treatment. Part of this sophisticated process is based on preliminary investigations to suggest a set of chemical compounds as candidate drugs for the treatment. Computational resources have been playing a significant role in this part through a step known as virtual screening. From a data mining perspective, availability of rich data resources is key in training prediction models. Yet, the difficulties imposed by big expansion in data and its dimensionality are inevitable. In this thesis, I address the main challenges that come when data mining techniques are used for virtual screening. In order to achieve an efficient virtual screening using data mining, I start by addressing the problem of feature selection and provide analysis of best ways to describe a chemical compound for an enhanced screening performance. High-throughput screening (HTS) assays data used for virtual screening are characterized by a great class imbalance. To handle this problem of class imbalance, I suggest using a novel algorithm called DRAMOTE to narrow down promising candidate chemicals aimed at interaction with specific molecular targets before they are experimentally evaluated. Existing works are mostly proposed for small-scale virtual screening based on making use of few thousands of interactions. Thus, I propose enabling large-scale (or big) virtual screening through learning millions of interaction while exploiting any relevant dependency for a better accuracy. A novel solution called DRABAL that incorporates structure learning of a Bayesian Network as a step to model dependency between the HTS assays, is showed to achieve significant improvements over existing state-of-the-art approaches.

  6. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy.

    Science.gov (United States)

    Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-06-01

    Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.

  7. Chemical screening and development of novel gibberellin mimics.

    Science.gov (United States)

    Jiang, Kai; Shimotakahara, Hiroaki; Luo, Ming; Otani, Masato; Nakamura, Hidemitsu; Moselhy, Said Salama; Abualnaja, Khalid Omer; Al-Malki, Abdulrahman Labeed; Kumosani, Taha Abduallah; Kitahata, Nobutaka; Nakano, Takeshi; Nakajima, Masatoshi; Asami, Tadao

    2017-08-15

    Gibberellin (GA) plays versatile roles in the regulation of plant growth and development and therefore is widely used as a regulator in agriculture. We performed a chemical library screening and identified a chemical, named 67D, as a stimulator of seed germination that was suppressed by paclobutrazol (PAC), a GA biosynthesis inhibitor. In vitro binding assays indicated that 67D binds to the GID1 receptor. Further studies on the structure-activity relationship identified a chemical, named chemical 6, that strongly promoted seed germination suppressed by PAC. Chemical 6 was further confirmed to promote the degradation of RGA (for repressor of ga1-3), a DELLA protein, and suppress the expression levels of GA3ox1 in the same manner as GA does. 67D and its analogs are supposed to be agonists of GID1 and are expected to be utilized in agriculture and basic research as an alternative to GA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Combining chemical genomics screens in yeast to reveal spectrum of effects of chemical inhibition of sphingolipid biosynthesis

    Directory of Open Access Journals (Sweden)

    Giaever Guri

    2009-01-01

    Full Text Available Abstract Background Single genome-wide screens for the effect of altered gene dosage on drug sensitivity in the model organism Saccharomyces cerevisiae provide only a partial picture of the mechanism of action of a drug. Results Using the example of the tumor cell invasion inhibitor dihydromotuporamine C, we show that a more complete picture of drug action can be obtained by combining different chemical genomics approaches – analysis of the sensitivity of ρ0 cells lacking mitochondrial DNA, drug-induced haploinsufficiency, suppression of drug sensitivity by gene overexpression and chemical-genetic synthetic lethality screening using strains deleted of nonessential genes. Killing of yeast by this chemical requires a functional mitochondrial electron-transport chain and cytochrome c heme lyase function. However, we find that it does not require genes associated with programmed cell death in yeast. The chemical also inhibits endocytosis and intracellular vesicle trafficking and interferes with vacuolar acidification in yeast and in human cancer cells. These effects can all be ascribed to inhibition of sphingolipid biosynthesis by dihydromotuporamine C. Conclusion Despite their similar conceptual basis, namely altering drug sensitivity by modifying gene dosage, each of the screening approaches provided a distinct set of information that, when integrated, revealed a more complete picture of the mechanism of action of a drug on cells.

  9. The behavior of various chemical forms of nickel in graphite furnace atomic absorption spectrometry under different chemical modification approaches

    International Nuclear Information System (INIS)

    Kowalewska, Zofia

    2012-01-01

    Various organic and inorganic Ni forms were investigated using graphite furnace atomic absorption spectrometry. Experiments without chemical modification showed a wide range of characteristic mass values for Ni (from 6.7 to 29 pg) and the importance of interaction with graphite. With the aim of achieving signal unification of organic Ni forms, different ways of chemical modification were tested. Some rules that govern the behavior of Ni were found and confirmed a significant role of the organic component of the analyte molecule in the analytical process. The application of air as an internal furnace gas in the pyrolysis phase and the Pd modifier injected with the sample solution improved the signal of porphyrins, while the application of iodine and methyltrioctylammonium chloride was required for organic compounds containing oxygen-bound Ni atoms. The Ni signal was strongly diminished when an aqueous solution containing hydrochloric acid was measured with the Pd modifier injected over the sample. Using the developed analytical methods, the range of characteristic mass values for various Ni forms totally dissolved in organic or aqueous solution was 6.5–7.9 pg. - Highlights: ► Some rules that govern behavior of organic Ni forms during GFAAS analysis were found. ► Interaction with graphite can significantly influence evaporation of porphyrins. ► Determination of Ni in form of porphyrins needs Pd organic modifier and air ashing. ► Determination of Ni in O-bound organic compounds needs pretreatment with I2+MTOACl. ► Chemical modification for GFAAS determination of Ni in HCl-containing solution.

  10. Reevaluation of 1999 Health-Based Environmental Screening Levels (HBESLs) for Chemical Warfare Agents

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Annetta Paule [ORNL; Dolislager, Fredrick G [ORNL

    2007-05-01

    This report evaluates whether new information and updated scientific models require that changes be made to previously published health-based environmental soil screening levels (HBESLs) and associated environmental fate/breakdown information for chemical warfare agents (USACHPPM 1999). Specifically, the present evaluation describes and compares changes that have been made since 1999 to U.S. Environmental Protection Agency (EPA) risk assessment models, EPA exposure assumptions, as well as to specific chemical warfare agent parameters (e.g., toxicity values). Comparison was made between screening value estimates recalculated with current assumptions and earlier health-based environmental screening levels presented in 1999. The chemical warfare agents evaluated include the G-series and VX nerve agents and the vesicants sulfur mustard (agent HD) and Lewisite (agent L). In addition, key degradation products of these agents were also evaluated. Study findings indicate that the combined effect of updates and/or changes to EPA risk models, EPA default exposure parameters, and certain chemical warfare agent toxicity criteria does not result in significant alteration to the USACHPPM (1999) health-based environmental screening level estimates for the G-series and VX nerve agents or the vesicant agents HD and L. Given that EPA's final position on separate Tier 1 screening levels for indoor and outdoor worker screening assessments has not yet been released as of May 2007, the study authors find that the 1999 screening level estimates (see Table ES.1) are still appropriate and protective for screening residential as well as nonresidential sites. As such, risk management decisions made on the basis of USACHPPM (1999) recommendations do not require reconsideration. While the 1999 HBESL values are appropriate for continued use as general screening criteria, the updated '2007' estimates (presented below) that follow the new EPA protocols currently under development

  11. Deiodinase 1 Screening of ToxCast Phase 1 Chemical Library

    Data.gov (United States)

    U.S. Environmental Protection Agency — This excel spreadsheet contains the resultant data for over from inhibition assays with human Deiodinase 1 screened against the ToxCast Phase 1 chemical library and...

  12. Screening of chemical compound libraries identified new anti-Toxoplasma gondii agents.

    Science.gov (United States)

    Adeyemi, Oluyomi Stephen; Sugi, Tatsuki; Han, Yongmei; Kato, Kentaro

    2018-02-01

    Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease that affects nearly one-third of the human population. The primary infection can be asymptomatic in healthy individuals but may prove fatal in immunocompromised individuals. Available treatment options for toxoplasmosis patients are limited, underscoring the urgent need to identify and develop new therapies. Non-biased screening of libraries of chemical compounds including the repurposing of well-characterized compounds is emerging as viable approach to achieving this goal. In the present investigation, we screened libraries of natural product and FDA-approved compounds to identify those that inhibited T. gondii growth. We identified 32 new compounds that potently inhibit T. gondii growth. Our findings are new and promising, and further strengthen the prospects of drug repurposing as well as the screening of a wide range of chemical compounds as a viable source of alternative anti-parasitic therapeutic agents.

  13. Development of Screening Tools for the Interpretation of Chemical Biomonitoring Data

    Directory of Open Access Journals (Sweden)

    Richard A. Becker

    2012-01-01

    Full Text Available Evaluation of a larger number of chemicals in commerce from the perspective of potential human health risk has become a focus of attention in North America and Europe. Screening-level chemical risk assessment evaluations consider both exposure and hazard. Exposures are increasingly being evaluated through biomonitoring studies in humans. Interpreting human biomonitoring results requires comparison to toxicity guidance values. However, conventional chemical-specific risk assessments result in identification of toxicity-based exposure guidance values such as tolerable daily intakes (TDIs as applied doses that cannot directly be used to evaluate exposure information provided by biomonitoring data in a health risk context. This paper describes a variety of approaches for development of screening-level exposure guidance values with translation from an external dose to a biomarker concentration framework for interpreting biomonitoring data in a risk context. Applications of tools and concepts including biomonitoring equivalents (BEs, the threshold of toxicologic concern (TTC, and generic toxicokinetic and physiologically based toxicokinetic models are described. These approaches employ varying levels of existing chemical-specific data, chemical class-specific assessments, and generic modeling tools in response to varying levels of available data in order to allow assessment and prioritization of chemical exposures for refined assessment in a risk management context.

  14. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    International Nuclear Information System (INIS)

    Gonzalez, G.; Krishnan, B.; Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K.; Shaji, S.

    2011-01-01

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  15. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  16. Chemical surface reactions by click chemistry: coumarin dye modification of 11-bromoundecyltrichlorosilane monolayers

    International Nuclear Information System (INIS)

    Haensch, Claudia; Hoeppener, Stephanie; Schubert, Ulrich S

    2008-01-01

    The functionalization of surfaces and the ability to tailor their properties with desired physico-chemical functions is an important field of research with a broad spectrum of applications. These applications range from the modification of wetting properties, over the alteration of optical properties, to the fabrication of molecular electronic devices. In each of these fields, it is of specific importance to be able to control the quality of the layers with high precision. The present study demonstrates an approach that utilizes the 1,3-dipolar cycloaddition of terminal acetylenes to prepare triazole-terminated monolayers on different substrates. The characterization of the precursor monolayers, the optimization of the chemical surface reactions as well as the clicking of a fluorescent dye molecule on such azide-terminated monolayers was carried out. A coumarin 343 derivative was utilized to discuss the aspects of the functionalization approach. Based on this approach, a number of potential surface reactions, facilitated via the acetylene-substituted functional molecules, for a broad range of applications is at hand, thus leading to numerous possibilities where surface modifications are concerned. These modifications can be applied on non-structured surfaces of silicon or glass or can be used on structured surfaces. Various possibilities are discussed

  17. Screening organic chemicals in commerce for emissions in the context of environmental and human exposure.

    Science.gov (United States)

    Breivik, Knut; Arnot, Jon A; Brown, Trevor N; McLachlan, Michael S; Wania, Frank

    2012-08-01

    Quantitative knowledge of organic chemical release into the environment is essential to understand and predict human exposure as well as to develop rational control strategies for any substances of concern. While significant efforts have been invested to characterize and screen organic chemicals for hazardous properties, relatively less effort has been directed toward estimating emissions and hence also risks. Here, a rapid throughput method to estimate emissions of discrete organic chemicals in commerce has been developed, applied and evaluated to support screening studies aimed at ranking and identifying chemicals of potential concern. The method builds upon information in the European Union Technical Guidance Document and utilizes information on quantities in commerce (production and/or import rates), chemical function (use patterns) and physical-chemical properties to estimate emissions to air, soil and water within the OECD for five stages of the chemical life-cycle. The method is applied to 16,029 discrete substances (identified by CAS numbers) from five national and international high production volume lists. As access to consistent input data remains fragmented or even impossible, particular attention is given to estimating, evaluating and discussing uncertainties in the resulting emission scenarios. The uncertainty for individual substances typically spans 3 to 4 orders of magnitude for this initial tier screening method. Information on uncertainties in emissions is useful as any screening or categorization methods which solely rely on threshold values are at risk of leading to a significant number of either false positives or false negatives. A limited evaluation of the screening method's estimates for a sub-set of about 100 substances, compared against independent and more detailed emission scenarios presented in various European Risk Assessment Reports, highlights that up-to-date and accurate information on quantities in commerce as well as a detailed

  18. Fragment-based screening in tandem with phenotypic screening provides novel antiparasitic hits.

    Science.gov (United States)

    Blaazer, Antoni R; Orrling, Kristina M; Shanmugham, Anitha; Jansen, Chimed; Maes, Louis; Edink, Ewald; Sterk, Geert Jan; Siderius, Marco; England, Paul; Bailey, David; de Esch, Iwan J P; Leurs, Rob

    2015-01-01

    Methods to discover biologically active small molecules include target-based and phenotypic screening approaches. One of the main difficulties in drug discovery is elucidating and exploiting the relationship between drug activity at the protein target and disease modification, a phenotypic endpoint. Fragment-based drug discovery is a target-based approach that typically involves the screening of a relatively small number of fragment-like (molecular weight <300) molecules that efficiently cover chemical space. Here, we report a fragment screening on TbrPDEB1, an essential cyclic nucleotide phosphodiesterase (PDE) from Trypanosoma brucei, and human PDE4D, an off-target, in a workflow in which fragment hits and a series of close analogs are subsequently screened for antiparasitic activity in a phenotypic panel. The phenotypic panel contained T. brucei, Trypanosoma cruzi, Leishmania infantum, and Plasmodium falciparum, the causative agents of human African trypanosomiasis (sleeping sickness), Chagas disease, leishmaniasis, and malaria, respectively, as well as MRC-5 human lung cells. This hybrid screening workflow has resulted in the discovery of various benzhydryl ethers with antiprotozoal activity and low toxicity, representing interesting starting points for further antiparasitic optimization. © 2014 Society for Laboratory Automation and Screening.

  19. Physico-chemical modifications of plastics by ionization

    International Nuclear Information System (INIS)

    Rouif, S.

    2002-01-01

    The industrial use of ionizing radiations (beta and gamma), initially for the sterilization of medico-surgical instruments and for the preservation of food products, has led to the development of the chemistry of polymers under radiations. Ionizing radiations can initiate chemical reactions (chain cutting, poly-additions, polymerization etc..) thanks to the formation of free radicals. The main applications concerns the degradation of plastics, the reticulation of plastics and of woods impregnated with resin, and the grafting of polymers. The processing of plastic materials was initially performed with low energy electron accelerators (0.1 to 3 MeV), allowing only surface treatments, while recent high energy accelerators (10 MeV) and gamma facilities allow the treatment in depth of materials (from few cm to 1 m). This article describes the industrial treatments performed with such high energy facilities: 1 - action of ionizing radiations on plastic materials: different types of ionizing radiations, action of beta and gamma radiations, chemical changes induced by beta and gamma radiations; 2 - reticulation of plastic materials submitted to beta and gamma radiations: radio-'reticulable' polymers and reticulation co-agents, modification of the properties of reticulated plastic materials under beta and gamma radiations; 3 - industrial aspects of reticulation under beta and gamma radiation: industrial irradiation facilities, dosimetry and radio-reticulation control, applications; 4 - conclusion. (J.S.)

  20. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases.

    Science.gov (United States)

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-04-20

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Screening values for Non-Carcinogenic Hanford Waste Tank Vapor Chemicals that Lack Established Occupational Exposure Limits

    Energy Technology Data Exchange (ETDEWEB)

    Poet, Torka S.; Mast, Terryl J.; Huckaby, James L.

    2006-02-06

    Over 1,500 different volatile chemicals have been reported in the headspaces of tanks used to store high-level radioactive waste at the U.S. Department of Energy's Hanford Site. Concern about potential exposure of tank farm workers to these chemicals has prompted efforts to evaluate their toxicity, identify chemicals that pose the greatest risk, and incorporate that information into the tank farms industrial hygiene worker protection program. Established occupation exposure limits for individual chemicals and petroleum hydrocarbon mixtures have been used elsewhere to evaluate about 900 of the chemicals. In this report headspace concentration screening values were established for the remaining 600 chemicals using available industrial hygiene and toxicological data. Screening values were intended to be more than an order of magnitude below concentrations that may cause adverse health effects in workers, assuming a 40-hour/week occupational exposure. Screening values were compared to the maximum reported headspace concentrations.

  2. Implementation of a Computerized Screening Inventory: Improved Usability Through Iterative Testing and Modification.

    Science.gov (United States)

    Boudreaux, Edwin D; Fischer, Andrew Christopher; Haskins, Brianna Lyn; Saeed Zafar, Zubair; Chen, Guanling; Chinai, Sneha A

    2016-03-09

    The administration of health screeners in a hospital setting has traditionally required (1) clinicians to ask questions and log answers, which can be time consuming and susceptible to error, or (2) patients to complete paper-and-pencil surveys, which require third-party entry of information into the electronic health record and can be vulnerable to error and misinterpretation. A highly promising method that avoids these limitations and bypasses third-party interpretation is direct entry via a computerized inventory. To (1) computerize medical and behavioral health screening for use in general medical settings, (2) optimize patient acceptability and feasibility through iterative usability testing and modification cycles, and (3) examine how age relates to usability. A computerized version of 15 screeners, including behavioral health screeners recommended by a National Institutes of Health Office of Behavioral and Social Sciences Research collaborative workgroup, was subjected to systematic usability testing and iterative modification. Consecutive adult, English-speaking patients seeking treatment in an urban emergency department were enrolled. Acceptability was defined as (1) the percentage of eligible patients who agreed to take the assessment (initiation rate) and (2) average satisfaction with the assessment (satisfaction rate). Feasibility was defined as the percentage of the screening items completed by those who initiated the assessment (completion rate). Chi-square tests, analyses of variance, and Pearson correlations were used to detect whether improvements in initiation, satisfaction, and completion rates were seen over time and to examine the relation between age and outcomes. Of 2157 eligible patients approached, 1280 agreed to complete the screening (initiation rate=59.34%). Statistically significant increases were observed over time in satisfaction (F3,1061=3.35, P=.019) and completion rates (F3,1276=25.44, PUsability testing revealed several critical

  3. Screening of Chemical Dyes in Traditional Chinese Medicine by HPTLC-MS.

    Science.gov (United States)

    He, Fengyan; He, Yi; Zheng, Xiaowei; Wang, Ruizhong; Lu, Jing; Dai, Zhong; Ma, Shuangcheng

    2018-05-01

    It has been uncovered that chemical dyes are illegally used in traditional Chinese medicines to brighten color and cover up inferiority, which threaten the safety of patients. In the present study, an HPTLC-MS method was developed for the effective screening of 11 chemical dyes (Sudan I, II, III, and IV; 808 Scarlet; Sudan Red 7B; malachite green; Basic Orange 2; auramine; Orange II; and erythrosine) in traditional Chinese medicine (TCM) raw materials and Chinese patent medicines. Firstly, unwashed HPTLC plates were chosen by comparing the background signals of the TLC plates used directly and prewashed with analytical grade and HPLC grade solvents. Twice developments were conducted to isolate chemical dyes of different polarity. Possible adulterants were preliminarily identified by comparing Rf values and in situ UV-Vis spectra with those of the references. Further confirmation was conducted by tandem MS analysis via an elution head-based TLC-MS interface. Sudan I and IV, 808 Scarlet, and Orange II were successfully detected in eight batches of TCM. The proposed method could be applied as a reliable technology for the screening of chemical dyes in TCM.

  4. Plant Sterols: Chemical and Enzymatic Structural Modifications and Effects on Their Cholesterol-Lowering Activity.

    Science.gov (United States)

    He, Wen-Sen; Zhu, Hanyue; Chen, Zhen-Yu

    2018-03-28

    Plant sterols have attracted increasing attention due to their excellent cholesterol-lowering activity. However, free plant sterols have some characteristics of low oil solubility, water insolubility, high melting point, and low bioavailability, which greatly limit their application in foods. Numerous studies have been undertaken to modify their chemical structures to improve their chemical and physical properties in meeting the needs of various applications. The present review is to summarize the literature and update the progress on structural modifications of plant sterols in the following aspects: (i) synthesis of plant sterol esters by esterification and transesterification with hydrophobic fatty acids and triacylglycerols to improve their oil solubility, (ii) synthesis of plant sterol derivatives by coupling with various hydrophilic moieties to enhance their water solubility, and (iii) mechanisms by which plant sterols reduce plasma cholesterol and the effect of structural modifications on plasma cholesterol-lowering activity of plant sterols.

  5. Fluorescence-based assay as a new screening tool for toxic chemicals

    Science.gov (United States)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  6. Prioritizing Chemicals and Data Requirements for Screening-Level Exposure and Risk Assessment

    Science.gov (United States)

    Brown, Trevor N.; Wania, Frank; Breivik, Knut; McLachlan, Michael S.

    2012-01-01

    Background: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. Objectives: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. Methods: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Results: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Conclusions: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner. PMID:23008278

  7. Prioritizing chemicals and data requirements for screening-level exposure and risk assessment.

    Science.gov (United States)

    Arnot, Jon A; Brown, Trevor N; Wania, Frank; Breivik, Knut; McLachlan, Michael S

    2012-11-01

    Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner.

  8. Development of a New Decision Tree to Rapidly Screen Chemical Estrogenic Activities of Xenopus laevis.

    Science.gov (United States)

    Wang, Ting; Li, Weiying; Zheng, Xiaofeng; Lin, Zhifen; Kong, Deyang

    2014-02-01

    During the last past decades, there is an increasing number of studies about estrogenic activities of the environmental pollutants on amphibians and many determination methods have been proposed. However, these determination methods are time-consuming and expensive, and a rapid and simple method to screen and test the chemicals for estrogenic activities to amphibians is therefore imperative. Herein is proposed a new decision tree formulated not only with physicochemical parameters but also a biological parameter that was successfully used to screen estrogenic activities of the chemicals on amphibians. The biological parameter, CDOCKER interaction energy (Ebinding ) between chemicals and the target proteins was calculated based on the method of molecular docking, and it was used to revise the decision tree formulated by Hong only with physicochemical parameters for screening estrogenic activity of chemicals in rat. According to the correlation between Ebinding of rat and Xenopus laevis, a new decision tree for estrogenic activities in Xenopus laevis is finally proposed. Then it was validated by using the randomly 8 chemicals which can be frequently exposed to Xenopus laevis, and the agreement between the results from the new decision tree and the ones from experiments is generally satisfactory. Consequently, the new decision tree can be used to screen the estrogenic activities of the chemicals, and combinational use of the Ebinding and classical physicochemical parameters can greatly improves Hong's decision tree. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum.

    Science.gov (United States)

    Avery, Vicky M; Bashyam, Sridevi; Burrows, Jeremy N; Duffy, Sandra; Papadatos, George; Puthukkuti, Shyni; Sambandan, Yuvaraj; Singh, Shivendra; Spangenberg, Thomas; Waterson, David; Willis, Paul

    2014-05-27

    In view of the need to continuously feed the pipeline with new anti-malarial agents adapted to differentiated and more stringent target product profiles (e.g., new modes of action, transmission-blocking activity or long-duration chemo-protection), a chemical library consisting of more than 250,000 compounds has been evaluated in a blood-stage Plasmodium falciparum growth inhibition assay and further assessed for chemical diversity and novelty. The selection cascade used for the triaging of hits from the chemical library started with a robust three-step in vitro assay followed by an in silico analysis of the resulting confirmed hits. Upon reaching the predefined requirements for selectivity and potency, the set of hits was subjected to computational analysis to assess chemical properties and diversity. Furthermore, known marketed anti-malarial drugs were co-clustered acting as 'signposts' in the chemical space defined by the hits. Then, in cerebro evaluation of the chemical structures was performed to identify scaffolds that currently are or have been the focus of anti-malarial medicinal chemistry programmes. Next, prioritization according to relaxed physicochemical parameters took place, along with the search for structural analogues. Ultimately, synthesis of novel chemotypes with desired properties was performed and the resulting compounds were subsequently retested in a P. falciparum growth inhibition assay. This screening campaign led to a 1.25% primary hit rate, which decreased to 0.77% upon confirmatory repeat screening. With the predefined potency (EC₅₀  10) criteria, 178 compounds progressed to the next steps where chemical diversity, physicochemical properties and novelty assessment were taken into account. This resulted in the selection of 15 distinct chemical series. A selection cascade was applied to prioritize hits resulting from the screening of a medium-sized chemical library against blood-stage P. falciparum. Emphasis was placed on chemical

  10. The influence of chemical methods (acid modification) on elephant foot yam flour to improve physical and chemical quality on processed food

    Science.gov (United States)

    Paramita, Octavianti; Wahyuningsih, Ansori, Muhammad

    2018-03-01

    This study was aimed at improving the physicochemical quality of elephant foot yam flour in Gunungpati, Semarang by acid modification. The utilization of elephant foot yam flour in several processed food was also discussed in this study. The flour of the experimental result discussed in this study was expected to become a reference for the manufacturers of elephant foot yam flour and its processed food in Gunungpati. This study modified the elephant foot yam flour using acid modification method. The physical and chemical quality of each elephant foot yam flour of the experimental result sample were assessed using proximate analysis. The resulting tuber flour weighed 50 grams and the soaked in acid solution with various concentrations 5 %, 10 % and 15 % with soaking duration 30, 60 and 90 minutes at temperature 35 °C. The resulting suspension was washed 3 times, filtered and then dried by cabinet dryer using 46 °C for 2 days. The dried flour was sifted with a 80 mesh sieve. Chemical test was conducted after elephant foot yam was acid modification to determine changes in the quality flour: test levels of protein, fat, crude fiber content, moisture content, ash content and starch content. In addition, color tests and granular test on elephant foot yam flour were also conducted. The acid modification as chemical treatment on elephant foot yam flour in this study was able to change the functional properties of elephant foot yam flour towards a better processing characterized by a brighter color (L = 80, a = 8 and b = 12), the hydrolysis of polysaccharides flour into shorter chain (flour content decreased to 72%), the expansion of granules in elephant foot yam resulting in a process - ready flour, and better monolayer water content of 11%. The content of protein and fiber on the elephant foot yam flour also can be maintained at a level of 8% and 1.9% levels.

  11. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1995-01-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to ∼3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of ∼1 g/m 2 /hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals

  12. Patterns of development of unspecific reaction of cells and modification of chemical protection

    International Nuclear Information System (INIS)

    Veksler, A.M.; Korystov, Yu.N.; Kublik, L.N.; Ehjdus, L.Kh.

    1980-01-01

    A study was made of a correlation between radioprotective efficiency of different chemical agents (weak electrolytes) and conditions of treatment. It was demonstrated that the pattern of changes in the protection efficiency, with modification thereof, is similar to that of the development of unspecific reaction and determined by the intracellular concentration of the chemical agents, which, in turn, is function of physicochemical parameters of the substance and pH gradient between cell and medium. With similar intracellular concentration, caffeine-benzoate, thioglicolic acid and caffeine proved to be equally effective, while the protective effect of cysteamine was appreciably higher

  13. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells.

    Science.gov (United States)

    Karmaus, Agnes L; Toole, Colleen M; Filer, Dayne L; Lewis, Kenneth C; Martin, Matthew T

    2016-04-01

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology.

  14. Areal variation and chemical modification of weathered shale infiltration characteristics

    International Nuclear Information System (INIS)

    Luxmoore, R.J.; Spalding, B.P.; Munro, I.M.

    1981-01-01

    Spatial variability of infiltration into a weathered shale subsoil was evaluated at a site proximal to one used for shallow land burial of low-level radioactive waste at Oak Ridge National Laboratory. Double-ring infiltometers were installed at 48 locations on a 2- by 2-m grid after the removal of 1 to 2 m of soil (Litz-Sequoia association, Typic Hapludults). Infiltration rates were measured before and during the 0- to 20- and 239- to 259-day periods following treatment with solutions of NaOH, KOH, NaF, NaAlO 2 , and Na 2 SiO 3 at rates of 151 equivalents/m 2 . None of these chemical treatments significantly altered infiltration rate, indicating that chemical modification of soil exchange properties may be achieved without inducing hydrologic disturbance in these subsoils. A semivariogram analysis of infiltration data showed that areal variability was random; any spatial patterning must therefore occur at a smaller scale than 2 m

  15. Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions.

    Science.gov (United States)

    Ma, Zhuoming; Li, Shujun; Fang, Guizhen; Patil, Nikhil; Yan, Ning

    2016-12-01

    In this study, we have explored various ultrasound treatment conditions for structural modification of enzymatic hydrolysis lignin (EHL) for enhanced chemical reactivity. The key structural modifications were characterized by using a combination of analytical methods, including, Fourier Transform-Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance ( 1 H NMR), Gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and Folin-Ciocalteu (F-C) method. Chemical reactivity of the modified EHL samples was determined by both 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and their reactivity towards formaldehyde. It was observed that the modified EHL had a higher phenolic hydroxyl group content, a lower molecular weight, a higher reactivity towards formaldehyde, and a greater antioxidant property. The higher reactivity demonstrated by the samples after treatment suggesting that ultrasound is a promising method for modifying enzymatic hydrolysis lignin for value-added applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    Science.gov (United States)

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  17. Engineering specific chemical modification sites into a collagen-like protein from Streptococcus pyogenes.

    Science.gov (United States)

    Stoichevska, Violet; Peng, Yong Y; Vashi, Aditya V; Werkmeister, Jerome A; Dumsday, Geoff J; Ramshaw, John A M

    2017-03-01

    Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen-like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via "click" chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806-813, 2017. © 2016 Wiley Periodicals, Inc.

  18. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion

    Science.gov (United States)

    Stroh, Mark; Zipfel, Warren R.; Williams, Rebecca M.; Ma, Shu Chin; Webb, Watt W.; Saltzman, W. Mark

    2004-07-01

    Brain-derived neurotrophic factor (BDNF) is a promising therapeutic agent for the treatment of neurodegenerative diseases. However, the limited distribution of this molecule after administration into the brain tissue considerably hampers its efficacy. Here, we show how multiphoton microscopy of fluorescently tagged BDNF in brain-tissue slices provides a useful and rapid screening method for examining the diffusion of large molecules in tissues, and for studying the effects of chemical modifications-for example, conjugating with polyethylene glycol (PEG)-on the diffusion constant. This single variable, obtained by monitoring short-term diffusion in real time, can be effectively used for rational drug design. In this study on fluorescently tagged BDNF and BDNF-PEG, we identify slow diffusion as a major contributing factor to the limited penetration of BDNF, and demonstrate how chemical modification can be used to overcome this barrier.

  19. Effects of chemical modifications on photophysics and exciton dynamics on {pi}-conjugation attenuated and metal-chelated photoconducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L. X.; Jager, W. J. H.; Gosztola, D. J.; Niemczyk, M. P.; Wasielewski, M. R.

    2000-03-11

    Effects of two types of chemical modifications on photoconducting polymers consisting of polyphenylenevinylene (PPV) derivatives are studied by static and ultrafast transient optical spectroscopy as well as semi-empirical ZINDO calculations. The first type of modification inserts 2,2{prime}-bipyridyl-5-vinylene units (bpy V) in the PPV backbone, and the second type involves metal-chelation with the bpy sites. Photoluminescence and exciton dynamics of polymers 1 and 2 with PV:bpyV ratios of 1 and 3 were examined in solution, and compared to those of the homopolymer, poly(2,5-bis(2{prime}-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV). Similar studies were carried out for several metal-chelated polymers. These results can be explained by changes in {pi}-conjugation throughout the polymer backbone. The attenuation in {pi}-conjugation by the chemical modifications transforms a conducting polymer from one-dimensional semiconductor to molecular aggregates.

  20. Overview of a workshop on screening methods for detecting potential (anti-) estrogenic/androgenic chemicals in wildlife

    Science.gov (United States)

    Ankley, Gerald T.; Mihaich, Ellen; Stahl, Ralph G.; Tillitt, Donald E.; Colborn, Theo; McMaster, Suzzanne; Miller, Ron; Bantle, John; Campbell, Pamela; Denslow, Nancy; Dickerson, Richard L.; Folmar, Leroy C.; Fry, Michael; Giesy, John P.; Gray, L. Earl; Guiney, Patrick; Hutchinson, Thomas; Kennedy, Sean W.; Kramer, Vincent; LeBlanc, Gerald A.; Mayes, Monte; Nimrod, Alison; Patino, Reynaldo; Peterson, Richard; Purdy, Richard; Ringer, Robert; Thomas, Peter C.; Touart, Les; Van Der Kraak, Glen; Zacharewski, Tim

    1998-01-01

    The U.S. Congress has passed legislation requiring the U.S. Environmental Protection Agency (U.S. EPA) to develop, validate, and implement screening tests for identifying potential endocrine-disrupting chemicals within 3 years. To aid in the identification of methods suitable for this purpose, the U.S. EPA, the Chemical Manufacturers Association, and the World Wildlife Fund sponsored several workshops, including the present one, which dealt with wildlife species. This workshop was convened with 30 international scientists representing multiple disciplines in March 1997 in Kansas City, Missouri, USA. Participants at the meeting identified methods in terms of their ability to indicate (anti-) estrogenic/androgenic effects, particularly in the context of developmental and reproductive processes. Data derived from structure-activity relationship models and in vitro test systems, although useful in certain contexts, cannot at present replace in vivo tests as the sole basis for screening. A consensus was reached that existing mammalian test methods (e.g., with rats or mice) generally are suitable as screens for assessing potential (anti-) estrogenic/ androgenic effects in mammalian wildlife. However, due to factors such as among-class variation in receptor structure and endocrine function, it is uncertain if these mammalian assays would be of broad utility as screens for other classes of vertebrate wildlife. Existing full and partial life-cycle tests with some avian and fish species could successfully identify chemicals causing endocrine disruption; however, these long-term tests are not suitable for routine screening. However, a number of short-term tests with species from these two classes exist that could serve as effective screening tools for chemicals inducing (anti-) estrogenic/androgenic effects. Existing methods suitable for identifying chemicals with these mechanisms of action in reptiles and amphibians are limited, but in the future, tests with species from

  1. Expanding the Bioactive Chemical Space of Anthrabenzoxocinones through Engineering the Highly Promiscuous Biosynthetic Modification Steps.

    Science.gov (United States)

    Mei, Xianyi; Yan, Xiaoli; Zhang, Hui; Yu, Mingjia; Shen, Guangqing; Zhou, Linjun; Deng, Zixin; Lei, Chun; Qu, Xudong

    2018-01-19

    Anthrabenzoxocinones (ABXs) including (-)-ABXs and (+)-ABXs are a group of bacterial FabF-specific inhibitors with potent antimicrobial activity of resistant strains. Optimization of their chemical structures is a promising method to develop potent antibiotics. Through biosynthetic investigation, we herein identified and characterized two highly promiscuous enzymes involved in the (-)-ABX structural modification. The promiscuous halogenase and methyltransferase can respectively introduce halogen-modifications into various positions of the ABX scaffolds and methylation to highly diverse substrates. Manipulation of their activity in both of the (-)-ABXs and (+)-ABXs biosyntheses led to the generation of 14 novel ABX analogues of both enantiomers. Bioactivity assessment revealed that a few of the analogues showed significantly improved antimicrobial activity, with the C3-hydroxyl and chlorine substitutions critical for their activity. This study enormously expands the bioactive chemical space of the ABX family and FabF-specific inhibitors. The disclosed broad-selective biosynthetic machineries and structure-activity relationship provide a solid basis for further generation of potent antimicrobial agents.

  2. Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling.

    Directory of Open Access Journals (Sweden)

    Lotta Berg

    Full Text Available Acetylcholinesterase (AChE is an essential enzyme that terminates cholinergic transmission by rapid hydrolysis of the neurotransmitter acetylcholine. Compounds inhibiting this enzyme can be used (inter alia to treat cholinergic deficiencies (e.g. in Alzheimer's disease, but may also act as dangerous toxins (e.g. nerve agents such as sarin. Treatment of nerve agent poisoning involves use of antidotes, small molecules capable of reactivating AChE. We have screened a collection of organic molecules to assess their ability to inhibit the enzymatic activity of AChE, aiming to find lead compounds for further optimization leading to drugs with increased efficacy and/or decreased side effects. 124 inhibitors were discovered, with considerable chemical diversity regarding size, polarity, flexibility and charge distribution. An extensive structure determination campaign resulted in a set of crystal structures of protein-ligand complexes. Overall, the ligands have substantial interactions with the peripheral anionic site of AChE, and the majority form additional interactions with the catalytic site (CAS. Reproduction of the bioactive conformation of six of the ligands using molecular docking simulations required modification of the default parameter settings of the docking software. The results show that docking-assisted structure-based design of AChE inhibitors is challenging and requires crystallographic support to obtain reliable results, at least with currently available software. The complex formed between C5685 and Mus musculus AChE (C5685•mAChE is a representative structure for the general binding mode of the determined structures. The CAS binding part of C5685 could not be structurally determined due to a disordered electron density map and the developed docking protocol was used to predict the binding modes of this part of the molecule. We believe that chemical modifications of our discovered inhibitors, biochemical and biophysical

  3. High content screening of defined chemical libraries using normal and glioma-derived neural stem cell lines.

    Science.gov (United States)

    Danovi, Davide; Folarin, Amos A; Baranowski, Bart; Pollard, Steven M

    2012-01-01

    Small molecules with potent biological effects on the fate of normal and cancer-derived stem cells represent both useful research tools and new drug leads for regenerative medicine and oncology. Long-term expansion of mouse and human neural stem cells is possible using adherent monolayer culture. These cultures represent a useful cellular resource to carry out image-based high content screening of small chemical libraries. Improvements in automated microscopy, desktop computational power, and freely available image processing tools, now means that such chemical screens are realistic to undertake in individual academic laboratories. Here we outline a cost effective and versatile time lapse imaging strategy suitable for chemical screening. Protocols are described for the handling and screening of human fetal Neural Stem (NS) cell lines and their malignant counterparts, Glioblastoma-derived neural stem cells (GNS). We focus on identification of cytostatic and cytotoxic "hits" and discuss future possibilities and challenges for extending this approach to assay lineage commitment and differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. ReportSites - A Computational Method to Extract Positional and Physico- Chemical Information from Large-Scale Proteomic Post-Translational Modification Datasets

    DEFF Research Database (Denmark)

    Edwards, Alistair; Edwards, Gregory; Larsen, Martin Røssel

    2012-01-01

    -translational modification data sets, wherein patterns of sequence surrounding processed sites may reveal more about the functional and structural requirements of the modification and the biochemical processes that regulate them. Results: We developed Report Sites using a test set of phosphoproteomic data from rat......-chemical environment (local pI and hydrophobicity). These were then also compared to corresponding values extracted from the full database to allow comparison of phosphorylation trends. Conclusions: Report Sites enabled physico-chemical aspects of protein phosphorylation to be deciphered in a test set of eleven...... thousand phospho sites. Basic properties of modified proteins, such as site location in the context of the complete protein, were also documented. This program can be easily adapted to any post-translational modification (or, indeed, to any defined amino acid sequence), or expanded to include more...

  5. Effects of electron-transfer chemical modification on the electrical characteristics of graphene

    International Nuclear Information System (INIS)

    Fan Xiaoyan; Tanigaki, Katsumi; Nouchi, Ryo; Yin Lichang

    2010-01-01

    Because of the large reactivity of single layer graphene to electron-transfer chemistries, 4-nitrobenzene diazonium tetrafluoroborate is employed to modify the electrical properties of graphene field-effect transistors. After modification, the transfer characteristics of chemically modified graphene show a reduction in the minimum conductivity, electron-hole mobility asymmetry, a decrease in the electron/hole mobility, and a positive shift of the charge neutrality point with broadening of the minimum conductivity region. These phenomena are attributed to a dediazoniation reaction and the adsorbates on the graphene surface.

  6. Effects of electron-transfer chemical modification on the electrical characteristics of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Fan Xiaoyan; Tanigaki, Katsumi [Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Nouchi, Ryo [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8578 (Japan); Yin Lichang, E-mail: nouchi@sspns.phys.tohoku.ac.jp [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2010-11-26

    Because of the large reactivity of single layer graphene to electron-transfer chemistries, 4-nitrobenzene diazonium tetrafluoroborate is employed to modify the electrical properties of graphene field-effect transistors. After modification, the transfer characteristics of chemically modified graphene show a reduction in the minimum conductivity, electron-hole mobility asymmetry, a decrease in the electron/hole mobility, and a positive shift of the charge neutrality point with broadening of the minimum conductivity region. These phenomena are attributed to a dediazoniation reaction and the adsorbates on the graphene surface.

  7. Chemical modification of b-lactoglobulin by quinones

    Directory of Open Access Journals (Sweden)

    DUSAN SLADIC

    2003-05-01

    Full Text Available The avarone/avarol quinone/hydroquinone couple, as well as their derivatives show considerable antitumor activity. In this work, covalent modifications of b-lactoglobulin, isolated from cow milk, by avarone, its model compound 2-tert-butyl-1,4-benzoquinone, and several of their alkylthio derivatives were studied. The techniques applied for assaying the modifications were: UV/VIS spectrophotometry, SDS PAGE and isoelectrofocusing. The results of the SDS PAGE suggest that polymerisation of the protein occurs. The shift of the pI of the protein upon modification toward lower values indicates that lysine amino groups are the principal site of the reaction of b-lactoglobulin with the quinones.

  8. Ultrastructural demonstration of chemical modification of melanogenesis in hairless mouse skin

    International Nuclear Information System (INIS)

    Nishimura, M.; Gellin, G.A.; Hoshino, S.; Epstein, J.H.; Epstein, W.L.; Fukuyama, K.

    1982-01-01

    We investigated chemical and physical modifications of the genetically determined ultrastructure of melanosomes. The flank skin of hairless mice was treated with ultraviolet energy (UV) shorter than 320 nm or with a combination of a photosensitizer and UV (PUVA treatment). All melanosomes in the induced melanocytes and those in resident melanocytes in the ear skin showed eumelanogenesis, although the degree of melanin deposition differed considerably according to the induction process. Eumelanogenesis was most advanced in the resident melanocytes while PUVA-induced melanocytes showed more immature premelanosomes. We then topically applied 4-tertiary butyl catechol on the skin. The depigmenting agent caused an appearance of pheomelanosomes. The alteration in melanogenesis was seen most distinctly in premelanosomes of the PUVA-induced cells. Altered ultrastructure was also observed in matured melanosomes; this change was most apparent in the resident melanocytes. These findings indicate that cells with eumelanogenesis may undergo pheomelanogenesis. The present study demonstrated effects of chemicals on genetically determined function of melanocytes by quantitative analysis of melanosome ultrastructure

  9. Improving lead adsorption through chemical modification of wheat straw by lactic acid

    Science.gov (United States)

    Mu, Ruimin; Wang, Minxiang; Bu, Qingwei; Liu, Dong; Zhao, Yanli

    2018-01-01

    This work describes the creation of a new cellulosic material derived from wheat straw modified by lactic acid for adsorption of lead in aqueous solution, called 0.3LANS (the concentration of the lactic acid were 0.3mol/L). Batch experiments were conducted to study the effects of initial pH value, contact time, adsorbent dose, initial concentration and temperature. Fourier transform infrared (FTIR), Elemental analysis, BET surface area and Scanning electron micrographs (SEM) analysis were used to investigate the chemical modification. Adsorption isotherm models namely, Langmuir, Freundlich were used to analyse the equilibrium data, and the Langmuir isotherm model provided the best correlation, means that the adsorption was chemical monolayer adsorption and the adsorption capacity qm was increased with increasing temperature, and reached 51.49mg/g for 0.3LANS at 35°C, showing adsorption was exothermic.

  10. In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project

    OpenAIRE

    Judson, Richard S.; Houck, Keith A.; Kavlock, Robert J.; Knudsen, Thomas B.; Martin, Matthew T.; Mortensen, Holly M.; Reif, David M.; Rotroff, Daniel M.; Shah, Imran; Richard, Ann M.; Dix, David J.

    2009-01-01

    Background Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency?s ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. Objectives This project aims to evaluate the use of in vitro assays for understanding the ty...

  11. Urinary screening for potentially genotoxic exposures in a chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Ahlborg, G. Jr.; Bergstroem, B.H.; Hogstedt, C.; Einistoe, P.S.; Sorsa, M.

    1985-10-01

    Mutagenic activity, measured by the bacterial fluctuation assay and thioether concentration in urine from workers at a chemical plant producing pharmaceuticals and explosives, was determined before and after exposure. Of 12 groups only those exposed to trinitrotoluene (n = 14) showed a significant increase in mutagenic activity using Salmonella typhimurium TA 98 without any exogenous metabolic system. The same strain responded only weakly when the S-9 mix was used; with Escherichia coli WP2 uvrA no effect of exposure was observed. Urinary thioether concentration was higher among smokers than among non-smokers, but occupational exposure had no effect. Urinary mutagenicity testing may be a useful tool for screening potentially genotoxic exposures in complex chemical environments.

  12. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry.

    Science.gov (United States)

    Zhang, Wei; Huang, Guangming

    2015-11-15

    Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Estimating biodegradation half-lives for use in chemical screening.

    Science.gov (United States)

    Aronson, Dallas; Boethling, Robert; Howard, Philip; Stiteler, William

    2006-06-01

    Biodegradation half-lives are needed for many applications in chemical screening, but these data are not available for most chemicals. To address this, in phase one of this work we correlated the much more abundant ready and inherent biodegradation test data with measured half-lives for water and soil. In phase two, we explored the utility of the BIOWIN models (in EPI Suite) and molecular fragments for predicting half-lives. BIOWIN model output was correlated directly with measured half-lives, and new models were developed by re-regressing the BIOWIN fragments against the half-lives. All of these approaches gave the best results when used for binary (fast/slow) classification of half-lives, with accuracy generally in the 70-80% range. In the last phase, we used the collected half-life data to examine the default half-lives assigned by EPI Suite and the PBT Profiler for use as input to their level III multimedia models. It is concluded that estimated half-lives should not be used for purposes other than binning or prioritizing chemicals unless accuracy improves significantly.

  14. Chemical modification of hybrid nanostructures (POSS for application as lubricant

    Directory of Open Access Journals (Sweden)

    Caroline Luvison

    2014-08-01

    Full Text Available Polyhedral oligomeric silsesquioxanes (POSS are hybrid structures type RSiO15n, with n organic groups R. These molecules can be easily functionalized by simply changing the chemical constitution of the organic groups. In this work, chemical modification of POSS-NH2 was performed by amidation reaction with butyric acid at elevated temperature, 160°C. The formation of the amide group is evinced by the appearance of NH angular deformation band at 1540 cm-1 in the FTIR spectra. Approximately 40% of the amino groups reacted, according to titration results. The formation of the amide groups resulted in a shift of the glass transition temperature (Tg from -36.9°C to -25.6°C for the modified-POSS sample. Both POSS-NH2 and modified-POSS samples exhibited similar thermal degradation pattern. Analysis of the pairs distribution function (PDF has determined that the hybrid nanoparticles are separated by a periodic distance of approximately 1.32 nm. POSS-NH2 and modified-POSS exhibit newtonian behavior, which will range from 10-1 s-1 and 1000 s-1. The viscosity decreased with increasing temperature, a typical behavior of liquid lubricants.

  15. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    International Nuclear Information System (INIS)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-01-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N 2 /H 2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  16. Identification of critical chemical features for Aurora kinase-B inhibitors using Hip-Hop, virtual screening and molecular docking

    Science.gov (United States)

    Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; John, Shalini; Lee, Keun Woo

    2011-01-01

    This study was performed to find the selective chemical features for Aurora kinase-B inhibitors using the potent methods like Hip-Hop, virtual screening, homology modeling, molecular dynamics and docking. The best hypothesis, Hypo1 was validated toward a wide range of test set containing the selective inhibitors of Aurora kinase-B. Homology modeling and molecular dynamics studies were carried out to perform the molecular docking studies. The best hypothesis Hypo1 was used as a 3D query to screen the chemical databases. The screened molecules from the databases were sorted based on ADME and drug like properties. The selective hit compounds were docked and the hydrogen bond interactions with the critical amino acids present in Aurora kinase-B were compared with the chemical features present in the Hypo1. Finally, we suggest that the chemical features present in the Hypo1 are vital for a molecule to inhibit the Aurora kinase-B activity.

  17. Bioaccumulation and chemical modification of Tc by soil bacteria

    International Nuclear Information System (INIS)

    Henrot, J.

    1989-01-01

    Bioaccumulation and chemical modification of pertechnetate (TcO 4 -) by aerobically and anaerobically grown soil bacteria and by pure cultures of sulfate-reducing bacteria (Desulfovibrio sp.) were studied to gain insight on the possible mechanisms by which bacteria can affect the solubility of Tc in soil. Aerobically grown bacteria had no apparent effect on TcO 4 -; they did not accumulate Tc nor modify its chemical form. Anaerobically grown bacteria exhibited high bioaccumulation and reduced TcO 4 -, enabling its association with organics of the growth medium. Reduction was a metabolic process and not merely the result of reducing conditions in the growth medium. Association of Tc with bacterial polysaccharides was observed only in cultures of anaerobic bacteria. Sulfate-reducing bacteria efficiently removed Tc from solution and promoted its association with organics. Up to 70% of the total Tc in the growth medium was bioaccumulated and/or precipitated. The remaining Tc in soluble form was entirely associated with organics. Pertechnetate was not reduced by the same mechanism as dissimilatory sulfate reduction, but rather by some reducing agent released in the growth medium. A calculation of the amount of Tc that could be associated with the bacterial biomass present in soil demonstrates that high concentration ratios in cultures do not necessarily imply that bioaccumulation is an important mechanism for long-term retention of Tc in soil

  18. Soil-release behaviour of polyester fabrics after chemical modification with polyethylene glycol

    Science.gov (United States)

    Miranda, T. M. R.; Santos, J.; Soares, G. M. B.

    2017-10-01

    The fibres cleanability depends, among other characteristics, on their hydrophilicity. Hydrophilic fibres are easy-wash materials but hydrophobic fibres are difficult to clean due to their higher water-repellent surfaces. This type of surfaces, like polyester (PET), produce an accumulation of electrostatic charges, which favors adsorption and retention of dirt. Thus, the polyester soil-release properties can be increased by finishing processes that improve fiber hydrophilicity. In present study, PET fabric modification was described by using poly(ethylene glycol) (PEG) and N,N´-dimethylol-4,5-dihydroxyethylene urea (DMDHEU) chemically modified resin. Briefly, the modification process was carried out in two steps, one to hydrolyse the polyester and create hydroxyl and carboxylic acid groups on the surface and other to crosslink the PEG chains. The resulting materials were characterized by contact angle, DSC and FTIR-ATR methods. Additionally, the soil release behavior and the mechanical properties of modified PET were evaluated. For the best process conditions, the treated PET presented 0° contact angle, grade 5 stain release and acceptable mechanical performance.

  19. Chemically intuited, large-scale screening of MOFs by machine learning techniques

    Science.gov (United States)

    Borboudakis, Giorgos; Stergiannakos, Taxiarchis; Frysali, Maria; Klontzas, Emmanuel; Tsamardinos, Ioannis; Froudakis, George E.

    2017-10-01

    A novel computational methodology for large-scale screening of MOFs is applied to gas storage with the use of machine learning technologies. This approach is a promising trade-off between the accuracy of ab initio methods and the speed of classical approaches, strategically combined with chemical intuition. The results demonstrate that the chemical properties of MOFs are indeed predictable (stochastically, not deterministically) using machine learning methods and automated analysis protocols, with the accuracy of predictions increasing with sample size. Our initial results indicate that this methodology is promising to apply not only to gas storage in MOFs but in many other material science projects.

  20. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    International Nuclear Information System (INIS)

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-01-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  1. Topological surface states of Bi{sub 2}Te{sub 2}Se are robust against surface chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Conor R.; Sahasrabudhe, Girija; Kushwaha, Satya Kumar; Cava, Robert J.; Schwartz, Jeffrey [Department of Chemistry, Princeton University, Princeton, NJ (United States); Xiong, Jun [Department of Physics, Princeton University, Princeton, NJ (United States)

    2014-12-01

    The robustness of the Dirac-like electronic states on the surfaces of topological insulators (TIs) during materials process-ing is a prerequisite for their eventual device application. Here, the (001) cleavage surfaces of crystals of the topological insulator Bi{sub 2}Te{sub 2}Se (BTS) were subjected to several surface chemical modification procedures that are common for electronic materials. Through measurement of Shubnikov-de Hass (SdH) oscillations, which are the most sensitive measure of their quality, the surface states of the treated surfaces were compared to those of pristine BTS that had been exposed to ambient conditions. In each case - surface oxidation, deposition of thin layers of Ti or Zr oxides, or chemical modification of the surface oxides - the robustness of the topological surface electronic states was demonstrated by noting only very small changes in the frequency and amplitude of the SdH oscillations. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Science.gov (United States)

    Moraczewski, Krzysztof; Rytlewski, Piotr; Malinowski, Rafał; Żenkiewicz, Marian

    2015-08-01

    The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  3. Effect of chemical modifications of cellulose on the activity of a cellulase from Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, R.F.; Redmond, M.A.

    1983-05-01

    Five chemically modified forms of cellulose were prepared, characterized, and tested as substrates for a homogeneous glucanohydrolase from A. niger. The relative order of reactivity at pH 4.0 was DEAE = PEI more than benzyl DEAE more than cellulose more than P more than CM. This indicates that positively charged cellulose substrates are more susceptible to hydrolysis by the cellulase. This observation strengthens an earlier proposal that carboxyl groups on the enzyme are involved in substrate binding and catalytic action. Chemical modification is suggested as a method to increase the rate of enzymatic hydrolysis of cellulose, a process now in the commercial development stage. (Refs. 27).

  4. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    Science.gov (United States)

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  5. Effect of chemical modification on reduction and sorptive properties of chars from hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Stanczyk, K.; Miga, K.; Fabis, G.; Jastrzab, K. [Polskiej Akademii Nauk, Gliwice (Poland)

    1998-01-01

    Hydropyrolysis of bituminous coal and lignite as way of synthesis of adsorbents has been applied. Chemical modification of chars based on simultaneous carbonization of coal and plastics containing sulfur and nitrogen has been carried out. It was stated that modified chars exhibit better reduction and sorptive properties than non-modified and that modified adsorbents made of lignite exceed commercial ones. 7 refs., 4 figs., 3 tabs.

  6. High-throughput migration modelling for estimating exposure to chemicals in food packaging in screening and prioritization tools

    DEFF Research Database (Denmark)

    Ernstoff, Alexi S; Fantke, Peter; Huang, Lei

    2017-01-01

    Specialty software and simplified models are often used to estimate migration of potentially toxic chemicals from packaging into food. Current models, however, are not suitable for emerging applications in decision-support tools, e.g. in Life Cycle Assessment and risk-based screening and prioriti...... to uncertainty and dramatically decreased model performance (R2 = 0.4, Se = 1). In all, this study provides a rapid migration modelling approach to estimate exposure to chemicals in food packaging for emerging screening and prioritization approaches....

  7. Facile high-throughput forward chemical genetic screening by in situ monitoring of glucuronidase-based reporter gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vivek eHalder

    2015-01-01

    Full Text Available The use of biologically active small molecules to perturb biological functions holds enormous potential for investigating complex signaling networks. However, in contrast to animal systems, the search for and application of chemical tools for basic discovery in the plant sciences, generally referred to as ‘chemical genetics’, has only recently gained momentum. In addition to cultured cells, the well-characterized, small-sized model plant Arabidopsis thaliana is suitable for cultivation in microplates, which allows employing diverse cell- or phenotype-based chemical screens. In such screens, a chemical’s bioactivity is typically assessed either through scoring its impact on morphological traits or quantifying molecular attributes such as enzyme or reporter activities. Here, we describe a facile forward chemical screening methodology for intact Arabidopsis seedlings harboring the β-glucuronidase (GUS reporter by directly quantifying GUS activity in situ with 4-methylumbelliferyl-β-D-glucuronide (4-MUG as substrate. The quantitative nature of this screening assay has an obvious advantage over the also convenient histochemical GUS staining method, as it allows application of statistical procedures and unbiased hit selection based on threshold values as well as distinction between compounds with strong or weak bioactivity. At the same time, the in situ bioassay is very convenient requiring less effort and time for sample handling in comparison to the conventional quantitative in vitro GUS assay using 4-MUG, as validated with several Arabidopsis lines harboring different GUS reporter constructs. To demonstrate that the developed assays is particularly suitable for large-scale screening projects, we performed a pilot screen for chemical activators or inhibitors of salicylic acid-mediated defense signaling using the Arabidopsis PR1p::GUS line. Importantly, the screening methodology provided here can be adopted for any inducible GUS reporter line.

  8. Comparison the performance of different catalysts in chemical modification of Poplar wood with Glutaraldehyde

    Directory of Open Access Journals (Sweden)

    ندا اسماعیلی

    2016-12-01

    Full Text Available In this study, the effect of different catalysts on chemical modification of poplar wood and physical properties of the resulting product was evaluated. 12.5% HCl and water soluble salts containing ZnCl2, CaCl2, AlCl3, MgCl2 (based on the weight of glutaraldehyde and 1% Al2O3, SiO2 and ZnO nano particles (based on the weight of glutaraldehyde were used. After heating in oven for 48 hour, modification with glutaraldehyde and MgCl2, ZnO nano particles, SiO2, Al2O3, ZnCl2, AlCl3, CaCl2 and HCl as catalysts were resulted to 14.5, 12.57, 10.62, 8.69, 8.51, 7.19, 5.97 and 5.41 % weight gain respectively. After 24h soaking in water, the physical properties of modified specimens, such as water absorption, volume swelling and ASE were measured. The highest and lowest bulking were calculated for Mgcl2 and Hcl catalysts with 6.98 and 2.37% respectively. The modification in presence of Mgcl2 catalyst was shown highest increase of density with average of 0.55 g/cm3. The highest and lowest water absorption was measured 79.61 and 45.32% in the modification with HCl and MgCl catalysts. Hcl with acidic quality, can break ether bonds in hemiacetal and even acetal structure. Modification with MgCl2 was shown best result in comparison with other catalysts. It is likely that the formation a complex of magnesium with oxygen, could resulted to activate carbonyl groups in glutaraldehyde and created the crosslink.

  9. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces.

    Science.gov (United States)

    Briand, Elisabeth; Humblot, Vincent; Landoulsi, Jessem; Petronis, Sarunas; Pradier, Claire-Marie; Kasemo, Bengt; Svedhem, Sofia

    2011-01-18

    The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described

  10. Evaluation of the chemical modifications in petroleum asphalt cement with the addition of polypropylene

    International Nuclear Information System (INIS)

    Marcondes, C.P.; Sales, M.J.A.; Resck, I.S.; Farias, M.M.; Souza, M.V.R.

    2010-01-01

    Studies show that the common distress mode in the Brazilian highway network are fatigue cracks and plastic deformation, which are associated with the type of material used in the pavement layers, structural project, excessive traffic load and weathering. To minimize these defects, research on modifiers such as polymers, added to asphalt binders have been developed to provide physical, chemical and rheological improvement. This paper investigates chemical modifications of the binders with the addition of PP by FTIR, NMR and DSC. FTIR spectra of pure and modified binder showed no differences in absorption. NMR analysis showed no strong chemical bonds between the binder and PP. DSC curve of PP showed a melting temperature of 160 deg C (ΔH = 94J/g) and the pure binder presented an endothermic transition between 20 and 40 deg C (ΔH = 2J/g). In the DSC curves of mixtures, these transitions are not significant, indicating possible interactions between asphalt binder and PP. (author)

  11. DNA modification by alkylating compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kruglyakova, E.E.

    1985-09-01

    Results are given for research on the physico-chemical properties of alkylating compounds - nitroso alkyl ureas (NAU) which possess a broad spectrum of biological activity, such as mutagenic, carcinogenic, and anti-tumor action that is due to the alkylation and carbamoylation of DNA as well as other cellular components. Identified chemical products of NAU interaction with DNA and its components are cited. Structural conversions of a DNA macromolecule resulting from its chemical modification are examined. NAU are used to discuss possible biological consequences of DNA modification. 148 references.

  12. Effect of different chemical modification of carbon nanotubes for the oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Dumitru, Anca; Mamlouk, M.; Scott, K.

    2014-01-01

    The electrochemical reduction of oxygen on chemically modified multi-walled carbon nanotubes (CNTs) electrodes in 1 M KOH solution has been studied using the rotating ring disc electrode (RDE). The surface modification of CNTs has been estimated by XPS and Raman spectroscopy. The effect of different oxygen functionalities on the surface of carbon nanotube for the oxygen reduction reaction (ORR) is considered in terms of the number of electrons (n) involved. Electrochemical studies indicate that in the case of the modification of CNTs with citric acid and diazonium salts the n values were close to two in the measured potential range, and the electrochemical reduction is limited to the production of peroxide as the final product. In the case of the modification of carbon nanotubes with peroxymonosulphuric acid, in the measured potential range, the n value is close to 4 indicating the four-electron pathway for the ORR. By correlating ORR measurements with the XPS analysis, we propose that the increase in electrocatalytic activity towards the ORR, for CNT can be attributed to the increase in C-O groups on the surface of CNTs after modification with peroxymonosulphuric acid

  13. Radiation modification of swollen and chemically modified cellulose

    International Nuclear Information System (INIS)

    Borsa, J.; Toth, T.

    2002-01-01

    Complete text of publication follows. Biodegradable hydrogel was produced by radiation-induced crosslinking of water soluble carboxymethyl cellulose. Mobility of the molecular chain was found to play an important role in the crosslinking reaction. In this work the role of cellulose chains' mobility in radiation-induced reactions of fibrous cellulose was studied. Mobility of chains was improved by swelling (in sodium hydroxide and tetramethylammonium hydroxide) and chemical modification (substitution of about 3 % of hydroxyl groups with carboxymethyl groups), respectively. All samples were neutralized after the treatments. Accessibility of cellulose characterized by water adsorption and retention was significantly improved by the treatments in the following order: sodium hydroxide < tetramethylammonium hydroxide < carboxymethylation. Less fibrillar structure of modified fibers was observed by electron microscope. Samples were irradiated in wet form in open air (10 kGy). Untreated sample coated with soluble CMC was also irradiated. Degree of polymerization, FTIR spectra, and water sorption of samples before and after irradiation are presented. Amount of water adsorbed on samples decreased after irradiation. It can be considered the consequence of crosslinks, which might improve the crease recovery ability of cotton fabric. High accessibility improved degradation rather than crosslinking of cellulose chains

  14. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej–Curie 55, 87-100 Toruń (Poland); Żenkiewicz, Marian [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2015-08-15

    Highlights: • We modified polylactide surface layer with chemical, plasma or laser methods. • We tested selected properties and surface structure of modified samples. • We stated that the plasma treatment appears to be the most beneficial. - Abstract: The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm{sup 2} was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  15. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    DEFF Research Database (Denmark)

    Shin, Hyeong-Moo; Ernstoff, Alexi; Arnot, Jon

    2015-01-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify....../oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models....

  16. The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons; George C. Chen

    2017-01-01

    The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood...

  17. EFFECT OF CHEMICAL MODIFICATION AND HOT-PRESS DRYING ON POPLAR WOOD

    Directory of Open Access Journals (Sweden)

    Guo-Feng Wu

    2010-11-01

    Full Text Available Urea-formaldehyde prepolymer and hot-press drying were used to improve the properties of poplar wood. The wood was impregnated with the prepolymer using a pulse-dipping machine. The impregnated timbers were compressed and dried by a multilayer hot-press drying kiln. The drying rate was more rapid during the chemical modification and hot-press drying than conventional kiln-drying. In addition, the properties of timber were also enhanced obviously. When the compression rate was 28.6%, the basic density, oven dry density and air-dried density of modified wood improved 22%, 71%, and 70%, respectively. The bending strength and compressive strength parallel to grain increased 60% and 40%. The water uptake of treated wood was significantly decreased compared with the untreated wood. The FTIR analysis successfully showed that the intensity of hydroxyl and carbonyl absorption peaks decreased significantly, which was attributed to a reaction of the NHCH2OH of urea-formaldehyde prepolymer with the wood carboxyl (C=O and hydroxyl (-OH groups. The XRD results indicated that the degree of crystallinity increased from 35.09% to 36.91%. The morphologic models of chemical within wood were discovered by SEM.

  18. Studies on chemical modification of cold agglutinin from the snail Achatina fulica.

    Science.gov (United States)

    Sarkar, M; Mitra, D; Sen, A K

    1987-01-01

    The cold agglutinin isolated from the albumin gland of the snail Achatina fulica was modified with various chemical reagents in order to detect the amino acids and/or carbohydrate residues present in its carbohydrate-binding sites. Treatment with reagents considered specific for modification of lysine, arginine and tryptophan residues of the cold agglutinin did not affect the carbohydrate-binding activity of the agglutinin. Modification of tyrosine residues showed some change. However, modification with carbodiimide followed by alpha-aminobutyric acid methyl ester causes almost complete loss of its binding activity, indicating the involvement of aspartic acid and glutamic acid in its carbohydrate-binding activity. The carbohydrate residues of the cold agglutinin were removed by beta-elimination reaction, indicating that the sugars are O-glycosidically linked to protein part of the molecule. Removal of galactose residues from the cold agglutinin by the action of beta-galactosidase indicated that the galactose molecules are beta-linked. These carbohydrate-modified glycoproteins showed a marked change in agglutination property, i.e. they agglutinated rabbit erythrocytes at both 10 degrees C and 25 degrees C, indicating that the galactose residues of the glycoprotein play an important role in the cold-agglutination property of the glycoprotein. The c.d. data showed the presence of an almost identical type of random-coil conformation in the native cold agglutinin at 10 degrees C and in the carbohydrate-modified glycoprotein at 10 degrees C and 25 degrees C. This particular random-coil conformation is essential for carbohydrate-binding property of the agglutinin. Images Fig. 1. PMID:3118867

  19. Quest of novel GH20 N-acetyl hexosaminidasetransglycosylating catalysts: functional screening, data mining and semi-rational mutagenesis

    DEFF Research Database (Denmark)

    Teze, David; Visnapuu, Triinu; Kjeldsen, Christian

    and the fact that the products are also substrates, thus needing a kinetic control of the reaction. Several approaches have been developed to overcome these, including mechanism modifications (e.g. glycosynthases, chemical rescue), functional screening and data mining to find natural transglycosidases...... been reported. Thus, we turned to discovery and characterization of new GH20s and performing a systematic mutagenesis study. Several new GH20s of bacterial origin were isolated and described by functional screening and data mining, including transglycosidases able to synthesize lacto...

  20. Chemical modifications and stability of diamond nanoparticles resolved by infrared spectroscopy and Kelvin force microscopy

    Czech Academy of Sciences Publication Activity Database

    Kozak, Halyna; Remeš, Zdeněk; Houdková, Jana; Stehlík, Štěpán; Kromka, Alexander; Rezek, Bohuslav

    2013-01-01

    Roč. 15, č. 4 (2013), "1568-1"-"1568-9" ISSN 1388-0764 R&D Projects: GA ČR GAP108/12/0910; GA ČR GPP205/12/P331; GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : diamond nanoparticles * chemical modification * GAR-FTIR * AFM * KFM * XPS Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.278, year: 2013 http://link.springer.com/article/10.1007%2Fs11051-013-1568-7

  1. Chemical mechanisms of histone lysine and arginine modifications

    OpenAIRE

    Smith, Brian C.; Denu, John M.

    2008-01-01

    Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, an...

  2. Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact

    Science.gov (United States)

    Tarabout, Christophe; Roux, Stéphane; Gobeaux, Frédéric; Fay, Nicolas; Pouget, Emilie; Meriadec, Cristelle; Ligeti, Melinda; Thomas, Daniel; IJsselstijn, Maarten; Besselievre, François; Buisson, David-Alexandre; Verbavatz, Jean-Marc; Petitjean, Michel; Valéry, Céline; Perrin, Lionel; Rousseau, Bernard; Artzner, Franck; Paternostre, Maité; Cintrat, Jean-Christophe

    2011-01-01

    Supramolecular self-assembly is an attractive pathway for bottom-up synthesis of novel nanomaterials. In particular, this approach allows the spontaneous formation of structures of well-defined shapes and monodisperse characteristic sizes. Because nanotechnology mainly relies on size-dependent physical phenomena, the control of monodispersity is required, but the possibility of tuning the size is also essential. For self-assembling systems, shape, size, and monodispersity are mainly settled by the chemical structure of the building block. Attempts to change the size notably by chemical modification usually end up with the loss of self-assembly. Here, we generated a library of 17 peptides forming nanotubes of monodisperse diameter ranging from 10 to 36 nm. A structural model taking into account close contacts explains how a modification of a few Å of a single aromatic residue induces a fourfold increase in nanotube diameter. The application of such a strategy is demonstrated by the formation of silica nanotubes of various diameters. PMID:21518895

  3. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies

    Science.gov (United States)

    Szczepanik, Beata; Słomkiewicz, Piotr; Garnuszek, Magdalena; Czech, Kamil; Banaś, Dariusz; Kubala-Kukuś, Aldona; Stabrawa, Ilona

    2015-03-01

    The effect of chemical modification of halloysite from a Polish strip mine "Dunino" on the chemical composition and structure of this clay mineral was studied using infrared spectroscopy (ATR FT-IR), wavelength dispersive X-ray fluorescence (WDXRF), and X-ray powder diffraction (XRPD) methods. The results obtained by the WDXRF technique confirm that the content of silica and alumina was the highest for bleached halloysite samples and the lowest for acid-treated halloysite. A higher content of Fe2O3 in comparison to halloysite samples coming from other countries was observed for raw halloysite samples. XRPD diffraction pattern obtained for raw halloysite confirmed the presence of halloysite, kaolinite, hematite, and calcite minerals in the sample. Bleaching the halloysite removes (or significantly reduces) the content of other minerals present in the raw halloysite. The FT-IR spectra of the studied halloysite samples show in the 3700-3600 cm-1 region well-defined hydroxyl stretching bands characteristic for the kaolin-group minerals and bands associated with the vibrations of the aluminium-silicon skeleton in the 1400-1000 cm-1 region. Modifying halloysite with 4-chloro-aniline causes successive incorporation of amine into the BH sample.

  4. Chemical modification of glass surface with a monolayer of nonchromophoric and chromophoric methacrylate terpolymer

    Energy Technology Data Exchange (ETDEWEB)

    Janik, Ryszard [Department of Polymer Engineering and Technology, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Kucharski, Stanislaw, E-mail: stanislaw.kucharski@pwr.wroc.pl [Department of Polymer Engineering and Technology, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Sobolewska, Anna [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Barille, Regis [Institut des Sciences et Techniques Moleculaires d' Angers ' Moltech Anjou' , CNRS UMR 6200, 49045 Angers (France)

    2010-11-15

    The methacrylate terpolymers, a nonchromophoric and chromophoric one, containing 2-hydroxyethyl groups were reacted with 3-isocyanatopropyltriethoxysilane to obtain reactive polymers able to form covalent bonding with -SiOH groups of the glass surface via triethoxysilane group condensation. Chemical modification of the Corning 2949 glass plates treated in this way resulted in increase of wetting angle from 11{sup o} to ca. 70-73{sup o}. Determination of ellipsometric parameters revealed low value of the substrate refractive index as compared with that of bulk Corning 2949 glass suggesting roughness of the surface. The AFM image of the bare glass surface and that modified with terpolymer monolayer confirmed this phenomenon. Modification of the glass with the terpolymer monolayer made it possible to create the substrate surface well suited for deposition of familiar chromophore film by spin-coating. The chromophore polymer film deposited onto the modified glass surface was found to be resistant to come unstuck in aqueous solution.

  5. Chemical Screening for Bioactivated Electrophilic Metabolites Using Alginate Immobilization of Metabolic Enzymes (AIME) (SOT)

    Science.gov (United States)

    The US EPA's ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to a mischaracterization...

  6. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure

    Science.gov (United States)

    Nath, Anjali K.; Roberts, Lee D.; Liu, Yan; Mahon, Sari B.; Kim, Sonia; Ryu, Justine H.; Werdich, Andreas; Januzzi, James L.; Boss, Gerry R.; Rockwood, Gary A.; MacRae, Calum A.; Brenner, Matthew; Gerszten, Robert E.; Peterson, Randall T.

    2013-01-01

    Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high-throughput chemical screening. In a screen of 3120 small molecules, we discovered 4 novel antidotes that block cyanide toxicity. The most potent antidote was riboflavin. Metabolomic profiling of cyanide-treated zebrafish revealed changes in bile acid and purine metabolism, most notably by an increase in inosine levels. Riboflavin normalizes many of the cyanide-induced neurological and metabolic perturbations in zebrafish. The metabolic effects of cyanide observed in zebrafish were conserved in a rabbit model of cyanide toxicity. Further, humans treated with nitroprusside, a drug that releases nitric oxide and cyanide ions, display increased circulating bile acids and inosine. In summary, riboflavin may be a novel treatment for cyanide toxicity and prophylactic measure during nitroprusside treatment, inosine may serve as a biomarker of cyanide exposure, and metabolites in the bile acid and purine metabolism pathways may shed light on the pathways critical to reversing cyanide toxicity.—Nath, A. K., Roberts, L. D., Liu, Y., Mahon, S. B., Kim, S., Ryu, J. H., Werdich, A., Januzzi, J. L., Boss, G. R., Rockwood, G. A., MacRae, C. A., Brenner, M., Gerszten, R. E., Peterson, R. T. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure. PMID:23345455

  7. Application of radiation technology in starch modification

    International Nuclear Information System (INIS)

    Chen Huiyuan; Peng Zhigang; Ding Zhongmin; Lu Jiajiu

    2007-01-01

    In order to commercialize the radiation modification of starch, corn starch was irradiated with different dose of 60 Co gamma radiations. Some basic physical and chemical properties of the resulted modified starch paste were measured with emphasis on the viscosity stability and tensile strength. The results indicate that irradiation of corn starch with a dose of 4-10 kGy can decrease its viscosity to 5-14 mPa·s, and the tensile strength can meet the standard set up for textile paste. In comparison with chemical modification for starch, radiation modification is simpler in technology, more convenient in operation, more stable in modification quality, and easier to control. The mechanism of radiation modification of starch was also discussed. (authors)

  8. Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors within the ToxCast Phase I and II Chemical Libraries

    Science.gov (United States)

    High-throughput screening (HTS) for potential thyroid–disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limi...

  9. Novel Abscisic Acid Antagonists Identified with Chemical Array Screening.

    Science.gov (United States)

    Ito, Takuya; Kondoh, Yasumitsu; Yoshida, Kazuko; Umezawa, Taishi; Shimizu, Takeshi; Shinozaki, Kazuo; Osada, Hiroyuki

    2015-11-01

    Abscisic acid (ABA) signaling is involved in multiple processes in plants, such as water stress control and seed dormancy. Major regulators of ABA signaling are the PYR/PYL/RCAR family receptor proteins, group A protein phosphatases 2C (PP2Cs), and subclass III of SNF1-related protein kinase 2 (SnRK2). Novel ABA agonists and antagonists to modulate the functions of these proteins would not only contribute to clarification of the signaling mechanisms but might also be used to improve crop yields. To obtain small molecules that interact with Arabidopsis ABA receptor PYR1, we screened 24 275 compounds from a chemical library at the RIKEN Natural Products Depository by using a chemical array platform. Subsequent SnRK2 and PP2C assays narrowed down the candidates to two molecules. One antagonized ABA in a competitive manner and inhibited the formation of the PYR1-ABA-PP2C ternary complex. These compounds might have potential as bioprobes to analyze ABA signaling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Phyto chemical and antioxidant screening of extracts of Aquilaria malaccensis leaves

    International Nuclear Information System (INIS)

    Salmah Moosa

    2010-01-01

    Aquilaria malaccensis is an endangered economic plant used for production of agar wood worldwide. The sequential maceration extraction methods utilizing solvents with different polarities namely hexane, ethyl acetate and methanol yielded the corresponding crude extract. The aqueous and methanol extracts along with dry powder of leaf of the plant was screened for the presence of phytochemicals. They were also tested for antioxidant activities. The result indicates the presence of alkaloids, flavanoids, triterpenoids, steroids and tannins. The phyto chemical screening suggests that flavanoids present in this species might provide a great value of antioxidant activity. Preliminary screenings of the free radical scavenging activity on the extracts of the plants with 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) were tested and showed positive result. Quarcetine was used as reference standard. The extracts exhibited strong antioxidant activity radical scavenging activity with IC50 value of 8.0 x 102 μg/ ml, 1.6 x 102 μg/ ml, 1.4 x 102 μg/ ml, 30.0 μg/ ml and 3.33 μg/ ml for hexane, DCM, ethyl acetate, methanol and quercetine respectively. Determination on antioxidant activity of each crude extract showed that methanol crude extract had the highest IC50 value than ethyl acetate, dichloromethane and hexane crude extract. This means that methanol possess the highest inhibition of DPPH radical scavenging activity compared to the other crudes but still lower than Quercetin (standard). Phyto chemical analysis on the hexane extract of Aquilaria malaccensis has been conducted. Several chromatographic methods have been employed to the hexane of the leaves which led to the isolation of three compounds namely Stigmasterol, β-sitosterol and 3-fridelanol. The present study has proved the usefulness of agar wood tree for medicinal purposes and its potential as a source of useful drugs. (author)

  11. Novel approach for classifying chemicals according to skin sensitizing potency by non-radioisotopic modification of the local lymph node assay.

    Science.gov (United States)

    Takeyoshi, Masahiro; Iida, Kenji; Shiraishi, Keiji; Hoshuyama, Satsuki

    2005-01-01

    The murine local lymph node assay (LLNA) is currently recognized as a stand-alone sensitization test for determining the sensitizing potential of chemicals, and it has the advantage of yielding a quantitative endpoint that can be used to predict the sensitization potency of chemicals. The EC3 has been proposed as a parameter for classifying chemicals according to the sensitization potency. We previously developed a non-radioisotopic endpoint for the LLNA based on 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA), and we are proposing a new procedure to predict the sensitization potency of chemicals based on comparisons with known human contact allergens. Nine chemicals (i.e. diphencyclopropenone, p-phenylenediamine, glutaraldehyde, cinnamicaldehyde, citral, eugenol, isopropyl myristate, propyleneglycol and hexane) categorized as human contact allergen classes 1-5 were tested by the non-RI LLNA with the following reference allergens: 2,4-dinitrochlorobenzene (DNCB) as a class 1 human contact allergen, isoeugenol as a class 2 human contact allergen and alpha-hexylcinnamic aldehyde (HCA) as a class 3 human contact allergen. Consequently, nine test chemicals were almost assigned to their correct allergen class. The results suggested that the new procedure for non-RI LLNA can provide correct sensitization potency data. Sensitization potency data are useful for evaluating the sensitization risk to humans of exposure to new chemical products. Accordingly, this approach would be an effective modification of LLNA with regard to its experimental design. Moreover, this procedure can be applied also to the standard LLNA with radioisotopes and to other modifications of the LLNA. Copyright 2005 John Wiley & Sons, Ltd.

  12. Model for screening-level assessment of near-field human exposure to neutral organic chemicals released indoors.

    Science.gov (United States)

    Zhang, Xianming; Arnot, Jon A; Wania, Frank

    2014-10-21

    Screening organic chemicals for hazard and risk to human health requires near-field human exposure models that can be readily parametrized with available data. The integration of a model of human exposure, uptake, and bioaccumulation into an indoor mass balance model provides a quantitative framework linking emissions in indoor environments with human intake rates (iRs), intake fractions (iFs) and steady-state concentrations in humans (C) through consideration of dermal permeation, inhalation, and nondietary ingestion exposure pathways. Parameterized based on representative indoor and adult human characteristics, the model is applied here to 40 chemicals of relevance in the context of human exposure assessment. Intake fractions and human concentrations (C(U)) calculated with the model based on a unit emission rate to air for these 40 chemicals span 2 and 5 orders of magnitude, respectively. Differences in priority ranking based on either iF or C(U) can be attributed to the absorption, biotransformation and elimination processes within the human body. The model is further applied to a large data set of hypothetical chemicals representative of many in-use chemicals to show how the dominant exposure pathways, iF and C(U) change as a function of chemical properties and to illustrate the capacity of the model for high-throughput screening. These simulations provide hypotheses for the combination of chemical properties that may result in high exposure and internal dose. The model is further exploited to highlight the role human contaminant uptake plays in the overall fate of certain chemicals indoors and consequently human exposure.

  13. In-medium Modifications of Hadron Masses and Chemical Freeze-out in Ultra-relativistic Heavy-ion Collisions

    International Nuclear Information System (INIS)

    Florkowski, W.; Broniowski, W.

    1999-10-01

    We confront the hypothesis of chemical freeze-out in ultra-relativistic heavy-ion collisions with the hypothesis of large modifications of hadron masses in nuclear medium. We find that the thermal-model predictions for the ratios of particle multiplicities are sensitive to the values of in-medium hadronic masses. In particular, the π + /p ratio decreases by 35% when the masses of all hadrons (except for pseudo-Goldstone bosons) are scaled down by 30%. (author)

  14. Chemical modification and characterization of quaternized polysulfones.

    CSIR Research Space (South Africa)

    Nonjola, P

    2008-12-01

    Full Text Available Synthesis and characterization of anion-exchange membranes (AEMs) using polysulfones is described. The modification process of polysulfones involves two steps: Firstly, by introducing chloromethyl groups followed by quaternization reaction...

  15. Body modification and substance use in adolescents: is there a link?

    Science.gov (United States)

    Brooks, Traci L; Woods, Elizabeth R; Knight, John R; Shrier, Lydia A

    2003-01-01

    To describe the characteristics of body modification among adolescents and to determine whether adolescents who engage in body modification are more likely to screen positive for alcohol and other drug problems than those who do not. Adolescents aged 14 to 18 years presenting to an urban adolescent clinic for routine health care completed a questionnaire about body modification and a substance use assessment battery that included the 17-item Problem Oriented Screening Instrument for Teenagers Alcohol/Drug Use and Abuse Scale (POSIT-ADS). Body modification was defined as piercings (other than one pair of bilateral earlobe piercings in females), tattoos, scarification, and branding. Problem substance use was defined as a POSIT-ADS score > or =1. Data were analyzed using logistic regression to determine whether the presence of body modification was an independent predictor of problem substance use. The 210 participants had a mean (+/- SD) age of 16.0 (+/- 1.4) years and 63% were female. One hundred adolescents (48%) reported at least one body modification; girls were more likely than boys to have body modification (59% vs. 28%, p branding; 21 (10%) had more than one type of body modification. These were in a variety of locations, most commonly the ear and the nose (piercings) or the extremities (tattoos). One-third of the sample (33%) screened positive for problem substance use on the POSIT-ADS questionnaire. Controlling for age, adolescents with body modification had 3.1 times greater odds of problem substance use than those without body modification (95% CI 1.7, 5.8). Body modification was associated with self-reported problem alcohol and other drug use among middle adolescents presenting for primary care. More research is needed to determine the clinical and sociocultural significance of body modification and its relationship to substance use in this population. Copyright Society for Adolescent Medicine, 2003

  16. Chemical Modification of Semiconductor Surfaces for Molecular Electronics.

    Science.gov (United States)

    Vilan, Ayelet; Cahen, David

    2017-03-08

    Inserting molecular monolayers within metal/semiconductor interfaces provides one of the most powerful expressions of how minute chemical modifications can affect electronic devices. This topic also has direct importance for technology as it can help improve the efficiency of a variety of electronic devices such as solar cells, LEDs, sensors, and possible future bioelectronic ones. The review covers the main aspects of using chemistry to control the various aspects of interface electrostatics, such as passivation of interface states and alignment of energy levels by intrinsic molecular polarization, as well as charge rearrangement with the adjacent metal and semiconducting contacts. One of the greatest merits of molecular monolayers is their capability to form excellent thin dielectrics, yielding rich and unique current-voltage characteristics for transport across metal/molecular monolayer/semiconductor interfaces. We explain the interplay between the monolayer as tunneling barrier on the one hand, and the electrostatic barrier within the semiconductor, due to its space-charge region, on the other hand, as well as how different monolayer chemistries control each of these barriers. Practical tools to experimentally identify these two barriers and distinguish between them are given, followed by a short look to the future. This review is accompanied by another one, concerning the formation of large-area molecular junctions and charge transport that is dominated solely by molecules.

  17. Safety of modifications at nuclear power plants - the role of minor modifications and human and organisational factors

    International Nuclear Information System (INIS)

    2005-01-01

    in the present report. The ultimate responsibility for plant safety lies with the licensee. Consequently, modification processes at the utilities are controlled by written procedures. The modification processes vary depending on the type and scope of the modification. Large modifications generally lead to fewer problems, because these projects are given a great deal of attention and resources together with flexibility in milestones and timing of activities. In contrast, minor modifications seem to, according to recent experience, represent a generic challenge because they are less likely to be recognised as safety significant. Similar kinds of challenges may arise during plant maintenance, when changes in the design or materials may be made without anyone recognising that the maintenance work has actually led to functional modification of plant equipment. A modification process, in which possible safety influences are assessed early, may improve nuclear safety to a significant extent and, at the same time, reduce overall modification cost. Screening of intended changes can be used to estimate design and analysis effort required in the modification process. In the screening, it should be observed that system complexity sometimes may have unexpected impacts. Screening criteria should address the safety significance of the systems and components modified. Also, the impact of the changes on tasks performed by operators and maintainers should be assessed. Major modification projects should always include an analysis of both technical and human contributions to plant operability and maintainability as a part of their comprehensive review process. It is important to create awareness and understanding of the potential safety impacts of modifications at NPPs. This awareness may be improved by collecting and disseminating information about modification-related events. Good results may only be achieved by integrating technical and human factors considerations in the safety

  18. Improved exposure estimation in soil screening and cleanup criteria for volatile organic chemicals.

    Science.gov (United States)

    DeVaull, George E

    2017-09-01

    Soil cleanup criteria define acceptable concentrations of organic chemical constituents for exposed humans. These criteria sum the estimated soil exposure over multiple pathways. Assumptions for ingestion, dermal contact, and dust exposure generally presume a chemical persists in surface soils at a constant concentration level for the entire exposure duration. For volatile chemicals, this is an unrealistic assumption. A calculation method is presented for surficial soil criteria that include volatile depletion of chemical for these uptake pathways. The depletion estimates compare favorably with measured concentration profiles and with field measurements of soil concentration. Corresponding volatilization estimates compare favorably with measured data for a wide range of volatile and semivolatile chemicals, including instances with and without the presence of a mixed-chemical residual phase. Selected examples show application of the revised factors in estimating screening levels for benzene in surficial soils. Integr Environ Assess Manag 2017;13:861-869. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  19. Bio-oils from biomass slow pyrolysis: a chemical and toxicological screening.

    Science.gov (United States)

    Cordella, Mauro; Torri, Cristian; Adamiano, Alessio; Fabbri, Daniele; Barontini, Federica; Cozzani, Valerio

    2012-09-15

    Bio-oils were produced from bench-scale slow-pyrolysis of three different biomass samples (corn stalks, poplar and switchgrass). Experimental protocols were developed and applied in order to screen their chemical composition. Several hazardous compounds were detected in the bio-oil samples analysed, including phenols, furans and polycyclic aromatic hydrocarbons. A procedure was outlined and applied to the assessment of toxicological and carcinogenic hazards of the bio-oils. The following hazardous properties were considered: acute toxicity; ecotoxicity; chronic toxicity; carcinogenicity. Parameters related to these properties were quantified for each component identified in the bio-oils and overall values were estimated for the bio-oils. The hazard screening carried out for the three bio-oils considered suggested that: (i) hazards to human health could be associated with chronic exposures to the bio-oils; (ii) acute toxic effects on humans and eco-toxic effects on aquatic ecosystems could also be possible in the case of loss of containment; and (iii) bio-oils may present a marginal potential carcinogenicity. The approach outlined allows the collection of screening information on the potential hazards posed by the bio-oils. This can be particularly useful when limited time and analytical resources reduce the possibility to obtain detailed specific experimental data. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Effective modification of cell death-inducing intracellular peptides by means of a photo-cleavable peptide array-based screening system.

    Science.gov (United States)

    Kozaki, Ikko; Shimizu, Kazunori; Honda, Hiroyuki

    2017-08-01

    Intracellular functional peptides that play a significant role inside cells have been receiving a lot of attention as regulators of cellular activity. Previously, we proposed a novel screening system for intracellular functional peptides; it combined a photo-cleavable peptide array system with cell-penetrating peptides (CPPs). Various peptides can be delivered into cells and intracellular functions of the peptides can be assayed by means of our system. The aim of the present study was to demonstrate that the proposed screening system can be used for assessing the intracellular activity of peptides. The cell death-inducing peptide (LNLISKLF) identified in a mitochondria-targeting domain (MTD) of the Noxa protein served as an original peptide sequence for screening of peptides with higher activity via modification of the peptide sequence. We obtained 4 peptides with higher activity, in which we substituted serine (S) at the fifth position with phenylalanine (F), valine (V), tryptophan (W), or tyrosine (Y). During analysis of the mechanism of action, the modified peptides induced an increase in intracellular calcium concentration, which was caused by the treatment with the original peptide. Higher capacity for cell death induction by the modified peptides may be caused by increased hydrophobicity or an increased number of aromatic residues. Thus, the present work suggests that the intracellular activity of peptides can be assessed using the proposed screening system. It could be used for identifying intracellular functional peptides with higher activity through comprehensive screening. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    OpenAIRE

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we sh...

  2. Screening of anionic-modified polymers in terms of stability, disintegration, and swelling behavior.

    Science.gov (United States)

    Laffleur, Flavia; Ijaz, Muhammad; Menzel, Claudia

    2017-11-01

    This study aimed to screen the stability, disintegration, and swelling behavior of chemically modified anionic polymers. Investigated polymers were well-known and widely used staples of the pharmaceutical and medical field, namely, alginate (AL), carboxymethyl cellulose (CMC), polycarbophil (PC), and hyaluronic acid (HA). On the basis of amide bond formation between the carboxylic acid moieties of anionic polymers and the primary amino group of the modification ligand cysteine (CYS), the modified polymers were obtained. Unmodified polymers served as controls throughout all studies. With the Ellman's assay, modification degrees were determined of synthesized polymeric excipients. Stability assay in terms of erosion study at physiological conditions were performed. Moreover, water uptake of compressed polymeric discs were evaluated and further disintegration studies according to the USP were carried out to define the potential ranking. Results ranking figured out PCCYS > CMCCYS > HACYS > ALCYS in terms of water uptake capacity compared to respective controls. Cell viability assays on Caco-2 cell line as well as on RPMI 2650 (ATTC CCL30) proved modification not being harmful to those. Due to the results of this study, an intense screening of prominent anionic polymer derivate was performed in order to help the pharmaceutical research for the best choice of polymeric excipients for developments of controlled drug release systems.

  3. Chemical modification of flax reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available This paper presents an experimental study on the static and dynamic mechanical properties of nonwoven based flax fibre reinforced polypropylene composites. The effect of zein modification on flax fibres is also reported. Flax nonwovens were treated...

  4. Fabrication of a wettability-gradient surface on copper by screen-printing techniques

    International Nuclear Information System (INIS)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2015-01-01

    In this study, a screen-printing technique is utilized to fabricate a wettability-gradient surface on a copper substrate. The pattern definitions on the copper surface were freely fabricated to define the regions with different wettabilities, for which the printing definition technique was developed as an alternative to the existing costly photolithography techniques. This fabrication process using screen printing in tandem with chemical modification methods can easily realize an excellent wettability-gradient surface with superhydrophobicity and superhydrophilicity. Surface analyses were performed to characterize conditions in some fabrication steps. A water droplet movement sequence is provided to clearly demonstrate the droplet-driving effectiveness of the fabricated gradient surface. The droplet-driving efficiency offers a promising solution for condensation heat transfer applications in the foreseeable future. (paper)

  5. Hazard screening application guide

    International Nuclear Information System (INIS)

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information

  6. Nanofibrillated Cellulose Surface Modification: A Review

    Directory of Open Access Journals (Sweden)

    Julien Bras

    2013-05-01

    Full Text Available Interest in nanofibrillated cellulose (NFC has increased notably over recent decades. This bio-based nanomaterial has been used essentially in bionanocomposites or in paper thanks to its high mechanical reinforcement ability or barrier property respectively. Its nano-scale dimensions and its capacity to form a strong entangled nanoporous network have encouraged the emergence of new high-value applications. It is worth noting that chemical surface modification of this material can be a key factor to achieve a better compatibility with matrices. In order to increase the compatibility in different matrices or to add new functions, surface chemical modification of NFC appears to be the prior choice to conserve its intrinsic nanofibre properties. In this review, the authors have proposed for the first time an overview of all chemical grafting strategies used to date on nanofibrillated cellulose with focus on surface modification such as physical adsorption, molecular grafting or polymer grafting.

  7. Modification of Screen Printed Carbon Electrode (SPCE with Fe3O4 for the Determination of Nitrite (NO2- in Squarewave Voltammetry

    Directory of Open Access Journals (Sweden)

    Erica Marista Rosida

    2017-11-01

    Full Text Available Nitrite is one of the food preservatives that the government permits, but on the use of over limits can cause endanger health, so it is necessary to control the content of nitrite in the food. Modification of electrodes on a screen printed carbon electrode (SPCE with Fe3O4 has been successfully done for determination of nitrite. Modification of the electrode has been done by electrodeposition with cyclic voltammetry. Electrodeposition successfully performed with an electrolyte solution of FeCl3 in ethanol. Selection of the optimum drying temperature modified electrode obtained based on the respond of the solution of nitrite in Britton Robinson buffer pH 8. The result of the modification electrode used for the determination of nitrite with squarewave voltammetry method. Reaction between Fe3+ with nitrite a basis for determining nitric indirectly measured so that the peak current is the peak current of Fe3+ of about 0,55 V vs Ag/AgCl. The results showed nitrite measurements with this method has a detection limit of 1.3 x 10-8 M.

  8. RODENT AND HUMAN NEUROPROGENITOR CELLS FOR HIGH-CONTENT SCREENS OF CHEMICAL EFFECTS ON PROLIFERATION AND APOPTOSIS

    Science.gov (United States)

    The objective of these experiments is to develop high-throughput screens for proliferation and apoptosis in order to compare rodent and human neuroprogenitor cell responses to potential developmental neurotoxicants. Effects of 4 chemicals on proliferation and apoptosis in mouse c...

  9. A comparison of two different processing chemicals for mammography: Repercussion on dose to patients

    International Nuclear Information System (INIS)

    Sendra-Portero, F.; Ristori-Bogajo, E.; Buch-Tome, P.; Martinez-Morillo, M.; Nava-Baro, E.

    2001-01-01

    The main technical objective of screen-film mammography is to reach the best image quality with the lowest dose to the breast. Sensitometric gradient and speed are factors related to both subjects respectively. For a given choice of film, these factors are affected by processing variables. For this reason, manufacturers have developed different types of films that are recommended for particular processing conditions. The purpose of this work is to compare the variations of both sensitometric characteristics of mammographic screen and film systems induced by two different manufactured chemicals: RPX-Omat EX/LO (Kodak) and G139/G334 (Agfa). A comparison of thirteen mammographic films by means of light sensitometry was performed at different processing conditions: 90s/Kodak, 120s/Kodak, 180s/Kodak, 90s/Agfa, 120s/Agfa and 180s/Agfa. Secondly, 99 combinations of screens and films were evaluated by X-ray sensitometry at 120s/Kodak and 120s/Agfa processing. At light sensitometry, variations in processing time led to different modifications in film speed, depending on the chemicals used. At X-Ray sensitometry, Agfa chemicals induced higher values of sensitivity for almost all combinations, while Kodak chemicals gave higher gradient/speed quotient. The results show that dose to patients in mammography and image contrast are highly dependent on the chemicals selected at medium cycle (120s) processing. (author)

  10. Molecular structures enumeration and virtual screening in the chemical space with RetroPath2.0.

    Science.gov (United States)

    Koch, Mathilde; Duigou, Thomas; Carbonell, Pablo; Faulon, Jean-Loup

    2017-12-19

    Network generation tools coupled with chemical reaction rules have been mainly developed for synthesis planning and more recently for metabolic engineering. Using the same core algorithm, these tools apply a set of rules to a source set of compounds, stopping when a sink set of compounds has been produced. When using the appropriate sink, source and rules, this core algorithm can be used for a variety of applications beyond those it has been developed for. Here, we showcase the use of the open source workflow RetroPath2.0. First, we mathematically prove that we can generate all structural isomers of a molecule using a reduced set of reaction rules. We then use this enumeration strategy to screen the chemical space around a set of monomers and predict their glass transition temperatures, as well as around aminoglycosides to search structures maximizing antibacterial activity. We also perform a screening around aminoglycosides with enzymatic reaction rules to ensure biosynthetic accessibility. We finally use our workflow on an E. coli model to complete E. coli metabolome, with novel molecules generated using promiscuous enzymatic reaction rules. These novel molecules are searched on the MS spectra of an E. coli cell lysate interfacing our workflow with OpenMS through the KNIME Analytics Platform. We provide an easy to use and modify, modular, and open-source workflow. We demonstrate its versatility through a variety of use cases including molecular structure enumeration, virtual screening in the chemical space, and metabolome completion. Because it is open source and freely available on MyExperiment.org, workflow community contributions should likely expand further the features of the tool, even beyond the use cases presented in the paper.

  11. Influence of Chemical Surface Modification of Woven Fabrics on Ballistic and Stab Protection of Multilayer Packets

    Directory of Open Access Journals (Sweden)

    Diana GRINEVIČIŪTĖ

    2014-06-01

    Full Text Available In order to achieve enhanced protective and wear (flexibility, less bulkiness properties of ballistic and stab protecting panels the investigation of chemical surface modification of woven p-aramid fabrics was performed applying different chemical composition shear thickening fluid (STF which improves friction inside fabric structure. For the chemical treatment silicic acid and acrylic dispersion water solutions were used and influence of their different concentrations on panels’ protective properties were investigated. Results of ballistic tests of multilayer protective panel have revealed that shear thickening effect was negligible when shooting at high energy range (E > 440 J. Determination of stab resistance of p-aramid panels has shown that different chemical composition of STFs had different influence on protective properties of the panels. Application of low concentrations of silicic acid determined higher stab resistance values comparing to higher concentrations of acrylic dispersion water solutions. At this stage of research stab tests results as ballistic ones determined that STF application for multilayer p-aramid fabrics protective panels is more efficient at low strike energy levels. DOI: http://dx.doi.org/10.5755/j01.ms.20.2.3138

  12. Ultrasensitive Direct Quantification of Nucleobase Modifications in DNA by Surface-Enhanced Raman Scattering: The Case of Cytosine.

    Science.gov (United States)

    Morla-Folch, Judit; Xie, Hai-nan; Gisbert-Quilis, Patricia; Gómez-de Pedro, Sara; Pazos-Perez, Nicolas; Alvarez-Puebla, Ramon A; Guerrini, Luca

    2015-11-09

    Recognition of chemical modifications in canonical nucleobases of nucleic acids is of key importance since such modified variants act as different genetic encoders, introducing variability in the biological information contained in DNA. Herein, we demonstrate the feasibility of direct SERS in combination with chemometrics and microfluidics for the identification and relative quantification of 4 different cytosine modifications in both single- and double-stranded DNA. The minute amount of DNA required per measurement, in the sub-nanogram regime, removes the necessity of pre-amplification or enrichment steps (which are also potential sources of artificial DNA damages). These findings show great potentials for the development of fast, low-cost and high-throughput screening analytical devices capable of detecting known and unknown modifications in nucleic acids (DNA and RNA) opening new windows of activity in several fields such as biology, medicine and forensic sciences. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States); Zhu, Hao [The Rutgers Center for Computational and Integrative Biology, Rutgers University, Camden, NJ (United States); Department of Chemistry, Rutgers University, Camden, NJ (United States); Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia [NovaMechanics Ltd., Nicosia (Cyprus); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States)

    2013-10-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R{sup 2} = 0.71, STL R{sup 2} = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R{sup 2} = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function.

  14. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    International Nuclear Information System (INIS)

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh; Zhu, Hao; Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R 2 = 0.71, STL R 2 = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R 2 = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function. • The results

  15. Role of Chemical Reactivity and Transition State Modeling for Virtual Screening.

    Science.gov (United States)

    Karthikeyan, Muthukumarasamy; Vyas, Renu; Tambe, Sanjeev S; Radhamohan, Deepthi; Kulkarni, Bhaskar D

    2015-01-01

    Every drug discovery research program involves synthesis of a novel and potential drug molecule utilizing atom efficient, economical and environment friendly synthetic strategies. The current work focuses on the role of the reactivity based fingerprints of compounds as filters for virtual screening using a tool ChemScore. A reactant-like (RLS) and a product- like (PLS) score can be predicted for a given compound using the binary fingerprints derived from the numerous known organic reactions which capture the molecule-molecule interactions in the form of addition, substitution, rearrangement, elimination and isomerization reactions. The reaction fingerprints were applied to large databases in biology and chemistry, namely ChEMBL, KEGG, HMDB, DSSTox, and the Drug Bank database. A large network of 1113 synthetic reactions was constructed to visualize and ascertain the reactant product mappings in the chemical reaction space. The cumulative reaction fingerprints were computed for 4000 molecules belonging to 29 therapeutic classes of compounds, and these were found capable of discriminating between the cognition disorder related and anti-allergy compounds with reasonable accuracy of 75% and AUC 0.8. In this study, the transition state based fingerprints were also developed and used effectively for virtual screening in drug related databases. The methodology presented here provides an efficient handle for the rapid scoring of molecular libraries for virtual screening.

  16. Chemical modification of wood

    Science.gov (United States)

    Roger M. Rowell

    2007-01-01

    After millions of years of evolution, wood was designed to perform in a wet environment, and nature is programmed to recycle it, in a timely way, back to the basic building blocks of carbon dioxide and water through biological, thermal, aqueous, photochemical, chemical, and mechanical degradation. The properties of wood are, for the most part, a result of the chemistry...

  17. Mechanistic understanding of the cysteine capping modifications of antibodies enables selective chemical engineering in live mammalian cells.

    Science.gov (United States)

    Zhong, Xiaotian; He, Tao; Prashad, Amar S; Wang, Wenge; Cohen, Justin; Ferguson, Darren; Tam, Amy S; Sousa, Eric; Lin, Laura; Tchistiakova, Lioudmila; Gatto, Scott; D'Antona, Aaron; Luan, Yen-Tung; Ma, Weijun; Zollner, Richard; Zhou, Jing; Arve, Bo; Somers, Will; Kriz, Ronald

    2017-04-20

    Protein modifications by intricate cellular machineries often redesign the structure and function of existing proteins to impact biological networks. Disulfide bond formation between cysteine (Cys) pairs is one of the most common modifications found in extracellularly-destined proteins, key to maintaining protein structure. Unpaired surface cysteines on secreted mammalian proteins are also frequently found disulfide-bonded with free Cys or glutathione (GSH) in circulation or culture, the mechanism for which remains unknown. Here we report that these so-called Cys-capping modifications take place outside mammalian cells, not in the endoplasmic reticulum (ER) where oxidoreductase-mediated protein disulfide formation occurs. Unpaired surface cysteines of extracellularly-arrived proteins such as antibodies are uncapped upon secretion before undergoing disulfide exchange with cystine or oxidized GSH in culture medium. This observation has led to a feasible way to selectively modify the nucleophilic thiol side-chain of cell-surface or extracellular proteins in live mammalian cells, by applying electrophiles with a chemical handle directly into culture medium. These findings provide potentially an effective approach for improving therapeutic conjugates and probing biological systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. High-throughput migration modelling for estimating exposure to chemicals in food packaging in screening and prioritization tools.

    Science.gov (United States)

    Ernstoff, Alexi S; Fantke, Peter; Huang, Lei; Jolliet, Olivier

    2017-11-01

    Specialty software and simplified models are often used to estimate migration of potentially toxic chemicals from packaging into food. Current models, however, are not suitable for emerging applications in decision-support tools, e.g. in Life Cycle Assessment and risk-based screening and prioritization, which require rapid computation of accurate estimates for diverse scenarios. To fulfil this need, we develop an accurate and rapid (high-throughput) model that estimates the fraction of organic chemicals migrating from polymeric packaging materials into foods. Several hundred step-wise simulations optimised the model coefficients to cover a range of user-defined scenarios (e.g. temperature). The developed model, operationalised in a spreadsheet for future dissemination, nearly instantaneously estimates chemical migration, and has improved performance over commonly used model simplifications. When using measured diffusion coefficients the model accurately predicted (R 2  = 0.9, standard error (S e ) = 0.5) hundreds of empirical data points for various scenarios. Diffusion coefficient modelling, which determines the speed of chemical transfer from package to food, was a major contributor to uncertainty and dramatically decreased model performance (R 2  = 0.4, S e  = 1). In all, this study provides a rapid migration modelling approach to estimate exposure to chemicals in food packaging for emerging screening and prioritization approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Approaches to virtual screening and screening library selection.

    Science.gov (United States)

    Wildman, Scott A

    2013-01-01

    The ease of access to virtual screening (VS) software in recent years has resulted in a large increase in literature reports. Over 300 publications in the last year report the use of virtual screening techniques to identify new chemical matter or present the development of new virtual screening techniques. The increased use is accompanied by a corresponding increase in misuse and misinterpretation of virtual screening results. This review aims to identify many of the common difficulties associated with virtual screening and allow researchers to better assess the reliability of their virtual screening effort.

  20. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.

    Science.gov (United States)

    Martin, S C; Minus, M B; Ball, Z T

    2016-01-01

    Natural enzymes use molecular recognition to perform exquisitely selective transformations on nucleic acids, proteins, and natural products. Rhodium(II) catalysts mimic this selectivity, using molecular recognition to allow selective modification of proteins with a variety of functionalized diazo reagents. The rhodium catalysts and the diazo reactivity have been successfully applied to a variety of protein folds, the chemistry succeeds in complex environments such as cell lysate, and a simple protein blot method accurately assesses modification efficiency. The studies with rhodium catalysts provide a new tool to study and probe protein-binding events, as well as a new synthetic approach to protein conjugates for medical, biochemical, or materials applications. © 2016 Elsevier Inc. All rights reserved.

  1. High-throughput screening to enhance oncolytic virus immunotherapy

    Directory of Open Access Journals (Sweden)

    Allan KJ

    2016-04-01

    Full Text Available KJ Allan,1,2 David F Stojdl,1–3 SL Swift1 1Children’s Hospital of Eastern Ontario (CHEO Research Institute, 2Department of Biology, Microbiology and Immunology, 3Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada Abstract: High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research. Keywords: oncolytic, virus, screen, high-throughput, cancer, chemical, genomic, immunotherapy

  2. Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment

    International Nuclear Information System (INIS)

    Wang Shifang; Li Juan; Suo Jinping; Luo Tianzhi

    2010-01-01

    A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 ± 3 deg. to 30 ± 4 deg. treated at 100 deg. C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 deg. C for 3 h. Hydrophilic groups such as carbonyl (C=O) and hydroxyl (-OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K 0.27 MnO 2 .0.54H 2 O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.

  3. Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shifang; Li Juan [State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Luo-Yu Road 1037, Wuhan, Hubei 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Luo-Yu Road 1037, Wuhan, Hubei 430074 (China); Luo Tianzhi [State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Luo-Yu Road 1037, Wuhan, Hubei 430074 (China)

    2010-01-15

    A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 {+-} 3 deg. to 30 {+-} 4 deg. treated at 100 deg. C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 deg. C for 3 h. Hydrophilic groups such as carbonyl (C=O) and hydroxyl (-OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K{sub 0.27}MnO{sub 2}.0.54H{sub 2}O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.

  4. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Athar; Mahdavian, Ali Reza, E-mail: a.mahdavian@ippi.ac.ir; Salehi-Mobarakeh, Hamid

    2017-03-15

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe{sub 3}O{sub 4} nanoparticles with polymerizable groups is presented here. After synthesis of Fe{sub 3}O{sub 4} nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe{sub 3}O{sub 4} are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe{sub 3}O{sub 4} nanoparticles (0–10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles. - Highlights: • Chemical modification of magnetite nanoparticles. • Encapsulation of modified magnetite with acrylic copolymer. • Superparamagnetic Fe3O4/polyacrylic nanocomposite particles.

  5. Radiation modification of glass fiber - reinforced plastics

    International Nuclear Information System (INIS)

    Allayarov, S.R.; Smirnov, Yu.N.; Lesnichaya, V.A.; Ol'khov, Yu.A.; Belov, G.P.; Dixon, D.A.; Kispert, L.D.

    2007-01-01

    Modification of glass fiber - reinforced plastics (GFRPs) by gamma-irradiation has been researched to receipt of polymeric composite materials. They were produced by the film - technology method and the cheapest thermoplastics (polythene, polyamide were used as polymeric matrixes for their manufacture. GFRPs were irradiated with Co 60 gamma-rays from a Gammatok-100 source in air and in vacuum. The strength properties of GFRPs and initial polymeric matrixes were investigated before and after radiolysis. Molecular - topological structure of the polymeric matrixes were tested by the method of thermomechanical spectroscopy. The strength properties of GFRPs depend on a parity of speeds of structural (physical) and chemical modification of the polymeric matrixes. These two processes proceed simultaneously. The structural modification includes physical transformation of polymers at preservation of their chemical structure. Covalent bonds between various macromolecules or between macromolecules and surface of fiberglasses are formed at the chemical modification of polymeric matrixes induced by radiation. Action of ionizing radiation on the used polymeric matrix results to its structurization (polythene) or to destruction (polyamide). Increasing of durability of GFRPs containing polythene is caused by formation of the optimum molecular topological structure of the polymeric matrix. (authors)

  6. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening

    International Nuclear Information System (INIS)

    Druwe, Ingrid; Freudenrich, Theresa M.; Wallace, Kathleen; Shafer, Timothy J.; Mundy, William R.

    2015-01-01

    High-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may be used in a battery of tests for detecting chemicals that could result in developmental neurotoxicity. Apoptosis contributes to nervous system development by regulating the size of the neuroprogenitor cell pool, and the balance between cellular proliferation and apoptosis during neuroprogenitor cell proliferation helps to determine the size and shape of the nervous system. Therefore, chemicals that affect apoptosis during neuronal development can have deleterious effects on the developing brain. The present study examined the utility of a high-throughput assay to detect chemical-induced apoptosis in mouse or human neuroprogenitor cells, as well as differentiated human neurons derived from induced pluripotent stem cells. Apoptosis was assessed using an assay that measures enzymatic activity of caspase-3/7 in a rapid and cost efficient manner. The results show that all three commercially available models generated a robust source of proliferating neuroprogenitor cells, and that the assay was sensitive and reproducible when used in a multi-well plate format. There were differences in the response of rodent and human neuroprogenitor cells to a set of chemicals previously shown to induce apoptosis in vitro. Neuroprogenitor cells were more sensitive to chemical-induced apoptosis than differentiated neurons, suggesting that neuroprogenitor cells are one of the cell models that should be considered for use in a developmental neurotoxicity screening battery

  7. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  8. How Compliance Measures, Behavior Modification, and Continuous Quality Improvement Led to Routine HIV Screening in an Emergency Department in Brooklyn, New York.

    Science.gov (United States)

    Isaac, Jermel Kyri; Sanchez, Travis H; Brown, Emily H; Thompson, Gina; Sanchez, Christina; Fils-Aime, Stephany; Maria, Jose

    2016-01-01

    New York State adopted a new HIV testing law in 2010 requiring medical providers to offer an HIV test to all eligible patients aged 13-64 years during emergency room or ambulatory care visits. Since then, Wyckoff Heights Medical Center (WHMC) in Brooklyn, New York, began implementing routine HIV screening organization-wide using a compliance, behavior-modification, and continuous quality-improvement process. WHMC first implemented HIV screening in the emergency department (ED) and evaluated progress with the following monthly indicators: HIV tests offered, HIV tests accepted, HIV tests ordered (starting in December 2013), HIV tests administered, positive HIV tests, and linkage to HIV care. Compliance with the delivery of HIV testing was determined by the proportion of patients who, after accepting a test, received one. During August 2013 through July 2014, of 57,852 eligible patients seen in the WHMC ED, a total of 31,423 (54.3%) were offered an HIV test. Of those, 8,229 (26.2%) patients accepted a test. Of those, 6,114 (74.3%) underwent a test. A total of 26 of the 6,114 patients tested (0.4%) had a positive test, and 24 of the 26 HIV-positive patients were linked to HIV medical care. By July 2014, the monthly proportion of patients offered a test was 62%; the proportion of those offered a test who had a test ordered was 98%, and the proportion of those with a test ordered who were tested was 81%. Testing compliance increased substantially at the WHMC ED, from 77% in December 2013 to >98% in July 2014. Using compliance-monitoring, behavior-modification, and continuous quality-improvement processes produced substantial increases in offers and HIV test completion. WHMC is replicating this approach across departments, and other hospitals implementing routine HIV screening programs should consider this approach as well.

  9. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening*

    Science.gov (United States)

    AbstractHigh-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may ...

  10. The surface modification of polystyrene

    International Nuclear Information System (INIS)

    Tremlett, C.

    2000-03-01

    Polymers have ideal bulk properties for many applications. However, adhesion to many polymers is poor without surface pretreatment. This can result, for example, in peeling paint and printing, adhesive joint failure and bio-incompatibility. In applications such as painting, printing, adhesive bonding and biocompatibility, various cleaning or surface chemical modifications may be employed. A commodity polymer where pretreatment is sometimes needed is polystyrene. This project investigated, in detail, the effects of a novel method of modification namely mediated electrochemical oxidation (MEO), as a mode of surface modification on polystyrene and a comparison was made with other polymers. The resulting modification was investigated using a range of surface analysis techniques to obtain complementary information. These included, X-ray photoelectron spectroscopy, contact angles, static secondary ion mass spectrometry, atomic force microscopy, chemical derivatization, scanning electron microscopy, attenuated total reflection Fourier Transform infrared spectroscopy and composite lap shear joint testing. It has been shown that MEO modifies the surface of polystyrene introduced oxygen mainly as hydroxyl groups, and a small number of carbonyl groups, that are positioned only on the backbone hydrocarbon chain. This modification improved adhesion, was stable and samples could be stored in aqueous media. The resulting hydroxylation was further derivatized using an amino acid to provide a specialised surface. This was very different from the multiple oxygen functionalities introduced in the comparison studies by UV/ozone and plasma treatments. (author)

  11. Screening of Modified RNA duplexes

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Kjems, Jørgen

    protection against a fish pathogenic virus. This protection corresponded with an interferon response in the fish. Here we use this fish model to screen siRNAs containing various chemical modifications of the RNA backbone for their antiviral activity, the overall aim being identification of an siRNA form......Because of sequence specific gene targeting activity siRNAs are regarded as promising active compounds in gene medicine. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNA duplexes. Cellular reactions towards double stranded...... RNAs include the 2´-5´ oligoadenylate synthetase system, the protein kinase R, RIG-I and Toll-like receptor activated pathways all resulting in antiviral defence mechanism. We have previously shown that antiviral innate immune reactions against double stranded RNAs could be detected in vivo as partial...

  12. High-Throughput Screening of Chemical Compound Libraries for Modulators of Salicylic Acid Signaling by In Situ Monitoring of Glucuronidase-Based Reporter Gene Expression.

    Science.gov (United States)

    Halder, Vivek; Kombrink, Erich

    2018-01-01

    Salicylic acid (SA) is a vital phytohormone that is intimately involved in coordination of the complex plant defense response to pathogen attack. Many aspects of SA signaling have been unraveled by classical genetic and biochemical methods using the model plant Arabidopsis thaliana, but many details remain unknown, owing to the inherent limitations of these methods. In recent years, chemical genetics has emerged as an alternative scientific strategy to complement classical genetics by virtue of identifying bioactive chemicals or probes that act selectively on their protein targets causing either activation or inhibition. Such selective tools have the potential to create conditional and reversible chemical mutant phenotypes that may be combined with genetic mutants. Here, we describe a facile chemical screening methodology for intact Arabidopsis seedlings harboring the β-glucuronidase (GUS) reporter by directly quantifying GUS activity in situ with 4-methylumbelliferyl-β-D-glucuronide (4-MUG) as substrate. The quantitative nature of this screening assay has an obvious advantage over the also convenient histochemical GUS staining method, as it allows application of statistical procedures and unbiased hit selection based on threshold values as well as distinction between compounds with strong or weak bioactivity. We show pilot screens for chemical activators or inhibitors of salicylic acid-mediated defense signaling using the Arabidopsis line expressing the SA-inducible PR1p::GUS reporter gene. Importantly, the screening methodology provided here can be adopted for any inducible GUS reporter line.

  13. Rapid screening of N-oxides of chemical warfare agents degradation products by ESI-tandem mass spectrometry.

    Science.gov (United States)

    Sridhar, L; Karthikraj, R; Lakshmi, V V S; Raju, N Prasada; Prabhakar, S

    2014-08-01

    Rapid detection and identification of chemical warfare agents and related precursors/degradation products in various environmental matrices is of paramount importance for verification of standards set by the chemical weapons convention (CWC). Nitrogen mustards, N,N-dialkylaminoethyl-2-chlorides, N,N-dialkylaminoethanols, N-alkyldiethanolamines, and triethanolamine, which are listed CWC scheduled chemicals, are prone to undergo N-oxidation in environmental matrices or during decontamination process. Thus, screening of the oxidized products of these compounds is also an important task in the verification process because the presence of these products reveals alleged use of nitrogen mustards or precursors of VX compounds. The N-oxides of aminoethanols and aminoethylchlorides easily produce [M + H](+) ions under electrospray ionization conditions, and their collision-induced dissociation spectra include a specific neutral loss of 48 u (OH + CH2OH) and 66 u (OH + CH2Cl), respectively. Based on this specific fragmentation, a rapid screening method was developed for screening of the N-oxides by applying neutral loss scan technique. The method was validated and the applicability of the method was demonstrated by analyzing positive and negative samples. The method was useful in the detection of N-oxides of aminoethanols and aminoethylchlorides in environmental matrices at trace levels (LOD, up to 500 ppb), even in the presence of complex masking agents, without the use of time-consuming sample preparation methods and chromatographic steps. This method is advantageous for the off-site verification program and also for participation in official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW), the Netherlands. The structure of N-oxides can be confirmed by the MS/MS experiments on the detected peaks. A liquid chromatography-mass spectrometry (LC-MS) method was developed for the separation of isomeric N-oxides of aminoethanols and

  14. MODIFICATION OF SURFACE KONDENSITSIONNYH AEROSOLS WELDING AND METALLURGICHESKIH PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    A. A. Ennan

    2016-04-01

    Full Text Available Chemical modification of surface kondensitsionnyh aerosols (KA which formation when heat treatment metals (process of weld, foundry processes with application chlorosilanes are suggested. Adsorbtion vapor of water on modification powders KA decreases and changes in varies from modifier and conditions modification are setted.

  15. Modification of Screen Printed Carbon Electrode (SPCE with Polypyrrole (Ppy-SiO2 for Phenol Determination

    Directory of Open Access Journals (Sweden)

    Ani Mulyasuryani

    2018-01-01

    Full Text Available Electrode modification on screen printed carbon electrode (SPCE with polypyrrole (Ppy-SiO2 was done by electropolymerization. Polypyrrole (Ppy-SiO2 was used for phenol determination. The analysis of this material was done by using Scanning Electron Microscopy (SEM, cyclic voltammetry method and differential pulse voltammetry. In a cyclic voltammetry analysis, we used potential range of -1 to 1 V with Ag/AgCl comparator electrode at scan rate of 100 mV/sec, while in differential pulse voltammetry method the potential range was 0 to 1 V toward Ag/AgCl, the scan rate of 50 mV/sec, the pulse rate is 0,2 V and the pulse width is 50 ms. From the analysis result with SEM, cyclic voltammetry and differential pulse voltammetry method, Polypyrrole (Ppy -SiO2 is the best material and can be used as phenol measurement.

  16. In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project.

    Science.gov (United States)

    Judson, Richard S; Houck, Keith A; Kavlock, Robert J; Knudsen, Thomas B; Martin, Matthew T; Mortensen, Holly M; Reif, David M; Rotroff, Daniel M; Shah, Imran; Richard, Ann M; Dix, David J

    2010-04-01

    Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency's ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. This project aims to evaluate the use of in vitro assays for understanding the types of molecular and pathway perturbations caused by environmental chemicals and to build initial prioritization models of in vivo toxicity. We tested 309 mostly pesticide active chemicals in 467 assays across nine technologies, including high-throughput cell-free assays and cell-based assays, in multiple human primary cells and cell lines plus rat primary hepatocytes. Both individual and composite scores for effects on genes and pathways were analyzed. Chemicals displayed a broad spectrum of activity at the molecular and pathway levels. We saw many expected interactions, including endocrine and xenobiotic metabolism enzyme activity. Chemicals ranged in promiscuity across pathways, from no activity to affecting dozens of pathways. We found a statistically significant inverse association between the number of pathways perturbed by a chemical at low in vitro concentrations and the lowest in vivo dose at which a chemical causes toxicity. We also found associations between a small set of in vitro assays and rodent liver lesion formation. This approach promises to provide meaningful data on the thousands of untested environmental chemicals and to guide targeted testing of environmental contaminants.

  17. The effects of high electronic energy loss on the chemical modification of polyimide

    CERN Document Server

    SunYouMei; Jin Yun Fan; Liu Chang Long; LiuJie; Wang Zhi Guang; Zhang Qi; Zhu Zhi Yong

    2002-01-01

    In order to observe the role of electronic energy loss (dE/dX) sub e on chemical modification of polyimide (PI), the multi-layer stacks (corresponding to different dE/dX) were irradiated by different swift heavy ions (1.37 GeV Ar sup 4 sup 0 , 1.98 GeV Kr sup 8 sup 4 , 1.755 GeV Xe sup 1 sup 3 sup 6 and 2.636 GeV U sup 2 sup 3 sup 8) under vacuum and room temperature. The chemical changes of modified PI films were studied by Fourier transform infrared (FTIR) and ultraviolet/visible (UV/Vis) absorption spectroscopy. The degradation of PI was investigated in the fluence range from 1x10 sup 1 sup 0 to 5.5x10 sup 1 sup 2 ions/cm sup 2 and different electronic energy loss from 0.77 to 11.5 keV/nm. The FTIR results show the absorbance of the typical function group decrease exponentially as a function of fluence. The alkyne end group was found after irradiation and its formation radii were 5.6 and 5.9 nm corresponding to 8.8 and 11.5 keV/nm Xe irradiation respectively. UV/Vis analysis indicates the radiation induced...

  18. The genetic origins of biosynthesis and light-responsive control of the chemical UV screen of land plants

    International Nuclear Information System (INIS)

    Jorgensen, R.

    1994-01-01

    Most land plants possess the capacity to protect themselves from UV light, and do so by producing pigments that absorb efficiently in the UV-A and UV-B regions of the spectrum while allowing transmission of nearly all photosynthetically useful wavelengths. These UV-absorbing pigments are mainly phenylpropanoids and flavonoids. This chapter summarizes current understanding of the mechanism of UV protection in higher land plants, evaluates the information available from lower land plants and their green-algal relatives, and then considers the possible evolutionary origins of this use of chemical filters for selectively screening UV light from solar radiation. It is proposed that photo control over the biosynthesis of UV-absorbing phenylpropanoids and flavonoids may have evolved in concert with the evolution of the high biosynthetic activity necessary for UV protection. The toxicity of phenylpropanoids and flavonoids has been postulated to have been a barrier to the evolution of an effective chemical UV screen, and that some means for sequestering these compounds and/or for controlling their synthesis probably evolved prior to, or in concert with, the evolution of high rates of biosynthesis. The original photoreceptor and signal transduction system is speculated to have been based on photo isomerization of a phenylpropanoid ester and a pre-existing product feedback mechanism for controlling phenylpropanoid biosynthesis. Understanding the original mechanism for photo control of the chemical UV screen of land plants could be valuable for understanding the adaptability of extant land plants to rising levels of solar UV-B radiation and may suggest genetic strategies for engineering improved UV tolerance in crop plants. (author)

  19. Chemical modification of Art v 1, a major mugwort pollen allergen, by cis-aconitylation and citraconylation

    Directory of Open Access Journals (Sweden)

    DRAGANA STANIĆ

    2009-04-01

    Full Text Available Art v 1 is the major allergen of mugwort (Artemisia vulgaris pollen, a significant cause of hay fever all over Europe. Specific immunotherapy is the only treatment modality for allergic disease. Application of modified allergens makes the treatment safer and more efficient. In this work, two out of three (citraconic anhydride, cis-aconitic anhydride, 2,3-dimethylmaleic anhydride tested anhydrides were proven to be suitable for chemical modifications of allergens. Art v 1 was modified by cis-aconitylation and citraconylation in order to obtain derivatives of Art v 1 that may be suitable for further immunological testing. Acylation of Art v 1 gave derivatives (caaArt v 1 and citArt v 1 with about 80 % modified amino groups. The derivatives were in the monomeric form and had dramatically reduced pI values. Both derivatives were relatively stable at neutral pH values, while the acyl groups undergo hydrolysis under acidic conditions. Modification of allergens by cis-aconitylation and citraconylation could be a new tool for obtaining allergoids.

  20. Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review

    Directory of Open Access Journals (Sweden)

    Negar Lashgari

    2016-01-01

    Full Text Available The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring specific analytes in various systems. Organic-inorganic hybrid nanomaterials have important advantages as solid chemosensors and various innovative hybrid materials modified by fluorescence molecules were recently prepared. On the other hand, the homogeneous porosity and large surface area of mesoporous silica make it a promising inorganic support. SBA-15 as a two-dimensional hexagonal mesoporous silica material with stable structure, thick walls, tunable pore size, and high specific surface area is a valuable substrate for modification with different organic chelating groups. This review highlights the fluorescent chemosensors for ionic species based on modification of the mesoporous silica SBA-15 with different organic molecules, which have been recently developed from our laboratory.

  1. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.

    Science.gov (United States)

    Aylward, Lesa L; Kirman, Chris R; Blount, Ben C; Hays, Sean M

    2010-10-01

    The National Health and Nutrition Examination Survey (NHANES) generates population-representative biomonitoring data for many chemicals including volatile organic compounds (VOCs) in blood. However, no health or risk-based screening values are available to evaluate these data from a health safety perspective or to use in prioritizing among chemicals for possible risk management actions. We gathered existing risk assessment-based chronic exposure reference values such as reference doses (RfDs), reference concentrations (RfCs), tolerable daily intakes (TDIs), cancer slope factors, etc. and key pharmacokinetic model parameters for 47 VOCs. Using steady-state solutions to a generic physiologically-based pharmacokinetic (PBPK) model structure, we estimated chemical-specific steady-state venous blood concentrations across chemicals associated with unit oral and inhalation exposure rates and with chronic exposure at the identified exposure reference values. The geometric means of the slopes relating modeled steady-state blood concentrations to steady-state exposure to a unit oral dose or unit inhalation concentration among 38 compounds with available pharmacokinetic parameters were 12.0 microg/L per mg/kg-d (geometric standard deviation [GSD] of 3.2) and 3.2 microg/L per mg/m(3) (GSD=1.7), respectively. Chemical-specific blood concentration screening values based on non-cancer reference values for both oral and inhalation exposure range from 0.0005 to 100 microg/L; blood concentrations associated with cancer risk-specific doses at the 1E-05 risk level ranged from 5E-06 to 6E-02 microg/L. The distribution of modeled steady-state blood concentrations associated with unit exposure levels across VOCs may provide a basis for estimating blood concentration screening values for VOCs that lack chemical-specific pharmacokinetic data. The screening blood concentrations presented here provide a tool for risk assessment-based evaluation of population biomonitoring data for VOCs and

  2. Engineering aspects of Passavant screening

    International Nuclear Information System (INIS)

    Siddle, K.R.; Sharma, R.K.

    1978-01-01

    The Passavant screen was developed in Europe almost 30 years ago. The Passavant screen is a vertical traveling screen; however, the basic difference between the conventional vertical traveling screen and the Passavant screen is that in the conventional screen water passes through the front screen belt and then the back screen belt, whereas in the Passavant screen the water enters in between the two belts and passes laterally through either of the belts. Thus, theoretically, the screening surface of the Passavant screen is doubled as compared to the same size conventional vertical traveling screen. Various design and operational modifications of the Passavant screen are possible to yield optimum design and performance characteristics which make it amenable to installation at power plants for safe removal of not only fish but also smaller organisms such as fish eggs and larvae. In this paper, details of the screen design and operational characteristics are discussed with notes on how these features can be modified to suit site- and organism-specific requirements

  3. Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection.

    Science.gov (United States)

    Swenson, Dana L; Warfield, Kelly L; Warren, Travis K; Lovejoy, Candace; Hassinger, Jed N; Ruthel, Gordon; Blouch, Robert E; Moulton, Hong M; Weller, Dwight D; Iversen, Patrick L; Bavari, Sina

    2009-05-01

    Phosphorodiamidate morpholino oligomers (PMOs) are uncharged nucleic acid-like molecules designed to inactivate the expression of specific genes via the antisense-based steric hindrance of mRNA translation. PMOs have been successful at knocking out viral gene expression and replication in the case of acute viral infections in animal models and have been well tolerated in human clinical trials. We propose that antisense PMOs represent a promising class of therapeutic agents that may be useful for combating filoviral infections. We have previously shown that mice treated with a PMO whose sequence is complementary to a region spanning the start codon of VP24 mRNA were protected against lethal Ebola virus challenge. In the present study, we report on the abilities of two additional VP24-specific PMOs to reduce the cell-free translation of a VP24 reporter, to inhibit the in vitro replication of Ebola virus, and to protect mice against lethal challenge when the PMOs are delivered prior to infection. Additionally, structure-activity relationship evaluations were conducted to assess the enhancement of antiviral efficacy associated with PMO chemical modifications that included conjugation with peptides of various lengths and compositions, positioning of conjugated peptides to either the 5' or the 3' terminus, and the conferring of charge modifications by the addition of piperazine moieties. Conjugation with arginine-rich peptides greatly enhanced the antiviral efficacy of VP24-specific PMOs in infected cells and mice during lethal Ebola virus challenge.

  4. In vivo angiogenesis screening and mechanism of action of novel tanshinone derivatives produced by one-pot combinatorial modification of natural tanshinone mixture from Salvia miltiorrhiza.

    Directory of Open Access Journals (Sweden)

    Zhe-Rui Zhang

    Full Text Available Natural products present in low quantity in herb medicines constitute an important source of chemical diversity. However, the isolation of sufficient amounts of these low abundant constituents for structural modification has been a challenge for several decades and subsequently halts research on the utilization of this important source of chemical entities for drug discovery and development. And, pro-angiogenic therapies are being explored as options to treat cardio-cerebral vascular diseases and wound healing recently. The present study investigates the pro-angiogenic potential of tanshinone derivatives produced by one-pot synthesis using zebrafish model.In order to address the difficulty of chemical modification of low abundant constituents in herb medicines, a novel one-pot combinatorial modification was used to diversify a partially purified tanshinone mixture from Salvia miltiorrhiza. This led to the isolation of ten new imidazole-tanshinones (Compounds 1-10 and one oxazole-tanshinone (Compound 11, the structures of which were characterized by spectroscopic methods in combination with single-crystal X-ray crystallographic analysis. The angiogenesis activities of the new tanshinone derivatives were determined in an experimental model of chemical-induced blood vessels damage in zebrafish. Of all the tested new derivatives, compound 10 exhibited the most potent vascular protective and restorative activity with an EC50 value of 0.026 µM. Moreover, the mechanism underlying the pro-angiogenesis effect of 10 probably involved the VEGF/FGF-Src-MAPK and PI3K-P38 signalling pathways by gene expression analysis and a blocking assay with pathways-specific kinase inhibitors.Taken together, our study demonstrated the more distinctive pro-angiogenic properties of 10 than other tanshinones and revealed 10 has potential for development as a pro-angiogenic agent for diseases associated with insufficient angiogenesis. Our results highlighted the great

  5. The chemical modification and characterization of polypropylene membrane with environment response by in-situ chlorinating graft copolymerization

    Science.gov (United States)

    Zhang, Yue; Liu, Jiankai; Hu, Wenjie; Feng, Ying; Zhao, Jiruo

    2017-08-01

    In this study, a novel chemical surface modification method of polyolefin membranes is applied following the in-situ chlorinating graft copolymerization (ISCGC). Polypropylene (PP)/methyl methacrylate (MMA) system was used as an example. A unique structure was formed by the modification process on the original membrane surface and the product exhibited an environmental response. Chlorine free radicals were generated using ultraviolet and heat and were used to capture the hydrogen in the polymer chains on the substrate surface. The formed macromolecular radicals could react with MMA over 2 h to achieve a high coverage ratio polymer on the PP membrane surface. The graft copolymers were characterized using FTIR, 1H-NMR, DSC, and XPS, which all proved the feasibility of chemically modifying the PP membrane surface by ISCGC. The surface morphology of the grafted PP membrane was characterized using SEM and AFM. The results showed that the grafted product presents a uniform, neat, and dense mastoid structure with an average thickness of 4.44 μm, which was expected to be similar to the brush-like surface structure. The contact angle and AFM tests indicated that the product surface is responsive to solvent and pH. The experimental results showed that the PP membrane surface structure can be reconstructed using ISCGC, a method that can be used for environment-responsive polymer materials. Moreover, the product has the characteristics of polymer interfacial brush.

  6. Chemical modification of clay from the state of vermiculite Paraiba for use in nanocomposites of thermoset matrices

    International Nuclear Information System (INIS)

    Freitas, W.A.; Alves, T.S.; Barbosa, R.

    2011-01-01

    Vermiculite is a hydrated aluminosilicate of magnesium, iron and aluminum flake shape, formed by stacking cells 2:1 and feature high cation exchange capacity. In the present study was performed the treatment of an expanded vermiculite clay from Paraiba state with surfactant agent, in order to make it organophilic and allow its use in thermoset matrix nanocomposites. The natural clay and organophilizated one were characterized by X-Ray Diffraction (XRD), by Fourier Transform Infra-Red spectroscopy (FTIR) and swelling of Foster's swelling. The results indicated a change in the chemical composition of clay, related to the presence of characteristic groups of the salt in the clay and an increase of up to 124% in the basal interlayer distance. The chemical modification of the clay was efficient, indicating the possibility to apply the clay in polymeric nanocomposites. (author)

  7. Evaluation of electrode surface modification techniques for the development of chemical sensors

    International Nuclear Information System (INIS)

    Galiatsatos, C.

    1988-01-01

    This thesis covers several aspects of electrode surface modification techniques. The successful application of gamma-radiation to create polymer-coated electrodes, where the polymers can be ion exchangers and consequently of great analytical interest by themselves (such as the polymer poly(diallyl) dimethyl ammonium chloride) or where some other neutral polymers can function as convenient matrices for the introduction of biomolecules and/or other electrochemically interesting species is reported. This is demonstrated by using the neutral polymer poly(vinyl alcohol) (PVAL) as a matrix for immobilization of the enzyme glucose oxidase and the mediator methyl viologen. The effect of γ-radiation on PVAL is discussed, as well as swelling properties of the irradiated polymers and specific characteristics of the created chemical sensors. Results of an experiment where the various kinds of interactions between the ion-exchange polymer Nafion and some positively charged species are explored are reported, and a model system for competition (methyl viologen vs. ruthenium hexaamine) which increases significantly our understanding of the interaction is mentioned. The effect of γ-radiation on Nafion and its ion-exchange compabilities is discussed also. A system of conduction polymers primarily polypyrrole, used as a detector of electroinactive anions due to their doping-undergoing in the film is discussed. Preliminary results on a new method that involves chemical cross-linking of a triisocyane molecule with -OH containing polymers in the presence of enzymes are reported

  8. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.

    Science.gov (United States)

    Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng

    2017-11-23

    Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.

  9. Establishment of IL-7 Expression Reporter Human Cell Lines, and Their Feasibility for High-Throughput Screening of IL-7-Upregulating Chemicals.

    Directory of Open Access Journals (Sweden)

    Yeon Sook Cho

    Full Text Available Interleukin-7 (IL-7 is a cytokine essential for T cell homeostasis, and is clinically important. However, the regulatory mechanism of IL-7 gene expression is not well known, and a systematic approach to screen chemicals that regulate IL-7 expression has not yet been developed. In this study, we attempted to develop human reporter cell lines using CRISPR/Cas9-mediated genome editing technology. For this purpose, we designed donor DNA that contains an enhanced green fluorescent protein (eGFP gene, drug selection cassette, and modified homologous arms which are considered to enhance the translation of the eGFP reporter transcript, and also a highly efficient single-guide RNA with a minimal off-target effect to target the IL-7 start codon region. By applying this system, we established IL-7 eGFP reporter cell lines that could report IL-7 gene transcription based on the eGFP protein signal. Furthermore, we utilized the cells to run a pilot screen campaign for IL-7-upregulating chemicals in a high-throughput format, and identified a chemical that can up-regulate IL-7 gene transcription. Collectively, these results suggest that our IL-7 reporter system can be utilized in large-scale chemical library screening to reveal novel IL-7 regulatory pathways and to identify potential drugs for development of new treatments in immunodeficiency disease.

  10. Lattice energy calculation - A quick tool for screening of cocrystals and estimation of relative solubility. Case of flavonoids

    Science.gov (United States)

    Kuleshova, L. N.; Hofmann, D. W. M.; Boese, R.

    2013-03-01

    Cocrystals (or multicomponent crystals) have physico-chemical properties that are different from crystals of pure components. This is significant in drug development, since the desired properties, e.g. solubility, stability and bioavailability, can be tailored by binding two substances into a single crystal without chemical modification of an active component. Here, the FLEXCRYST program suite, implemented with a data mining force field, was used to estimate the relative stability and, consequently, the relative solubility of cocrystals of flavonoids vs their pure crystals, stored in the Cambridge Structural Database. The considerable potency of this approach for in silico screening of cocrystals, as well as their relative solubility, was demonstrated.

  11. Effects of aluminium surface morphology and chemical modification on wettability

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M., E-mail: mar@sbi.aau.dk [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Fojan, P.; Gurevich, L. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4, DK-9220 Aalborg East (Denmark); Afshari, A. [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2014-03-01

    Highlights: • Successful surface modification procedures on aluminium samples were performed involving formation of the layer of hydrophilic hyperbranched polyethyleneglycol (PEG) via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. • The groups of surfaces with hydrophobic behavior were found to follow the Wenzel model. • A transition from Cassie–Baxter's to Wenzel's regime was observed due to changing of the surface roughness upon mechanical polishing in aluminium samples. - Abstract: Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie–Baxter to Wenzel regime upon changing the surface

  12. Modification of foxtail millet starch by combining physical, chemical and enzymatic methods.

    Science.gov (United States)

    Dey, Ashim; Sit, Nandan

    2017-02-01

    Modification of foxtail millet starch was carried out by heat moisture treatment (HT), acid hydrolysis (AH), enzymatic treatment (EH), Ultrasound treatment (UT) and their combinations. A total of 15 modified starches were prepared by combining the various methods and properties were compared with native starch. The solubilities of the starches modified by HT were found to decrease whereas for other single modifications it increased. It also increased with number of modifications applied. The swelling power decreased for all the modified starches and a decrease in swelling power was observed with increase in number of modifications. Freeze-thaw stability improved for starches modified by single physical modifications i.e. HT and UT. Decrease in viscosities was observed for the modified starches and was particularly affected by AH. The pasting temperature was found to increase for those modified starches where HT was carried out. The modified starches gave softer gels. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid

    2014-01-01

    -life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition...... of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types...

  14. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Science.gov (United States)

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    International Nuclear Information System (INIS)

    Shin, Hyeong-Moo; Ernstoff, Alexi; Csiszar, Susan A.

    2015-01-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate daily intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models

  16. Modifications of chemical functional groups of Pandanus amaryllifolius Roxb and its effect towards biosorption of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Mohd Zamri, E-mail: zamriab@petronas.com.my; Ismail, Siti Salwa [Chemical Engineering Department, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2015-07-22

    The utilization of non-living biomass as an alternative biosorbent for heavy metal removal has gain a tremendous consideration through the years. Pandanus amaryllifolius Roxb or pandan leaves, which is widely used as food additives in the South East Asia region, has been selected for its viability in the said effort due to the presence of chemical functional groups on its cellular network that enables the sorption to occur. In order to elucidate the possible mechanisms participated during the heavy metal removal process, the biosorbent undergone a series of modification techniques to alter the chemical functional groups present on its constituent. From the outcome of the chemically-modified biosorbent being subjected to the contact with metal cations, nitrogen- and oxygen-containing groups present on the biosorbent are believed to be responsible for the metal uptake to occur through complexation mechanism. Modifying amine groups causes 14% reduction of Cu(II) uptake, whereas removing protein element increases the uptake to 26% as compared to the unmodified biosorbent. Also, scanning electron micrographs further suggested that the adsorption mechanism could perform in parallel, as attributed to the evidence of porous structure throughout the biosorbent fibrous nature.

  17. Modifications of chemical functional groups of Pandanus amaryllifolius Roxb and its effect towards biosorption of heavy metals

    International Nuclear Information System (INIS)

    Abdullah, Mohd Zamri; Ismail, Siti Salwa

    2015-01-01

    The utilization of non-living biomass as an alternative biosorbent for heavy metal removal has gain a tremendous consideration through the years. Pandanus amaryllifolius Roxb or pandan leaves, which is widely used as food additives in the South East Asia region, has been selected for its viability in the said effort due to the presence of chemical functional groups on its cellular network that enables the sorption to occur. In order to elucidate the possible mechanisms participated during the heavy metal removal process, the biosorbent undergone a series of modification techniques to alter the chemical functional groups present on its constituent. From the outcome of the chemically-modified biosorbent being subjected to the contact with metal cations, nitrogen- and oxygen-containing groups present on the biosorbent are believed to be responsible for the metal uptake to occur through complexation mechanism. Modifying amine groups causes 14% reduction of Cu(II) uptake, whereas removing protein element increases the uptake to 26% as compared to the unmodified biosorbent. Also, scanning electron micrographs further suggested that the adsorption mechanism could perform in parallel, as attributed to the evidence of porous structure throughout the biosorbent fibrous nature

  18. Chemical modifications of polymer films induced by high energy heavy ions

    International Nuclear Information System (INIS)

    Zhu Zhiyong; Sun Youmei; Liu Changlong; Liu Jie; Jin Yunfan

    2002-01-01

    Polymer films including polyethylene terephthalate (PET), polystyrene (PS) and polycarbonate (PC) were irradiated at room temperature with ions of 35 MeV/u 40 Ar, 25 MeV/u 84 Kr, 15.1 MeV/u 136 Xe and 11.4 MeV/u 238 U to fluences ranging from 9x10 9 to 5.5x10 12 ions/cm 2 . The radiation-induced chemical changes of the materials were investigated by Fourier-transform infrared (FTIR) and ultraviolet/visible spectroscopies. It is found that the absorbance in the ultraviolet and visible range induced by all irradiations follows a linear relationship with fluence. The radiation-induced absorbance normalized to one particle increases slowly with increasing of electronic energy loss below about 8 keV/nm followed by a sharp increase up to about 15 keV/nm above which saturation is reached. FTIR measurements reveal that the materials suffer serious degradation through bond breaking. The absorbance of the typical infrared bands decays exponentially with increase of ion fluence and the bond-disruption cross-section shows a sigmoid variation with electronic energy loss. In PET loss of crystallinity is attributed to the configuration transformation of the ethylene glycol residue from trans into the gauche. Alkyne end groups are induced in all the materials above certain electronic energy loss threshold, which is found to be about 0.8 keV/nm for PS and 0.4 keV/nm for PC. The production cross-section of alkyne end group increases with increasing of electronic energy loss and shows saturation at high electronic energy loss values. It is concluded that not only the physical processes but also the chemical processes of the energy deposition determine the modification of polymer

  19. Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys using Laboratory-Based Accelerated Corrosion and Electro-Chemical Methods

    Science.gov (United States)

    2014-07-01

    Spray. Journal of Failure Analysis and Prevention 2008, 8 (2), 164–175. 34. Aluminium Alloy 5083, Plate and Sheet; SAE-AMS-QQ-A-250/6S; SAE...Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys Using Laboratory-Based Accelerated Corrosion and Electro-chemical Methods...Magnesium and Other Magnesium Alloys Using Laboratory-Based Accelerated Corrosion and Electro-chemical Methods Brian E. Placzankis, Joseph P

  20. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    Science.gov (United States)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  1. A Workflow to Investigate Exposure and Pharmacokinetic Influences on High-Throughput in Vitro Chemical Screening Based on Adverse Outcome Pathways

    Science.gov (United States)

    Phillips, Martin B.; Leonard, Jeremy A.; Grulke, Christopher M.; Chang, Daniel T.; Edwards, Stephen W.; Brooks, Raina; Goldsmith, Michael-Rock; El-Masri, Hisham; Tan, Yu-Mei

    2015-01-01

    Background Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties of chemicals. Objectives We developed a conceptual workflow to examine exposure and ADME properties in relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, acetylcholinesterase (AChE) inhibition. Methods Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined with respect to their exposure, absorption potential, and ability to cross the blood–brain barrier (BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals to detect possible parent compounds that might have active metabolites. Results Application of the workflow screened 10 “low-priority” chemicals of 30 active chemicals. Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of metabolic activation. Conclusions The incorporation of exposure and ADME properties into the conceptual workflow eliminated 10 “low-priority” chemicals that may otherwise have undergone additional, resource-consuming analyses. Our workflow also increased confidence in interpretation of in vitro results by identifying possible “false negatives.” Citation Phillips MB, Leonard JA, Grulke CM, Chang DT, Edwards SW, Brooks R, Goldsmith MR, El-Masri H, Tan YM. 2016. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways. Environ

  2. Tiered High-Throughput Screening Approach to Identify ...

    Science.gov (United States)

    High-throughput screening (HTS) for potential thyroid–disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the US EPA ToxCast screening assay portfolio. To fill one critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast Phase I and II chemical libraries, comprised of 1,074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single concentration screen were retested in concentration-response. Due to high false positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed two additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using

  3. A chemical library to screen protein and protein-ligand crystallization using a versatile microfluidic platform

    OpenAIRE

    Gerard , Charline ,; Ferry , Gilles; Vuillard , Laurent ,; Boutin , Jean ,; Ferte , Nathalie ,; Grossier , Romain ,; Candoni , Nadine ,; Veesler , Stéphane ,

    2018-01-01

    Here, we describe a plug-and-play microfluidic platform, suitable for protein crystallization. The droplet factory is designed to generate hundreds of droplets as small as a few nanoliters (2 to 10nL) for screening and optimization of crystallization conditions. Commercially-available microfluidic junctions and tubing are combined to create the appropriate geometry. In addition, a " chemical library " is produced in tubing. The microfluidic geometry for a " crystallization agent-based chemica...

  4. Use of hydrostatic pressure for modulation of protein chemical modification and enzymatic selectivity.

    Science.gov (United States)

    Makarov, Alexey A; Helmy, Roy; Joyce, Leo; Reibarkh, Mikhail; Maust, Mathew; Ren, Sumei; Mergelsberg, Ingrid; Welch, Christopher J

    2016-05-11

    Using hydrostatic pressure to induce protein conformational changes can be a powerful tool for altering the availability of protein reactive sites and for changing the selectivity of enzymatic reactions. Using a pressure apparatus, it has been demonstrated that hydrostatic pressure can be used to modulate the reactivity of lysine residues of the protein ubiquitin with a water-soluble amine-specific homobifunctional coupling agent. Fewer reactive lysine residues were observed when the reaction was carried out under elevated pressure of 3 kbar, consistent with a pressure-induced conformational change of ubiquitin that results in fewer exposed lysine residues. Additionally, modulation of the stereoselectivity of an enzymatic transamination reaction was observed at elevated hydrostatic pressure. In one case, the minor diasteromeric product formed at atmospheric pressure became the major product at elevated pressure. Such pressure-induced alterations of protein reactivity may provide an important new tool for enzymatic reactions and the chemical modification of proteins.

  5. Data from Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors within the ToxCast Phase I and II Chemical Libraries

    Data.gov (United States)

    U.S. Environmental Protection Agency — High-throughput screening for potential thyroid-disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge...

  6. Surface modification on PMMA : PVDF polyblend: hardening under ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Polyblend; surface modification; microhardness; hardening; plasticization; segmental mobility. 1. Introduction. Polymeric materials have a specific feature of stability towards various aggressive chemical environments, which depends on a multiplicity of factors like structure and nature of the polymers and chemical ...

  7. SS-mPEG chemical modification of recombinant phospholipase C for enhanced thermal stability and catalytic efficiency.

    Science.gov (United States)

    Fang, Xian; Wang, Xueting; Li, Guiling; Zeng, Jun; Li, Jian; Liu, Jingwen

    2018-05-01

    PEGylation is one of the most promising and extensively studied strategies for improving the properties of proteins as well as enzymic physical and thermal stability. Phospholipase C, hydrolyzing the phospholipids offers tremendous applications in diverse fields. However, the poor thermal stability and higher cost of production have restricted its industrial application. This study focused on improving the stabilization of recombinant PLC by chemical modification with methoxypolyethylene glycol-Succinimidyl Succinate (SS-mPEG, MW 5000). PLC gene from isolate Bacillus cereus HSL3 was fused with SUMO, a novel small ubiquitin-related modifier expression vector and over expressed in Escherichia coli. The soluble fraction of SUMO-PLC reached 80% of the total recombinant protein. The enzyme exhibited maximum catalytic activity at 80 °C and was relatively thermostable at 40-70 °C. It showed extensive substrate specificity pattern and marked activity toward phosphatidylcholine, which made it a typical non-specific PLC for industrial purpose. SS-mPEG-PLC complex exhibited an enhanced thermal stability at 70-80 °C and the catalytic efficiency (K cat /K m ) had increased by 3.03 folds compared with free PLC. CD spectrum of SS-mPEG-PLC indicated a possible enzyme aggregation after chemical modification, which contributed to the higher thermostability of SS-mPEG-PLC. The increase of antiparallel β sheets in secondary structure also made it more stable than parallel β sheets. The presence of SS-mPEG chains on the enzyme molecule surface somewhat changed the binding rate of the substrates, leading to a significant improvement in catalytic efficiency. This study provided an insight into the addition of SS-mPEG for enhancing the industrial applications of phospholipase C at higher temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    Science.gov (United States)

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we show that chemically unmodified mRNA can achieve those goals as well by applying sequence-engineered molecules. Using erythropoietin (EPO) driven production of red blood cells as the biological model, engineered Epo mRNA elicited meaningful physiological responses from mice to nonhuman primates. Even in pigs of about 20 kg in weight, a single adequate dose of engineered mRNA encapsulated in lipid nanoparticles (LNPs) induced high systemic Epo levels and strong physiological effects. Our results demonstrate that sequence-engineered mRNA has the potential to revolutionize human protein therapies. PMID:26050989

  9. AOP: An R Package For Sufficient Causal Analysis in Pathway-based Screening of Drugs and Chemicals for Adversity

    Science.gov (United States)

    Summary: How can I quickly find the key events in a pathway that I need to monitor to predict that a/an beneficial/adverse event/outcome will occur? This is a key question when using signaling pathways for drug/chemical screening in pharma-cology, toxicology and risk assessment. ...

  10. Modification and characterization of microcrystalline cellulose with succinic anhydride

    International Nuclear Information System (INIS)

    Santos, Clecio M.R.; Santos, Douglas C.; Freitas, Gizele B.; Cardoso, Giselia

    2011-01-01

    Cellulose is a natural polymer, non-toxic, biodegradable and renewable source. With increasing global attention to environmental problems, the chemical modification of cellulose has been evaluated with increasing applicability in various industrial sectors. The cellulose can be chemical modified through the hydroxyl present in their molecules. This paper aims to present the main results in the modification of microcrystalline cellulose. The sample was pure and modified chemically and morphologically characterized by absorption spectroscopy in the infrared (IR) and showed the band in the 1551cm -1 characterization modification made, X-ray diffraction (XRD) where it was observed that the change led to a reduction significant crystallinity, and determination of average pore radius through the analyzer porosity and surface area resulting in values of 6.97 angstrom for pure sample and 8.62 angstrom for the modified. In addition to these tests we determined the average degree of substitution finding the value of 1.67. (author)

  11. Modification of poly(styrene-block-butadiene-block-styrene) [SBS] with phosphorus containing fire retardants

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Ullah, Saif; Jomaas, Grunde

    2015-01-01

    An elaborate survey of the chemical modification methods for endowing highly flammable SBS with increased fire resistant properties by means of chemical modification of the polymer backbone with phosphorus containing fire retardant species is presented. Optimal conditions for free radical addition...

  12. Chemical modification and pH dependence of kinetic parameters to identify functional groups in a glucosyltransferase from Strep. Mutans

    International Nuclear Information System (INIS)

    Bell, J.E.; Leone, A.; Bell, E.T.

    1986-01-01

    A glucosyltransferase, forming a predominantly al-6 linked glucan, was partially purified from the culture filtrate of S. mutans GS-5. The kinetic properties of the enzyme, assessed using the transfer of 14 C glucose from sucrose into total glucan, were studied at pH values from pH 3.5 to 6.5. From the dependence of km on pH, a group with pKa = 5.5 must be protonated to maximize substrate binding. From plots of V/sub max/ vs pH two groups, with pKa's of 4.5 and 5.5 were indicated. The results suggest the involvement of either two carboxyl groups (one protonated, one unprotonated in the native enzyme) or a carboxyl group (unprotonated) and some other protonated group such as histidine, cysteine. Chemical modification studies showed that Diethylyrocarbonate (histidine specific) had no effect on enzyme activity while modification with p-phydroxy-mercuribenzoate or iodoacetic acid (sulfhydryl reactive) and carbodimide reagents (carboxyl specific) resulted in almost complete inactivation. Activity loss was dependent upon time of incubation and reagent concentration. The disaccharide lylose, (shown to be an inhibitor of the enzyme with similar affinity to sucrose) offers no protection against modification by the sulfhydryl reactive reagents

  13. Screening of ionic cores in partially ionized plasmas within linear response

    International Nuclear Information System (INIS)

    Gericke, D. O.; Vorberger, J.; Wuensch, K.; Gregori, G.

    2010-01-01

    We employ a pseudopotential approach to investigate the screening of ionic cores in partially ionized plasmas. Here, the effect of the tightly bound electrons is condensed into an effective potential between the (free) valence electrons and the ionic cores. Even for weak electron-ion coupling, the corresponding screening clouds show strong modifications from the Debye result for elements heavier than helium. Modifications of the theoretically predicted x-ray scattering signal and implications on measurements are discussed.

  14. Rapid screening and identification of chemical hazards in surface and drinking water using high resolution mass spectrometry and a case-control filter.

    Science.gov (United States)

    Kaserzon, Sarit L; Heffernan, Amy L; Thompson, Kristie; Mueller, Jochen F; Gomez Ramos, Maria Jose

    2017-09-01

    Access to clean, safe drinking water poses a serious challenge to regulators, and requires analytical strategies capable of rapid screening and identification of potentially hazardous chemicals, specifically in situations when threats to water quality or security require rapid investigations and potential response. This study describes a fast and efficient chemical hazard screening strategy for characterising trace levels of polar organic contaminants in water matrices, based on liquid chromatography high resolution mass spectrometry with post-acquisition 'case-control' data processing. This method allowed for a rapid response time of less than 24 h for the screening of target, suspect and non-target unknown chemicals via direct injection analysis, and a second, more sensitive analysis option requiring sample pre-concentration. The method was validated by fortifying samples with a range of pesticides, pharmaceuticals and personal care products (n = 46); with >90% of target compounds positively screened in samples at 1 ng mL -1 , and 46% at 0.1 ng mL -1 when analysed via direct injection. To simulate a contamination event samples were fortified with compounds not present in the commercial library (designated 'non-target compounds'; fipronil and fenitrothion), tentatively identified at 0.2 and 1 ng mL -1 , respectively; and a compound not included in any known commercial library or public database (designated 'unknown' compounds; 8Cl - perfluorooctanesulfonic acid), at 0.8 ng mL -1 . The method was applied to two 'real-case' scenarios: (1) the assessment of drinking water safety during a high-profile event in Brisbane, Australia; and (2) to screen treated, re-circulated drinking water and pre-treated (raw) water. The validated workflow was effective for rapid prioritisation and screening of suspect and non-target potential hazards at trace levels, and could be applied to a wide range of matrices and investigations where comparison of organic contaminants

  15. Novel method for chemical modification and patterning of the SU-8 photoresist

    DEFF Research Database (Denmark)

    Blagoi, Gabriela; Keller, Stephan Urs; Boisen, Anja

    2007-01-01

    the wetting behaviour of SU-8. The resolution limit of the AQ photopatterning method was 20 μm when using an uncollimated light source. AQ modification followed by a reaction with amino groups of Alexa-647 cadaverine and a Biotin-amino derivative proved possible modification and patterning of polymeric...

  16. Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, J.M.; Webb, S.W.

    1997-06-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  17. Screening for Drug Abuse Among College Students: Modification of the Michigan Alcoholism Screening Test

    Science.gov (United States)

    Cannell, M. Barry; Favazza, Armando R.

    1978-01-01

    Modified version of the Michigan Alcoholism Screening Test was anonymously given to 245 college students on two Midwestern university campuses. Cutoff score for suspected drug abuse was set at five points. The percent of students scoring five or more points was 25 and 22 from campuses A and B respectively. (Author)

  18. A study of chemical modifications of a Nafion membrane by incorporation of different room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de Yuso, M.V.; Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga (Spain); Neves, L.A.; Coelhoso, I.M.; Crespo, J.G. [REQUIMTE/CQFB, Departamento de Quimica, Universidade Nova de Lisboa, Caparica (Portugal); Benavente, J. [Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga (Spain)

    2012-08-15

    Surface and bulk chemical changes in a Nafion membrane as a result of room temperature ionic liquids (RTILs) incorporation were determined by X-ray photoelectron spectroscopy (XPS) and elemental analysis, respectively. RTILs with different physicochemical properties were selected. Two imidazolium based RTIL-cations (1-octyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) were used to detect the effect of cation size on membrane modification, while the effect of the RTIL hydrophilic/hydrophobic character was also considered by choosing different anions. Angle resolved XPS measurements (ARXPS) were carried out varying the angle of analysis between 15 and 75 to get elemental information on the Nafion/RTIL-modified membranes interactions for a deepness of around 10 nm. Moreover, changes in the RTIL-modified membranes associated to thermal effect were also considered by analyzing the samples after their heating at 120 C for 24 h. Agreement between both chemical techniques, bulk and destructive elemental analysis and surface and non-destructive XPS, were obtained. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Post-Translational Modifications of TRP Channels

    Directory of Open Access Journals (Sweden)

    Olaf Voolstra

    2014-04-01

    Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.

  20. Rapid Parallel Screening for Strain Optimization

    Science.gov (United States)

    2013-08-16

    fermentation yields of industrially relevant biological compounds. Screening of the desired chemicals was completed previously. Microbes that can...reporter, and, 2) a yeast TAR cloning shuttle vector for transferring catabolic clusters to E. coli. 15. SUBJECT TERMS NA 16. SECURITY CLASSIFICATION OF... fermentation yields of industrially relevant biological compounds. Screening of the desired chemicals was completed previously. Microbes that can utilize

  1. Alkylation sensitivity screens reveal a conserved cross-species functionome

    Science.gov (United States)

    Svilar, David; Dyavaiah, Madhu; Brown, Ashley R.; Tang, Jiang-bo; Li, Jianfeng; McDonald, Peter R.; Shun, Tong Ying; Braganza, Andrea; Wang, Xiao-hong; Maniar, Salony; St Croix, Claudette M.; Lazo, John S.; Pollack, Ian F.; Begley, Thomas J.; Sobol, Robert W.

    2013-01-01

    To identify genes that contribute to chemotherapy resistance in glioblastoma, we conducted a synthetic lethal screen in a chemotherapy-resistant glioblastoma derived cell line with the clinical alkylator temozolomide (TMZ) and an siRNA library tailored towards “druggable” targets. Select DNA repair genes in the screen were validated independently, confirming the DNA glycosylases UNG and MYH as well as MPG to be involved in the response to high dose TMZ. The involvement of UNG and MYH is likely the result of a TMZ-induced burst of reactive oxygen species. We then compared the human TMZ sensitizing genes identified in our screen with those previously identified from alkylator screens conducted in E. coli and S. cerevisiae. The conserved biological processes across all three species composes an Alkylation Functionome that includes many novel proteins not previously thought to impact alkylator resistance. This high-throughput screen, validation and cross-species analysis was then followed by a mechanistic analysis of two essential nodes: base excision repair (BER) DNA glycosylases (UNG, human and mag1, S. cerevisiae) and protein modification systems, including UBE3B and ICMT in human cells or pby1, lip22, stp22 and aim22 in S. cerevisiae. The conserved processes of BER and protein modification were dual targeted and yielded additive sensitization to alkylators in S. cerevisiae. In contrast, dual targeting of BER and protein modification genes in human cells did not increase sensitivity, suggesting an epistatic relationship. Importantly, these studies provide potential new targets to overcome alkylating agent resistance. PMID:23038810

  2. In-bead screening

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to screening of one-bead-one-compound (OBOC) combinatorial libraries which is useful for the discovery of compounds displaying molecular interactions with a biological or a physicochemical system, such as substrates and inhibitors of enzymes and the like. The invention...... provides a method for screening a library of compounds for their interaction with a physico- chemical or biological system and a corresponding kit for performing the method of screening a one-bead-one-compound library of compounds....

  3. A probabilistic generative model for quantification of DNA modifications enables analysis of demethylation pathways.

    Science.gov (United States)

    Äijö, Tarmo; Huang, Yun; Mannerström, Henrik; Chavez, Lukas; Tsagaratou, Ageliki; Rao, Anjana; Lähdesmäki, Harri

    2016-03-14

    We present a generative model, Lux, to quantify DNA methylation modifications from any combination of bisulfite sequencing approaches, including reduced, oxidative, TET-assisted, chemical-modification assisted, and methylase-assisted bisulfite sequencing data. Lux models all cytosine modifications (C, 5mC, 5hmC, 5fC, and 5caC) simultaneously together with experimental parameters, including bisulfite conversion and oxidation efficiencies, as well as various chemical labeling and protection steps. We show that Lux improves the quantification and comparison of cytosine modification levels and that Lux can process any oxidized methylcytosine sequencing data sets to quantify all cytosine modifications. Analysis of targeted data from Tet2-knockdown embryonic stem cells and T cells during development demonstrates DNA modification quantification at unprecedented detail, quantifies active demethylation pathways and reveals 5hmC localization in putative regulatory regions.

  4. A rational workflow for sequential virtual screening of chemical libraries on searching for new tyrosinase inhibitors.

    Science.gov (United States)

    Le-Thi-Thu, Huong; Casanola-Martín, Gerardo M; Marrero-Ponce, Yovani; Rescigno, Antonio; Abad, Concepcion; Khan, Mahmud Tareq Hassan

    2014-01-01

    The tyrosinase is a bifunctional, copper-containing enzyme widely distributed in the phylogenetic tree. This enzyme is involved in the production of melanin and some other pigments in humans, animals and plants, including skin pigmentations in mammals, and browning process in plants and vegetables. Therefore, enzyme inhibitors has been under the attention of the scientist community, due to its broad applications in food, cosmetic, agricultural and medicinal fields, to avoid the undesirable effects of abnormal melanin overproduction. However, the research of novel chemical with antityrosinase activity demands the use of more efficient tools to speed up the tyrosinase inhibitors discovery process. This chapter is focused in the different components of a predictive modeling workflow for the identification and prioritization of potential new compounds with activity against the tyrosinase enzyme. In this case, two structure chemical libraries Spectrum Collection and Drugbank are used in this attempt to combine different virtual screening data mining techniques, in a sequential manner helping to avoid the usually expensive and time consuming traditional methods. Some of the sequential steps summarize here comprise the use of drug-likeness filters, similarity searching, classification and potency QSAR multiclassifier systems, modeling molecular interactions systems, and similarity/diversity analysis. Finally, the methodologies showed here provide a rational workflow for virtual screening hit analysis and selection as a promissory drug discovery strategy for use in target identification phase.

  5. A quantitative screening-level approach to incorporate chemical exposure and risk into alternative assessment evaluations.

    Science.gov (United States)

    Arnold, Scott M; Greggs, Bill; Goyak, Katy O; Landenberger, Bryce D; Mason, Ann M; Howard, Brett; Zaleski, Rosemary T

    2017-11-01

    As the general public and retailers ask for disclosure of chemical ingredients in the marketplace, a number of hazard screening tools were developed to evaluate the so-called "greenness" of individual chemical ingredients and/or formulations. The majority of these tools focus only on hazard, often using chemical lists, ignoring the other part of the risk equation: exposure. Using a hazard-only focus can result in regrettable substitutions, changing 1 chemical ingredient for another that turns out to be more hazardous or shifts the toxicity burden to others. To minimize the incidents of regrettable substitutions, BizNGO describes "Common Principles" to frame a process for informed substitution. Two of these 6 principles are: "reduce hazard" and "minimize exposure." A number of frameworks have emerged to evaluate and assess alternatives. One framework developed by leading experts under the auspices of the US National Academy of Sciences recommended that hazard and exposure be specifically addressed in the same step when assessing candidate alternatives. For the alternative assessment community, this article serves as an informational resource for considering exposure in an alternatives assessment using elements of problem formulation; product identity, use, and composition; hazard analysis; exposure analysis; and risk characterization. These conceptual elements build on practices from government, academia, and industry and are exemplified through 2 hypothetical case studies demonstrating the questions asked and decisions faced in new product development. These 2 case studies-inhalation exposure to a generic paint product and environmental exposure to a shampoo rinsed down the drain-demonstrate the criteria, considerations, and methods required to combine exposure models addressing human health and environmental impacts to provide a screening level hazard and exposure (risk) analysis. This article informs practices for these elements within a comparative risk context

  6. TEXTILE SURFACE MODIFICATION BY PYHSICAL VAPOR DEPOSITION – (REVIEW

    Directory of Open Access Journals (Sweden)

    YUCE Ismail

    2017-05-01

    Full Text Available Textile products are used in various branches of the industry from automotive to space products. Textiles produced for industrial use are generally referred to as technical textiles. Technical textiles are nowadays applied to several areas including transportation, medicine, agriculture, protection, sports, packaging, civil engineering and industry. There are rapid developments in the types of materials used in technical textiles. Therefore, modification and functionalization of textile surfaces is becoming more crucial. The improvements of the properties such as anti-bacterial properties, fire resistivity, UV radiation resistance, electrical conductivity, self cleaning, and super hydrophobic, is getting more concern with respect to developments in textile engineering. The properties of textile surfaces are closely related to the fiber structure, the differences in the polymer composition, the fiber mixture ratio, and the physical and chemical processes applied. Textile surface modifications can be examined in four groups under the name mechanical, chemical, burning and plasma. Surface modifications are made to improve the functionality of textile products. Textile surface modifications affect the properties of the products such as softness, adhesion and wettability. The purpose of this work is to reveal varieties of vapor deposition modifications to improve functionality. For this purpose, the pyhsical vapor deposition methods, their affects on textile products and their end-uses will be reviewed.

  7. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis.

    Science.gov (United States)

    Fazly, Ahmed; Jain, Charu; Dehner, Amie C; Issi, Luca; Lilly, Elizabeth A; Ali, Akbar; Cao, Hong; Fidel, Paul L; Rao, Reeta P; Kaufman, Paul D

    2013-08-13

    Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.

  8. Terrestrial Eco-Toxicological Tests as Screening Tool to Assess Soil Contamination in Krompachy Area

    Science.gov (United States)

    Ol'ga, Šestinová; Findoráková, Lenka; Hančuľák, Jozef; Fedorová, Erika; Tomislav, Špaldon

    2016-10-01

    In this study, we present screening tool of heavy metal inputs to agricultural and permanent grass vegetation of the soils in Krompachy. This study is devoted to Ecotoxicity tests, Terrestrial Plant Test (modification of OECD 208, Phytotoxkit microbiotest on Sinapis Alba) and chronic tests of Earthworm (Dendrobaena veneta, modification of OECD Guidelines for the testing of chemicals 317, Bioaccumulation in Terrestrial Oligochaetes) as practical and sensitive screening method for assessing the effects of heavy metals in Krompachy soils. The total Cu, Zn, As, Pb and Hg concentrations and eco-toxicological tests of soils from the Krompachy area were determined of 4 sampling sites in 2015. An influence of the sampling sites distance from the copper smeltery on the absolutely concentrations of metals were recorded for copper, lead, zinc, arsenic and mercury. The highest concentrations of these metals were detected on the sampling sites up to 3 km from the copper smeltery. The samples of soil were used to assess of phytotoxic effect. Total mortality was established at earthworms using chronic toxicity test after 7 exposure days. The results of our study confirmed that no mortality was observed in any of the study soils. Based on the phytotoxicity testing, phytotoxic effects of the metals contaminated soils from the samples 3KR (7-9) S.alba seeds was observed.

  9. Hazard screening application guide. Safety Analysis Report Update Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  10. Chemical synthesis on SU-8

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Taveras, Kennedy; Thastrup, Ole

    2011-01-01

    In this paper we describe a highly effective surface modification of SU-8 microparticles, the attachment of appropriate linkers for solid-supported synthesis, and the successful chemical modification of these particles via controlled multi-step organic synthesis leading to molecules attached...

  11. WWER-type NPP spray ponds screen

    International Nuclear Information System (INIS)

    Nikolova, M.; Jordanov, M.; Denev, J.; Markov, D.

    2003-01-01

    The objective of this study is to develop a protection screen of WWER-type NPP spray ponds. The screen design is to ensure reduction of the water droplets blown by the wind and, if possible, their return back to the spray ponds. The cooling capacity of the ponds is not to be changed below the design level for safety reasons. Computational fluid dynamics analysis is used to assess the influence of each design variant on the behavior of the water droplets distribution. Two variants are presented here. The one with plants is found not feasible. The second variant, with steel screen and terrain profile modification is selected for implementation. (author)

  12. Modification of surfaces and surface layers by non equilibrium processes

    International Nuclear Information System (INIS)

    Beamson, G.; Brennan, W.J.; Clark, D.T.; Howard, J.

    1988-01-01

    Plasmas are examples of non-equilibrium phenomena which are being used increasingly for the synthesis and modification of materials impossible by conventional routes. This paper introduces methods available by describing the construction and characteristics of some equipment used for the production of different types of plasmas and other non-equilibrium phenomena. This includes high energy ion beams. The special features, advantages and disadvantages of the techniques will be described. There are a multitude of potential application relevant to electronic, metallic, ceramic, and polymeric materials. However, scale-up from the laboratory to production equipment depends on establishing a better understanding of both the physics and chemistry of plasma as well as plasma-solid interactions. Examples are given of how such an understanding can be gained. The chemical analysis of polymer surfaces undergoing modification by inert gas, hydrogen or oxygen plasmas is shown to give physical information regarding the relative roles of diffusion of active species, and direct and radiative energy transfer from the plasma. Surface modification by plasma depositing a new material onto an existing substrate is discussed with particular reference to the deposition of amorphous carbon films. Applications of the unique properties of these films are outlined together with our current understanding of these properties based on chemical and physical methods of analysis of both the films and the plasmas producing them. Finally, surface modification by ion beams is briefly illustrated using examples from the electronics and metals industries where the modification has had a largely physical rather than chemical effect on the starting material. (orig.)

  13. Population-Based in Vitro Hazard and Concentration–Response Assessment of Chemicals: The 1000 Genomes High-Throughput Screening Study

    Science.gov (United States)

    Abdo, Nour; Xia, Menghang; Brown, Chad C.; Kosyk, Oksana; Huang, Ruili; Sakamuru, Srilatha; Zhou, Yi-Hui; Jack, John R.; Gallins, Paul; Xia, Kai; Li, Yun; Chiu, Weihsueh A.; Motsinger-Reif, Alison A.; Austin, Christopher P.; Tice, Raymond R.

    2015-01-01

    Background: Understanding of human variation in toxicity to environmental chemicals remains limited, so human health risk assessments still largely rely on a generic 10-fold factor (10½ each for toxicokinetics and toxicodynamics) to account for sensitive individuals or subpopulations. Objectives: We tested a hypothesis that population-wide in vitro cytotoxicity screening can rapidly inform both the magnitude of and molecular causes for interindividual toxicodynamic variability. Methods: We used 1,086 lymphoblastoid cell lines from the 1000 Genomes Project, representing nine populations from five continents, to assess variation in cytotoxic response to 179 chemicals. Analysis included assessments of population variation and heritability, and genome-wide association mapping, with attention to phenotypic relevance to human exposures. Results: For about half the tested compounds, cytotoxic response in the 1% most “sensitive” individual occurred at concentrations within a factor of 10½ (i.e., approximately 3) of that in the median individual; however, for some compounds, this factor was > 10. Genetic mapping suggested important roles for variation in membrane and transmembrane genes, with a number of chemicals showing association with SNP rs13120371 in the solute carrier SLC7A11, previously implicated in chemoresistance. Conclusions: This experimental approach fills critical gaps unaddressed by recent large-scale toxicity testing programs, providing quantitative, experimentally based estimates of human toxicodynamic variability, and also testable hypotheses about mechanisms contributing to interindividual variation. Citation: Abdo N, Xia M, Brown CC, Kosyk O, Huang R, Sakamuru S, Zhou YH, Jack JR, Gallins P, Xia K, Li Y, Chiu WA, Motsinger-Reif AA, Austin CP, Tice RR, Rusyn I, Wright FA. 2015. Population-based in vitro hazard and concentration–response assessment of chemicals: the 1000 Genomes high-throughput screening study. Environ Health Perspect 123:458

  14. A spectroscopic screening of the chemical speciation of europium(III) in gastrointestinal tract. The intestine

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Claudia; Barkleit, Astrid [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements

    2016-07-01

    To evaluate the health risks of lanthanides (Ln) and radiotoxic actinides (An), investigations into the chemical reactions of these metals in the human gastrointestinal tract are necessary. In order to identify the dominant binding partners (i.e. counter ions and/or ligands) of An/Ln in the gastrointestinal tract, a spectroscopic screening was performed by Time-Resolved Laser-induced Fluorescence Spectroscopy (TRLFS) using artificial digestive juices containing Eu(III), a representative of Ln(III) and An(III). In the intestine, Eu(III) show a strong complexation especially with organic substances of the pancreatic and bile juice like the protein mucin.

  15. Versatile Chemical Derivatizations to Design Glycol Chitosan-Based Drug Carriers

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2017-10-01

    Full Text Available Glycol chitosan (GC and its derivatives have been extensively investigated as safe and effective drug delivery carriers because of their unique physiochemical and biological properties. The reactive functional groups such as the amine and hydroxyl groups on the GC backbone allow for easy chemical modification with various chemical compounds (e.g., hydrophobic molecules, crosslinkers, and acid-sensitive and labile molecules, and the versatility in chemical modifications enables production of a wide range of GC-based drug carriers. This review summarizes the versatile chemical modification methods that can be used to design GC-based drug carriers and describes their recent applications in disease therapy.

  16. Role of low density lipoprotein in the activation of plasma lysolecithin acyltransferase activity. Effect of chemical and enzymatic modifications of the lipoprotein on enzyme activity.

    Science.gov (United States)

    Subbaiah, P V; Chen, C H; Bagdade, J D; Albers, J J

    1985-01-01

    The effect of various chemical and enzymatic modifications of low density lipoprotein (LDL) on its ability to activate the isolated human plasma lysolecithin acyltransferase (LAT) was studied. Removal of all lipids from LDL resulted in the complete loss of LAT activation. Removal of only neutral lipids by extraction with heptane retained up to 50% of the original activity, which was not increased further by reconstitution of the LDL with the extracted lipids. Hydrolysis of the diacylphosphoglycerides of the LDL with phospholipases resulted in complete loss of LAT activation which was partially restored by the addition of egg lecithin. Hydrolysis of more than 4% of LDL protein by trypsin led to a linear decrease in activity with complete loss of activity occurring when about 25% of the LDL protein is hydrolyzed. Modification of the arginine groups of LDL reversibly inhibited the activation of LAT. Modification of lysine residues of LDL by acetylation, acetoacetylation or succinylation also abolished its ability to activate lysolecithin acylation.

  17. Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium

    International Nuclear Information System (INIS)

    Kostaki, Vasiliki T.; Florou, Ageliki B.; Prodromidis, Mamas I.

    2011-01-01

    Highlights: → Electrochemical treatment endows analytical characteristics to SPEs. → A sensitive chemical sensor for uranium is described. → Performance is due to a synergy between electrochemical treatment and ink's solvents. → The amount of the solvent controls the achievable sensitivity. - Abstract: We report for the first time on the possibility to develop chemical sensors based on electrochemically treated, non-modified, graphite screen-printed electrodes (SPEs). The applied galvanostatic treatment (5 μA for 6 min in 0.1 M H 2 SO 4 ) is demonstrated to be effective for the development of chemical sensors for the determination of uranium in aqueous solutions. A detailed study of the effect of various parameters related to the fabrication of SPEs on the performance of the resulting sensors along with some diagnostic experiments on conventional graphite electrodes showed that the inducible analytical characteristics are due to a synergy between electrochemical treatment and ink's solvents. Indeed, the amount of the latter onto the printed working layer controls the achievable sensitivity. The preconcentration of the analyte was performed in an electroless mode in an aqueous solutions of U(VI), pH 4.6, and then, the accumulated species was reduced by means of a differential pulse voltammetry scan in 0.1 M H 3 BO 3 , pH 3. Under selected experimental conditions, a linear calibration curve over the range 5 x 10 -9 to 10 -7 M U(VI) was constructed. The 3σ limit of detection at a preconcentration time of 30 min, and the relative standard deviation of the method were 4.5 x 10 -9 M U(VI) and >12% (n = 5, 5 x 10 -8 M U(VI)), respectively. The effect of potential interferences was also examined.

  18. [Methodology of Screening New Antibiotics: Present Status and Prospects].

    Science.gov (United States)

    Trenin, A S

    2015-01-01

    Due to extensive distribution of pathogen resistance to available pharmaceuticals and serious problems in the treatment of various infections and tumor diseases, the necessity of new antibiotics is urgent. The basic methodological approaches to chemical synthesis of antibiotics and screening of new antibiotics among natural products, mainly among microbial secondary metabolites, are considered in the review. Since the natural compounds are very much diverse, screening of such substances gives a good opportunity to discover antibiotics of various chemical structure and mechanism of action. Such an approach followed by chemical or biological transformation, is capable of providing the health care with new effective pharmaceuticals. The review is mainly concentrated on screening of natural products and methodological problems, such as: isolation of microbial producers from the habitats, cultivation of microorganisms producing appropriate substances, isolation and chemical characterization of microbial metabolites, identification of the biological activity of the metabolites. The main attention is paid to the problems of microbial secondary metabolism and design of new models for screening biologically active compounds. The last achievements in the field of antibiotics and most perspective approaches to future investigations are discussed. The main methodological approach to isolation and cultivation of the producers remains actual and needs constant improvement. The increase of the screening efficiency can be achieved by more rapid chemical identification of antibiotics and design of new screening models based on the biological activity detection.

  19. Influence of the chemical modification and content of the clay on the mechanical properties of polypropylene and national bentonite composites

    International Nuclear Information System (INIS)

    Libano, Elaine V.D.G.; Pacheco, Elen B.A.V.; Visconte, Leila L.Y.

    2011-01-01

    The polypropylene/national clay composite was prepared by melt intercalation in a counter-rotating twin screw extruder, using bentonite as filler either in the natural (BENT) form or modified with the ammonium salt, cetyltrimethylammonium chloride (BENT-org). The clay was used in 1, 3 and 5%w. The influence of the modification and content of clay on the mechanical properties of this system was analysed. The analyses of infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that clay organophilization did occur. The tensile modulus and the tensile strength at the yield point were not affected by chemical modification (BENT and BENT-org) or clay content. On the other hand, it was evidenced that the elongation at the yield point decreased with the addition of BENT and BENT-org to polypropylene. According to the thermogravimetric results, it was evidenced that the incorporation of clay into polypropylene improved thermal stability of the polymer in the composites with 5%w of BENT and 3 and 5%w of BENT-org. (author)

  20. Cardiovascular risk factors and incident albuminuria in screen-detected type 2 diabetes

    NARCIS (Netherlands)

    Webb, D. R.; Zaccardi, F.; Davies, M. J.; Griffin, S. J.; Wareham, N. J.; Simmons, R. K.; Rutten, G. E.; Sandbaek, A.; Lauritzen, T.; Borch-Johnsen, K.; Khunti, K.

    2017-01-01

    Background: It is unclear whether cardiovascular risk factor modification influences the development of renal disease in people with type 2 diabetes identified through screening. We determined predictors of albuminuria 5 years after a diagnosis of screen-detected diabetes within the ADDITION-Europe

  1. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by characterization...

  2. Quantitative structure-activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries.

    Science.gov (United States)

    Pham-The, H; Casañola-Martin, G; Diéguez-Santana, K; Nguyen-Hai, N; Ngoc, N T; Vu-Duc, L; Le-Thi-Thu, H

    2017-03-01

    Histone deacetylases (HDAC) are emerging as promising targets in cancer, neuronal diseases and immune disorders. Computational modelling approaches have been widely applied for the virtual screening and rational design of novel HDAC inhibitors. In this study, different machine learning (ML) techniques were applied for the development of models that accurately discriminate HDAC2 inhibitors form non-inhibitors. The obtained models showed encouraging results, with the global accuracy in the external set ranging from 0.83 to 0.90. Various aspects related to the comparison of modelling techniques, applicability domain and descriptor interpretations were discussed. Finally, consensus predictions of these models were used for screening HDAC2 inhibitors from four chemical libraries whose bioactivities against HDAC1, HDAC3, HDAC6 and HDAC8 have been known. According to the results of virtual screening assays, structures of some hits with pair-isoform-selective activity (between HDAC2 and other HDACs) were revealed. This study illustrates the power of ML-based QSAR approaches for the screening and discovery of potent, isoform-selective HDACIs.

  3. Supramolecular engineering through temperature-induced chemical modification of 2H-tetraphenylporphyrin on Ag(111): flat phenyl conformation and possible dehydrogenation reactions.

    Science.gov (United States)

    Di Santo, Giovanni; Blankenburg, Stephan; Castellarin-Cudia, Carla; Fanetti, Mattia; Borghetti, Patrizia; Sangaletti, Luigi; Floreano, Luca; Verdini, Alberto; Magnano, Elena; Bondino, Federica; Pignedoli, Carlo A; Nguyen, Manh-Thuong; Gaspari, Roberto; Passerone, Daniele; Goldoni, Andrea

    2011-12-16

    Scratching the surface: Formation of a monolayer of 2H-tetraphenylporphyrins (2H-TPP) on Ag(111), either by sublimation of a multilayer in the range 525-600 K or by annealing (at the same temperature) a monolayer deposited at room temperature, induces a chemical modification of the molecules. Rotation of the phenyl rings into a flat conformation is observed and tentatively explained, by using DFT calculations, as a peculiar reaction due to molecular dehydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.

    Science.gov (United States)

    Fukunishi, Yoshifumi

    2010-01-01

    For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.

  5. Fast surface modification by microwave assisted click reactions on silicon substrates

    NARCIS (Netherlands)

    Haensch, C.; Erdmenger, T.; Fijten, M.W.M.; Höppener, S.; Schubert, U.S.

    2009-01-01

    Microwave irradiation has been used for the chemical modification of functional monolayers on silicon surfaces. The thermal and chemical stability of these layers was tested under microwave irradiation to investigate the possibility to use this alternative heating process for the surface

  6. Microwave plasma induced surface modification of diamond-like carbon films

    Science.gov (United States)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  7. Modification of azo dyes by lactic acid bacteria.

    Science.gov (United States)

    Pérez-Díaz, I M; McFeeters, R F

    2009-08-01

    The ability of Lactobacillus casei and Lactobacillus paracasei to modify the azo dye, tartrazine, was recently documented as the result of the investigation on red coloured spoilage in acidified cucumbers. Fourteen other lactic acid bacteria (LAB) were screened for their capability to modify the food colouring tartrazine and other azo dyes of relevance for the textile industry. Most LAB modified tartrazine under anaerobic conditions, but not under aerobic conditions in modified chemically defined media. Microbial growth was not affected by the presence of the azo dyes in the culture medium. The product of the tartrazine modification by LAB was identified as a molecule 111 daltons larger than its precursor by liquid chromatography-mass spectrometry. This product had a purple colour under aerobic conditions and was colourless under anaerobic conditions. It absorbed light at 361 and 553 nm. LAB are capable of anabolizing azo dyes only under anaerobic conditions. IMPACT AND SIGNIFICANCE OF THE STUDY: Although micro-organisms capable of reducing the azo bond on multiple dyes have been known for decades, this is the first report of anabolism of azo dyes by food related micro-organisms, such as LAB.

  8. Chemical biology drug sensitivity screen identifies sunitinib as synergistic agent with disulfiram in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kirsi Ketola

    Full Text Available Current treatment options for castration- and treatment-resistant prostate cancer are limited and novel approaches are desperately needed. Our recent results from a systematic chemical biology sensitivity screen covering most known drugs and drug-like molecules indicated that aldehyde dehydrogenase inhibitor disulfiram is one of the most potent cancer-specific inhibitors of prostate cancer cell growth, including TMPRSS2-ERG fusion positive cancers. However, the results revealed that disulfiram alone does not block tumor growth in vivo nor induce apoptosis in vitro, indicating that combinatorial approaches may be required to enhance the anti-neoplastic effects.In this study, we utilized a chemical biology drug sensitivity screen to explore disulfiram mechanistic details and to identify compounds potentiating the effect of disulfiram in TMPRSS2-ERG fusion positive prostate cancer cells. In total, 3357 compounds including current chemotherapeutic agents as well as drug-like small molecular compounds were screened alone and in combination with disulfiram. Interestingly, the results indicated that androgenic and antioxidative compounds antagonized disulfiram effect whereas inhibitors of receptor tyrosine kinase, proteasome, topoisomerase II, glucosylceramide synthase or cell cycle were among compounds sensitizing prostate cancer cells to disulfiram. The combination of disulfiram and an antiangiogenic agent sunitinib was studied in more detail, since both are already in clinical use in humans. Disulfiram-sunitinib combination induced apoptosis and reduced androgen receptor protein expression more than either of the compounds alone. Moreover, combinatorial exposure reduced metastatic characteristics such as cell migration and 3D cell invasion as well as induced epithelial differentiation shown as elevated E-cadherin expression.Taken together, our results propose novel combinatorial approaches to inhibit prostate cancer cell growth. Disulfiram

  9. Current Screening Procedures for the Usher Syndrome at Residential Schools for the Deaf.

    Science.gov (United States)

    Day, Creagh Walker

    1982-01-01

    The results indicated that 53 percent of the schools that responded are screening students for Usher syndrome. One-half of the schools with screening programs offered some support services: personal counseling, genetic counseling, curricular modifications, and vocational counseling. (Author)

  10. Screen printing technology applied to silicon solar cell fabrication

    Science.gov (United States)

    Thornhill, J. W.; Sipperly, W. E.

    1980-01-01

    The process for producing space qualified solar cells in both the conventional and wraparound configuration using screen printing techniques was investigated. Process modifications were chosen that could be easily automated or mechanized. Work was accomplished to optimize the tradeoffs associated with gridline spacing, gridline definition and junction depth. An extensive search for possible front contact metallization was completed. The back surface field structures along with the screen printed back contacts were optimized to produce open circuit voltages of at least an average of 600 millivolts. After all intended modifications on the process sequence were accomplished, the cells were exhaustively tested. Electrical tests at AMO and 28 C were made before and after boiling water immersion, thermal shock, and storage under conditions of high temperature and high humidity.

  11. Characterisation of waste derived biochar added biocomposites: chemical and thermal modifications

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Zujovic, Zoran [School of Chemical Sciences, University of Auckland, Auckland 1142 (New Zealand); Bhattacharyya, Debes [Centre for Advanced Composite Materials, Department of Mechanical Engineering, University of Auckland, Auckland 1142 (New Zealand)

    2016-04-15

    A step towards sustainability was taken by incorporating waste based pyrolysed biochar in wood and polypropylene biocomposites. The effect of biochar particles on the chemistry and thermal makeup of the composites was determined by characterising them through an array of characterisation techniques such as 3D optical profiling, X-ray diffraction, transmission electron microscopy, electron spin/nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. It was observed that addition of biochar increased the presence of free radicals in the composite while also improving its thermal conductivity. Biochar particles did not interfere with the melting behaviour of polymer in the thermal regime. However, wood and biochar acted as nucleation agents consequently increasing the crystallisation temperature. The crystal structure of polypropylene was not disrupted by biochar inclusion in composite. Transmission electron microscopy images illustrated the aggregated nature of the biochar particles at higher loading levels. Nuclear magnetic resonance studies revealed the aromatic nature of biochar and the broadening of peak intensities of composites with increasing biochar levels due to its amorphous nature and presence of free radicals. Thus, this insight into the chemical and thermal modification of biochar added composites would allow effective engineering to optimise their properties while simultaneously utilising wastes. - Highlights: • Waste derived biochars were used to make polymer based biocomposites. • Composites were characterised by NMR, ESR, DSC, XRD, TEM etc. • Biochar increased the thermal conductivity of composites. • Biochar did not disrupt the crystal structure of polypropylene. • NMR revealed aromatic nature of biochar in composites.

  12. Characterisation of waste derived biochar added biocomposites: chemical and thermal modifications

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.; Zujovic, Zoran; Bhattacharyya, Debes

    2016-01-01

    A step towards sustainability was taken by incorporating waste based pyrolysed biochar in wood and polypropylene biocomposites. The effect of biochar particles on the chemistry and thermal makeup of the composites was determined by characterising them through an array of characterisation techniques such as 3D optical profiling, X-ray diffraction, transmission electron microscopy, electron spin/nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. It was observed that addition of biochar increased the presence of free radicals in the composite while also improving its thermal conductivity. Biochar particles did not interfere with the melting behaviour of polymer in the thermal regime. However, wood and biochar acted as nucleation agents consequently increasing the crystallisation temperature. The crystal structure of polypropylene was not disrupted by biochar inclusion in composite. Transmission electron microscopy images illustrated the aggregated nature of the biochar particles at higher loading levels. Nuclear magnetic resonance studies revealed the aromatic nature of biochar and the broadening of peak intensities of composites with increasing biochar levels due to its amorphous nature and presence of free radicals. Thus, this insight into the chemical and thermal modification of biochar added composites would allow effective engineering to optimise their properties while simultaneously utilising wastes. - Highlights: • Waste derived biochars were used to make polymer based biocomposites. • Composites were characterised by NMR, ESR, DSC, XRD, TEM etc. • Biochar increased the thermal conductivity of composites. • Biochar did not disrupt the crystal structure of polypropylene. • NMR revealed aromatic nature of biochar in composites.

  13. Chemical modification with phthalic anhydride and chitosan: Viable options for the stabilization of raw starch digesting amylase from Aspergillus carbonarius.

    Science.gov (United States)

    Nwagu, Tochukwu Nwamaka; Okolo, Bartholomew; Aoyagi, Hideki; Yoshida, Shigeki

    2017-06-01

    The raw starch digesting type of amylase (RSDA) presents greater opportunities for process efficiency at cheaper cost and shorter time compared to regular amylases. Chemical modification is a simple and rapid method toward their stabilization for a wider application. RSDA from Aspergillus carbonarius was modified with either phthalic anhydride (PA) or chitosan. Activity retention was 87.3% for PA-modified and 80.9% for chitosan-modified RSDA. Optimum pH shifted from 5 to 7 after PA-modification. Optimum temperature changed from 30°C (native) to 30-40°C and 60°C for PA-modified and chitosan-modified, respectively. Activation energy (kJmol -1 ) for hydrolysis was 13.5, 12.7, and 10.2 while the activation energy for thermal denaturation was 32.8, 80.3, 81.9 for free, PA-modified and chitosan-modified, respectively. The specificity constants (V max /K m ) were 73.2 for PA-modified, 63.1 for chitosan-modified and 77.1 for native RSDA. The half-life (h) of the RSDA at 80°C was increased from 6.1 to 25.7 for the PA-modified and 138.6 for the chitosan derivative. Modification also led to increase in D value, activation enthalpy and Gibbs free energy of enzyme deactivation. Fluorescence spectra showed that center of spectral mass decreased for the PA-modified RSDA but increased for chitosan modified RSDA. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Investigation of surface halide modification of nitrile butadiene rubber

    Science.gov (United States)

    Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.

    2017-12-01

    The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.

  15. Drug discovery for hearing loss: Phenotypic screening of chemical compounds on primary cultures of the spiral ganglion.

    Science.gov (United States)

    Whitlon, Donna S

    2017-06-01

    In the United States there are, at present, no drugs that are specifically FDA approved to treat hearing loss. Although several clinical trials are ongoing, including one testing D-methionine that is supported by the US Army, none of these trials directly address the effect of noise exposure on cochlear spiral ganglion neurons. We recently published the first report of a systematic chemical compound screen using primary, mammalian spiral ganglion cultures in which we were able to detect a compound and others in its class that increased neurite elongation, a critical step in restoring cochlear synapses after noise induced hearing loss. Here we discuss the issues, both pro and con, that influenced the development of our approach. These considerations may be useful for future compound screens that target the same or other attributes of cochlear spiral ganglion neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Physical- chemical changes in irradiated sodium alginate algimar

    International Nuclear Information System (INIS)

    Rapado Paneque, Manuel; Alazanes, Sonia; Sainz Vidal, Dianelys; Wandrey, Christine

    2003-01-01

    The effect of gamma radiation on the physical-chemical properties of sodium alginate Algimar has been investigated. dilution viscometric, densitometry FTIR spectroscopy served to identify modifications. Decreasing intrinsic, viscosities clearly revealed chain cleavage for both solid alginate indicate that chain degradation occurs without significant change of the chemical structure, The obtained results have practical implication change of the chemical structure. The obtained results have practical implication in the field of radiation modification and sterilization of sodium alginate used for microcapsule formation

  17. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.

    Science.gov (United States)

    Kirpekar, F; Douthwaite, S; Roepstorff, P

    2000-02-01

    We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of posttranscriptional modifications. A more refined mapping of RNA modifications can be obtained by using two RNases in parallel combined with further fragmentation by Post Source Decay (PSD). This approach allows fast and sensitive screening of a purified RNA for posttranscriptional modification, and has been applied on 5S rRNA from two thermophilic microorganisms, the bacterium Bacillus stearothermophilus and the archaeon Sulfolobus acidocaldarius, as well as the halophile archaea Halobacterium halobium and Haloarcula marismortui. One S. acidocaldarius posttranscriptional modification was identified and was further characterized by PSD as a methylation of cytidine32. The modified C is located in a region that is clearly conserved with respect to both sequence and position in B. stearothermophilus and H. halobium and to some degree also in H. marismortui. However, no analogous modification was identified in the latter three organisms. We further find that the 5' end of H. halobium 5S rRNA is dephosphorylated, in contrast to the other 5S rRNA species investigated. The method additionally gives an immediate indication of whether the expected RNA sequence is in agreement with the observed fragment masses. Discrepancies with two of the published 5S rRNA sequences were identified and are reported here.

  18. Controlled modification of biomolecules by ultrashort laser pulses in polar liquids

    DEFF Research Database (Denmark)

    Gruzdev, Vitaly; Korkin, Dmitry; Mooney, Brian P.

    2017-01-01

    Targeted chemical modification of peptides and proteins by laser pulses in a biologically relevant environment, i.e. aqueous solvent at room temperature, allows for accurate control of biological processes. However, the traditional laser methods of control of chemical reactions are applicable onl...

  19. Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome.

    Science.gov (United States)

    Mallory, Emily K; Acharya, Ambika; Rensi, Stefano E; Turnbaugh, Peter J; Bright, Roselie A; Altman, Russ B

    2018-01-01

    Bacteria in the human gut have the ability to activate, inactivate, and reactivate drugs with both intended and unintended effects. For example, the drug digoxin is reduced to the inactive metabolite dihydrodigoxin by the gut Actinobacterium E. lenta, and patients colonized with high levels of drug metabolizing strains may have limited response to the drug. Understanding the complete space of drugs that are metabolized by the human gut microbiome is critical for predicting bacteria-drug relationships and their effects on individual patient response. Discovery and validation of drug metabolism via bacterial enzymes has yielded >50 drugs after nearly a century of experimental research. However, there are limited computational tools for screening drugs for potential metabolism by the gut microbiome. We developed a pipeline for comparing and characterizing chemical transformations using continuous vector representations of molecular structure learned using unsupervised representation learning. We applied this pipeline to chemical reaction data from MetaCyc to characterize the utility of vector representations for chemical reaction transformations. After clustering molecular and reaction vectors, we performed enrichment analyses and queries to characterize the space. We detected enriched enzyme names, Gene Ontology terms, and Enzyme Consortium (EC) classes within reaction clusters. In addition, we queried reactions against drug-metabolite transformations known to be metabolized by the human gut microbiome. The top results for these known drug transformations contained similar substructure modifications to the original drug pair. This work enables high throughput screening of drugs and their resulting metabolites against chemical reactions common to gut bacteria.

  20. Protein covalent modification by biologically active quinones

    Directory of Open Access Journals (Sweden)

    MIROSLAV J. GASIC

    2004-11-01

    Full Text Available The avarone/avarol quinone/hydroquinone couple shows considerable antitumor activity. In this work, covalent modification of b-lactoglobulin by avarone and its derivatives as well as by the synthetic steroidal quinone 2,5(10-estradiene-1,4,17-trione and its derivatives were studied. The techniques for studying chemical modification of b-lactoglobulin by quinones were: UV/Vis spectrophotometry, SDS PAGE and isoelectrofocusing. SDS PAGE results suggest that polymerization of the protein occurs. It could be seen that the protein of 18 kD gives the bands of 20 kD, 36 kD, 40 kD, 45 kD, 64 kD and 128 kD depending on modification agent. The shift of the pI of the protein (5.4 upon modification toward lower values (from pI 5.0 to 5.3 indicated that lysine amino groups are the principal site of the reaction of b-lactoglobulin with the quinones.

  1. Bead-based screening in chemical biology and drug discovery

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Nielsen, Thomas Eiland; Qvortrup, Katrine

    2018-01-01

    libraries for early drug discovery. Among the various library forms, the one-bead-one-compound (OBOC) library, where each bead carries many copies of a single compound, holds the greatest potential for the rapid identification of novel hits against emerging drug targets. However, this potential has not yet...... been fully realized due to a number of technical obstacles. In this feature article, we review the progress that has been made towards bead-based library screening and applications to the discovery of bioactive compounds. We identify the key challenges of this approach and highlight key steps needed......High-throughput screening is an important component of the drug discovery process. The screening of libraries containing hundreds of thousands of compounds requires assays amanable to miniaturisation and automization. Combinatorial chemistry holds a unique promise to deliver structural diverse...

  2. Chemical Transformation Simulator

    Science.gov (United States)

    The Chemical Transformation Simulator (CTS) is a web-based, high-throughput screening tool that automates the calculation and collection of physicochemical properties for an organic chemical of interest and its predicted products resulting from transformations in environmental sy...

  3. Biosensor discovery of thyroxine transport disrupting chemicals

    NARCIS (Netherlands)

    Marchesini, G.R.; Meimaridou, A.; Haasnoot, W.; Meulenberg, E.; Albertus, F.; Mizuguchi, M.; Takeuchi, M.; Irth, H.; Murk, A.J.

    2008-01-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two

  4. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.

    Science.gov (United States)

    Ng, I-Son; Tan, Shih-I; Kao, Pei-Hsun; Chang, Yu-Kaung; Chang, Jo-Shu

    2017-10-01

    Microalgae serve as a promising source for the production of biofuels and bio-based chemicals. They are superior to terrestrial plants as feedstock in many aspects and their biomass is naturally rich in lipids, carbohydrates, proteins, pigments, and other valuable compounds. Due to the relatively slow growth rate and high cultivation cost of microalgae, to screen efficient and robust microalgal strains as well as genetic modifications of the available strains for further improvement are of urgent demand in the development of microalgae-based biorefinery. In genetic engineering of microalgae, transformation and selection methods are the key steps to accomplish the target gene modification. However, determination of the preferable type and dosage of antibiotics used for transformant selection is usually time-consuming and microalgal-strain-dependent. Therefore, more powerful and efficient techniques should be developed to meet this need. In this review, the conventional and emerging genome-editing tools (e.g., CRISPR-Cas9, TALEN, and ZFN) used in editing the genomes of nuclear, mitochondria, and chloroplast of microalgae are thoroughly surveyed. Although all the techniques mentioned above demonstrate their abilities to perform gene editing and desired phenotype screening, there still need to overcome higher production cost and lower biomass productivity, to achieve efficient production of the desired products in microalgal biorefineries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An evaluation of chemical screening test kits for lead in paint

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, L.S.

    1996-04-01

    The Residential Lead-Based Paint Hazard Reduction Act (Title X) requires abatement and management of lead-based paint. The purpose of this study was to evaluate three chemical screening test kits using materials and methods from one study and subjecting the results to the statistical analysis of another. The three kits were used to predict the presence of lead in paint at ten weight concentrations from 0.04 to 3.97%. Paint was applied to four wood boards yielding a sample size of 40. Four boards were painted with lead-free paint and used as blanks. All of the boards were tested with the three test kits by an untrained individual having no knowledge of the actual lead content. Sensitivity, specificity, and false positive and negative rates were calculated for the test kit results. The manufactures` detection limits, the observed sensitivity ranged from 1.00 to 0.80, specificity ranged from 1.00 to 0.42, false positive ranged from 0 to 58%, and false negatives ranged from 0 to 20%. At the 0.5% Federal threshold level, the observed sensitivity ranged from 1.00 to 0.94, specificity ranged from 1.00 to 0.5, false positives ranged from 0 to 11.1%, and false negatives ranged from 0 to 20%. The observed false positive and false negative rates for all three kits were found to be significantly lower than those reported in a previous study. These results indicate that the kits perform very well at the Federal threshold, with two of the kits having false negative rates below 12.5% and false positive rates of 3.13%. These results indicate that these two kits would probably be acceptable screening tests for lead in paint.

  6. A chemical genetic screen for mTOR pathway inhibitors based on 4E-BP-dependent nuclear accumulation of eIF4E.

    Science.gov (United States)

    Livingstone, Mark; Larsson, Ola; Sukarieh, Rami; Pelletier, Jerry; Sonenberg, Nahum

    2009-12-24

    The signal transduction pathway wherein mTOR regulates cellular growth and proliferation is an active target for drug discovery. The search for new mTOR inhibitors has recently yielded a handful of promising compounds that hold therapeutic potential. This search has been limited by the lack of a high-throughput assay to monitor the phosphorylation of a direct rapamycin-sensitive mTOR substrate in cells. Here we describe a novel cell-based chemical genetic screen useful for efficiently monitoring mTOR signaling to 4E-BPs in response to stimuli. The screen is based on the nuclear accumulation of eIF4E, which occurs in a 4E-BP-dependent manner specifically upon inhibition of mTOR signaling. Using this assay in a small-scale screen, we have identified several compounds not previously known to inhibit mTOR signaling, demonstrating that this method can be adapted to larger screens. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Diazo Compounds: Versatile Tools for Chemical Biology.

    Science.gov (United States)

    Mix, Kalie A; Aronoff, Matthew R; Raines, Ronald T

    2016-12-16

    Diazo groups have broad and tunable reactivity. That and other attributes endow diazo compounds with the potential to be valuable reagents for chemical biologists. The presence of diazo groups in natural products underscores their metabolic stability and anticipates their utility in a biological context. The chemoselectivity of diazo groups, even in the presence of azido groups, presents many opportunities. Already, diazo compounds have served as chemical probes and elicited novel modifications of proteins and nucleic acids. Here, we review advances that have facilitated the chemical synthesis of diazo compounds, and we highlight applications of diazo compounds in the detection and modification of biomolecules.

  8. Prioritizing Environmental Chemicals for Obesity and Diabetes ...

    Science.gov (United States)

    Background: Diabetes and obesity are major threats to public health in the US and abroad. Understanding the role chemicals in our environment play in the development of these conditions is an emerging issue in environmental health, although identifying and prioritizing chemicals for testing beyond those already implicated in the literature is a challenge. This review is intended to help researchers generate hypotheses about chemicals potentially contributing to diabetes and obesity-related health outcomes by summarizing relevant findings from the US Environmental Protection Agency (EPA) ToxCast high-throughput screening (HTS) program. Objectives: To develop new hypotheses around environmental chemicals of potential interest for diabetes- or obesity-related outcomes using high throughput screening data. Methods: Identify ToxCast assay targets relevant to several biological processes related to diabetes and obesity (insulin sensitivity in peripheral tissue, pancreatic islet and beta cell function, adipocyte dierentiation, and feeding behavior) and present chemical screening data against those assay targets to identify chemicals of potential interest. Discussion: Results of this screening-level analysis suggest that the spectrum of environmental chemicals to consider in research related to diabetes and obesity is much broader than indicated from research papers and reviews published in the peer-reviewed literature. Testing of hypotheses based on ToxCast data will a

  9. Risk analysis of analytical validations by probabilistic modification of FMEA

    DEFF Research Database (Denmark)

    Barends, D.M.; Oldenhof, M.T.; Vredenbregt, M.J.

    2012-01-01

    Risk analysis is a valuable addition to validation of an analytical chemistry process, enabling not only detecting technical risks, but also risks related to human failures. Failure Mode and Effect Analysis (FMEA) can be applied, using a categorical risk scoring of the occurrence, detection...... and severity of failure modes, and calculating the Risk Priority Number (RPN) to select failure modes for correction. We propose a probabilistic modification of FMEA, replacing the categorical scoring of occurrence and detection by their estimated relative frequency and maintaining the categorical scoring...... of severity. In an example, the results of traditional FMEA of a Near Infrared (NIR) analytical procedure used for the screening of suspected counterfeited tablets are re-interpretated by this probabilistic modification of FMEA. Using this probabilistic modification of FMEA, the frequency of occurrence...

  10. Interactive Chemical Safety for Sustainablity Toxicity Forecaster Dashboard

    Science.gov (United States)

    EPA researchers have been using advances in computational toxicology to address lack of data on the thousands of chemicals. EPA released chemical data on 1,800 chemicals. The 1,800 chemicals were screened in more than 800 rapid, automated tests (called high-throughput screening assays) to determine potential human health effects. The data is available through the interactive Chemical Safety for Sustainability Dashboards (iCSS dashboard) and the complete data sets are also available for download.

  11. Radiation modification of materials

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1987-01-01

    Industrial and radiation chemical processes of material modification based on cross-linking of polymers as a result of radiation are considered. Among them are production of cables and rods with irradiated modified insulation, production of hardened and thermo-shrinkaging polymer products (films, tubes, fashioned products), production of radiation cross-linked polyethylene foam, technology of radiation vulcanization of elastomers. Attention is paid to radiation plants on the basis of γ-sources and electron acceleratos as well as to radiation conditions

  12. QSAR Methods to Screen Endocrine Disruptors

    Directory of Open Access Journals (Sweden)

    Nicola Porta

    2016-08-01

    Full Text Available The identification of endocrine disrupting chemicals (EDCs is one of the important goals of environmental chemical hazard screening. We report on in silico methods addressing toxicological studies about EDCs with a special focus on the application of QSAR models for screening purpose. Since Estrogen-like (ER activity has been extensively studied, the majority of the available models are based on ER-related endpoints. Some of these models are here reviewed and described. As example for their application, we screen an assembled dataset of candidate substitutes for some known EDCs belonging to the chemical classes of phthalates, bisphenols and parabens, selected considering their toxicological relevance and broad application, with the general aim of preliminary assessing their ED potential. The goal of the substitution processes is to advance inherently safer chemicals and products, consistent with the principles of green chemistry. Results suggest that the integration of a family of different models accounting for different endpoints can be a convenient way to describe ED as properly as possible and allow also both to increase the confidence of the predictions and to maximize the probability that most active compounds are correctly found.

  13. Prospective Assessment of Virtual Screening Heuristics Derived Using a Novel Fusion Score.

    Science.gov (United States)

    Pertusi, Dante A; O'Donnell, Gregory; Homsher, Michelle F; Solly, Kelli; Patel, Amita; Stahler, Shannon L; Riley, Daniel; Finley, Michael F; Finger, Eleftheria N; Adam, Gregory C; Meng, Juncai; Bell, David J; Zuck, Paul D; Hudak, Edward M; Weber, Michael J; Nothstein, Jennifer E; Locco, Louis; Quinn, Carissa; Amoss, Adam; Squadroni, Brian; Hartnett, Michelle; Heo, Mee Ra; White, Tara; May, S Alex; Boots, Evelyn; Roberts, Kenneth; Cocchiarella, Patrick; Wolicki, Alex; Kreamer, Anthony; Kutchukian, Peter S; Wassermann, Anne Mai; Uebele, Victor N; Glick, Meir; Rusinko, Andrew; Culberson, J Christopher

    2017-09-01

    High-throughput screening (HTS) is a widespread method in early drug discovery for identifying promising chemical matter that modulates a target or phenotype of interest. Because HTS campaigns involve screening millions of compounds, it is often desirable to initiate screening with a subset of the full collection. Subsequently, virtual screening methods prioritize likely active compounds in the remaining collection in an iterative process. With this approach, orthogonal virtual screening methods are often applied, necessitating the prioritization of hits from different approaches. Here, we introduce a novel method of fusing these prioritizations and benchmark it prospectively on 17 screening campaigns using virtual screening methods in three descriptor spaces. We found that the fusion approach retrieves 15% to 65% more active chemical series than any single machine-learning method and that appropriately weighting contributions of similarity and machine-learning scoring techniques can increase enrichment by 1% to 19%. We also use fusion scoring to evaluate the tradeoff between screening more chemical matter initially in lieu of replicate samples to prevent false-positives and find that the former option leads to the retrieval of more active chemical series. These results represent guidelines that can increase the rate of identification of promising active compounds in future iterative screens.

  14. Exploring consumer exposure pathways and patterns of use for chemicals in the environment

    Directory of Open Access Journals (Sweden)

    Kathie L. Dionisio

    /Product Categories Database,DCPS,Danish Consumer Product Survey,DfE,Design for the Environment,EDSP,Endocrine Disruptor Screening Program,EPA,Environmental Protection Agency,EWG,Environmental Working Group,GRAS,Generally Recognized as Safe,HTP,Human Toxome Project,IUR,Inventory Update Reporting Modifications Rule,MSDS,Material Safety Data Sheets,NICNAS,National Industrial Chemicals Notification and Assessment Scheme,RPC,Retail Product Categories Database,SDWA,Safe Drinking Water Act,SPIN,Substances in Preparation in Nordic Countries,TSCA,Toxic Substances Control Act,Chemical exposure,Human exposure,High throughput,Exposure prioritization,Use category

  15. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    Science.gov (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-07

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  16. Cobalt surface modification during γ-Fe2O3 nanoparticle synthesis by chemical-induced transition

    International Nuclear Information System (INIS)

    Li, Junming; Li, Jian; Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin; Li, Decai

    2015-01-01

    In the chemical-induced transition of FeCl 2 solution, the FeOOH/Mg(OH) 2 precursor was transformed into spinel structured γ-Fe 2 O 3 crystallites, coated with a FeCl 3 ·6H 2 O layer. CoCl 2 surface modified γ-Fe 2 O 3 nanoparticles were prepared by adding Co(NO 3 ) 2 during the synthesis. CoFe 2 O 4 modified γ-Fe 2 O 3 nanoparticles were prepared by adding NaOH during the surface modification with Co(NO 3 ) 2 . The CoFe 2 O 4 layer grew epitaxially on the γ-Fe 2 O 3 crystallite to form a composite crystallite, which was coated by CoCl 2 ·6H 2 O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe 2 O 4 and γ-Fe 2 O 3 possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe 2 O 3 -based nanoparticles were related to the grain size. - Highlights: • γ-Fe 2 O 3 nanoparticles were synthesized by chemical induced transition. • CoCl 2 modified nanoparticles were prepared by additional Co(NO 3 ) 2 during synthesization. • CoFe 2 O 4 modified nanoparticles were prepared by additional Co(NO 3 ) 2 and NaOH. • The magnetism of the nanoparticles is related to the grain size

  17. Modification of Polymer Materials by Ion Bombardment: Case Studies

    International Nuclear Information System (INIS)

    Bielinski, D. M.; Jagielski, J.; Lipinski, P.; Pieczynska, D.; Ostaszewska, U.; Piatkowska, A.

    2009-01-01

    The paper discusses possibility of application of ion beam bombardment for modification of polymers. Changes to composition, structure and morphology of the surface layer produced by the treatment and their influence on engineering and functional properties of wide range of polymer materials are presented. Special attention has been devoted to modification of tribological properties. Ion bombardment results in significant reduction of friction, which can be explained by increase of hardness and wettability of polymer materials. Hard but thin enough skin does not result in cracking but improves their abrasion resistance. Contrary to conventional chemical treatment ion beam bombardment works even for polymers hardly susceptible to modification like silicone rubber or polyolefines.

  18. Chemical modifications of liquid natural rubber

    Science.gov (United States)

    Azhar, Nur Hanis Adila; Rasid, Hamizah Md; Yusoff, Siti Fairus M.

    2016-11-01

    Liquid natural rubber (LNR) was synthesized via photosentisized degradation of natural rubber (NR). LNR was modified into epoxidized liquid natural rubber (LENR) and hydroxylated liquid natural rubber (LNR-OH) using Na2WO4/CH3COOH/H2O2 catalytic system. Chemical structures of LNR and modified LNRs were characterized using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and 1H Nuclear Magnetic Resonance (NMR) spectroscopies. Integration of 1H NMR was used to calculate the epoxy content (%) of LENR. 1H NMR detected the formation of LNR-OH after prolonged heating and increased of catalyst in oxidation reaction.

  19. Fifty-Year Trends in the Chemical Industry: What Do They Mean for Chemical Education?

    Science.gov (United States)

    Tolman, Chadwick A.; Parshall, George W.

    1999-01-01

    Describes major changes that have occurred in the chemical industry over the last 50 years including trends in the development of products and processes, changes in chemical manufacturing, the globalization of business, and modifications of research laboratory practices. Discusses implications for chemistry education and predictions for future…

  20. Use of modern methods of fibre surface modification to obtain the multifunctional properties of textile materials

    Directory of Open Access Journals (Sweden)

    Jocić Dragan

    2003-01-01

    Full Text Available The modern textile fibre treatments aim to obtain the required level of beneficial effect while attempting to confine the modification to the fibre surface. Recently, much attention has been focused on different physical methods of fibre surface modification, cold plasma treatment being considered as very useful. Moreover, there are efficient chemical methods available, such as peroxide, biopolymer and enzyme treatment. Some interesting combinations of these physical and chemical surface modification methods as means to modify fibre surface topography and thus controlling the surface-related properties of the fibre are presented in this paper. The properties obtained are discussed on the basis of the physico-chemical changes in the surface layer of the fibre, being assessed by wettability and contact angle measurements, as well as by FTIR-ATR and XPS analysis. The SEM and AFM technique are used to assess the changes in the fibre surface topography and to correlate these changes to the effectiveness, uniformity and severity of the textile fibre surface modification treatments.

  1. BIOCHAR MODIFICATION, THERMAL STABILITY AND TOXICITY OF PRODUCTS MODIFICATION

    Directory of Open Access Journals (Sweden)

    Romana FRIEDRICHOVÁ

    2017-12-01

    Full Text Available Biochar is a product obtained from processing of waste biomass. The main application of biochar is in soil and environment remediation. Some new applications of this carbonaceous material take advantage of its adsorption capacity use it as a heterogeneous catalyst for energy storage and conversion etc. This contribution describes thermal stability of the original biochar. It discusses biochar modified by chemical and physical methods including a new compound of biochar-graphene oxide. The purpose of the modifications is to increase its active surface to introduce active functional groups into the carbon structure of biochar in relation to fire safety and toxicity of those products.

  2. Fluorographene as a Mass Spectrometry Probe for High-Throughput Identification and Screening of Emerging Chemical Contaminants in Complex Samples.

    Science.gov (United States)

    Huang, Xiu; Liu, Qian; Huang, Xiaoyu; Nie, Zhou; Ruan, Ting; Du, Yuguo; Jiang, Guibin

    2017-01-17

    Mass spectrometry techniques for high-throughput analysis of complex samples are of profound importance in many areas such as food safety, omics studies, and environmental health science. Here we report the use of fluorographene (FG) as a new mass spectrometry probe for high-throughput identification and screening of emerging chemical contaminants in complex samples. FG was facilely synthesized by one-step exfoliation of fluorographite. With FG as a matrix or probe in matrix-assisted or surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (MALDI- or SELDI-TOF MS), higher sensitivity (detection limits at ppt or subppt levels), and better reproducibility were achieved than with other graphene-based materials due to the unique chemical structure and self-assembly properties of FG. The method was validated with different types of real complex samples. By using FG as a SELDI probe, we could easily detect trace amount of bisphenol S in paper products and high-fat canned food samples. Furthermore, we have successfully identified and screened as many as 28 quaternary ammonium halides in sewage sludge samples collected from municipal wastewater treatment plants. These results demonstrate that FG probe is a powerful tool for high-throughput analysis of complex samples by MS.

  3. Photon attenuation by intensifying screens

    International Nuclear Information System (INIS)

    Holje, G.

    1983-01-01

    The photon attenuation by intensifying screens of different chemical composition has been determined. The attenuation of photons between 20 keV and 120 keV was measured by use of a multi-channel analyzer and a broad bremsstrahlung distribution. The attenuation by the intensifying screens was hereby determined simultaneously at many different monoenergetic photon energies. Experimentally determined attenuations were found to agree well with attenuation calculated from mass attenuation coefficients. The attenuation by the screens was also determined at various bremsstrahlung distributions, simulating those occurring behind the patient in various diagnostic X-ray examinations. The high attenuation in some of the intensifying screens form the basis for an analysis of the construction of asymmetric screen pairs. Single screen systems are suggested as a favourable alternative to thick screen pair systems. (Author)

  4. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  5. The international validation of bio- and chemical-anlaytical screening methods for dioxins and dioxin-like PCBs: the DIFFERENCE project rounds 1 and 2

    NARCIS (Netherlands)

    Loco, van J.; Leeuwen, van S.P.J.; Roos, P.; Carbonnelle, S.; Boer, de J.; Goeyens, L.; Beernaert, H.

    2004-01-01

    The European research project DIFFERENCE is focussed on the development, optimisation and validation of screening methods for dioxin analysis, including bio-analytical and chemical techniques (CALUX, GC-LRMS/MS, GC x GC-ECD) and on the optimisation and validation of new extraction and clean-up

  6. Surface chemical reactions probed with scanning force microscopy

    NARCIS (Netherlands)

    Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this letter we report the study of surface chemical reactions with scanning force microscopy (SFM) with chemical specificity. Using chemically modified SFM probes, we can determine the local surface reaction conversion during a chemical surface modification. The adhesion forces between a

  7. [On new screening biomarker to evaluate health state in personnel engaged into chemical weapons extinction].

    Science.gov (United States)

    Voitenko, N G; Garniuk, V V; Prokofieva, D S; Gontcharov, N V

    2015-01-01

    The work was aimed to find new screeding parameters (biomarkers) for evaluation of health state of workers engaged into enterprises with hazardous work conditions, as exemplified by "Maradykovskyi" object of chemical weapons extinction. Analysis of 27 serum cytokines was conducted in donors and the object personnel with various work conditions. Findings are statistically significant increase of serum eotaxin in the personnel of "dirty" zone, who are regularly exposed to toxic agents in individual filter protective means over the working day. For screening detection of health disorders in the object personnel, the authors suggested new complex biomarker--ratio Eotaxin* IFNγ/TNFα that demonstrates 67.9% sensitivity and 87.5% specificity in differentiating the "dirty" zone personnel and other staffers.

  8. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    Science.gov (United States)

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-28

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod.

  9. Identification of Maillard reaction induced chemical modifications on Ara h 1

    Science.gov (United States)

    The Maillard reaction is a non-enzymatic glycation reaction between proteins and reducing sugars that can modify nut allergens during thermal processing. These modifications can alter the structural and immunological properties of these allergens, and may result in increased IgE binding. Here, we ...

  10. Soy protein modification: A review

    Directory of Open Access Journals (Sweden)

    Barać Miroljub B.

    2004-01-01

    Full Text Available Soy protein products such as flour, concentrates and isolates are used in food formulation because of their functionality, nutritional value and low cost. To obtain their optimal nutritive and functional properties as well as desirable flavor different treatments are used. Soybean proteins can be modified by physical, chemical and enzymatic treatments. Different thermal treatments are most commonly used, while the most appropriate way of modifying soy proteins from the standpoint of safety is their limited proteolysis. These treatments cause physical and chemical changes that affect their functional properties. This review discusses three principal methods used for modification of soy protein products, their effects on dominant soy protein properties and some biologically active compounds.

  11. Laser surface modification of PEEK

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A., E-mail: ariveiro@uvigo.es [Applied Physics Department, University of Vigo ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de Espana 2, 36920 Marin (Spain); Soto, R.; Comesana, R.; Boutinguiza, M.; Val, J. del; Quintero, F.; Lusquinos, F.; Pou, J. [Applied Physics Department, University of Vigo ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Role of laser irradiation wavelength on the surface modification of PEEK (polyether-ether-ketone) was investigated. Black-Right-Pointing-Pointer Adequate processing conditions to improve wettability, roughness, and cell adhesion characteristics are determined. Black-Right-Pointing-Pointer A design of experiments (DOE) methodology was performed. Black-Right-Pointing-Pointer UV (355 nm) radiation is the most promising laser radiation for improving the adhesive surface properties of PEEK. - Abstract: Polyether-ether-ketone (PEEK) is a synthetic thermoplastic polymer with excellent mechanical and chemical properties, which make it attractive for the field of reconstructive surgery. Nevertheless, this material has a poor interfacial biocompatibility due to its large chemical stability which induces poor adhesive bonding properties. The possibilities of enhancing the PEEK adhesive properties by laser treatments have been explored in the past. This paper presents a systematic approach to discern the role of laser irradiation wavelength on the surface modification of PEEK under three laser wavelengths ({lambda} = 1064, 532, and 355 nm) with the aim to determine the most adequate processing conditions to increase the roughness and wettability, the main parameters affecting cell adhesion characteristics of implants. Overall results show that the ultraviolet ({lambda} = 355 nm) laser radiation is the most suitable one to enhance surface wettability of PEEK.

  12. Plasma assisted surface coating/modification processes: An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  13. Plasma assisted surface coating/modification processes - An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  14. Experience of secondary cooling system modification at fast breeder reactor MONJU

    International Nuclear Information System (INIS)

    Ito, Keisuke; Nakatsuji, M.; Matsuno, Hiroki; Matsui, K.; Tone, T.

    2007-01-01

    The prototype fast breeder reactor MONJU has been shut down since the secondary sodium leak accident which occurred in December 1995. After the accident, the investigation of its cause and the comprehensive review were performed and the various counter measures against the sodium leak were also discussed. The main modification works of MONJU started in September 2005. The work should adopt suitable methods to treat sodium, since MONJU uses chemically active sodium as a coolant. Considering the chemical activity of sodium, MONJU learned the modification methods from the experimental fast reactor JOYO and precedent plants of overseas and adopted plastic bags when the sodium boundary is opened, management of oxygen concentration in the plastic bags, a slightly positive control of the cover gas pressure, compress cut by the roll cutters to prevent the entry of the chips, etc.. Owing to introduction of these methods, the modification works have proceeded almost on schedule without troubles. (author)

  15. Physico-chemical screening of accessions of Jatropha curcas for biodiesel production

    International Nuclear Information System (INIS)

    Naresh, B.; Reddy, M. Srikanth; Vijayalakshmi, P.; Reddy, Veena; Devi, Prathibha

    2012-01-01

    Biodiesel is an alternative environmentally friendly fuel made from renewable biological sources such as vegetable oils and animal fats. The present report deals with screening of 14 accessions of Jatropha curcas collected from all over India to find the most suitable ones for production of Biodiesel. From the 14 accessions of J. curcas located in the plantation at Osmania University, 4 accessions were initially selected on the basis of traits like general appearance, pest resistance, seed yield and seed-oil content. Further, the seed-oil of these 4 accessions was characterized by physico-chemical analysis to identify the elite accessions for production of biodiesel. Highest 1000-seed weight (640 g) and highest percentage seed-oil content (50.16) (extracted by Soxhlet method with hexane as the solvent) was recorded in the “KM” accession. The transesterification process is affected by the presence of high free fatty acids (recorded in “MB” accession) and high moisture content (recorded in “KM” accession) of the seed-oil which also interfere with the separation of fatty esters and glycerol during production of Biodiesel. Further, high phosphorus content and iodine number (recorded in “MB” accession) interfere with conversion of seed-oil to Biodiesel. In the above context, in spite of its yield being lower, the seed-oil of the “RSAD” accession was found to be most suitable for Biodiesel production followed by “KM”, “F.W.B” and “MB” accessions, since it contains lower free fatty acids, acid value, viscosity, diglycerides and iodine number. -- Highlights: ► We analyzed Indian Jatropha accessions for yield and quality. ► Elite accessions were selected for physico-chemical analysis of seed-oil. ► Four elite accessions identified as good candidates for Biodiesel production. ► The “RSAD” accession was found to be the best suited for biodiesel.

  16. Influence of Polylactide Modification with Blowing Agents on Selected Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Aneta Tor-Świątek

    2017-12-01

    Full Text Available Article presents research of modification of PLA with four types of chemical blowing agents with a different decomposition characteristic. The modification was done both cellular extrusion and injection molding processes. Obtained results shows that dosing blowing agents have the influence on mechanical properties and structure morphology of PLA. The differences in obtained results are also visible and significant between cellular processes.

  17. Dynamic screening and electron dynamics in low-dimensional metal systems

    International Nuclear Information System (INIS)

    Silkin, V.M.; Quijada, M.; Vergniory, M.G.; Alducin, M.; Borisov, A.G.; Diez Muino, R.; Juaristi, J.I.; Sanchez-Portal, D.; Chulkov, E.V.; Echenique, P.M.

    2007-01-01

    Recent advances in the theoretical description of dynamic screening and electron dynamics in metallic media are reviewed. The time-dependent building-up of screening in different situations is addressed. Perturbative and non-perturbative theories are used to study electron dynamics in low-dimensional systems, such as metal clusters, image states, surface states and quantum wells. Modification of the electronic lifetimes due to confinement effects is analyzed as well

  18. Chitosan Modification and Pharmaceutical/Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jiali Zhang

    2010-06-01

    Full Text Available Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1 enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2 the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3 synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy.

  19. Estudo da modificação química de polidienos do tipo SBR e BR Study of chemical modification of SBR and BR polydiene

    Directory of Open Access Journals (Sweden)

    Tatiana L. A. C. Rocha

    2004-12-01

    Full Text Available A utilização de modificações químicas de polidienos comerciais tem sido estudada como um meio alternativo à síntese de novos polímeros, para otimização das propriedades finais destes materiais através da introdução de diferentes grupamentos reativos na cadeia polimérica. A modificação química pode ser feita através de diferentes métodos, os quais podem ser realizados tanto em solução como em massa, onde podem ser destacadas as reações de epoxidação, sulfonação, maleinização, carboxilação, etc. Neste trabalho foi estudado o método de epoxidação de borrachas do tipo SBR e BR. Foi possível observar que mesmo pequenos graus de modificação química causam mudanças marcantes nas propriedades finais dos polímeros, como determinado para a temperatura de transição vítrea.Chemical modification of polydiene has been studied as an alternative route to obtain modified polymers with improved final properties. This improvement is due to the introduction of different kinds of reactive groups into a polymer chain, and it can be done in solution as well as in bulk. The chemical modification can be carried out by different methods such as epoxidation, maleination, carboxylation, sulfonation etc. In this work we show that in the epoxidation of SBR and BR even a small degree of modification can change the final properties of the polymer, as it occurred for the glass transition temperature.

  20. Vapor phase modification of sol-gel derived titania (TiO{sub 2}) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Piwonski, Ireneusz [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)]. E-mail: irek@uni.lodz.pl; Ilik, Aneta [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)

    2006-12-30

    Chemical vapor deposition (CVD) method was used in titania surface modification. Titania layers were obtained in sol-gel process and prepared as thin films on silicon wafers in dip-coating method. In order to define the influence of modification on titania surface properties (e.g., friction), various types of fluoroalkylsilanes were used. The effectiveness of the modification was monitored by FT-IR spectroscopy. The topography and frictional measurements were investigated with the use of atomic force microscopy (AFM)

  1. Chemical display of pyrimidine bases flipped out by modification-dependent restriction endonucleases of MspJI and PvuRts1I families.

    Directory of Open Access Journals (Sweden)

    Evelina Zagorskaitė

    Full Text Available The epigenetic DNA modifications 5-methylcytosine (5mC and 5-hydroxymethylcytosine (5hmC in eukaryotes are recognized either in the context of double-stranded DNA (e.g., by the methyl-CpG binding domain of MeCP2, or in the flipped-out state (e.g., by the SRA domain of UHRF1. The SRA-like domains and the base-flipping mechanism for 5(hmC recognition are also shared by the recently discovered prokaryotic modification-dependent endonucleases of the MspJI and PvuRts1I families. Since the mechanism of modified cytosine recognition by many potential eukaryotic and prokaryotic 5(hmC "readers" is still unknown, a fast solution based method for the detection of extrahelical 5(hmC would be very useful. In the present study we tested base-flipping by MspJI- and PvuRts1I-like restriction enzymes using several solution-based methods, including fluorescence measurements of the cytosine analog pyrrolocytosine and chemical modification of extrahelical pyrimidines with chloroacetaldehyde and KMnO4. We find that only KMnO4 proved an efficient probe for the positive display of flipped out pyrimidines, albeit the method required either non-physiological pH (4.3 or a substitution of the target cytosine with thymine. Our results imply that DNA recognition mechanism of 5(hmC binding proteins should be tested using a combination of all available methods, as the lack of a positive signal in some assays does not exclude the base flipping mechanism.

  2. Chemical modifications and applications of alternating aliphatic polyketones

    NARCIS (Netherlands)

    Zhang, Youchun

    2008-01-01

    Alternating aliphatic polyketones, produced by co- and terpolymerization of carbon monoxide and olefins (mixtures of ethylene and propylene) using palladium-based homogeneous catalysis represent a very promising class of polymers for a wide range of applications. Besides many interesting chemical

  3. Application of xenon difluoride for surface modification of polymers

    International Nuclear Information System (INIS)

    Barsamyan, G.B.; Belokonov, K.V.; Vargasova, N.A.; Sokolov, V.B.; Chaivanov, B.B.; Zubov, V.P.

    1994-01-01

    Chemical interaction between xenon difluoride (XeF 2 ) and polymeric materials was investigated. It was shown that the reaction occurs on the surface of solid polymer layer and brings to chemical modification of the surface properties of the polymer leaving the bulk properties unchanged. The results of various analysis of the fluorinated samples (IR, FTIR-ATR, ESCA, bulk analysis etc) are presented. The mechanism of reaction is proposed. 12 refs.; 13 figs

  4. MRI screening for breast cancer in women at high risk; is the Australian breast MRI screening access program addressing the needs of women at high risk of breast cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Schenberg, Tess [Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Mitchell, Gillian [Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria (Australia); Taylor, Donna [School of Surgery, University of Western Australia, Perth, Western Australia (Australia); Department of Radiology, Royal Perth Hospital, Perth, Western Australia (Australia); BreastScreen Western Australia, Adelaide Terrace, Perth, Western Australia (Australia); Saunders, Christobel [School of Surgery, University of Western Australia, Perth, Western Australia (Australia); Department of General Surgery, St John of God Hospital, Perth, Western Australia (Australia); Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia)

    2015-09-15

    Breast magnetic resonance imaging (MRI) screening of women under 50 years old at high familial risk of breast cancer was given interim funding by Medicare in 2009 on the basis that a review would be undertaken. An updated literature review has been undertaken by the Medical Services Advisory Committee but there has been no assessment of the quality of the screening or other screening outcomes. This review examines the evidence basis of breast MRI screening and how this fits within an Australian context with the purpose of informing future modifications to the provision of Medicare-funded breast MRI screening in Australia. Issues discussed will include selection of high-risk women, the options for MRI screening frequency and measuring the outcomes of screening.

  5. MRI screening for breast cancer in women at high risk; is the Australian breast MRI screening access program addressing the needs of women at high risk of breast cancer?

    International Nuclear Information System (INIS)

    Schenberg, Tess; Mitchell, Gillian; Taylor, Donna; Saunders, Christobel

    2015-01-01

    Breast magnetic resonance imaging (MRI) screening of women under 50 years old at high familial risk of breast cancer was given interim funding by Medicare in 2009 on the basis that a review would be undertaken. An updated literature review has been undertaken by the Medical Services Advisory Committee but there has been no assessment of the quality of the screening or other screening outcomes. This review examines the evidence basis of breast MRI screening and how this fits within an Australian context with the purpose of informing future modifications to the provision of Medicare-funded breast MRI screening in Australia. Issues discussed will include selection of high-risk women, the options for MRI screening frequency and measuring the outcomes of screening

  6. Chemical-modification studies of a unique sialic acid-binding lectin from the snail Achatina fulica. Involvement of tryptophan and histidine residues in biological activity.

    Science.gov (United States)

    Basu, S; Mandal, C; Allen, A K

    1988-01-01

    A unique sialic acid-binding lectin, achatininH (ATNH) was purified in single step from the haemolymph of the snail Achatina fulica by affinity chromatography on sheep submaxillary-gland mucin coupled to Sepharose 4B. The homogeneity was checked by alkaline gel electrophoresis, immunodiffusion and immunoelectrophoresis. Amino acid analysis showed that the lectin has a fairly high content of acidic amino acid residues (22% of the total). About 1.3% of the residues are half-cystine. The glycoprotein contains 21% carbohydrate. The unusually high content of xylose (6%) and fucose (2.7%) in this snail lectin is quite interesting. The protein was subjected to various chemical modifications in order to detect the amino acid residues and carbohydrate residues present in its binding sites. Modification of tyrosine and arginine residues did not affect the binding activity of ATNH; however, modification of tryptophan and histidine residues led to a complete loss of its biological activity. A marked decrease in the fluorescence emission was found as the tryptophan residues of ATNH were modified. The c.d. data showed the presence of an identical type of conformation in the native and modified agglutinin. The modification of lysine and carboxy residues partially diminished the biological activity. The activity was completely lost after a beta-elimination reaction, indicating that the sugars are O-glycosidically linked to the glycoprotein's protein moiety. This result confirms that the carbohydrate moiety also plays an important role in the agglutination property of this lectin. Images Fig. 3. PMID:3140796

  7. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Stepczyńska, Magdalena [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87‐100 Toruń (Poland); Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2016-07-30

    Highlights: • Plasma modification affects surface roughness, wettability and surface energy. • Polylactide and polycaprolactone aging causes decay of the modification effects. • Changes in the surface characteristic and wettability deterioration were observed. • The decay occurs due to migration of low molecular weight molecules to the surface. • Plasma modification effect lasts longer in the case of polycaprolactone. - Abstract: The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  8. Surface modification and characterization Collaborative Research Center at ORNL

    International Nuclear Information System (INIS)

    1986-01-01

    The Surface Modification and Characterization Collaborative Research Center (SMAC/CRC) is a unique facility for the alteration and characterization of the near-surface properties of materials. The SMAC/CRC facility is equipped with particle accelerators and high-powered lasers which can be used to improve the physical, electrical, and/or chemical properties of solids and to create unique new materials not possible to obtain with conventional ''equilibrium'' processing techniques. Surface modification is achieved using such techniques as ion implantation doping, ion beam mixing, laser mixing, ion deposition, and laser annealing

  9. Chemical modification of antifungal polyene macrolide antibiotics

    International Nuclear Information System (INIS)

    Solovieva, S E; Olsufyeva, E N; Preobrazhenskaya, M N

    2011-01-01

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  10. Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean Nuclease Assay.

    Directory of Open Access Journals (Sweden)

    Jun Yang

    Full Text Available Ribosomes are large ribonucleoprotein complexes that are fundamental for protein synthesis. Ribosomes are ribozymes because their catalytic functions such as peptidyl transferase and peptidyl-tRNA hydrolysis depend on the rRNA. rRNA is a heterogeneous biopolymer comprising of at least 112 chemically modified residues that are believed to expand its topological potential. In the present study, we established a comprehensive modification profile of Saccharomyces cerevisiae's 18S and 25S rRNA using a high resolution Reversed-Phase High Performance Liquid Chromatography (RP-HPLC. A combination of mung bean nuclease assay, rDNA point mutants and snoRNA deletions allowed us to systematically map all ribose and base modifications on both rRNAs to a single nucleotide resolution. We also calculated approximate molar levels for each modification using their UV (254nm molar response factors, showing sub-stoichiometric amount of modifications at certain residues. The chemical nature, their precise location and identification of partial modification will facilitate understanding the precise role of these chemical modifications, and provide further evidence for ribosome heterogeneity in eukaryotes.

  11. Treating respiratory viral diseases with chemically modified, second generation intranasal siRNAs.

    Science.gov (United States)

    Barik, Sailen

    2009-01-01

    Chemically synthesized short interfering RNA (siRNA) of pre-determined sequence has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) and influenza virus. As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of intranasal siRNA against RSV, second-generation siRNAs were made against the viral polymerase large subunit (L) that were chemically modified and screened for improved stability, activity and pharmacokinetics. 2'-O-methyl (2'-O-Me) and 2'-deoxy-2'-fluoro (2'-F) substitutions in the ribose ring were incorporated in different positions of the sense and antisense strands and the resultant siRNAs were tested with various transfection reagents intranasally against RSV. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (i) modified 19-27 nt long double-stranded siRNAs are functional in the lung, (ii) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, and (iii) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent.

  12. Shock modification and chemistry and planetary geologic processes

    International Nuclear Information System (INIS)

    Boslough, M.S.

    1991-01-01

    This paper brings the rapid advances on shock processing of materials to the attention of Earth scientists, and to put these advances in the context of planetary geologic processes. Most of the recent research in this area has been directed at materials modification an synthesis, and the information gained has direct relevance to shock effects in nature. Research on various types of shock modification and chemistry in both naturally and experimentally shocked rocks and minerals is reviewed, and where appropriate their significance to planetary processes is indicated. As a case study, the surface of Mars is suggested as a place where conditions are optimal for shock processing to be a dominant factor. The various mechanisms of shock modification, activation, synthesis and decomposition are all proposed as major contributors to the evolution of chemical, mineralogical, and physical properties of the Martian regolith

  13. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  14. Identification and Interrogation of Combinatorial Histone Modifications

    Directory of Open Access Journals (Sweden)

    Kelly R Karch

    2013-12-01

    Full Text Available Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs. Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.

  15. Cell signaling, post-translational protein modifications and NMR spectroscopy

    International Nuclear Information System (INIS)

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy; Selenko, Philipp

    2012-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

  16. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening.

    Directory of Open Access Journals (Sweden)

    Esther Bettiol

    Full Text Available The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain expressing beta-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC(50: 54, 190 and 23 nM, respectively. Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti-T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC(50 values of 2 nM (PCH6 and CX2. These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.

  17. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening.

    Science.gov (United States)

    Bettiol, Esther; Samanovic, Marie; Murkin, Andrew S; Raper, Jayne; Buckner, Frederick; Rodriguez, Ana

    2009-01-01

    The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing beta-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC(50): 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti-T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC(50) values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.

  18. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    Directory of Open Access Journals (Sweden)

    Bussy Cyrill

    2012-11-01

    Full Text Available Abstract Given the increasing use of carbon nanotubes (CNT in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT specifically synthesized following a similar production process (aerosol-assisted CVD, and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects and chemical (i.e. oxidation modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized compared to long (pristine MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.

  19. Surface Modification of Polymer Substrates for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Oldřich Neděla

    2017-09-01

    Full Text Available While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces—mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

  20. Chemical and morphological modifications of single layer graphene submitted to annealing in water vapor

    Science.gov (United States)

    Rolim, Guilherme Koszeniewski; Corrêa, Silma Alberton; Galves, Lauren Aranha; Lopes, João Marcelo J.; Soares, Gabriel Vieira; Radtke, Cláudio

    2018-01-01

    Modifications of single layer graphene transferred to SiO2/Si substrates resulting from annealing in water vapor were investigated. Near edge X-ray absorption fine structure spectroscopy evidenced graphene puckering between 400 and 500 °C. Synchrotron radiation based X-ray photoelectron spectroscopy showed variation of sp2 and sp3C bonding configurations specially in this same temperature range. Moreover, oxygen related functionalities are formed as a result of water vapor annealing. Based on these results and complementary Raman and nuclear reaction analysis, one distinguishes three different regimes of water interaction with graphene concerning modifications of the graphene layer. In the low temperature range (200-400 °C), no prominent modification of graphene itself is observed. At higher temperatures (400-500 °C), to accommodate newly formed oxygen functionalities, the flat and continuous sp2 bonding network of graphene is disrupted, giving rise to a puckered layer. For 600 °C and above, shrinking of graphene domains and a higher doping level take place.

  1. Toxicological benchmarks for screening potential contaminants of concern for effects on sediment-associated biota

    International Nuclear Information System (INIS)

    Hull, R.N.; Suter, G.W. II.

    1993-08-01

    Because a hazardous waste site may contain hundreds of chemicals, it is important to screen contaminants of concern for the ecological risk assessment. Often this screening is done as part of a Screening Assessment, the purpose of which is to evaluate the available data, identify data gaps, and screen potential contaminants of concern. Screening may be accomplished by using a set of toxicological benchmarks. These benchmarks are helpful in determining whether contaminants warrant further assessment or are at a level that requires no further attention. If a chemical concentration or the reported detection limit exceeds a proposed lower benchmark, more analysis is needed to determine the hazards posed by that chemical. If, however, the chemical concentration falls below the lower benchmark value, the chemical may be eliminated from further study. This report briefly describes three categories of approaches to the development of sediment quality benchmarks. These approaches are based on analytical chemistry, toxicity test results, and field survey data. A fourth integrative approach incorporates all three types of data

  2. Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Mowei; Wu, Si; Stenoien, David L.; Zhang, Zhaorui; Connolly, Lanelle; Freitag, Michael; Pasa-Tolic, Ljiljana

    2016-11-11

    Top-down mass spectrometry is a valuable tool for charactering post-translational modifications on histones for understanding of gene control and expression. In this protocol, we describe a top-down workflow using liquid chromatography coupled to mass spectrometry for fast global profiling of changes in histone proteoforms between a wild-type and a mutant of a fungal species. The proteoforms exhibiting different abundances can be subjected to further targeted studies by other mass spectrometric or biochemical assays. This method can be generally adapted for preliminary screening for changes in histone modifications between samples such as wild-type vs. mutant, and control vs. disease.

  3. Quantum probability ranking principle for ligand-based virtual screening

    Science.gov (United States)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  4. Quantum probability ranking principle for ligand-based virtual screening.

    Science.gov (United States)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  5. Ion beam-induced topographical and chemical modification on the poly(styrene-co-allyl alcohol) and its effect on the molecular interaction between the modified surface and liquid crystals

    International Nuclear Information System (INIS)

    Jeong, Hae-Chang; Park, Hong-Gyu; Lee, Ju Hwan; Jang, Sang Bok; Oh, Byeong-Yun; Seo, Dae-Shik

    2016-01-01

    We demonstrated uniform liquid crystal (LC) alignment on ion beam (IB)-irradiated poly(styrene-co-allyl alcohol) by modifying the chemical bonding on the surface. An IB-irradiated copolymer was used for the alignment layer. We used physico-chemical analysis to determine the IB-irradiated surface modification and LC alignment mechanism on the surface. During IB treatment on poly(styrene-co-allyl alcohol), IB irradiation induces breaking of chemical bonds on the surface to give rise to new bonds with oxygen atoms. This causes a strong Van der Waals interaction between LCs and the modified surface, thereby resulting in uniform LC alignment. The results of contact angle (CA) studies of the copolymer support the chemical bonding changes that were investigated by XPS. We achieved uniform homogeneous LC alignment and obtained stable electro-optical performance by controlling the IB energy. Therefore, the LC cells with IB-irradiated poly(styrene-co-allyl alcohol) exhibited a good potential for alternative alignment of layers in LC applications.

  6. Ion beam-induced topographical and chemical modification on the poly(styrene-co-allyl alcohol) and its effect on the molecular interaction between the modified surface and liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Chang [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Park, Hong-Gyu [School of Electrical, Electronic & Control Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongsangnam-do, 51140 (Korea, Republic of); Lee, Ju Hwan; Jang, Sang Bok [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Oh, Byeong-Yun [ZeSHTech Co., Ltd., Business Incubator, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 500-712 (Korea, Republic of); Seo, Dae-Shik, E-mail: dsseo@yonsei.ac.kr [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)

    2016-10-01

    We demonstrated uniform liquid crystal (LC) alignment on ion beam (IB)-irradiated poly(styrene-co-allyl alcohol) by modifying the chemical bonding on the surface. An IB-irradiated copolymer was used for the alignment layer. We used physico-chemical analysis to determine the IB-irradiated surface modification and LC alignment mechanism on the surface. During IB treatment on poly(styrene-co-allyl alcohol), IB irradiation induces breaking of chemical bonds on the surface to give rise to new bonds with oxygen atoms. This causes a strong Van der Waals interaction between LCs and the modified surface, thereby resulting in uniform LC alignment. The results of contact angle (CA) studies of the copolymer support the chemical bonding changes that were investigated by XPS. We achieved uniform homogeneous LC alignment and obtained stable electro-optical performance by controlling the IB energy. Therefore, the LC cells with IB-irradiated poly(styrene-co-allyl alcohol) exhibited a good potential for alternative alignment of layers in LC applications.

  7. Value for money from HPV vaccination and cervical screening

    DEFF Research Database (Denmark)

    Ashton, Toni; Sopina, Elizaveta (Liza)

    2012-01-01

    Introduction of human papillomavirus (HPV) vaccination programs raises some important questions about the future organization of cervical screening programs. Two studies - from NZ and Canada - have addressed the question of what combination of vaccination and screening strategies might be most cost......-effective in preventing cervical cancer. Both studies indicate that some modifications to existing screening programs may be desirable as immunized females enter these programs. Variables in HPV vaccination that are likely to be particularly important for determining the future cost-effectiveness of cervical screening...... programs include: vaccine uptake rate, compliance with full doses, timely completion of doses, duration of protection, male vaccination and HPV infection rate. If value for money is to be achieved, it is important that the appropriate data are collected so that policy makers can consider the combined...

  8. Risk analysis of analytical validations by probabilistic modification of FMEA.

    Science.gov (United States)

    Barends, D M; Oldenhof, M T; Vredenbregt, M J; Nauta, M J

    2012-05-01

    Risk analysis is a valuable addition to validation of an analytical chemistry process, enabling not only detecting technical risks, but also risks related to human failures. Failure Mode and Effect Analysis (FMEA) can be applied, using a categorical risk scoring of the occurrence, detection and severity of failure modes, and calculating the Risk Priority Number (RPN) to select failure modes for correction. We propose a probabilistic modification of FMEA, replacing the categorical scoring of occurrence and detection by their estimated relative frequency and maintaining the categorical scoring of severity. In an example, the results of traditional FMEA of a Near Infrared (NIR) analytical procedure used for the screening of suspected counterfeited tablets are re-interpretated by this probabilistic modification of FMEA. Using this probabilistic modification of FMEA, the frequency of occurrence of undetected failure mode(s) can be estimated quantitatively, for each individual failure mode, for a set of failure modes, and the full analytical procedure. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. QSAR screening of 70,983 REACH substances for genotoxic carcinogenicity, mutagenicity and developmental toxicity in the ChemScreen project

    DEFF Research Database (Denmark)

    Wedebye, Eva Bay; Dybdahl, Marianne; Nikolov, Nikolai Georgiev

    2015-01-01

    The ChemScreen project aimed to develop a screening system for reproductive toxicity based on alternative methods. QSARs can, if adequate, contribute to the evaluation of chemical substances under REACH and may in some cases be applied instead of experimental testing to fill data gaps...... for information requirements. As no testing for reproductive effects should be performed in REACH on known genotoxic carcinogens or germ cell mutagens with appropriate risk management measures implemented, a QSAR pre-screen for 70,983 REACH substances was performed. Sixteen models and three decision algorithms...... were used to reach overall predictions of substances with potential effects with the following result: 6.5% genotoxic carcinogens, 16.3% mutagens, 11.5% developmental toxicants. These results are similar to findings in earlier QSAR and experimental studies of chemical inventories, and illustrate how...

  10. Screening and prioritisation of chemical risks from metal mining operations, identifying exposure media of concern.

    Science.gov (United States)

    Pan, Jilang; Oates, Christopher J; Ihlenfeld, Christian; Plant, Jane A; Voulvoulis, Nikolaos

    2010-04-01

    Metals have been central to the development of human civilisation from the Bronze Age to modern times, although in the past, metal mining and smelting have been the cause of serious environmental pollution with the potential to harm human health. Despite problems from artisanal mining in some developing countries, modern mining to Western standards now uses the best available mining technology combined with environmental monitoring, mitigation and remediation measures to limit emissions to the environment. This paper develops risk screening and prioritisation methods previously used for contaminated land on military and civilian sites and engineering systems for the analysis and prioritisation of chemical risks from modern metal mining operations. It uses hierarchical holographic modelling and multi-criteria decision making to analyse and prioritise the risks from potentially hazardous inorganic chemical substances released by mining operations. A case study of an active platinum group metals mine in South Africa is used to demonstrate the potential of the method. This risk-based methodology for identifying, filtering and ranking mining-related environmental and human health risks can be used to identify exposure media of greatest concern to inform risk management. It also provides a practical decision-making tool for mine acquisition and helps to communicate risk to all members of mining operation teams.

  11. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Eda D; Gueceri, Selcuk; Sun, Wei [Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Besunder, Robyn; Allen, Fred [Drexel University, School of Biomedical Engineering Science and Health System, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pappas, Daphne, E-mail: edy22@drexel.ed [Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2010-03-15

    A combined effect of protein coating and plasma modification on the quality of the osteoblast-scaffold interaction was investigated. Three-dimensional polycaprolactone (PCL) scaffolds were manufactured by the precision extrusion deposition (PED) system. The structural, physical, chemical and biological cues were introduced to the surface through providing 3D structure, coating with adhesive protein fibronectin and modifying the surface with oxygen-based plasma. The changes in the surface properties of PCL after those modifications were examined by contact angle goniometry, surface energy calculation, surface chemistry analysis (XPS) and surface topography measurements (AFM). The effects of modification techniques on osteoblast short-term and long-term functions were examined by cell adhesion, proliferation assays and differentiation markers, namely alkaline phosphatase activity (ALP) and osteocalcin secretion. The results suggested that the physical and chemical cues introduced by plasma modification might be sufficient for improved cell adhesion, but for accelerated osteoblast differentiation the synergetic effects of structural, physical, chemical and biological cues should be introduced to the PCL surface.

  12. Chemical Stimulation of Engineered Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter, E.

    2008-08-08

    The objective of this project is to design, develop and demonstrate methods for the chemical stimulation of candidate EGS reservoirs as well as the chemical treatment of mineral-scaled wellbores. First, a set of candidate chemical compounds capable of dissolving calcite was identified. A series of tests was then performed on each candidate in order to screen it for thermal stability and reactivity towards calcite. A detailed analysis was then performed on each compound that emerged from the screening tests in order to characterize its decay kinetics and reaction kinetics as functions of temperature and chemical composition. From among the compounds emerging from the laboratory studies, one compounds was chosen for a field experiment in order to verify the laboratory predictions.

  13. Comprehensive analysis of high-throughput screens with HiTSeekR

    DEFF Research Database (Denmark)

    List, Markus; Schmidt, Steffen; Christiansen, Helle

    2016-01-01

    TSeekR as a one-stop solution for chemical compound screens, siRNA knock-down and CRISPR/Cas9 knock-out screens, as well as microRNA inhibitor and -mimics screens. We chose three use cases that demonstrate the potential of HiTSeekR to fully exploit HTS screening data in quite heterogeneous contexts to generate...

  14. Chemical changes in PMMA as a function of depth due to proton beam irradiation

    International Nuclear Information System (INIS)

    Szilasi, S.Z.; Huszank, R.; Szikra, D.; Vaczi, T.; Rajta, I.; Nagy, I.

    2011-01-01

    Highlights: → Chemical changes were investigated as a function of depth in proton irradiated PMMA → The depth profile of numerous functional groups was determined along the depth → The degree of chemical modification strongly depends on the LET of protons → At low-fluences the zone of maximal modification is restricted to the Bragg peak → At higher fluences the zone of max. modification extends towards the sample surface. - Abstract: In this work we determined depth profiles of the chemical change in PMMA irradiated with 2 MeV protons by infrared spectroscopic and micro-Raman measurements. The measurements were carried out on 10 μm thin stacked foil samples using an infrared spectrometer in universal attenuated total reflectance (UATR) and transmission modes; while the thick samples were analyzed with a confocal micro-Raman spectrometer. The depth profiles of the changes formed due to the various delivered fluences were compared to each other. The measurements show the strong dependence of the degree of modification on the energy transfer from the decelerating protons. Depth profiles reveal that at the fluences applied in this work the entire irradiated volume suffered some chemical modifications. In case of low-fluence samples the zone of maximal modification is restricted only to the Bragg peak, but with increasing fluences the region of maximal modification extends towards the sample surface.

  15. Surface charging, discharging and chemical modification at a sliding contact

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Kusano, Yukihiro; Morgen, Per

    2012-01-01

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X...... are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly...

  16. Chemical modification of birch allergen extract leads to a reduction in allergenicity as well as immunogenicity.

    Science.gov (United States)

    Würtzen, Peter Adler; Lund, Lise; Lund, Gitte; Holm, Jens; Millner, Anders; Henmar, Helene

    2007-01-01

    In Europe, specific immunotherapy is currently conducted with vaccines containing allergen preparations based on intact extracts. In addition to this, chemically modified allergen extracts (allergoids) are used for specific allergy treatment. Reduced allergenicity and thereby reduced risk of side effects in combination with retained ability to activate T cells and induce protective allergen-specific antibody responses has been claimed for allergoids. In the current study, we compared intact allergen extracts and allergoids with respect to allergenicity and immunogenicity. The immunological response to birch allergen extract, alum-adsorbed extract, birch allergoid and alum-adsorbed allergoid was investigated in vitro in human basophil histamine release assay and by stimulation of human allergen-specific T cell lines. In vivo, Bet v 1-specific IgG titers in mice were determined after repetitive immunizations. In all patients tested (n = 8), allergoid stimulations led to reduced histamine release compared to the intact allergen extract. However, the allergoid preparations were not recognized by Bet v 1-specific T cell lines (n = 7), which responded strongly to the intact allergen extract. Mouse immunizations showed a clearly reduced IgG induction by allergoids and a strongly potentiating effect of the alum adjuvant. Optimal IgG titers were obtained after 3 immunizations with intact allergen extracts, while 5 immunizations were needed to obtain maximal response to the allergoid. The reduced histamine release observed for allergoid preparations may be at the expense of immunological efficacy because the chemical modifications lead to a clear reduction in T cell activation and the ability to induce allergen-specific IgG antibody responses. Copyright 2007 S. Karger AG, Basel.

  17. Tyrosine residues modification studied by MALDI-TOF mass spectrometry

    International Nuclear Information System (INIS)

    Santrucek, Jiri; Strohalm, Martin; Kadlcik, Vojtech; Hynek, Radovan; Kodicek, Milan

    2004-01-01

    Amino acid residue-specific reactivity in proteins is of great current interest in structural biology as it provides information about solvent accessibility and reactivity of the residue and, consequently, about protein structure and possible interactions. In the work presented tyrosine residues of three model proteins with known spatial structure are modified with two tyrosine-specific reagents: tetranitromethane and iodine. Modified proteins were specifically digested by proteases and the mass of resulting peptide fragments was determined using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results show that there are only small differences in the extent of tyrosine residues modification by tetranitromethane and iodine. However, data dealing with accessibility of reactive residues obtained by chemical modifications are not completely identical with those obtained by nuclear magnetic resonance and X-ray crystallography. These interesting discrepancies can be caused by local molecular dynamics and/or by specific chemical structure of the residues surrounding

  18. Modification of inorganic surface with 1-alkenes and 1-alkynes

    NARCIS (Netherlands)

    Maat, ter J.

    2012-01-01

    Surface modification is important because it allows the tuning of surface properties, thereby enabling new applications of a material. It can change physical properties such as wettability and friction, but can also introduce chemical functionalities and binding specificity. Several techniques

  19. The CSB Incident Screening Database: description, summary statistics and uses.

    Science.gov (United States)

    Gomez, Manuel R; Casper, Susan; Smith, E Allen

    2008-11-15

    This paper briefly describes the Chemical Incident Screening Database currently used by the CSB to identify and evaluate chemical incidents for possible investigations, and summarizes descriptive statistics from this database that can potentially help to estimate the number, character, and consequences of chemical incidents in the US. The report compares some of the information in the CSB database to roughly similar information available from databases operated by EPA and the Agency for Toxic Substances and Disease Registry (ATSDR), and explores the possible implications of these comparisons with regard to the dimension of the chemical incident problem. Finally, the report explores in a preliminary way whether a system modeled after the existing CSB screening database could be developed to serve as a national surveillance tool for chemical incidents.

  20. Automated recycling of chemistry for virtual screening and library design.

    Science.gov (United States)

    Vainio, Mikko J; Kogej, Thierry; Raubacher, Florian

    2012-07-23

    An early stage drug discovery project needs to identify a number of chemically diverse and attractive compounds. These hit compounds are typically found through high-throughput screening campaigns. The diversity of the chemical libraries used in screening is therefore important. In this study, we describe a virtual high-throughput screening system called Virtual Library. The system automatically "recycles" validated synthetic protocols and available starting materials to generate a large number of virtual compound libraries, and allows for fast searches in the generated libraries using a 2D fingerprint based screening method. Virtual Library links the returned virtual hit compounds back to experimental protocols to quickly assess the synthetic accessibility of the hits. The system can be used as an idea generator for library design to enrich the screening collection and to explore the structure-activity landscape around a specific active compound.

  1. PHYTOCHEMICAL SCREENING AND THROMBOLYTIC ACTIVITY ...

    African Journals Online (AJOL)

    2014-12-31

    Dec 31, 2014 ... followed by chemical screening, random selection followed by one or more biological ... These were identified by characteristic color changes .... [1] Samuelsson, G. Drugs of Natural Origin: A Textbook of Pharmacognosy.

  2. Hybrid membrane using polyethersulfone-modification of multiwalled carbon nanotubes with silane agent to enhance high performance oxygen separation

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2014-04-01

    Full Text Available Mixed matrix membrane comprising carbon nanotubes embedded in polymer matrix have become one of the emerging technologies. This study was investigated in order to study the effect of silane agent modification towards carbon nanotubes (CNT surface at different concentration on oxygen enrichment performances of asymmetric mixed matrix membrane. The modified carbon nanotubes were prepared by treating the carbon nanotubes with chemical modification using Dynasylan Ameo (DA silane agent to allow PES chains to be grafted on carbon nanotubes surface. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Sieve-in-a-cage’ morphology observed shows the poor adhesion between polymer and unmodified CNT. The gas separation performance of the asymmetric flat sheet mixed matrix membranes with modified CNT were relatively higher compared to the unmodified CNT. Hence, coated hollow fiber mixed matrix membrane with chemical modification on CNT surface using (3-aminopropyl-triethoxy methyl silane agent can potentially enhance the gas separation performance of O2 and N2.

  3. Zebrafish chemical screening reveals the impairment of dopaminergic neuronal survival by cardiac glycosides.

    Directory of Open Access Journals (Sweden)

    Yaping Sun

    Full Text Available Parkinson's disease is a neurodegenerative disorder characterized by the prominent degeneration of dopaminergic (DA neurons among other cell types. Here we report a first chemical screen of over 5,000 compounds in zebrafish, aimed at identifying small molecule modulators of DA neuron development or survival. We find that Neriifolin, a member of the cardiac glycoside family of compounds, impairs survival but not differentiation of both zebrafish and mammalian DA neurons. Cardiac glycosides are inhibitors of Na(+/K(+ ATPase activity and widely used for treating heart disorders. Our data suggest that Neriifolin impairs DA neuronal survival by targeting the neuronal enriched Na(+/K(+ ATPase α3 subunit (ATP1A3. Modulation of ionic homeostasis, knockdown of p53, or treatment with antioxidants protects DA neurons from Neriifolin-induced death. These results reveal a previously unknown effect of cardiac glycosides on DA neuronal survival and suggest that it is mediated through ATP1A3 inhibition, oxidative stress, and p53. They also elucidate potential approaches for counteracting the neurotoxicity of this valuable class of medications.

  4. 40 CFR 136.6 - Method modifications and analytical requirements.

    Science.gov (United States)

    2010-07-01

    ... modifications and analytical requirements. (a) Definitions of terms used in this section. (1) Analyst means the..., oil and grease, total suspended solids, total phenolics, turbidity, chemical oxygen demand, and.... Except as set forth in paragraph (b)(3) of this section, an analyst may modify an approved test procedure...

  5. Rapid End-Group Modification of Polysaccharides for Biomaterial Applications in Regenerative Medicine.

    Science.gov (United States)

    Bondalapati, Somasekhar; Ruvinov, Emil; Kryukov, Olga; Cohen, Smadar; Brik, Ashraf

    2014-09-15

    Polysaccharides have emerged as important functional materials because of their unique properties such as biocompatibility, biodegradability, and availability of reactive sites for chemical modifications to optimize their properties. The overwhelming majority of the methods to modify polysaccharides employ random chemical modifications, which often improve certain properties while compromising others. On the other hand, the employed methods for selective modifications often require excess of coupling partners, long reaction times and are limited in their scope and wide applicability. To circumvent these drawbacks, aniline-catalyzed oxime formation is developed for selective modification of a variety of polysaccharides through their reducing end. Notably, it is found that for efficient oxime formation, different conditions are required depending on the composition of the specific polysaccharide. It is also shown how our strategy can be applied to improve the physical and functional properties of alginate hydrogels, which are widely used in tissue engineering and regenerative medicine applications. While the randomly and selectively modified alginate exhibits similar viscoelastic properties, the latter forms significantly more stable hydrogel and superior cell adhesive and functional properties. Our results show that the developed conjugation reaction is robust and should open new opportunities for preparing polysaccharide-based functional materials with unique properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Genetic engineering and chemical conjugation of potato virus X.

    Science.gov (United States)

    Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F

    2014-01-01

    Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).

  7. Supramolecular packing and polymorph screening of N-isonicotinoyl arylketone hydrazones with phenol and amino modifications

    Science.gov (United States)

    Hean, Duane; Michael, Joseph P.; Lemmerer, Andreas

    2018-04-01

    Thirteen structural variants based on the (E)-N‧-(1-arylethylidene)pyridohydrazide template were prepared, investigated and screened for possible polymorphic behaviour. Four variants showed from Differential Scanning Calorimetry Scans thermal events indicative of new solid-state phases. The thirteen variants included substituents R = sbnd OH or sbnd NH2 placed at ortho, meta and para positions on the phenyl ring; and shifting the pyridyl nitrogen between positions 4-, 3- and 2-. The crystal structures of twelve of the compounds were determined to explore their supramolecular structures. The outcomes of these modifications demonstrated that the pyridyl nitrogen at the 2- position is 'locked' by forming a hydrogen bond with the amide hydrogen; while placing the pyridyl nitrogen at positions 3- and 4- offers a greater opportunity for hydrogen bonding with neighbouring molecules. Such interactions include Osbnd H⋯N, Nsbnd H⋯N, Osbnd H⋯O, Nsbnd H⋯O, Nsbnd H⋯π, π⋯π stacking, as well as other weaker interactions such as Csbnd H⋯N, Csbnd H⋯O, Csbnd H⋯N(pyridyl). When OH or NH2 donors are placed in the ortho position, an intramolecular hydrogen bond is formed between the acceptor hydrazone nitrogen and the respective donor. The meta- and para-positioned donors form an unpredictable array of supramolecular structures by forming hydrogen-bonded chains with the pyridyl nitrogen and carbonyl acceptors respectively. In addition to the intramolecular and chain hydrogen bond formation demonstrated throughout the crystal structures under investigation, larger order hydrogen-bonded rings were also observed in some of the supramolecular aggregations. The extent of the hydrogen-bonded ring formations range from two to six molecular participants depending on the specific crystal structure.

  8. Chemical modification of protein a chromatography ligands with polyethylene glycol. II: Effects on resin robustness and process selectivity.

    Science.gov (United States)

    Weinberg, Justin; Zhang, Shaojie; Kirkby, Allison; Shachar, Enosh; Carta, Giorgio; Przybycien, Todd

    2018-04-20

    We have proposed chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) as a strategy to increase the resin selectivity and robustness by providing the ligand with a steric repulsion barrier against non-specific binding. Here, we report on robustness and selectivity benefits for Repligen CaptivA PriMAB resin with ligands modified with 5.2 kDa and 21.5 kDa PEG chains, respectively. PEGylation of ProA ligands allowed the resin to retain a higher percentage of static binding capacity relative to the unmodified resin upon digestion with chymotrypsin, a representative serine protease. The level of protection against digestion was independent of the PEG molecular weight or modification extent for the PEGylation chemistry used. Additionally, PEGylation of the ligands was found to decrease the level of non-specific binding of fluorescently labeled bovine serum albumin (BSA) aggregates to the surface of the resin particles as visualized via confocal laser scanning microscopy (CLSM). The level of aggregate binding decreased as the PEG molecular weight increased, but increasing the extent of modification with 5.2 kDa PEG chains had no effect. Further examination of resin particles via CLSM confirmed that the PEG chains on the modified ligands were capable of blocking the "hitchhiking" association of BSA, a mock contaminant, to an adsorbed mAb that is prone to BSA binding. Ligands modified with 21.5 kDa PEG chains were effective at blocking the association, while ligands modified with 5.2 kDa PEG chains were not. Finally, ligands with 21.5 kDa PEG chains increased the selectivity of the resin against host cell proteins (HCPs) produced by Chinese Hamster Ovary (CHO) cells by up to 37% during purification of a monoclonal antibody (mAb) from harvested cell culture fluid (HCCF) using a standard ProA chromatography protocol. The combined work suggests that PEGylating ProA chromatography media is a viable pathway for

  9. QSAR Models for Thyroperoxidase Inhibition and Screening of U.S. and EU Chemical Inventories

    DEFF Research Database (Denmark)

    Abildgaard Rosenberg, Sine; D. Watt, Eric; Judson, Richard S.

    2017-01-01

    to QSAR1. Of the substances predicted within QSAR2’s applicability domain, 8,790 (19.3%) REACH substances and 7,166 (19.0%) U.S. EPA substances, respectively, were predicted to be TPO inhibitors. A case study on butyl hydroxyanisole (BHA), which is extensively used as an antioxidant, was included.......6% (SD = 4.6%) and 85.3%, respectively. The external validation test set was subsequently merged with the training set to constitute a larger training set totaling 1,519 chemicals for a second model, QSAR2, which underwent robust cross-validation with a balanced accuracy of 82.7% (SD = 2.2%). An analysis...... of QSAR2 identified the ten most discriminating structural features for TPO inhibition and non-inhibition, respectively. Both models were used to screen 72,524 REACH substances and 32,197 U.S. EPA substances, and QSAR2 with the expanded training set had an approximately 10% larger coverages compared...

  10. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-90) - Naches River Water Treatment Plant Intake Screening Project

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Shannon C. [Bonneville Power Administration (BPA), Portland, OR (United States)

    2002-09-26

    BPA is proposing to fund the upgrade of the intake structure for the City of Yakima’s Water Treatment Plant. The existing traveling water screen at the intake does not achieve the current fish screening criteria as defined by Washington State Law and as provided in guidance from the National Marine Fisheries Service. Permanent modifications to the intake system including installation of a fish screen and bypass system are necessary to eliminate mortality and take of ESA listed and non-listed salmonids, as well as resident fish at this location. This project will include: modifications to bypass the existing intake system; the construction of a new intake structure with approved fish screens; installation of a 48-inch diameter pipeline connecting the new intake to the existing intake structure; a reduced intake channel separating PacifiCorp Powerhouse return water/ Naches River water from the irrigation and Wapatox waste ditch return water; modifications to the auxiliary headgates; increased height on the upstream end of the channel wall; and a new outfall structure with plunge pool and upstream migrant barriers.

  11. Virtual screening of compound libraries.

    Science.gov (United States)

    Cerqueira, Nuno M F S A; Sousa, Sérgio F; Fernandes, Pedro A; Ramos, Maria João

    2009-01-01

    During the last decade, Virtual Screening (VS) has definitively established itself as an important part of the drug discovery and development process. VS involves the selection of likely drug candidates from large libraries of chemical structures by using computational methodologies, but the generic definition of VS encompasses many different methodologies. This chapter provides an introduction to the field by reviewing a variety of important aspects, including the different types of virtual screening methods, and the several steps required for a successful virtual screening campaign within a state-of-the-art approach, from target selection to postfilter application. This analysis is further complemented with a small collection important VS success stories.

  12. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    Science.gov (United States)

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    2017-01-01

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein, we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.

  14. Chemical Modification of Activated Carbon and Its Application for Solid Phase Extraction of Copper(II and Iron(III Ions

    Directory of Open Access Journals (Sweden)

    M. Ghaedi

    2014-06-01

    Full Text Available Powder activated carbon surface (AC was grinded and modified and altered procedure thorough a facile and easy chemical reaction to appearance of 2-((3silylpropylimino1-methyl phenol (AC- (SPIMP. Subsequently, this novel sorbent efficiently applied for the extraction and preconcentration of some metal ions from real samples. Preliminary the influences of variables such as pH, amounts of reagents and porous AC, eluting solution conditions (type and concentrations, sample volume and influence of interference of many ions on the analytes recoveries was studied and optimized. This new sorbents property including pore size, pore volume and surface properties was evaluated and monitored by BET, while structure and homogeneously of sorbent was identified by SEM. The surface modification was traced by FT-IR as powerful and strong identification techniques. The proposed sorbent has high surface area(>1317.1346 m2 g-1 and small pore size(

  15. Noise of screen-film systems: origins and components

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, H

    1983-01-01

    When using the more sensitive rare-earth intensifying screens in radiography applying the screen-film system, one has to cope with an increase in quantum noise. Measurement of Wiener spectra will help to determine the noise of the film. With an appropriate apparatus, the noise spectra of screen-film systems of different sensitivity have been ascertained and compared with theoretical assessments. The integral noise made up of the components film noise, screen noise and quantum noise have been thoroughly analysed. Adequate choice of radiographic conditions (such as modification of film exposure time via the screen, change of tube voltage) will affect the number of absorbed X-ray quanta in the luminous substance and thus the quantum noise which, as was found out, largely contributes to the integral noise together with another factor, graininess of the film. The study shows that although quantum noise has to be cut back, this should not be done at any price, and due regard must be paid to other factors influencing the image quality of the system, such as contrast and MTF.

  16. Chiral reagents in glycosylation and modification of carbohydrates.

    Science.gov (United States)

    Wang, Hao-Yuan; Blaszczyk, Stephanie A; Xiao, Guozhi; Tang, Weiping

    2018-02-05

    Carbohydrates play a significant role in numerous biological events, and the chemical synthesis of carbohydrates is vital for further studies to understand their various biological functions. Due to the structural complexity of carbohydrates, the stereoselective formation of glycosidic linkages and the site-selective modification of hydroxyl groups are very challenging and at the same time extremely important. In recent years, the rapid development of chiral reagents including both chiral auxiliaries and chiral catalysts has significantly improved the stereoselectivity for glycosylation reactions and the site-selectivity for the modification of carbohydrates. These new tools will greatly facilitate the efficient synthesis of oligosaccharides, polysaccharides, and glycoconjugates. In this tutorial review, we will summarize these advances and highlight the most recent examples.

  17. Effect of chemical modification on behavior of various organic vanadium forms during analysis by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kowalewska, Zofia

    2007-01-01

    The behavior of various organic V forms dissolved in xylene during analysis by electrothermal atomic absorption spectrometry (ETAAS) was compared. The investigated analyte forms included compounds with vanadium at the oxidation state III, IV or V, as well as N, O or S atoms in molecules. Another group consisted of petroleum products containing naturally-occurring V species. Although the characteristic mass determined under different analytical conditions was in the very wide range from 11 up to 55 pg, some rules of V behavior were found. In the case of porphyrins and petroleum products, the application of Pd as a chemical modifier (xylene solution of Pd(II) acetylacetonate) seemed to be crucial. It was shown that Pd must be introduced to a furnace together with a sample. Pd injected and thermally pretreated before the sample injection was less effective for porphyrins and the petroleum products, but it increased signals of V compounds containing O as donor atom. The iodine pretreatment followed by the methyltrioctylammonium chloride (MTOACl) pretreatment was advantageous for these V forms. The air ashing in a graphite tube appeared to be important to improve decomposition of the petroleum products. No significant influence of the V oxidation state on the analytical signal was observed. The behavior of V contained in two Conostan oil standards, the single-element and the S21 multielement standard, was different in many situations. Probably, the joint action of other elements is responsible for this effect. In general, chemical modification was applied in the work for two reasons: to reduce the V volatility (in some cases losses at about 300 deg. C were observed) and to enhance the atomization efficiency. For routine analysis air ashing, modification by Pd introduced into the furnace together with the sample solution and petroleum products with known V content as standard is recommended. Using this procedure the characteristic mass varied from 16 to 19 pg for

  18. An improvement of LLNA:DA to assess the skin sensitization potential of chemicals.

    Science.gov (United States)

    Zhang, Hongwei; Shi, Ying; Wang, Chao; Zhao, Kangfeng; Zhang, Shaoping; Wei, Lan; Dong, Li; Gu, Wen; Xu, Yongjun; Ruan, Hongjie; Zhi, Hong; Yang, Xiaoyan

    2017-01-01

    We developed a modified local lymph node assay based on ATP (LLNA:DA), termed the Two-Stage LLNA:DA, to further reduce the animal numbers in the identification of sensitizers. In the Two-Stage LLNA:DA procedure, 13 chemicals ranging from non-sensitizers to extreme sensitizers were selected. The first stage used reduced LLNA:DA (rLLNA:DA) to screen out sensitive chemicals. The second stage used LLNA:DA based on OECD 442 (A) to classify those potential sensitizers screened out in the first stage. In the first stage, the SIs of the methyl methacrylate, salicylic acid, methyl salicylate, ethyl salicylate, isopropanol and propanediol were below 1.8 and need not to be tested in the second step. Others continued to be tested by LLNA:DA. In the second stage, sodium lauryl sulphate and xylene were classified as weak sensitizers. a-hexyl cinnamic aldehyde and eugenol were moderate sensitizers. Benzalkonium chloride and glyoxal were strong sensitizers, and phthalic anhydride was an extreme sensitizer. The 9/9, 11/12, 10/11, and 8/13 (positive or negative only) categories of the Two-Stage LLNA:DA were consistent with those from the other methods (LLNA, LLNA:DA, GPMT/BT and HMT/HPTA), suggesting that Two-Stage LLNA:DA have a high coincidence rate with reported data. In conclusion, The Two-Stage LLNA:DA is in line with the "3R" rules, and can be a modification of LLNA:DA but needs more study.

  19. Surface Modification of α-Fe Metal Particles by Chemical Surface Coating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The structure of α-Fe metal magnetic recording particles coated with silane coupling agents have been studied by TEM, FT-IR, EXAFS, Mossbauer. The results show that a close, uniform, firm and ultra thin layer, which is beneficial to the magnetic and chemical stability, has been formed by the cross-linked chemical bond Si-O-Si. And the organic molecule has chemically bonded to the particle surface, which has greatly affected the surface Fe atom electronic structure. Furthermore, the covalent bond between metal particle surface and organic molecule has obvious effect on the near edge structure of the surface Fe atoms.

  20. Chemical modification of nanocellulose with canola oil fatty acid methyl ester

    Science.gov (United States)

    Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...

  1. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1996 revision

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.S.; Suter, G.W. II [Oak Ridge National Lab., TN (United States); Hull, R.N. [Beak Consultants Ltd., Brampton, ON (Canada)

    1996-06-01

    A hazardous waste site may contain hundred of chemicals; therefore, it is important to screen contaminants of potential concern of the ecological risk assessment. Often this screening is done as part of a Screening Assessment, the purpose of which is to evaluate the available data, identify data gaps, and screen contaminants of potential concern. |Screening may be accomplished by using a set of toxicological benchmarks. These benchmarks are helpful in determining whether contaminants warrant further assessment or are at a level that requires no further attention. If a chemical concentration or the reported detection limit exceeds a proposed lower benchmark, more analysis is needed to determine the hazards posed by that chemical. If, however, the chemical concentration falls below the lower benchmark value, the chemical may be eliminated from further study. This report briefly describes three categories of approaches to the development of sediment quality benchmarks. These approaches are based on analytical chemistry, toxicity test results, and field survey data. A fourth integrative approach incorporates all three types of data.

  2. Measurements of RF-induced sol modifications in Tore Supra tokamak

    International Nuclear Information System (INIS)

    Kubic, Martin; Gunn, James P.; Colas, Laurent; Heuraux, Stephane; Faudot, Eric

    2012-01-01

    Since spring 2011, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra (TS) tokamak is equipped with a new type of Faraday screen (FS). Results from Radio Frequency (RF) simulations of the new Faraday screen suggest the innovative structure with cantilevered bars and 'shark tooth' openings significantly changes the current flow pattern on the front of the antenna which in turn reduces the RF potential and RF electrical field in particular parallel to the magnetic field lines which contributes to generating RF sheaths. Effects of the new FS operation on RF-induced scrape-off layer (SOL) modifications are studied for different plasma and antenna configurations - scans of strap power ratio imbalance, phasing, injected power and SOL density. (authors)

  3. Barley lipid transfer protein, LTP1, contains a new type of lipid-like post-translational modification

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Lerche, Mathilde H.; Poulsen, Flemming Martin

    2001-01-01

    in which an aspartic acid in LTP1 is bound to the modification through what most likely is an ester bond. The chemical structure of the modification has been characterized by means of two-dimensional homo- and heteronuclear nuclear magnetic resonance spectroscopy as well as mass spectrometry and is found...

  4. Screening of heavy quarks and hadrons at finite temperature and density

    Energy Technology Data Exchange (ETDEWEB)

    Doering, M.

    2006-09-22

    Heavy quarks and hadrons placed in a strongly interacting thermal and baryon chemical quantum field are screened by the medium. I calculate the free energies of heavy quarks and anti-quarks and hadron correlation functions on a 16{sup 3} x 4 lattice in 2-flavour QCD with a bare quark mass of m/T=0.4. The dependence on the interparticle distance determines the screening masses as a function of temperature and density. The Taylor expansion method is used for the baryon chemical potential. The heavy quark screening masses turn out to be in good agreement with perturbation theory for temperatures T>2T{sub c}. The hadron screening masses are consistent with the free quark propagation in the large temperature regime. (orig.)

  5. Screening of heavy quarks and hadrons at finite temperature and density

    International Nuclear Information System (INIS)

    Doering, M.

    2006-01-01

    Heavy quarks and hadrons placed in a strongly interacting thermal and baryon chemical quantum field are screened by the medium. I calculate the free energies of heavy quarks and anti-quarks and hadron correlation functions on a 16 3 x 4 lattice in 2-flavour QCD with a bare quark mass of m/T=0.4. The dependence on the interparticle distance determines the screening masses as a function of temperature and density. The Taylor expansion method is used for the baryon chemical potential. The heavy quark screening masses turn out to be in good agreement with perturbation theory for temperatures T>2T c . The hadron screening masses are consistent with the free quark propagation in the large temperature regime. (orig.)

  6. Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening

    International Nuclear Information System (INIS)

    Subedi, Amit; Shimizu, Takeshi; Ryo, Akihide; Sanada, Emiko; Watanabe, Nobumoto; Osada, Hiroyuki

    2016-01-01

    Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors based on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.

  7. Mechanical properties of chemically modified portuguese pinewood

    OpenAIRE

    Lopes, Duarte B; Mai, Carsten; Militz, Holger

    2014-01-01

    To turn wood into a construction material with enhanced properties, many methods of chemical modification have been developed in the last few decades. In this work, mechanical properties of pine wood were chemically modified, compared and evaluated. Maritime pine wood (Pinus pinaster) was modified with four chemical processes: 1,3-dimethylol-4,5- dihydroxyethyleneurea, N-methylol melamine formaldehyde, tetra-alkoxysilane and wax. The following mechanical properties were assessed experiment...

  8. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  9. The Systematic Screening Methodology for Surfactant Flooding Chemicals in Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Cholpraves, Cholathis; Rattanaudom, Pattamas; Suriyapraphadilok, Uthaiporn

    2017-01-01

    for non-ionic surfactants is found to be qualitatively correct and so it can be used for surfactant screening-selection. Other properties like melting point, cloud-point, etc., are also used for the screening-selection step. Application of the model-based method is highlighted through two case studies...

  10. Biosensor discovery of thyroxine transport disrupting chemicals

    International Nuclear Information System (INIS)

    Marchesini, Gerardo R.; Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J.

    2008-01-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds

  11. Biosensor discovery of thyroxine transport disrupting chemicals.

    Science.gov (United States)

    Marchesini, Gerardo R; Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J

    2008-10-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds.

  12. Development of a stable cell line with an intact PGC-1α/ERRα axis for screening environmental chemicals

    International Nuclear Information System (INIS)

    Teng, Christina T.; Beames, Burton; Alex Merrick, B.; Martin, Negin; Romeo, Charles; Jetten, Anton M.

    2014-01-01

    Highlights: • We developed a stable cell line with intact PGC-1α/ERRα axis. • The ERRα repressor, XCT790, down regulates this pathway. • Phytoestrogen, genisten stimulates this pathway. - Abstract: The estrogen-related receptor α (ERRα) and the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) play critical roles in the control of several physiological functions, including the regulation of genes involved in energy homeostasis. However, little is known about the ability of environmental chemicals to disrupt or modulate this important bioenergetics pathway in humans. The goal of this study was to develop a cell-based assay system with an intact PGC-1α/ERRα axis that could be used as a screening assay for detecting such chemicals. To this end, we successfully generated several stable cell lines expressing PGC-1α and showed that the reporter driven by the native ERRα hormone response unit (AAB-Luc) is active in these cell lines and that the activation is PGC-1α-dependent. Furthermore, we show that this activation can be blocked by the ERRα selective inverse agonist, XCT790. In addition, we find that genistein and bisphenol A further stimulate the reporter activity, while kaempferol has minimal effect. These cell lines will be useful for identifying environmental chemicals that modulate this important pathway

  13. Development of a stable cell line with an intact PGC-1α/ERRα axis for screening environmental chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Christina T., E-mail: teng1@niehs.nih.gov [DNTP, BioMolecular Screening Branch, Division, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 (United States); Beames, Burton; Alex Merrick, B. [DNTP, BioMolecular Screening Branch, Division, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 (United States); Martin, Negin; Romeo, Charles [DIR, Viral Core Lab, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 (United States); Jetten, Anton M. [DIR Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 (United States)

    2014-02-07

    Highlights: • We developed a stable cell line with intact PGC-1α/ERRα axis. • The ERRα repressor, XCT790, down regulates this pathway. • Phytoestrogen, genisten stimulates this pathway. - Abstract: The estrogen-related receptor α (ERRα) and the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) play critical roles in the control of several physiological functions, including the regulation of genes involved in energy homeostasis. However, little is known about the ability of environmental chemicals to disrupt or modulate this important bioenergetics pathway in humans. The goal of this study was to develop a cell-based assay system with an intact PGC-1α/ERRα axis that could be used as a screening assay for detecting such chemicals. To this end, we successfully generated several stable cell lines expressing PGC-1α and showed that the reporter driven by the native ERRα hormone response unit (AAB-Luc) is active in these cell lines and that the activation is PGC-1α-dependent. Furthermore, we show that this activation can be blocked by the ERRα selective inverse agonist, XCT790. In addition, we find that genistein and bisphenol A further stimulate the reporter activity, while kaempferol has minimal effect. These cell lines will be useful for identifying environmental chemicals that modulate this important pathway.

  14. Evaluation of the chemical modifications in petroleum asphalt cement with the addition of polypropylene; Avaliacao das modificacoes quimicas no cimento asfaltico de petroleo com a adicao de polipropileno

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, C.P.; Sales, M.J.A.; Resck, I.S., E-mail: mjsales@unb.b [Universidade de Brasilia (LabPol/UnB), DF (Brazil). Inst. de Quimica. Lab. de Pesquisa em Polimeros; Farias, M.M.; Souza, M.V.R. [Universidade de Brasilia (UnB), DF (Brazil). Dept. de Engenharia Civil e Ambiental

    2010-07-01

    Studies show that the common distress mode in the Brazilian highway network are fatigue cracks and plastic deformation, which are associated with the type of material used in the pavement layers, structural project, excessive traffic load and weathering. To minimize these defects, research on modifiers such as polymers, added to asphalt binders have been developed to provide physical, chemical and rheological improvement. This paper investigates chemical modifications of the binders with the addition of PP by FTIR, NMR and DSC. FTIR spectra of pure and modified binder showed no differences in absorption. NMR analysis showed no strong chemical bonds between the binder and PP. DSC curve of PP showed a melting temperature of 160 deg C ({Delta}H = 94J/g) and the pure binder presented an endothermic transition between 20 and 40 deg C ({Delta}H = 2J/g). In the DSC curves of mixtures, these transitions are not significant, indicating possible interactions between asphalt binder and PP. (author)

  15. Design and Control of Chemical Grouting : Volume 3 - Engineering Practice

    Science.gov (United States)

    1983-04-01

    Recent improvements in the engineering practice of chemical grouting have provided increased confidence in this method of ground modification. Designers can significantly improve the success of chemical grouting by defining their grouting program obj...

  16. A highly stable and sensitive chemically modified screen-printed electrode for sulfide analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, D.-M. [Department of Chemistry, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40217, Taiwan (China); Kumar, Annamalai Senthil [Department of Chemistry, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40217, Taiwan (China); Zen, J.-M. [Department of Chemistry, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40217, Taiwan (China)]. E-mail: jmzen@dragon.nchu.edu.tw

    2006-01-18

    We report here a highly stable and sensitive chemically modified screen-printed carbon electrode (CMSPE) for sulfide analysis. The CMSPE was prepared by first ion-exchanging ferricyanide into a Tosflex anion-exchange polymer and then sealing with a tetraethyl orthosilicate sol-gel layer. The sol-gel overlayer coating was crucial to stabilize the electron mediator (i.e., Fe(China){sub 6} {sup 3-}) from leaching. The strong interaction between the oxy-hydroxy functional group of sol-gel and the hydrophilic sites of Tosflex makes the composite highly rigid to trap the ferricyanide mediator. An obvious electrocatalytic sulfide oxidation current signal at {approx}0.20 V versus Ag/AgCl in pH 7 phosphate buffer solution was observed at the CMSPE. A linear calibration plot over a wide range of 0.1 {mu}M to 1 mM with a slope of 5.6 nA/{mu}M was obtained by flow injection analysis. The detection limit (S/N = 3) was 8.9 nM (i.e., 25.6 ppt). Practical utility of the system was applied to the determination of sulfide trapped from cigarette smoke and sulfide content in hot spring water.

  17. Properties of screen printed electrocardiography smartware electrodes investigated in an electro-chemical cell.

    Science.gov (United States)

    Rattfält, Linda; Björefors, Fredrik; Nilsson, David; Wang, Xin; Norberg, Petronella; Ask, Per

    2013-07-05

    ECG (Electrocardiogram) measurements in home health care demands new sensor solutions. In this study, six different configurations of screen printed conductive ink electrodes have been evaluated with respect to electrode potential variations and electrode impedance. The electrode surfaces consisted of a Ag/AgCl-based ink with a conduction line of carbon or Ag-based ink underneath. On top, a lacquer layer was used to define the electrode area and to cover the conduction lines. Measurements were performed under well-defined electro-chemical conditions in a physiologic saline solution. The results showed that all printed electrodes were stable and have a very small potential drift (less than 3 mV/30 min). The contribution to the total impedance was 2% of the set maximal allowed impedance (maximally 1 kΩ at 50 Hz), assuming common values of input impedance and common mode rejection ratio of a regular amplifier. Our conclusions are that the tested electrodes show satisfying properties to be used as elements in a skin electrode design that could be suitable for further investigations by applying the electrodes on the skin.

  18. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  19. Catalytic modification of cellulose and hemicellulose - Sugarefine

    Energy Technology Data Exchange (ETDEWEB)

    Repo, T. [Helsinki Univ. (Finland),Laboratory of Inorganic Chemistry], email: timo.repo@helsinki.fi

    2012-07-01

    The main goal of the project is to develop catalytic methods for the modification of lignocellulose-based saccharides in the biorefineries. The products of these reactions could be used for example as biofuel components, raw materials for the chemical industry, solvents and precursors for biopolymers. The catalyst development aims at creating efficient, selective and green catalytic methods for profitable use in biorefineries. The project is divided in three work packages: In WP1 (Catalytic dehydration of cellulose) the aim is at developing non-toxic, efficient methods for the catalytic dehydration of cellulose the target molecule being here 5-hydroxymethylfurfural (5-HMF). 5-HMF is an interesting platform chemical for the production of fuel additives, solvents and polymers. In WP2 (Catalytic reduction), the objective of the catalytic reduction studies is to produce commercially interesting monofunctional chemicals, such as 1-butanol or 2-methyltetrahydrofuran (2-MeTHF). In WP3 (Catalytic oxidation), the research focuses on developing a green and efficient oxidation method for producing acids. Whereas acetic and formic acids are bulk chemicals, diacids such as glucaric and xylaric acids are valuable specialty chemicals for detergent, polymer and food production.

  20. ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.

    Science.gov (United States)

    Richard, Ann M; Judson, Richard S; Houck, Keith A; Grulke, Christopher M; Volarath, Patra; Thillainadarajah, Inthirany; Yang, Chihae; Rathman, James; Martin, Matthew T; Wambaugh, John F; Knudsen, Thomas B; Kancherla, Jayaram; Mansouri, Kamel; Patlewicz, Grace; Williams, Antony J; Little, Stephen B; Crofton, Kevin M; Thomas, Russell S

    2016-08-15

    The U.S. Environmental Protection Agency's (EPA) ToxCast program is testing a large library of Agency-relevant chemicals using in vitro high-throughput screening (HTS) approaches to support the development of improved toxicity prediction models. Launched in 2007, Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay end points. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in the public release of screening data at the end of 2013. Subsequent expansion in Phase III has resulted in more than 3800 chemicals actively undergoing ToxCast screening, 96% of which are also being screened in the multi-Agency Tox21 project. The chemical library unpinning these efforts plays a central role in defining the scope and potential application of ToxCast HTS results. The history of the phased construction of EPA's ToxCast library is reviewed, followed by a survey of the library contents from several different vantage points. CAS Registry Numbers are used to assess ToxCast library coverage of important toxicity, regulatory, and exposure inventories. Structure-based representations of ToxCast chemicals are then used to compute physicochemical properties, substructural features, and structural alerts for toxicity and biotransformation. Cheminformatics approaches using these varied representations are applied to defining the boundaries of HTS testability, evaluating chemical diversity, and comparing the ToxCast library to potential target application inventories, such as used in EPA's Endocrine Disruption Screening Program (EDSP). Through several examples, the ToxCast chemical library is demonstrated to provide comprehensive coverage of the knowledge domains and target inventories of potential interest to EPA. Furthermore, the varied representations and approaches presented here define local chemistry domains potentially worthy of further investigation (e.g., not currently covered in the testing library or

  1. 20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)

    Science.gov (United States)

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  2. Site-selective protein-modification chemistry for basic biology and drug development.

    Science.gov (United States)

    Krall, Nikolaus; da Cruz, Filipa P; Boutureira, Omar; Bernardes, Gonçalo J L

    2016-02-01

    Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.

  3. Library fingerprints: a novel approach to the screening of virtual libraries.

    Science.gov (United States)

    Klon, Anthony E; Diller, David J

    2007-01-01

    We propose a novel method to prioritize libraries for combinatorial synthesis and high-throughput screening that assesses the viability of a particular library on the basis of the aggregate physical-chemical properties of the compounds using a naïve Bayesian classifier. This approach prioritizes collections of related compounds according to the aggregate values of their physical-chemical parameters in contrast to single-compound screening. The method is also shown to be useful in screening existing noncombinatorial libraries when the compounds in these libraries have been previously clustered according to their molecular graphs. We show that the method used here is comparable or superior to the single-compound virtual screening of combinatorial libraries and noncombinatorial libraries and is superior to the pairwise Tanimoto similarity searching of a collection of combinatorial libraries.

  4. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spetrometry for screening and identification of organic pollutants in waters

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Hernandez, F.

    2014-01-01

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC–(APCI)QTOF MS). The soft ionization

  5. A web-based platform for virtual screening.

    Science.gov (United States)

    Watson, Paul; Verdonk, Marcel; Hartshorn, Michael J

    2003-09-01

    A fully integrated, web-based, virtual screening platform has been developed to allow rapid virtual screening of large numbers of compounds. ORACLE is used to store information at all stages of the process. The system includes a large database of historical compounds from high throughput screenings (HTS) chemical suppliers, ATLAS, containing over 3.1 million unique compounds with their associated physiochemical properties (ClogP, MW, etc.). The database can be screened using a web-based interface to produce compound subsets for virtual screening or virtual library (VL) enumeration. In order to carry out the latter task within ORACLE a reaction data cartridge has been developed. Virtual libraries can be enumerated rapidly using the web-based interface to the cartridge. The compound subsets can be seamlessly submitted for virtual screening experiments, and the results can be viewed via another web-based interface allowing ad hoc querying of the virtual screening data stored in ORACLE.

  6. Computer-Aided Solvent Screening for Biocatalysis

    DEFF Research Database (Denmark)

    Abildskov, Jens; Leeuwen, M.B. van; Boeriu, C.G.

    2013-01-01

    constrained properties related to chemical reaction equilibrium, substrate and product solubility, water solubility, boiling points, toxicity and others. Two examples are provided, covering the screening of solvents for lipase-catalyzed transesterification of octanol and inulin with vinyl laurate....... Esterification of acrylic acid with octanol is also addressed. Solvents are screened and candidates identified, confirming existing experimental results. Although the examples involve lipases, the method is quite general, so there seems to be no preclusion against application to other biocatalysts....

  7. Modification of polyetherurethane for biomedical application by radiation-induced grafting. I. Grafting procedure, determination of mechanical properties, and chemical modification of grafted films

    International Nuclear Information System (INIS)

    Jansen, B.; Ellinghorst, G.

    1985-01-01

    Radiation grafting of monomers onto suitable trunk polymers is a useful tool for tailoring new polymers for special purposes. This technique has been used in the past for the development of biocompatible materials, e.g., by grafting hydrogels onto mechanically stable polymers. In this first part of our work, the radiation grafting of hydrophilic or reactive monomers onto a polyetherurethane film using the pre-swelling technique is described. Following this technique the trunk polymer was swollen in the monomer before irradiation. As monomers 2-hydroxyethyl methacrylate (HEMA), 2,3-epoxypropyl methacrylate (GMA), 2,3-dihydroxypropyl methacrylate (GOMA), and acrylamide (AAm) were used. The kinetics of the grafting reactions were examined, and the distribution of the graft component inside the trunk polymer was investigated by means of infrared (IR) spectroscopy. Surface-grafted as well as bulk- and surface-grafted products could be obtained. The mechanical behavior of the grafted films--especially in the water-swollen state--was examined and compared with that of the pure trunk polymer. In nearly all cases it was found that the tensile strength sigma B and the elongation at break epsilon R decreases as the grafting yield increases. Modification of GMA- and AAm-grafted films via chemical reactions was performed to create new functional groups of biomedical interest. In this manner a diol structure, a carboxylic acid structure, and a sulfonic acid group could be introduced in the grafted polymer. The water uptake of such modified films is increased markedly when compared with that of the unmodified samples

  8. Structure and Modification of Electrode Materials for Protein Electrochemistry.

    Science.gov (United States)

    Jeuken, Lars J C

    The interactions between proteins and electrode surfaces are of fundamental importance in bioelectrochemistry, including photobioelectrochemistry. In order to optimise the interaction between electrode and redox protein, either the electrode or the protein can be engineered, with the former being the most adopted approach. This tutorial review provides a basic description of the most commonly used electrode materials in bioelectrochemistry and discusses approaches to modify these surfaces. Carbon, gold and transparent electrodes (e.g. indium tin oxide) are covered, while approaches to form meso- and macroporous structured electrodes are also described. Electrode modifications include the chemical modification with (self-assembled) monolayers and the use of conducting polymers in which the protein is imbedded. The proteins themselves can either be in solution, electrostatically adsorbed on the surface or covalently bound to the electrode. Drawbacks and benefits of each material and its modifications are discussed. Where examples exist of applications in photobioelectrochemistry, these are highlighted.

  9. Toxicological benchmarks for screening contaminants of potential concern for effects on freshwater biota

    International Nuclear Information System (INIS)

    Suter, G.W. II

    1996-01-01

    An important early step in the assessment of ecological risks at contaminated sites is the screening of chemicals detected on the site to identify those that constitute a potential risk. Part of this screening process is the comparison of measured ambient concentrations to concentrations that are believed to be nonhazardous, termed benchmarks. This article discusses 13 methods by which benchmarks may be derived for aquatic biota and presents benchmarks for 105 chemicals. It then compares them with respect to their sensitivity, availability, magnitude relative to background concentrations, and conceptual bases. This compilation is limited to chemicals that have been detected on the US Department of Energy's Oak Ridge Reservation (ORR) and to benchmarks derived from studies of toxic effects on freshwater organisms. The list of chemicals includes 45 metals and 56 industrial organic chemicals but only four pesticides. Although some individual values can be shown to be too high to be protective and others are too low to be useful for screening, none of the approaches to benchmark derivation can be rejected without further definition of what constitutes adequate protection. The most appropriate screening strategy is to use multiple benchmark values along with background concentrations, knowledge of waste composition, and physicochemical properties to identify contaminants of potential concern

  10. Chemical modification as a probe of the topography and reactivity of horse-spleen apoferritin

    International Nuclear Information System (INIS)

    Wetz, K.; Crichton, R.R.; Louvain Univ.

    1976-01-01

    In apoferritin, but not in ferritin, 1.0 +- 0.1 cysteine residue per subunit can be modified. In ferritin 3.3 +- 0.3 lysine residues and 7.1 +- 0.7 carboxyl groups per subunit can be modified, whilst the corresponding values for apoferritin are 4.4 +- 0.4 lysine residues and 11.0 +- 0.4 carboxyl groups per subunit. Modification of lysine residues with maleic anhydride and of carboxyl groups with glycineamide in apoferritin which has been dissociated and denatured in guanidine hydrochloride leads to the introduction of 9.1 +- 0.5 maleyl groups per subunit and 22.0 +- 0.9 glycineamide residues per subunit. Whereas unmodified apoferritin subunit can be reassociated from guanidine hydrochloride to apoferritin monomer, the ability of maleylated apoferritin to reassociate is impaired. Apoferritin in which all the carboxyl group have been blocked with glycineamide cannot be reassociated to apoferritin and exists in solution as stable subunits. The modification of one cysteine residue per subunit, of 3 or 4 lysine per subunit or of 7 carboxyl groups per subunit has no effect on the catalytic activity of apoferritin. In contrast, the modification of 11 carboxyl groups per subunit completely abolishes the catalytic properties of the protein. We conclude that one or more carboxyl groups are essential for the catalytic activity of horse spleen apoferritin. (orig.) [de

  11. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...

  12. Performance of the flow cytometric E-screen assay in screening estrogenicity of pure compounds and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Vanparys, Caroline, E-mail: caroline.vanparys@ua.ac.be [Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp (Belgium); Depiereux, Sophie; Nadzialek, Stephanie [Research Unit in Organismal Biology (URBO), University of Namur (FUNDP), Namur (Belgium); Robbens, Johan; Blust, Ronny [Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp (Belgium); Kestemont, Patrick [Research Unit in Organismal Biology (URBO), University of Namur (FUNDP), Namur (Belgium); De Coen, Wim [Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp (Belgium); European Chemicals Agency (ECHA), Helsinki (Finland)

    2010-09-15

    In vitro estrogenicity screens are believed to provide a first prioritization step in hazard characterization of endocrine disrupting chemicals. When applied to complex environmental matrices or mixture samples, they have been indicated valuable in estimating the overall estrogen-mimicking load. In this study, the performance of an adapted format of the classical E-screen or MCF-7 cell proliferation assay was profoundly evaluated to rank pure compounds as well as influents and effluents of sewage treatment plants (STPs) according to estrogenic activity. In this adapted format, flow cytometric cell cycle analysis was used to allow evaluation of the MCF-7 cell proliferative effects after only 24 h of exposure. With an average EC{sub 50} value of 2 pM and CV of 22%, this assay appears as a sensitive and reproducible system for evaluation of estrogenic activity. Moreover, estrogenic responses of 17 pure compounds corresponded well, qualitatively and quantitatively, with other in vitro and in vivo estrogenicity screens, such as the classical E-screen (R{sup 2} = 0.98), the estrogen receptor (ER) binding (R{sup 2} = 0.84) and the ER transcription activation assay (R{sup 2} = 0.87). To evaluate the applicability of this assay for complex samples, influents and effluents of 10 STPs covering different treatment processes, were compared and ranked according to estrogenic removal efficiencies. Activated sludge treatment with phosphorus and nitrogen removal appeared most effective in eliminating estrogenic activity, followed by activated sludge, lagoon and filter bed. This is well in agreement with previous findings based on chemical analysis or biological activity screens. Moreover, ER blocking experiments indicated that cell proliferative responses were mainly ER mediated, illustrating that the complexity of the end point, cell proliferation, compared to other ER screens, does not hamper the interpretation of the results. Therefore, this study, among other E-screen studies

  13. Performance of the flow cytometric E-screen assay in screening estrogenicity of pure compounds and environmental samples

    International Nuclear Information System (INIS)

    Vanparys, Caroline; Depiereux, Sophie; Nadzialek, Stephanie; Robbens, Johan; Blust, Ronny; Kestemont, Patrick; De Coen, Wim

    2010-01-01

    In vitro estrogenicity screens are believed to provide a first prioritization step in hazard characterization of endocrine disrupting chemicals. When applied to complex environmental matrices or mixture samples, they have been indicated valuable in estimating the overall estrogen-mimicking load. In this study, the performance of an adapted format of the classical E-screen or MCF-7 cell proliferation assay was profoundly evaluated to rank pure compounds as well as influents and effluents of sewage treatment plants (STPs) according to estrogenic activity. In this adapted format, flow cytometric cell cycle analysis was used to allow evaluation of the MCF-7 cell proliferative effects after only 24 h of exposure. With an average EC 50 value of 2 pM and CV of 22%, this assay appears as a sensitive and reproducible system for evaluation of estrogenic activity. Moreover, estrogenic responses of 17 pure compounds corresponded well, qualitatively and quantitatively, with other in vitro and in vivo estrogenicity screens, such as the classical E-screen (R 2 = 0.98), the estrogen receptor (ER) binding (R 2 = 0.84) and the ER transcription activation assay (R 2 = 0.87). To evaluate the applicability of this assay for complex samples, influents and effluents of 10 STPs covering different treatment processes, were compared and ranked according to estrogenic removal efficiencies. Activated sludge treatment with phosphorus and nitrogen removal appeared most effective in eliminating estrogenic activity, followed by activated sludge, lagoon and filter bed. This is well in agreement with previous findings based on chemical analysis or biological activity screens. Moreover, ER blocking experiments indicated that cell proliferative responses were mainly ER mediated, illustrating that the complexity of the end point, cell proliferation, compared to other ER screens, does not hamper the interpretation of the results. Therefore, this study, among other E-screen studies, supports the use of

  14. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    Science.gov (United States)

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  15. Chemical modification of fibers and fabrics with high-energy radiation

    International Nuclear Information System (INIS)

    Stannett, V.; Walsh, W.K.; Bittencourt, E.; Liepins, R.; Surles, J.R.

    1977-01-01

    Some fundamental considerations related to the radiation modification of fibers and fabrics are discussed. Experiments are described on the radiation ''grafting'' of various phosphorus- and bromine-containing vinyl monomers to polyester, cotton, and their blends to impart flame resistance. It was found that the flame retardancy was more efficient when the grafted polymer was located inside the fiber. The efficiency of the bromine containing polymers was found to be related to the bromine/aliphatic hydrogen ratio and to the thermal stability of the polymers. Experiments are also described illustrating the successful use of radiation processing with a number of vinyl monomers and oligomers to impart water sorbancy, for the bonding of nonwoven fabrics for fabric coating, and for the binding of pigment prints. 11 tables, 18 figures

  16. Modification of Food Systems by Ultrasound

    Directory of Open Access Journals (Sweden)

    L. M. Carrillo-Lopez

    2017-01-01

    Full Text Available This review describes the mechanism, operation, and recent potential applications of ultrasound in various food systems, as well as the physical and chemical effects of ultrasound treatments on the conservation and modification of different groups of food. Acoustic energy has been recognized as an emerging technology with great potential for applications in the food industry. The phenomenon of acoustic cavitation, which modifies the physical, chemical, and functional properties of food, can be used to improve existing processes and to develop new ones. The combination of ultrasonic energy with a sanitizing agent can improve the effect of microbial reduction in foods and, thereby, their quality. Finally, it is concluded that the use of ultrasound in food is a very promising area of research; however, more research is still needed before applying this technology in a wider range of industrial sectors.

  17. ToxCast Workflow: High-throughput screening assay data processing, analysis and management (SOT)

    Science.gov (United States)

    US EPA’s ToxCast program is generating data in high-throughput screening (HTS) and high-content screening (HCS) assays for thousands of environmental chemicals, for use in developing predictive toxicity models. Currently the ToxCast screening program includes over 1800 unique c...

  18. Cobalt surface modification during γ-Fe{sub 2}O{sub 3} nanoparticle synthesis by chemical-induced transition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junming [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Jian, E-mail: aizhong@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Decai [School of Mechanical and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2015-02-01

    In the chemical-induced transition of FeCl{sub 2} solution, the FeOOH/Mg(OH){sub 2} precursor was transformed into spinel structured γ-Fe{sub 2}O{sub 3} crystallites, coated with a FeCl{sub 3}·6H{sub 2}O layer. CoCl{sub 2} surface modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding Co(NO{sub 3}){sub 2} during the synthesis. CoFe{sub 2}O{sub 4} modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding NaOH during the surface modification with Co(NO{sub 3}){sub 2}. The CoFe{sub 2}O{sub 4} layer grew epitaxially on the γ-Fe{sub 2}O{sub 3} crystallite to form a composite crystallite, which was coated by CoCl{sub 2}·6H{sub 2}O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe{sub 2}O{sub 4} and γ-Fe{sub 2}O{sub 3} possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe{sub 2}O{sub 3}-based nanoparticles were related to the grain size. - Highlights: • γ-Fe{sub 2}O{sub 3} nanoparticles were synthesized by chemical induced transition. • CoCl{sub 2} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} during synthesization. • CoFe{sub 2}O{sub 4} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} and NaOH. • The magnetism of the nanoparticles is related to the grain size.

  19. Enzymatic modification of phospholipids forfunctional applications and human nutrition

    DEFF Research Database (Denmark)

    Guo, Zheng; Vikbjerg, Anders / Falk; Xu, Xuebing

    2005-01-01

    analogs based on the latest understanding of pivotal role of phospholipids in manifold biological processes, exploration of remarkable application potentials of phospholipids in meliorating human health, as well as development of new chemical and biotechnological approaches applied to the modification...... design. This will of course provide fundamental bases also for the development of enzymatic technology to produce structured or modified phospholipids....

  20. ToxCast Data Expands Universe of Chemical-Gene Interactions (SOT)

    Science.gov (United States)

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets. Thi...

  1. Surface modification of cyclomatrix polyphosphazene microsphere by thiol-ene chemistry and lectin recognition

    International Nuclear Information System (INIS)

    Chen, Chen; Zhu, Xue-yan; Gao, Qiao-ling; Fang, Fei; Huang, Xiao-jun

    2016-01-01

    Graphical abstract: A new synthetic route leading to polyphosphazene cyclomatrix microsphere with various functional groups has achieved via thiol-ene click modification. Herein, hexacholorocyclophosphazene (HCCP) crosslinked with bisphenol-S and 4,4′-diallyl bisphenol-S to generate broadly dispersed microspheres. Thiol-ene modification under UV irradiation not only presented high efficiency and flexibility for post-functionalization, but also imposed no harm on global morphology and crosslinked skeleton of such microspheres. - Highlights: • Functional polyphosphazene microspheres with high chemical flexibility were synthesized by thiol-ene modification. • Polyphosphazene microspheres possessed high thermal stability. • Glycosylated polyphosphazene microspheres showed affinity to lectin Con-A, which inferred potential application in biomedicine. - Abstract: A new synthetic route leading to functional polyphosphazene cyclomatrix microsphere has been developed via thiol-ene click modification. Hexacholorocyclophosphazene (HCCP) was crosslinked with both bisphenol-S and 4,4′-diallyl bisphenol-S to obtain vinyl polyphosphazene microspheres (VPZM) in order to ensure high crosslinking degree and introduce vinyl moieties. Compared to the microspheres obtained by HCCP and bisphenol-S, the size of VPZM was broadly dispersed from 400 nm to 1.40 μm. Thiol-ene click reactions were carried out to attach functional groups, such as glucosyl, carboxyl, ester and dodecyl groups onto polyphosphazene microspheres, which demonstrated no change in morphology and size after modification. Solid state NMR (SSNMR) and Fourier transform infrared spectoscopy (FT-IR) results showed that the vinyl moieties were introduced in the period of crosslinking and functionalization was also successful via click reactions. Moreover, the microspheres presented a little difference in thermal properties after modification. Concanavalin A (Con-A) fluorescent adsorption was also observed for

  2. Surface modification of cyclomatrix polyphosphazene microsphere by thiol-ene chemistry and lectin recognition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen; Zhu, Xue-yan; Gao, Qiao-ling; Fang, Fei; Huang, Xiao-jun, E-mail: hxjzxh@zju.edu.cn

    2016-11-30

    Graphical abstract: A new synthetic route leading to polyphosphazene cyclomatrix microsphere with various functional groups has achieved via thiol-ene click modification. Herein, hexacholorocyclophosphazene (HCCP) crosslinked with bisphenol-S and 4,4′-diallyl bisphenol-S to generate broadly dispersed microspheres. Thiol-ene modification under UV irradiation not only presented high efficiency and flexibility for post-functionalization, but also imposed no harm on global morphology and crosslinked skeleton of such microspheres. - Highlights: • Functional polyphosphazene microspheres with high chemical flexibility were synthesized by thiol-ene modification. • Polyphosphazene microspheres possessed high thermal stability. • Glycosylated polyphosphazene microspheres showed affinity to lectin Con-A, which inferred potential application in biomedicine. - Abstract: A new synthetic route leading to functional polyphosphazene cyclomatrix microsphere has been developed via thiol-ene click modification. Hexacholorocyclophosphazene (HCCP) was crosslinked with both bisphenol-S and 4,4′-diallyl bisphenol-S to obtain vinyl polyphosphazene microspheres (VPZM) in order to ensure high crosslinking degree and introduce vinyl moieties. Compared to the microspheres obtained by HCCP and bisphenol-S, the size of VPZM was broadly dispersed from 400 nm to 1.40 μm. Thiol-ene click reactions were carried out to attach functional groups, such as glucosyl, carboxyl, ester and dodecyl groups onto polyphosphazene microspheres, which demonstrated no change in morphology and size after modification. Solid state NMR (SSNMR) and Fourier transform infrared spectoscopy (FT-IR) results showed that the vinyl moieties were introduced in the period of crosslinking and functionalization was also successful via click reactions. Moreover, the microspheres presented a little difference in thermal properties after modification. Concanavalin A (Con-A) fluorescent adsorption was also observed for

  3. NeuroChip: a microfluidic electrophysiological device for genetic and chemical biology screening of Caenorhabditis elegans adult and larvae.

    Directory of Open Access Journals (Sweden)

    Chunxiao Hu

    Full Text Available Genetic and chemical biology screens of C. elegans have been of enormous benefit in providing fundamental insight into neural function and neuroactive drugs. Recently the exploitation of microfluidic devices has added greater power to this experimental approach providing more discrete and higher throughput phenotypic analysis of neural systems. Here we make a significant addition to this repertoire through the design of a semi-automated microfluidic device, NeuroChip, which has been optimised for selecting worms based on the electrophysiological features of the pharyngeal neural network. We demonstrate this device has the capability to sort mutant from wild-type worms based on high definition extracellular electrophysiological recordings. NeuroChip resolves discrete differences in excitatory, inhibitory and neuromodulatory components of the neural network from individual animals. Worms may be fed into the device consecutively from a reservoir and recovered unharmed. It combines microfluidics with integrated electrode recording for sequential trapping, restraining, recording, releasing and recovering of C. elegans. Thus mutant worms may be selected, recovered and propagated enabling mutagenesis screens based on an electrophysiological phenotype. Drugs may be rapidly applied during the recording thus permitting compound screening. For toxicology, this analysis can provide a precise description of sub-lethal effects on neural function. The chamber has been modified to accommodate L2 larval stages showing applicability for small size nematodes including parasitic species which otherwise are not tractable to this experimental approach. We also combine NeuroChip with optogenetics for targeted interrogation of the function of the neural circuit. NeuroChip thus adds a new tool for exploitation of C. elegans and has applications in neurogenetics, drug discovery and neurotoxicology.

  4. ENDOCRINE-DISRUPTING CHEMICALS: PREPUBERTAL EXPOSURES AND EFFECTS ON SEXUAL MATURATION AND THYROID FUNCTION IN THE MALE RAT. A FOCUS ON THE EDSTAC RECOMMENDATIONS. ENDOCRINE DISRUPTER SCREENING AND TESTING ADVISORY COMMITTEE

    Science.gov (United States)

    Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee.Stoker TE, Parks LG, Gray LE, Cooper RL.

  5. Variable elimination in post-translational modification reaction networks with mass-action kinetics

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    We define a subclass of chemical reaction networks called post-translational modification systems. Important biological examples of such systems include MAPK cascades and two-component systems which are well-studied experimentally as well as theoretically. The steady states of such a system...

  6. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.

    OpenAIRE

    Kirpekar, F; Douthwaite, S; Roepstorff, P

    2000-01-01

    We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of post...

  7. Environmental chemical exposures and human epigenetics

    Science.gov (United States)

    Hou, Lifang; Zhang, Xiao; Wang, Dong; Baccarelli, Andrea

    2012-01-01

    Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes. PMID:22253299

  8. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Hu, Zhirun [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Liu, Peiguo [College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  9. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    International Nuclear Information System (INIS)

    Huang, Xianjun; Hu, Zhirun; Liu, Peiguo

    2014-01-01

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications

  10. Modification of the surface energy in isovalent nano-oxides prepared by chemical synthesis

    International Nuclear Information System (INIS)

    Miagava, J.; Gouvea, D.

    2011-01-01

    The phase stability of the nano-oxides depends on the bulk energy but it also depends on the surface energy. The difference of surface energy of the rutile and anatase phases result in a change of phase stability: TiO_2 without additives is stable as anatase when particles have nanometric size and a high specific surface area whereas rutile is stable when particles are larger. But this stability can be modified through the use of additives. Different studies demonstrate that additives segregate on the particle surface modifying the surface energy. In this work (1-X)TiO_2-XSnO_2 powders were synthesized by the polymeric precursor method with concentrations of 0 ≤ X ≤ 1. The specific surface area measurements demonstrate that the modification of the composition change the specific surface areas and it reaches a maximum at X = 0.005. The Raman spectroscopy demonstrates that a modification on the stability of the TiO_2 polymorphs occurs and the phase rutile is stabilized when SnO_2 is added to the nano powders.(author)

  11. Membrane technology: in the chemical industry

    National Research Council Canada - National Science Library

    Nunes, S. P; Peinemann, K. V

    2001-01-01

    ... terephthalate) 15 22 23 32 37 5 5.1 5.2 5.3 5.4 Surface Modification of Membranes Chemical Oxidation 39 Plasma Treatment 40 Classical Organic Reactions 41 Polymer Grafting 41 39VI Contents 6 6.1 ...

  12. Epigenetic Modifications of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Kathleen Saavedra

    2016-08-01

    Full Text Available Major depressive disorder (MDD is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders.

  13. Structural modifications under reactive atmosphere of cobalt catalysts; Modifications structurales sous atmospheres reactionnelles de catalyseurs a base de cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Ducreux, O.

    1999-11-23

    The purpose of this work was to develop in situ methods under reactive dynamic conditions (XRD and Fourier transform infrared spectroscopy) to describe the active phase structure in order to understand Fischer-Tropsch catalyst behaviour and improve the natural gas conversion process performance. Experiments were designed to correlate structural modifications with catalytic results. The effect of ruthenium used as a promoter has also been studied. The impregnation process increases cobalt-support interaction. The presence of ruthenium promoter reduces this effect. Interactions between Co{sub 3}O{sub 4} oxide and support play an important role in the reducibility of cobalt and in the resulting metal structure. This in turn strongly influences the catalytic behaviour. Our results show a close correlation between structure modification and reactivity in the systems studied. Cobalt metal and CO can react to form a carbide Co{sub 2}C under conditions close to those of the Fischer-Tropsch synthesis. This carbide formation seems to be related to a deactivation process. The presence of interstitial carbon formed by dissociation of CO is proposed as a key to understanding the mechanism of the Fischer-Tropsch reaction. A specific catalyst activation treatment was developed to increase the catalytic activity. This work permits correlation of materials structure with their chemical properties and demonstrates the contribution of in situ physico-chemical characterisation methods to describe solids under reactive atmosphere. (author)

  14. CoverageAnalyzer (CAn: A Tool for Inspection of Modification Signatures in RNA Sequencing Profiles

    Directory of Open Access Journals (Sweden)

    Ralf Hauenschild

    2016-11-01

    Full Text Available Combination of reverse transcription (RT and deep sequencing has emerged as a powerful instrument for the detection of RNA modifications, a field that has seen a recent surge in activity because of its importance in gene regulation. Recent studies yielded high-resolution RT signatures of modified ribonucleotides relying on both sequence-dependent mismatch patterns and reverse transcription arrests. Common alignment viewers lack specialized functionality, such as filtering, tailored visualization, image export and differential analysis. Consequently, the community will profit from a platform seamlessly connecting detailed visual inspection of RT signatures and automated screening for modification candidates. CoverageAnalyzer (CAn was developed in response to the demand for a powerful inspection tool. It is freely available for all three main operating systems. With SAM file format as standard input, CAn is an intuitive and user-friendly tool that is generally applicable to the large community of biomedical users, starting from simple visualization of RNA sequencing (RNA-Seq data, up to sophisticated modification analysis with significance-based modification candidate calling.

  15. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    Science.gov (United States)

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  16. Enhanced understanding of the relationship between chemical modification and mechanical properties of wood

    Science.gov (United States)

    Charles R. Frihart; Daniel J. Yelle; John Ralph; Robert J. Moon; Donald S. Stone; Joseph E. Jakes

    2008-01-01

    Chemical additions to wood often change its bulk properties, which can be determined using conventional macroscopic mechanical tests. However, the controlling interactions between chemicals and wood take place at and below the scale of individual cells and cell walls. To better understand the effects of chemical additions to wood, we have adapted and extended two...

  17. Chemical modification of graphene aerogels for electrochemical capacitor applications.

    Science.gov (United States)

    Hong, Jin-Yong; Wie, Jeong Jae; Xu, Yu; Park, Ho Seok

    2015-12-14

    Graphene aerogel is a relatively new type of aerogel that is ideal for energy storage applications because of its large surface area, high electrical conductivity and good chemical stability. Also, three dimensional interconnected macropores offer many advantages such as low density, fast ion and mass transfer, and easy access to storage sites. Such features allow graphene aerogels to be intensively applied for electrochemical capacitor applications. Despite the growing interest in graphene aerogel-based electrochemical capacitors, however, the graphene aerogels still suffer from their low capacitive performances and high fragility. Both relatively low capacitance and brittleness of physically crosslinked graphene aerogels remain a critical challenge. Until now, a number of alternative attempts have been devoted to overcome these shortcomings. In this perspective, we summarize the recent research progress towards the development of advanced graphene aerogel-based electrochemical capacitors according to the different approaches (e.g. porosity, composition and structure controls). Then, the recently proposed chemical strategies to improve the capacitive performances and mechanical durability of graphene aerogels for practical applications are highlighted. Finally, the current challenges and perspectives in this emerging material are also discussed.

  18. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method

    Science.gov (United States)

    Cao, Jiliang; Wang, Chaoxia

    2017-05-01

    Multifunctional silk fabrics with electrical conductive, anti-ultraviolet and water repellent were successfully prepared by surface modification with graphene oxide (GO). The yellow-brown GO deposited on the surface of silk fabric was converted into graphitic black reduced graphene (RGO) by sodium hydrosulfite. The surface properties of silk fabrics were changed by repeatedly RGO coating process, which have been proved by SEM and XPS. The SEM results showed that the RGO sheets were successive form a continuously thin film on the surface of silk fabrics, and the deposition of GO or RGO also can be proved by XPS. The electrical conductivity was tested by electrical surface resistance value of the silk fabric, the surface resistance decreased with increasing of RGO surface modification times, and a low surface resistance value reached to 3.24 KΩ cm-1 after 9 times of modification, indicating the silk obtained excellent conductivity. The UPF value of one time GO modification silk fabric (silk-1RGO) was enhanced significantly to 24.45 in comparison to 10.40 of original silk. The contact angle of RGO coating silk samples was all above of 120°. The durability of RGO coated silk fabrics was tested by laundering. The electrical surface resistance of silk-4RGO (65.74 KΩ cm-1), silk-6RGO (15.54 KΩ cm-1) and silk-8RGO (3.86 KΩ cm-1) fabrics was up to 86.82, 22.30 and 6.57 KΩ cm-1 after 10 times of standard washing, respectively. The UPF value, contact angle and color differences of RGO modified silk fabric slightly changed before and after 10 times of standard washing. Therefore, the washing fastness of electric conduction, anti-ultraviolet and water repellent multifunctional silk fabrics was excellent.

  19. Chemical modification of protein A chromatography ligands with polyethylene glycol. I: Effects on IgG adsorption equilibrium, kinetics, and transport.

    Science.gov (United States)

    Weinberg, Justin; Zhang, Shaojie; Crews, Gillian; Carta, Giorgio; Przybycien, Todd

    2018-04-20

    Chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) has been proposed as a strategy to increase the process selectivity and resin robustness by providing the ligand with a steric repulsion barrier against non-specific binding. This article comprises a comprehensive study of IgG adsorption and transport in Repligen CaptivA PriMAB resin with PEGylated ProA ligands that are modified using 5.2 and 21.5 kDa PEG chains. We studied the impact of the molecular weight of the PEG as well as the extent of PEGylation for the 5.2 kDa PEG modification. In all cases, PEGylation of ProA ligands decreases the resin average pore size, particle porosity, and static binding capacity for IgG proportional to the volume of conjugated PEG in the resin. Resin batch uptake experiments conducted in bulk via a stirred-tank system and with individual resin particles under confocal laser scanning microscopy suggests that PEGylation introduces heterogeneity into IgG binding kinetics: a fraction of the IgG binding sites are transformed from typical fast association kinetic behavior to slow kinetic behavior. pH gradient elution experiments of an IgG molecule on the modified resins show an increase in IgG elution pH for all modified resins, implying a decrease in IgG-ProA binding affinity on modification. Despite losses in static binding capacity for all resins with PEGylated ligands, the loss of dynamic binding capacity at 10% breakthrough (DBC 10% ) ranged more broadly from almost 0-47% depending on the PEG molecular weight and the extent of PEGylation. Minimal losses in DBC 10% were observed with a low extent of PEGylation with a smaller molecular weight PEG, while higher losses were observed at higher extents of PEGylation and with higher molecular weight PEG due to decreased static binding capacity and increased mass transfer resistance. This work provides insight into the practical implications for resin performance if PEGylation is

  20. Research Progress of Optical Fabrication and Surface-Microstructure Modification of SiC

    Directory of Open Access Journals (Sweden)

    Fang Jiang

    2012-01-01

    Full Text Available SiC has become the best candidate material for space mirror and optical devices due to a series of favorable physical and chemical properties. Fine surface optical quality with the surface roughness (RMS less than 1 nm is necessary for fine optical application. However, various defects are present in SiC ceramics, and it is very difficult to polish SiC ceramic matrix with the 1 nm RMS. Surface modification of SiC ceramics must be done on the SiC substrate. Four kinds of surface-modification routes including the hot pressed glass, the C/SiC clapping, SiC clapping, and Si clapping on SiC surface have been reported and reviewed here. The methods of surface modification, the mechanism of preparation, and the disadvantages and advantages are focused on in this paper. In our view, PVD Si is the best choice for surface modification of SiC mirror.

  1. Characterization of a novel androgen receptor (AR) coregulator RIPK1 and related chemicals that suppress AR-mediated prostate cancer growth via peptide and chemical screening.

    Science.gov (United States)

    Hsu, Cheng-Lung; Liu, Jai-Shin; Lin, Ting-Wei; Chang, Ying-Hsu; Kuo, Yung-Chia; Lin, An-Chi; Ting, Huei-Ju; Pang, See-Tong; Lee, Li-Yu; Ma, Wen-Lung; Lin, Chun-Cheng; Wu, Wen-Guey

    2017-09-19

    Using bicalutamide-androgen receptor (AR) DNA binding domain-ligand binding domain as bait, we observed enrichment of FxxFY motif-containing peptides. Protein database searches revealed the presence of receptor-interacting protein kinase 1 (RIPK1) harboring one FxxFY motif. RIPK1 interacted directly with AR and suppressed AR transactivation in a dose-dependent manner. Domain mapping experiments showed that the FxxFY motif in RIPK1 is critical for interactions with AR and the death domain of RIPK1 plays a crucial role in its inhibitory effect on transactivation. In terms of tissue expression, RIPK1 levels were markedly higher in benign prostate hyperplasia and non-cancerous tissue regions relative to the tumor area. With the aid of computer modeling for screening of chemicals targeting activation function 2 (AF-2) of AR, we identified oxadiazole derivatives as good candidates and subsequently generated a small library of these compounds. A number of candidates could effectively suppress AR transactivation and AR-related functions in vitro and in vivo with tolerable toxicity via inhibiting AR-peptide, AR-coregulator and AR N-C interactions. Combination of these chemicals with antiandrogen had an additive suppressive effect on AR transcriptional activity. Our collective findings may pave the way in creating new strategies for the development and design of anti-AR drugs.

  2. SCREENING CHEMICALS FOR ESTROGEN RECEPTOR BIOACTIVITY USING A COMPUTATIONAL MODEL

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) is considering the use high-throughput and computational methods for regulatory applications in the Endocrine Disruptor Screening Program (EDSP). To use these new tools for regulatory decision making, computational methods must be a...

  3. Congestion game scheduling for virtual drug screening optimization

    Science.gov (United States)

    Nikitina, Natalia; Ivashko, Evgeny; Tchernykh, Andrei

    2018-02-01

    In virtual drug screening, the chemical diversity of hits is an important factor, along with their predicted activity. Moreover, interim results are of interest for directing the further research, and their diversity is also desirable. In this paper, we consider a problem of obtaining a diverse set of virtual screening hits in a short time. To this end, we propose a mathematical model of task scheduling for virtual drug screening in high-performance computational systems as a congestion game between computational nodes to find the equilibrium solutions for best balancing the number of interim hits with their chemical diversity. The model considers the heterogeneous environment with workload uncertainty, processing time uncertainty, and limited knowledge about the input dataset structure. We perform computational experiments and evaluate the performance of the developed approach considering organic molecules database GDB-9. The used set of molecules is rich enough to demonstrate the feasibility and practicability of proposed solutions. We compare the algorithm with two known heuristics used in practice and observe that game-based scheduling outperforms them by the hit discovery rate and chemical diversity at earlier steps. Based on these results, we use a social utility metric for assessing the efficiency of our equilibrium solutions and show that they reach greatest values.

  4. Enzyme-Catalyzed Modifications of Polysaccharides and Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. N. Cheng

    2012-06-01

    Full Text Available Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; this is mostly done through chemical reactions. In the past 20 years many enzyme-catalyzed modifications have been developed to supplement chemical derivatization methods. Typical reactions include enzymatic oxidation, ester formation, amidation, glycosylation, and molecular weight reduction. These reactions are reviewed in this paper, with emphasis placed on the work done by the authors. The polymers covered in this review include cellulosic derivatives, starch, guar, pectin, and poly(ethylene glycol.

  5. The effect of substrate modification on microbial growth on surfaces

    International Nuclear Information System (INIS)

    Brown, Angela Ann

    1998-01-01

    The principle aim of the program was to produce a novel, non-leaching antimicrobial surface for commercial development and future use in the liquid food packaging industry. Antimicrobial surfaces which exist presently have been produced to combat the growth of prokaryotic organisms and usually function as slow release systems. A system which could inhibit eukaryotic growth without contaminating the surrounding 'environment' with the inhibitor was considered of great commercial importance. The remit of this study was concerned with creating a surface which could control the growth of eukaryotic organisms found in fruit juice with particular interest in the yeast, Saccharomyces cerevisiae. Putative antimicrobial surfaces were created by the chemical modification of the test substrate polymers; nylon and ethylvinyl alcohol (EVOH). Surfaces were chemically modified by the covalent coupling of antimicrobial agents known to be active against the yeast Saccharomyces cerevisiae as ascertained by the screening process determining the minimum inhibitory concentration (MIC) values of agents in the desired test medium. During the study it was found that a number of surfaces did appear to inhibit yeast growth in fruit juice, however on further investigation the apparent inhibitory effect was discovered to be the result of un-bound material free in the test medium. On removing the possibility of any un-bound material present on the test surface, by a series of surface washings, the inhibitory effect on yeast growth was eliminated. Of the agents tested only one appeared to have an inhibitory effect which could be attributed to a true antimicrobial surface effect, Amical 48. As there is little known about this agent in the literature, its affect on yeast growth was examined and in particular a proposal for the mode of action on yeast is discussed, providing a plausible explanation for the inhibitory effect observed when this agent is covalently immobilised onto nylon. (author)

  6. Exploring Chemical Space for Drug Discovery Using the Chemical Universe Database

    Science.gov (United States)

    2012-01-01

    Herein we review our recent efforts in searching for bioactive ligands by enumeration and virtual screening of the unknown chemical space of small molecules. Enumeration from first principles shows that almost all small molecules (>99.9%) have never been synthesized and are still available to be prepared and tested. We discuss open access sources of molecules, the classification and representation of chemical space using molecular quantum numbers (MQN), its exhaustive enumeration in form of the chemical universe generated databases (GDB), and examples of using these databases for prospective drug discovery. MQN-searchable GDB, PubChem, and DrugBank are freely accessible at www.gdb.unibe.ch. PMID:23019491

  7. Effect of chemical treatment on thermal properties of fibers from pineapple

    International Nuclear Information System (INIS)

    Fernandes, Rafael I.M.; Mulinari, Daniella R.; Carvalho, Kelly C.C.; Conejo, Luiza dos Santos; Voorwald, Herman J.C.; Cioffi, Maria Odila H.

    2009-01-01

    In this work the effect of the chemical modification of natural fibres from of pineapple fibres with alkaline solution was studied. After modification the in nature and modified fibres were analyzed by XRD diffractometry and thermogravimetry with objective to evaluate influence chemical treatment in surface and in the thermal properties fibres. With the obtained results it was possible to verify an increase of 10.4 % in the crystallinity index of fibres beyond the increase around 4.5% in the degradation temperature, what it indicates an increase in the stability thermal of the fibres. (author)

  8. Mining collections of compounds with Screening Assistant 2.

    Science.gov (United States)

    Guilloux, Vincent Le; Arrault, Alban; Colliandre, Lionel; Bourg, Stéphane; Vayer, Philippe; Morin-Allory, Luc

    2012-08-31

    High-throughput screening assays have become the starting point of many drug discovery programs for large pharmaceutical companies as well as academic organisations. Despite the increasing throughput of screening technologies, the almost infinite chemical space remains out of reach, calling for tools dedicated to the analysis and selection of the compound collections intended to be screened. We present Screening Assistant 2 (SA2), an open-source JAVA software dedicated to the storage and analysis of small to very large chemical libraries. SA2 stores unique molecules in a MySQL database, and encapsulates several chemoinformatics methods, among which: providers management, interactive visualisation, scaffold analysis, diverse subset creation, descriptors calculation, sub-structure / SMART search, similarity search and filtering. We illustrate the use of SA2 by analysing the composition of a database of 15 million compounds collected from 73 providers, in terms of scaffolds, frameworks, and undesired properties as defined by recently proposed HTS SMARTS filters. We also show how the software can be used to create diverse libraries based on existing ones. Screening Assistant 2 is a user-friendly, open-source software that can be used to manage collections of compounds and perform simple to advanced chemoinformatics analyses. Its modular design and growing documentation facilitate the addition of new functionalities, calling for contributions from the community. The software can be downloaded at http://sa2.sourceforge.net/.

  9. Chemical modification of HTPB for application as polymeric additives for diesel fuel. 1 - phenyl ethers; Modificacao quimicado PBLH para aplicacao como aditivos polimericos para oleo diesel. 1. eteres fenilicos

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Agne R.; Prezibella, Alysson M.; Ferraz, Fernando A.; Soldi, Rafael A.; Oliveira, Angelo R.S.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos

    2007-07-01

    The petroleum industry faces several problems related to the crystallization of paraffins, in petroleum and its derivatives, with the reduction of the service temperature. To solve this problem polymeric additives are used, of which the esters have been enough studied in several areas of the world, except in Brazil. In this work, this class of pour point depressant additives it was obtained through the chemical modification of Hydroxyl Terminate Polybutadiene (HTPB) that present a hydrocarbon chemical structure containing one double bound in each repetitive unit and hydroxyl groups of the primary and secondary allylic types - functional groups potentially reactive. The obtained products were characterized by Fourier transformed infrared spectroscopy and nuclear magnetic resonance, and they are being tested as additive for the pour point reduction of a diesel oil samples (REPAR-PETROBRAS). (author)

  10. Prediction of Chemical Function: Model Development and ...

    Science.gov (United States)

    The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (HT) screening-level exposures developed under ExpoCast can be combined with HT screening (HTS) bioactivity data for the risk-based prioritization of chemicals for further evaluation. The functional role (e.g. solvent, plasticizer, fragrance) that a chemical performs can drive both the types of products in which it is found and the concentration in which it is present and therefore impacting exposure potential. However, critical chemical use information (including functional role) is lacking for the majority of commercial chemicals for which exposure estimates are needed. A suite of machine-learning based models for classifying chemicals in terms of their likely functional roles in products based on structure were developed. This effort required collection, curation, and harmonization of publically-available data sources of chemical functional use information from government and industry bodies. Physicochemical and structure descriptor data were generated for chemicals with function data. Machine-learning classifier models for function were then built in a cross-validated manner from the descriptor/function data using the method of random forests. The models were applied to: 1) predict chemi

  11. Development of a product screening protocol to minimize marine environmental impacts of oil production chemicals used offshore

    International Nuclear Information System (INIS)

    Vik, E.A.; Berg, J.D.; Bakke, S.; Oefjord, G.D.; Reinhard, M.

    1992-01-01

    This paper presents the initial results of a research project initiated by Conoco Norway, Inc. (CNI) late in 1989. The objective of the project is to develop a screening protocol for determining the potential environmental impacts of five types of chemicals typically used in offshore oil and gas production operations in the North Sea. The protocol includes tests for determination of bioaccumulation potential, oil-water distribution factor, biodegradation potential, and toxicity. When fully developed, the protocol represents one possible approach to implementing the proposed PARCOM standard testing program. Only the results for the bioaccumulation potential and oil-water distribution factor are presented here. For determination of bioaccumulation potential, the High Performance Liquid Chromotography (HPLC) is recommended. The oil-water distribution factor can be determined by surrogate parameters as total organic carbon (TOC), UV-absorption or gas chromatography (GC). (Author)

  12. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy.

    Science.gov (United States)

    Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou

    2007-03-01

    Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.

  13. Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    McCann, R.; Roy, S.S.; Papakonstantinou, P.; Bain, M.F.; Gamble, H.S.; McLaughlin, J.A.

    2005-01-01

    Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN x ), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN x containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three π* resonance peaks at the ' N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains

  14. Modification of optical and electrical properties of chemical bath deposited SnS using O{sub 2} plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, A. [Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México, México (Mexico); Martínez, H., E-mail: hm@fis.unam.mx [Instituto de Ciencias Fisicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Calixto-Rodríguez, M. [Centro de Investigación en Energía, Universidad Autónoma del Estado de México, Estado de México, México (Mexico); Avellaneda, D. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, México (Mexico); Reyes, P.G. [Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México, México (Mexico); Flores, O. [Instituto de Ciencias Fisicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico)

    2013-06-15

    In this paper, we report modifications of structural and optical, electrical properties that occur in tin sulphide (SnS) treated in O{sub 2} plasma. The SnS thin films were deposited by chemical bath deposition technique. The samples were treated in an O{sub 2} plasma discharge at 3 Torr of pressure discharge, a discharge voltage of 2.5 kV and 20 mA of discharge current. The prepared and treated thin films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The photoconductivity and electrical effects of SnS have been studied. The SnS thin films had an orthorhombic crystalline structure. With the plasma treatment the optical gap and electrical properties of the SnS films changed from 1.61 to 1.84 eV, for 3.9 × 10{sup 5} to 10.42 Ω cm, respectively. These changes can be attributed to an increase in electron density, percolation effects due to porosity, surface degradation/etching that is an increase in surface roughness, where some structural changes related to crystallinity occurs like a high grain size as revealed by SEM images.

  15. Abstracts Book of 41. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1998-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important scientific forum of Polish Chemists. The state of the art in many basic, fundamental and applied investigations has been presented and discussed. The following scientific sessions and microsymposia have been proposed: theoretical chemistry; molecular interactions; metal compounds - chemical, physical, electronic and biological aspects; catalysis and surface physico-chemistry; polymers - radiochemistry, modifications, physics and analytical methods; organic and bioorganic chemistry; physico-chemistry of condensed matter; chemical metallurgy; environmental protection; inorganic technology; chemistry and technology of coal; radiation chemistry; analytical chemistry; chemical engineering; young scientists forum; chemical didactics; petrochemistry; energetic materials; membranes and membrane processes; medical chemistry

  16. Evidence to modify guidelines for routine retinopathy of prematurity screening to avoid childhood blindness in middle-income countries

    Directory of Open Access Journals (Sweden)

    Miroslava Paolah Meraz-Gutiérrez

    2016-07-01

    Conclusions: These findings show that the valid guidelines at the time of the screening were based on a different population and were not sufficient to detect all ROP cases in a middle-income country. With the update of the Mexican guidelines established in July 2015, the patients from this study would have been screened. Therefore, review and modification of the current screening guidelines in other middle-income countries should be considered to include all babies at risk for ROP.

  17. New antibody and immunoassay pretreatment strategy to screen polychlorinated biphenyls in Korean transformer oil.

    Science.gov (United States)

    Terakado, Shingo; Ohmura, Naoya; Park, Seok-Un; Lee, Seung-Min; Glass, Thomas R

    2013-01-01

    Development and modifications are described that expand the application of an immunoassay from the detection of Kanechlors (Japanese technical PCBs mixtures) to the detection of Aroclors (U. S. technical PCB mixtures, used in Korea) in contaminated Korean transformer oil. The first necessary modification was the development of a new antibody with a reactivity profile favorable for Aroclors. The second modification was the addition of a second column to the solid-phase extraction method to reduce assay interference caused by the Korean oil matrix. The matrix interference is suspected to be caused by the presence of synthetic oils (or similar materials) present as contaminants. The modified assay was validated by comparison to high-resolution gas chromatography/high-resolution mass spectrometry analysis, and was shown to be tolerant of up to 10% of several common synthetic insulating oils. Finally the screening performance of the modified assay was evaluated using 500 used transformer oil samples of Korean origin, and was shown to have good performance in terms of false positive and false negative rates. This report provides evidence for the first establishment of immunoassay screening for Aroclor based PCB contamination in Korean transformer oil.

  18. Printing-assisted surface modifications of patterned ultrafiltration membranes

    International Nuclear Information System (INIS)

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; Snyder, Seth W.

    2016-01-01

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.

  19. Improving Alcohol Screening for College Students: Screening for Alcohol Misuse amongst College Students with a Simple Modification to the CAGE Questionnaire

    Science.gov (United States)

    Taylor, Purcell; El-Sabawi, Taleed; Cangin, Causenge

    2016-01-01

    Objective: To improve the CAGE (Cut down, Annoyed, Guilty, Eye opener) questionnaire's predictive accuracy in screening college students. Participants: The sample consisted of 219 midwestern university students who self-administered a confidential survey. Methods: Exploratory factor analysis, confirmatory factor analysis, receiver operating…

  20. 75 FR 2445 - Chemical Facility Anti-Terrorism Standards

    Science.gov (United States)

    2010-01-15

    ... include trade secrets, confidential commercial information, Chemical-terrorism Vulnerability Information... and submit an online data collection (the Top-Screen) to DHS. The Department uses the facility's Top... required to submit Top-Screens. See 72 FR 65397-65398. \\2\\ Among other things, the November 2007 rule...

  1. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands

    NARCIS (Netherlands)

    Neouze, M.A.; Schubert, U.S.

    2008-01-01

    Metal or metal oxide nanoparticles possess unique features compared to equivalent larger-scale materials. For applications, it is often necessary to stabilize or functionalize such nanoparticles. Thus, modification of the surface of nanoparticles is an important chemical challenge. In this survey,

  2. COSMO-RS-based extractant screening for phenol extraction as model system

    NARCIS (Netherlands)

    Burghoff, B.; Goetheer, E.L.V.; Haan, A.B. de

    2008-01-01

    The focus of this investigation is the development of a fast and reliable extractant screening approach. Phenol extraction is selected as the model process. A quantum chemical conductor-like screening model for real solvents (COSMO-RS) is combined with molecular design considerations. For this

  3. A High-Throughput Screening Assay to Detect Thyroperoxidase Inhibitors (Teratology Society)

    Science.gov (United States)

    In support of the Endocrine Disruption Screening Program (EDSP21), the US EPA ToxCast program is developing assays to enable screening for chemicals that may disrupt thyroid hormone synthesis. Thyroperoxidase (TPO) is critical for TH synthesis and is a known target of thyroid-dis...

  4. Influence of soy protein’s structural modifications on their microencapsulation properties: a-tocopherol microparticles preparation

    OpenAIRE

    Nesterenko, Alla; Alric, Isabelle; Silvestre, Françoise; Durrieu, Vanessa

    2012-01-01

    Enzymatic and chemical modifications of soy protein isolate (SPI) were studied in order to improve SPI properties for their use as wall material for a-tocopherol microencapsulation by spray-drying. The structural modifications of SPI by enzymatic hydrolysis and/or N-acylation were carried out in aqueous media without any use of organic solvent neither surfactant. Emulsions from aqueous solutions of native or modified SPI and hydrophobic a-tocopherol, were prepared and spray-dri...

  5. Nanoscale surface modification for enhanced biosensing a journey toward better glucose monitoring

    CERN Document Server

    Zhang, Guigen

    2015-01-01

    This book gives a comprehensive overview of electrochemical-based biosensors and their crucial components. Practical examples are given throughout the text to illustrate how the performance of electrochemical-based biosensors can be improved by nanoscale surface modification and how an optimal design can be achieved. All essential aspects of biosensors are considered, including electrode functionalization, efficiency of the mass transport of reactive species, and long term durability and functionality of the sensor. This book also: ·       Explains how the performance of an electrochemical-based biosensor can be improved by nanoscale surface modification ·       Gives readers the tools to evaluate and improve the performance of a biosensor with a multidisciplinary approach that considers electrical, electrostatic, electrochemical, chemical, and biochemical events ·       Links the performance of a sensor to the various governing physical and chemical principles so readers can fully unders...

  6. Plasma immersion ion implantation for the efficient surface modification of medical materials

    International Nuclear Information System (INIS)

    Slabodchikov, Vladimir A.; Borisov, Dmitry P.; Kuznetsov, Vladimir M.

    2015-01-01

    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate. The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment

  7. Mass spectrometry for fragment screening.

    Science.gov (United States)

    Chan, Daniel Shiu-Hin; Whitehouse, Andrew J; Coyne, Anthony G; Abell, Chris

    2017-11-08

    Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet

    Directory of Open Access Journals (Sweden)

    Helena Ma A. M. M. S. Ali

    2017-11-01

    Full Text Available The chemical modification of hydrophobic polymer matrices is an alternative way to elchange their surface properties. The introduction of sulfonic groups in the polymer changes the surface properties such as adhesion, wettability, catalytic ability, and adsorption capacity. This work describes the production and application of chemically modified polyvinyl chloride (PVC as adsorbent for dyes removal. Chemical modification of PVC was evaluated by infrared spectroscopy and elemental analysis, which indicated the presence of sulfonic groups on PVC. The chemically modified PVC (PVCDS showed an ion exchange capacity of 1.03 mmol−1, and efficiently removed the thionine dye (Lauth’s violet from aqueous solutions, reaching equilibrium in 30 min. The adsorption kinetics was better adjusted for a pseudo second order model. This result indicates that the adsorption of thionine onto PVCDS occurs by chemisorption. Among the models for the state of equilibrium, SIPS and Langmuir exhibited the best fit to the experimental results and PVCDS showed high adsorption capacities (370 mg−1. Thus, it is assumed that the system presents homogeneous characteristics to the distribution of active sites. The modification promoted the formation of surface characteristics favorable to the dye adsorption by the polymer.

  9. Modification of biomolecules and combined actions by radiation

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, J. W.; Kim, J. H.; Choi, J. I.; Song, B. S.; Kim, J. K.; Park, J. H.; Lee, Y. J.; Ryu, S. H.; Sung, N. Y.; Cha, M. K.; Nam, J. Y.; Park, J. Y.; Cho, E. R.; Ryu, T. H.

    2011-12-01

    Advanced Radiation Technology Institute is a government-supported institute for radiation research and application. It has focused on development of fundamentals for radiation applications based on the existing radiation technology, and on enhancement of biological effectiveness of radiation through theoretical approach to the combined actions of radiation with another factor. Application of radiation technology together with the existing technologies to enhance the physical, chemical, biological characteristics through modification of biomolecules resulted in creation of de novo materials of scientific and industrial values. A theoretical model for combined action of radiation with another physico-chemical factor has been established. Conclusively the results of this study can provide scientific bases for maximizing the efficacy of ionizing radiation in relation to industrial applications

  10. Systematic Identification of MCU Modulators by Orthogonal Interspecies Chemical Screening.

    Science.gov (United States)

    Arduino, Daniela M; Wettmarshausen, Jennifer; Vais, Horia; Navas-Navarro, Paloma; Cheng, Yiming; Leimpek, Anja; Ma, Zhongming; Delrio-Lorenzo, Alba; Giordano, Andrea; Garcia-Perez, Cecilia; Médard, Guillaume; Kuster, Bernhard; García-Sancho, Javier; Mokranjac, Dejana; Foskett, J Kevin; Alonso, M Teresa; Perocchi, Fabiana

    2017-08-17

    The mitochondrial calcium uniporter complex is essential for calcium (Ca 2+ ) uptake into mitochondria of all mammalian tissues, where it regulates bioenergetics, cell death, and Ca 2+ signal transduction. Despite its involvement in several human diseases, we currently lack pharmacological agents for targeting uniporter activity. Here we introduce a high-throughput assay that selects for human MCU-specific small-molecule modulators in primary drug screens. Using isolated yeast mitochondria, reconstituted with human MCU, its essential regulator EMRE, and aequorin, and exploiting a D-lactate- and mannitol/sucrose-based bioenergetic shunt that greatly minimizes false-positive hits, we identify mitoxantrone out of more than 600 clinically approved drugs as a direct selective inhibitor of human MCU. We validate mitoxantrone in orthogonal mammalian cell-based assays, demonstrating that our screening approach is an effective and robust tool for MCU-specific drug discovery and, more generally, for the identification of compounds that target mitochondrial functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification

    Science.gov (United States)

    Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138

  12. Chemoproteomics Reveals Chemical Diversity and Dynamics of 4-Oxo-2-nonenal Modifications in Cells.

    Science.gov (United States)

    Sun, Rui; Fu, Ling; Liu, Keke; Tian, Caiping; Yang, Yong; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C; Yang, Jing

    2017-10-01

    4-Oxo-2-nonenal (ONE) derived from lipid peroxidation modifies nucleophiles and transduces redox signaling by its reactions with proteins. However, the molecular interactions between ONE and complex proteomes and their dynamics in situ remain largely unknown. Here we describe a quantitative chemoproteomic analysis of protein adduction by ONE in cells, in which the cellular target profile of ONE is mimicked by its alkynyl surrogate. The analyses reveal four types of ONE-derived modifications in cells, including ketoamide and Schiff-base adducts to lysine, Michael adducts to cysteine, and a novel pyrrole adduct to cysteine. ONE-derived adducts co-localize and exhibit crosstalk with many histone marks and redox sensitive sites. All four types of modifications derived from ONE can be reversed site-specifically in cells. Taken together, our study provides much-needed mechanistic insights into the cellular signaling and potential toxicities associated with this important lipid derived electrophile. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Using model-based screening to help discover unknown environmental contaminants.

    Science.gov (United States)

    McLachlan, Michael S; Kierkegaard, Amelie; Radke, Michael; Sobek, Anna; Malmvärn, Anna; Alsberg, Tomas; Arnot, Jon A; Brown, Trevor N; Wania, Frank; Breivik, Knut; Xu, Shihe

    2014-07-01

    Of the tens of thousands of chemicals in use, only a small fraction have been analyzed in environmental samples. To effectively identify environmental contaminants, methods to prioritize chemicals for analytical method development are required. We used a high-throughput model of chemical emissions, fate, and bioaccumulation to identify chemicals likely to have high concentrations in specific environmental media, and we prioritized these for target analysis. This model-based screening was applied to 215 organosilicon chemicals culled from industrial chemical production statistics. The model-based screening prioritized several recognized organosilicon contaminants and generated hypotheses leading to the selection of three chemicals that have not previously been identified as potential environmental contaminants for target analysis. Trace analytical methods were developed, and the chemicals were analyzed in air, sewage sludge, and sediment. All three substances were found to be environmental contaminants. Phenyl-tris(trimethylsiloxy)silane was present in all samples analyzed, with concentrations of ∼50 pg m(-3) in Stockholm air and ∼0.5 ng g(-1) dw in sediment from the Stockholm archipelago. Tris(trifluoropropyl)trimethyl-cyclotrisiloxane and tetrakis(trifluoropropyl)tetramethyl-cyclotetrasiloxane were found in sediments from Lake Mjøsa at ∼1 ng g(-1) dw. The discovery of three novel environmental contaminants shows that models can be useful for prioritizing chemicals for exploratory assessment.

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. CHINMAYEE CHOUDHURY. Articles written in Journal of Chemical Sciences. Volume 128 Issue 5 May 2016 pp 719-732 Regular Articles. Dynamic ligand-based pharmacophore modeling and virtual screening to identify mycobacterial cyclopropane synthase inhibitors.

  15. Surface modification by preparation of buffer zone in glow-discharge plasma

    International Nuclear Information System (INIS)

    Cho, D.L.

    1986-01-01

    Reactive species, energetic particles, and uv radiation in the plasma created by a glow discharge strongly interact with solid surfaces under the influence of the plasma. As a result of the strong interaction, various physical and chemical reactions, unique and advantageous for the surface modification of solid materials, occur on the solid surfaces. The surface modification is carried out through formation of a thin buffering layer on the solid surface. The preparation of a buffer zone on solid surfaces for surface modification is described. Two kinds of a buffer zone are prepared by plasma polymerization, or simultaneous sputter deposition of electrode material with plasma polymerization: a transitional buffer zone and a graded buffer zone. Important factors for preparation of the buffer zone (pre-conditioning of a substrate surface, thin-film deposition, post-treatment of the film, magnetron discharge, energy input, geometry of a substrate and a plasma) are discussed

  16. Modification of alumina matrices through chemical etching and electroless deposition of nano-Au array for amperometric sensing

    Directory of Open Access Journals (Sweden)

    Valinčius Gintaras

    2007-01-01

    Full Text Available AbstractSimple nanoporous alumina matrix modification procedure, in which the electrically highly insulating alumina barrier layer at the bottom of the pores is replaced with the conductive layer of the gold beds, was described. This modification makes possible the direct electron exchange between the underlying aluminum support and the redox species encapsulated in the alumina pores, thus, providing the generic platform for the nanoporous alumina sensors (biosensors with the direct amperometric signal readout fabrication.

  17. Identification of Chemical Features Linked to Thyroperoxidase Inhibition (SOT)

    Science.gov (United States)

    Disruption of maternal serum thyroid hormone (TH) adversely affects fetal neurodevelopment. Therefore, assay development within the US EPA ToxCast program is ongoing to enable screening for chemicals that may disrupt TH, in support of the Endocrine Disruption Screening Program (E...

  18. Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides.

    Science.gov (United States)

    Chen, Shuhan; Chen, Haixia; Tian, Jingge; Wang, Yanwei; Xing, Lisha; Wang, Jia

    2013-10-15

    Water-soluble corn silk polysaccharides (CSPS) were chemically modified to obtain their sulfated, acetylated and carboxymethylated derivatives. Chemical characterization and bioactivities of CSPS and its derivatives were comparatively investigated by chemical methods, gas chromatography, gel filtration chromatography, scanning electron microscope, infrared spectroscopy and circular dichroism spectroscopy, scavenging DPPH free radical assay, scavenging hydroxyl radical assay, ferric reducing power assay, lipid peroxidation inhibition assay and α-amylase activity inhibitory assay, respectively. Among the three derivatives, carboxylmethylated polysaccharide (C-CSPS) demonstrated higher solubility, narrower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, significantly higher antioxidant and α-amylase inhibitory abilities compared with the native polysaccharide and other derivatives. C-CSPS might be used as a novel nutraceutical agent for human consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Synthesis and thermal behaviour of pauflerite, β-VOSO4, and its α-modification

    International Nuclear Information System (INIS)

    Paufler, Peter; Filatov, Stanislav K.; Krzhizhanovskaya, Maria G.; Bubnova, Rimma S.; Russian Academy of Sciences, St. Peterburg

    2014-01-01

    Powder α-VOSO 4 was prepared by dehydration of VOSO 4 . 3H 2 O. β-VOSO 4 was synthesized by boiling of V 2 O 5 in H 2 SO 4 . Thermal behaviour of VOSO 4 . 3H 2 O, α- and β-VOSO 4 modifications is studied by high-temperature powder X-ray diffraction and thermal analysis, including two-step dehydration of VOSO 4 . 3H 2 O, formation of α-VOSO 4 , thermal expansion and decomposition of both modifications into V 2 O 5 . Higher anisotropy of thermal expansion of the tetragonal α-modification α c = 39(2) . 10 -6 K -1 along the vanadyl ion and α a = 2.4(6) . 10 -6 K -1 in the perpendicular direction comparing to the orthorhombic β-modification (α a = 20.2(7), α b = 2.8(8), α c = 17.8(4) . 10 -6 K -1 ) is explained from a crystal chemical point of view.

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. BIPUL KUMAR. Articles written in Journal of Chemical Sciences. Volume 129 Issue 2 February 2017 pp 211-222 Regular Article. Synthesis and antibacterial activity screening of quaternary ammonium derivatives of triazolyl pyranochromenones · PREETI YADAV BIPUL ...

  1. Mining collections of compounds with Screening Assistant 2

    Directory of Open Access Journals (Sweden)

    Guilloux Vincent

    2012-08-01

    Full Text Available Abstract Background High-throughput screening assays have become the starting point of many drug discovery programs for large pharmaceutical companies as well as academic organisations. Despite the increasing throughput of screening technologies, the almost infinite chemical space remains out of reach, calling for tools dedicated to the analysis and selection of the compound collections intended to be screened. Results We present Screening Assistant 2 (SA2, an open-source JAVA software dedicated to the storage and analysis of small to very large chemical libraries. SA2 stores unique molecules in a MySQL database, and encapsulates several chemoinformatics methods, among which: providers management, interactive visualisation, scaffold analysis, diverse subset creation, descriptors calculation, sub-structure / SMART search, similarity search and filtering. We illustrate the use of SA2 by analysing the composition of a database of 15 million compounds collected from 73 providers, in terms of scaffolds, frameworks, and undesired properties as defined by recently proposed HTS SMARTS filters. We also show how the software can be used to create diverse libraries based on existing ones. Conclusions Screening Assistant 2 is a user-friendly, open-source software that can be used to manage collections of compounds and perform simple to advanced chemoinformatics analyses. Its modular design and growing documentation facilitate the addition of new functionalities, calling for contributions from the community. The software can be downloaded at http://sa2.sourceforge.net/.

  2. Mining collections of compounds with Screening Assistant 2

    Science.gov (United States)

    2012-01-01

    Background High-throughput screening assays have become the starting point of many drug discovery programs for large pharmaceutical companies as well as academic organisations. Despite the increasing throughput of screening technologies, the almost infinite chemical space remains out of reach, calling for tools dedicated to the analysis and selection of the compound collections intended to be screened. Results We present Screening Assistant 2 (SA2), an open-source JAVA software dedicated to the storage and analysis of small to very large chemical libraries. SA2 stores unique molecules in a MySQL database, and encapsulates several chemoinformatics methods, among which: providers management, interactive visualisation, scaffold analysis, diverse subset creation, descriptors calculation, sub-structure / SMART search, similarity search and filtering. We illustrate the use of SA2 by analysing the composition of a database of 15 million compounds collected from 73 providers, in terms of scaffolds, frameworks, and undesired properties as defined by recently proposed HTS SMARTS filters. We also show how the software can be used to create diverse libraries based on existing ones. Conclusions Screening Assistant 2 is a user-friendly, open-source software that can be used to manage collections of compounds and perform simple to advanced chemoinformatics analyses. Its modular design and growing documentation facilitate the addition of new functionalities, calling for contributions from the community. The software can be downloaded at http://sa2.sourceforge.net/. PMID:23327565

  3. A new efficient mixture screening design for optimization of media.

    Science.gov (United States)

    Rispoli, Fred; Shah, Vishal

    2009-01-01

    Screening ingredients for the optimization of media is an important first step to reduce the many potential ingredients down to the vital few components. In this study, we propose a new method of screening for mixture experiments called the centroid screening design. Comparison of the proposed design with Plackett-Burman, fractional factorial, simplex lattice design, and modified mixture design shows that the centroid screening design is the most efficient of all the designs in terms of the small number of experimental runs needed and for detecting high-order interaction among ingredients. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  4. Development of a bioassay to screen for chemicals mimicking the anti-aging effects of calorie restriction

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Takuya, E-mail: takuya@nagasaki-u.ac.jp [Department of Investigative Pathology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Tsuchiya, Tomoshi [Division of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501 (Japan); Komatsu, Toshimitsu; Mori, Ryoichi; Hayashi, Hiroko [Department of Investigative Pathology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Shimano, Hitoshi [Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8575 (Japan); Spindler, Stephen R. [Department of Biochemistry, Room 5478, Boyce Hall, University of California - Riverside, Riverside, CA 92521 (United States); Shimokawa, Isao [Department of Investigative Pathology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan)

    2010-10-15

    Research highlights: {yields} We identified four sequence motifs lying upstream of putative pro-longevity genes. {yields} One of these motifs binds to HNF-4{alpha}. {yields} HNF-4{alpha}/PGC-1{alpha} could up-regulate the transcription of a reporter gene linked to this motif. {yields} The reporter system described here could be used to screen candidate anti-aging molecules. -- Abstract: Suppression of the growth hormone/insulin-like growth factor-I pathway in Ames dwarf (DF) mice, and caloric restriction (CR) in normal mice extends lifespan and delays the onset of age-related disorders. In combination, these interventions have an additive effect on lifespan in Ames DF mice. Therefore, common signaling pathways regulated by DF and CR could have additive effects on longevity. In this study, we tried to identity the signaling mechanism and develop a system to assess pro-longevity status in cells and mice. We previously identified genes up-regulated in the liver of DF and CR mice by DNA microarray analysis. Motif analysis of the upstream sequences of those genes revealed four major consensus sequence motifs, which have been named dwarfism and calorie restriction-responsive elements (DFCR-REs). One of the synthesized sequences bound to hepatocyte nuclear factor-4{alpha} (HNF-4{alpha}), an important transcription factor involved in liver metabolism. Furthermore, using this sequence information, we developed a highly sensitive bioassay to identify chemicals mimicking the anti-aging effects of CR. When the reporter construct, containing an element upstream of a secreted alkaline phosphatase (SEAP) gene, was co-transfected with HNF-4{alpha} and its regulator peroxisome proliferator-activated receptor (PPAR) {gamma} coactivator-1{alpha} (PGC-1{alpha}), SEAP activity was increased compared with untransfected controls. Moreover, transient transgenic mice established using this construct showed increased SEAP activity in CR mice compared with ad libitum-fed mice. These data

  5. Ammonia modification for flotation separation of polycarbonate and polystyrene waste plastics.

    Science.gov (United States)

    Wang, Chong-Qing; Wang, Hui; Gu, Guo-Hua; Lin, Qing-Quan; Zhang, Ling-Ling; Huang, Luo-Luo; Zhao, Jun-Yao

    2016-05-01

    A promising method, ammonia modification, was developed for flotation separation of polycarbonate (PC) and polystyrene (PS) waste plastics. Ammonia modification has little effect on flotation behavior of PS, while it changes significantly that of PC. The PC recovery in the floated product drops from 100% to 3.17% when modification time is 13min and then rises to 100% after longer modification. The mechanism of ammonia modification was studied by contact angle, and Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) measurements. Contact angle of PC indicates the decline of PC recovery in the floated product is ascribed to an increase in surface wettability. FT-IR and XPS spectra suggest that ammonia modification causes chemical reactions occurred on PC surface. Flotation behavior of ammonia-modified PC and PS was investigated with respect to flotation time, frother concentration and particle sizes. Flotation separation of PC and PS waste plastics was conducted based on the flotation behavior of single plastic. PC and PS mixtures with different particle sizes are separated efficiently, implying that the technology possesses superior applicability to particle sizes of plastics. The purity of PS and PC is up to 99.53% and 98.21%, respectively, and the recovery of PS and PC is larger than 92.06%. A reliable, cheap and effective process is proposed for separation of PC and PS waste plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Enzymatic Modification of Sphingomyelin

    DEFF Research Database (Denmark)

    Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetic and pharmaceuticals such as hair and skin care products. Currently, chemical synthesis of ceramide is a costly process, and developments of alternative cost......-efficient, high yield production methods are of great interest. In the present study, the potential of producing ceramide through the enzymatic hydrolysis of sphingomyelin have been studied. sphingomyelin is a ubiquitous membrane-lipid and rich in dairy products or by-products. It has been verified...... that sphingomyelin modification gives a feasible approach to the potential production of ceramide. The reaction system has been improved through system evaluation and the optimization of several important factors, and phospholipase C from Clostridium perfringens shows higher activity towards the hydrolysis reaction...

  7. Development of a comprehensive screening method for more than 300 organic chemicals in water samples using a combination of solid-phase extraction and liquid chromatography-time-of-flight-mass spectrometry.

    Science.gov (United States)

    Chau, Hong Thi Cam; Kadokami, Kiwao; Ifuku, Tomomi; Yoshida, Yusuke

    2017-12-01

    A comprehensive screening method for 311 organic compounds with a wide range of physicochemical properties (log Pow -2.2-8.53) in water samples was developed by combining solid-phase extraction with liquid chromatography-high-resolution time-of-flight mass spectrometry. Method optimization using 128 pesticides revealed that tandem extraction with styrene-divinylbenzene polymer and activated carbon solid-phase extraction cartridges at pH 7.0 was optimal. The developed screening method was able to extract 190 model compounds with average recovery of 80.8% and average relative standard deviations (RSD) of 13.5% from spiked reagent water at 0.20 μg L -1 , and 87.1% recovery and 10.8% RSD at 0.05 μg L -1 . Spike-recovery testing (0.20 μg L -1 ) using real sewage treatment plant effluents resulted in an average recovery and average RSD of 190 model compounds of 77.4 and 13.1%, respectively. The method was applied to the influent and effluent of five sewage treatment plants in Kitakyushu, Japan, with 29 out of 311 analytes being observed at least once. The results showed that this method can screen for a large number of chemicals with a wide range of physicochemical properties quickly and at low operational cost, something that is difficult to achieve using conventional analytical methods. This method will find utility in target screening of hazardous chemicals with a high risk in environmental waters, and for confirming the safety of water after environmental incidents.

  8. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1994 Revision. Environmental Restoration Program

    International Nuclear Information System (INIS)

    Hull, R.N.; Suter, G.W. II

    1994-06-01

    Because a hazardous waste site may contain hundreds of chemicals, it is important to screen contaminants of potential concern for the ecological risk assessment. Often this screening is done as part of a Screening Assessment, the purpose of which is to evaluate the available data, identify data gaps, and screen contaminants of potential concern. Screening may be accomplished by using a set of toxicological benchmarks. These benchmarks are helpful in determining whether contaminants warrant further assessment or are at a level that requires no further attention. If a chemical concentration or the reported detection limit exceeds a proposed lower benchmark, more analysis is needed to determine the hazards posed by that chemical. If, however, the chemical concentration falls below the lower benchmark value, the chemical may be eliminated from further study. This report briefly describes three categories of approaches to the development of sediment quality benchmarks. These approaches are based on analytical chemistry, toxicity test and field survey data. A fourth integrative approach incorporates all three types of data. The equilibrium partitioning approach is recommended for screening nonpolar organic contaminants of concern in sediments. For inorganics, the National Oceanic and Atmospheric Administration has developed benchmarks that may be used for screening. There are supplemental benchmarks from the province of Ontario, the state of Wisconsin, and US Environmental Protection Agency Region V. Pore water analysis is recommended for polar organic compounds; comparisons are then made against water quality benchmarks. This report is an update of a prior report. It contains revised ER-L and ER-M values, the five EPA proposed sediment quality criteria, and benchmarks calculated for several nonionic organic chemicals using equilibrium partitioning

  9. Physico-mechanical and chemical screening of packaging plastics and laminates for food irradiation

    International Nuclear Information System (INIS)

    Cabalar, Patrick Jay E.; Laurio, Christian D.

    2014-03-01

    Evaluation of selected commercially-available packaging plastics and laminated plastics i.e., PET12/PE50, PET12/CPS40, Laminaed PET/PE, VMPET12/PE70, Nylon/PE, Nylon15/PE50, PET/Foil/PE, PlainPET/FOIL7/PE100, and OPP20/Foil6.5/PE40, are conducted by employing methods for determining physico-mechanical properties and performing chemical analyses to assess the suitability for food irradiation at 10kGy. Isotope Ratio Mass Spectrometry (IR-MS0 is also performed to measure isotopic ratio changes of 18 O/ 16 O and 2 H/ 1 H to determine raqdiolysis on water in contact with the packaging materials. IR-MS suggests that PET/FOIL PE and OPP 20/Foil 6.5/PE40 in δ 18 O%o after irradiation has significantly increased. Tensile strength and Young's modulus are obtained to assess physical changes between irradiated samples. Data showed that PET12/CPS40 have the highet tensile strength 60.2 MPa and Young's modulus (141.80GPa) value, after irradiation and has no significant difference to their non irradiated samples. Other packaging materials with the same result are OPP20/FOIL6.5/PE40, PET12/PE50 and NYLON50/PE. Residual test gives information on the extent of leaching or radiolytic byproduct evolved upon irradiation. Based on the result, all packaging plastics and laminates passess the overall migration test since residues did not significanty migrated. Chemical screening includes GPC and GC-MS analyses in determining the possible radiolytic by-products that liberate upon rdiation of the samples s well as determining the components that is already present prior to irradiation. Based on the comparison of the chromatograms ofGPC for both samples of VMPET12/PE70 and OPP20/Foil6.5/PE40, radiation has small effect on the yield of radiolytic leachates aside from increasing the abundance of the componenet that is already present prior to irradiation. GC-MS results suggest that PET/FOIL/PE produced volatile compounds before and after irradiation namely 3,3-Dimethylheptane (8

  10. Structure-Guided Screening for Functionally Selective D2 Dopamine Receptor Ligands from a Virtual Chemical Library.

    Science.gov (United States)

    Männel, Barbara; Jaiteh, Mariama; Zeifman, Alexey; Randakova, Alena; Möller, Dorothee; Hübner, Harald; Gmeiner, Peter; Carlsson, Jens

    2017-10-20

    Functionally selective ligands stabilize conformations of G protein-coupled receptors (GPCRs) that induce a preference for signaling via a subset of the intracellular pathways activated by the endogenous agonists. The possibility to fine-tune the functional activity of a receptor provides opportunities to develop drugs that selectively signal via pathways associated with a therapeutic effect and avoid those causing side effects. Animal studies have indicated that ligands displaying functional selectivity at the D 2 dopamine receptor (D 2 R) could be safer and more efficacious drugs against neuropsychiatric diseases. In this work, computational design of functionally selective D 2 R ligands was explored using structure-based virtual screening. Molecular docking of known functionally selective ligands to a D 2 R homology model indicated that such compounds were anchored by interactions with the orthosteric site and extended into a common secondary pocket. A tailored virtual library with close to 13 000 compounds bearing 2,3-dichlorophenylpiperazine, a privileged orthosteric scaffold, connected to diverse chemical moieties via a linker was docked to the D 2 R model. Eighteen top-ranked compounds that occupied both the orthosteric and allosteric site were synthesized, leading to the discovery of 16 partial agonists. A majority of the ligands had comparable maximum effects in the G protein and β-arrestin recruitment assays, but a subset displayed preference for a single pathway. In particular, compound 4 stimulated β-arrestin recruitment (EC 50 = 320 nM, E max = 16%) but had no detectable G protein signaling. The use of structure-based screening and virtual libraries to discover GPCR ligands with tailored functional properties will be discussed.

  11. Assessment of a modification of Br?ckner?s test as a screening modality for anisometropia and strabismus

    OpenAIRE

    Amitava, Abadan Khan; Kewlani, D.; Khan, Z.; Razzak, A.

    2010-01-01

    Background : Current amblyopia screening methods are not cost effective. Aim : To evaluate the diagnostic capability of a modified Brückner test (MBT) for amblyopiogenic risk factors. Materials and Methods : We applied the MBT using the streak retinoscope to identify anisometropia and strabismus by noting an inter-ocular difference in movement and glow, from children who failed 6/9 Snellen on community vision screening, followed by comprehensive eye examination. Statisitics : D...

  12. Kinetic, spectroscopic and chemical modification study of iron release from transferrin; iron(III) complexation to adenosine triphosphate

    International Nuclear Information System (INIS)

    Thompson, C.P.

    1985-01-01

    Amino acids other than those that serve as ligands have been found to influence the chemical properties of transferrin iron. The catalytic ability of pyrophosphate to mediate transferrin iron release to a terminal acceptor is largely quenched by modification non-liganded histine groups on the protein. The first order rate constants of iron release for several partially histidine modified protein samples were measured. A statistical method was employed to establish that one non-liganded histidine per metal binding domain was responsible for the reduction in rate constant. These results imply that the iron mediated chelator, pyrophosphate, binds directly to a histidine residue on the protein during the iron release process. EPR spectroscopic results are consistent with this interpretation. Kinetic and amino acid sequence studies of ovotransferrin and lactoferrin, in addition to human serum transferrin, have allowed the tentative assignment of His-207 in the N-terminal domain and His-535 in the C-terminal domain as the groups responsible for the reduction in rate of iron release. The above concepts have been extended to lysine modified transferrin. Complexation of iron(II) to adenosine triphosphate (ATP) was also studied to gain insight into the nature of iron-ATP species present at physiological pH. 31 P NMR spectra are observed when ATP is presented in large excess

  13. Encoding of Fundamental Chemical Entities of Organic Reactivity Interest using chemical ontology and XML.

    Science.gov (United States)

    Durairaj, Vijayasarathi; Punnaivanam, Sankar

    2015-09-01

    Fundamental chemical entities are identified in the context of organic reactivity and classified as appropriate concept classes namely ElectronEntity, AtomEntity, AtomGroupEntity, FunctionalGroupEntity and MolecularEntity. The entity classes and their subclasses are organized into a chemical ontology named "ChemEnt" for the purpose of assertion, restriction and modification of properties through entity relations. Individual instances of entity classes are defined and encoded as a library of chemical entities in XML. The instances of entity classes are distinguished with a unique notation and identification values in order to map them with the ontology definitions. A model GUI named Entity Table is created to view graphical representations of all the entity instances. The detection of chemical entities in chemical structures is achieved through suitable algorithms. The possibility of asserting properties to the entities at different levels and the mechanism of property flow within the hierarchical entity levels is outlined. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Should breast cancer survivors be excluded from, or invited to, organised mammography screening programmes?

    Directory of Open Access Journals (Sweden)

    Bucchi Lauro

    2011-10-01

    different specialist areas of breast cancer control and management. The solutions for current problems probably lie in some important modifications in the conventional screening procedure that are underway or under study. These developments appear to be directed towards a partial modification of the screening rationale, with an adaptation to meet the diversified breast care needs of women. The complexity of the matter constitutes a call to action for several entities to eliminate the barriers to effective research in this field.

  15. Modifications of radiation detection response of PADC track detectors by photons

    CERN Document Server

    Sinha, D

    1998-01-01

    Photon induced modifications in polyalyldiglycol carbonate (PADC) track detectors have been studied in the dose range of 10 sup 1 -10 sup 6 Gy. It was found that some of the properties like bulk-etch rate, track-etch rate got enhanced at the dose of 10 sup 6 Gy. Activation energy for bulk-etching has been determined for different gamma doses. In order to correlate the high etch rate with the chemical modifications, UV-Vis, IR and ESR studies were carried out. These studies clearly give the indication that radiation damage results into radical formation through bond cleavage. TGA study was performed for understanding the thermal resistance of this detector. The results are presented and discussed.

  16. Phyto chemical and biological studies of certain plants with potential radioprotective activity

    International Nuclear Information System (INIS)

    Sherif, N.H.M.I

    2008-01-01

    One of the promising directions of radiation protection development is the search for natural radioprotective agents.The present work includes: I- Screening of certain edible and medicinal plants growing in Egypt for their radioprotective activities. II- Detailed phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla endl. comprising: A-Phyto chemical screening and proximate analysis. B-Investigation of lipoidal matter. C- Isolation, characterization and structure elucidation of phenolic constituents. D- Isolation, characterization and structure elucidation of saponin constituents. E- Evaluation of radioprotective and antitumor activities. I- Evaluation of potential radioprotective activities of certain herbs: In vivo biological screening designed to investigate the radioprotective role of 70% ethanol extract of 11 different herbals was carried out by measuring the lipid peroxide content, as well as the activities of two antioxidant enzymes; viz glutathione, and superoxide dismutase in blood and liver tissues 1 and 7 days after radiation exposure. II : Phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla Endl A : preliminary phyto chemical screening, determination and TLC examination of successive extractives. B : Investigation of lipoidal matter. GLC of unsaponifiable matter (USM)

  17. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  18. Development of tight-binding, chemical-reaction-dynamics simulator for combinatorial computational chemistry

    International Nuclear Information System (INIS)

    Kubo, Momoji; Ando, Minako; Sakahara, Satoshi; Jung, Changho; Seki, Kotaro; Kusagaya, Tomonori; Endou, Akira; Takami, Seiichi; Imamura, Akira; Miyamoto, Akira

    2004-01-01

    Recently, we have proposed a new concept called 'combinatorial computational chemistry' to realize a theoretical, high-throughput screening of catalysts and materials. We have already applied our combinatorial, computational-chemistry approach, mainly based on static first-principles calculations, to various catalysts and materials systems and its applicability to the catalysts and materials design was strongly confirmed. In order to realize more effective and efficient combinatorial, computational-chemistry screening, a high-speed, chemical-reaction-dynamics simulator based on quantum-chemical, molecular-dynamics method is essential. However, to the best of our knowledge, there is no chemical-reaction-dynamics simulator, which has an enough high-speed ability to perform a high-throughput screening. In the present study, we have succeeded in the development of a chemical-reaction-dynamics simulator based on our original, tight-binding, quantum-chemical, molecular-dynamics method, which is more than 5000 times faster than the regular first-principles, molecular-dynamics method. Moreover, its applicability and effectiveness to the atomistic clarification of the methanol-synthesis dynamics at reaction temperature were demonstrated

  19. Photochemical Screening and antimicrobial activity of zizyphus ...

    African Journals Online (AJOL)

    student

    2012-03-13

    Mar 13, 2012 ... chemical composition of essential oil of Pamburus missionis. J. Ethnopharmaco. 124(1): 151-153. Raman BV, Rao DN, Radhakrishnan TM (2007). Screening of medicinal plants for proteinaceous antibacterial compounds. In: Application of. Biotechnology-Medicinal plants and food processing. Souvenir,.

  20. Vacuum-based surface modification of organic and metallic substrates

    Science.gov (United States)

    Torres, Jessica

    Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous