WorldWideScience

Sample records for chemical modification electronic

  1. Effects of electron-transfer chemical modification on the electrical characteristics of graphene

    International Nuclear Information System (INIS)

    Fan Xiaoyan; Tanigaki, Katsumi; Nouchi, Ryo; Yin Lichang

    2010-01-01

    Because of the large reactivity of single layer graphene to electron-transfer chemistries, 4-nitrobenzene diazonium tetrafluoroborate is employed to modify the electrical properties of graphene field-effect transistors. After modification, the transfer characteristics of chemically modified graphene show a reduction in the minimum conductivity, electron-hole mobility asymmetry, a decrease in the electron/hole mobility, and a positive shift of the charge neutrality point with broadening of the minimum conductivity region. These phenomena are attributed to a dediazoniation reaction and the adsorbates on the graphene surface.

  2. Effects of electron-transfer chemical modification on the electrical characteristics of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Fan Xiaoyan; Tanigaki, Katsumi [Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Nouchi, Ryo [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8578 (Japan); Yin Lichang, E-mail: nouchi@sspns.phys.tohoku.ac.jp [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2010-11-26

    Because of the large reactivity of single layer graphene to electron-transfer chemistries, 4-nitrobenzene diazonium tetrafluoroborate is employed to modify the electrical properties of graphene field-effect transistors. After modification, the transfer characteristics of chemically modified graphene show a reduction in the minimum conductivity, electron-hole mobility asymmetry, a decrease in the electron/hole mobility, and a positive shift of the charge neutrality point with broadening of the minimum conductivity region. These phenomena are attributed to a dediazoniation reaction and the adsorbates on the graphene surface.

  3. Chemical Modification of Semiconductor Surfaces for Molecular Electronics.

    Science.gov (United States)

    Vilan, Ayelet; Cahen, David

    2017-03-08

    Inserting molecular monolayers within metal/semiconductor interfaces provides one of the most powerful expressions of how minute chemical modifications can affect electronic devices. This topic also has direct importance for technology as it can help improve the efficiency of a variety of electronic devices such as solar cells, LEDs, sensors, and possible future bioelectronic ones. The review covers the main aspects of using chemistry to control the various aspects of interface electrostatics, such as passivation of interface states and alignment of energy levels by intrinsic molecular polarization, as well as charge rearrangement with the adjacent metal and semiconducting contacts. One of the greatest merits of molecular monolayers is their capability to form excellent thin dielectrics, yielding rich and unique current-voltage characteristics for transport across metal/molecular monolayer/semiconductor interfaces. We explain the interplay between the monolayer as tunneling barrier on the one hand, and the electrostatic barrier within the semiconductor, due to its space-charge region, on the other hand, as well as how different monolayer chemistries control each of these barriers. Practical tools to experimentally identify these two barriers and distinguish between them are given, followed by a short look to the future. This review is accompanied by another one, concerning the formation of large-area molecular junctions and charge transport that is dominated solely by molecules.

  4. The effects of high electronic energy loss on the chemical modification of polyimide

    CERN Document Server

    SunYouMei; Jin Yun Fan; Liu Chang Long; LiuJie; Wang Zhi Guang; Zhang Qi; Zhu Zhi Yong

    2002-01-01

    In order to observe the role of electronic energy loss (dE/dX) sub e on chemical modification of polyimide (PI), the multi-layer stacks (corresponding to different dE/dX) were irradiated by different swift heavy ions (1.37 GeV Ar sup 4 sup 0 , 1.98 GeV Kr sup 8 sup 4 , 1.755 GeV Xe sup 1 sup 3 sup 6 and 2.636 GeV U sup 2 sup 3 sup 8) under vacuum and room temperature. The chemical changes of modified PI films were studied by Fourier transform infrared (FTIR) and ultraviolet/visible (UV/Vis) absorption spectroscopy. The degradation of PI was investigated in the fluence range from 1x10 sup 1 sup 0 to 5.5x10 sup 1 sup 2 ions/cm sup 2 and different electronic energy loss from 0.77 to 11.5 keV/nm. The FTIR results show the absorbance of the typical function group decrease exponentially as a function of fluence. The alkyne end group was found after irradiation and its formation radii were 5.6 and 5.9 nm corresponding to 8.8 and 11.5 keV/nm Xe irradiation respectively. UV/Vis analysis indicates the radiation induced...

  5. Laser and chemical surface modifications of titanium grade 2 for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Kwaśniak, P. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Pura, J., E-mail: jaroslawpura@gmail.com [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Zwolińska, M.; Wieciński, P. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Skarżyński, H.; Olszewski, L. [Institute of Physiology and Pathology of Hearing, Warsaw (Poland); World Hearing Center, Kajetany (Poland); Marczak, J. [Military University of Technology, Institute of Optoelectronics, Warsaw (Poland); Garbacz, H.; Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland)

    2015-05-01

    Highlights: • DLIL technique and etching were used for functionalization of Ti grade 2 surface. • Modification was performed on semi-finished flat and curved Ti surfaces. • Modification results in periodic multimodal (micro and nano-size) Ti topography. - Abstract: The article presents combined, chemical and physical approach to titanium surface functionalization designed for biomedical applications. The topography modification has been obtained by employing the double laser beam interference technique and chemical etching. In the outcome, clean and smooth Ti surface as well as periodic striated topography with the roughness range from nano- to micrometers were created. The obtained structures were characterized in terms of shape, roughness, chemical composition, mechanical properties and microstructures. In order to achieve all information, numerous of research methods have been used: scanning electron microscopy, atomic force microscopy, optical profilometry and microhardness measurements. Demonstrated methodology can be used as an effective tool for manufacturing controlled surface structures improving the bone–implants interactions.

  6. Chemical Modification of Waste Cotton Linters for Oil Spill Cleanup Application

    Science.gov (United States)

    Chattopadhyay, Debapriya; Umrigar, Keval

    2017-12-01

    The possibility of use of waste cotton linters as oil sorbents by chemical modification such as acetylation and cyanoethylation was studied. The acetylation process was carried out in presence of acetic anhydride using either H2SO4 or HClO4 as catalyst. The acetylation treatment time was 30, 60 and 120 min and treatment temperature was room temperature, 50 and 70 °C. For cyanoethylation, the waste cotton linters were pre-treated with 2, 5 and 10% NaOH. The treatment temperature for cyanoethylation was room temperature, 50 and 70 °C and treatment time was 30, 60 and 120 min. Both the chemical modification processes were optimized on the basis of oil absorption capacity of the chemically modified cotton fibre with the help of MATLAB software. The modified samples were tested for its oleophilicity in terms of oil absorption capacity, oil retention capacity, oil recovery capacity, reusability of sample and water uptake and buoyancy as oil sorbent. Chemically modified fibres were characterized by Fourier transform infra red spectrophotometer, scanning electron microscope and degree of substitutions.

  7. Chemical modification of jute fibers for the production of green-composites

    Energy Technology Data Exchange (ETDEWEB)

    Corrales, F. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain)]. E-mail: farners.corrales@udg.es; Vilaseca, F. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain); Llop, M. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain); Girones, J. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain); Mendez, J.A. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain); Mutje, P. [Group Lepamap, Department of Chemical Engineering, University of Girona, Girona 17071 (Spain)

    2007-06-18

    Natural fiber reinforced composites is an emerging area in polymer science. Fibers derived from annual plants are considered a potential substitute for non-renewable synthetic fibers like glass and carbon fibers. The hydrophilic nature of natural fibers affects negatively its adhesion to hydrophobic polymeric matrices. To improve the compatibility between both components a surface modification has been proposed. The aim of the study is the chemical modification of jute fibers using a fatty acid derivate (oleoyl chloride) to confer hydrophobicity and resistance to biofibers. This reaction was applied in swelling and non-swelling solvents, pyridine and dichloromethane, respectively. The formation of ester groups, resulting from the reaction of oleoyl chloride with hydroxyl group of cellulose were studied by elemental analysis (EA) and Fourier Transform infrared spectroscopy (FTIR). The characterization methods applied has proved the chemical interaction between the cellulosic material and the coupling agent. The extent of the reactions evaluated by elemental analysis was calculated using two ratios. Finally electron microscopy was applied to evaluate the surface changes of cellulose fibers after modification process.

  8. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Lewicka, Kamila; Siemion, Przemysław; Kurcok, Piotr

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  9. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  10. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A.

    2013-01-01

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1 H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10 −6 S cm −1 for carboxymethyl chitosan at room temperature and 3.7 × 10 −4 S cm −1 at 60 °C

  11. Modifications of poly (vinilydene fluoride) under electronic excitations produced by charged particles (heavy ions and electrons)

    International Nuclear Information System (INIS)

    Fina, A.

    1990-04-01

    Some of the physico-chemical properties of organic solids like conductivity or permeation can be improved by irradiation. The aim of this work is to characterize modifications induced in poly (vinylidene fluoride) films (PVDF) by charged particles (ions and electrons), with electronic stopping power, for doses ranging from zero to twenty G-Grays. Influence of dose, density of electronic excitations, and flux (in particles per square centimeter), and the nature of defects induced by the beam, were studied with two methods: X-ray Photoelectron Spectroscopy (or XPS) for surface analysis, and electron Spin Resonance (or ESR) to probe the bulk of the film. Three ranges of doses are revealed in view of experimental results. At lower doses, PVDF undergoes deshydrofluorination induced by desorption; it is a low modifications regime. For intermediate range doses, conjugated carbon backbones of polyene compounds are produced. At higher doses, intermolecular interactions between the resulting fragments give a crosslinked network. For the upper limit of doses used, bond breaking results in a non reversible degradation of PVDF. In this last situation, direct atomic displacement of target atoms, is not negligible [fr

  12. Electron beam induced modification of grafted polyamides

    International Nuclear Information System (INIS)

    Timus, D.M.; Brasoveanu, M.M.; Bradley, D.A.; Popov, A.M.

    1998-01-01

    It is well known that irradiation, when applied on its own or in combination with other physical and chemical treatments, can manifest in radiation damage to materials. Radiation processing technology focuses upon producing favourable modification of materials through use of relatively high dose and dose rates. Current interest is in modifying the thermal and electrical properties of textured polymers in an effort to improve safety and wear comfort of clothing. No less important is the production of textiles which are safe to use, both in homes and offices. Present investigations provide additional data in support of findings which show that polyamides, a particular class of textured polymer, are amenable to radiation processing. Accelerated electron beam irradiation of sheets of polyamide fibre results in induced grafting of acrylic and methacrylic acids. The degree of grafting is critically dependent upon irradiation dose and the extent of monomers dilution. Of particular importance is the high correlation which is found between degree of grafting and a decrease in the softening rate of the modified polyamide. A systematic modification of electrical conductivity is also observed. (author)

  13. Topological surface states of Bi{sub 2}Te{sub 2}Se are robust against surface chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Conor R.; Sahasrabudhe, Girija; Kushwaha, Satya Kumar; Cava, Robert J.; Schwartz, Jeffrey [Department of Chemistry, Princeton University, Princeton, NJ (United States); Xiong, Jun [Department of Physics, Princeton University, Princeton, NJ (United States)

    2014-12-01

    The robustness of the Dirac-like electronic states on the surfaces of topological insulators (TIs) during materials process-ing is a prerequisite for their eventual device application. Here, the (001) cleavage surfaces of crystals of the topological insulator Bi{sub 2}Te{sub 2}Se (BTS) were subjected to several surface chemical modification procedures that are common for electronic materials. Through measurement of Shubnikov-de Hass (SdH) oscillations, which are the most sensitive measure of their quality, the surface states of the treated surfaces were compared to those of pristine BTS that had been exposed to ambient conditions. In each case - surface oxidation, deposition of thin layers of Ti or Zr oxides, or chemical modification of the surface oxides - the robustness of the topological surface electronic states was demonstrated by noting only very small changes in the frequency and amplitude of the SdH oscillations. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Chemical modifications and reactions in DNA nanostructures

    DEFF Research Database (Denmark)

    Gothelf, Kurt Vesterager

    2017-01-01

    such as hydrocarbons or steroids have been introduced to change the surface properties of DNA origami structures, either to protect the DNA nanostructure or to dock it into membranes and other hydrophobic surfaces. DNA nanostructures have also been used to control covalent chemical reactions. This article provides......DNA nanotechnology has the power to form self-assembled and well-defined nanostructures, such as DNA origami, where the relative positions of each atom are known with subnanometer precision. Our ability to synthesize oligonucleotides with chemical modifications in almost any desired position...... provides rich opportunity to incorporate molecules, biomolecules, and a variety of nanomaterials in specific positions on DNA nanostructures. Several standard modifications for oligonucleotides are available commercially, such as dyes, biotin, and chemical handles, and such modified oligonucleotides can...

  15. Study of Textile Surface Characteristic Modification by Using Electron Beam Radiation

    International Nuclear Information System (INIS)

    Iswani Gitawati; Rany Saptaaji

    2007-01-01

    The success of accelerator technology application in various field of industry, medical and pharmacy, environment, agricultural, food increase each year as the increasing of people needs, not excepted for surface treatment of fibers and textiles in textile industry. This writing aim is to asses the application of electron beam accelerator for textile surface treatment on finishing step. Surface treatment was done with electron beam low energy (100 - 500 keV), and because of its low penetration it was suitable used to gain the improvement of chemical, physical and mechanical properties of textile surface such as adhesion, wettability, printability, dyes-intake, crease recovery, wrinkle-resistance, flammability, abrasion resistance, soil and stain release to get better result. Modification of fibers and textiles surface properties on finishing process can be caused by crosslinking, grafting and degradation reactions. The assesment results showed that the greatest impact on commercial application of radiation in textiles were crease recovery and surface modification of wetting properties (soil and stain release). The radiation dose used for those purposes were 5 - 50 kGy. The bach process of graft textiles surface modification before and after irradiation by Co-60 source (gamma energies of 1.33 and 1.17 MeV) and continue process by electron beam were presented. The assesment results were reported in this paper. (author)

  16. Towards electron transport measurements in chemically modified graphene: effect of a solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Arnhild; Ensslin, Klaus [Solid State Physics Laboratory, ETH Zurich (Switzerland); Koehler, Fabian M; Stark, Wendelin J, E-mail: arnhildj@phys.ethz.ch, E-mail: fabian.koehler@chem.ethz.ch [Institute for Chemical and Bioengineering, ETH Zurich (Switzerland)

    2010-12-15

    The chemical functionalization of graphene modifies the local electron density of carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on electron transport. The latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that the solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport, which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look at the influence of solvents used for chemical modification in order to understand their influence.

  17. Towards electron transport measurements in chemically modified graphene: effect of a solvent

    International Nuclear Information System (INIS)

    Jacobsen, Arnhild; Ensslin, Klaus; Koehler, Fabian M; Stark, Wendelin J

    2010-01-01

    The chemical functionalization of graphene modifies the local electron density of carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on electron transport. The latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that the solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport, which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look at the influence of solvents used for chemical modification in order to understand their influence.

  18. Electron beam processing technology for modification of different types of cellulose pulps for production of derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Kukielka, A.; Mikolajczyk, W.; Starostka, P.; Stupinska, H.

    2002-01-01

    Institute of Nuclear Chemistry and Technology, Pulp and Paper Research Institute and Institute of Chemical Fibers carry out a joint research project in order to develop the radiation methods modification of cellulose pulps for production of cellulose derivatives such as carbamate (CC), carboxymethyl cellulose (CMC) and methylcellulose (MC). Three different types of textile pulps: Alicell (A); Borregaard (B), Ketchikan (K) and Kraft softwood (PSS) and hardwood (PSB) pulps have been irradiated with 10 MeV electron beam from LAE 13/9 linear accelerator with doses of 5, 10, 15, 20, 25 and 50 kGy. After electron beam treatment the samples of cellulose pulps have been examined by using of structural and physico-chemical methods. Electron paramagnetic resonance spectroscopy (EPR), gel permeation chromatography (GPC) and infrared spectroscopy (IRS) were applied for determination of structural changes in irradiated cellulose pulps. By means of analytical methods, such parameters as: viscosity, average degree of polymerization (DP) and α-cellulose contents were evaluated. Based on EPR and GPC investigations the relationship between concentrations of free radicals and decreasing polymerization degrees in electron beam treatment pulps has been confirmed. The carboxymethylcellulose, methylcellulose and cellulose carbamate were prepared using the raw material of radiation modified pulps. Positive results of investigations will allow for determination of optimum conditions for electron beam modification of selected cellulose paper and textile pulps. Such procedure leads to limit the amounts of chemical activators used in methods for preparation cellulose derivatives. The proposed electron beam technology is new approaches in technical solution and economic of process of cellulose derivatives preparation. (author)

  19. Chemical surface reactions by click chemistry: coumarin dye modification of 11-bromoundecyltrichlorosilane monolayers

    International Nuclear Information System (INIS)

    Haensch, Claudia; Hoeppener, Stephanie; Schubert, Ulrich S

    2008-01-01

    The functionalization of surfaces and the ability to tailor their properties with desired physico-chemical functions is an important field of research with a broad spectrum of applications. These applications range from the modification of wetting properties, over the alteration of optical properties, to the fabrication of molecular electronic devices. In each of these fields, it is of specific importance to be able to control the quality of the layers with high precision. The present study demonstrates an approach that utilizes the 1,3-dipolar cycloaddition of terminal acetylenes to prepare triazole-terminated monolayers on different substrates. The characterization of the precursor monolayers, the optimization of the chemical surface reactions as well as the clicking of a fluorescent dye molecule on such azide-terminated monolayers was carried out. A coumarin 343 derivative was utilized to discuss the aspects of the functionalization approach. Based on this approach, a number of potential surface reactions, facilitated via the acetylene-substituted functional molecules, for a broad range of applications is at hand, thus leading to numerous possibilities where surface modifications are concerned. These modifications can be applied on non-structured surfaces of silicon or glass or can be used on structured surfaces. Various possibilities are discussed

  20. Modifications in the structural and optical properties of nanocrystalline CaWO4 induced by 8 MeV electron beam irradiation

    International Nuclear Information System (INIS)

    Aloysius Sabu, N.; Priyanka, K.P.; Ganesh, Sanjeev; Varghese, Thomas

    2016-01-01

    In this article we report the post irradiation effects in the structural and optical properties of nanocrystalline calcium tungstate synthesized by chemical precipitation and heat treatment. The samples were subjected to different doses of high-energy electron beam obtained from an 8 MeV Microton. Investigations using X-ray diffraction, scanning electron microscopy and Raman spectra confirmed changes in particle size and structural parameters. However, no phase change was detected for irradiated samples. The stretching/compressive strain caused by high energy electrons is responsible for the slight shift in the XRD peaks of irradiated samples. Modifications in the morphology of different samples were confirmed by scanning electron microscopy. Ultraviolet-visible absorption studies showed variations in the optical band gap (4.08–4.25 eV) upon electron-beam irradiation. New photoluminescence behaviour in electron beam irradiated nanocrystalline CaWO 4 was evidenced. A blue shift of the PL peak with increase in intensity was observed in all the irradiated samples. - Highlights: • Calcium tungstate nanocrystals are synthesized by simple chemical precipitation method. • Electron beam induced modifications in the structural and optical properties are investigated. • New photoluminescence behaviour is evidenced due to beam irradiation.

  1. Effect of different chemical modification of carbon nanotubes for the oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Dumitru, Anca; Mamlouk, M.; Scott, K.

    2014-01-01

    The electrochemical reduction of oxygen on chemically modified multi-walled carbon nanotubes (CNTs) electrodes in 1 M KOH solution has been studied using the rotating ring disc electrode (RDE). The surface modification of CNTs has been estimated by XPS and Raman spectroscopy. The effect of different oxygen functionalities on the surface of carbon nanotube for the oxygen reduction reaction (ORR) is considered in terms of the number of electrons (n) involved. Electrochemical studies indicate that in the case of the modification of CNTs with citric acid and diazonium salts the n values were close to two in the measured potential range, and the electrochemical reduction is limited to the production of peroxide as the final product. In the case of the modification of carbon nanotubes with peroxymonosulphuric acid, in the measured potential range, the n value is close to 4 indicating the four-electron pathway for the ORR. By correlating ORR measurements with the XPS analysis, we propose that the increase in electrocatalytic activity towards the ORR, for CNT can be attributed to the increase in C-O groups on the surface of CNTs after modification with peroxymonosulphuric acid

  2. The Use of Chemical Modification of Polymer Waste for Obtaining Polymer Flocculants

    Institute of Scientific and Technical Information of China (English)

    W.W.Sulkowski; K.Nowak; A.Sulkowska; A.Wolin; ska; S.Malanka; W.M.Baldur; D.Pentak

    2007-01-01

    1 Results Chemical modification of polymer plastic wastes to useful products can be one of the way of effective waste plastics management (chemical recycling). Chemical modification of polymers and polymer plastic wastes can yield products with suitable physical and chemical properties. In consequence they can be used as polyelectrolytes[1]. The variety of pollutants, universality of various water and sewage treatment technologies, introduction of new water quality improved technologies have caused a gr...

  3. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    Science.gov (United States)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-11-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance.

  4. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    International Nuclear Information System (INIS)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-01-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm 2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance

  5. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    Science.gov (United States)

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  6. Physico-chemical modifications of plastics by ionization

    International Nuclear Information System (INIS)

    Rouif, S.

    2002-01-01

    The industrial use of ionizing radiations (beta and gamma), initially for the sterilization of medico-surgical instruments and for the preservation of food products, has led to the development of the chemistry of polymers under radiations. Ionizing radiations can initiate chemical reactions (chain cutting, poly-additions, polymerization etc..) thanks to the formation of free radicals. The main applications concerns the degradation of plastics, the reticulation of plastics and of woods impregnated with resin, and the grafting of polymers. The processing of plastic materials was initially performed with low energy electron accelerators (0.1 to 3 MeV), allowing only surface treatments, while recent high energy accelerators (10 MeV) and gamma facilities allow the treatment in depth of materials (from few cm to 1 m). This article describes the industrial treatments performed with such high energy facilities: 1 - action of ionizing radiations on plastic materials: different types of ionizing radiations, action of beta and gamma radiations, chemical changes induced by beta and gamma radiations; 2 - reticulation of plastic materials submitted to beta and gamma radiations: radio-'reticulable' polymers and reticulation co-agents, modification of the properties of reticulated plastic materials under beta and gamma radiations; 3 - industrial aspects of reticulation under beta and gamma radiation: industrial irradiation facilities, dosimetry and radio-reticulation control, applications; 4 - conclusion. (J.S.)

  7. Posttranscriptional RNA Modifications: playing metabolic games in a cell's chemical Legoland.

    Science.gov (United States)

    Helm, Mark; Alfonzo, Juan D

    2014-02-20

    Nature combines existing biochemical building blocks, at times with subtlety of purpose. RNA modifications are a prime example of this, where standard RNA nucleosides are decorated with chemical groups and building blocks that we recall from our basic biochemistry lectures. The result: a wealth of chemical diversity whose full biological relevance has remained elusive despite being public knowledge for some time. Here, we highlight several modifications that, because of their chemical intricacy, rely on seemingly unrelated pathways to provide cofactors for their synthesis. Besides their immediate role in affecting RNA function, modifications may act as sensors and transducers of information that connect a cell's metabolic state to its translational output, carefully orchestrating a delicate balance between metabolic rate and protein synthesis at a system's level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Chemical Strategies for the Covalent Modification of Filamentous Phage

    Directory of Open Access Journals (Sweden)

    Matthew B Francis

    2014-12-01

    Full Text Available Historically filamentous bacteriophage have been known to be the workhorse of phage display due to their ability to link genotype to phenotype. More recently, the filamentous phage scaffold has proved to be powerful outside the realms of phage display technology in fields such as molecular imaging, cancer research and materials and vaccine development. The ability of the virion to serve as a platform for a variety of applications heavily relies on the functionalization of the phage coat proteins with a wide variety of functionalities. Genetic modification of the coat proteins has been the most widely used strategy for functionalizing the virion; however complementary chemical modification strategies can help to diversify the range of materials that can be developed. This review emphasizes the recent advances that have been made in the chemical modification of filamentous phage as well as some of the challenges that are involved functionalizing the virion.

  9. EG and G electron linac modifications

    International Nuclear Information System (INIS)

    Norris, N.J.; Detch, J.L.; Kocimski, S.M.; Sawyer, C.R.; Hudson, C.L.

    1986-01-01

    The electron linear accelerator at EG and G/EM, Santa Barbara Operations, installed in 1963, has been subsequently modified to produce short, intense beam pulses used in the test, calibration and development of many types of fast radiation detectors and systems. The first practical use of the single RF pulse operation, now used in many accelerators, was demonstrated on this accelerator in the late 60s. A major three-year modification, to replace obsolete equipment and bring all the subsystems up to the current state of the art, has increased the beam intensity, stability and reliability. These modifications are discussed

  10. Improving lead adsorption through chemical modification of wheat straw by lactic acid

    Science.gov (United States)

    Mu, Ruimin; Wang, Minxiang; Bu, Qingwei; Liu, Dong; Zhao, Yanli

    2018-01-01

    This work describes the creation of a new cellulosic material derived from wheat straw modified by lactic acid for adsorption of lead in aqueous solution, called 0.3LANS (the concentration of the lactic acid were 0.3mol/L). Batch experiments were conducted to study the effects of initial pH value, contact time, adsorbent dose, initial concentration and temperature. Fourier transform infrared (FTIR), Elemental analysis, BET surface area and Scanning electron micrographs (SEM) analysis were used to investigate the chemical modification. Adsorption isotherm models namely, Langmuir, Freundlich were used to analyse the equilibrium data, and the Langmuir isotherm model provided the best correlation, means that the adsorption was chemical monolayer adsorption and the adsorption capacity qm was increased with increasing temperature, and reached 51.49mg/g for 0.3LANS at 35°C, showing adsorption was exothermic.

  11. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    Science.gov (United States)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  12. Chemical modification and blending of polymers in an extruder reactor

    International Nuclear Information System (INIS)

    Prut, Eduard V; Zelenetskii, Alexandr N

    2001-01-01

    Chemical modification and blending of polymers in an extruder reactor are discussed. Relationships between the parameters affecting the reaction kinetics, viz., mixing time, duration of a chemical reaction and the residence time of the system in the extruder reactor, and the structure of the materials produced are analysed. The mechanisms of (i) grafting of low-molecular-mass compounds onto polymers; (ii) reactions between terminal groups of different polymers and (iii) transesterification and interchange reactions are considered. The factors affecting the mechanism of dynamic vulcanisation and the properties of thermoplastic elastomers are identified. Solid-phase reactions of polysaccharides in an extruder are discussed. The priority aspects of studies on the chemical modification and blending of polymers are noted. The bibliography includes 90 references.

  13. Graphene: chemical approaches to the synthesis and modification

    Energy Technology Data Exchange (ETDEWEB)

    Grayfer, E D; Makotchenko, V G; Nazarov, Albert S; Kim, S J; Fedorov, Vladimir E

    2011-08-31

    Published data on the new carbon nanomaterial, graphene, are described systematically from the chemist's standpoint. The attention is focused on the chemical methods of the synthesis of graphene-like materials from various precursors: natural and expanded graphite, graphite oxide, graphite intercalation compounds, etc. Approaches to the chemical modification of the graphene plane by various reagents and routes for the preparation of colloidal dispersions of graphene are considered. The bibliography includes 220 references.

  14. Chemical modifications of polymer films induced by high energy heavy ions

    International Nuclear Information System (INIS)

    Zhu Zhiyong; Sun Youmei; Liu Changlong; Liu Jie; Jin Yunfan

    2002-01-01

    Polymer films including polyethylene terephthalate (PET), polystyrene (PS) and polycarbonate (PC) were irradiated at room temperature with ions of 35 MeV/u 40 Ar, 25 MeV/u 84 Kr, 15.1 MeV/u 136 Xe and 11.4 MeV/u 238 U to fluences ranging from 9x10 9 to 5.5x10 12 ions/cm 2 . The radiation-induced chemical changes of the materials were investigated by Fourier-transform infrared (FTIR) and ultraviolet/visible spectroscopies. It is found that the absorbance in the ultraviolet and visible range induced by all irradiations follows a linear relationship with fluence. The radiation-induced absorbance normalized to one particle increases slowly with increasing of electronic energy loss below about 8 keV/nm followed by a sharp increase up to about 15 keV/nm above which saturation is reached. FTIR measurements reveal that the materials suffer serious degradation through bond breaking. The absorbance of the typical infrared bands decays exponentially with increase of ion fluence and the bond-disruption cross-section shows a sigmoid variation with electronic energy loss. In PET loss of crystallinity is attributed to the configuration transformation of the ethylene glycol residue from trans into the gauche. Alkyne end groups are induced in all the materials above certain electronic energy loss threshold, which is found to be about 0.8 keV/nm for PS and 0.4 keV/nm for PC. The production cross-section of alkyne end group increases with increasing of electronic energy loss and shows saturation at high electronic energy loss values. It is concluded that not only the physical processes but also the chemical processes of the energy deposition determine the modification of polymer

  15. Direct Coupling of Electron Beam Irradiation and Polymer Extrusion for a Continuous Polymer Modification in Molten State

    International Nuclear Information System (INIS)

    Stephan, M.

    2006-01-01

    The new approach of an e-beam initiating of chemical reactions in polymers in molten state results in some innovative results. High temperature, intensive macromolecular mobility and the absence of any crystallinity are some reasons for achieving unexpected structures, processing behaviour and properties changes in such treated thermoplastics and rubbers. Examples are a much more effective crosslinking of polyethylene and special rubbers, long chain branching of polypropylene or a partial crosslinking of polysulfone. Additionally, most of these modification effects are also achievable by a direct coupling of electron beam irradiation and conventional polymer extrusion processing for a continuous polymer modification in molten state. For realizing this unique processing technique a special MOBILE RADIATION FACILITY (MOBRAD1/T) was designed, constructed and manufactured in the IPF Dresden at which a lab-scale single screw extruder was adapted direct to an electron beam accelerator to realize a prompt irradiation of extruded polymer melt profiles before there solidification. Surprisingly, as a result of these short-time-melt reactions some effective and new polymer modification effects were found and will be presented

  16. Effects of electron beam irradiation on tribological and physico-chemical properties of Polyoxymethylene copolymer (POM-C)

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md. Shahinur; Shaislamov, Ulugbek; Yang, Jong-Keun [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Kim, Jong-Kuk [Plasma Processing Laboratory, Division of Surface Technology, Korea Institute of Materials Science, 797 Changwondaero, Sungsan-Gu, Changwon, Kyungnam 641-010 (Korea, Republic of); Yu, Young Hun [Department of Physics, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Choi, Sooseok [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of); Lee, Heon-Ju, E-mail: hjlee@jejunu.ac.kr [Nuclear Fusion and Plasma Applications Laboratory, Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243 (Korea, Republic of)

    2016-11-15

    Highlights: • Electron beam dose irradiation effect on tribology of POM-C was investigated. • Raman and FTIR-ATR spectra confirm the chemical structural modification. • 1 MeV, 100 kGy dose irradiation induced well suited carbonization and hydrophobicity. • Well suited carbonization and hydrophobicity reduced friction coefficient. - Abstract: Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 kGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using pin on disk tribometer, Raman spectroscopy, FTIR-ATR, gel content analysis, SEM-EDS (scanning electron microscopy-energy dispersive spectroscopy), surface profiler and contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in decrease of the friction coefficient of POM-C block due to well suited carbonization, cross-linking, free radicals formation and partial physical modification. It also showed the lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation dose at 200 kGy resulted in increase of friction coefficient due to less effective cross-linking, but the irradiation doses at 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The degree of improvement for tribological attribute relies on the electron beam surface dose delivered (energy and dose rate).

  17. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    International Nuclear Information System (INIS)

    Krumov, E.; Starbov, N.; Starbova, K.; Perea, A.; Solis, J.

    2009-01-01

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO 2 ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO 2 films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO 2 based thin film catalysts is discussed.

  18. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krumov, E., E-mail: emodk@clf.bas.bg [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Starbov, N.; Starbova, K. [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Perea, A.; Solis, J. [Instituto de Optica ' Daza de Valdes' , CSIC, 28006 Madrid (Spain)

    2009-11-15

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO{sub 2} ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO{sub 2} films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO{sub 2} based thin film catalysts is discussed.

  19. Out-of-equilibrium catalysis of chemical reactions by electronic tunnel currents.

    Science.gov (United States)

    Dzhioev, Alan A; Kosov, Daniel S; von Oppen, Felix

    2013-04-07

    We present an escape rate theory for current-induced chemical reactions. We use Keldysh nonequilibrium Green's functions to derive a Langevin equation for the reaction coordinate. Due to the out of equilibrium electronic degrees of freedom, the friction, noise, and effective temperature in the Langevin equation depend locally on the reaction coordinate. As an example, we consider the dissociation of diatomic molecules induced by the electronic current from a scanning tunnelling microscope tip. In the resonant tunnelling regime, the molecular dissociation involves two processes which are intricately interconnected: a modification of the potential energy barrier and heating of the molecule. The decrease of the molecular barrier (i.e., the current induced catalytic reduction of the barrier) accompanied by the appearance of the effective, reaction-coordinate-dependent temperature is an alternative mechanism for current-induced chemical reactions, which is distinctly different from the usual paradigm of pumping vibrational degrees of freedom.

  20. EG and G electron linac modifications

    International Nuclear Information System (INIS)

    Norris, N.J.; Detch, J.L.; Kocimski, S.M.; Sawyer, C.R.; Hudson, C.L.

    1986-01-01

    A three-year modification of the EG and G electron linac has been performed to replace obsolete equipment and bring all subsystems up to the current state of the art. Components and subsystems were designed, constructed, and tested off-line to minimize interruption of experiments. The configuration of the modified linac is shown schematically, and performance characteristics are give. Each subsystem is described, including: the electron gun; solenoid focusing system; subharmonic bunchers; accelerating system; RF system; klystron modulators and power supplies; control system; beam handling system; vacuum system; and beam current monitors. 7 refs., 4 figs., 2 tabs

  1. 8 MeV electron beam induced modifications in the thermal, structural and electrical properties of nanophase CeO2 for potential electronics applications

    Science.gov (United States)

    Babitha, K. K.; Sreedevi, A.; Priyanka, K. P.; Ganesh, S.; Varghese, Thomas

    2018-06-01

    The effect of 8 MeV electron beam irradiation on the thermal, structural and electrical properties of CeO2 nanoparticles synthesized by chemical precipitation route was investigated. The dose dependent effect of electron irradiation was studied using various characterization techniques such as, thermogravimetric and differential thermal analyses, X-ray diffraction, Fourier transformed infrared spectroscopy and impedance spectroscopy. Systematic investigation based on the results of structural studies confirm that electron beam irradiation induces defects and particle size variation on CeO2 nanoparticles, which in turn results improvements in AC conductivity, dielectric constant and loss tangent. Structural modifications and high value of dielectric constant for CeO2 nanoparticles due to electron beam irradiation make it as a promising material for the fabrication of gate dielectric in metal oxide semiconductor devices.

  2. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Science.gov (United States)

    Moraczewski, Krzysztof; Rytlewski, Piotr; Malinowski, Rafał; Żenkiewicz, Marian

    2015-08-01

    The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  3. Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling

    Science.gov (United States)

    Wu, Zhengliang L.; Lech, Miroslaw

    2005-01-01

    Chemical modification of biological molecules is a general mechanism for cellular regulation. A quantitative approach has been developed to measure the extent of modification on HS (heparan sulphates). Sulphation on HS by sulphotransferases leads to variable sulphation levels, which allows cells to tune their affinities to various extracellular proteins, including growth factors. With stable isotope labelling and HPLC-coupled MS, modification degrees at various O-sulphation sites could be determined. A bovine kidney HS sample was first saturated in vitro with 34S by an OST (O-sulphotransferase), then digested with nitrous acid and analysed with HPLC-coupled MS. The 34S-labelled oligosaccharides were identified based on their unique isotope clusters. The modification degrees at the sulphotransferase recognition sites were obtained by calculating the intensities of isotopic peaks in the isotope clusters. The modification degrees at 3-OST-1 and 6-OST-1 sites were examined in detail. This approach can also be used to study other types of chemical modifications on biological molecules. PMID:15743272

  4. Recent advances in the chemical modification of unsaturated polymers

    Science.gov (United States)

    Schulz, D. N.; Turner, S. R.; Golub, M. A.

    1982-01-01

    The present discussion has the objective to update the most comprehensive reviews on the considered subject and to fill in the gaps of less complete, but more modern treatments. Only simple chemical functionalization or structural modification of unsaturated polymers are covered, and the literature of diene polymer modification since 1974 is emphasized. Attention is given to hydrogenation, halogenation and hydrohalogenation, cyclization, cis-trans isomerization, epoxidation, ene and other cycloaddition reactions, sulfonation, carboxylation, phosphonylation, sulfenyl chloride addition, carbene addition, metalation, and silylation. It is pointed out that modern synthetic reagents and catalysts have been advantageously employed to improve process and/or product quality. Synthetic techniques have been refined to allow the selective modification of specific polymer microstructures or blocks.

  5. Electronic properties of prismatic modifications of single-wall carbon nanotubes

    Science.gov (United States)

    Tomilin, O. B.; Muryumin, E. E.; Rodionova, E. V.; Ryskina, N. P.

    2018-01-01

    The article shows the possibility of target modifying the prismatic single-walled carbon nanotubes (SWCNTs) by regular chemisorption of fluorine atoms in the graphene surface. It is shown that the electronic properties of prismatic SWCNT modifications are determined by the interaction of π- and ρ(in-plane)-electron conjugation in the carbon-conjugated subsystems (tracks) formed in the faces. The contributions of π- and ρ(in-plane)-electron conjugation depend on the structural characteristics of the tracks. It was found that the minimum of degree deviation of the track from the plane of the prism face and the maximum of the track width ensure the maximum contribution of the π-electron conjugation, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the hydrocarbon analog of the carbon track. It is established that the maximum of degree deviation of the track from the plane of the prism face and the maximum of track width ensure the maximum contribution of the ρ(in-plane) electron interface, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the unmodified carbon nanotube. The calculation of the model systems has been carried out using an ab initio Hartree-Fock method in the 3-21G basis.

  6. Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

    KAUST Repository

    Zernickel, Anna

    2014-10-01

    With a few exceptions, all organisms are restricted to the 20 canonical amino acids for ribosomal protein biosynthesis. Addition of new amino acids to the genetic code can introduce novel functionalities to proteins, broadening the diversity of biochemical as well as chemical reactions and providing new tools to study protein structure, reactivity, dynamics and protein-protein-interactions. The site directed in vivo incorporation developed by P. G. SCHULTZ and coworkers, using an archeal orthogonal tRNA/aaRS (aminoacyl-tRNA synthase) pair, allows site-specifically insertion of a synthetic unnatural amino acid (UAA) by reprogramming the amber TAG stop codon. A variety of over 80 different UAAs can be introduced by this technique. However by now a very limited number can form kinetically stable bonds to late transition metals. This thesis aims to develop new catalytically active unnatural amino acids or strategies for a posttranslational modification of site-specific amino acids in order to achieve highly enantioselective metallorganic enzyme hybrids (MOEH). As a requirement a stable protein host has to be established, surviving the conditions for incorporation, posttranslational modification and the final catalytic reactions. mTFP* a fluorescent protein was genetically modified by excluding any exposed Cys, His and Met forming a variant mTFP*, which fulfills the required specifications. Posttranslational chemical modification of mTFP* allow the introduction of single site metal chelating moieties. For modification on exposed cysteines different maleiimid containing ligand structures were synthesized. In order to perform copper catalyzed click reactions, suitable unnatural amino acids (para-azido-(L)-phenylalanine, para-ethynyl-(L)-phenylalanine) were synthesized and a non-cytotoxic protocol was established. The triazole ring formed during this reaction may contribute as a moderate σ-donor/π-acceptor ligand to the metal binding site. Since the cell limits the

  7. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.

    Science.gov (United States)

    Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng

    2017-11-23

    Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.

  8. Chemical modification of poly(vinyl alcohol): evaluation of hydrophilic/lipophilic balance

    International Nuclear Information System (INIS)

    Aranha, Isabele B.; Lucas, Elizabete F.

    2001-01-01

    Poly(vinyl alcohol) terpolymers have been obtained by reaction of partially hydrolized poly(vinyl alcohol) with different acid chlorides. The objective is the preparation of polymers with slight differences in their hydrophilic/lipophilic balance and in the interfacial activities of their solutions. The chemical modifications were characterized by means of 1 H NMR and the polymer properties were evaluated in terms of changes in solubility and surface tension. By chemical modification, polymers with low percentage of hydrophobic group were obtained. The water-soluble polymers obtained did not have the surface tension of their solutions altered. The solubility of the modified polymers decreased markedly, even with low contents of hydrophobic groups. (author)

  9. Radiation modification of swollen and chemically modified cellulose

    International Nuclear Information System (INIS)

    Borsa, J.; Toth, T.

    2002-01-01

    Complete text of publication follows. Biodegradable hydrogel was produced by radiation-induced crosslinking of water soluble carboxymethyl cellulose. Mobility of the molecular chain was found to play an important role in the crosslinking reaction. In this work the role of cellulose chains' mobility in radiation-induced reactions of fibrous cellulose was studied. Mobility of chains was improved by swelling (in sodium hydroxide and tetramethylammonium hydroxide) and chemical modification (substitution of about 3 % of hydroxyl groups with carboxymethyl groups), respectively. All samples were neutralized after the treatments. Accessibility of cellulose characterized by water adsorption and retention was significantly improved by the treatments in the following order: sodium hydroxide < tetramethylammonium hydroxide < carboxymethylation. Less fibrillar structure of modified fibers was observed by electron microscope. Samples were irradiated in wet form in open air (10 kGy). Untreated sample coated with soluble CMC was also irradiated. Degree of polymerization, FTIR spectra, and water sorption of samples before and after irradiation are presented. Amount of water adsorbed on samples decreased after irradiation. It can be considered the consequence of crosslinks, which might improve the crease recovery ability of cotton fabric. High accessibility improved degradation rather than crosslinking of cellulose chains

  10. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization.

    Science.gov (United States)

    Cowan, Don A; Fernandez-Lafuente, Roberto

    2011-09-10

    The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Chemical modification of the lectin of the marine coral Gerardia savaglia by marine quinone avarone

    Directory of Open Access Journals (Sweden)

    IVANA PAJIC

    2007-12-01

    Full Text Available The quinone avarone, isolated from the marine sponge Dysidea avara, possesses the ability to chemically modify proteins. In this work, modification of lectin isolated from the coral Gerardia savaglia by avarone was examined. The techniques used for studying the modification were: SDS PAGE, isoelectric focusing and hemagglutination testing. The results of the SDS PAGE indicate dimerization of the protein. A shift of the pI toward lower value occurs upon modification. The change of the hemagglutination activity of the protein confirms that chemical modification of G. savaglia lectin by avarone changes its ability to interact with the membrane of erythrocytes.

  12. Chemical Modification of Boron-Doped Diamond Electrodes for Applications to Biosensors and Biosensing.

    Science.gov (United States)

    Svítková, Jana; Ignat, Teodora; Švorc, Ľubomír; Labuda, Ján; Barek, Jiří

    2016-05-03

    Boron-doped diamond (BDD) is a prospective electrode material that possesses many exceptional properties including wide potential window, low noise, low and stable background current, chemical and mechanical stability, good biocompatibility, and last but not least exceptional resistance to passivation. These characteristics extend its usability in various areas of electrochemistry as evidenced by increasing number of published articles over the past two decades. The idea of chemically modifying BDD electrodes with molecular species attached to the surface for the purpose of creating a rational design has found promising applications in the past few years. BDD electrodes have appeared to be excellent substrate materials for various chemical modifications and subsequent application to biosensors and biosensing. Hence, this article presents modification strategies that have extended applications of BDD electrodes in electroanalytical chemistry. Different methods and steps of surface modification of this electrode material for biosensing and construction of biosensors are discussed.

  13. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej–Curie 55, 87-100 Toruń (Poland); Żenkiewicz, Marian [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2015-08-15

    Highlights: • We modified polylactide surface layer with chemical, plasma or laser methods. • We tested selected properties and surface structure of modified samples. • We stated that the plasma treatment appears to be the most beneficial. - Abstract: The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm{sup 2} was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  14. Surface chemical modification for exceptional wear life of MEMS materials

    Directory of Open Access Journals (Sweden)

    R. Arvind Singh

    2011-12-01

    Full Text Available Micro-Electro-Mechanical-Systems (MEMS are built at micro/nano-scales. At these scales, the interfacial forces are extremely strong. These forces adversely affect the smooth operation and cause wear resulting in the drastic reduction in wear life (useful operating lifetime of actuator-based devices. In this paper, we present a surface chemical modification method that reduces friction and significantly extends the wear life of the two most popular MEMS structural materials namely, silicon and SU-8 polymer. The method includes surface chemical treatment using ethanolamine-sodium phosphate buffer, followed by coating of perfluoropolyether (PFPE nanolubricant on (i silicon coated with SU-8 thin films (500 nm and (ii MEMS process treated SU-8 thick films (50 μm. After the surface chemical modification, it was observed that the steady-state coefficient of friction of the materials reduced by 4 to 5 times and simultaneously their wear durability increased by more than three orders of magnitude (> 1000 times. The significant reduction in the friction coefficients is due to the lubrication effect of PFPE nanolubricant, while the exceptional increase in their wear life is attributed to the bonding between the -OH functional group of ethanolamine treated SU-8 thin/thick films and the -OH functional group of PFPE. The surface chemical modification method acts as a common route to enhance the performance of both silicon and SU-8 polymer. It is time-effective (process time ≤ 11 min, cost-effective and can be readily integrated into MEMS fabrication/assembly processes. It can also work for any kind of structural material from which the miniaturized devices are/can be made.

  15. Impact of electronic modification of the chelating benzylidene ligand in cis-dichloro-configured second-generation olefin metathesis catalysts on their activity

    KAUST Repository

    Pump, Eva; Poater, Albert; Zirngast, Michaela; Torvisco, Ana; Fischer, Roland C.; Cavallo, Luigi; Slugovc, Christian

    2014-01-01

    A series of electronically modified second-generation cis-dichloro ruthenium ester chelating benzylidene complexes was prepared, characterized, and benchmarked in a typical ring-opening metathesis polymerization (ROMP) experiment. The electronic tuning of the parent chelating benzylidene ligand (2-ethyl ester benzylidene) was achieved by substitution at the 4- and 5-positions with electron-withdrawing nitro or electron-donating methoxy groups. The effect of the electronic tuning on the cis-trans isomerization process was studied experimentally and theoretically. Density functional theory calculations clearly revealed the influence of electronic modification on the relative stability between the cis and trans isomers, which is decisive for the activity of the studied compounds as initiators in ROMP. © 2014 American Chemical Society.

  16. Impact of electronic modification of the chelating benzylidene ligand in cis-dichloro-configured second-generation olefin metathesis catalysts on their activity

    KAUST Repository

    Pump, Eva

    2014-06-09

    A series of electronically modified second-generation cis-dichloro ruthenium ester chelating benzylidene complexes was prepared, characterized, and benchmarked in a typical ring-opening metathesis polymerization (ROMP) experiment. The electronic tuning of the parent chelating benzylidene ligand (2-ethyl ester benzylidene) was achieved by substitution at the 4- and 5-positions with electron-withdrawing nitro or electron-donating methoxy groups. The effect of the electronic tuning on the cis-trans isomerization process was studied experimentally and theoretically. Density functional theory calculations clearly revealed the influence of electronic modification on the relative stability between the cis and trans isomers, which is decisive for the activity of the studied compounds as initiators in ROMP. © 2014 American Chemical Society.

  17. Wettability Modification of Nanomaterials by Low-Energy Electron Flux

    Directory of Open Access Journals (Sweden)

    Torchinsky I

    2009-01-01

    Full Text Available Abstract Controllable modification of surface free energy and related properties (wettability, hygroscopicity, agglomeration, etc. of powders allows both understanding of fine physical mechanism acting on nanoparticle surfaces and improvement of their key characteristics in a number of nanotechnology applications. In this work, we report on the method we developed for electron-induced surface energy and modification of basic, related properties of powders of quite different physical origins such as diamond and ZnO. The applied technique has afforded gradual tuning of the surface free energy, resulting in a wide range of wettability modulation. In ZnO nanomaterial, the wettability has been strongly modified, while for the diamond particles identical electron treatment leads to a weak variation of the same property. Detailed investigation into electron-modified wettability properties has been performed by the use of capillary rise method using a few probing liquids. Basic thermodynamic approaches have been applied to calculations of components of solid–liquid interaction energy. We show that defect-free, low-energy electron treatment technique strongly varies elementary interface interactions and may be used for the development of new technology in the field of nanomaterials.

  18. Aqueous polymer emulsions by chemical modifications of thermosetting alternating polyketones

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, A. A.; Picchioni, F.

    2007-01-01

    Aqueous polymer emulsions were prepared by chemical modifications of thermosetting alternating polyketones in a one-pot reaction. Polymeric amines derived from the polyketones can act as polymeric surfactants for the self-emulsification of polyketones. The stability and structure of the emulsions

  19. Thermal stability of Trichoderma reesei c30 cellulase and aspergillus niger; -glucosidase after ph and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  20. Direct chemical modification and voltammetric detection of glycans in glycoproteins

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2014-01-01

    Roč. 48, NOV2014 (2014), s. 52-55 ISSN 1388-2481 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081707 Keywords : Glycoproteins * Chemical modification * Os(VI)L complexes Subject RIV: BO - Biophysics Impact factor: 4.847, year: 2014

  1. New electron-ion-plasma equipment for modification of materials and products surface

    International Nuclear Information System (INIS)

    Koval', N.N.

    2013-01-01

    Electron-ion-plasma treatment of materials and products, including surface clearing and activation, formation surface layers with changed chemical and phase structure, increased hardness and corrosion resistance; deposition of various functional coatings, has received a wide distribution in a science and industry. Widespread methods of ion-plasma modification of material and product surfaces are ion etching and activation, ion-plasma nitriding, arc or magnetron deposition of functional coatings, including nanostructured. The combination of above methods of surface modification allows essentially to improve exploitation properties of treated products and to optimize the characteristics of modified surfaces for concrete final requirements. For the purpose of a combination of various methods of ion-plasma treatment in a single work cycle at Institute of High Current Electronics of SB RAS (IHCE SB RAS) specialized technological equipment 'DUET', 'TRIO' and 'QUADRO' and 'KVINTA' have been developed. This equipment allow generating uniform low-temperature gas plasma at pressures of (0.1-1) Pa with concentration of (10 9 -10 11 ) cm -3 in volume of (0.1-1) m 3 . In the installations consistent realization of several various operations of materials and products treatment in a single work cycle is possible. The operations are preliminary heating and degassing, ion clearing, etching and activation of materials and products surface by plasma of arc discharges; chemicothermal treatment (nitriding) for formation of diffusion layer on a surface of treated sample using plasma of nonself-sustained low-pressure arc discharge; deposition of single- or multilayered superhard (≥40 GPa) nanocrystalline coatings on the basis of pure metals or their compounds (nitrides, carbides, carbonitrides) by the arc plasma-assisted method. For realization of the modes all installations are equipped by original sources of gas and metal plasma. Besides, in

  2. 78 FR 14835 - Investigations: Terminations, Modifications and Rulings: Certain Consumer Electronics and Display...

    Science.gov (United States)

    2013-03-07

    ..., Modifications and Rulings: Certain Consumer Electronics and Display Devices and Products Containing Same AGENCY... the sale within the United States after importation of certain consumer electronics devices and..., Washington; LG Electronics, Inc. of Seoul, South Korea; LG Electronics, Mobilecomm U.S.A., Inc. of San Diego...

  3. Chemical synthesis of membrane proteins by the removable backbone modification method.

    Science.gov (United States)

    Tang, Shan; Zuo, Chao; Huang, Dong-Liang; Cai, Xiao-Ying; Zhang, Long-Hua; Tian, Chang-Lin; Zheng, Ji-Shen; Liu, Lei

    2017-12-01

    Chemical synthesis can produce membrane proteins bearing specifically designed modifications (e.g., phosphorylation, isotope labeling) that are difficult to obtain through recombinant protein expression approaches. The resulting homogeneously modified synthetic membrane proteins are valuable tools for many advanced biochemical and biophysical studies. This protocol describes the chemical synthesis of membrane proteins by condensation of transmembrane peptide segments through native chemical ligation. To avoid common problems encountered due to the poor solubility of transmembrane peptides in almost any solvent, we describe an effective procedure for the chemical synthesis of membrane proteins through the removable-backbone modification (RBM) strategy. Two key steps of this protocol are: (i) installation of solubilizing Arg4-tagged RBM groups into the transmembrane peptides at any primary amino acid through Fmoc (9-fluorenylmethyloxycarbonyl) solid-phase peptide synthesis and (ii) native ligation of the full-length sequence, followed by removal of the RBM tags by TFA (trifluoroacetic acid) cocktails to afford the native protein. The installation of RBM groups is achieved by using 4-methoxy-5-nitrosalicyladehyde by reduction amination to incorporate an activated O-to-N acyl transfer auxiliary. The Arg4-tag-modified membrane-spanning peptide segments behave like water-soluble peptides to facilitate their purification, ligation and mass characterization.

  4. Glycan Reader is improved to recognize most sugar types and chemical modifications in the Protein Data Bank.

    Science.gov (United States)

    Park, Sang-Jun; Lee, Jumin; Patel, Dhilon S; Ma, Hongjing; Lee, Hui Sun; Jo, Sunhwan; Im, Wonpil

    2017-10-01

    Glycans play a central role in many essential biological processes. Glycan Reader was originally developed to simplify the reading of Protein Data Bank (PDB) files containing glycans through the automatic detection and annotation of sugars and glycosidic linkages between sugar units and to proteins, all based on atomic coordinates and connectivity information. Carbohydrates can have various chemical modifications at different positions, making their chemical space much diverse. Unfortunately, current PDB files do not provide exact annotations for most carbohydrate derivatives and more than 50% of PDB glycan chains have at least one carbohydrate derivative that could not be correctly recognized by the original Glycan Reader. Glycan Reader has been improved and now identifies most sugar types and chemical modifications (including various glycolipids) in the PDB, and both PDB and PDBx/mmCIF formats are supported. CHARMM-GUI Glycan Reader is updated to generate the simulation system and input of various glycoconjugates with most sugar types and chemical modifications. It also offers a new functionality to edit the glycan structures through addition/deletion/modification of glycosylation types, sugar types, chemical modifications, glycosidic linkages, and anomeric states. The simulation system and input files can be used for CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Glycan Fragment Database in GlycanStructure.Org is also updated to provide an intuitive glycan sequence search tool for complex glycan structures with various chemical modifications in the PDB. http://www.charmm-gui.org/input/glycan and http://www.glycanstructure.org. wonpil@lehigh.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches

    Directory of Open Access Journals (Sweden)

    Paola Laurienzo

    2008-09-01

    Full Text Available Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  6. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto

    2015-01-01

    We extend the definition of the electronic chemical potential (μ e ) and chemical hardness (η e ) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ e . Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness

  7. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Ayers, Paul W. [Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Vela, Alberto [Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, México D. F. 07360 (Mexico)

    2015-10-21

    We extend the definition of the electronic chemical potential (μ{sub e}) and chemical hardness (η{sub e}) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ{sub e}. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  8. Chemically Patterned Inverse Opal Created by a Selective Photolysis Modification Process.

    Science.gov (United States)

    Tian, Tian; Gao, Ning; Gu, Chen; Li, Jian; Wang, Hui; Lan, Yue; Yin, Xianpeng; Li, Guangtao

    2015-09-02

    Anisotropic photonic crystal materials have long been pursued for their broad applications. A novel method for creating chemically patterned inverse opals is proposed here. The patterning technique is based on selective photolysis of a photolabile polymer together with postmodification on released amine groups. The patterning method allows regioselective modification within an inverse opal structure, taking advantage of selective chemical reaction. Moreover, combined with the unique signal self-reporting feature of the photonic crystal, the fabricated structure is capable of various applications, including gradient photonic bandgap and dynamic chemical patterns. The proposed method provides the ability to extend the structural and chemical complexity of the photonic crystal, as well as its potential applications.

  9. Characterisation of waste derived biochar added biocomposites: chemical and thermal modifications

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Zujovic, Zoran [School of Chemical Sciences, University of Auckland, Auckland 1142 (New Zealand); Bhattacharyya, Debes [Centre for Advanced Composite Materials, Department of Mechanical Engineering, University of Auckland, Auckland 1142 (New Zealand)

    2016-04-15

    A step towards sustainability was taken by incorporating waste based pyrolysed biochar in wood and polypropylene biocomposites. The effect of biochar particles on the chemistry and thermal makeup of the composites was determined by characterising them through an array of characterisation techniques such as 3D optical profiling, X-ray diffraction, transmission electron microscopy, electron spin/nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. It was observed that addition of biochar increased the presence of free radicals in the composite while also improving its thermal conductivity. Biochar particles did not interfere with the melting behaviour of polymer in the thermal regime. However, wood and biochar acted as nucleation agents consequently increasing the crystallisation temperature. The crystal structure of polypropylene was not disrupted by biochar inclusion in composite. Transmission electron microscopy images illustrated the aggregated nature of the biochar particles at higher loading levels. Nuclear magnetic resonance studies revealed the aromatic nature of biochar and the broadening of peak intensities of composites with increasing biochar levels due to its amorphous nature and presence of free radicals. Thus, this insight into the chemical and thermal modification of biochar added composites would allow effective engineering to optimise their properties while simultaneously utilising wastes. - Highlights: • Waste derived biochars were used to make polymer based biocomposites. • Composites were characterised by NMR, ESR, DSC, XRD, TEM etc. • Biochar increased the thermal conductivity of composites. • Biochar did not disrupt the crystal structure of polypropylene. • NMR revealed aromatic nature of biochar in composites.

  10. Characterisation of waste derived biochar added biocomposites: chemical and thermal modifications

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.; Zujovic, Zoran; Bhattacharyya, Debes

    2016-01-01

    A step towards sustainability was taken by incorporating waste based pyrolysed biochar in wood and polypropylene biocomposites. The effect of biochar particles on the chemistry and thermal makeup of the composites was determined by characterising them through an array of characterisation techniques such as 3D optical profiling, X-ray diffraction, transmission electron microscopy, electron spin/nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. It was observed that addition of biochar increased the presence of free radicals in the composite while also improving its thermal conductivity. Biochar particles did not interfere with the melting behaviour of polymer in the thermal regime. However, wood and biochar acted as nucleation agents consequently increasing the crystallisation temperature. The crystal structure of polypropylene was not disrupted by biochar inclusion in composite. Transmission electron microscopy images illustrated the aggregated nature of the biochar particles at higher loading levels. Nuclear magnetic resonance studies revealed the aromatic nature of biochar and the broadening of peak intensities of composites with increasing biochar levels due to its amorphous nature and presence of free radicals. Thus, this insight into the chemical and thermal modification of biochar added composites would allow effective engineering to optimise their properties while simultaneously utilising wastes. - Highlights: • Waste derived biochars were used to make polymer based biocomposites. • Composites were characterised by NMR, ESR, DSC, XRD, TEM etc. • Biochar increased the thermal conductivity of composites. • Biochar did not disrupt the crystal structure of polypropylene. • NMR revealed aromatic nature of biochar in composites.

  11. Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody

    Science.gov (United States)

    2015-01-01

    Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called “acidic species” that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity. PMID:25136741

  12. Thermal stability of Trichoderma reesei C30 cellulase and Aspergillus niger. beta. -glucosidase after pH and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger ..beta..-glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  13. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    Science.gov (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-07

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  14. Soft X-ray induced chemical modification of polysaccharides in vascular plant cell walls

    International Nuclear Information System (INIS)

    Cody, George D.; Brandes, Jay; Jacobsen, Chris; Wirick, Susan

    2009-01-01

    Scanning transmission X-ray microscopy and micro carbon X-ray Absorption Near Edge Spectroscopy (C-XANES) can provide quantitative information regarding the distribution of the biopolymers cellulose, hemicellulose, and lignin in vascular plant cell walls. In the case of angiosperms, flowering plants, C-XANES may also be able to distinguish variations in lignin monomer distributions throughout the cell wall. Polysaccharides are susceptible to soft X-ray irradiation induced chemical transformations that may complicate spectral analysis. The stability of a model polysaccharide, cellulose acetate, to variable doses of soft X-rays under conditions optimized for high quality C-XANES spectroscopy was investigated. The primary chemical effect of soft X-ray irradiation on cellulose acetate involves mass loss coincident with de-acetylation. A lesser amount of vinyl ketone formation also occurs. Reduction in irradiation dose via defocusing does enable high quality pristine spectra to be obtained. Radiation induced chemical modification studies of oak cell wall reveals that cellulose and hemicellulose are less labile to chemical modification than cellulose acetate. Strategies for obtaining pristine C-XANES spectra of polysaccharides are presented.

  15. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  16. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Pallavi; Maire, Pascal [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland); Novak, Petr, E-mail: petr.novak@psi.c [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland)

    2011-04-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH{sub 2}){sub 3}OCO{sub 2}Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C{sub 6}H{sub 4}NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C{sub 6}H{sub 4}CH{sub 2}OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  17. [Chemical modification of allergen leading to changes in its epitopic activity].

    Science.gov (United States)

    Babakhin, A A; Gushchin, I S; Andreev, S M; Petrukhina, A I; Viler, A V; Stokinger, B; Nolte, G; Dubuske, L M; Khaitov, R M; Petrpv, R V

    1999-01-01

    Modification of a model allergen ovalbumin (OA) with succinylation led to a decrease of its allergenicity measured by passive cutaneous anaphylaxis reaction, RAST inhibition assay and basophil histamine release. Modified OA stimulated OA-specific T-cell hybrid 3DO-548 to produce IL-2 at the same level as in case of non-modified OA. Modified OA did not induce anti-OA IgE, but did induce anti-OA IgG antibodies. This approach to chemical modification of allergen-selective blockade of B-cell epitopes while not affecting T-cell epitopes suggests new opportunities in creation of safe and effective allergovaccines.

  18. Effects of nuclear elastic scattering and modifications of ion-electron equilibration power on advanced-fuel burns

    International Nuclear Information System (INIS)

    Galambos, J.D.

    1983-01-01

    The effects of Nuclear Elastic Scattering (NES) of fusion products and modifications of the ion-electron equilibration power on D-T and D-based advanced-fuel fusion plasmas are presented here. The processes causing the modifications to the equilibration power included here are: (1) depletion of low-energy electrons by Coulomb collisions with the ions; and (2) magnetic field effects on the energy transfer between the ions and the electrons. Both NES and the equilibration modifications affect the flow of power to the plasma ions, which is an important factor in the analysis of advanced-fuels. A Hot Ion Mode (HIM) analysis was used to investigate the changes in the minimum ignition requirements for Cat-D and D- 3 He plasmas, due to the changes in the allowable T/sub i/T/sub e/ for ignition from NES and equilibration modifications. Both of these effects have the strongest influence on the ignition requirements for high temperature (>50 keV), low beta (<15%) plasmas, where the cyclotron radiation power loss from the electrons (which is particularly sensitive to changes in the electron temperature) is large

  19. Modification of C60/C70+Pd film structure under electric field influence during electron emission

    International Nuclear Information System (INIS)

    Czerwosz, E.; Dluzewski, P.; Kozlowski, M.

    2001-01-01

    We investigated the modification of structure of C 60 /C 70 +Pd films during cold electron emission from these films. Films were obtained by vacuum thermal deposition from two sources and were characterised before and after electron emission measurements by transmission electron microscopy and electron diffraction. Films were composed of nanocrystalline Pd objects dispersed in carbon/fullerenes matrix. I-V characteristics for electron emission were obtained in diode geometry with additionally applied voltage along the film surface. The modification of film structure occurred under applied electric field and the grouping of Pd nano crystals into bigger objects was observed

  20. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties

    KAUST Repository

    Pandey, Laxman

    2012-08-28

    We systematically investigate at the density functional theory level how changes to the chemical structure of donor-acceptor copolymers used in a number of organic electronics applications influences the intrinsic geometric, electronic, and optical properties. We consider the combination of two distinct donors, where a central five-membered ring is fused on both sides by either a thiophene or a benzene ring, with 12 different acceptors linked to the donor either directly or through thienyl linkages. The interplay between the electron richness/deficiency of the subunits as well as the evolution of the frontier electronic levels of the isolated donors/acceptors plays a significant role in determining the electronic and optical properties of the copolymers. © 2012 American Chemical Society.

  1. Chemical modification of arginine residues in the lactose repressor

    International Nuclear Information System (INIS)

    Whitson, P.A.; Matthews, K.S.

    1987-01-01

    The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino aced analysis or incorporation of 14 C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of ∼ 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA

  2. Electron beam modification of vanadium dioxide oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, Maksim; Velichko, Andrey; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander [Petrozavodsk State University, Petrozavodsk (Russian Federation)

    2017-03-15

    The paper presents the results of a study of electron-beam modification (EBM) of VO{sub 2}-switch I-V curve threshold parameters and the self-oscillation frequency of a circuit containing such a switching device. EBM in vacuum is reversible and the parameters are restored when exposed to air at pressure of 150 Pa. At EBM with a dose of 3 C cm{sup -2}, the voltages of switching-on (V{sub th}) and off (V{sub h}), as well as the OFF-state resistance R{sub off}, decrease down to 50% of the initial values, and the oscillation frequency increases by 30% at a dose of 0.7 C cm{sup -2}. Features of physics of EBM of an oscillator are outlined considering the contribution of the metal and semiconductor phases of the switching channel. Controlled modification allows EBM forming of switches with preset parameters. Also, it might be used in artificial oscillatory neural networks for pattern recognition based on frequency shift keying. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Bentonite chemical modification for use in industrial effluents

    International Nuclear Information System (INIS)

    Laranjeira, E.; Pinto, M.R.O.; Rodrigues, D.P.; Costa, B.P.; Guimaraes, P.L.F.

    2010-01-01

    The present work aims at synthesizing organoclays using a layered silicate of regional importance, bentonite clay, for the treatment of industrial effluents. The choice of clay to be organophilized was based on cation exchange capacity (CEC). Bentonite with higher CTC was called AN 35 (92 meq/100 g), and therefore was the one that suffered the chemical modification with salt cetyl trimethyl ammonium Cetremide, provided by Vetec.The unmodified and modified clays were characterized by FTIR and XDR. The data obtained through the characterizations confirmed the acquisition of bentonite organoclay thus suggesting its subsequent application in the treatment of industrial effluents. (author)

  4. Profile modification and hot electron temperature from resonant absorption at modest intensity

    International Nuclear Information System (INIS)

    Albritton, J.R.; Langdon, A.B.

    1980-01-01

    Resonant absorption is investigated in expanding plasmas. The momentum deposition associated with the ejection of hot electrons toward low density via wavebreaking readily exceeds that of the incident laser radiation and results in significant modification of the density profile at critical. New scaling of hot electron temperature with laser and plasma parameters is presented

  5. Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment

    International Nuclear Information System (INIS)

    Wang Shifang; Li Juan; Suo Jinping; Luo Tianzhi

    2010-01-01

    A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 ± 3 deg. to 30 ± 4 deg. treated at 100 deg. C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 deg. C for 3 h. Hydrophilic groups such as carbonyl (C=O) and hydroxyl (-OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K 0.27 MnO 2 .0.54H 2 O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.

  6. Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shifang; Li Juan [State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Luo-Yu Road 1037, Wuhan, Hubei 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Luo-Yu Road 1037, Wuhan, Hubei 430074 (China); Luo Tianzhi [State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Luo-Yu Road 1037, Wuhan, Hubei 430074 (China)

    2010-01-15

    A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 {+-} 3 deg. to 30 {+-} 4 deg. treated at 100 deg. C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 deg. C for 3 h. Hydrophilic groups such as carbonyl (C=O) and hydroxyl (-OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K{sub 0.27}MnO{sub 2}.0.54H{sub 2}O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.

  7. Chemical modification of DNA: Molecular specificity studied by tandem mass spectrometry and liquid chromatography

    International Nuclear Information System (INIS)

    Chang, Ching-jer; Cooks, R.G.; Chae, Whi-Gun; Wood, J.M.

    1989-01-01

    Chemical modifications of DNA in vitro could be directly studied by C-13 NMR and P-31 NMR, which eliminated all degradation and separation processes. The prospects of utilized the NMR method in the in vitro experiments are limited because of the inherent low sensitivity of NMR and low level of DNA modification. We have developed a reverse-phase ion-paired HPLC method to study DNA modifications by methylating agents. The structural specificity of HPLC is significantly enhanced by conjunction with the specificity of enzymic transformations. The HPLC studies have also revealed the limitation of HPLC method for simultaneous determination of many minor modified nucleosides. This problem has been overcome by tandem mass spectrometry. In conjunction with the resolving power of HPLC in separating isomers, desorption chemical ionization tandem mass spectrometry has been utilized in the determination of the modified nucleosides at the picomole level using stable-isotope labeled compounds as internal references

  8. Chemical Modification of Uniform Soils and Soils with High/Low Plasticity Index

    OpenAIRE

    Li, Xuanchi; Tao, Fei; Bobet, Antonio

    2015-01-01

    Lime and/or cement are used to treat weak subgrade soils during construction of highways. These chemicals are mixed with the soil to improve its workability, compactability and engineering properties. INDOT (Indiana Department of Transportation) has been using chemical modification of native soils for the past 20 years. In fact, 90% of current subgrade is treated, typically with quick lime, lime byproducts or cement. For pavement design, it is customary to not include any improvement of the s...

  9. The surface modification of polystyrene

    International Nuclear Information System (INIS)

    Tremlett, C.

    2000-03-01

    Polymers have ideal bulk properties for many applications. However, adhesion to many polymers is poor without surface pretreatment. This can result, for example, in peeling paint and printing, adhesive joint failure and bio-incompatibility. In applications such as painting, printing, adhesive bonding and biocompatibility, various cleaning or surface chemical modifications may be employed. A commodity polymer where pretreatment is sometimes needed is polystyrene. This project investigated, in detail, the effects of a novel method of modification namely mediated electrochemical oxidation (MEO), as a mode of surface modification on polystyrene and a comparison was made with other polymers. The resulting modification was investigated using a range of surface analysis techniques to obtain complementary information. These included, X-ray photoelectron spectroscopy, contact angles, static secondary ion mass spectrometry, atomic force microscopy, chemical derivatization, scanning electron microscopy, attenuated total reflection Fourier Transform infrared spectroscopy and composite lap shear joint testing. It has been shown that MEO modifies the surface of polystyrene introduced oxygen mainly as hydroxyl groups, and a small number of carbonyl groups, that are positioned only on the backbone hydrocarbon chain. This modification improved adhesion, was stable and samples could be stored in aqueous media. The resulting hydroxylation was further derivatized using an amino acid to provide a specialised surface. This was very different from the multiple oxygen functionalities introduced in the comparison studies by UV/ozone and plasma treatments. (author)

  10. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy.

    Science.gov (United States)

    Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-06-01

    Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.

  11. Modification of surfaces and surface layers by non equilibrium processes

    International Nuclear Information System (INIS)

    Beamson, G.; Brennan, W.J.; Clark, D.T.; Howard, J.

    1988-01-01

    Plasmas are examples of non-equilibrium phenomena which are being used increasingly for the synthesis and modification of materials impossible by conventional routes. This paper introduces methods available by describing the construction and characteristics of some equipment used for the production of different types of plasmas and other non-equilibrium phenomena. This includes high energy ion beams. The special features, advantages and disadvantages of the techniques will be described. There are a multitude of potential application relevant to electronic, metallic, ceramic, and polymeric materials. However, scale-up from the laboratory to production equipment depends on establishing a better understanding of both the physics and chemistry of plasma as well as plasma-solid interactions. Examples are given of how such an understanding can be gained. The chemical analysis of polymer surfaces undergoing modification by inert gas, hydrogen or oxygen plasmas is shown to give physical information regarding the relative roles of diffusion of active species, and direct and radiative energy transfer from the plasma. Surface modification by plasma depositing a new material onto an existing substrate is discussed with particular reference to the deposition of amorphous carbon films. Applications of the unique properties of these films are outlined together with our current understanding of these properties based on chemical and physical methods of analysis of both the films and the plasmas producing them. Finally, surface modification by ion beams is briefly illustrated using examples from the electronics and metals industries where the modification has had a largely physical rather than chemical effect on the starting material. (orig.)

  12. Thin-film chemical sensors based on electron tunneling

    Science.gov (United States)

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  13. Diagnostics of microwave assisted electron cyclotron resonance plasma source for surface modification of nylon 6

    Science.gov (United States)

    More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.

    2018-01-01

    Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.

  14. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties

    KAUST Repository

    Pandey, Laxman; Risko, Chad; Norton, Joseph E.; Bré das, Jean-Luc

    2012-01-01

    We systematically investigate at the density functional theory level how changes to the chemical structure of donor-acceptor copolymers used in a number of organic electronics applications influences the intrinsic geometric, electronic, and optical

  15. Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination

    International Nuclear Information System (INIS)

    Avilov, A.; Kuligin, K.; Nicolopoulos, S.; Nickolskiy, M.; Boulahya, K.; Portillo, J.; Lepeshov, G.; Sobolev, B.; Collette, J.P.; Martin, N.; Robins, A.C.; Fischione, P.

    2007-01-01

    We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession 'Spinning Star' system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF 2 as revealed for the first time by precise electron diffractometry

  16. Modifications of chemical functional groups of Pandanus amaryllifolius Roxb and its effect towards biosorption of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Mohd Zamri, E-mail: zamriab@petronas.com.my; Ismail, Siti Salwa [Chemical Engineering Department, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2015-07-22

    The utilization of non-living biomass as an alternative biosorbent for heavy metal removal has gain a tremendous consideration through the years. Pandanus amaryllifolius Roxb or pandan leaves, which is widely used as food additives in the South East Asia region, has been selected for its viability in the said effort due to the presence of chemical functional groups on its cellular network that enables the sorption to occur. In order to elucidate the possible mechanisms participated during the heavy metal removal process, the biosorbent undergone a series of modification techniques to alter the chemical functional groups present on its constituent. From the outcome of the chemically-modified biosorbent being subjected to the contact with metal cations, nitrogen- and oxygen-containing groups present on the biosorbent are believed to be responsible for the metal uptake to occur through complexation mechanism. Modifying amine groups causes 14% reduction of Cu(II) uptake, whereas removing protein element increases the uptake to 26% as compared to the unmodified biosorbent. Also, scanning electron micrographs further suggested that the adsorption mechanism could perform in parallel, as attributed to the evidence of porous structure throughout the biosorbent fibrous nature.

  17. Modifications of chemical functional groups of Pandanus amaryllifolius Roxb and its effect towards biosorption of heavy metals

    International Nuclear Information System (INIS)

    Abdullah, Mohd Zamri; Ismail, Siti Salwa

    2015-01-01

    The utilization of non-living biomass as an alternative biosorbent for heavy metal removal has gain a tremendous consideration through the years. Pandanus amaryllifolius Roxb or pandan leaves, which is widely used as food additives in the South East Asia region, has been selected for its viability in the said effort due to the presence of chemical functional groups on its cellular network that enables the sorption to occur. In order to elucidate the possible mechanisms participated during the heavy metal removal process, the biosorbent undergone a series of modification techniques to alter the chemical functional groups present on its constituent. From the outcome of the chemically-modified biosorbent being subjected to the contact with metal cations, nitrogen- and oxygen-containing groups present on the biosorbent are believed to be responsible for the metal uptake to occur through complexation mechanism. Modifying amine groups causes 14% reduction of Cu(II) uptake, whereas removing protein element increases the uptake to 26% as compared to the unmodified biosorbent. Also, scanning electron micrographs further suggested that the adsorption mechanism could perform in parallel, as attributed to the evidence of porous structure throughout the biosorbent fibrous nature

  18. Radiation modification of materials

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1987-01-01

    Industrial and radiation chemical processes of material modification based on cross-linking of polymers as a result of radiation are considered. Among them are production of cables and rods with irradiated modified insulation, production of hardened and thermo-shrinkaging polymer products (films, tubes, fashioned products), production of radiation cross-linked polyethylene foam, technology of radiation vulcanization of elastomers. Attention is paid to radiation plants on the basis of γ-sources and electron acceleratos as well as to radiation conditions

  19. The behavior of various chemical forms of nickel in graphite furnace atomic absorption spectrometry under different chemical modification approaches

    International Nuclear Information System (INIS)

    Kowalewska, Zofia

    2012-01-01

    Various organic and inorganic Ni forms were investigated using graphite furnace atomic absorption spectrometry. Experiments without chemical modification showed a wide range of characteristic mass values for Ni (from 6.7 to 29 pg) and the importance of interaction with graphite. With the aim of achieving signal unification of organic Ni forms, different ways of chemical modification were tested. Some rules that govern the behavior of Ni were found and confirmed a significant role of the organic component of the analyte molecule in the analytical process. The application of air as an internal furnace gas in the pyrolysis phase and the Pd modifier injected with the sample solution improved the signal of porphyrins, while the application of iodine and methyltrioctylammonium chloride was required for organic compounds containing oxygen-bound Ni atoms. The Ni signal was strongly diminished when an aqueous solution containing hydrochloric acid was measured with the Pd modifier injected over the sample. Using the developed analytical methods, the range of characteristic mass values for various Ni forms totally dissolved in organic or aqueous solution was 6.5–7.9 pg. - Highlights: ► Some rules that govern behavior of organic Ni forms during GFAAS analysis were found. ► Interaction with graphite can significantly influence evaporation of porphyrins. ► Determination of Ni in form of porphyrins needs Pd organic modifier and air ashing. ► Determination of Ni in O-bound organic compounds needs pretreatment with I2+MTOACl. ► Chemical modification for GFAAS determination of Ni in HCl-containing solution.

  20. Defect creation by swift heavy ions: materials modifications in the electronic stopping power regime

    International Nuclear Information System (INIS)

    Toulemonde, M.

    1994-01-01

    The material modifications by swift heavy ions in the electronic stopping power regime are puzzling question: How the energy deposited on the electrons can induced material modifications? In order to answer to this question, the modifications induced in non-radiolytic materials are described and compared to the predictions. In first part the main experimental observations is presented taking into account the irradiation parameters. Then it is shown that the initial phases of the material are very important. Amorphous materials, whatever it is a metal, a semiconductor or an insulator, are till now all sensitive to the high electronic excitation induced by the slowing down of a swift heavy ion. All oxide materials, insulators or conductors, are also sensitive even the MgO, one of most famous exceptions. Crystalline metals or semiconductors are intermediate cases: some are insensitive like Cu and Si respectively while Fe and GeS are sensitive. The main feature is the different values of the electronic stopping power threshold of material modifications. The evolution of the damage creation is described showing that the damage morphology seems to be the same whatever the material is amorphous or crystalline. In second part a try of interpretation of the experimental results will be done on the behalf of the two following models: The Coulomb spike and the thermal spike models. It will be shown that there is some agreement with limited predictions made in the framework of the Coulomb spike model. But it appears that the thermal spike model can account for most of the experimental data using only one free parameter: The electron-phonon strength which is a physical characteristic of the irradiated material. (author). 4 figs., 1 tab., 64 refs

  1. Electron beam induced modification of poly(ethylene terephthalate) films

    International Nuclear Information System (INIS)

    Vasiljeva, I.V.; Mjakin, S.V.; Makarov, A.V.; Krasovsky, A.N.; Varlamov, A.V.

    2006-01-01

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  2. Electron beam induced modification of poly(ethylene terephthalate) films

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljeva, I.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation)]. E-mail: radiant@skylink.spb.ru; Mjakin, S.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation); Makarov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Krasovsky, A.N. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Varlamov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation)

    2006-10-15

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  3. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    International Nuclear Information System (INIS)

    Gonzalez, G.; Krishnan, B.; Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K.; Shaji, S.

    2011-01-01

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  4. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  5. Tuning electron transport through a single molecular junction by bridge modification

    International Nuclear Information System (INIS)

    Li, Xiao-Fei; Qiu, Qi; Luo, Yi

    2014-01-01

    The possibility of controlling electron transport in a single molecular junction represents the ultimate goal of molecular electronics. Here, we report that the modification of bridging group makes it possible to improve the performance and obtain new functions in a single cross-conjugated molecular junction, designed from a recently synthesized bipolar molecule bithiophene naphthalene diimide. Our first principles results show that the bipolar characteristic remains after the molecule was modified and sandwiched between two metal electrodes. Rectifying is the intrinsic characteristic of the molecular junction and its performance can be enhanced by replacing the saturated bridging group with an unsaturated group. A further improvement of the rectifying and a robust negative differential resistance (NDR) behavior can be achieved by the modification of unsaturated bridge. It is revealed that the modification can induce a deviation angle about 4° between the donor and the acceptor π-conjugations, making it possible to enhance the communication between the two π systems. Meanwhile, the low energy frontier orbitals of the junction can move close to the Fermi level and encounter in energy at certain biases, thus a transport channel with a considerable transmission can be formed near the Fermi level only at a narrow bias regime, resulting in the improvement of rectifying and the robust NDR behavior. This finding could be useful for the design of single molecular devices.

  6. Surface modification of the metal plates using continuous electron beam process (CEBP)

    International Nuclear Information System (INIS)

    Kim, Jisoo; Kim, Jin-Seok; Kang, Eun-Goo; Park, Hyung Wook

    2014-01-01

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined

  7. Surface modification of the metal plates using continuous electron beam process (CEBP)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jisoo, E-mail: kimjisu16@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of); Kim, Jin-Seok, E-mail: totoro22@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Kang, Eun-Goo, E-mail: egkang@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Park, Hyung Wook, E-mail: hwpark@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of)

    2014-08-30

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined.

  8. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    Science.gov (United States)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical

  9. Modification to an Auger Electron Spectroscopy system for measuring segregation in a bi-crystal

    International Nuclear Information System (INIS)

    Jafta, C J; Roos, W D; Terblans, J J

    2013-01-01

    It is reported that different crystal surface orientations yield different segregation fluxes. Although there were a few attempts to confirm these predictions experimentally, it is very difficult to compare data without making a few assumptions. Parameters like temperature measurement, crystal history and spectrometer variables are all adding to the complexity of directly comparing the segregation behaviour from one crystal to another. This investigation makes use of a Cu bi-crystal, modifications to the scanning control unit of the AES electron beam to eliminate the difference in experimental parameters and specialized written software to automate the data acquisition process. This makes direct comparison of segregation parameters on two different orientations possible. The paper describes the electron beam modifications, experimental setup and procedures, as well as the software developed to control the electron beam and automate data acquisition.

  10. Graphene-Based Chemical Vapor Sensors for Electronic Nose Applications

    Science.gov (United States)

    Nallon, Eric C.

    An electronic nose (e-nose) is a biologically inspired device designed to mimic the operation of the olfactory system. The e-nose utilizes a chemical sensor array consisting of broadly responsive vapor sensors, whose combined response produces a unique pattern for a given compound or mixture. The sensor array is inspired by the biological function of the receptor neurons found in the human olfactory system, which are inherently cross-reactive and respond to many different compounds. The use of an e-nose is an attractive approach to predict unknown odors and is used in many fields for quantitative and qualitative analysis. If properly designed, an e-nose has the potential to adapt to new odors it was not originally designed for through laboratory training and algorithm updates. This would eliminate the lengthy and costly R&D costs associated with materiel and product development. Although e-nose technology has been around for over two decades, much research is still being undertaken in order to find new and more diverse types of sensors. Graphene is a single-layer, 2D material comprised of carbon atoms arranged in a hexagonal lattice, with extraordinary electrical, mechanical, thermal and optical properties due to its 2D, sp2-bonded structure. Graphene has much potential as a chemical sensing material due to its 2D structure, which provides a surface entirely exposed to its surrounding environment. In this configuration, every carbon atom in graphene is a surface atom, providing the greatest possible surface area per unit volume, so that electron transport is highly sensitive to adsorbed molecular species. Graphene has gained much attention since its discovery in 2004, but has not been realized in many commercial electronics. It has the potential to be a revolutionary material for use in chemical sensors due to its excellent conductivity, large surface area, low noise, and versatile surface for functionalization. In this work, graphene is incorporated into a

  11. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases.

    Science.gov (United States)

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-04-20

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Chemical information from Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Madden, H.H.

    1981-01-01

    The nature of chemical information in Auger electron spectroscopy (AES) data is reviewed with special emphasis on data from solid surface systems. Two strategies are most frequently used to extract this information: (i) measuring and analyzing energy (chemical) shifts in Auger peaks; and (ii) making use of the shapes of Auger signals to determine the chemical environment at the site of the initial core hole. Chemical shift data are primarily illustrated by highlighting the interaction of oxygen with solids; and analyses of these data based on core-level binding-energy shifts, relaxation, and hole--hole interactions are outlined and discussed. Auger transitions that involve valence electrons are usually those for which lineshapes are taken as indications of the local chemistry at the initial core-hole site. Attempts at extracting valence band density-of-states information from lineshapes are proving successful and this approach to the surface chemical information in AES is illustrated with the aid of examples dealing with the interaction of silicon with hydrogen and with oxygen. The use of the AES lineshapes simply as ''fingerprints'' of the core-hole-site chemistry is examined and illustrated by examples which include studies of silicon nitride properties, of solid surface properties related to catalytic reactions, and of passive films on iron. Auger decay activated desorption processes are briefly examined and found to promise new and unique chemical information when combined with conventional AES. Some gas phase AES studies are also briefly reviewed

  13. Plant Sterols: Chemical and Enzymatic Structural Modifications and Effects on Their Cholesterol-Lowering Activity.

    Science.gov (United States)

    He, Wen-Sen; Zhu, Hanyue; Chen, Zhen-Yu

    2018-03-28

    Plant sterols have attracted increasing attention due to their excellent cholesterol-lowering activity. However, free plant sterols have some characteristics of low oil solubility, water insolubility, high melting point, and low bioavailability, which greatly limit their application in foods. Numerous studies have been undertaken to modify their chemical structures to improve their chemical and physical properties in meeting the needs of various applications. The present review is to summarize the literature and update the progress on structural modifications of plant sterols in the following aspects: (i) synthesis of plant sterol esters by esterification and transesterification with hydrophobic fatty acids and triacylglycerols to improve their oil solubility, (ii) synthesis of plant sterol derivatives by coupling with various hydrophilic moieties to enhance their water solubility, and (iii) mechanisms by which plant sterols reduce plasma cholesterol and the effect of structural modifications on plasma cholesterol-lowering activity of plant sterols.

  14. Precision shape modification of nanodevices with a low-energy electron beam

    Science.gov (United States)

    Zettl, Alex; Yuzvinsky, Thomas David; Fennimore, Adam

    2010-03-09

    Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.

  15. The influence of chemical methods (acid modification) on elephant foot yam flour to improve physical and chemical quality on processed food

    Science.gov (United States)

    Paramita, Octavianti; Wahyuningsih, Ansori, Muhammad

    2018-03-01

    This study was aimed at improving the physicochemical quality of elephant foot yam flour in Gunungpati, Semarang by acid modification. The utilization of elephant foot yam flour in several processed food was also discussed in this study. The flour of the experimental result discussed in this study was expected to become a reference for the manufacturers of elephant foot yam flour and its processed food in Gunungpati. This study modified the elephant foot yam flour using acid modification method. The physical and chemical quality of each elephant foot yam flour of the experimental result sample were assessed using proximate analysis. The resulting tuber flour weighed 50 grams and the soaked in acid solution with various concentrations 5 %, 10 % and 15 % with soaking duration 30, 60 and 90 minutes at temperature 35 °C. The resulting suspension was washed 3 times, filtered and then dried by cabinet dryer using 46 °C for 2 days. The dried flour was sifted with a 80 mesh sieve. Chemical test was conducted after elephant foot yam was acid modification to determine changes in the quality flour: test levels of protein, fat, crude fiber content, moisture content, ash content and starch content. In addition, color tests and granular test on elephant foot yam flour were also conducted. The acid modification as chemical treatment on elephant foot yam flour in this study was able to change the functional properties of elephant foot yam flour towards a better processing characterized by a brighter color (L = 80, a = 8 and b = 12), the hydrolysis of polysaccharides flour into shorter chain (flour content decreased to 72%), the expansion of granules in elephant foot yam resulting in a process - ready flour, and better monolayer water content of 11%. The content of protein and fiber on the elephant foot yam flour also can be maintained at a level of 8% and 1.9% levels.

  16. Patterns of development of unspecific reaction of cells and modification of chemical protection

    International Nuclear Information System (INIS)

    Veksler, A.M.; Korystov, Yu.N.; Kublik, L.N.; Ehjdus, L.Kh.

    1980-01-01

    A study was made of a correlation between radioprotective efficiency of different chemical agents (weak electrolytes) and conditions of treatment. It was demonstrated that the pattern of changes in the protection efficiency, with modification thereof, is similar to that of the development of unspecific reaction and determined by the intracellular concentration of the chemical agents, which, in turn, is function of physicochemical parameters of the substance and pH gradient between cell and medium. With similar intracellular concentration, caffeine-benzoate, thioglicolic acid and caffeine proved to be equally effective, while the protective effect of cysteamine was appreciably higher

  17. Reaction of electron-transfer flavoprotein with electron-transfer flavoprotein-ubiquinone oxidoreductase

    International Nuclear Information System (INIS)

    Beckmann, J.D.; Frerman, F.E.

    1985-01-01

    The oxidative half-reaction of electron-transfer flavoprotein (ETF), electron transfer from ETF to electron-transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO), is dependent on complementary surface charges on the two proteins. ETF is the positively charged member of the redox pair. The evidence is based on the pH and ionic strength dependencies of the comproportionation of oxidized ETF and ETF hydroquinone catalyzed by ETF-QO and on the effects of chemical modification of ETF on the comproportionation reaction. Acetylation of one and five epsilon-amino groups of lysyl residues results in 3- and 13-fold increases, respectively, in the K/sub m/ of ETF-QO for ETF but no change in V/sub max/. Amidination, which maintains positive charge at modified loci, has no effect on steady-state kinetic constants. These chemical modifications have no effect on the equilibrium constant for equilibration of ETF redox states. The K/sub m/ of ETF-QO for ETF is pH dependent above pH 8.5, suggesting titration of lysyl residues. The ionic strength dependence of TN/KmETF for the reaction follows the limiting Bronsted equation. The ETF-QO-catalyzed comproportionation reaction exhibits a primary deuterium isotope effect in D 2 O, perhaps indicating the participation of solvent water in the electron-transfer reaction

  18. Areal variation and chemical modification of weathered shale infiltration characteristics

    International Nuclear Information System (INIS)

    Luxmoore, R.J.; Spalding, B.P.; Munro, I.M.

    1981-01-01

    Spatial variability of infiltration into a weathered shale subsoil was evaluated at a site proximal to one used for shallow land burial of low-level radioactive waste at Oak Ridge National Laboratory. Double-ring infiltometers were installed at 48 locations on a 2- by 2-m grid after the removal of 1 to 2 m of soil (Litz-Sequoia association, Typic Hapludults). Infiltration rates were measured before and during the 0- to 20- and 239- to 259-day periods following treatment with solutions of NaOH, KOH, NaF, NaAlO 2 , and Na 2 SiO 3 at rates of 151 equivalents/m 2 . None of these chemical treatments significantly altered infiltration rate, indicating that chemical modification of soil exchange properties may be achieved without inducing hydrologic disturbance in these subsoils. A semivariogram analysis of infiltration data showed that areal variability was random; any spatial patterning must therefore occur at a smaller scale than 2 m

  19. Electron-beam generated porous dextran gels: experimental and quantum chemical studies.

    Science.gov (United States)

    Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta

    2014-06-01

    The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.

  20. Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions.

    Science.gov (United States)

    Ma, Zhuoming; Li, Shujun; Fang, Guizhen; Patil, Nikhil; Yan, Ning

    2016-12-01

    In this study, we have explored various ultrasound treatment conditions for structural modification of enzymatic hydrolysis lignin (EHL) for enhanced chemical reactivity. The key structural modifications were characterized by using a combination of analytical methods, including, Fourier Transform-Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance ( 1 H NMR), Gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and Folin-Ciocalteu (F-C) method. Chemical reactivity of the modified EHL samples was determined by both 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and their reactivity towards formaldehyde. It was observed that the modified EHL had a higher phenolic hydroxyl group content, a lower molecular weight, a higher reactivity towards formaldehyde, and a greater antioxidant property. The higher reactivity demonstrated by the samples after treatment suggesting that ultrasound is a promising method for modifying enzymatic hydrolysis lignin for value-added applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Engineering specific chemical modification sites into a collagen-like protein from Streptococcus pyogenes.

    Science.gov (United States)

    Stoichevska, Violet; Peng, Yong Y; Vashi, Aditya V; Werkmeister, Jerome A; Dumsday, Geoff J; Ramshaw, John A M

    2017-03-01

    Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen-like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via "click" chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806-813, 2017. © 2016 Wiley Periodicals, Inc.

  2. Microwave plasma induced surface modification of diamond-like carbon films

    Science.gov (United States)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  3. Effects of chemical modifications on photophysics and exciton dynamics on {pi}-conjugation attenuated and metal-chelated photoconducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L. X.; Jager, W. J. H.; Gosztola, D. J.; Niemczyk, M. P.; Wasielewski, M. R.

    2000-03-11

    Effects of two types of chemical modifications on photoconducting polymers consisting of polyphenylenevinylene (PPV) derivatives are studied by static and ultrafast transient optical spectroscopy as well as semi-empirical ZINDO calculations. The first type of modification inserts 2,2{prime}-bipyridyl-5-vinylene units (bpy V) in the PPV backbone, and the second type involves metal-chelation with the bpy sites. Photoluminescence and exciton dynamics of polymers 1 and 2 with PV:bpyV ratios of 1 and 3 were examined in solution, and compared to those of the homopolymer, poly(2,5-bis(2{prime}-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV). Similar studies were carried out for several metal-chelated polymers. These results can be explained by changes in {pi}-conjugation throughout the polymer backbone. The attenuation in {pi}-conjugation by the chemical modifications transforms a conducting polymer from one-dimensional semiconductor to molecular aggregates.

  4. Expanding the Bioactive Chemical Space of Anthrabenzoxocinones through Engineering the Highly Promiscuous Biosynthetic Modification Steps.

    Science.gov (United States)

    Mei, Xianyi; Yan, Xiaoli; Zhang, Hui; Yu, Mingjia; Shen, Guangqing; Zhou, Linjun; Deng, Zixin; Lei, Chun; Qu, Xudong

    2018-01-19

    Anthrabenzoxocinones (ABXs) including (-)-ABXs and (+)-ABXs are a group of bacterial FabF-specific inhibitors with potent antimicrobial activity of resistant strains. Optimization of their chemical structures is a promising method to develop potent antibiotics. Through biosynthetic investigation, we herein identified and characterized two highly promiscuous enzymes involved in the (-)-ABX structural modification. The promiscuous halogenase and methyltransferase can respectively introduce halogen-modifications into various positions of the ABX scaffolds and methylation to highly diverse substrates. Manipulation of their activity in both of the (-)-ABXs and (+)-ABXs biosyntheses led to the generation of 14 novel ABX analogues of both enantiomers. Bioactivity assessment revealed that a few of the analogues showed significantly improved antimicrobial activity, with the C3-hydroxyl and chlorine substitutions critical for their activity. This study enormously expands the bioactive chemical space of the ABX family and FabF-specific inhibitors. The disclosed broad-selective biosynthetic machineries and structure-activity relationship provide a solid basis for further generation of potent antimicrobial agents.

  5. Surface Modification of α-Fe Metal Particles by Chemical Surface Coating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The structure of α-Fe metal magnetic recording particles coated with silane coupling agents have been studied by TEM, FT-IR, EXAFS, Mossbauer. The results show that a close, uniform, firm and ultra thin layer, which is beneficial to the magnetic and chemical stability, has been formed by the cross-linked chemical bond Si-O-Si. And the organic molecule has chemically bonded to the particle surface, which has greatly affected the surface Fe atom electronic structure. Furthermore, the covalent bond between metal particle surface and organic molecule has obvious effect on the near edge structure of the surface Fe atoms.

  6. Electron beam deflection control system of a welding and surface modification installation

    Science.gov (United States)

    Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.

    2018-03-01

    In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.

  7. Modification of optical and electrical properties of chemical bath deposited SnS using O{sub 2} plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, A. [Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México, México (Mexico); Martínez, H., E-mail: hm@fis.unam.mx [Instituto de Ciencias Fisicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Calixto-Rodríguez, M. [Centro de Investigación en Energía, Universidad Autónoma del Estado de México, Estado de México, México (Mexico); Avellaneda, D. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, México (Mexico); Reyes, P.G. [Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México, México (Mexico); Flores, O. [Instituto de Ciencias Fisicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico)

    2013-06-15

    In this paper, we report modifications of structural and optical, electrical properties that occur in tin sulphide (SnS) treated in O{sub 2} plasma. The SnS thin films were deposited by chemical bath deposition technique. The samples were treated in an O{sub 2} plasma discharge at 3 Torr of pressure discharge, a discharge voltage of 2.5 kV and 20 mA of discharge current. The prepared and treated thin films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The photoconductivity and electrical effects of SnS have been studied. The SnS thin films had an orthorhombic crystalline structure. With the plasma treatment the optical gap and electrical properties of the SnS films changed from 1.61 to 1.84 eV, for 3.9 × 10{sup 5} to 10.42 Ω cm, respectively. These changes can be attributed to an increase in electron density, percolation effects due to porosity, surface degradation/etching that is an increase in surface roughness, where some structural changes related to crystallinity occurs like a high grain size as revealed by SEM images.

  8. ReportSites - A Computational Method to Extract Positional and Physico- Chemical Information from Large-Scale Proteomic Post-Translational Modification Datasets

    DEFF Research Database (Denmark)

    Edwards, Alistair; Edwards, Gregory; Larsen, Martin Røssel

    2012-01-01

    -translational modification data sets, wherein patterns of sequence surrounding processed sites may reveal more about the functional and structural requirements of the modification and the biochemical processes that regulate them. Results: We developed Report Sites using a test set of phosphoproteomic data from rat......-chemical environment (local pI and hydrophobicity). These were then also compared to corresponding values extracted from the full database to allow comparison of phosphorylation trends. Conclusions: Report Sites enabled physico-chemical aspects of protein phosphorylation to be deciphered in a test set of eleven...... thousand phospho sites. Basic properties of modified proteins, such as site location in the context of the complete protein, were also documented. This program can be easily adapted to any post-translational modification (or, indeed, to any defined amino acid sequence), or expanded to include more...

  9. Chemical evaluation of electronic cigarettes

    OpenAIRE

    Cheng, Tianrong

    2014-01-01

    Objective To review the available evidence evaluating the chemicals in refill solutions, cartridges, aerosols and environmental emissions of electronic cigarettes (e-cigarettes). Methods Systematic literature searches were conducted to identify research related to e-cigarettes and chemistry using 5 reference databases and 11 search terms. The search date range was January 2007 to September 2013. The search yielded 36 articles, of which 29 were deemed relevant for analysis. Results The levels ...

  10. Chemical modification of b-lactoglobulin by quinones

    Directory of Open Access Journals (Sweden)

    DUSAN SLADIC

    2003-05-01

    Full Text Available The avarone/avarol quinone/hydroquinone couple, as well as their derivatives show considerable antitumor activity. In this work, covalent modifications of b-lactoglobulin, isolated from cow milk, by avarone, its model compound 2-tert-butyl-1,4-benzoquinone, and several of their alkylthio derivatives were studied. The techniques applied for assaying the modifications were: UV/VIS spectrophotometry, SDS PAGE and isoelectrofocusing. The results of the SDS PAGE suggest that polymerisation of the protein occurs. The shift of the pI of the protein upon modification toward lower values indicates that lysine amino groups are the principal site of the reaction of b-lactoglobulin with the quinones.

  11. Ultrastructural demonstration of chemical modification of melanogenesis in hairless mouse skin

    International Nuclear Information System (INIS)

    Nishimura, M.; Gellin, G.A.; Hoshino, S.; Epstein, J.H.; Epstein, W.L.; Fukuyama, K.

    1982-01-01

    We investigated chemical and physical modifications of the genetically determined ultrastructure of melanosomes. The flank skin of hairless mice was treated with ultraviolet energy (UV) shorter than 320 nm or with a combination of a photosensitizer and UV (PUVA treatment). All melanosomes in the induced melanocytes and those in resident melanocytes in the ear skin showed eumelanogenesis, although the degree of melanin deposition differed considerably according to the induction process. Eumelanogenesis was most advanced in the resident melanocytes while PUVA-induced melanocytes showed more immature premelanosomes. We then topically applied 4-tertiary butyl catechol on the skin. The depigmenting agent caused an appearance of pheomelanosomes. The alteration in melanogenesis was seen most distinctly in premelanosomes of the PUVA-induced cells. Altered ultrastructure was also observed in matured melanosomes; this change was most apparent in the resident melanocytes. These findings indicate that cells with eumelanogenesis may undergo pheomelanogenesis. The present study demonstrated effects of chemicals on genetically determined function of melanocytes by quantitative analysis of melanosome ultrastructure

  12. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Stepczyńska, Magdalena [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87‐100 Toruń (Poland); Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2016-07-30

    Highlights: • Plasma modification affects surface roughness, wettability and surface energy. • Polylactide and polycaprolactone aging causes decay of the modification effects. • Changes in the surface characteristic and wettability deterioration were observed. • The decay occurs due to migration of low molecular weight molecules to the surface. • Plasma modification effect lasts longer in the case of polycaprolactone. - Abstract: The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  13. A new contribution to the nuclear modification factor of non-photonic electrons in Au + Au collisions at √sNN = 200 GeV

    International Nuclear Information System (INIS)

    Martinez-Garcia, G.; Gadrat, S.; Crochet, P.

    2007-02-01

    We investigate the effect of the so-called anomalous baryon/meson enhancement to the nuclear modification factor of non-photonic electrons in Au+Au collisions at √s NN = 200 GeV. It is demonstrated that an enhancement of the charm baryon/meson ratio, as it is observed for non-strange and strange hadrons, can be responsible for a part of the amplitude of the nuclear modification factor of non-photonic electrons. About half of the measured suppression of non-photonic electrons in the 2 - 4 GeV/c p t range can be explained by a charm baryon/meson enhancement of 5. This contribution to the non-photonic electron nuclear modification factor has nothing to do with heavy quark energy loss. (authors)

  14. Destructive electronics from electrochemical-mechanically triggered chemical dissolution

    International Nuclear Information System (INIS)

    Sim, Kyoseung; Wang, Xu; Yu, Cunjiang; Li, Yuhang; Linghu, Changhong; Song, Jizhou; Gao, Yang

    2017-01-01

    The considerable need to enhance data and hardware security suggest one possible future for electronics where it is possible to destroy them and even make them disappear physically. This paper reports a type of destructive electronics which features fast transience from chemical dissolution on-demand triggered in an electrochemical-mechanical manner. The detailed materials, mechanics, and device construction of the destructive electronics are presented. Experiment and analysis of the triggered releasing and transience study of electronic materials, resistors and metal-oxide-semiconductor field effect transistors illustrate the key aspects of the destructive electronics. The reported destructive electronics is useful in a wide range of areas from security and defense, to medical applications (paper)

  15. Chemical wiring and soldering toward all-molecule electronic circuitry.

    Science.gov (United States)

    Okawa, Yuji; Mandal, Swapan K; Hu, Chunping; Tateyama, Yoshitaka; Goedecker, Stefan; Tsukamoto, Shigeru; Hasegawa, Tsuyoshi; Gimzewski, James K; Aono, Masakazu

    2011-06-01

    Key to single-molecule electronics is connecting functional molecules to each other using conductive nanowires. This involves two issues: how to create conductive nanowires at designated positions, and how to ensure chemical bonding between the nanowires and functional molecules. Here, we present a novel method that solves both issues. Relevant functional molecules are placed on a self-assembled monolayer of diacetylene compound. A probe tip of a scanning tunneling microscope is then positioned on the molecular row of the diacetylene compound to which the functional molecule is adsorbed, and a conductive polydiacetylene nanowire is fabricated by initiating chain polymerization by stimulation with the tip. Since the front edge of chain polymerization necessarily has a reactive chemical species, the created polymer nanowire forms chemical bonding with an encountered molecular element. We name this spontaneous reaction "chemical soldering". First-principles theoretical calculations are used to investigate the structures and electronic properties of the connection. We demonstrate that two conductive polymer nanowires are connected to a single phthalocyanine molecule. A resonant tunneling diode formed by this method is discussed. © 2011 American Chemical Society

  16. Modification of alumina matrices through chemical etching and electroless deposition of nano-Au array for amperometric sensing

    Directory of Open Access Journals (Sweden)

    Valinčius Gintaras

    2007-01-01

    Full Text Available AbstractSimple nanoporous alumina matrix modification procedure, in which the electrically highly insulating alumina barrier layer at the bottom of the pores is replaced with the conductive layer of the gold beds, was described. This modification makes possible the direct electron exchange between the underlying aluminum support and the redox species encapsulated in the alumina pores, thus, providing the generic platform for the nanoporous alumina sensors (biosensors with the direct amperometric signal readout fabrication.

  17. Chemical modification of hybrid nanostructures (POSS for application as lubricant

    Directory of Open Access Journals (Sweden)

    Caroline Luvison

    2014-08-01

    Full Text Available Polyhedral oligomeric silsesquioxanes (POSS are hybrid structures type RSiO15n, with n organic groups R. These molecules can be easily functionalized by simply changing the chemical constitution of the organic groups. In this work, chemical modification of POSS-NH2 was performed by amidation reaction with butyric acid at elevated temperature, 160°C. The formation of the amide group is evinced by the appearance of NH angular deformation band at 1540 cm-1 in the FTIR spectra. Approximately 40% of the amino groups reacted, according to titration results. The formation of the amide groups resulted in a shift of the glass transition temperature (Tg from -36.9°C to -25.6°C for the modified-POSS sample. Both POSS-NH2 and modified-POSS samples exhibited similar thermal degradation pattern. Analysis of the pairs distribution function (PDF has determined that the hybrid nanoparticles are separated by a periodic distance of approximately 1.32 nm. POSS-NH2 and modified-POSS exhibit newtonian behavior, which will range from 10-1 s-1 and 1000 s-1. The viscosity decreased with increasing temperature, a typical behavior of liquid lubricants.

  18. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  19. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    Science.gov (United States)

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Bioaccumulation and chemical modification of Tc by soil bacteria

    International Nuclear Information System (INIS)

    Henrot, J.

    1989-01-01

    Bioaccumulation and chemical modification of pertechnetate (TcO 4 -) by aerobically and anaerobically grown soil bacteria and by pure cultures of sulfate-reducing bacteria (Desulfovibrio sp.) were studied to gain insight on the possible mechanisms by which bacteria can affect the solubility of Tc in soil. Aerobically grown bacteria had no apparent effect on TcO 4 -; they did not accumulate Tc nor modify its chemical form. Anaerobically grown bacteria exhibited high bioaccumulation and reduced TcO 4 -, enabling its association with organics of the growth medium. Reduction was a metabolic process and not merely the result of reducing conditions in the growth medium. Association of Tc with bacterial polysaccharides was observed only in cultures of anaerobic bacteria. Sulfate-reducing bacteria efficiently removed Tc from solution and promoted its association with organics. Up to 70% of the total Tc in the growth medium was bioaccumulated and/or precipitated. The remaining Tc in soluble form was entirely associated with organics. Pertechnetate was not reduced by the same mechanism as dissimilatory sulfate reduction, but rather by some reducing agent released in the growth medium. A calculation of the amount of Tc that could be associated with the bacterial biomass present in soil demonstrates that high concentration ratios in cultures do not necessarily imply that bioaccumulation is an important mechanism for long-term retention of Tc in soil

  1. Soil-release behaviour of polyester fabrics after chemical modification with polyethylene glycol

    Science.gov (United States)

    Miranda, T. M. R.; Santos, J.; Soares, G. M. B.

    2017-10-01

    The fibres cleanability depends, among other characteristics, on their hydrophilicity. Hydrophilic fibres are easy-wash materials but hydrophobic fibres are difficult to clean due to their higher water-repellent surfaces. This type of surfaces, like polyester (PET), produce an accumulation of electrostatic charges, which favors adsorption and retention of dirt. Thus, the polyester soil-release properties can be increased by finishing processes that improve fiber hydrophilicity. In present study, PET fabric modification was described by using poly(ethylene glycol) (PEG) and N,N´-dimethylol-4,5-dihydroxyethylene urea (DMDHEU) chemically modified resin. Briefly, the modification process was carried out in two steps, one to hydrolyse the polyester and create hydroxyl and carboxylic acid groups on the surface and other to crosslink the PEG chains. The resulting materials were characterized by contact angle, DSC and FTIR-ATR methods. Additionally, the soil release behavior and the mechanical properties of modified PET were evaluated. For the best process conditions, the treated PET presented 0° contact angle, grade 5 stain release and acceptable mechanical performance.

  2. Cobalt surface modification during γ-Fe2O3 nanoparticle synthesis by chemical-induced transition

    International Nuclear Information System (INIS)

    Li, Junming; Li, Jian; Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin; Li, Decai

    2015-01-01

    In the chemical-induced transition of FeCl 2 solution, the FeOOH/Mg(OH) 2 precursor was transformed into spinel structured γ-Fe 2 O 3 crystallites, coated with a FeCl 3 ·6H 2 O layer. CoCl 2 surface modified γ-Fe 2 O 3 nanoparticles were prepared by adding Co(NO 3 ) 2 during the synthesis. CoFe 2 O 4 modified γ-Fe 2 O 3 nanoparticles were prepared by adding NaOH during the surface modification with Co(NO 3 ) 2 . The CoFe 2 O 4 layer grew epitaxially on the γ-Fe 2 O 3 crystallite to form a composite crystallite, which was coated by CoCl 2 ·6H 2 O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe 2 O 4 and γ-Fe 2 O 3 possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe 2 O 3 -based nanoparticles were related to the grain size. - Highlights: • γ-Fe 2 O 3 nanoparticles were synthesized by chemical induced transition. • CoCl 2 modified nanoparticles were prepared by additional Co(NO 3 ) 2 during synthesization. • CoFe 2 O 4 modified nanoparticles were prepared by additional Co(NO 3 ) 2 and NaOH. • The magnetism of the nanoparticles is related to the grain size

  3. Surface modification of TA2 pure titanium by low energy high current pulsed electron beam treatments

    International Nuclear Information System (INIS)

    Gao Yukui

    2011-01-01

    Surface integrity changes of TA2 pure titanium including surface topography, microstructure and nanohardness distribution along surface layer were investigated by different techniques of low energy high current pulsed electron beam treatments (LEHCPEBTs). The surface topography was characterized by SEM. Moreover, the TEM observation and X-ray diffraction analysis were performed to reveal the surface modification mechanism of TA2 pure titanium by LEHCPEBTs. The surface roughness was modified by electron beam treatment and the polishing mechanism was analyzed by studying the cross section microstructure of electron beam treated specimens by SEM and TEM. The results show that the surface finish obtains good polishing quality and there is no phase transformation but the dislocations by LEHCPEBT. Furthermore, the nanohardness in the surface modified layer is improved. The remelt and fine-grain microstructure of surface layer caused by LEHCPEBTs are the main polishing mechanism and the reason of modification of surface topography and the increment in nanohardness is mainly due to the dislocations and fine grains in the modified layer induced by LEHCPEBT.

  4. Electronic excitation induced structural and optical modifications in InGaN/GaN quantum well structures grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Prabakaran, K.; Ramesh, R.; Jayasakthi, M.; Surender, S.; Pradeep, S. [Crystal Growth Centre, Anna University, Chennai (India); Balaji, M. [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai (India); Asokan, K. [Inter-University Accelerator Centre, New Delhi (India); Baskar, K., E-mail: drbaskar2009@gmail.com [Crystal Growth Centre, Anna University, Chennai (India); Manonmaniam Sundaranar University, Tirunelveli (India)

    2017-03-01

    Highlights: • Effects on InGaN/GaN QW structures by Au{sup 7+} (100 MeV) ion have been investigated. • Structural defects of the irradiated InGaN/GaN QW structures are determined. • The intermixing effect in irradiated InGaN/GaN QW structures were understood. • Modified luminescence was observed in the PL spectra due to heavy ion irradiation. • Surface modification was observed due to the heavy ion irradiation. - Abstract: The present study focuses on the electronic excitation induced structural and optical properties of InGaN/GaN quantum well (QW) structures grown by metal organic chemical vapor deposition technique. These excitations were produced using Au{sup 7+} ion irradiation with 100 MeV energy. The X-ray rocking curves intensity and full width at half-maximum values corresponding to the planes of (0 0 0 2) and (1 0 −1 5) of the irradiated QW structures show the modifications in the screw and edge-type dislocation densities vary with the ion fluences. The structural characteristics using the reciprocal space mapping indicate the intermixing effects in InGaN/GaN QW structures. Atomic force microscopy images confirmed the presence of nanostructures and the surface modification due to heavy ion irradiation. The irradiated QW structures exhibited degraded photoluminescence intensity and a subsequent decrease in the yellow luminescence band intensity with the fluences of 1 × 10{sup 11} and 5 × 10{sup 12} ions/cm{sup 2} compared to the pristine QW structures.

  5. Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.

    2012-01-01

    NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.

  6. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    International Nuclear Information System (INIS)

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-01-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  7. Single-Molecule Electronics: Chemical and Analytical Perspectives.

    Science.gov (United States)

    Nichols, Richard J; Higgins, Simon J

    2015-01-01

    It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance.

  8. Effect of chemical modifications of cellulose on the activity of a cellulase from Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, R.F.; Redmond, M.A.

    1983-05-01

    Five chemically modified forms of cellulose were prepared, characterized, and tested as substrates for a homogeneous glucanohydrolase from A. niger. The relative order of reactivity at pH 4.0 was DEAE = PEI more than benzyl DEAE more than cellulose more than P more than CM. This indicates that positively charged cellulose substrates are more susceptible to hydrolysis by the cellulase. This observation strengthens an earlier proposal that carboxyl groups on the enzyme are involved in substrate binding and catalytic action. Chemical modification is suggested as a method to increase the rate of enzymatic hydrolysis of cellulose, a process now in the commercial development stage. (Refs. 27).

  9. Effect of chemical modification on reduction and sorptive properties of chars from hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Stanczyk, K.; Miga, K.; Fabis, G.; Jastrzab, K. [Polskiej Akademii Nauk, Gliwice (Poland)

    1998-01-01

    Hydropyrolysis of bituminous coal and lignite as way of synthesis of adsorbents has been applied. Chemical modification of chars based on simultaneous carbonization of coal and plastics containing sulfur and nitrogen has been carried out. It was stated that modified chars exhibit better reduction and sorptive properties than non-modified and that modified adsorbents made of lignite exceed commercial ones. 7 refs., 4 figs., 3 tabs.

  10. Abstracts Book of 41. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1998-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important scientific forum of Polish Chemists. The state of the art in many basic, fundamental and applied investigations has been presented and discussed. The following scientific sessions and microsymposia have been proposed: theoretical chemistry; molecular interactions; metal compounds - chemical, physical, electronic and biological aspects; catalysis and surface physico-chemistry; polymers - radiochemistry, modifications, physics and analytical methods; organic and bioorganic chemistry; physico-chemistry of condensed matter; chemical metallurgy; environmental protection; inorganic technology; chemistry and technology of coal; radiation chemistry; analytical chemistry; chemical engineering; young scientists forum; chemical didactics; petrochemistry; energetic materials; membranes and membrane processes; medical chemistry

  11. Comparison the performance of different catalysts in chemical modification of Poplar wood with Glutaraldehyde

    Directory of Open Access Journals (Sweden)

    ندا اسماعیلی

    2016-12-01

    Full Text Available In this study, the effect of different catalysts on chemical modification of poplar wood and physical properties of the resulting product was evaluated. 12.5% HCl and water soluble salts containing ZnCl2, CaCl2, AlCl3, MgCl2 (based on the weight of glutaraldehyde and 1% Al2O3, SiO2 and ZnO nano particles (based on the weight of glutaraldehyde were used. After heating in oven for 48 hour, modification with glutaraldehyde and MgCl2, ZnO nano particles, SiO2, Al2O3, ZnCl2, AlCl3, CaCl2 and HCl as catalysts were resulted to 14.5, 12.57, 10.62, 8.69, 8.51, 7.19, 5.97 and 5.41 % weight gain respectively. After 24h soaking in water, the physical properties of modified specimens, such as water absorption, volume swelling and ASE were measured. The highest and lowest bulking were calculated for Mgcl2 and Hcl catalysts with 6.98 and 2.37% respectively. The modification in presence of Mgcl2 catalyst was shown highest increase of density with average of 0.55 g/cm3. The highest and lowest water absorption was measured 79.61 and 45.32% in the modification with HCl and MgCl catalysts. Hcl with acidic quality, can break ether bonds in hemiacetal and even acetal structure. Modification with MgCl2 was shown best result in comparison with other catalysts. It is likely that the formation a complex of magnesium with oxygen, could resulted to activate carbonyl groups in glutaraldehyde and created the crosslink.

  12. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces.

    Science.gov (United States)

    Briand, Elisabeth; Humblot, Vincent; Landoulsi, Jessem; Petronis, Sarunas; Pradier, Claire-Marie; Kasemo, Bengt; Svedhem, Sofia

    2011-01-18

    The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described

  13. Evaluation of the chemical modifications in petroleum asphalt cement with the addition of polypropylene

    International Nuclear Information System (INIS)

    Marcondes, C.P.; Sales, M.J.A.; Resck, I.S.; Farias, M.M.; Souza, M.V.R.

    2010-01-01

    Studies show that the common distress mode in the Brazilian highway network are fatigue cracks and plastic deformation, which are associated with the type of material used in the pavement layers, structural project, excessive traffic load and weathering. To minimize these defects, research on modifiers such as polymers, added to asphalt binders have been developed to provide physical, chemical and rheological improvement. This paper investigates chemical modifications of the binders with the addition of PP by FTIR, NMR and DSC. FTIR spectra of pure and modified binder showed no differences in absorption. NMR analysis showed no strong chemical bonds between the binder and PP. DSC curve of PP showed a melting temperature of 160 deg C (ΔH = 94J/g) and the pure binder presented an endothermic transition between 20 and 40 deg C (ΔH = 2J/g). In the DSC curves of mixtures, these transitions are not significant, indicating possible interactions between asphalt binder and PP. (author)

  14. DNA modification by alkylating compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kruglyakova, E.E.

    1985-09-01

    Results are given for research on the physico-chemical properties of alkylating compounds - nitroso alkyl ureas (NAU) which possess a broad spectrum of biological activity, such as mutagenic, carcinogenic, and anti-tumor action that is due to the alkylation and carbamoylation of DNA as well as other cellular components. Identified chemical products of NAU interaction with DNA and its components are cited. Structural conversions of a DNA macromolecule resulting from its chemical modification are examined. NAU are used to discuss possible biological consequences of DNA modification. 148 references.

  15. Electronic excitation induced modifications in elongated iron nanoparticle encapsulated multiwalled carbon nanotubes under ion irradiation

    Science.gov (United States)

    Saikiran, V.; Bazylewski, P.; Sameera, I.; Bhatia, Ravi; Pathak, A. P.; Prasad, V.; Chang, G. S.

    2018-05-01

    Multi-wall carbon nanotubes (MWCNT) filled with Fe nanorods were shown to have contracted and deformed under heavy ion irradiation. In this study, 120 MeV Ag and 80 MeV Ni ion irradiation was performed to study the deformation and defects induced in iron filled MWCNT under heavy ion irradiation. The structural modifications induced due to electronic excitation by ion irradiation were investigated employing high-resolution transmission electron microscopy, micro-Raman scattering experiments, and synchrotron-based X-ray absorption and emission spectroscopy. We understand that the ion irradiation causes modifications in the Fe nanorods which result in compressions and expansions of the nanotubes, and in turn leads to the buckling of MWCNT. The G band of the Raman spectra shifts slightly towards higher wavenumber and the shoulder G‧ band enhances with the increase of ion irradiation fluence, where the buckling wavelength depends on the radius 'r' of the nanotubes as exp[(r)0.5]. The intensity ratio of the D to G Raman modes initially decreases at the lowest fluence, and then it increases with the increase in ion fluence. The electron diffraction pattern and the high resolution images clearly show the presence of ion induced defects on the walls of the tube and encapsulated iron nanorods.

  16. Electronic Transmutation (ET): Chemically Turning One Element into Another.

    Science.gov (United States)

    Zhang, Xinxing; Lundell, Katie A; Olson, Jared K; Bowen, Kit H; Boldyrev, Alexander I

    2018-03-08

    The concept of electronic transmutation (ET) depicts the processes that by acquiring an extra electron, an element with the atomic number Z begins to have properties that were known to only belong to its neighboring element with the atomic number Z+1. Based on ET, signature compounds and chemical bonds that are composed of certain elements can now be designed and formed by other electronically transmutated elements. This Minireview summarizes the recent developments and applications of ET on both the theoretical and experimental fronts. Examples on the ET of Group 13 elements into Group 14 elements, Group 14 elements into Group 15 elements, and Group 15 elements into Group 16 elements are discussed. Compounds and chemical bonding composed of carbon, silicon, germanium, phosphorous, oxygen and sulfur now have analogues using transmutated boron, aluminum, gallium, silicon, nitrogen, and phosphorous. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors

    Science.gov (United States)

    Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-01

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  18. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors.

    Science.gov (United States)

    Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-21

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  19. Adsorbate-induced modification of electronic band structure of epitaxial Bi(111) films

    Energy Technology Data Exchange (ETDEWEB)

    Matetskiy, A.V., E-mail: mateckij@iacp.dvo.ru [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Bondarenko, L.V.; Tupchaya, A.Y.; Gruznev, D.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Eremeev, S.V. [Institute of Strength Physics and Materials Science, 634021 Tomsk (Russian Federation); Tomsk State University, 634050 Tomsk (Russian Federation); Zotov, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Department of Electronics, Vladivostok State University of Economics and Service, 690600 Vladivostok (Russian Federation); Saranin, A.A. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2017-06-01

    Highlights: • Modification of electronic properties of ultrathin Bi films by adsorbates is demonstrated. • Due to electron doping from Cs adatoms, surface-state bands shift to higher binding energies. • As a result, only electron pockets are left in the Fermi map. • Tin acts as an acceptor dopant for Bi, shifting Fermi level upward. • As a result, only hole pockets are left in the Fermi map. - Abstract: Changes of the electronic band structure of Bi(111) films on Si(111) induced by Cs and Sn adsorption have been studied using angle-resolved photoemission spectroscopy and density functional theory calculations. It has been found that small amounts of Cs when it presents at the surface in a form of the adatom gas leads to shifting of the surface and quantum well states to the higher binding energies due to the electron donation from adsorbate to the Bi film. In contrast, adsorbed Sn dissolves into the Bi film bulk upon heating and acts as an acceptor dopant, that results in shifting of the surface and quantum well states upward to the lower binding energies. These results pave the way to manipulate with the Bi thin film electron band structure allowing to achieve a certain type of conductivity (electron or hole) with a single spin channel at the Fermi level making the adsorbate-modified Bi a reliable base for prospective spintronics applications.

  20. The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons; George C. Chen

    2017-01-01

    The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood...

  1. EFFECT OF CHEMICAL MODIFICATION AND HOT-PRESS DRYING ON POPLAR WOOD

    Directory of Open Access Journals (Sweden)

    Guo-Feng Wu

    2010-11-01

    Full Text Available Urea-formaldehyde prepolymer and hot-press drying were used to improve the properties of poplar wood. The wood was impregnated with the prepolymer using a pulse-dipping machine. The impregnated timbers were compressed and dried by a multilayer hot-press drying kiln. The drying rate was more rapid during the chemical modification and hot-press drying than conventional kiln-drying. In addition, the properties of timber were also enhanced obviously. When the compression rate was 28.6%, the basic density, oven dry density and air-dried density of modified wood improved 22%, 71%, and 70%, respectively. The bending strength and compressive strength parallel to grain increased 60% and 40%. The water uptake of treated wood was significantly decreased compared with the untreated wood. The FTIR analysis successfully showed that the intensity of hydroxyl and carbonyl absorption peaks decreased significantly, which was attributed to a reaction of the NHCH2OH of urea-formaldehyde prepolymer with the wood carboxyl (C=O and hydroxyl (-OH groups. The XRD results indicated that the degree of crystallinity increased from 35.09% to 36.91%. The morphologic models of chemical within wood were discovered by SEM.

  2. Chemical modulation of electronic structure at the excited state

    Science.gov (United States)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  3. Studies on chemical modification of cold agglutinin from the snail Achatina fulica.

    Science.gov (United States)

    Sarkar, M; Mitra, D; Sen, A K

    1987-01-01

    The cold agglutinin isolated from the albumin gland of the snail Achatina fulica was modified with various chemical reagents in order to detect the amino acids and/or carbohydrate residues present in its carbohydrate-binding sites. Treatment with reagents considered specific for modification of lysine, arginine and tryptophan residues of the cold agglutinin did not affect the carbohydrate-binding activity of the agglutinin. Modification of tyrosine residues showed some change. However, modification with carbodiimide followed by alpha-aminobutyric acid methyl ester causes almost complete loss of its binding activity, indicating the involvement of aspartic acid and glutamic acid in its carbohydrate-binding activity. The carbohydrate residues of the cold agglutinin were removed by beta-elimination reaction, indicating that the sugars are O-glycosidically linked to protein part of the molecule. Removal of galactose residues from the cold agglutinin by the action of beta-galactosidase indicated that the galactose molecules are beta-linked. These carbohydrate-modified glycoproteins showed a marked change in agglutination property, i.e. they agglutinated rabbit erythrocytes at both 10 degrees C and 25 degrees C, indicating that the galactose residues of the glycoprotein play an important role in the cold-agglutination property of the glycoprotein. The c.d. data showed the presence of an almost identical type of random-coil conformation in the native cold agglutinin at 10 degrees C and in the carbohydrate-modified glycoprotein at 10 degrees C and 25 degrees C. This particular random-coil conformation is essential for carbohydrate-binding property of the agglutinin. Images Fig. 1. PMID:3118867

  4. Electron Beam Treatment of Toxic Chemicals

    International Nuclear Information System (INIS)

    Jung, In Ha; Lee, Myun Joo; Lee, Oh Mi; Kim, Tae Hoon

    2011-01-01

    Polychlorinated biphenyls (PCBs) were commercially produced from 1920s as complex mixtures containing multiple isomers for a variety of applications. They are very toxic, chemically stable and resist microbial, photochemical, chemical, and thermal degradation. The public, legal, and scientific concerns about PCBs arose from research indicating they were environmental contaminants that had a potential to adversely impact the environment, and, therefore, were undesirable as commercial products. Eventually, most producers reduced or stopped production of PCBs in the 1970s. Stockholm convention on POPs (Persistent Organic Pollutants), which was effective on May 2004 and 151 nations including Korea were joined on June 2005, asked to dispose of PCBs by 2028 with environmental friendly methods. Korean government also has declared to perform by 2015. According to the Environmental law of Korea, over 2 ppm of PCBs has to be decomposed by legal methods of incineration and thermal destruction. But those are inapplicable owing to the environmental groups. KAERI(Korea Atomic Energy Research Institute) has recently developed a remarkable technology for radiation treatment of toxic chemicals including chlorides using an electron beam accelerator

  5. Chemical modifications and stability of diamond nanoparticles resolved by infrared spectroscopy and Kelvin force microscopy

    Czech Academy of Sciences Publication Activity Database

    Kozak, Halyna; Remeš, Zdeněk; Houdková, Jana; Stehlík, Štěpán; Kromka, Alexander; Rezek, Bohuslav

    2013-01-01

    Roč. 15, č. 4 (2013), "1568-1"-"1568-9" ISSN 1388-0764 R&D Projects: GA ČR GAP108/12/0910; GA ČR GPP205/12/P331; GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : diamond nanoparticles * chemical modification * GAR-FTIR * AFM * KFM * XPS Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.278, year: 2013 http://link.springer.com/article/10.1007%2Fs11051-013-1568-7

  6. Chemical mechanisms of histone lysine and arginine modifications

    OpenAIRE

    Smith, Brian C.; Denu, John M.

    2008-01-01

    Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, an...

  7. Chemical evaluation of electronic cigarettes.

    Science.gov (United States)

    Cheng, Tianrong

    2014-05-01

    To review the available evidence evaluating the chemicals in refill solutions, cartridges, aerosols and environmental emissions of electronic cigarettes (e-cigarettes). Systematic literature searches were conducted to identify research related to e-cigarettes and chemistry using 5 reference databases and 11 search terms. The search date range was January 2007 to September 2013. The search yielded 36 articles, of which 29 were deemed relevant for analysis. The levels of nicotine, tobacco-specific nitrosamines (TSNAs), aldehydes, metals, volatile organic compounds (VOCs), flavours, solvent carriers and tobacco alkaloids in e-cigarette refill solutions, cartridges, aerosols and environmental emissions vary considerably. The delivery of nicotine and the release of TSNAs, aldehydes and metals are not consistent across products. Furthermore, the nicotine level listed on the labels of e-cigarette cartridges and refill solutions is often significantly different from measured values. Phenolic compounds, polycyclic aromatic hydrocarbons and drugs have also been reported in e-cigarette refill solutions, cartridges and aerosols. Varying results in particle size distributions of particular matter emissions from e-cigarettes across studies have been observed. Methods applied for the generation and chemical analyses of aerosols differ across studies. Performance characteristics of e-cigarette devices also vary across and within brands. Additional studies based on knowledge of e-cigarette user behaviours and scientifically validated aerosol generation and chemical analysis methods would be helpful in generating reliable measures of chemical quantities. This would allow comparisons of e-cigarette aerosol and traditional smoke constituent levels and would inform an evaluation of the toxicity potential of e-cigarettes.

  8. Chemical evaluation of electronic cigarettes

    Science.gov (United States)

    Cheng, Tianrong

    2014-01-01

    Objective To review the available evidence evaluating the chemicals in refill solutions, cartridges, aerosols and environmental emissions of electronic cigarettes (e-cigarettes). Methods Systematic literature searches were conducted to identify research related to e-cigarettes and chemistry using 5 reference databases and 11 search terms. The search date range was January 2007 to September 2013. The search yielded 36 articles, of which 29 were deemed relevant for analysis. Results The levels of nicotine, tobacco-specific nitrosamines (TSNAs), aldehydes, metals, volatile organic compounds (VOCs), flavours, solvent carriers and tobacco alkaloids in e-cigarette refill solutions, cartridges, aerosols and environmental emissions vary considerably. The delivery of nicotine and the release of TSNAs, aldehydes and metals are not consistent across products. Furthermore, the nicotine level listed on the labels of e-cigarette cartridges and refill solutions is often significantly different from measured values. Phenolic compounds, polycyclic aromatic hydrocarbons and drugs have also been reported in e-cigarette refill solutions, cartridges and aerosols. Varying results in particle size distributions of particular matter emissions from e-cigarettes across studies have been observed. Methods applied for the generation and chemical analyses of aerosols differ across studies. Performance characteristics of e-cigarette devices also vary across and within brands. Conclusions Additional studies based on knowledge of e-cigarette user behaviours and scientifically validated aerosol generation and chemical analysis methods would be helpful in generating reliable measures of chemical quantities. This would allow comparisons of e-cigarette aerosol and traditional smoke constituent levels and would inform an evaluation of the toxicity potential of e-cigarettes. PMID:24732157

  9. Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact

    Science.gov (United States)

    Tarabout, Christophe; Roux, Stéphane; Gobeaux, Frédéric; Fay, Nicolas; Pouget, Emilie; Meriadec, Cristelle; Ligeti, Melinda; Thomas, Daniel; IJsselstijn, Maarten; Besselievre, François; Buisson, David-Alexandre; Verbavatz, Jean-Marc; Petitjean, Michel; Valéry, Céline; Perrin, Lionel; Rousseau, Bernard; Artzner, Franck; Paternostre, Maité; Cintrat, Jean-Christophe

    2011-01-01

    Supramolecular self-assembly is an attractive pathway for bottom-up synthesis of novel nanomaterials. In particular, this approach allows the spontaneous formation of structures of well-defined shapes and monodisperse characteristic sizes. Because nanotechnology mainly relies on size-dependent physical phenomena, the control of monodispersity is required, but the possibility of tuning the size is also essential. For self-assembling systems, shape, size, and monodispersity are mainly settled by the chemical structure of the building block. Attempts to change the size notably by chemical modification usually end up with the loss of self-assembly. Here, we generated a library of 17 peptides forming nanotubes of monodisperse diameter ranging from 10 to 36 nm. A structural model taking into account close contacts explains how a modification of a few Å of a single aromatic residue induces a fourfold increase in nanotube diameter. The application of such a strategy is demonstrated by the formation of silica nanotubes of various diameters. PMID:21518895

  10. Inventory Control: A Small Electronic Device for Studying Chemical Kinetics.

    Science.gov (United States)

    Perez-Rodriguez, A. L.; Calvo-Aguilar, J. L.

    1984-01-01

    Shows how the rate of reaction can be studied using a simple electronic device that overcomes the difficulty students encounter in solving the differential equations describing chemical equilibrium. The device, used in conjunction with an oscilloscope, supplies the voltages that represent the chemical variables that take part in the equilibrium.…

  11. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies

    Science.gov (United States)

    Szczepanik, Beata; Słomkiewicz, Piotr; Garnuszek, Magdalena; Czech, Kamil; Banaś, Dariusz; Kubala-Kukuś, Aldona; Stabrawa, Ilona

    2015-03-01

    The effect of chemical modification of halloysite from a Polish strip mine "Dunino" on the chemical composition and structure of this clay mineral was studied using infrared spectroscopy (ATR FT-IR), wavelength dispersive X-ray fluorescence (WDXRF), and X-ray powder diffraction (XRPD) methods. The results obtained by the WDXRF technique confirm that the content of silica and alumina was the highest for bleached halloysite samples and the lowest for acid-treated halloysite. A higher content of Fe2O3 in comparison to halloysite samples coming from other countries was observed for raw halloysite samples. XRPD diffraction pattern obtained for raw halloysite confirmed the presence of halloysite, kaolinite, hematite, and calcite minerals in the sample. Bleaching the halloysite removes (or significantly reduces) the content of other minerals present in the raw halloysite. The FT-IR spectra of the studied halloysite samples show in the 3700-3600 cm-1 region well-defined hydroxyl stretching bands characteristic for the kaolin-group minerals and bands associated with the vibrations of the aluminium-silicon skeleton in the 1400-1000 cm-1 region. Modifying halloysite with 4-chloro-aniline causes successive incorporation of amine into the BH sample.

  12. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lorut, F.; Imbert, G. [ST Microelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Roggero, A. [Centre National d' Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse (France)

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  13. Chemical modification of glass surface with a monolayer of nonchromophoric and chromophoric methacrylate terpolymer

    Energy Technology Data Exchange (ETDEWEB)

    Janik, Ryszard [Department of Polymer Engineering and Technology, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Kucharski, Stanislaw, E-mail: stanislaw.kucharski@pwr.wroc.pl [Department of Polymer Engineering and Technology, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Sobolewska, Anna [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Barille, Regis [Institut des Sciences et Techniques Moleculaires d' Angers ' Moltech Anjou' , CNRS UMR 6200, 49045 Angers (France)

    2010-11-15

    The methacrylate terpolymers, a nonchromophoric and chromophoric one, containing 2-hydroxyethyl groups were reacted with 3-isocyanatopropyltriethoxysilane to obtain reactive polymers able to form covalent bonding with -SiOH groups of the glass surface via triethoxysilane group condensation. Chemical modification of the Corning 2949 glass plates treated in this way resulted in increase of wetting angle from 11{sup o} to ca. 70-73{sup o}. Determination of ellipsometric parameters revealed low value of the substrate refractive index as compared with that of bulk Corning 2949 glass suggesting roughness of the surface. The AFM image of the bare glass surface and that modified with terpolymer monolayer confirmed this phenomenon. Modification of the glass with the terpolymer monolayer made it possible to create the substrate surface well suited for deposition of familiar chromophore film by spin-coating. The chromophore polymer film deposited onto the modified glass surface was found to be resistant to come unstuck in aqueous solution.

  14. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  15. Electron Processing at 50 eV of Terphenylthiol Self-Assembled Monolayers: Contributions of Primary and Secondary Electrons.

    Science.gov (United States)

    Houplin, Justine; Dablemont, Céline; Sala, Leo; Lafosse, Anne; Amiaud, Lionel

    2015-12-22

    Aromatic self-assembled monolayers (SAMs) can serve as platforms for development of supramolecular assemblies driven by surface templates. For many applications, electron processing is used to locally reinforce the layer. To achieve better control of the irradiation step, chemical transformations induced by electron impact at 50 eV of terphenylthiol SAMs are studied, with these SAMs serving as model aromatic SAMs. High-resolution electron energy loss spectroscopy (HREELS) and electron-stimulated desorption (ESD) of neutral fragment measurements are combined to investigate electron-induced chemical transformation of the layer. The decrease of the CH stretching HREELS signature is mainly attributed to dehydrogenation, without a noticeable hybridization change of the hydrogenated carbon centers. Its evolution as a function of the irradiation dose gives an estimate of the effective hydrogen content loss cross-section, σ = 2.7-4.7 × 10(-17) cm(2). Electron impact ionization is the major primary mechanism involved, with the impact electronic excitation contributing only marginally. Therefore, special attention is given to the contribution of the low-energy secondary electrons to the induced chemistry. The effective cross-section related to dissociative secondary electron attachment at 6 eV is estimated to be 1 order of magnitude smaller. The 1 eV electrons do not induce significant chemical modification for a 2.5 mC cm(-2) dose, excluding their contribution.

  16. Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides.

    Science.gov (United States)

    Chen, Shuhan; Chen, Haixia; Tian, Jingge; Wang, Yanwei; Xing, Lisha; Wang, Jia

    2013-10-15

    Water-soluble corn silk polysaccharides (CSPS) were chemically modified to obtain their sulfated, acetylated and carboxymethylated derivatives. Chemical characterization and bioactivities of CSPS and its derivatives were comparatively investigated by chemical methods, gas chromatography, gel filtration chromatography, scanning electron microscope, infrared spectroscopy and circular dichroism spectroscopy, scavenging DPPH free radical assay, scavenging hydroxyl radical assay, ferric reducing power assay, lipid peroxidation inhibition assay and α-amylase activity inhibitory assay, respectively. Among the three derivatives, carboxylmethylated polysaccharide (C-CSPS) demonstrated higher solubility, narrower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, significantly higher antioxidant and α-amylase inhibitory abilities compared with the native polysaccharide and other derivatives. C-CSPS might be used as a novel nutraceutical agent for human consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Comparison between electron-beam and chemical crosslinking of silicone rubber

    Energy Technology Data Exchange (ETDEWEB)

    Frounchi, Masoud [Polymer Engineering Group, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave, Tehran (Iran, Islamic Republic of)]. E-mail: frounchi@sharif.edu; Dadbin, Susan [Yazd Processing Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Panahinia, Farhad [Polymer Engineering Group, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave, Tehran (Iran, Islamic Republic of)

    2006-02-15

    Silicone rubber (SR) was irradiated by electron beam over a dose range of 50-300 kGy in the absence of chemical reagents. Molecular weight between crosslinks (M {sub c}) in the network of SB was determined by two methods of solvent swelling and modulus of elasticity. The network structure of the elastomer crosslinked by electron beam irradiation and chemical vulcanization was compared. Mechanical tests were performed to determine shore hardness, tensile elongation, strength and modulus of the samples. It was found that SR is effectively crosslinked by electron beam irradiation. The tensile strength, hardness, modulus and elongation of irradiated SR were higher than peroxide-crosslinked SR. The optimum dose for the neat rubber was 150 kGy which reduced to 50 kGy with addition of 10 wt.% fumed silica. The synergistic effect of fumed silica was verified by M {sub c} measurements which showed a dramatic decrease in presence of fumed silica in the rubber. The synergism in properties was also verified by comparing the modulus values calculated from the Guth-Smallwood equation and experimental data. Absence of chemical reagents in irradiated SR samples makes them a proper choice for medical applications.

  18. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction

    DEFF Research Database (Denmark)

    Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.

    2011-01-01

    Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods...... such as electron(7-10) or X-ray diffraction(11) and X-ray absorption(12) yield complementary information about the atomic motions. Time-resolved methods that are directly sensitive to both valence-electron dynamics and atomic motions include photoelectron spectroscopy(13-15) and high-harmonic generation(16......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...

  19. Soft x-ray spectroscopy for probing electronic and chemical states of battery materials

    International Nuclear Information System (INIS)

    Yang Wanli; Qiao Ruimin

    2016-01-01

    The formidable challenge of developing high-performance battery system stems from the complication of battery operations, both mechanically and electronically. In the electrodes and at the electrode–electrolyte interfaces, chemical reactions take place with evolving electron states. In addition to the extensive studies of material synthesis, electrochemical, structural, and mechanical properties, soft x-ray spectroscopy provides unique opportunities for revealing the critical electron states in batteries. This review discusses some of the recent soft x-ray spectroscopic results on battery binder, transition-metal based positive electrodes, and the solid-electrolyte-interphase. By virtue of soft x-ray’s sensitivity to electron states, the electronic property, the redox during electrochemical operations, and the chemical species of the interphases could be fingerprinted by soft x-ray spectroscopy. Understanding and innovating battery technologies need a multimodal approach, and soft x-ray spectroscopy is one of the incisive tools to probe the chemical and physical evolutions in batteries. (topical review)

  20. Modification of the method of polarized orbitals for electron--alkali-metal scattering: Application to e-Li

    International Nuclear Information System (INIS)

    Bhatia, A.K.; Temkin, A.; Silver, A.; Sullivan, E.C.

    1978-01-01

    The method of polarized orbitals is modified to treat low-energy scattering of electrons from highly polarizable systems, specifically alkali-metal atoms. The modification is carried out in the particular context of the e-Li system, but the procedure is general; it consists of modifying the polarized orbital, so that when used in the otherwise orthodox form of the method, it gives (i) the correct electron affinity of the negative ion (in this case Li - ), (ii) the proper (i.e., Levinson-Swan) number of nodes of the associated zero-energy scattering orbital, and (iii) the correct polarizability. A procedure is devised whereby the scattering length can be calculated from the (known) electron affinity without solving the bound-state equation. Using this procedure we adduce a 1 S scattering length of 8.69a 0 . (The 3 S scattering length is -9.22a 0 .) The above modifications can also be carried out in the (lesser) exchange adiabatic approximation. However, they lead to qualitatively incorrect 3 S phase shifts. The modified polarized-orbital phase shifts are qualitatively similar to close-coupling and elaborate variational calculations. Quantitative differences from the latter calculations, however, remain; they are manifested most noticeably in the very-low-energy total and differential spin-flip cross sections

  1. Application of radiation technology in starch modification

    International Nuclear Information System (INIS)

    Chen Huiyuan; Peng Zhigang; Ding Zhongmin; Lu Jiajiu

    2007-01-01

    In order to commercialize the radiation modification of starch, corn starch was irradiated with different dose of 60 Co gamma radiations. Some basic physical and chemical properties of the resulted modified starch paste were measured with emphasis on the viscosity stability and tensile strength. The results indicate that irradiation of corn starch with a dose of 4-10 kGy can decrease its viscosity to 5-14 mPa·s, and the tensile strength can meet the standard set up for textile paste. In comparison with chemical modification for starch, radiation modification is simpler in technology, more convenient in operation, more stable in modification quality, and easier to control. The mechanism of radiation modification of starch was also discussed. (authors)

  2. Electronic plants

    Science.gov (United States)

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  3. Novel approach for classifying chemicals according to skin sensitizing potency by non-radioisotopic modification of the local lymph node assay.

    Science.gov (United States)

    Takeyoshi, Masahiro; Iida, Kenji; Shiraishi, Keiji; Hoshuyama, Satsuki

    2005-01-01

    The murine local lymph node assay (LLNA) is currently recognized as a stand-alone sensitization test for determining the sensitizing potential of chemicals, and it has the advantage of yielding a quantitative endpoint that can be used to predict the sensitization potency of chemicals. The EC3 has been proposed as a parameter for classifying chemicals according to the sensitization potency. We previously developed a non-radioisotopic endpoint for the LLNA based on 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA), and we are proposing a new procedure to predict the sensitization potency of chemicals based on comparisons with known human contact allergens. Nine chemicals (i.e. diphencyclopropenone, p-phenylenediamine, glutaraldehyde, cinnamicaldehyde, citral, eugenol, isopropyl myristate, propyleneglycol and hexane) categorized as human contact allergen classes 1-5 were tested by the non-RI LLNA with the following reference allergens: 2,4-dinitrochlorobenzene (DNCB) as a class 1 human contact allergen, isoeugenol as a class 2 human contact allergen and alpha-hexylcinnamic aldehyde (HCA) as a class 3 human contact allergen. Consequently, nine test chemicals were almost assigned to their correct allergen class. The results suggested that the new procedure for non-RI LLNA can provide correct sensitization potency data. Sensitization potency data are useful for evaluating the sensitization risk to humans of exposure to new chemical products. Accordingly, this approach would be an effective modification of LLNA with regard to its experimental design. Moreover, this procedure can be applied also to the standard LLNA with radioisotopes and to other modifications of the LLNA. Copyright 2005 John Wiley & Sons, Ltd.

  4. Modification of the electronic transport in Au by prototypical impurities and interlayers

    KAUST Repository

    Fadlallah, Majida M.

    2010-02-01

    Electronic transport calculations for metallic interfaces based on density functional theory and a scattering theory on the Landauer-Büttiker level are presented. We study the modifications of the transport through Au due to prototypical impurities and interlayers. Our results show that the influence of S and Si impurities is well described in terms of simple vacancies. Metallic impurities and interlayers, on the other hand, have even more drastic effects, in particular when the Au s-d hybrid states at the Fermi energy are perturbed. The effects of a possible interface alloy formation are discussed in detail. © 2010 EPLA.

  5. Modification of the electronic transport in Au by prototypical impurities and interlayers

    KAUST Repository

    Fadlallah, Majida M.; Schuster, Cosima B.; Eckern, Ulrich; Schwingenschlö gl, Udo

    2010-01-01

    Electronic transport calculations for metallic interfaces based on density functional theory and a scattering theory on the Landauer-Büttiker level are presented. We study the modifications of the transport through Au due to prototypical impurities and interlayers. Our results show that the influence of S and Si impurities is well described in terms of simple vacancies. Metallic impurities and interlayers, on the other hand, have even more drastic effects, in particular when the Au s-d hybrid states at the Fermi energy are perturbed. The effects of a possible interface alloy formation are discussed in detail. © 2010 EPLA.

  6. The Chemical Modeling of Electronic Materials and Interconnections

    Science.gov (United States)

    Kivilahti, J. K.

    2002-12-01

    Thermodynamic and kinetic modeling, together with careful experimental work, is of great help for developing new electronic materials such as lead-free solders, their compatible metallizations and diffusion-barrier layers, as well as joining and bonding processes for advanced electronics manufacturing. When combined, these modeling techniques lead to a rationalization of the trial-and-error methods employed in the electronics industry, limiting experimentation and, thus, reducing significantly time-to-market of new products. This modeling provides useful information on the stabilities of phases (microstructures), driving forces for chemical reactions, and growth rates of reaction products occurring in interconnections or thin-film structures during processing, testing, and in longterm use of electronic devices. This is especially important when manufacturing advanced lead-free electronics where solder joint volumes are decreasing while the number of dissimilar reactive materials is increasing markedly. Therefore, a new concept of local nominal composition was introduced and applied together with the relevant ternary and multicomponent phase diagrams to some solder/conductor systems.

  7. Curly arrows meet electron density transfers in chemical reaction mechanisms: from electron localization function (ELF) analysis to valence-shell electron-pair repulsion (VSEPR) inspired interpretation.

    Science.gov (United States)

    Andrés, Juan; Berski, Sławomir; Silvi, Bernard

    2016-07-07

    Probing the electron density transfers during a chemical reaction can provide important insights, making possible to understand and control chemical reactions. This aim has required extensions of the relationships between the traditional chemical concepts and the quantum mechanical ones. The present work examines the detailed chemical insights that have been generated through 100 years of work worldwide on G. N. Lewis's ground breaking paper on The Atom and the Molecule (Lewis, G. N. The Atom and the Molecule, J. Am. Chem. Soc. 1916, 38, 762-785), with a focus on how the determination of reaction mechanisms can be reached applying the bonding evolution theory (BET), emphasizing how curly arrows meet electron density transfers in chemical reaction mechanisms and how the Lewis structure can be recovered. BET that combines the topological analysis of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool providing insight into molecular mechanisms of chemical rearrangements. In agreement with physical laws and quantum theoretical insights, BET can be considered as an appropriate tool to tackle chemical reactivity with a wide range of possible applications. Likewise, the present approach retrieves the classical curly arrows used to describe the rearrangements of chemical bonds for a given reaction mechanism, providing detailed physical grounds for this type of representation. The ideas underlying the valence-shell-electron pair-repulsion (VSEPR) model applied to non-equilibrium geometries provide simple chemical explanations of density transfers. For a given geometry around a central atom, the arrangement of the electronic domain may comply or not with the VSEPR rules according with the valence shell population of the considered atom. A deformation yields arrangements which are either VSEPR defective (at least a domain is missing to match the VSEPR arrangement corresponding to the geometry of the ligands), VSEPR compliant

  8. Modification of a scanning electron microscope for remote operation in a hot cell

    International Nuclear Information System (INIS)

    Reed, J.R.; Watson, H.E.; Smidt, F.A. Jr.

    1982-01-01

    Scanning electron microscopy (SEM) examination of broken fracture specimens is an essential part of the characterization of the failure mode of fracture toughness of specimens. The large specimen mass required for such examinations dictates the use of a shielded facility for performing such examinations on irradiated specimens. This report describes the modification of a commercial SEM for remote operation in a hot cell. The facility is used to examine specimens from several Navy and DOE-sponsored programs conducted at NRL which require the examination of radioactive materials

  9. Modification of Color Centers by Electron Bombardment: Final Report CRADA No. TC-0460-93-A

    Energy Technology Data Exchange (ETDEWEB)

    Van Bibber, Karl [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alger, Don M. [Quali-Tech, Inc., Columbia, MO (United States)

    2000-11-30

    The purpose of the project was to: Identify those electron beam irradiation parameters most relevant to process quality and efficiency, to producing and modifying color centers in topaz. Develop and test improved radiation processing techniques, and evaluate their potential applicability to other types of semi-precious gems. Develop an optimized data base for the process and procedures for identifying and characterizing material from new and diverse sources. Transfer new processing technology to the private sector, and, until they are implemented industrially, to perform radiation dosing to partially satisfy existing excess demand. We planned to define the interaction between sample purity level, the physics of irradiation to achieve color cent-er modification on a reproducible basis and demonstration of the resulting process on a commercially viable basis. The primary deliverable was the increased knowledge base in terms of expanded understanding of the systematics of color center modification in materials, and an extensive database of electron beam parameters which would optimize the efficiency and quality of radiation processing of topaz from diverse sources. The radiation processing of these stones constitutes a deliverable to Quali-Tech by LLNL.

  10. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing.

    Science.gov (United States)

    Yan, Hong; Zhong, Mengjuan; Lv, Ze; Wan, Pengbo

    2017-11-01

    A stretchable, transparent, and body-attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS 2 (PANI/MoS 2 ) nanocomposite in MoS 2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high-performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS 2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real-time monitoring of environment safety and human healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  12. Chemical and electrical passivation of Si(1 1 1) surfaces

    International Nuclear Information System (INIS)

    Tian Fangyuan; Yang Dan; Opila, Robert L.; Teplyakov, Andrew V.

    2012-01-01

    This paper compares the physical and chemical properties of hydrogen-passivated Si(1 1 1) single crystalline surfaces prepared by two main chemical preparation procedures. The modified RCA cleaning is commonly used to prepare atomically flat stable surfaces that are easily identifiable spectroscopically and are the standard for chemical functionalization of silicon. On the other hand electronic properties of these surfaces are sometimes difficult to control. A much simpler silicon surface preparation procedure includes HF dipping for a short period of time. This procedure yields an atomically rough surface, whose chemical identity is not well-defined. However, the surfaces prepared by this approach often exhibit exceptionally attractive electronic properties as determined by long charge carrier lifetimes. This work utilizes infrared spectroscopy and X-ray photoelectron spectroscopy to investigate chemical modification of the surfaces prepared by these two different procedures with PCl 5 (leading to surface chlorination) and with short- and long-alkyl-chain alkenes (1-decene and 1-octodecene, respectively) and follows the electronic properties of the starting surfaces produced by measuring charge-carrier lifetimes.

  13. Chemical and electrical passivation of Si(1 1 1) surfaces

    Science.gov (United States)

    Tian, Fangyuan; Yang, Dan; Opila, Robert L.; Teplyakov, Andrew V.

    2012-01-01

    This paper compares the physical and chemical properties of hydrogen-passivated Si(1 1 1) single crystalline surfaces prepared by two main chemical preparation procedures. The modified RCA cleaning is commonly used to prepare atomically flat stable surfaces that are easily identifiable spectroscopically and are the standard for chemical functionalization of silicon. On the other hand electronic properties of these surfaces are sometimes difficult to control. A much simpler silicon surface preparation procedure includes HF dipping for a short period of time. This procedure yields an atomically rough surface, whose chemical identity is not well-defined. However, the surfaces prepared by this approach often exhibit exceptionally attractive electronic properties as determined by long charge carrier lifetimes. This work utilizes infrared spectroscopy and X-ray photoelectron spectroscopy to investigate chemical modification of the surfaces prepared by these two different procedures with PCl5 (leading to surface chlorination) and with short- and long-alkyl-chain alkenes (1-decene and 1-octodecene, respectively) and follows the electronic properties of the starting surfaces produced by measuring charge-carrier lifetimes.

  14. Preparation of poly(2-chloroaniline) membrane and plasma surface modification

    International Nuclear Information System (INIS)

    Kir, E.; Oksuz, L.; Helhel, S.

    2006-01-01

    P2ClAn membranes were obtained from chemically synthesized poly(2-chloroaniline) (P2ClAn) by casting method. These membranes were cast from dimethyl formamide (DMF) and were in the undoped state. P2ClAn membranes were characterized by Fourier infrared spectroscopy and scanning electron microscopy. Measurements of water content capacity, membrane thickness and ion-exchange capacity of the cast membranes were carried out. P2ClAn membranes were treated by electron cylotron resonance (ECR) plasma for surface modification. Plasma treatment has been successfully utilized for improving the surface properties of P2ClAn membranes such as increasing pore diameters and number of pores for better anion or molecule transportation

  15. Electron microprobe analysis of tantalum--nitride thin films

    International Nuclear Information System (INIS)

    Stoltz, D.L.; Starkey, J.P.

    1979-06-01

    Quantitative chemical analysis of 500- and 2000-angstrom tantalum--nitride films on glass substrates has been accomplished using an electron microprobe x-ray analyzer. In order to achieve this analysis, modifications to the microprobe were necessary. A description of the calibration procedure, the method of analysis, and the quantitative results are discussed

  16. In-medium Modifications of Hadron Masses and Chemical Freeze-out in Ultra-relativistic Heavy-ion Collisions

    International Nuclear Information System (INIS)

    Florkowski, W.; Broniowski, W.

    1999-10-01

    We confront the hypothesis of chemical freeze-out in ultra-relativistic heavy-ion collisions with the hypothesis of large modifications of hadron masses in nuclear medium. We find that the thermal-model predictions for the ratios of particle multiplicities are sensitive to the values of in-medium hadronic masses. In particular, the π + /p ratio decreases by 35% when the masses of all hadrons (except for pseudo-Goldstone bosons) are scaled down by 30%. (author)

  17. Chemical modification and characterization of quaternized polysulfones.

    CSIR Research Space (South Africa)

    Nonjola, P

    2008-12-01

    Full Text Available Synthesis and characterization of anion-exchange membranes (AEMs) using polysulfones is described. The modification process of polysulfones involves two steps: Firstly, by introducing chloromethyl groups followed by quaternization reaction...

  18. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  19. Identifying the nature of surface chemical modification for directed self-assembly of block copolymers

    Directory of Open Access Journals (Sweden)

    Laura Evangelio

    2017-09-01

    Full Text Available In recent years, block copolymer lithography has emerged as a viable alternative technology for advanced lithography. In chemical-epitaxy-directed self-assembly, the interfacial energy between the substrate and each block copolymer domain plays a key role on the final ordering. Here, we focus on the experimental characterization of the chemical interactions that occur at the interface built between different chemical guiding patterns and the domains of the block copolymers. We have chosen hard X-ray high kinetic energy photoelectron spectroscopy as an exploration technique because it provides information on the electronic structure of buried interfaces. The outcome of the characterization sheds light onto key aspects of directed self-assembly: grafted brush layer, chemical pattern creation and brush/block co-polymer interface.

  20. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography

    International Nuclear Information System (INIS)

    Suzuki, Takahiro; Aizawa, Shinji; Tanigaki, Toshiaki; Ota, Keishin; Matsuda, Tsuyoshi; Tonomura, Akira

    2012-01-01

    We found that the accuracy of the phase observation in phase-shifting electron holography is strongly restricted by time variations of mean intensity and contrast of the holograms. A modified method was developed for correcting these variations. Experimental results demonstrated that the modification enabled us to acquire a large number of holograms, and as a result, the accuracy of the phase observation has been improved by a factor of 5. -- Highlights: ► A modified phase-shifting electron holography was proposed. ► The time variation of mean intensity and contrast of holograms were corrected. ► These corrections lead to a great improvement of the resultant phase accuracy. ► A phase accuracy of about 1/4000 rad was achieved from experimental results.

  1. Chemical changes induced on a TiO2 surface by electron bombardment

    International Nuclear Information System (INIS)

    Vergara, L.I.; Passeggi, M.C.G.; Ferron, J.

    2007-01-01

    We study the TiO 2 (Ti 4+ ) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO 2 sample is characterized by the appearance of a lower Ti oxidation state, Ti 2 O 3 (Ti 3+ ), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form

  2. Acoustic sensors for the control of liquid-solid interface evolution and chemical reactivity

    International Nuclear Information System (INIS)

    Ferrandis, J.Y.; Tingry, S.; Attal, J.; Seta, P.

    2006-01-01

    Less classical than far-field acoustic investigations of solid materials and/or solid-liquid interfaces, near-field acoustic properties of an acoustic solid wave guide (tip), thin enough at its termination to present an external diameter smaller than the excitation acoustic wave wavelength, is shown to be able to probe interface properties. As a result of that, these near-field acoustic probes can play the role of chemical sensors, if chemical modifications or chemical reactions are concerned at their surface. In that context, a chemical sensor was realized by electrochemical deposition of an electron-conducting polymer (polypyrrole-biotin) on a metal tip, followed by enzyme attachment by molecular recognition process involving the biotin-avidin-specific interaction. Results from near-field acoustic showed that the enzyme modification of the polymer layer can be detected by this new acoustic sensor

  3. Encoding of Fundamental Chemical Entities of Organic Reactivity Interest using chemical ontology and XML.

    Science.gov (United States)

    Durairaj, Vijayasarathi; Punnaivanam, Sankar

    2015-09-01

    Fundamental chemical entities are identified in the context of organic reactivity and classified as appropriate concept classes namely ElectronEntity, AtomEntity, AtomGroupEntity, FunctionalGroupEntity and MolecularEntity. The entity classes and their subclasses are organized into a chemical ontology named "ChemEnt" for the purpose of assertion, restriction and modification of properties through entity relations. Individual instances of entity classes are defined and encoded as a library of chemical entities in XML. The instances of entity classes are distinguished with a unique notation and identification values in order to map them with the ontology definitions. A model GUI named Entity Table is created to view graphical representations of all the entity instances. The detection of chemical entities in chemical structures is achieved through suitable algorithms. The possibility of asserting properties to the entities at different levels and the mechanism of property flow within the hierarchical entity levels is outlined. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Influence of DC plasma modification on the selected properties and the geometrical surface structure of polylactide prior to autocatalytic metallization

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń (Poland); Tracz, Adam [Centre for Molecular and Macromolecular Studies of the Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź (Poland); Żenkiewicz, Marian [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń (Poland)

    2015-03-01

    The paper presents the results of studies to determine the applicability of plasma modification in the process of polylactide (PLA) surface preparation prior to the autocatalytic metallization. The polylactide plasma modification was carried out in an oxygen or nitrogen chemistry. The samples were tested with the following methods: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and electron spectrophotometry (XPS). Scanning electron microscopy and atomic force microscopy images were demonstrated. The results of surface free energy calculations, performed based on the results of the contact angle measurements have been presented. The results of the qualitative (degree of oxidation or nitridation) and quantitative analysis of the chemical composition of the polylactide surface layer have also been described. The results of the studies show that the DC plasma modification performed in the proposed condition is a suitable as a method of surface preparation for the polylactide metallization. - Highlights: • We modified polylactide surface layer with plasma generated in oxygen or nitrogen. • We tested selected properties and surface structure of modified samples. • DC plasma modification can be used to prepare the PLA surface for metallization. • For better results metallization should be preceded by sonication process.

  5. Tuning electronic and magnetic properties of GaN nanosheets by surface modifications and nanosheet thickness.

    Science.gov (United States)

    Xiao, Meixia; Yao, Tingzhen; Ao, Zhimin; Wei, Peng; Wang, Danghui; Song, Haiyang

    2015-04-14

    Density-functional theory calculations are performed to investigate the effects of surface modifications and nanosheet thickness on the electronic and magnetic properties of gallium nitride (GaN) nanosheets (NSs). Unlike the bare GaN NSs terminating with polar surfaces, the systems with hydrogenated Ga (H-GaN), fluorinated Ga (F-GaN), and chlorinated Ga (Cl-GaN) preserve their initial wurtzite structures and exhibit ferromagnetic states. The abovementioned three different decorations on Ga atoms are energetically more favorable for thicker GaN NSs. Moreover, as the thickness increases, H-GaN and F-GaN NSs undergo semiconductor to metal and half-metal to metal transition, respectively, while Cl-GaN NSs remain completely metallic. The predicted diverse and tunable electronic and magnetic properties highlight the potential of GaN NSs for novel electronic and spintronic nanodevices.

  6. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    OpenAIRE

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we sh...

  7. Modification of the electronic properties of As2Se3 films by erbium using ion-plasma sputtering method

    International Nuclear Information System (INIS)

    Prikhodko, O.Yu.; Sarsembinov, Sh.Sh.; Ryaguzov, A.P.; Maksimova, S.Ya.; Chuprynin, A.S.

    2003-01-01

    At present one of the vital problems of semiconductor materials studies is production of new light emitting materials for fiber optics, namely for light-emitting diode, emitting at room temperature in the range of minimum absorption of quartz optic fiber. It is well-known that heterostructures based on amorphous semiconductors, containing large concentrations of rare-earth elements have such properties. The method of ion-plasma co-sputtering (IPCM) of the original and doping materials allows us to obtain amorphous semiconductor films with large impurity concentration. This method was used to produce amorphous films of chalcogenide vitreous semiconductors (ChVS), doped with impurities of different chemical nature. But the capability of IPCM for ChVS doping with rare-earth elements has not been studied well yet. Therefore it is interesting to obtain amorphous films of arsenic selenide doped with erbium using IPCM and study its electronic properties. The films were produced using high frequency (13.56 MHz) ion-plasma co-sputtering of combined target of vitreous As 2 Se 3 and a metal. The sputtering of the target was conducted in argon atmosphere. Er concentration in the films varied between 0 and 4 atomic percent. Amorphism of the structure of the obtained films was monitored using X-ray diffraction methods. Electrical and optical properties of Er-doped As 2 Se 3 films and the charge carrier transportation processes were studied. It was determined that doped films significantly differ from the pure ones in the values of main electronic parameters: conductivity, energy activation of conductivity, optical band-gap, drift mobility of electrons and holes and mobility activation energy. Note that common rules of change of electronic parameters of As 2 Se 3 films affected by Er doping agree with the rules, established during modification of As 2 Se 3 films with dopes of transition metals with incomplete 3d-shell (Fe, Ni). Analysis of the obtained results showed that doing

  8. Surface modification of metals by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1988-01-01

    Ion implantation in metals has attracted the attention as a useful technology for the formation of new metastable alloys and compounds in metal surface layers without thermal equilibrium. Current studies of metal surface modification by ion implantation with high fluences have expanded from basic research areas and to industrial applications for the improvement of life time of tools. Many results suggest that the high fluence implantation produces the new surface layers with un-expected microscopic characteristics and macroscopic properties due to implant particles, radiation damage, sputtering, and knock-on doping. In this report, the composition, structure and chemical bonding state in surface layers of iron, iron-based alloy and aluminum sheets implanted with high fluences have been investigated by means of secondary ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Tribological properties such as hardness, friction and wear are introduced. (author)

  9. Chemical modification of flax reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available This paper presents an experimental study on the static and dynamic mechanical properties of nonwoven based flax fibre reinforced polypropylene composites. The effect of zein modification on flax fibres is also reported. Flax nonwovens were treated...

  10. [Scanning electron microscope study of chemically disinfected endodontic files].

    Science.gov (United States)

    Navarro, G; Mateos, M; Navarro, J L; Canalda, C

    1991-01-01

    Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made.

  11. The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction

    Science.gov (United States)

    Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro

    2007-11-01

    The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.

  12. Chemically resistant, biocompatible and microstructured surface protection

    International Nuclear Information System (INIS)

    Hoffmann, W.; Pham, M.T.; Hueller, J.

    1984-01-01

    Subject of the invention are chemicallly resistant, biocompatible, and microstructured surface protective coatings of electronic elements and sensors including chemical sensors. Such coatings consist of a radiation-modified organic substance made of a microlithographic material. Modification can be achieved by irradiation with ions, atoms or molecules having an energy between 1 KeV and 1 MeV and a flux between 10 13 and 10 18 particles per cm 2

  13. X-ray electron density investigation of chemical bonding in van der Waals materials

    Science.gov (United States)

    Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.

    2018-03-01

    Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.

  14. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Takahiro; Aizawa, Shinji; Tanigaki, Toshiaki [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Ota, Keishin, E-mail: ota@microphase.co.jp [Microphase Co., Ltd., Onigakubo 1147-9, Tsukuba, Ibaragi 300-2651 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Kunigami, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-07-15

    We found that the accuracy of the phase observation in phase-shifting electron holography is strongly restricted by time variations of mean intensity and contrast of the holograms. A modified method was developed for correcting these variations. Experimental results demonstrated that the modification enabled us to acquire a large number of holograms, and as a result, the accuracy of the phase observation has been improved by a factor of 5. -- Highlights: Black-Right-Pointing-Pointer A modified phase-shifting electron holography was proposed. Black-Right-Pointing-Pointer The time variation of mean intensity and contrast of holograms were corrected. Black-Right-Pointing-Pointer These corrections lead to a great improvement of the resultant phase accuracy. Black-Right-Pointing-Pointer A phase accuracy of about 1/4000 rad was achieved from experimental results.

  15. Nanofibrillated Cellulose Surface Modification: A Review

    Directory of Open Access Journals (Sweden)

    Julien Bras

    2013-05-01

    Full Text Available Interest in nanofibrillated cellulose (NFC has increased notably over recent decades. This bio-based nanomaterial has been used essentially in bionanocomposites or in paper thanks to its high mechanical reinforcement ability or barrier property respectively. Its nano-scale dimensions and its capacity to form a strong entangled nanoporous network have encouraged the emergence of new high-value applications. It is worth noting that chemical surface modification of this material can be a key factor to achieve a better compatibility with matrices. In order to increase the compatibility in different matrices or to add new functions, surface chemical modification of NFC appears to be the prior choice to conserve its intrinsic nanofibre properties. In this review, the authors have proposed for the first time an overview of all chemical grafting strategies used to date on nanofibrillated cellulose with focus on surface modification such as physical adsorption, molecular grafting or polymer grafting.

  16. Environmental high resolution electron microscopy and applications to chemical science

    OpenAIRE

    Boyes, Edward; Gai, Pratibha

    2017-01-01

    An environmental cell high resolution electron microscope (EHREM) has been developed for in situ studies of dynamic chemical reactions on the atomic scale. It allows access to metastable intermediate phases of catalysts and to sequences of reversible microstructural and chemical development associated with the activation, deactivation and poisoning of a catalyst. Materials transported through air can be restored or recreated and samples damaged, e.g. by dehydration, by the usual vacuum enviro...

  17. Influence of Chemical Surface Modification of Woven Fabrics on Ballistic and Stab Protection of Multilayer Packets

    Directory of Open Access Journals (Sweden)

    Diana GRINEVIČIŪTĖ

    2014-06-01

    Full Text Available In order to achieve enhanced protective and wear (flexibility, less bulkiness properties of ballistic and stab protecting panels the investigation of chemical surface modification of woven p-aramid fabrics was performed applying different chemical composition shear thickening fluid (STF which improves friction inside fabric structure. For the chemical treatment silicic acid and acrylic dispersion water solutions were used and influence of their different concentrations on panels’ protective properties were investigated. Results of ballistic tests of multilayer protective panel have revealed that shear thickening effect was negligible when shooting at high energy range (E > 440 J. Determination of stab resistance of p-aramid panels has shown that different chemical composition of STFs had different influence on protective properties of the panels. Application of low concentrations of silicic acid determined higher stab resistance values comparing to higher concentrations of acrylic dispersion water solutions. At this stage of research stab tests results as ballistic ones determined that STF application for multilayer p-aramid fabrics protective panels is more efficient at low strike energy levels. DOI: http://dx.doi.org/10.5755/j01.ms.20.2.3138

  18. Chemical modification of wood

    Science.gov (United States)

    Roger M. Rowell

    2007-01-01

    After millions of years of evolution, wood was designed to perform in a wet environment, and nature is programmed to recycle it, in a timely way, back to the basic building blocks of carbon dioxide and water through biological, thermal, aqueous, photochemical, chemical, and mechanical degradation. The properties of wood are, for the most part, a result of the chemistry...

  19. Modification of Textile Materials' Surface Properties Using Chemical Softener

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2011-03-01

    Full Text Available In the present study the effect of technological treatment involving the processes of washing or washing and softening with chemical cationic softener "Surcase" produced in Great Britain on the surface properties of cellulosic textile materials manufactured from cotton, bamboo and viscose spun yarns was investigated. The changes in textile materials surface properties were evaluated using KTU-Griff-Tester device and FEI Quanta 200 FEG scanning electron microscope (SEM. It was observed that the worst hand properties and the higher surface roughness are observed of cotton materials if compared with those of bamboo and viscose materials. Also, it was shown that depending on the material structure the handle parameters of knitted materials are the better than the ones of woven fabrics.http://dx.doi.org/10.5755/j01.ms.17.1.249

  20. Mechanistic understanding of the cysteine capping modifications of antibodies enables selective chemical engineering in live mammalian cells.

    Science.gov (United States)

    Zhong, Xiaotian; He, Tao; Prashad, Amar S; Wang, Wenge; Cohen, Justin; Ferguson, Darren; Tam, Amy S; Sousa, Eric; Lin, Laura; Tchistiakova, Lioudmila; Gatto, Scott; D'Antona, Aaron; Luan, Yen-Tung; Ma, Weijun; Zollner, Richard; Zhou, Jing; Arve, Bo; Somers, Will; Kriz, Ronald

    2017-04-20

    Protein modifications by intricate cellular machineries often redesign the structure and function of existing proteins to impact biological networks. Disulfide bond formation between cysteine (Cys) pairs is one of the most common modifications found in extracellularly-destined proteins, key to maintaining protein structure. Unpaired surface cysteines on secreted mammalian proteins are also frequently found disulfide-bonded with free Cys or glutathione (GSH) in circulation or culture, the mechanism for which remains unknown. Here we report that these so-called Cys-capping modifications take place outside mammalian cells, not in the endoplasmic reticulum (ER) where oxidoreductase-mediated protein disulfide formation occurs. Unpaired surface cysteines of extracellularly-arrived proteins such as antibodies are uncapped upon secretion before undergoing disulfide exchange with cystine or oxidized GSH in culture medium. This observation has led to a feasible way to selectively modify the nucleophilic thiol side-chain of cell-surface or extracellular proteins in live mammalian cells, by applying electrophiles with a chemical handle directly into culture medium. These findings provide potentially an effective approach for improving therapeutic conjugates and probing biological systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Theoretical investigations of molecular wires: Electronic spectra and electron transport

    Science.gov (United States)

    Palma, Julio Leopoldo

    respect to the azo group. The results showed that the molecular structure is crucial in optimizing the electron transport properties of chemical structures, and that the transport properties in electronic devices at the molecular level can be manipulated, enhanced or suppressed by a careful consideration of the effects of chemical modification.

  2. The electron as a chemical entity 201 Farday lecture

    International Nuclear Information System (INIS)

    Dainton, F.S.

    1975-01-01

    After an introductory section, the subject is covered in sections, as follows: on 'dropping' an electron into a liquid or an amorphous solid; the preparation of solvated and trapped electrons in condensed media; the physical properties of solvated or trapped electrons (the E.S.R. spectrum and cavity structure; the equivalent conductance, mobility, diffusion constant, and Stokes radius of esub(s)sup(-); the ionic atmosphere relaxation time; the thermodynamic properties of esub(s)sup(-)); spectroscopic and other evidence concerning the cavities (the effects of pressure and temperature on the spectrum; direct evidence for a range of trap sizes for esub(t)sup(-)); the trapping and solvation mechanism; the chemical reactions of esub(s)sup(-); some applications of our knowledge of esub(s)sup(-). (U.K.)

  3. Information System of Resolution of Procedural Incidents and Management of the Modifications Made to the Electronic Court Registration

    Directory of Open Access Journals (Sweden)

    Ştefan Gheorghe PENTIUC

    2011-01-01

    Full Text Available This information system was made for its use by the staff responsible for random distribution of cases to the courts. The Information System of Resolution of Procedural Incidents and Management of the Modifications Made to the Electronic Court Registration consists of three new developed modules: the management module is a Web application which chronicles the modifications made in the electronic court registration, regarding the random assignment of cases,the resolution of procedural incidents, which is a Web service whose logic implements a logic Semantic Web application and the module of confirming judges which is a windows service running on the judges’ workstations. The Web service implements a Semantic Web application which processes the knowledgebase achieved through OWL ontology (Ontology Web Language by applying inferences leading to the correct solution. If this does not solve the problem, a set of associated Jena rules are used to infer and generate new knowledge. It also uses the SPARQL(SPARQL Protocol and RDF Query Language language that allows queries on the knowledge,similar to the classic query languages of databases. The novelty of the new conceived, designed and implemented system consists in accessing the domain knowledge as a web service to solve the procedural incidents occurred in electronic court registration.

  4. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.

    Science.gov (United States)

    Martin, S C; Minus, M B; Ball, Z T

    2016-01-01

    Natural enzymes use molecular recognition to perform exquisitely selective transformations on nucleic acids, proteins, and natural products. Rhodium(II) catalysts mimic this selectivity, using molecular recognition to allow selective modification of proteins with a variety of functionalized diazo reagents. The rhodium catalysts and the diazo reactivity have been successfully applied to a variety of protein folds, the chemistry succeeds in complex environments such as cell lysate, and a simple protein blot method accurately assesses modification efficiency. The studies with rhodium catalysts provide a new tool to study and probe protein-binding events, as well as a new synthetic approach to protein conjugates for medical, biochemical, or materials applications. © 2016 Elsevier Inc. All rights reserved.

  5. Synthesis and electronic properties of chemically functionalized graphene on metal surfaces

    International Nuclear Information System (INIS)

    Grüneis, Alexander

    2013-01-01

    A review on the electronic properties, growth and functionalization of graphene on metals is presented. Starting from the derivation of the electronic properties of an isolated graphene layer using the nearest neighbor tight-binding (TB) approximation for π and σ electrons, the TB model is then extended to third-nearest neighbors and interlayer coupling. The latter is relevant to few-layer graphene and graphite. Next, the conditions under which epitaxial graphene can be obtained by chemical vapor deposition are reviewed with a particular emphasis on the Ni(111) surface. Regarding functionalization, I first discuss the intercalation of monolayer Au into the graphene/Ni(111) interface, which renders graphene quasi-free-standing. The Au intercalated quasi-free-standing graphene is then the basis for chemical functionalization. Functionalization of graphene is classified into covalent, ionic and substitutional functionalization. As archetypical examples for these three possibilities I discuss covalent functionalization by hydrogen, ionic functionalization by alkali metals and substitutional functionalization by nitrogen heteroatoms.

  6. Modifications of nucleons in nuclei in quasi-elastic electron-nucleus scattering

    International Nuclear Information System (INIS)

    Mulders, P.J.

    1988-01-01

    In inelastic electron scattering two scaling regions are observed in which the scattering is dominated by quasi-elastic scattering. For large momentum transfers, √Q 2 > 2 GeV/c, the scattering process is dominated by quasi-elastic scattering off quarks, whereas for √Q 2 ≅ 0.5 GeV/c the dominant contribution is quasi-elastic scattering off nucleons. This corresponds nicely to our first order picture of the nucleus consisting of nucleons, which in turn are composed of quarks. In the nucleon-scaling region, possible modifications of nucleon properties show up through a study of the Q 2 dependence and the relative strength of the transverse and longitudinal cross sections. Results of both inclusive (e,e') and exclusive (e,e'p) experiments in the quasi-elastic scattering region indeed show a behavior that could indicate modifications of intrinsic properties of individual nucleons in the nucleus, although the question remains if one has correctly disentangled the effects of the (long range) interactions between nucleons and those connected to the internal structure of nucleons. Even so, a simple (one-parameter) size rescaling for nucleons appears to be inconsistent with the data and also with some known conventional nuclear physics observables. Therefore the inclusion of two-nucleon correlations appears necessary in order to be able to understand the data. Such correlations can for instance be due to the effect of the Pauli principle on the quark level. (orig.)

  7. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...

  8. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Athar; Mahdavian, Ali Reza, E-mail: a.mahdavian@ippi.ac.ir; Salehi-Mobarakeh, Hamid

    2017-03-15

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe{sub 3}O{sub 4} nanoparticles with polymerizable groups is presented here. After synthesis of Fe{sub 3}O{sub 4} nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe{sub 3}O{sub 4} are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe{sub 3}O{sub 4} nanoparticles (0–10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles. - Highlights: • Chemical modification of magnetite nanoparticles. • Encapsulation of modified magnetite with acrylic copolymer. • Superparamagnetic Fe3O4/polyacrylic nanocomposite particles.

  9. Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution

    Energy Technology Data Exchange (ETDEWEB)

    Marconnet, C. [Laboratoire de Genie des Procedes et des Materiaux, Ecole Centrale Paris, Grande Voie des Vignes, 92290 CHATENAY-MALABRY (France)], E-mail: cyril.marconnet@yahoo.fr; Wouters, Y. [Science et Ingenierie des Materiaux et Procedes, Institut National Polytechnique de Grenoble, F-38402 Saint-Martin d' Heres Cedex (France); Miserque, F. [Laboratoire de Reactivite des Surfaces et des Interfaces, CEA Saclay, Bat. 391, 91191 GIF-SUR-YVETTE (France); Dagbert, C. [Laboratoire de Genie des Procedes et des Materiaux, Ecole Centrale Paris, Grande Voie des Vignes, 92290 CHATENAY-MALABRY (France)], E-mail: catherine.dagbert@ecp.fr; Petit, J.-P. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, INPG, F-38402 Saint-Martin d' Heres Cedex (France); Galerie, A. [Science et Ingenierie des Materiaux et Procedes, Institut National Polytechnique de Grenoble, F-38402 Saint-Martin d' Heres Cedex (France); Feron, D. [Service de Corrosion et du Comportement des Materiaux dans leur Environnement, CEA Saclay, Bat. 458, 91191 GIF-SUR-YVETTE (France)

    2008-12-01

    This article deals with the interaction between the passive layer formed on UNS S30403 and S31254 stainless steels and an enzymatic solution containing glucose oxidase (GOx) and its substrate D-glucose. This enzymatic solution is often used to reproduce in laboratory the ennoblement occuring in non-sterile aerated aqueous environments because of the biofilm settlement on the surface of the metallic material. GOx catalyses the oxidation of D-glucose to gluconic acid by reducing oxygen to hydrogen peroxide and produces an organic acid. Thanks to photocurrent measurements, XPS analysis and Mott-Schottky diagrams, it is here shown that such an environment generates modifications in the chemical composition and electronic structure of the passive layer: it induces a relative enrichment of the n-type semi-conducting phase containing chromium (chromine Cr{sub 2}O{sub 3}) and an increase of the donors density in the space charge region.

  10. Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution

    International Nuclear Information System (INIS)

    Marconnet, C.; Wouters, Y.; Miserque, F.; Dagbert, C.; Petit, J.-P.; Galerie, A.; Feron, D.

    2008-01-01

    This article deals with the interaction between the passive layer formed on UNS S30403 and S31254 stainless steels and an enzymatic solution containing glucose oxidase (GOx) and its substrate D-glucose. This enzymatic solution is often used to reproduce in laboratory the ennoblement occuring in non-sterile aerated aqueous environments because of the biofilm settlement on the surface of the metallic material. GOx catalyses the oxidation of D-glucose to gluconic acid by reducing oxygen to hydrogen peroxide and produces an organic acid. Thanks to photocurrent measurements, XPS analysis and Mott-Schottky diagrams, it is here shown that such an environment generates modifications in the chemical composition and electronic structure of the passive layer: it induces a relative enrichment of the n-type semi-conducting phase containing chromium (chromine Cr 2 O 3 ) and an increase of the donors density in the space charge region

  11. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  12. Surface modification of additive manufactured metal products by an intense electron beam

    Science.gov (United States)

    Teresov, A. D.; Koval, N. N.; Ivanov, Yu F.; Petrikova, E. A.; Krysina, O. V.

    2017-11-01

    On the example of VT6 titanium alloy it is shown that successive surface modification of additive manufactured metal specimens in vacuum at an argon pressure of 3.5·10-2 by ten pulses with 200 μs, 45 J/cm2 and then by three pulses with 50 μm, 20 J/cm2 provides a considerable decrease in their porosity and surface roughness (20 times for Ra) while their surface microhardness, friction coefficient, and wear level remain almost unchanged. After electron beam irradiation, the ultimate tensile strength of the material increases 1.33 times, and its tensile strain 1.18 times. For specimens obtained by conventional metallurgy and irradiated in the same modes, no such effects are observed.

  13. Radiation modification of glass fiber - reinforced plastics

    International Nuclear Information System (INIS)

    Allayarov, S.R.; Smirnov, Yu.N.; Lesnichaya, V.A.; Ol'khov, Yu.A.; Belov, G.P.; Dixon, D.A.; Kispert, L.D.

    2007-01-01

    Modification of glass fiber - reinforced plastics (GFRPs) by gamma-irradiation has been researched to receipt of polymeric composite materials. They were produced by the film - technology method and the cheapest thermoplastics (polythene, polyamide were used as polymeric matrixes for their manufacture. GFRPs were irradiated with Co 60 gamma-rays from a Gammatok-100 source in air and in vacuum. The strength properties of GFRPs and initial polymeric matrixes were investigated before and after radiolysis. Molecular - topological structure of the polymeric matrixes were tested by the method of thermomechanical spectroscopy. The strength properties of GFRPs depend on a parity of speeds of structural (physical) and chemical modification of the polymeric matrixes. These two processes proceed simultaneously. The structural modification includes physical transformation of polymers at preservation of their chemical structure. Covalent bonds between various macromolecules or between macromolecules and surface of fiberglasses are formed at the chemical modification of polymeric matrixes induced by radiation. Action of ionizing radiation on the used polymeric matrix results to its structurization (polythene) or to destruction (polyamide). Increasing of durability of GFRPs containing polythene is caused by formation of the optimum molecular topological structure of the polymeric matrix. (authors)

  14. Cobalt surface modification during γ-Fe{sub 2}O{sub 3} nanoparticle synthesis by chemical-induced transition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junming [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Jian, E-mail: aizhong@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Decai [School of Mechanical and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2015-02-01

    In the chemical-induced transition of FeCl{sub 2} solution, the FeOOH/Mg(OH){sub 2} precursor was transformed into spinel structured γ-Fe{sub 2}O{sub 3} crystallites, coated with a FeCl{sub 3}·6H{sub 2}O layer. CoCl{sub 2} surface modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding Co(NO{sub 3}){sub 2} during the synthesis. CoFe{sub 2}O{sub 4} modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding NaOH during the surface modification with Co(NO{sub 3}){sub 2}. The CoFe{sub 2}O{sub 4} layer grew epitaxially on the γ-Fe{sub 2}O{sub 3} crystallite to form a composite crystallite, which was coated by CoCl{sub 2}·6H{sub 2}O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe{sub 2}O{sub 4} and γ-Fe{sub 2}O{sub 3} possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe{sub 2}O{sub 3}-based nanoparticles were related to the grain size. - Highlights: • γ-Fe{sub 2}O{sub 3} nanoparticles were synthesized by chemical induced transition. • CoCl{sub 2} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} during synthesization. • CoFe{sub 2}O{sub 4} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} and NaOH. • The magnetism of the nanoparticles is related to the grain size.

  15. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    Science.gov (United States)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  16. PREFACE Surface Modifications of Diamond and Related Materials (Session D, E-MRS Spring Meeting)

    Science.gov (United States)

    Nebel, Christoph E.

    2010-11-01

    This special issue contains selected papers which were presented at the E-MRS Symposium BIOMATERIALS, SENSORS & SURFACES, D: 'Surface modifications of diamond and related materials' which was held on 7-9 June 2010 in Strasbourg (France). With about 54 oral and poster presentations given from teams all over the world it was a very interesting, dense and lively meeting. The symposium focused on chemical modifications applied to graft surfaces of diamond, nano-diamond particles, diamond-like carbon, graphene, graphite and carbon nano-tubes with linker molecular layers for realization of bio-sensors, bio-markers, separation techniques, and switchable chemical links. Presented techniques span spontaneous bonding to photo-chemical attachment, electrochemical modifications, to Suzuki-coupling of aryl molecules. Special attention was drawn to mechanisms driving bonding kinetics such as electron transfer reactions, hydrogen cleavage reactions by nucleophilic molecules and growths schemas which vary from correlated two-dimensional chain reactions to three-dimensional cross polymerization. Hydrogen terminations, surface defects, surface roughness and atomic arrangements of surface carbon atoms were of interest to elucidate bonding mechanisms. In addition, bonding stability, either of linker molecules or of complex functionalized surfaces with DNA, proteins and enzymes was discussed by several speakers as well as details of the electronic interfaces between solid transducers and bio-layers. Here the characterization of surface and interface defect densities, of Fermi level pinning and of electron transfer rates was a major topic. Miniaturization of sensor area and application of new detection schemas was discussed. Diamond nano-particles which are increasingly used as biomarkers in drug delivery experiments also attracted attention. The organizers express our gratitude to the international members of the scientific committee who actively contributed to ensure an attractive

  17. Characterization of electron-deficient chemical bonding of diborane with attosecond electron wavepacket dynamics and laser response

    International Nuclear Information System (INIS)

    Yonehara, Takehiro; Takatsuka, Kazuo

    2009-01-01

    We report a theoretical study of non-adiabatic electrons-nuclei coupled dynamics of diborane H 2 BH 2 BH 2 under several types of short pulse lasers. This molecule is known to have particularly interesting geometrical and electronic structures, which originate from the electron-deficient chemical bondings. We revisit the chemical bonding of diborane from the view point of electron wavepacket dynamics coupled with nuclear motions, and attempt to probe the characteristics of it by examining its response to intense laser fields. We study in the following three aspects, (i) bond formation of diborane by collision between two monoboranes, (ii) attosecond electron wavepacket dynamics in the ground state and first excited state by circularly polarized laser pulse, and (iii) induced fragmentation back to monoborane molecules by linearly polarized laser. The wave lengths of two types of laser field employed are 200 nm (in UV range) and 800 nm (in IR range), and we track the dynamics from hundreds of attoseconds up to few tens of femtoseconds. To this end, we apply the ab initio semiclassical Ehrenfest theory, into which the classical vector potential of a laser field is introduced. Basic features of the non-adiabatic response of electrons to the laser fields is elucidated in this scheme. To analyze the electronic wavepackets thus obtained, we figure out bond order density that is a spatial distribution of the bond order and bond order flux density arising only from the bonding regions, and so on. Main findings in this work are: (i) dimerization of monoboranes to diborane is so efficient that even intense laser is hard to prevent it; (ii) collective motions of electron flux emerge in the central BHHB bonding area in response to the circularly polarized laser fields; (iii) laser polarization with the direction of central two BH bonding vector is efficient for the cleavage of BH 3 -BH 3 ; and (iv) nuclear derivative coupling plays a critical role in the field induced

  18. MODIFICATION OF SURFACE KONDENSITSIONNYH AEROSOLS WELDING AND METALLURGICHESKIH PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    A. A. Ennan

    2016-04-01

    Full Text Available Chemical modification of surface kondensitsionnyh aerosols (KA which formation when heat treatment metals (process of weld, foundry processes with application chlorosilanes are suggested. Adsorbtion vapor of water on modification powders KA decreases and changes in varies from modifier and conditions modification are setted.

  19. Atomic nitrogen encapsulated in fullerenes: realization of a chemical Faraday cage

    International Nuclear Information System (INIS)

    Lips, K.

    2000-01-01

    Fullerenes, C 60 and C 70 , are ideal containers for atomic nitrogen. We will show by electron paramagnetic resonance (EPR) experiments that nitrogen in C 60 keeps its atomic ground state configuration and resides in the center of the cage. This is the first time that atomic nitrogen is stabilized at ambient conditions. The inert shell of the fullerene protects the highly reactive nitrogen from undergoing chemical reactions with the surroundings. The fullerene cage is the chemical analogue of the Faraday cage in case of electrical fields, i.e. it shields off the chemical reactivity. As for the free nitrogen atom, the spins of the three p-electrons of nitrogen in C 60 are parallel (S = 3/2) and the atom has spherical symmetry. Due to the center position of nitrogen in C 60 , extremely sharp EPR lines are observed. This reflects the absence of a strong host-guest interaction and shows that the individuality of nitrogen in the fullerenes is preserved. Further evidence for the almost interaction-free suspension of nitrogen in the fullerene cages is provided by g-factor measurements. These investigations show that magnetic shielding of the host molecules can account for the observed differences between N rate at C 60 and N rate at C 70 . The fullerene cage can be chemically modified without destroying the endohedral complex. The chemical modifications change the symmetry of the molecule which is observed through an additional fine structure in the EPR spectrum. Influences of the modifications on the stability of N rate at C 60 will be discussed. (orig.)

  20. Structural, vibrational, electronic investigations and quantum chemical studies of 2-amino-4-methoxybenzothiazole

    Science.gov (United States)

    Arjunan, V.; Raj, Arushma; Santhanam, R.; Marchewka, M. K.; Mohan, S.

    2013-02-01

    Extensive vibrational investigations of 2-amino-4-methoxybenzothiazole have been carried out with FTIR and FT-Raman spectral techniques. The electronic structure of the molecule has been analysed by UV-Visible and NMR spectroscopies. The DFT studies were carried out with B3LYP and HF methods utilising 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets to determine the structural, thermodynamical, vibrational, electronic characteristics of the compound and also to understand the electronic and steric influence of the methoxy amino groups on the skeletal frequencies. The mixing of the fundamental modes was determined with the help of total energy distribution (TED). The energies of the frontier molecular orbitals have also been determined. The kinetic and thermodynamic stability and chemical hardness of the molecule have been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. 1H and 13C NMR chemical shifts and the electronic transitions of the molecule are also discussed.

  1. Structural, vibrational, electronic investigations and quantum chemical studies of 2-amino-4-methoxybenzothiazole.

    Science.gov (United States)

    Arjunan, V; Raj, Arushma; Santhanam, R; Marchewka, M K; Mohan, S

    2013-02-01

    Extensive vibrational investigations of 2-amino-4-methoxybenzothiazole have been carried out with FTIR and FT-Raman spectral techniques. The electronic structure of the molecule has been analysed by UV-Visible and NMR spectroscopies. The DFT studies were carried out with B3LYP and HF methods utilising 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets to determine the structural, thermodynamical, vibrational, electronic characteristics of the compound and also to understand the electronic and steric influence of the methoxy amino groups on the skeletal frequencies. The mixing of the fundamental modes was determined with the help of total energy distribution (TED). The energies of the frontier molecular orbitals have also been determined. The kinetic and thermodynamic stability and chemical hardness of the molecule have been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. (1)H and (13)C NMR chemical shifts and the electronic transitions of the molecule are also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide.

    Science.gov (United States)

    Zadlo, Andrzej; Pilat, Anna; Sarna, Michal; Pawlak, Anna; Sarna, Tadeusz

    2017-12-01

    With aging, retinal pigment epithelium melanosomes, by fusion with the age pigment lipofuscin, form complex granules called melanolipofuscin. Lipofuscin granules may contain oxidized proteins and lipid hydroperoxides, which in melanolipofuscin could chemically modify melanin polymer, while transition metal ions present in melanin can accelerate such oxidative modifications. The aim of this research was to examine the effect of selected transition metal ions on melanin susceptibility to chemical modification induced by the water-soluble tert-butyl hydroperoxide used as an oxidizing agent. Synthetic melanin obtained by DOPA autooxidation and melanosomes isolated from bovine retinal pigment epithelium were analyzed. To monitor tert-butyl hydroperoxide-induced oxidative changes of DMa and BMs, electron paramagnetic resonance spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering, atomic force microscopy and electron paramagnetic resonance oximetry were employed. These measurements revealed that both copper and iron ions accelerated chemical degradation induced by tert-butyl hydroperoxide, while zinc ions had no effect. Strong prooxidant action was detected only in the case of melanosomes and melanin degraded in the presence of iron. It can be postulated that similar chemical processes, if they occur in situ in melanolipofuscin granules of the human retinal pigment epithelium, would modify antioxidant properties of melanin and its reactivity.

  3. Chemical modification of Art v 1, a major mugwort pollen allergen, by cis-aconitylation and citraconylation

    Directory of Open Access Journals (Sweden)

    DRAGANA STANIĆ

    2009-04-01

    Full Text Available Art v 1 is the major allergen of mugwort (Artemisia vulgaris pollen, a significant cause of hay fever all over Europe. Specific immunotherapy is the only treatment modality for allergic disease. Application of modified allergens makes the treatment safer and more efficient. In this work, two out of three (citraconic anhydride, cis-aconitic anhydride, 2,3-dimethylmaleic anhydride tested anhydrides were proven to be suitable for chemical modifications of allergens. Art v 1 was modified by cis-aconitylation and citraconylation in order to obtain derivatives of Art v 1 that may be suitable for further immunological testing. Acylation of Art v 1 gave derivatives (caaArt v 1 and citArt v 1 with about 80 % modified amino groups. The derivatives were in the monomeric form and had dramatically reduced pI values. Both derivatives were relatively stable at neutral pH values, while the acyl groups undergo hydrolysis under acidic conditions. Modification of allergens by cis-aconitylation and citraconylation could be a new tool for obtaining allergoids.

  4. Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review

    Directory of Open Access Journals (Sweden)

    Negar Lashgari

    2016-01-01

    Full Text Available The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring specific analytes in various systems. Organic-inorganic hybrid nanomaterials have important advantages as solid chemosensors and various innovative hybrid materials modified by fluorescence molecules were recently prepared. On the other hand, the homogeneous porosity and large surface area of mesoporous silica make it a promising inorganic support. SBA-15 as a two-dimensional hexagonal mesoporous silica material with stable structure, thick walls, tunable pore size, and high specific surface area is a valuable substrate for modification with different organic chelating groups. This review highlights the fluorescent chemosensors for ionic species based on modification of the mesoporous silica SBA-15 with different organic molecules, which have been recently developed from our laboratory.

  5. The effects of a stress field and chemical diffusion on electronic behaviour in InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Zhang Xu; Wang Chongyu

    2006-01-01

    The effects of a stress field and chemical diffusion on electronic behaviour in self-assembled InAs/GaAs quantum dots (QD) are investigated by using first-principle calculations. We find that a potential well appears in a QD without a lattice misfit and chemical diffusion, and both stress field and Ga chemical diffusion can induce the formation of a potential barrier, which strongly affects the electronic behaviour within the QD. The stress field can localize electrons to the base of the QD. And associated with Ga diffusion, the stress field will induce an inverted electronic alignment. The electronic behaviour in the QD without a stress field does not present the confined or localized characteristics caused by a lattice misfit, atomic size and Ga diffusion. This study provides useful information for modulating electronic behaviour by introducing a stress field and chemical diffusion

  6. Modification of the quantum mechanical flux formula for electron-hydrogen ionization through Bohm's velocity field

    Science.gov (United States)

    Randazzo, J. M.; Ancarani, L. U.

    2015-12-01

    For the single differential cross section (SDCS) for hydrogen ionization by electron impact (e -H problem), we propose a correction to the flux formula given by R. Peterkop [Theory of Ionization of Atoms by Electron Impact (Colorado Associated University Press, Boulder, 1977)]. The modification is based on an alternative way of defining the kinetic energy fraction, using Bohm's definition of velocities instead of the usual asymptotic kinematical, or geometrical, approximation. It turns out that the solution-dependent, modified energy fraction is equally related to the components of the probability flux. Compared to what is usually observed, the correction yields a finite and well-behaved SDCS value in the asymmetrical situation where one of the continuum electrons carries all the energy while the other has zero energy. We also discuss, within the S -wave model of the e -H ionization process, the continuity of the SDCS derivative at the equal energy sharing point, a property not so clearly observed in published benchmark results obtained with integral and S -matrix formulas with unequal final states.

  7. Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection.

    Science.gov (United States)

    Swenson, Dana L; Warfield, Kelly L; Warren, Travis K; Lovejoy, Candace; Hassinger, Jed N; Ruthel, Gordon; Blouch, Robert E; Moulton, Hong M; Weller, Dwight D; Iversen, Patrick L; Bavari, Sina

    2009-05-01

    Phosphorodiamidate morpholino oligomers (PMOs) are uncharged nucleic acid-like molecules designed to inactivate the expression of specific genes via the antisense-based steric hindrance of mRNA translation. PMOs have been successful at knocking out viral gene expression and replication in the case of acute viral infections in animal models and have been well tolerated in human clinical trials. We propose that antisense PMOs represent a promising class of therapeutic agents that may be useful for combating filoviral infections. We have previously shown that mice treated with a PMO whose sequence is complementary to a region spanning the start codon of VP24 mRNA were protected against lethal Ebola virus challenge. In the present study, we report on the abilities of two additional VP24-specific PMOs to reduce the cell-free translation of a VP24 reporter, to inhibit the in vitro replication of Ebola virus, and to protect mice against lethal challenge when the PMOs are delivered prior to infection. Additionally, structure-activity relationship evaluations were conducted to assess the enhancement of antiviral efficacy associated with PMO chemical modifications that included conjugation with peptides of various lengths and compositions, positioning of conjugated peptides to either the 5' or the 3' terminus, and the conferring of charge modifications by the addition of piperazine moieties. Conjugation with arginine-rich peptides greatly enhanced the antiviral efficacy of VP24-specific PMOs in infected cells and mice during lethal Ebola virus challenge.

  8. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  9. The chemical modification and characterization of polypropylene membrane with environment response by in-situ chlorinating graft copolymerization

    Science.gov (United States)

    Zhang, Yue; Liu, Jiankai; Hu, Wenjie; Feng, Ying; Zhao, Jiruo

    2017-08-01

    In this study, a novel chemical surface modification method of polyolefin membranes is applied following the in-situ chlorinating graft copolymerization (ISCGC). Polypropylene (PP)/methyl methacrylate (MMA) system was used as an example. A unique structure was formed by the modification process on the original membrane surface and the product exhibited an environmental response. Chlorine free radicals were generated using ultraviolet and heat and were used to capture the hydrogen in the polymer chains on the substrate surface. The formed macromolecular radicals could react with MMA over 2 h to achieve a high coverage ratio polymer on the PP membrane surface. The graft copolymers were characterized using FTIR, 1H-NMR, DSC, and XPS, which all proved the feasibility of chemically modifying the PP membrane surface by ISCGC. The surface morphology of the grafted PP membrane was characterized using SEM and AFM. The results showed that the grafted product presents a uniform, neat, and dense mastoid structure with an average thickness of 4.44 μm, which was expected to be similar to the brush-like surface structure. The contact angle and AFM tests indicated that the product surface is responsive to solvent and pH. The experimental results showed that the PP membrane surface structure can be reconstructed using ISCGC, a method that can be used for environment-responsive polymer materials. Moreover, the product has the characteristics of polymer interfacial brush.

  10. The quantum dynamics of electronically nonadiabatic chemical reactions

    Science.gov (United States)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  11. Polyurethanes irradiation by accelerated electrons: molecular and supramolecular evolution, incidence on the extractable and biomedical implications; Irradiation de polyurethannes par electrons acceleres: evolution moleculaire et supramoleculaire, incidence sur les extractibles et implications biomedicales

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, C

    2002-11-15

    Face to the development of radiosterilization and polymers medical devices it was wished to study the behavior of polyurethanes under accelerated electrons in oxidizing atmosphere. This study has been made to reveal the physico chemical and organisational modifications of polyurethanes for a medical use. (N.C.)

  12. Chemical modification of clay from the state of vermiculite Paraiba for use in nanocomposites of thermoset matrices

    International Nuclear Information System (INIS)

    Freitas, W.A.; Alves, T.S.; Barbosa, R.

    2011-01-01

    Vermiculite is a hydrated aluminosilicate of magnesium, iron and aluminum flake shape, formed by stacking cells 2:1 and feature high cation exchange capacity. In the present study was performed the treatment of an expanded vermiculite clay from Paraiba state with surfactant agent, in order to make it organophilic and allow its use in thermoset matrix nanocomposites. The natural clay and organophilizated one were characterized by X-Ray Diffraction (XRD), by Fourier Transform Infra-Red spectroscopy (FTIR) and swelling of Foster's swelling. The results indicated a change in the chemical composition of clay, related to the presence of characteristic groups of the salt in the clay and an increase of up to 124% in the basal interlayer distance. The chemical modification of the clay was efficient, indicating the possibility to apply the clay in polymeric nanocomposites. (author)

  13. Evaluation of electrode surface modification techniques for the development of chemical sensors

    International Nuclear Information System (INIS)

    Galiatsatos, C.

    1988-01-01

    This thesis covers several aspects of electrode surface modification techniques. The successful application of gamma-radiation to create polymer-coated electrodes, where the polymers can be ion exchangers and consequently of great analytical interest by themselves (such as the polymer poly(diallyl) dimethyl ammonium chloride) or where some other neutral polymers can function as convenient matrices for the introduction of biomolecules and/or other electrochemically interesting species is reported. This is demonstrated by using the neutral polymer poly(vinyl alcohol) (PVAL) as a matrix for immobilization of the enzyme glucose oxidase and the mediator methyl viologen. The effect of γ-radiation on PVAL is discussed, as well as swelling properties of the irradiated polymers and specific characteristics of the created chemical sensors. Results of an experiment where the various kinds of interactions between the ion-exchange polymer Nafion and some positively charged species are explored are reported, and a model system for competition (methyl viologen vs. ruthenium hexaamine) which increases significantly our understanding of the interaction is mentioned. The effect of γ-radiation on Nafion and its ion-exchange compabilities is discussed also. A system of conduction polymers primarily polypyrrole, used as a detector of electroinactive anions due to their doping-undergoing in the film is discussed. Preliminary results on a new method that involves chemical cross-linking of a triisocyane molecule with -OH containing polymers in the presence of enzymes are reported

  14. Radiation modification of cellulose pulps. Preparation of cellulose derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Zimek, Z.; Stupinska, H.; Mikolajczyk, W; Starostka, P.

    2005-01-01

    One of the most common methods of cellulose pulp modification (activation) applied in the production process of cellulose derivatives is the treatment of the pulp with NaOH solutions leading to the formation of alkalicellulose. The product then undergoes a prolonged process of maturation by its storage under specific conditions. The goal of the process is lowering of the molecular weight of cellulose down to the level resulting from various technological requirements. The process is time-consuming and costly; besides, it requires usage of large-capacity technological vessels and produces considerable amounts of liquid waste. Therefore, many attempts have been made to limit or altogether eliminate the highly disadvantageous stage of cellulose treatment with lye. One of the alternatives proposed so far is the radiation treatment of the cellulose pulp. In the pulp exposed to an electron beam, the bonds between molecules of D-antihydroglucopiranoses loosen and the local crystalline lattice becomes destroyed. This facilitates the access of chemical reagents to the inner structure of the cellulose and, in consequence, eliminates the need for the prolonged maturation of alkalicellulose, thus reducing the consumption of chemicals by the whole process. Research aimed at the application of radiation treatment of cellulose pulp for the production of cellulose derivatives has been conducted by a number of scientific institutions including the Institute of Nuclear Chemistry and Technology, Institute of Biopolymers and Chemical Fibres, and Pulp and Paper Research Institute. For the investigations and assessment of the molecular, hypermolecular, morphologic properties and the chemical reactivity, cellulose pulps used for chemical processing, namely Alicell, Borregaard and Ketchikan, as well as paper pulps made from pine and birch wood were selected. The selected cellulose pulps were exposed to an electron beam with an energy of 10 MeV generated in a linear electron accelerator

  15. Chemical Reactions of Molecules Promoted and Simultaneously Imaged by the Electron Beam in Transmission Electron Microscopy.

    Science.gov (United States)

    Skowron, Stephen T; Chamberlain, Thomas W; Biskupek, Johannes; Kaiser, Ute; Besley, Elena; Khlobystov, Andrei N

    2017-08-15

    The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.

  16. Modification of graphite structure by irradiation, revealed by thermal oxidation. Examination by electronic microscopy

    International Nuclear Information System (INIS)

    Rouaud, Michel

    1969-01-01

    Based on the analysis of images obtained by electronic microscopy, this document reports the comparative study of the action of neutrons on three different graphites: a natural one (Ticonderoga) and two pyrolytic ones (Carbone-Lorraine and Raytheon). The approach is based on the modification of features of thermal oxidation of graphites by dry air after irradiation. Different corrosion features are identified. The author states that there seems to be a relationship between the number and shape of these features, and defects existing on the irradiated graphite before oxidation. For low doses, the feature aspect varies with depth at which oxidation occurs. For higher doses, the aspect remains the same [fr

  17. Quantifying Chemical and Electrochemical Reactions in Liquids by in situ Electron Microscopy

    DEFF Research Database (Denmark)

    Canepa, Silvia

    and developing a robust imaging analysis method for quantitatively understand chemical and electrochemical process during in situ liquid electron microscopy. By using two custom-made liquid cells (an electrochemical scanning electron microscopy (EC-SEM) platform and Liquid Flow S/TEM holder) beam...... of electrochemical deposition of copper (Cu) by electrochemical liquid scanning electron microscopy (EC-SEM) was done in order to direct observe the formation of dendritic structures. Finally the shape evolution from solid to hollow structures through galvanic replacement reactions were observed for different silver...

  18. Analysis of abused drugs by selected ion monitoring: quantitative comparison of electron impact and chemical ionization

    International Nuclear Information System (INIS)

    Foltz, R.L.; Knowlton, D.A.; Lin, D.C.K.; Fentiman, A.F. Jr.

    1975-01-01

    A comparison was made of the relative sensitivities of electron impact and chemical ionization when used for selected ion monitoring analysis of commonly abused drugs. For most of the drugs examined chemical ionization using ammonia as the reactant gas gave the largest single m/e ion current response per unit weight of sample. However, if maximum sensitivity is desired it is important to evaluate electron impact and chemical ionization with respect to both maximum response and degree of interference from background and endogenous materials

  19. Effect of radiation-induced modification in fluoroelastomer

    International Nuclear Information System (INIS)

    Zen, Heloisa Augusto; Lugao, Ademar Benevolo

    2013-01-01

    Polymers exposed to ionizing irradiation, even at low doses, often undergo structural changes accompanied by molecular crosslinking and chain scission (degradation) reactions. The general effect of the radiation on polymers is determined by the ratio of crosslinking to chain scission events. This ratio depends on parameters such as chemical structure, physical state, radicals stability and mobility, irradiation rate and irradiation atmosphere. The radiation process is a large used technique to promote modification in their structures to apply them in different areas and is well known for its merits and potential in modifying the chemical and the physical properties of polymeric materials without cause drastic changes in their inherent properties, depend on the dose irradiated. In this study was used fluoroelastomer with 70% - fluor that having excellent thermal, chemical and mechanical properties. Vulcanized and non-vulcanized samples of this material were submitted to gamma radiation under air atmosphere in order to observe the effect of atmosphere in the polymer matrix. The irradiated doses were 5, 10 and 20kGy, at room temperature. The characterization was made by scanning electron microscope (SEM), infrared spectroscopy using attenuate reflectance (ATR-IR) and X-ray diffraction. The results demonstrated which was expected, the degradation reactions were observed. (author)

  20. Effects of aluminium surface morphology and chemical modification on wettability

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M., E-mail: mar@sbi.aau.dk [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Fojan, P.; Gurevich, L. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4, DK-9220 Aalborg East (Denmark); Afshari, A. [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2014-03-01

    Highlights: • Successful surface modification procedures on aluminium samples were performed involving formation of the layer of hydrophilic hyperbranched polyethyleneglycol (PEG) via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. • The groups of surfaces with hydrophobic behavior were found to follow the Wenzel model. • A transition from Cassie–Baxter's to Wenzel's regime was observed due to changing of the surface roughness upon mechanical polishing in aluminium samples. - Abstract: Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie–Baxter to Wenzel regime upon changing the surface

  1. Chemical Vapor-Deposited (CVD) Diamond Films for Electronic Applications

    Science.gov (United States)

    1995-01-01

    Diamond films have a variety of useful applications as electron emitters in devices such as magnetrons, electron multipliers, displays, and sensors. Secondary electron emission is the effect in which electrons are emitted from the near surface of a material because of energetic incident electrons. The total secondary yield coefficient, which is the ratio of the number of secondary electrons to the number of incident electrons, generally ranges from 2 to 4 for most materials used in such applications. It was discovered recently at the NASA Lewis Research Center that chemical vapor-deposited (CVD) diamond films have very high secondary electron yields, particularly when they are coated with thin layers of CsI. For CsI-coated diamond films, the total secondary yield coefficient can exceed 60. In addition, diamond films exhibit field emission at fields orders of magnitude lower than for existing state-of-the-art emitters. Present state-of-the-art microfabricated field emitters generally require applied fields above 5x10^7 V/cm. Research on field emission from CVD diamond and high-pressure, high-temperature diamond has shown that field emission can be obtained at fields as low as 2x10^4 V/cm. It has also been shown that thin layers of metals, such as gold, and of alkali halides, such as CsI, can significantly increase field emission and stability. Emitters with nanometer-scale lithography will be able to obtain high-current densities with voltages on the order of only 10 to 15 V.

  2. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    Science.gov (United States)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  3. Modification of foxtail millet starch by combining physical, chemical and enzymatic methods.

    Science.gov (United States)

    Dey, Ashim; Sit, Nandan

    2017-02-01

    Modification of foxtail millet starch was carried out by heat moisture treatment (HT), acid hydrolysis (AH), enzymatic treatment (EH), Ultrasound treatment (UT) and their combinations. A total of 15 modified starches were prepared by combining the various methods and properties were compared with native starch. The solubilities of the starches modified by HT were found to decrease whereas for other single modifications it increased. It also increased with number of modifications applied. The swelling power decreased for all the modified starches and a decrease in swelling power was observed with increase in number of modifications. Freeze-thaw stability improved for starches modified by single physical modifications i.e. HT and UT. Decrease in viscosities was observed for the modified starches and was particularly affected by AH. The pasting temperature was found to increase for those modified starches where HT was carried out. The modified starches gave softer gels. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid

    2014-01-01

    -life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition...... of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types...

  5. Capture of negative muons in magnesium oxides and crystalline modifications of phosphorus

    International Nuclear Information System (INIS)

    Zinov, V.G.; Kachalkin, A.K.; Nikityuk, L.N.; Pokrovskij, V.N.; Rybakov, V.N.; Yutlandov, I.A.

    1977-01-01

    The paper is aimed at comparing the structure of mesic K X-ray patterns of phosphorus in its crystalline modifications, comparing the structure of mesic X-ray patterns of magnesium and oxygen in compounds of MgO, MgO 2 , H 2 O and metallic magnesium, as well as comparison of propabilities of μ - atomic capture in magnesium oxides. By analyzing the mesic K X-ray patterns of red and white phosphorus it is concluded that the phosphorus crystalline modification produces the effect on the line structure, the higher series number being somewhat larger for the allotrope of phosphorus with polymeric structure. A comparison is made of the mesic X-ray series of the magnesium in oxide and metal, of the oxygen in oxide and water with the analogous data for aluminium and silicon. The data confirm the supposition that chemical bond (valence electrons) plays a substantial role in meson capture

  6. An electron beam irradiation method for modification of surface electrical resistivity of polyamides

    International Nuclear Information System (INIS)

    Brasoveanu, M. M.; Timus, D.; Nemtanu, M. R.

    2002-01-01

    The synthetic textiles which have mechanical and processing properties and a low price are very useful and consequently in high demand. The low antistatic qualities are an important disadvantage, but not impossible to eliminate. The aim of paper is the study of modification the antistatic properties of polyamide by grafting of monomers by irradiation. Twisted and unthermofixed polyamide-6 fibre from CFS Savinesti were investigated. The samples of polyamide were irradiated with an electron beam from the ALIN-7 linear accelerator of Electron Accelerators Laboratory of National Institute for Lasers, Plasma and Radiation Physics, Bucharest. Immediately after irradiation, the samples were measured by electron spin resonance (ESR). ESR spectra were recorded at room temperature using a Jeol spectrometer, JES-ME-3X, with 100 kHz modulation. In polyamide-6 at least two irradiation defect types occurred which present EPR signal by electron beam irradiation. Unstable centres of type A presenting an incompletely resolved hyperfine structure can be attributed to radicals -N-CH 2 - or -NH-CH-CH 2 -. Both radicals can present at room temperature a five-line spectrum like the radical formed in this work. First radical appears with very low probability and if the free bond is at one of carbon atoms then it will be stabilized immediately in a position from nitrogen. These type A radicals can appear in same zone and then they can react and form unsaturated bonds or bridge between the polymeric chains. Thus, it will appear the type B defects which were more stabile and without structure. On these double chains one can graft vinylic monomers even after time intervals longer from irradiation. (authors)

  7. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Science.gov (United States)

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Polyurethanes irradiation by accelerated electrons: molecular and supramolecular evolution, incidence on the extractable and biomedical implications

    International Nuclear Information System (INIS)

    Guignot, C.

    2002-11-01

    Face to the development of radiosterilization and polymers medical devices it was wished to study the behavior of polyurethanes under accelerated electrons in oxidizing atmosphere. This study has been made to reveal the physico chemical and organisational modifications of polyurethanes for a medical use. (N.C.)

  9. Electronic structure and chemical bonding in LaIrSi-type intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [Bordeaux Univ., Pessac (France). CNRS; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Nakhl, Michel [Univ. Libanaise, Fanar (Lebanon). Ecole Doctorale Sciences et Technologies

    2017-05-01

    The cubic LaIrSi type has 23 representatives in aluminides, gallides, silicides, germanides, phosphides, and arsenides, all with a valence electron count of 16 or 17. The striking structural motif is a three-dimensional network of the transition metal (T) and p element (X) atoms with TX{sub 3/3} respectively XT{sub 3/3} coordination. Alkaline earth or rare earth atoms fill cavities within the polyanionic [TX]{sup δ-} networks. The present work presents a detailed theoretical study of chemical bonding in LaIrSi-type representatives, exemplarily for CaPtSi, BaIrP, BaAuGa, LaIrSi, CeRhSi, and CeIrSi. DFT-GGA-based electronic structure calculations show weakly metallic compounds with itinerant small magnitude DOSs at E{sub F} except for CeRhSi whose large Ce DOS at E{sub F} leads to a finite magnetization on Ce (0.73 μ{sub B}) and induced small moments of opposite sign on Rh and Si in a ferromagnetic ground state. The chemical bonding analyses show dominant bonding within the [TX]{sup δ-} polyanionic networks. Charge transfer magnitudes were found in accordance with the course of the electronegativites of the chemical constituents.

  10. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Geh, Stefan; Rettenmeier, Albert W.; Dopp, Elke [University Hospital, Institute of Hygiene and Occupational Medicine, Essen (Germany); Yuecel, Raif [University Hospital, Institute of Cell Biology (Cancer Research), Essen (Germany); Duffin, Rodger [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); University of Edinburgh, ELEGI COLT Lab, Scotland (United Kingdom); Albrecht, Catrin; Borm, Paul J.A. [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); Armbruster, Lorenz [Verein fuer Technische Sicherheit und Umweltschutz e.V., Gotha (Germany); Raulf-Heimsoth, Monika; Bruening, Thomas [Research Institute for Occupational Medicine of the Institutions for Statutory Accident Insurance and Prevention (BGFA), Bochum (Germany); Hoffmann, Eik [University of Rostock, Institute of Biology, Department of Cell Biology and Biosystems Technology, Rostock (Germany)

    2006-02-01

    Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Oe< 10 {mu}m) with an {alpha}-quartz content of up to 6% and different chemical modifications (activation: alkaline, acidic, organic) in human lung fibroblasts (IMR90). Additionally, the ability of the particles to induce apoptosis in IMR90-cells and the hemolytic activity was tested. All bentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane. (orig.)

  11. First-principles investigation of the electronic and Li-ion diffusion properties of LiFePO4 by sulfur surface modification

    International Nuclear Information System (INIS)

    Xu, Guigui; Zhong, Kehua; Zhang, Jian-Min; Huang, Zhigao

    2014-01-01

    We present a first-principles calculation for the electronic and Li-ion diffusion properties of the LiFePO 4 (010) surface modified by sulfur. The calculated formation energy indicates that the sulfur adsorption on the (010) surface of the LiFePO 4 is energetically favored. Sulfur is found to form Fe-S bond with iron. A much narrower band gap (0.67 eV) of the sulfur surface-modified LiFePO 4 [S-LiFePO 4 (010)] is obtained, indicating the better electronic conductive properties. By the nudged elastic band method, our calculations show that the activation energy of Li ions diffusion along the one-dimensional channel on the surface can be effectively reduced by sulfur surface modification. In addition, the surface diffusion coefficient of S-LiFePO 4 (010) is estimated to be about 10 −11 (cm 2 /s) at room temperature, which implies that sulfur modification will give rise to a higher Li ion carrier mobility and enhanced electrochemical performance

  12. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    Science.gov (United States)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  13. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    International Nuclear Information System (INIS)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-01-01

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite

  14. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chong [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Guilong; Wang, Min [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Jianfeng [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-08-15

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  15. Study of chemical shifts of the chloroform complexes with cyclic donors of electrons

    International Nuclear Information System (INIS)

    Blaszkiewicz, B.; Pajak, Z.

    1973-01-01

    Chemical shifts of chloroform complexes with the heterocyclic electron donors: pyridine, piperidine, alpha-picoline and gamma-picoline have been studied using the high resolution (5.10 -9 ) spectrometer operating at 80 MHz. An attempt has also been made to study the three - component solutions of : chloroform, a heterocyclic donor of electrons and carbon tetrachloride. The results, which have been obtained, indicate that the complex-forming power of pyridine and other electron donors is greater in carbon tetrachloride than in other solvents. (S.B.)

  16. Low-Energy Electron Scattering Data for Chemical Plasma Treatment of Biomass

    International Nuclear Information System (INIS)

    Lima, Marco A.P.

    2014-01-01

    Full text: Replacing fossil fuels with biofuels from renewable sources is an important goal for reducing greenhouse gas emissions. Many countries are already using few percent of ethanol in the gasoline and few of them, with more aggressive programs, have developed flex fuel engines that can run with any mixture of gasoline and ethanol. An important point is how to produce ethanol in a sustainable way and with which technology? Biomass is a good candidate since it has cellulose and hemicellulose as source of sugars. In order to liberate these sugars for fermentation, it is important to learn how to separate the main components. Chemical routes (acid treatment) and biological routes (enzymatic hydrolysis) are combined and used for these purposes. Atmospheric plasmas can be useful for attacking the biomass in a controlled manner and low-energy electrons may have an important role in the process. Recently we have been studying the interaction of electrons with lignin subunits (phenol, guaiacol, p-coumaryl alcohol), cellulose components, β-D-glucose and cellobiose (β(1 - 4) linked glucose dimer) and hemicellulose components (β-D-xylose). We also obtained results for the amylose subunits α-D-glucose and maltose (α(1 - 4) linked glucose dimer). Altogether, the resonance spectra of lignin, cellulose and hemicellulose components establish a physical–chemical basis for electron-induced biomass pretreatment that could be applied to biofuel production. In my talk I will give a progress report on this matter. We will also discuss microsolvation effects on the electron-phenol scattering process and present our strategy to study molecular dissociation through electronic excitation of low energy triplet states. (author)

  17. Use of hydrostatic pressure for modulation of protein chemical modification and enzymatic selectivity.

    Science.gov (United States)

    Makarov, Alexey A; Helmy, Roy; Joyce, Leo; Reibarkh, Mikhail; Maust, Mathew; Ren, Sumei; Mergelsberg, Ingrid; Welch, Christopher J

    2016-05-11

    Using hydrostatic pressure to induce protein conformational changes can be a powerful tool for altering the availability of protein reactive sites and for changing the selectivity of enzymatic reactions. Using a pressure apparatus, it has been demonstrated that hydrostatic pressure can be used to modulate the reactivity of lysine residues of the protein ubiquitin with a water-soluble amine-specific homobifunctional coupling agent. Fewer reactive lysine residues were observed when the reaction was carried out under elevated pressure of 3 kbar, consistent with a pressure-induced conformational change of ubiquitin that results in fewer exposed lysine residues. Additionally, modulation of the stereoselectivity of an enzymatic transamination reaction was observed at elevated hydrostatic pressure. In one case, the minor diasteromeric product formed at atmospheric pressure became the major product at elevated pressure. Such pressure-induced alterations of protein reactivity may provide an important new tool for enzymatic reactions and the chemical modification of proteins.

  18. Electrochemical/chemical oxidation of bisphenol A in a four-electron/two-proton process in aprotic organic solvents

    International Nuclear Information System (INIS)

    Chan, Ya Yun; Yue, Yanni; Li, Yongxin; Webster, Richard D.

    2013-01-01

    Graphical abstract: - Highlights: • Bisphenol A undergoes a chemically irreversible voltammetric oxidation process. • Chemical oxidation was performed to overcome adsorption effects that cause electrode fouling. • A new product was isolated from chemical oxidation with 4 mol equiv. of the one-electron oxidant, NO + . • The oxidative mechanism was proposed to be a four-electron/two-proton process. - Abstract: The electrochemical behavior of bisphenol A (BPA) was examined using cyclic voltammetry, bulk electrolysis and chemical oxidation in aprotic organic solvents. It was found that BPA undergoes a chemically irreversible voltammetric oxidation process to form compounds that cannot be electrochemically converted back to the starting materials on the voltammetric timescale. To overcome the effects of electrode fouling during controlled potential electrolysis experiments, NO + was used as a one-electron chemical oxidant. A new product, hydroxylated bisdienone was isolated from the chemical oxidation of BPA with 4 mol equiv of NO + SbF 6 − in low water content CH 3 CN. The structure of the cation intermediate species was deduced and it was proposed that BPA is oxidized in a four-electron/two-proton process to form a relatively unstable dication which reacts quickly in the presence of water in acetonitrile (in a mechanism that is similar to phenols in general). However, as the water content of the solvent increased it was found that the chemical oxidation mechanism produced a nitration product in high yield. The findings from this study provide useful insights into the reactions that can occur during oxidative metabolism of BPA and highlight the possibility of the role of a bisdienone cation as a reactive metabolite in biological systems

  19. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Wang, Hsiang-Jen; Heiroth, Sebastian

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss spec......, indicate apparent variation of the ceria valence state across and along the film. No element segregation to the grain boundaries is detected. These results are discussed in the context of solid oxide fuel cell applications.......The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss...... spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M4,5 edges, used to monitor the local electronic structure of the grains...

  20. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    International Nuclear Information System (INIS)

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg

    2015-01-01

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound

  1. Surface modification on PMMA : PVDF polyblend: hardening under ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Polyblend; surface modification; microhardness; hardening; plasticization; segmental mobility. 1. Introduction. Polymeric materials have a specific feature of stability towards various aggressive chemical environments, which depends on a multiplicity of factors like structure and nature of the polymers and chemical ...

  2. Electronic structure and chemical bond in technetium dimer

    International Nuclear Information System (INIS)

    Klyagina, A.P.; Fursova, V.D.; Levin, A.A.; Gutsev, G.L.

    1987-01-01

    DV-X α method is used to study electron structure and peculiarities of chemical bond in Tc 2 and Tc 2 2+ dimers. Electron state characteristics are calculated in the basis of numerical Hartree-Fock functions for d 6 s 1 - and d 5 s 2 -configurations of Tc atom and for Tc 2 2+ ion d 5 s 1 -configuration. Disposition order for valence MO in Tc and Tc 2 2+ calculated for the given configurations is presented. It is shown that quinary bond with π u 4 dσ g 2 σ g 4 sσ g 2 δ u 2 configuration corresponds to the ground state of Tc 2 molecule. In Tc 2 some weakening of binding for π- and δ-orbitals and strengthening of total σ-binding in comparison with Mo 2 takes place. In Tc + and Tc 2+ MO composition is slightly changed, but a shift of 2σ-MO relatively MO consisting of d-AO is occured

  3. Application of electron-chemical curing in the production of thin composite materials

    International Nuclear Information System (INIS)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V.

    1993-01-01

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author)

  4. SS-mPEG chemical modification of recombinant phospholipase C for enhanced thermal stability and catalytic efficiency.

    Science.gov (United States)

    Fang, Xian; Wang, Xueting; Li, Guiling; Zeng, Jun; Li, Jian; Liu, Jingwen

    2018-05-01

    PEGylation is one of the most promising and extensively studied strategies for improving the properties of proteins as well as enzymic physical and thermal stability. Phospholipase C, hydrolyzing the phospholipids offers tremendous applications in diverse fields. However, the poor thermal stability and higher cost of production have restricted its industrial application. This study focused on improving the stabilization of recombinant PLC by chemical modification with methoxypolyethylene glycol-Succinimidyl Succinate (SS-mPEG, MW 5000). PLC gene from isolate Bacillus cereus HSL3 was fused with SUMO, a novel small ubiquitin-related modifier expression vector and over expressed in Escherichia coli. The soluble fraction of SUMO-PLC reached 80% of the total recombinant protein. The enzyme exhibited maximum catalytic activity at 80 °C and was relatively thermostable at 40-70 °C. It showed extensive substrate specificity pattern and marked activity toward phosphatidylcholine, which made it a typical non-specific PLC for industrial purpose. SS-mPEG-PLC complex exhibited an enhanced thermal stability at 70-80 °C and the catalytic efficiency (K cat /K m ) had increased by 3.03 folds compared with free PLC. CD spectrum of SS-mPEG-PLC indicated a possible enzyme aggregation after chemical modification, which contributed to the higher thermostability of SS-mPEG-PLC. The increase of antiparallel β sheets in secondary structure also made it more stable than parallel β sheets. The presence of SS-mPEG chains on the enzyme molecule surface somewhat changed the binding rate of the substrates, leading to a significant improvement in catalytic efficiency. This study provided an insight into the addition of SS-mPEG for enhancing the industrial applications of phospholipase C at higher temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    Science.gov (United States)

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we show that chemically unmodified mRNA can achieve those goals as well by applying sequence-engineered molecules. Using erythropoietin (EPO) driven production of red blood cells as the biological model, engineered Epo mRNA elicited meaningful physiological responses from mice to nonhuman primates. Even in pigs of about 20 kg in weight, a single adequate dose of engineered mRNA encapsulated in lipid nanoparticles (LNPs) induced high systemic Epo levels and strong physiological effects. Our results demonstrate that sequence-engineered mRNA has the potential to revolutionize human protein therapies. PMID:26050989

  6. Industrial applications of electron accelerators

    CERN Document Server

    Cleland, M R

    2006-01-01

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  7. Modification and characterization of microcrystalline cellulose with succinic anhydride

    International Nuclear Information System (INIS)

    Santos, Clecio M.R.; Santos, Douglas C.; Freitas, Gizele B.; Cardoso, Giselia

    2011-01-01

    Cellulose is a natural polymer, non-toxic, biodegradable and renewable source. With increasing global attention to environmental problems, the chemical modification of cellulose has been evaluated with increasing applicability in various industrial sectors. The cellulose can be chemical modified through the hydroxyl present in their molecules. This paper aims to present the main results in the modification of microcrystalline cellulose. The sample was pure and modified chemically and morphologically characterized by absorption spectroscopy in the infrared (IR) and showed the band in the 1551cm -1 characterization modification made, X-ray diffraction (XRD) where it was observed that the change led to a reduction significant crystallinity, and determination of average pore radius through the analyzer porosity and surface area resulting in values of 6.97 angstrom for pure sample and 8.62 angstrom for the modified. In addition to these tests we determined the average degree of substitution finding the value of 1.67. (author)

  8. Thermal-mechanical simulation of high-current pulsed electron beam surface modification process of pure aluminum

    International Nuclear Information System (INIS)

    Zou Jianxin; Qin Ying; Wu Aimin; Hao Shengzhi; Wang Xiaogang; Dong Chuang

    2004-01-01

    A mathematical physics model is established to describe the surface modification process of High Current Pulsed Electron Beams (HCPEB) of pure aluminum alloy. Computer simulation is used to reveal the phenomena of fast heating and cooling, melting, solidification, evaporation, and thermal stress wave associated with the HCPEB bombardment. The calculated melting depth is about 1-10 μm, which is close to the experimental results. The evaporated layer is at nanometer level, which can be omitted in the calculation of temperature field. The thermal stress wave, though as weak as about 0.1 MPa in peak amplitude (proportional to pulsed energy density), has strong impacts on material's structure and properties. (authors)

  9. Chemical functionalization of crystalline silicon surface with complexes of type (M3 (Dpa) 4X2) for the development of electronic devices

    International Nuclear Information System (INIS)

    Sanchez Zamora, Maria Alejandra

    2012-01-01

    New surfaces on crystalline silicon (100) diamines have been developed. The diamines 4-aminopyridine, 4-aminomethylpyridine and 1,12-dodecildiame, and self-assembled surfaces Si-diamine-metallic complexes, with cooper (II) acetate and trimetal Cu 3 (dpa) 4 CI 2 were studied. These surfaces are characterized with X-ray photoelectron spectroscopy (XPS), chemical force microscopy (CFM), by contact angle and cyclic voltammetry (CV). The XPS has suggested the formation of diamines monolayers with covalent binding to crystalline silicon, and modification of these surfaces, with metal complexes by coordination chemistry. The CFM has confirmed that surfaces are modified with diamines and cooper (II) acetate, and that were determined different chemical forces according to the change. The contact angle has been suggested that the functionalized surface with 4-aminomethylpyridine has had similar basicity to 1,12-dodecildiame, and more than 4-aminopyridine. This implies that the coordination with metallics complexes is benefited with 4-aminopyridine, which in turn is reflected with electrochemical data. Cyclic voltammetry analysis have showed that silicon surfaces with 4-aminomethylpyridine and 4-aminopyridine with cooper (II) acetate and trimetal have been electrochemically active. Thus, the surfaces could to have interesting applications in molecular electronics. (author) [es

  10. Chemically selective soft x-ray patterning of polymers

    International Nuclear Information System (INIS)

    Wang, J.; Stover, H.D.; Hitchcock, A.P.; Tyliszczak, T.

    2007-01-01

    The chemically selective modification of polymer mixtures by monochromated soft X-rays has been explored using the high-brightness fine-focused 50 nm beam of a scanning transmission X-ray microscope. Four different polymer systems were examined: a polymethylmethacrylate (PMMA) polyacrylonitrile (PAN) bilayer film; a PMMA-blend-PAN microphase-separated film; a poly(MMA-co-AN) copolymer film; and a poly(ethyl cyanoacrylate) homopolymer film. A high level of chemically selective modification was achieved for the PMMA/PAN bilayer; in particular, irradiation at 288.45 eV selectively removed the carbonyl group from PMMA while irradiation at 286.80 eV selectively reduced the nitrile group of PAN, even when these irradiations were carried out at the same (x,y) position of the sample. In the last two homogeneous polymer systems, similar amounts of damage to the nitrile and carbonyl groups occurred during irradiation at either 286.80 or 288.45 eV. This is attributed to damage transfer between the C=N and C=O groups mediated by primary electrons, secondary electrons or radical/ionic processes, aided by their close spatial proximity. Although the overall thickness of the bilayer sample at 70 nm is smaller than the lateral line spreading of 100 nm, the interface between the layers appears to effectively block the transport of energy, and hence damage, between the two layers. The origins of the line spreading in homogeneous phases and possible origins of the damage blocking effect of the interface are discussed. To demonstrate chemically selective patterning, high-resolution multi-wavelength patterns were created in the PMMA/PAN bilayer system

  11. Modification of poly(styrene-block-butadiene-block-styrene) [SBS] with phosphorus containing fire retardants

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Ullah, Saif; Jomaas, Grunde

    2015-01-01

    An elaborate survey of the chemical modification methods for endowing highly flammable SBS with increased fire resistant properties by means of chemical modification of the polymer backbone with phosphorus containing fire retardant species is presented. Optimal conditions for free radical addition...

  12. Single-particle characterization of 'Asian Dust' certified reference materials using low-Z particle electron probe X-ray microanalysis

    International Nuclear Information System (INIS)

    Hwang, Hee Jin; Ro, Chul-Un

    2006-01-01

    In order to clearly elucidate whether Asian Dust particles experience chemical modification during long-range transport, it is necessary to characterize soil particles where Asian Dust particles originate. If chemical compositions of source soil particles are well characterized, then chemical compositions of Asian Dust particles collected outside source regions can be compared with those of source soil particles in order to find out the occurrence of chemical modification. Asian Dust particles are chemically and morphologically heterogeneous, and thus the average composition and the average aerodynamic diameter (obtainable by bulk analysis) are not much relevant if the chemical modifications of the particles must be followed. The major elemental composition and abundance of the particle types that are potential subjects of chemical modification can only be obtained using single-particle analysis. A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize two certified reference materials (CRMs) for Asian Dust particles, which were collected from a loess plateau area and a desert of China. The CRMs were defined by bulk analyses to provide certified concentrations for 13 chemical elements. Using the low-Z particle EPMA technique, the concentrations of major chemical species such as aluminosilicates, SiO 2 , CaCO 3 , and carbonaceous species were obtained. Elemental concentrations obtained by the low-Z particle EPMA are close to the certified values, with considering that the single particle and bulk analyses employ very different approaches. There are still some discrepancies between those concentration values, resulting from analyses of particles with different sizes, different sample amounts analyzed, and uncertainties involved in the single particle analysis

  13. Tendências em modificação de eletrodos amperométricos para aplicações eletroanalíticas Trends in amperometric electrodes modification for electroanalytical applications

    Directory of Open Access Journals (Sweden)

    Arnaldo César Pereira

    2002-11-01

    Full Text Available The most relevant advances on the analytical applications of chemically modified electrodes (CME are presented. CME have received great attention due to the possibility of electrode surface modification including chemisorption, composite generation and polymer coating. In recent years, the interest in CME has increased overall to improve the sensitivity and selectivity of the electroanalytical probes, considering the electron mediator incorporation and the new conducting polymers development. The general procedures employed for the electrode modification and the operational characteristics of some electrochemical sensors are discussed.

  14. Physico-chemical effects of electron beam radiation on polypropylene film and its polyphenolic antioxydant

    International Nuclear Information System (INIS)

    Aymes-Chodur, C.; Legendre, B.; Yagoubi, N.; Betz, N.

    2002-01-01

    Complete text of publication follows. Even though plastics are widely used in various industrial applications, problems have occurred concerning the quality of the packaged products, due to the presence of potentially toxic additives that can migrate out of the polymer and thus contaminate the surrounding medium. This phenomenon is due to the fact that the additives are only mixed with the polymer powder before the plastic is molded, and as no chemical bond keeps them into the polymer matrix, additives are able to migrate as the plastic ages. In order to avoid this phenomenon, which can lead to the rejection of biomaterials, or food or drugs contamination problems, we intend to graft the additives into the polymer matrix by means of ionizing radiation. Indeed, previous studies have shown that radiation induces the formation of free radicals and hydroperoxides that can react with monomers to create covalent bonds. Our work deals with electron beam irradiation of polypropylene (PP) containing a known concentration of Irganox 1010, a polyphenolic antioxidant. High performance liquid chromatography (HPLC) measurements have been performed in order to evaluate the behavior of the additives under ionizing radiation, but the polymer matrix must also be characterized as a function of the absorbed radiation dose. This present study gives FTIR, high temperature size exclusion chromatography (SEC) and differential scanning calorimetry (DSC) results performed on both PP and Irganox 1010. They evidence the formation of oxidative groups such as free alcohols and hydroperoxides, and the formation of double bonds in the PP. SEC results highlight the scission of the polymer chains correlated to the degradation of the crystalline domains observed by DSC. Those physico-chemical modifications must be characterized for the understanding of the grafting and before the antioxidant activity is evaluated

  15. Chemical modification and pH dependence of kinetic parameters to identify functional groups in a glucosyltransferase from Strep. Mutans

    International Nuclear Information System (INIS)

    Bell, J.E.; Leone, A.; Bell, E.T.

    1986-01-01

    A glucosyltransferase, forming a predominantly al-6 linked glucan, was partially purified from the culture filtrate of S. mutans GS-5. The kinetic properties of the enzyme, assessed using the transfer of 14 C glucose from sucrose into total glucan, were studied at pH values from pH 3.5 to 6.5. From the dependence of km on pH, a group with pKa = 5.5 must be protonated to maximize substrate binding. From plots of V/sub max/ vs pH two groups, with pKa's of 4.5 and 5.5 were indicated. The results suggest the involvement of either two carboxyl groups (one protonated, one unprotonated in the native enzyme) or a carboxyl group (unprotonated) and some other protonated group such as histidine, cysteine. Chemical modification studies showed that Diethylyrocarbonate (histidine specific) had no effect on enzyme activity while modification with p-phydroxy-mercuribenzoate or iodoacetic acid (sulfhydryl reactive) and carbodimide reagents (carboxyl specific) resulted in almost complete inactivation. Activity loss was dependent upon time of incubation and reagent concentration. The disaccharide lylose, (shown to be an inhibitor of the enzyme with similar affinity to sucrose) offers no protection against modification by the sulfhydryl reactive reagents

  16. Graphene Electronic Device Based Biosensors and Chemical Sensors

    Science.gov (United States)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  17. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Science.gov (United States)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-08-01

    High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer-Emmett-Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  18. Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference.

    Science.gov (United States)

    Hatada, Mika; Loew, Noya; Inose-Takahashi, Yuka; Okuda-Shimazaki, Junko; Tsugawa, Wakako; Mulchandani, Ashok; Sode, Koji

    2018-06-01

    Enzyme based electrochemical biosensors are divided into three generations according to their type of electron transfer from the cofactors of the enzymes to the electrodes. Although the 3rd generation sensors using direct electron transfer (DET) type enzymes are ideal, the number of enzyme types which possess DET ability is limited. In this study, we report of a glucose sensor using mediator-modified glucose dehydrogenase (GDH), that was fabricated by a new quick-and-easy method using the pre-functionalized amine reactive phenazine ethosulfate (arPES). Thus mediator-modified GDH obtained the ability to transfer electrons to bulky electron acceptors as well as electrodes. The concentration of glucose was successfully measured using electrodes with immobilized PES-modified GDH, without addition of external electron mediators. Therefore, continuous monitoring systems can be developed based on this "2.5th generation" electron transfer principle utilizing quasi-DET. Furthermore, we successfully modified two other diagnostically relevant enzymes, glucoside 3-dehydrogenase and lactate oxidase, with PES. Therefore, various kinds of diagnostic enzymes can achieve quasi-DET ability simply by modification with arPES, suggesting that continuous monitoring systems based on the 2.5th generation principle can be developed for various target molecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Application of electron-chemical curing in the production of thin composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V. (Polyrad Research and Production Co., Moscow (Russian Federation))

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author).

  20. A comparison of chemical and ionization dosimetry for high-energy x-ray and electron beams

    International Nuclear Information System (INIS)

    Durocher, J.J.; Boese, H.; Cormack, D.V.; Holloway, A.F.

    1981-01-01

    A comparison was made of ferrous sulfate (Fricke) and ionometric methods for determining the absorbed dose in a phantom irradiated with 4-MV x-rays, 25-MV x-rays, or electron beams having various incident energies between 10 and 32 MeV. Both chemical and ionization instruments were calibrated in a 60 Co beam at a point in water where the absorbed dose had been previously determined. The chemical yield measurements were corrected for spatial variations in dose within the volume of the solution and used to obtain a value of the absorbed dose for each of the x-ray and electron beams. The ratios of G-values required for these determinations were taken from ICRU reports 14 and 21. Ionization instrument readings from three types of commercial ionization chambers were used to obtain alternate values of the absorbed dose for each radiation. C lambda and CE values used in determining these ionization values of dose were also taken from the above ICRU reports. For 4-MV x-rays the values of absorbed dose obtained from chemical measurements agreed to within 0.5% with values obtained from ionization measurements; for 25-MV x-rays the chemical values were about 1% higher than the ionization values; for the electron beams the chemical values were 1%-4% below the ionization values. These discrepancies suggest an inconsistency among the recommended G, C lambda, and CE values similar to that which has been noted by other workers

  1. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process

    International Nuclear Information System (INIS)

    Zhu, Donghai; Nai, Xueying; Lan, Shengjie; Bian, Shaoju; Liu, Xin; Li, Wu

    2016-01-01

    Highlights: • Dry process was adopted to modify the surface of MHSH whiskers using silane. • Si−O−Mg bonds were formed directly by the reaction between Si−OC 2 H 5 and −OH of MHSH. • Dispersibility and compatibility of modified whiskers greatly improved in organic phase. • Thermal stability of whiskers was enhanced after modified. - Abstract: In order to improve the compatibility of magnesium hydroxide sulfate hydrate (MHSH) whiskers with polymers, the surface of MHSH whiskers was modified using vinyltriethoxysilane (VTES) by dry process. The possible mechanism of the surface modification and the interfacial interactions between MHSH whiskers and VTES, as well as the effect of surface modification, were studied. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that the agglomerations were effectively separated and a thin layer was formed on the surface of the whiskers after modification. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses showed that the VTES molecules were bound to the surface of MHSH whiskers after modification. Chemical bonds (Si−O−Mg) were formed by the reaction between Si−OC 2 H 5 or Si−OH and the hydroxyl group of MHSH whiskers. The effect of surface modification was evaluated by sedimentation tests, contact angle measurements and thermogravimetric analysis (TGA). The results showed that the surface of MHSH whiskers was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MHSH whiskers were significantly improved in the organic phase. Additionally, the thermal stability of the VTES-modified MHSH whiskers was improved significantly.

  2. Novel method for chemical modification and patterning of the SU-8 photoresist

    DEFF Research Database (Denmark)

    Blagoi, Gabriela; Keller, Stephan Urs; Boisen, Anja

    2007-01-01

    the wetting behaviour of SU-8. The resolution limit of the AQ photopatterning method was 20 μm when using an uncollimated light source. AQ modification followed by a reaction with amino groups of Alexa-647 cadaverine and a Biotin-amino derivative proved possible modification and patterning of polymeric...

  3. Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance

    International Nuclear Information System (INIS)

    Pacquentin, Wilfried; Caron, Nadège; Oltra, Roland

    2014-01-01

    Surface modifications of AISI 304L stainless steel by laser surface melting (LSM) were investigated using a nanosecond pulsed laser-fibre doped by ytterbium at different overlaps. The objective was to study the change in the corrosion properties induced by the treatment of the outer-surface of the stainless steel without modification of the bulk material. Different analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and glow discharge optical emission spectrometry (GDOES) were used to characterize the laser-melted surface. The corrosion resistance was evaluated in a chloride solution at room temperature by electrochemical tests. The results showed that the crystallographic structure, the chemical composition, the properties of the induced oxide layer and consequently the pitting corrosion resistance strongly depend on the overlap rate. The most efficient laser parameters led to an increase of the pitting potential by more than 300 mV, corresponding to a quite important improvement of the corrosion resistance. This latter was correlated to chromium enrichment (47 wt.%) at the surface of the stainless steel and the induced absence of martensite and ferrite phases. However, these structural and chemical modifications were not sufficient to explain the change in corrosion behaviour: defects and adhesion of the surface oxide layer must have been taken into consideration.

  4. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification.

    Science.gov (United States)

    Wible, Ryan S; Sutter, Thomas R

    2017-03-20

    The unique biophysical and electronic properties of cysteine make this molecule one of the most biologically critical amino acids in the proteome. The defining sulfur atom in cysteine is much larger than the oxygen and nitrogen atoms more commonly found in the other amino acids. As a result of its size, the valence electrons of sulfur are highly polarizable. Unique protein microenvironments favor the polarization of sulfur, thus increasing the overt reactivity of cysteine. Here, we provide a brief overview of the endogenous generation of reactive oxygen and electrophilic species and specific examples of enzymes and transcription factors in which the oxidation or covalent modification of cysteine in those proteins modulates their function. The perspective concludes with a discussion of cysteine chemistry and biophysics, the hard and soft acids and bases model, and the proposal of the Soft Cysteine Signaling Network: a hypothesis proposing the existence of a complex signaling network governed by layered chemical reactivity and cross-talk in which the chemical modification of reactive cysteine in biological networks triggers the reorganization of intracellular biochemistry to mitigate spikes in endogenous or exogenous oxidative or electrophilic stress.

  5. DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydrides

    International Nuclear Information System (INIS)

    Al Alam, A.F.

    2009-06-01

    This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen: (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magneto-volume and chemical interactions (metal-H) effects within the following hydrided systems: binary Laves (e.g. ScFe 2 ) and Haucke (e.g. LaNi 5 ) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U 2 Ni 2 Sn) alloys on the other hand. (author)

  6. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Hua [Key Laboratory for Liquid phase chemical oxidation Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Wang Chengguo, E-mail: sduwangchg@gmail.com [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Zhang Shan; Lin Xue [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. Black-Right-Pointing-Pointer Carbon fiber surface functional groups were analyzed by LRS and XPS. Black-Right-Pointing-Pointer Proper treatment of carbon fiber can prove an effective way to increase composite's performance. Black-Right-Pointing-Pointer Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H{sub 2}SO{sub 4}, KClO{sub 3} and silane coupling agent ({gamma}-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor

  7. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    International Nuclear Information System (INIS)

    Yuan Hua; Wang Chengguo; Zhang Shan; Lin Xue

    2012-01-01

    Highlights: ► We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. ► Carbon fiber surface functional groups were analyzed by LRS and XPS. ► Proper treatment of carbon fiber can prove an effective way to increase composite's performance. ► Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H 2 SO 4 , KClO 3 and silane coupling agent (γ-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor performance of the resulting fiber/resin composites.

  8. Chemical analysis of minerals in granitic rocks by electron probe micro analyser

    International Nuclear Information System (INIS)

    Hiraoka, Yoshihiro

    1994-01-01

    The chemical compositions of minerals in a few granitic rocks were determined by electron probe micro analyser (EPMA). The accurate analytical data for standard feldspar groups were obtained by correcting the low analytical values of sodium and potassium that were arised from the damage in EPMA analysis. Using this method, feldspar groups and biotites in three granitic rocks gathered from Hiei, Hira and Kurama areas respectively, were analyzed. As the results, the local characteristics were observed in the kinds of feldspar groups and the chemical compositions of biotites that were contained in granitic rocks. (author)

  9. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    International Nuclear Information System (INIS)

    Buratti, S.; Ballabio, D.; Giovanelli, G.; Dominguez, C.M. Zuluanga; Moles, A.; Benedetti, S.; Sinelli, N.

    2011-01-01

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: → We monitored time-related changes in red wine fermentation process. → NIR and MIR spectroscopies, electronic nose and tongue were applied. → Data were kinetically modelled to identify critical points during fermentation. → NIR, MIR electronic nose and tongue were able to follow the fermentation process. → The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that

  10. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Buratti, S., E-mail: susanna.buratti@unimi.it [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Ballabio, D. [Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Giovanelli, G. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Dominguez, C.M. Zuluanga [Instituto de Ciencia y Tecnologia de Alimentos, Universidad Nacional de Colombia, Ciudad Universitaria, Bogota (Colombia); Moles, A.; Benedetti, S.; Sinelli, N. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2011-07-04

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: > We monitored time-related changes in red wine fermentation process. > NIR and MIR spectroscopies, electronic nose and tongue were applied. > Data were kinetically modelled to identify critical points during fermentation. > NIR, MIR electronic nose and tongue were able to follow the fermentation process. > The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that NIR and MIR

  11. Electronic and chemical properties of barium and indium clusters

    International Nuclear Information System (INIS)

    Onwuagba, B.N.

    1992-11-01

    The ground state electronic and chemical properties of divalent barium and trivalent indium are investigated in a self-consistent manner using the spin-polarized local density approximation in the framework of Density Functional Theory. A jellium model is adopted in the spirit of Gunnarsson and Lundqvist exchange and correlation energies and the calculated properties primarily associated with the s-p orbitals in barium and p orbitals in indium provide deepened insight towards the understanding of the mechanisms to the magic numbers in both clusters. (author). 21 refs, 5 figs

  12. Combined electron microscopy and spectroscopy characterization of as-received, acid purified, and oxidized HiPCO single-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Rosario-Castro, Belinda I.; Contes, Enid J.; Lebron-Colon, Marisabel; Meador, Michael A.; Sanchez-Pomales, Germarie; Cabrera, Carlos R.

    2009-01-01

    Single-wall carbon nanotubes (SWCNTs) are very important materials due to their combination of unique structure, dimension, strength, chemical stability, and electronic properties. Nevertheless, SWCNTs from commercial sources usually contain several impurities, which are usually removed by a purification process that includes reflux in acids and strong oxidation. This strong chemical procedure may alter the nanotube properties and it is thus important to control the extent of functionalization and oxidation during the purification procedure. In this report, we provide a comprehensive study of the structure and physical composition of SWCNTs during each step of the purification process. Techniques such as Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Infrared spectroscopy were used to track the SWCNTs structure, in terms of length and diameter distribution, and surface chemical modifications during each purification stage.

  13. A study of chemical modifications of a Nafion membrane by incorporation of different room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de Yuso, M.V.; Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga (Spain); Neves, L.A.; Coelhoso, I.M.; Crespo, J.G. [REQUIMTE/CQFB, Departamento de Quimica, Universidade Nova de Lisboa, Caparica (Portugal); Benavente, J. [Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga (Spain)

    2012-08-15

    Surface and bulk chemical changes in a Nafion membrane as a result of room temperature ionic liquids (RTILs) incorporation were determined by X-ray photoelectron spectroscopy (XPS) and elemental analysis, respectively. RTILs with different physicochemical properties were selected. Two imidazolium based RTIL-cations (1-octyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) were used to detect the effect of cation size on membrane modification, while the effect of the RTIL hydrophilic/hydrophobic character was also considered by choosing different anions. Angle resolved XPS measurements (ARXPS) were carried out varying the angle of analysis between 15 and 75 to get elemental information on the Nafion/RTIL-modified membranes interactions for a deepness of around 10 nm. Moreover, changes in the RTIL-modified membranes associated to thermal effect were also considered by analyzing the samples after their heating at 120 C for 24 h. Agreement between both chemical techniques, bulk and destructive elemental analysis and surface and non-destructive XPS, were obtained. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. The calculation of electron chemical potential and ion charge state and their influence on plasma conductivity in electrical explosion of metal wire

    International Nuclear Information System (INIS)

    Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli

    2014-01-01

    The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model

  15. Implementation of the Electron conversion Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Hernandez, Torres, D.; Noriega Scull, C.

    1996-01-01

    In the present work has been exposed the principles of the Conversion Moessbauer Electron Spectroscopy and its possibilities of application. Is also described the operation of the parallel plate avalanche detector made at the CEADEN starting from modifications done to the Gancedo's model and is exposed examples of the use of this detector in the characterization of corroded surfaces, with chemical cleaning and in samples of welded joints. The experiences obtained of this work were extended to the National Polytechnic Institute of Mexico where a similar detector, made in our center, was installed there

  16. Ion beam modification of solids ion-solid interaction and radiation damage

    CERN Document Server

    Wesch, Werner

    2016-01-01

    This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for ins...

  17. HELP: a model for evaluating the feasibility of using various chemical reaction systems as electronic lasers

    Energy Technology Data Exchange (ETDEWEB)

    Herbelin, J M; Cohen, N

    1975-09-01

    An analytical model for estimating the minimum requirements of a chemically pumped electronic laser is developed. From a knowledge of the basic spectroscopic and thermodynamic properties of a particular reaction, the model can quickly classify the system in accordance with the feasibility of generating stimulated emission at different possible wavelengths. Sample calculations of the reactions of barium atoms with nitrous oxide and nitrogen dioxide indicate that the model is sufficiently sensitive to distinguish between very similar systems and, therefore, should be useful in providing classification criteria in the search for a chemically pumped electronic laser.

  18. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    Science.gov (United States)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  19. Modifications resulting in significant increases in the beam usage time of a 60 keV electron beam welder

    International Nuclear Information System (INIS)

    Zielinski, R.E.; Harrison, J.L.

    1976-01-01

    Short beam usage times were encountered using a 60 keV electron beam welder. These short times were the direct result of a buildup of a reaction product (WO 2 . 90 ) that occurred on graphite washers which housed the tungsten emitter plate. While it was not possible to prevent the reaction product, its growth rate was sufficiently altered by changing graphite materials and minor design changes of the washers. With these modifications beam usage times increased from an original 40 min to approximately 675 min

  20. In-situ investigation of laser surface modifications of WC-Co hard metals inside a scanning electron microscope

    Science.gov (United States)

    Mueller, H.; Wetzig, K.; Schultrich, B.; Pompe, Wolfgang; Chapliev, N. I.; Konov, Vitaly I.; Pimenov, S. M.; Prokhorov, Alexander M.

    1989-05-01

    The investigation of laser interaction with solid surfaces and of the resulting mechanism of surface modification are of technical interest to optimize technological processes, and they are also of fundamental scientific importance. Most instructive indormation is available with the ail of the in-situ techniques. For instance, measuring of the photon emission of the irradiated surface ane the plasma torch (if it is produced) simultaneously to laser action, makes it possible to gain a global characterization of the laser-solid interaction. In order to obtain additional information about surface and structure modifications in microscopic detail , a laser and scanning electron microscope were combined in to a tandem equipment (LASEM). Inside this eqiipment the microscopic observation is carried out directly at the laser irradiated area without any displacement of the sample. In this way, the stepwise development of surface modification during multipulse irradiation is visible in microscopic details and much more reliable information about the surface modification process is obtainable in comparison to an external laser irradiation. Such kind of equipments were realized simultaneously and independently in the Institut of General Physics (Moscow) and the Central Institute of Solid State Physics and Material Research (Dresden) using a CO2 and a LTd-glass-laser, respectively. In the following the advantages and possibilities of a LASEM shall be demonstrated by some selected investigations of WC-CO hardmeta. The results were obtained in collaboration by both groups with the aid of the pulsed CO2-laser. The TEA CO2 laser was transmitted through a ZnSe-window into the sample chamber of the SEM and focused ofAo tfte sample surface. It was operated in TEM - oo mode with a repetition rate of about 1 pulse per second. A peak power density of about 160 MW/cm2 was achieved in front of the sample surface.

  1. Chemical formation of soft metal electrodes for flexible and wearable electronics.

    Science.gov (United States)

    Wang, Dongrui; Zhang, Yaokang; Lu, Xi; Ma, Zhijun; Xie, Chuan; Zheng, Zijian

    2018-06-18

    Flexible and wearable electronics is one major technology after smartphones. It shows remarkable application potential in displays and informatics, robotics, sports, energy harvesting and storage, and medicine. As an indispensable part and the cornerstone of these devices, soft metal electrodes (SMEs) are of great significance. Compared with conventional physical processes such as vacuum thermal deposition and sputtering, chemical approaches for preparing SMEs show significant advantages in terms of scalability, low-cost, and compatibility with the soft materials and substrates used for the devices. This review article provides a detailed overview on how to chemically fabricate SMEs, including the material preparation, fabrication technologies, methods to characterize their key properties, and representative studies on different wearable applications.

  2. Chemically induced dynamic electron polarization. Pulse radiolysis of aqueous solutions of alcohols

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Thurnauer, M.C.

    1975-01-01

    The radical pair model of chemically induced dynamic electron polarization (CIDEP) is experimentally verified. Aqueous solutions of alcohols were irradiated with 3 MeV electrons and observed with time resolved electron paramagnetic resonance (EPR) spectroscopy. Relative line intensities of the polarized EPR spectra of radicals from methanol and especially ethylene glycol, alone and in the presence of radicals from compounds containing halogens, illustrates the polarization dependence on the g-factor differences between the radical pair components. The observation of the relative polarization enhancement in the various lines of the multiline EPR spectra illustrates the polarization dependence on the hyperfine terms. Intrinsic enhancements are calculated and are shown to be proportional to the observed enhancement, showing that the radical pair model of CIDEP is qualitatively correct

  3. Post-Translational Modifications of TRP Channels

    Directory of Open Access Journals (Sweden)

    Olaf Voolstra

    2014-04-01

    Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.

  4. Observation of suprathermal electron fluxes during ionospheric modification experiments

    International Nuclear Information System (INIS)

    Fejer, J.A.; Sulzer, M.P.

    1987-01-01

    The temporal behavior of backscatter by ionospheric Langmuir waves was observed with the 430-MHz radar at Arecibo while a powerful HF wave was cycled 2 s on, 3 s off. The time resolution was 0.1 s. Late at night, in the absence of photoelectrons, using an HF equivalent radiated power of 80 MW at 3.175 MHz, the initial enhancement of about 6% above system noise of the backscattered power with Doppler shifts between -3.75 and -3.85 MHz was reached about 0.25 s after switching on the HF transmitter. In the following second the enhancement gradually decreased to about 3% and remained there until switching off. During the late afternoon, in the presence of photoelectrons, using the same HF power at 5.1 MHz, an initial enhancement by 25% of the backscattered power with Doppler shifts between -5.25 and -5.35 MHz appeared within less than 0.1 s after switching on the HF transmitter. The incoherent backscatter by Langmuir waves enhanced by photoelectrons was already above system noise by a factor greatly in excess of 10 before switching on the HF transmitter; the 25% enhancement thus corresponds to an enhancement greatly in excess of 250% above system noise. The enhancement drops to less than one tenth of its original value in less than a second. The nighttime effect is attributed to multiple acceleration of electrons from the high-energy tail of the Maxwellian distribution. The daytime effect is believed to be due to a modification in the distribution function of photoelectrons

  5. Heteromolecular metal–organic interfaces: Electronic and structural fingerprints of chemical bonding

    International Nuclear Information System (INIS)

    Stadtmüller, Benjamin; Schröder, Sonja; Kumpf, Christian

    2015-01-01

    Highlights: • We present a study of molecular donor–acceptor blends adsorbed on Ag(1 1 1). • Geometric and electronic structure of blends and pristine phases are compared. • The surface bonding of the acceptor is strengthened, that of the donor weakened. • But counter intuitively, the acceptor (donor) bond length becomes larger (smaller). • This contradiction is resolved by a model based on charge transfer via the surface. - Abstract: Beside the fact that they attract highest interest in the field of organic electronics, heteromolecular structures adsorbed on metal surfaces, in particular donor–acceptor blends, became a popular field in fundamental science, possibly since some surprising and unexpected behaviors were found for such systems. One is the apparent breaking of a rather fundamental rule in chemistry, namely that stronger chemical bonds go along with shorter bond lengths, as it is, e.g., well-known for the sequence from single to triple bonds. In this review we summarize the results of heteromolecular monolayer structures adsorbed on Ag(1 1 1), which – regarding this rule – behave in a counterintuitive way. The charge acceptor moves away from the substrate while its electronic structure indicates a stronger chemical interaction, indicated by a shift of the formerly lowest unoccupied molecular orbital toward higher binding energies. The donor behaves in the opposite way, it gives away charge, hence, electronically the bonding to the surface becomes weaker, but at the same time it also approaches the surface. It looks as if the concordant link between electronic and geometric structure was broken. But both effects can be explained by a substrate-mediated charge transfer from the donor to the acceptor. The charge reorganization going along with this transfer is responsible for both, the lifting-up of the acceptor molecule and the filling of its LUMO, and also for the reversed effects at the donor molecules. In the end, both molecules

  6. Surface-defect induced modifications in the optical properties of α-MnO_2 nanorods

    International Nuclear Information System (INIS)

    John, Reenu Elizabeth; Chandran, Anoop; Thomas, Marykutty; Jose, Joshy; George, K.C.

    2016-01-01

    Graphical abstract: - Highlights: • Alpha-MnO_2 nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO_2 nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO_6 octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn"3"+) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO_2. These studies suggest that

  7. Theory of the chemical effects of high-energy electrons

    International Nuclear Information System (INIS)

    Magee, J.L.; Chatterjee, A.

    1978-01-01

    The general nature of radiation chemical yields arising from electron irradiations is examined. A relationship between the G value of an arbitrary radiation product and the initial electron energy (greater than 20 keV) in the form of an integro-differential equation is derived. G values for the water decomposition products in acid solution are obtained by numerical solution of the equation and the use of a model. A differential equation equivalent to the integro-differential equation for the case of Rutherford scattering is introduced and an approximate analytical solution is found (eq 10). The latter turns out to be in agreement with the numerical solution of the integro-differential equation obtained with the more accurate Moeller cross section. Experimental data for ferrous sulfate oxidation (Fricke dosimeter) are examined and found to be in agreement with the relationships obtained here. Primary yields of the water decomposition products are also given. 4 figures, 2 tables, 35 references

  8. Contribution of scanning Auger microscopy to electron beam damage study

    International Nuclear Information System (INIS)

    Fontaine, J.M.

    1983-04-01

    Electron bombardment can produce surface modifications of the analysed sample. The electron beam effects on solid surfaces which have been discussed in the published literature can be classified into the following four categories: (1) heating and its consequent effects, (2) charge accumulation in insulators and its consequent effects, (3) electron stimulated adsorption (ESA), and (4) electron stimulated desorption and/or decomposition (ESD). In order to understand the physico-chemical processes which take place under electron irradiation in an Al-O system, we have carried out experiments in which, effects, such as heating, charging and gas contamination, were absent. Our results point out the role of an enhanced surface diffusion of oxygen during electron bombardment of an Al (111) sample. The importance of this phenomenon and the contribution of near-elastic scattering of the primary electrons (5 keV) to the increase of the oxidation degree observed on Al (111) are discussed, compared to the generally studied effects

  9. A probabilistic generative model for quantification of DNA modifications enables analysis of demethylation pathways.

    Science.gov (United States)

    Äijö, Tarmo; Huang, Yun; Mannerström, Henrik; Chavez, Lukas; Tsagaratou, Ageliki; Rao, Anjana; Lähdesmäki, Harri

    2016-03-14

    We present a generative model, Lux, to quantify DNA methylation modifications from any combination of bisulfite sequencing approaches, including reduced, oxidative, TET-assisted, chemical-modification assisted, and methylase-assisted bisulfite sequencing data. Lux models all cytosine modifications (C, 5mC, 5hmC, 5fC, and 5caC) simultaneously together with experimental parameters, including bisulfite conversion and oxidation efficiencies, as well as various chemical labeling and protection steps. We show that Lux improves the quantification and comparison of cytosine modification levels and that Lux can process any oxidized methylcytosine sequencing data sets to quantify all cytosine modifications. Analysis of targeted data from Tet2-knockdown embryonic stem cells and T cells during development demonstrates DNA modification quantification at unprecedented detail, quantifies active demethylation pathways and reveals 5hmC localization in putative regulatory regions.

  10. Machine learning of molecular electronic properties in chemical compound space

    International Nuclear Information System (INIS)

    Montavon, Grégoire; Müller, Klaus-Robert; Rupp, Matthias; Gobre, Vivekanand; Hansen, Katja; Tkatchenko, Alexandre; Vazquez-Mayagoitia, Alvaro; Anatole von Lilienfeld, O

    2013-01-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure–property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost. (paper)

  11. Machine learning of molecular electronic properties in chemical compound space

    Science.gov (United States)

    Montavon, Grégoire; Rupp, Matthias; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; Anatole von Lilienfeld, O.

    2013-09-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.

  12. Changes in mechanical and chemical wood properties by electron beam irradiation

    International Nuclear Information System (INIS)

    Schnabel, Thomas; Huber, Hermann; Grünewald, Tilman A.; Petutschnigg, Alexander

    2015-01-01

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations

  13. Changes in mechanical and chemical wood properties by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Thomas, E-mail: thomas.schnabel@fh-salzburg.ac.at [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Huber, Hermann [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Grünewald, Tilman A. [BOKU University of Natural Resources and Life Sciences, Institute of Physics and Materials Science, Peter Jordan Straße 82, 1190 Vienna (Austria); Petutschnigg, Alexander [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); BOKU University of Natural Resources and Life Sciences, Konrad Lorenzstraße 24, 3430 Tulln (Austria)

    2015-03-30

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations.

  14. Computational Study on Atomic Structures, Electronic Properties, and Chemical Reactions at Surfaces and Interfaces and in Biomaterials

    Science.gov (United States)

    Takano, Yu; Kobayashi, Nobuhiko; Morikawa, Yoshitada

    2018-06-01

    Through computer simulations using atomistic models, it is becoming possible to calculate the atomic structures of localized defects or dopants in semiconductors, chemically active sites in heterogeneous catalysts, nanoscale structures, and active sites in biological systems precisely. Furthermore, it is also possible to clarify physical and chemical properties possessed by these nanoscale structures such as electronic states, electronic and atomic transport properties, optical properties, and chemical reactivity. It is sometimes quite difficult to clarify these nanoscale structure-function relations experimentally and, therefore, accurate computational studies are indispensable in materials science. In this paper, we review recent studies on the relation between local structures and functions for inorganic, organic, and biological systems by using atomistic computer simulations.

  15. Improvement of Polypropylene Biological Interactions by using Superhydrophobic Surface Modification

    Directory of Open Access Journals (Sweden)

    E. Shirani

    2018-03-01

    Full Text Available The significance of producing superhydrophobic surfaces through modification of surface chemistry and structure is in preventing or delaying biofilm formation. This is done to improve biocompatibility and chemical and biological properties of the surface by creating micro-nano multilevel rough structure; and to decrease surface free energy by Fault Tolerant Control Strategy (FTCS . Here, we produced a superhydrophobic surface through TiO2 coating and flurosilanization methods. Then, in order to evaluate the physicochemical properties of the modified surfaces, they were characterized by Scanning Electron Microscope (SEM, Fourier Transform Infrared Spectroscopy (FTIR, Contact Angle (CA, cell viability assay (using Hela and MCF-7 cancer cell lines as well as non-cancerous human fibroblast cells by MTT, Bovine Serum Abumin (BSA protein adsorption using Bradford and bacterial adhesion assay (Staphylococcus aureus and Staphylococcus epidermidis using microtiter. Results showed that contact angle and surface energey of superhydrophobic modified surface increased to 150° and decreased to 5.51 mj/m2, respectively due to physicochemical modifications of the surface. In addition, the results showed a substantial reduction in protein adsorption and bacterial cell adhesion in superhydrophobic surface.

  16. TEXTILE SURFACE MODIFICATION BY PYHSICAL VAPOR DEPOSITION – (REVIEW

    Directory of Open Access Journals (Sweden)

    YUCE Ismail

    2017-05-01

    Full Text Available Textile products are used in various branches of the industry from automotive to space products. Textiles produced for industrial use are generally referred to as technical textiles. Technical textiles are nowadays applied to several areas including transportation, medicine, agriculture, protection, sports, packaging, civil engineering and industry. There are rapid developments in the types of materials used in technical textiles. Therefore, modification and functionalization of textile surfaces is becoming more crucial. The improvements of the properties such as anti-bacterial properties, fire resistivity, UV radiation resistance, electrical conductivity, self cleaning, and super hydrophobic, is getting more concern with respect to developments in textile engineering. The properties of textile surfaces are closely related to the fiber structure, the differences in the polymer composition, the fiber mixture ratio, and the physical and chemical processes applied. Textile surface modifications can be examined in four groups under the name mechanical, chemical, burning and plasma. Surface modifications are made to improve the functionality of textile products. Textile surface modifications affect the properties of the products such as softness, adhesion and wettability. The purpose of this work is to reveal varieties of vapor deposition modifications to improve functionality. For this purpose, the pyhsical vapor deposition methods, their affects on textile products and their end-uses will be reviewed.

  17. A new green methodology for surface modification of diatomite filler in elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Lamastra, F.R. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133, Rome (Italy); Mori, S.; Cherubini, V. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133, Rome (Italy); Department of Enterprise Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133, Rome (Italy); Scarselli, M. [Department of Physics, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133, Rome (Italy); Nanni, F., E-mail: fnanni@ing.uniroma2.it [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133, Rome (Italy); Department of Enterprise Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133, Rome (Italy)

    2017-06-15

    In this work a new, simple and green protocol to introduce a limited content of silanol groups on the surface of an hydrophobic diatomite, in order to be slightly hydrophilic and susceptible to be silanized by bifunctional, sulfur-containing organosilanes for rubber applications, is proposed. The chemical modification was carried out at 85 °C in a solution of H{sub 2}O:NaOH:H{sub 2}O{sub 2}. The modified diatomite was then silanized with bis(triethoxysilylpropyl) disulfide by a procedure that does not involve toxic solvent. Morphological features and elemental composition of diatomite were investigated by Field emission scanning electron microscopy coupled with Energy dispersive X-ray spectroscopy. The surface modification and silanization process were assessed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Diatomite was composed by micrometric frustules from different diatom species with pore size ranging from 25 nm to 1 μm. The spectroscopic characterizations confirmed the surface modification of diatomite with some silanols that acted as sites for silanization reaction. The silanized diatomite and the untreated one were used as filler in unvulcanized solvent-cast SBR films in order to verify that the modification does not negatively affect the polymer/filler interface and as consequence the mechanical properties. Mechanical properties of the realized samples were assessed by uniaxial tensile tests. Films filled with 10 wt% of diatomite (untreated or silanized) showed an increase of Elastic Modulus about of 50% and a decrease of the strain at break with respect to SBR samples, while the tensile strength was not significantly affected by the diatomite addition. SEM images of fracture surfaces of tested specimens showed a fine dispersion of both untreated and silanized diatomite in the polymeric matrix and the achieving of a good interfacial adhesion SBR/fillers. The silanized diatomite, as it is potentially able to bind

  18. A new green methodology for surface modification of diatomite filler in elastomers

    International Nuclear Information System (INIS)

    Lamastra, F.R.; Mori, S.; Cherubini, V.; Scarselli, M.; Nanni, F.

    2017-01-01

    In this work a new, simple and green protocol to introduce a limited content of silanol groups on the surface of an hydrophobic diatomite, in order to be slightly hydrophilic and susceptible to be silanized by bifunctional, sulfur-containing organosilanes for rubber applications, is proposed. The chemical modification was carried out at 85 °C in a solution of H_2O:NaOH:H_2O_2. The modified diatomite was then silanized with bis(triethoxysilylpropyl) disulfide by a procedure that does not involve toxic solvent. Morphological features and elemental composition of diatomite were investigated by Field emission scanning electron microscopy coupled with Energy dispersive X-ray spectroscopy. The surface modification and silanization process were assessed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Diatomite was composed by micrometric frustules from different diatom species with pore size ranging from 25 nm to 1 μm. The spectroscopic characterizations confirmed the surface modification of diatomite with some silanols that acted as sites for silanization reaction. The silanized diatomite and the untreated one were used as filler in unvulcanized solvent-cast SBR films in order to verify that the modification does not negatively affect the polymer/filler interface and as consequence the mechanical properties. Mechanical properties of the realized samples were assessed by uniaxial tensile tests. Films filled with 10 wt% of diatomite (untreated or silanized) showed an increase of Elastic Modulus about of 50% and a decrease of the strain at break with respect to SBR samples, while the tensile strength was not significantly affected by the diatomite addition. SEM images of fracture surfaces of tested specimens showed a fine dispersion of both untreated and silanized diatomite in the polymeric matrix and the achieving of a good interfacial adhesion SBR/fillers. The silanized diatomite, as it is potentially able to bind chemically to

  19. Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide

    International Nuclear Information System (INIS)

    Xu Bing; Wang Xiaoshu; Lu Yun

    2006-01-01

    In this work, sized polyacrylonitrile (PAN)-based carbon fibers were chemically modified with nitric acid and maleic anhydride (MA) in order to improve the interaction between carbon fiber surface and polyimide matrix. Bismaleimide (BMI) was selected as a model compound of polyimide to react with modified carbon fiber. The surface characteristic changing after modification and surface reaction was investigated by element analysis (EA), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and surface enhanced Raman scattering (SERS). The results indicated that the modification of carbon fiber surface with MA might follow the Diels Alder reaction mechanism. In the surface reaction between modified fibers and BMI, among the various surface functional groups, the hydroxyl group provided from phenolic hydroxyl group and bridged structure on carbon fiber may be the most effective group reacted with imide structure. The results may shed some light on the design of the appropriate surface structure, which could react with polyimide, and the manufacture of the carbon fiber-reinforced polyimide matrix composites

  20. Molecular design of new P3HT derivatives: Adjusting electronic energy levels for blends with PCBM

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eliezer Fernando [UNESP – Univ Estadual Paulista, POSMAT – Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Bauru, SP (Brazil); Lavarda, Francisco Carlos, E-mail: lavarda@fc.unesp.br [UNESP – Univ Estadual Paulista, POSMAT – Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Bauru, SP (Brazil); Faculdade de Ciências, UNESP – Univ Estadual Paulista, Departamento de Física, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru, SP (Brazil)

    2014-12-15

    An intensive search is underway for new materials to make more efficient organic solar cells through improvements in thin film morphology, transport properties, and adjustments to the energy of frontier electronic levels. The use of chemical modifications capable of modifying the electronic properties of materials already known is an interesting approach, as it can, in principle, provide a more adequate adjustment of the frontier electronic levels while preserving properties such as solubility. Based on this idea, we performed a theoretical study of poly(3-hexylthiophene) (P3HT) and 13 new derivatives obtained by substitution with electron acceptor and donor groups, in order to understand how the energy levels of the frontier orbitals are modified. The results show that it is possible to deduce the modification of the electronic levels in accordance with the substituent's acceptor/donor character. We also evaluated how the substituents influence the open circuit voltage and the exciton binding energy. - Highlights: • Prediction of P3HT derivatives properties for bulk-heterojunction solar cells. • Correlating substituent properties with electronic levels of P3HT derivatives. • Fluorinated P3HT improves open circuit voltage and stability.

  1. Electron Beam Modification and Functionalization of MWNT for Covalent Dispersion into Polymeric Systems

    International Nuclear Information System (INIS)

    Palmese, G. R.

    2006-01-01

    The discovery of multiwalled carbon nanotubes (MWNT) and singlewalled nanotubes (SWNT) has allowed for the development of structural and conductive reinforcement fillers for polymers and electronic systems. Due to their small diameter, high aspect ratio, strength, and conductive and semi-conductive properties, nanotubes are excellent reinforcing fillers for systems requiring enhanced electrical or material properties and may disperse into such systems at low percolation concentrations. However, despite their potential for enhanced composites properties, van der Waals interactions between nanotubes as well as their highly stable graphitic structure render them insoluble in water, organic solvents and most monomers. As a result, nanotubes separate from solution, and their excellent material properties are not realized on a macroscopic scale. Furthermore, in order for nanotube-reinforced systems to be structurally enhanced (allowing for load transfer from the bulk material to the nanotube filler), covalent interactions between nanotubes and the polymer chains are preferred. Therefore, the development of nanotube-based polymer composites with improved mechanical properties and electrical conductivity requires the covalent dispersion of carbon nanotubes. In this work, we have developed a novel method of nanotube surface modification in which dry MWNT are irradiated with a high-energy electron-beam (EB) in ambient air environment. Raman spectroscopy was performed to characterize the influence of EB irradiation on nanotubes, namely, variance of the disorder, or D band (∼1360 cm - 1) with respect to the graphitic, or G, peak (∼1580 cm - 1). Spectra show increased deformation to the graphitic structure, as well as increased strain on the carbon-carbon bonds, weakening the nanotube. Transmission Electron Microscopy (TEM) confirms that nanotubes remain intact despite high EB dose. In addition, minimal surface deformation and length reduction occurred on irradiated MWNT

  2. Surface chemical reactions during electron beam irradiation of nanocrystalline CaS:Ce3+ phosphor

    International Nuclear Information System (INIS)

    Kumar, Vinay; Pitale, Shreyas S.; Nagpure, I. M.; Coetsee, E.; Ntwaeaborwa, O. M.; Terblans, J. J.; Swart, H. C.; Mishra, Varun

    2010-01-01

    The effects of accelerating voltage (0.5-5 keV) on the green cathodoluminescence (CL) of CaS:Ce 3+ nanocrystalline powder phosphors is reported. An increase in the CL intensity was observed from the powders when the accelerating voltage was varied from 0.5 to 5 keV, which is a relevant property for a phosphor to be used in field emission displays (FEDs). The CL degradation induced by prolonged electron beam irradiation was analyzed using CL spectroscopy, x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The AES data showed the decrease in the S peak intensity and an increase in the O peak intensity during electron bombardment. The CL intensity was found to decrease to 30% of its original intensity after about 50 C/cm 2 . XPS was used to study the chemical composition of the CaS:Ce 3+ nanophosphor before and after degradation. The XPS data confirms that a nonluminescent CaSO 4 layer has formed on the surface during the degradation process, which may partially be responsible for the CL degradation. The electron stimulated surface chemical reaction mechanism was used to explain the effects of S desorption and the formation of the nonluminescent CaSO 4 layer on the surface.

  3. Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.

    Science.gov (United States)

    Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong

    2018-04-18

    A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.

  4. Chemical potential pinning due to equilibrium electron transfer at metal/C60-doped polymer interfaces

    Science.gov (United States)

    Heller, C. M.; Campbell, I. H.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1997-04-01

    We report electroabsorption measurements of the built-in electrostatic potential in metal/C60-doped polymer/metal structures to investigate chemical potential pinning due to equilibrium electron transfer from a metal contact to the electron acceptor energy level of C60 molecules in the polymer film. The built-in potentials of a series of structures employing thin films of both undoped and C60-doped poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were measured. For undoped MEH-PPV, which has an energy gap of about 2.4 eV, the maximum built-in potential is about 2.1 eV, whereas for C60-doped MEH-PPV the maximum built-in potential decreases to 1.5 eV. Electron transfer to the C60 molecules close to the metal interface pins the chemical potential of the metal contact near the electron acceptor energy level of C60 and decreases the built-in potential of the structure. From the systematic dependence of the built-in potential on the metal work function we find that the electron acceptor energy level of C60 in MEH-PPV is about 1.7 eV above the hole polaron energy level of MEH-PPV.

  5. Chemical synthesis on SU-8

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Taveras, Kennedy; Thastrup, Ole

    2011-01-01

    In this paper we describe a highly effective surface modification of SU-8 microparticles, the attachment of appropriate linkers for solid-supported synthesis, and the successful chemical modification of these particles via controlled multi-step organic synthesis leading to molecules attached...

  6. Microelectrode voltammetry of multi-electron transfers complicated by coupled chemical equilibria: a general theory for the extended square scheme.

    Science.gov (United States)

    Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela

    2017-06-28

    A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.

  7. Covalent electron transfer chemistry of graphene with diazonium salts.

    Science.gov (United States)

    Paulus, Geraldine L C; Wang, Qing Hua; Strano, Michael S

    2013-01-15

    Graphene is an atomically thin, two-dimensional allotrope of carbon with exceptionally high carrier mobilities, thermal conductivity, and mechanical strength. From a chemist's perspective, graphene can be regarded as a large polycyclic aromatic molecule and as a surface without a bulk contribution. Consequently, chemistries typically performed on organic molecules and surfaces have been used as starting points for the chemical functionalization of graphene. The motivations for chemical modification of graphene include changing its doping level, opening an electronic band gap, charge storage, chemical and biological sensing, making new composite materials, and the scale-up of solution-processable graphene. In this Account, we focus on graphene functionalization via electron transfer chemistries, in particular via reactions with aryl diazonium salts. Because electron transfer chemistries depend on the Fermi energy of graphene and the density of states of the reagents, the resulting reaction rate depends on the number of graphene layers, edge states, defects, atomic structure, and the electrostatic environment. We limit our Account to focus on pristine graphene over graphene oxide, because free electrons in the latter are already bound to oxygen-containing functionalities and the resulting chemistries are dominated by localized reactivity and defects. We describe the reaction mechanism of diazonium functionalization of graphene and show that the reaction conditions determine the relative degrees of chemisorption and physisorption, which allows for controlled modulation of the electronic properties of graphene. Finally we discuss different applications for graphene modified by this chemistry, including as an additive in polymer matrices, as biosensors when coupled with cells and biomolecules, and as catalysts when combined with nanoparticles.

  8. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong, E-mail: xdwang@semi.ac.cn; Ji, An; Yang, Fuhua [Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 (China)

    2014-03-15

    The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  9. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Science.gov (United States)

    Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong; Ji, An; Yang, Fuhua

    2014-03-01

    The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  10. Utilization of electron beam accelerators for polymer processing

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2013-01-01

    During the last decade, electron beam processing has been amply demonstrated to the Indian cable industry by BARC using 2 MeV/20 kW electron beam (EB) accelerator (ILU-6 EBA facility) located at BARC-BRIT complex, Vashi. The electron beam accelerator is a machine producing high energy electrons which are made to impinge on the materials for inducing physical, chemical and biological modifications. The process is carried out at room temperature and in ambient atmospheric conditions. Lately, quite a few numbers of accelerators have been installed by the private cable industry and carrying out cross-linking of cable insulations for high performance viz. high temperature stability, good flame retardancy, lesser solvent-swelling, thinner insulations etc. The indigenously made accelerators at EB centre, particularly the 3 MeV/30 kW accelerator will be of much help for Indian industry for polymer processing as the market is poised to grow by adapting the technology

  11. Effect of surface modifications and environment on the interfacial adhesion of polymer/aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.F. [Xi' an High-technology Institute, Xi' an 710025 (China)], E-mail: xiaofang_liu@263.net; Wu, Q.Y.; Wang, H.G. [Xi' an High-technology Institute, Xi' an 710025 (China)

    2008-06-15

    This work investigates the influence of surface modifications and environmental conditions on the interfacial adhesion of epoxy resin films on a 6016 aluminum alloy, as measured by peeling experiments. The alloy surfaces were pretreated with an etching solution, and then modified, respectively, with aminopropyl silane solution, aminopropyl phosphonate solution, and hexamethyldisiloxane plasma. The modified surfaces were examined by scanning electron microscopy and their roughness was quantified by a fractal index. The peeling experiments show that the interfacial adhesion of epoxy on the aluminum alloy mainly results from the chemical and mechanical characteristics of the material surface. Environmental factors such as humidity can also weaken interfacial adhesion.

  12. Effect of surface modifications and environment on the interfacial adhesion of polymer/aluminum alloy

    International Nuclear Information System (INIS)

    Liu, X.F.; Wu, Q.Y.; Wang, H.G.

    2008-01-01

    This work investigates the influence of surface modifications and environmental conditions on the interfacial adhesion of epoxy resin films on a 6016 aluminum alloy, as measured by peeling experiments. The alloy surfaces were pretreated with an etching solution, and then modified, respectively, with aminopropyl silane solution, aminopropyl phosphonate solution, and hexamethyldisiloxane plasma. The modified surfaces were examined by scanning electron microscopy and their roughness was quantified by a fractal index. The peeling experiments show that the interfacial adhesion of epoxy on the aluminum alloy mainly results from the chemical and mechanical characteristics of the material surface. Environmental factors such as humidity can also weaken interfacial adhesion

  13. Surface-defect induced modifications in the optical properties of α-MnO{sub 2} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    John, Reenu Elizabeth [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India); Chandran, Anoop [School of Pure and Applied Physics, MG University, Kottayam, Kerala 686560 (India); Thomas, Marykutty [Department of Physics, BCM College, Kottayam, Kerala 686001 (India); Jose, Joshy [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India); George, K.C., E-mail: drkcgeorge@gmail.com [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India)

    2016-03-30

    Graphical abstract: - Highlights: • Alpha-MnO{sub 2} nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO{sub 2} nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO{sub 6} octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn{sup 3+}) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO{sub 2}. These

  14. Chemical dosimetry of linac electron pulse with nitrous oxide

    International Nuclear Information System (INIS)

    Nanba, Hideki; Shinsaka, Kyoji; Hatano, Yoshihiko; Yagi, Masuo; Shiokawa, Takanobu.

    1975-01-01

    Absorption dose, dose rate and the reproducibility of intensity in each pulse of the electron beam pulses from a Linac (42 MeV, 3μsec) have been determined by applying nitrous oxide chemical dosimetry, in order to obtain the fundamental data required for radiation chemistry researches with the Linac. Nitrous oxide is used as a chemical dosimeter because it is known that it decomposed through radiation ensures easy detection and the determination of quantity of the decomposed product, nitrogen, which is stable, and presents linear relationship between absorption dose and produced quantity over the wide dose-rate range. Irradiation cells used for the experiment were cylindrical ones made of hard molybdenum glass. Irradiated samples were fractionated with liquid nitrogen, and separated and determined with a gas chromatograph. Details on the experimental results and their examination are described at the end. They include absorption dose of 1x10 16 eV/g per pulse, dose rate of 3x10 21 eV/g, sec and intensity reproducibility of +- 20%. (Wakatsuki, Y.)

  15. Versatile Chemical Derivatizations to Design Glycol Chitosan-Based Drug Carriers

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2017-10-01

    Full Text Available Glycol chitosan (GC and its derivatives have been extensively investigated as safe and effective drug delivery carriers because of their unique physiochemical and biological properties. The reactive functional groups such as the amine and hydroxyl groups on the GC backbone allow for easy chemical modification with various chemical compounds (e.g., hydrophobic molecules, crosslinkers, and acid-sensitive and labile molecules, and the versatility in chemical modifications enables production of a wide range of GC-based drug carriers. This review summarizes the versatile chemical modification methods that can be used to design GC-based drug carriers and describes their recent applications in disease therapy.

  16. Role of low density lipoprotein in the activation of plasma lysolecithin acyltransferase activity. Effect of chemical and enzymatic modifications of the lipoprotein on enzyme activity.

    Science.gov (United States)

    Subbaiah, P V; Chen, C H; Bagdade, J D; Albers, J J

    1985-01-01

    The effect of various chemical and enzymatic modifications of low density lipoprotein (LDL) on its ability to activate the isolated human plasma lysolecithin acyltransferase (LAT) was studied. Removal of all lipids from LDL resulted in the complete loss of LAT activation. Removal of only neutral lipids by extraction with heptane retained up to 50% of the original activity, which was not increased further by reconstitution of the LDL with the extracted lipids. Hydrolysis of the diacylphosphoglycerides of the LDL with phospholipases resulted in complete loss of LAT activation which was partially restored by the addition of egg lecithin. Hydrolysis of more than 4% of LDL protein by trypsin led to a linear decrease in activity with complete loss of activity occurring when about 25% of the LDL protein is hydrolyzed. Modification of the arginine groups of LDL reversibly inhibited the activation of LAT. Modification of lysine residues of LDL by acetylation, acetoacetylation or succinylation also abolished its ability to activate lysolecithin acylation.

  17. Towards Liquid Chromatography Time-Scale Peptide Sequencing and Characterization of Post-Translational Modifications in the Negative-Ion Mode Using Electron Detachment Dissociation Tandem Mass Spectrometry

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Hørning, Ole B; Jensen, Søren S

    2008-01-01

    Electron detachment dissociation (EDD) of peptide poly-anions is gentle towards post-translational modifications (PTMs) and produces predictable and interpretable fragment ion types (a., x ions). However, EDD is considered an inefficient fragmentation technique and has not yet been implemented...... coverage and extended PTM characterization the new regime of EDD in combination with other ion-electron fragmentation techniques in the positive-ion mode is a step towards a more comprehensive strategy of analysis in proteome research....

  18. Modification of the sulphur resistance of platinum by addition of metals for aromatics hydrogenation; Modification de la thioresistance du platine par ajouts d'elements metalliques pour l'hydrogenation d'aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E

    1999-09-15

    The aim of this study is based on the understanding of sulphur resistance of platinum catalytic systems. In this work, bimetallic systems (Pt-Ge, Pt-Au and Pt-Pd) supported on {gamma}-alumina have been studied. Preparation methods have been chosen to give the best control of the physicochemical properties of final system. Electronic and geometrical properties of the metallic phase were characterised by various techniques (TPR, infrared spectroscopy of adsorbed CO (IR(CO)), EXAFS, LEIS). Ortho-xylene hydrogenation in presence of 100 ppm of sulphur was used as model catalytic test in order to study the sulphur resistance of the catalysts. It has been shown that germanium and palladium act as electro-acceptors toward platinum. The ranking of catalytic activity in presence of sulphur is as followed: Pt-Pd > Pt-Au {approx_equal} Pt >> Pt-Ge {approx_equal} 0. The best sulphur resistance for Pt-Pd was obtained for the composition Pt{sub 20}Pd{sub 80} (Pd/Pt=4). An eggshell PdS structure with Pt (sulfur free) core is proposed. These works show that the sulphur resistance of platinum is not only linked with its electronic properties. They allow us to propose an original concept of sulphur resistant catalyst taking into account each catalytic parameters such as chemical bonding of S and aromatic compounds on the metallic site, physico-chemical characteristics of the bimetallic aggregates (particle size, structure, surface composition) and electronic modification of surface atoms in bimetallic catalysts. (author)

  19. Chemical kinetics of flue gas cleaning by electron beam

    International Nuclear Information System (INIS)

    Maetzing, H.

    1989-02-01

    By electron beam treatment of flue gases, NO x and SO 2 are converted to nitric and sulfuric acids simultaneously. Upon ammonia addition, the corresponding salts are collected in solid state and can be sold as fertilizer. Both homogeneous gas phase reactions and physico-chemical aerosol dynamics are involved in product formation. These processes have been analyzed by model calculations. In part 1, the present report summarizes the model results and gives an account of the theoretical understanding of the EBDS process and its performance characteristics. Part 2 of this report gives a complete listing of the reactions used in the AGATE code. (orig.) [de

  20. Electronic structure imperfections and chemical bonding at graphene interfaces

    Science.gov (United States)

    Schultz, Brian Joseph

    The manifestation of novel phenomena upon scaling to finite size has inspired a paradigm shift in materials science that takes advantage of the distinctive electrical and physical properties of nanomaterials. Remarkably, the simple honeycomb arrangement of carbon atoms in a single atomic layer has become renowned for exhibiting never-before-seen electronic and physical phenomena. This archetypal 2-dimensional nanomaterial is known as graphene, a single layer of graphite. Early reports in the 1950's eluded to graphene-like nanostructures that were evidenced from exfoliation of oxidized graphite followed by chemical reduction, absorbed carbon on transition metals, and thermal decomposition of SiC. Furthermore, the earliest tight binding approximation calculations in the 1950's held clues that a single-layer of graphite would behave drastically different than bulk graphite. Not until 2004, when Giem and Novoselov first synthesized graphene by mechanical exfoliation from highly-oriented pyrolytic graphite did the field of graphene-based research bloom within the scientific community. Since 2004, the availability and relatively straight forward synthesis of single-layer graphene (SLG) enabled the observation of remarkable phenomena including: massless Dirac fermions, extremely high mobilities of its charge carriers, room temperature half-integer quantum Hall effect, the Rashba effect, and the potential for ballistic conduction over macroscopic distances. These enticing electronic properties produce the drive to study graphene for use in truly nanoscale electrical interconnects, integrated circuits, transparent conducting electrodes, ultra-high frequency transistors, and spintronic devices, just to name a few. Yet, for almost all real world applications graphene will need to be interfaced with other materials, metals, dielectrics, organics, or any combination thereof that in turn are constituted from various inorganic and organic components. Interfacing graphene, a

  1. Random telegraph signals by alkanethiol-protected Au nanoparticles in chemically assembled single-electron transistors

    International Nuclear Information System (INIS)

    Kano, Shinya; Azuma, Yasuo; Tanaka, Daisuke; Sakamoto, Masanori; Teranishi, Toshiharu; Smith, Luke W.; Smith, Charles G.; Majima, Yutaka

    2013-01-01

    We have studied random telegraph signals (RTSs) in a chemically assembled single-electron transistor (SET) at temperatures as low as 300 mK. The RTSs in the chemically assembled SET were investigated by measuring the source–drain current, using a histogram of the RTS dwell time, and calculating the power spectrum density of the drain current–time characteristics. It was found that the dwell time of the RTS was dependent on the drain voltage of the SET, but was independent of the gate voltage. Considering the spatial structure of the chemically assembled SET, the origin of the RTS is attributed to the trapped charges on an alkanethiol-protected Au nanoparticle positioned near the SET. These results are important as they will help to realize stable chemically assembled SETs in practical applications

  2. Influence of the chemical modification and content of the clay on the mechanical properties of polypropylene and national bentonite composites

    International Nuclear Information System (INIS)

    Libano, Elaine V.D.G.; Pacheco, Elen B.A.V.; Visconte, Leila L.Y.

    2011-01-01

    The polypropylene/national clay composite was prepared by melt intercalation in a counter-rotating twin screw extruder, using bentonite as filler either in the natural (BENT) form or modified with the ammonium salt, cetyltrimethylammonium chloride (BENT-org). The clay was used in 1, 3 and 5%w. The influence of the modification and content of clay on the mechanical properties of this system was analysed. The analyses of infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that clay organophilization did occur. The tensile modulus and the tensile strength at the yield point were not affected by chemical modification (BENT and BENT-org) or clay content. On the other hand, it was evidenced that the elongation at the yield point decreased with the addition of BENT and BENT-org to polypropylene. According to the thermogravimetric results, it was evidenced that the incorporation of clay into polypropylene improved thermal stability of the polymer in the composites with 5%w of BENT and 3 and 5%w of BENT-org. (author)

  3. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by characterization...

  4. Electron beam processing - status and prospects

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1989-01-01

    A variety of commercial products now on the market are being produced by electron beam processing, which involves the treatment of materials with high-energy electrons to obtain beneficial effects. Ongoing applications include the high-speed curing of printing inks, clear and pigmented coatings, release coatings and adhesive films, the crosslinking of plastic film, foam, tubing, pipe, molded parts, electrical wire and cable, the cold vulcanization of rubber sheets for automobile tires and factory roofing as well as the sterilization of medical devices and packaging materials, and the preservation of food. Continuing growth is being driven by some inherent advantages of electron beam processing over alternative chemical and thermal treatment processes, such as enhanced product quality and lower unit costs that result from higher production rates, dynamic process control, quicker process start-up and shutdown, and reductions in scrap loss, energy consumption, floor space requirements, and toxic residues. Other potential applications that have not yet reached commercial fruition are focused on environmental protection and the reclamation of waste materials. These include the disinfection of potable water supplies, municipal waste water, sewage sludge, and the infectious wastes from hospitals and airports, the modification of toxic chemicals, the degradation of cellulosic materials, the cracking of crude oil and residual tars from refineries, and the extraction of sulfur and nitrogen oxides from combustion gases to reduce the effects of acid rain

  5. Chemical Selectivity and Sensitivity of a 16-Channel Electronic Nose for Trace Vapour Detection

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2017-12-01

    Full Text Available Good chemical selectivity of sensors for detecting vapour traces of targeted molecules is vital to reliable detection systems for explosives and other harmful materials. We present the design, construction and measurements of the electronic response of a 16 channel electronic nose based on 16 differential microcapacitors, which were surface-functionalized by different silanes. The e-nose detects less than 1 molecule of TNT out of 10+12 N2 molecules in a carrier gas in 1 s. Differently silanized sensors give different responses to different molecules. Electronic responses are presented for TNT, RDX, DNT, H2S, HCN, FeS, NH3, propane, methanol, acetone, ethanol, methane, toluene and water. We consider the number density of these molecules and find that silane surfaces show extreme affinity for attracting molecules of TNT, DNT and RDX. The probability to bind these molecules and form a surface-adsorbate is typically 10+7 times larger than the probability to bind water molecules, for example. We present a matrix of responses of differently functionalized microcapacitors and we propose that chemical selectivity of multichannel e-nose could be enhanced by using artificial intelligence deep learning methods.

  6. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  7. Supramolecular engineering through temperature-induced chemical modification of 2H-tetraphenylporphyrin on Ag(111): flat phenyl conformation and possible dehydrogenation reactions.

    Science.gov (United States)

    Di Santo, Giovanni; Blankenburg, Stephan; Castellarin-Cudia, Carla; Fanetti, Mattia; Borghetti, Patrizia; Sangaletti, Luigi; Floreano, Luca; Verdini, Alberto; Magnano, Elena; Bondino, Federica; Pignedoli, Carlo A; Nguyen, Manh-Thuong; Gaspari, Roberto; Passerone, Daniele; Goldoni, Andrea

    2011-12-16

    Scratching the surface: Formation of a monolayer of 2H-tetraphenylporphyrins (2H-TPP) on Ag(111), either by sublimation of a multilayer in the range 525-600 K or by annealing (at the same temperature) a monolayer deposited at room temperature, induces a chemical modification of the molecules. Rotation of the phenyl rings into a flat conformation is observed and tentatively explained, by using DFT calculations, as a peculiar reaction due to molecular dehydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Microstructural and chemical variation of TiO{sub 2} electrodes in DSSCs after ethanol vapour treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanhui [School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Zhang, Hongzhou, E-mail: hongzhou.zhang@tcd.ie [School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Fox, Daniel [School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Faulkner, Colm C. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Jeng, David; Bari, Mazhar [SolarPrint Ltd, Dublin 18 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer A simple ethanol vapour post-treatment was applied to the TiO{sub 2} electrode in a DSSC. Black-Right-Pointing-Pointer A stable efficiency improvement was evident after this post-treatment. Black-Right-Pointing-Pointer Structural and chemical modifications of the treatment were systematically investigated using advanced electron microscopy. Black-Right-Pointing-Pointer Morphology changes in favour of the efficiency improvement were identified (increased porosity and reduced TiO{sub 2} particle size). Black-Right-Pointing-Pointer EELS study confirmed that stronger coupling formed between the dye and the treated TiO{sub 2}. - Abstract: TiO{sub 2} based dye-sensitized solar cells (DSSCs) have great potential to solve many energy challenges, however, their low energy conversion rate is still a barrier for further applications. Ethanol vapour post-treatment can improve the DSSC's conversion efficiency without changing its architecture, and a stable 2-3% improvement was found in our experiments. Microstructural and chemical factors were investigated using scanning electron microscopy and analytical electron microscopy on treated and untreated electrodes. The vapour treatment improved the porosity and surface-to-volume ratio of the TiO{sub 2} particles, decreased electron transport loss between TiO{sub 2} and fluorine doped tin oxide, and increased hydroxyl sites on the TiO{sub 2} particle's surface. The modification therefore enhanced the dye uptake and dye-TiO{sub 2} coupling, and it reduced the energy loss during the carrier transfer.

  9. Laser surface modification of boronickelized medium carbon steel

    Science.gov (United States)

    Bartkowska, Aneta; Pertek, Aleksandra; Kulka, Michał; Klimek, Leszek

    2015-11-01

    A two-step process was applied to produce the multicomponent boride layers. Boronickelizing consisted of nickel plating and diffusion boriding. Two different methods of heat treatment of boronickelized C45 steel were used: a typical through-hardening, and a laser surface modification with remelting. Microstructure and some mechanical properties of these layers were examined. Microstructural characterization was studied using optical microscope, Scanning Electron Microscope, energy-dispersive X-ray microanalysis, Electron Back-Scatter Diffraction and X-ray diffraction. The laser modification improved wear resistance, cohesion as well as low-cycle fatigue of the boronickelized layer. Compressive stresses, occurring after laser remelting, could be the reason for the advantageous mechanical behavior of the layer.

  10. Fast surface modification by microwave assisted click reactions on silicon substrates

    NARCIS (Netherlands)

    Haensch, C.; Erdmenger, T.; Fijten, M.W.M.; Höppener, S.; Schubert, U.S.

    2009-01-01

    Microwave irradiation has been used for the chemical modification of functional monolayers on silicon surfaces. The thermal and chemical stability of these layers was tested under microwave irradiation to investigate the possibility to use this alternative heating process for the surface

  11. Fine chemicals for the electronics industry: the proceedings of a symposium organised by the Fine Chemicals and Medicinals Group of the Industrial Division of the Royal Society of Chemistry, Bath, UK, 2-4 April 1986

    International Nuclear Information System (INIS)

    Bamfield, P.

    1986-01-01

    Most business surveys on electronic chemicals emphasise the importance of semi-conductor materials, printed circuit board chemicals, hybrid circuit materials and others, e.g. liquid crystal materials. This was expanded in this symposium to include chemicals consumed by the telecommunications, optoelectronics, reprographics, displays, and energy conversion sectors. The burgeoning area of molecular electronics was also considered to be important. (author)

  12. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments.

    Science.gov (United States)

    Wu, Weidong; Li, Jianhong; Niazi, Nabeel Khan; Müller, Karin; Chu, Yingchao; Zhang, Lingling; Yuan, Guodong; Lu, Kouping; Song, Zhaoliang; Wang, Hailong

    2016-11-01

    Biochar has received widespread attention as an eco-friendly and efficient material for immobilization of toxic heavy metals in aqueous environments. In the present study, three types of coconut fiber-derived biochars were obtained by pyrolyzing at three temperatures, i.e., 300, 500, and 700 °C. In addition, nine types of biochars were prepared by chemical modification with ammonia, hydrogen peroxide, and nitric acid, respectively, which were used to investigate changes in physico-chemical properties by inter alia, Fourier transformation infrared spectrophotometry (FTIR), scanning electron microscope (SEM), and BET specific surface area analysis. Batch sorption experiments were carried out to determine the sorption capacity of the biochars for lead (Pb) in aqueous solutions. Results showed that the cation exchange capacity of biochar pyrolyzed at 300 °C and modified with nitric acid increased threefold compared to the control. Loosely corrugated carbon surface and uneven carbon surface of the biochar pyrolyzed at 300 °C were produced during ammonia and nitric acid modifications. Removal rate of Pb by the coconut biochar pyrolyzed at 300 °C and modified with ammonia was increased from 71.8 to 99.6 % compared to the untreated biochar in aqueous solutions containing 100 mg L -1 Pb. However, chemical modification did not enhance adsorption of Pb of the biochars pyrolyzed at higher temperatures (e.g., 500 or 700 °C), indicating that resistance of biochars to chemical treatment increased with pyrolysis temperature.

  13. Electronic parameters of Sr2Nb2O7 and chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Grivel, Jean-Claude; Korotkov, A.S.

    2008-01-01

    /2)) and Delta(O-Sr) = BE(O 1s)-BE(Sr 3d(5/2)), were used to characterize the valence electron transfer on the formation of the Nb-O and Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and earlier published structural and XPS data for other Sr- or Nb...

  14. Dosimetry for electron beam from Microtron accelerator using chemical dosimeters

    International Nuclear Information System (INIS)

    Joseph, Praveen; Nairy, Rajesha; Sanjeev, Ganesh; Narayana, Y.

    2014-01-01

    The Microtron is a simple, compact, low cost electron accelerator with excellent beam quality and it can accelerate electrons to relativistic energies. The variable energy Microtron at Mangalore University is used for R and D programmes in basic and applied areas of physics, chemistry, materials science, biological sciences, medical science and industry. While studying the effects of radiation, it is essential to have complete knowledge of absorbed dose. In the present study the absorbed dose and the uniformity of dose distribution at various points due to 8 MeV electron beam from Microtron accelerator has been calculated using different chemical dosimeters. From the dosimetry studies for Microtron accelerator, it is observed that the absorbed doses measured at various dose ranges from 2 Gy to 25 kGy using FBX dosimeters at very low doses, Fricke at intermediate doses and alanine and glutamine at higher doses, varied linearly with increasing electron counts. From the dosimetry studies it is observed that there is a linear relation between dose and electron numbers over a wide range of absorbed doses. It is evaluated that the electron counts of about 1.15 x 10 14 corresponds to an absorbed dose of 100 Gy. Fricke dosimetry was carried out to measure the uniformity in dose distribution at a distance of 30 cm from the beam exit window of the accelerator to ensure the availability of uniform irradiation field size. It is observed that a field size of about 4 x 4 cm is available at 30 cm distance from the beam exit window over which the dose distribution is uniform. The sample size during radiological studies using Microtron was restricted to less than 4 x 4 cm dimension at 30 cm distance from the beam exit window to ensure uniform dose distribution to the sample

  15. Modification of semiconductors with proton beams. A review

    International Nuclear Information System (INIS)

    Kozlovskii, V.V.; Lomasov, V.N.; Kozlov, V.A.

    2000-01-01

    Analysis is given of the progress in the modification of semiconductors by proton beams in fields such as proton-enhanced diffusion, ion-beam mixing, and formation of porous layers. This method of modification (doping) is shown to have high potential in monitoring the properties of semiconductor materials and designing devices of micro and nano electronics as compared to the conventional doping techniques such as thermal diffusion, epitaxy, and ion implantation

  16. Chemical modification with phthalic anhydride and chitosan: Viable options for the stabilization of raw starch digesting amylase from Aspergillus carbonarius.

    Science.gov (United States)

    Nwagu, Tochukwu Nwamaka; Okolo, Bartholomew; Aoyagi, Hideki; Yoshida, Shigeki

    2017-06-01

    The raw starch digesting type of amylase (RSDA) presents greater opportunities for process efficiency at cheaper cost and shorter time compared to regular amylases. Chemical modification is a simple and rapid method toward their stabilization for a wider application. RSDA from Aspergillus carbonarius was modified with either phthalic anhydride (PA) or chitosan. Activity retention was 87.3% for PA-modified and 80.9% for chitosan-modified RSDA. Optimum pH shifted from 5 to 7 after PA-modification. Optimum temperature changed from 30°C (native) to 30-40°C and 60°C for PA-modified and chitosan-modified, respectively. Activation energy (kJmol -1 ) for hydrolysis was 13.5, 12.7, and 10.2 while the activation energy for thermal denaturation was 32.8, 80.3, 81.9 for free, PA-modified and chitosan-modified, respectively. The specificity constants (V max /K m ) were 73.2 for PA-modified, 63.1 for chitosan-modified and 77.1 for native RSDA. The half-life (h) of the RSDA at 80°C was increased from 6.1 to 25.7 for the PA-modified and 138.6 for the chitosan derivative. Modification also led to increase in D value, activation enthalpy and Gibbs free energy of enzyme deactivation. Fluorescence spectra showed that center of spectral mass decreased for the PA-modified RSDA but increased for chitosan modified RSDA. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Investigation of surface halide modification of nitrile butadiene rubber

    Science.gov (United States)

    Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.

    2017-12-01

    The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.

  18. Electron energy distribution function control in gas discharge plasmas

    International Nuclear Information System (INIS)

    Godyak, V. A.

    2013-01-01

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated

  19. A proposal of a novel DNA modification mechanism induced by irradiation

    International Nuclear Information System (INIS)

    Oka, Toshitaka

    2016-01-01

    This article depicts a proposal of a novel DNA modification mechanism induced by irradiation, and is written as an award work from Japanese Society of Radiation Chemistry. The mechanism of DNA modification induced by K-shell photoabsorption of nitrogen and oxygen atoms was investigated by electron paramagnetic resonance and x-ray absorption near edge structure measurements of calf thymus DNA film. The EPR intensities for DNA film were twofold times larger than those estimated based on the photoabsorption cross section. This suggests that the DNA film itself forms unpaired electron species through the excitation of enhanced electron recapturing, known as the postcollision interaction process. (author)

  20. The impact of chemical structure and molecular packing on the electronic polarisation of fullerene arrays.

    Science.gov (United States)

    Few, Sheridan; Chia, Cleaven; Teo, Daniel; Kirkpatrick, James; Nelson, Jenny

    2017-07-19

    Electronic polarisation contributes to the electronic landscape as seen by separating charges in organic materials. The nature of electronic polarisation depends on the polarisability, density, and arrangement of polarisable molecules. In this paper, we introduce a microscopic, coarse-grained model in which we treat each molecule as a polarisable site, and use an array of such polarisable dipoles to calculate the electric field and associated energy of any arrangement of charges in the medium. The model incorporates chemical structure via the molecular polarisability and molecular packing patterns via the structure of the array. We use this model to calculate energies of charge pairs undergoing separation in finite fullerene lattices of different chemical and crystal structures. The effective dielectric constants that we estimate from this approach are in good quantitative agreement with those measured experimentally in C 60 and phenyl-C 61 -butyric acid methyl ester (PCBM) films, but we find significant differences in dielectric constant depending on packing and on direction of separation, which we rationalise in terms of density of polarisable fullerene cages in regions of high field. In general, we find lattices containing molecules of more isotropic polarisability tensors exhibit higher dielectric constants. By exploring several model systems we conclude that differences in molecular polarisability (and therefore, chemical structure) appear to be less important than differences in molecular packing and separation direction in determining the energetic landscape for charge separation. We note that the results are relevant for finite lattices, but not necessarily for infinite systems. We propose that the model could be used to design molecular systems for effective electronic screening.

  1. The Role of Electronic Excitations on Chemical Reaction Dynamics at Metal, Semiconductor and Nanoparticle Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tully, John C. [Yale Univ., New Haven, CT (United States)

    2017-06-10

    Chemical reactions are often facilitated and steered when carried out on solid surfaces, essential for applications such as heterogeneous catalysis, solar energy conversion, corrosion, materials processing, and many others. A critical factor that can determine the rates and pathways of chemical reactions at surfaces is the efficiency and specificity of energy transfer; how fast does energy move around and where does it go? For reactions on insulator surfaces energy transfer generally moves in and out of vibrations of the adsorbed molecule and the underlying substrate. By contrast, on metal surfaces, metallic nanoparticles and semiconductors, another pathway for energy flow opens up, excitation and de-excitation of electrons. This so-called “nonadiabatic” mechanism often dominates the transfer of energy and can directly impact the course of a chemical reaction. Conventional computational methods such as molecular dynamics simulation do not account for this nonadiabatic behavior. The current DOE-BES funded project has focused on developing the underlying theoretical foundation and the computational methodology for the prediction of nonadiabatic chemical reaction dynamics at surfaces. The research has successfully opened up new methodology and new applications for molecular simulation. In particular, over the last three years, the “Electronic Friction” theory, pioneered by the PI, has now been developed into a stable and accurate computational method that is sufficiently practical to allow first principles “on-the-fly” simulation of chemical reaction dynamics at metal surfaces.

  2. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Directory of Open Access Journals (Sweden)

    Yangyang Qi

    2014-02-01

    Full Text Available The electron transport characteristics of silicon nanowires (SiNWs fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  3. Physical- chemical changes in irradiated sodium alginate algimar

    International Nuclear Information System (INIS)

    Rapado Paneque, Manuel; Alazanes, Sonia; Sainz Vidal, Dianelys; Wandrey, Christine

    2003-01-01

    The effect of gamma radiation on the physical-chemical properties of sodium alginate Algimar has been investigated. dilution viscometric, densitometry FTIR spectroscopy served to identify modifications. Decreasing intrinsic, viscosities clearly revealed chain cleavage for both solid alginate indicate that chain degradation occurs without significant change of the chemical structure, The obtained results have practical implication change of the chemical structure. The obtained results have practical implication in the field of radiation modification and sterilization of sodium alginate used for microcapsule formation

  4. Controlled modification of biomolecules by ultrashort laser pulses in polar liquids

    DEFF Research Database (Denmark)

    Gruzdev, Vitaly; Korkin, Dmitry; Mooney, Brian P.

    2017-01-01

    Targeted chemical modification of peptides and proteins by laser pulses in a biologically relevant environment, i.e. aqueous solvent at room temperature, allows for accurate control of biological processes. However, the traditional laser methods of control of chemical reactions are applicable onl...

  5. Protein covalent modification by biologically active quinones

    Directory of Open Access Journals (Sweden)

    MIROSLAV J. GASIC

    2004-11-01

    Full Text Available The avarone/avarol quinone/hydroquinone couple shows considerable antitumor activity. In this work, covalent modification of b-lactoglobulin by avarone and its derivatives as well as by the synthetic steroidal quinone 2,5(10-estradiene-1,4,17-trione and its derivatives were studied. The techniques for studying chemical modification of b-lactoglobulin by quinones were: UV/Vis spectrophotometry, SDS PAGE and isoelectrofocusing. SDS PAGE results suggest that polymerization of the protein occurs. It could be seen that the protein of 18 kD gives the bands of 20 kD, 36 kD, 40 kD, 45 kD, 64 kD and 128 kD depending on modification agent. The shift of the pI of the protein (5.4 upon modification toward lower values (from pI 5.0 to 5.3 indicated that lysine amino groups are the principal site of the reaction of b-lactoglobulin with the quinones.

  6. Layered-metal-hydroxide nanosheet arrays with controlled nanostructures to assist direct electronic communication at biointerfaces.

    Science.gov (United States)

    An, Zhe; Lu, Shan; Zhao, Liwei; He, Jing

    2011-10-18

    In this work, ordered vertical arrays of layered double hydroxide (LDH) nanosheets have been developed to achieve electron transfer (eT) at biointerfaces in electrochemical devices. It is found that tailoring the gap size of LDH nanosheet arrays could significantly promote the eT rate. This research has successfully extended nanomaterials for efficient modifications of electrode surfaces from nanoparticles, nanowires, nanorods, and nanotubes to nanosheets. © 2011 American Chemical Society

  7. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging

    KAUST Repository

    Kundhikanjana, Worasom

    2009-11-11

    Local electrical imaging using microwave impedance microscope is performed on graphene in different modalities, yielding a rich hierarchy of the local conductivity. The low-conductivity graphite oxide and its derivatives show significant electronic inhomogeneity. For the conductive chemical graphene, the residual defects lead to a systematic reduction of the microwave signals. In contrast, the signals on pristine graphene agree well with a lumped-element circuit model. The local impedance information can also be used to verify the electrical contact between overlapped graphene pieces. © 2009 American Chemical Society.

  8. Complete chemical transformation of a molecular film by subexcitation electrons (<3 eV).

    Science.gov (United States)

    Balog, Richard; Illenberger, Eugen

    2003-11-21

    The potential of slow electrons to act as a soft tool to control a chemical reaction in the condensed phase is demonstrated. By setting the energy of a well defined electron beam to values below 3 eV, the surface of a thin film of 1,2-C(2)F(4)C(l2) molecules can completely be transformed into molecular chlorine (and by-products, possibly perfluorinated polymers). At higher energies (>6 eV) some equilibrium state between product and educt composition can be achieved, however, accompanied by a gradual overall degradation of the film. The effect of complete transformation is based on both the selectivity and particular energy dependence of the initial step of the reaction which is dissociative electron attachment to C(2)F(4)C(l2), but also the fact that the initial molecule is efficiently decomposed by subexcitation electrons while the product C(l2) is virtually unaffected.

  9. Surface modification of a proton exchange membrane and hydrogen storage in a metal hydride for fuel cells

    Science.gov (United States)

    Andrews, Lisa

    Interest in fuel cell technology is rising as a result of the need for more affordable and available fuel sources. Proton exchange membrane fuel cells involve the catalysis of a fuel to release protons and electrons. It requires the use of a polymer electrolyte membrane to transfer protons through the cell, while the electrons pass through an external circuit, producing electricity. The surface modification of the polymer, NafionRTM, commonly researched as a proton exchange membrane, may improve efficiency of a fuel cell. Surface modification can change the chemistry of the surface of a polymer while maintaining bulk properties. Plasma modification techniques such as microwave discharge of an argon and oxygen gas mixture as well as vacuum-ultraviolet (VUV) photolysis may cause favorable chemical and physical changes on the surface of Nafion for improved fuel cell function. A possible increase in hydrophilicity as a result of microwave discharge experiments may increase proton conductivity. Grafting of acrylic acid from the surface of modified Nafion may decrease the permeation of methanol in a direct methanol fuel cell, a process which can decrease efficiency. Modification of the surface of Nafion samples were carried out using: 1) An indirect Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals with the surface, 2) A direct Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals and VUV radiation with the surface and, 3) VUV photolysis investigating exclusively the interaction of VUV radiation with the surface and any possible oxidation upon exposure to air. Acrylic acid was grafted from the VUV photolysed Nafion samples. All treated surfaces were analyzed using X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy (FTIR) was used to analyze the grafted Nafion samples. Scanning electron microscopy (SEM) and contact angle measurements were used to analyze experiments 2 and 3. Using hydrogen as fuel is a

  10. Mapping Base Modifications in DNA by Transverse-Current Sequencing

    Science.gov (United States)

    Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.

    2018-02-01

    Sequencing DNA modifications and lesions, such as methylation of cytosine and oxidation of guanine, is even more important and challenging than sequencing the genome itself. The traditional methods for detecting DNA modifications are either insensitive to these modifications or require additional processing steps to identify a particular type of modification. Transverse-current sequencing in nanopores can potentially identify the canonical bases and base modifications in the same run. In this work, we demonstrate that the most common DNA epigenetic modifications and lesions can be detected with any predefined accuracy based on their tunneling current signature. Our results are based on simulations of the nanopore tunneling current through DNA molecules, calculated using nonequilibrium electron-transport methodology within an effective multiorbital model derived from first-principles calculations, followed by a base-calling algorithm accounting for neighbor current-current correlations. This methodology can be integrated with existing experimental techniques to improve base-calling fidelity.

  11. Low energy electron-driven damage in biomolecules

    International Nuclear Information System (INIS)

    Sanche, L.

    2005-01-01

    The damage induced by the impact of low energy electrons (LEE) on biomolecules is reviewed from a radiobiological perspective with emphasis on transient anion formation. The major type of experiments, which measure the yields of fragments produced as a function of incident electron energy (0.1 - 30 eV), are briefly described. Theoretical advances are also summarized. Several examples are presented from the results of recent experiments performed in the gas-phase and on bio-molecular films bombarded with LEE under ultra-high vacuum conditions. These include the results obtained from DNA films and those obtained from the fragmentation of elementary components of the DNA molecule (i.e., the bases, sugar and phosphate group analogs and oligonucleotides) and of proteins (e.g. amino acids). By comparing the results from different experiments and theory, it is possible to determine fundamental mechanisms that are involved in the dissociation of the biomolecules and the production of single- and double-strand breaks in DNA. Below 15 eV, electron resonances (i.e., the formation of transient anions) play a dominant role in the fragmentation of all biomolecules investigated. These transient anions fragment molecules by decaying into dissociative electronically excited states or by dissociating into a stable anion and a neutral radical. These fragments can initiate further reactions within large biomolecules or with nearby molecules and thus cause more complex chemical damage. Dissociation of a transient anion within DNA may occur by direct electron attachment at the location of dissociation or by electron transfer from another subunit. Damage to DNA is dependent on the molecular environment, topology, type of counter ion, sequence context and chemical modifications. (author)

  12. Surface modification of TC4 titanium alloy by high current pulsed electron beam (HCPEB) with different pulsed energy densities

    International Nuclear Information System (INIS)

    Gao, Yu-kui

    2013-01-01

    Highlights: •The hardness changes were determined by nanoindention method. •The surface integrity changes were investigated by different techniques. •The mechanism was analyzed based on AFM and TEM investigations. -- Abstract: Surface changes including surface topography and nanohardness distribution along surface layer were investigated for TC4 titanium alloy by different energy densities of high current pulsed electron beam (HCPEB). The surface topography was characterized by SEM and AFM, and cross-sectional TEM observation was performed to reveal the surface modification mechanism of TC4 titanium alloy by HCPEB. The surface roughness was modified by HCPEB and the polishing mechanism was analyzed by studying the cross section microstructure of electron beam treated specimens by SEM. The fine grain structure inherited from the rapid solidification of the melted layer as well as the strain hardening of the sub-surface are two of the factors responsible the increase in nanohardness

  13. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, Heike, E-mail: angermann@helmholtz-berlin.de

    2014-09-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D{sub it}(E), and density D{sub it,min} of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly

  14. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    International Nuclear Information System (INIS)

    Angermann, Heike

    2014-01-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D it (E), and density D it,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on

  15. Diazo Compounds: Versatile Tools for Chemical Biology.

    Science.gov (United States)

    Mix, Kalie A; Aronoff, Matthew R; Raines, Ronald T

    2016-12-16

    Diazo groups have broad and tunable reactivity. That and other attributes endow diazo compounds with the potential to be valuable reagents for chemical biologists. The presence of diazo groups in natural products underscores their metabolic stability and anticipates their utility in a biological context. The chemoselectivity of diazo groups, even in the presence of azido groups, presents many opportunities. Already, diazo compounds have served as chemical probes and elicited novel modifications of proteins and nucleic acids. Here, we review advances that have facilitated the chemical synthesis of diazo compounds, and we highlight applications of diazo compounds in the detection and modification of biomolecules.

  16. Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation

    International Nuclear Information System (INIS)

    Zhou, Lei; Zhou, Minghua; Hu, Zhongxin; Bi, Zhaoheng; Serrano, K. Groenen

    2014-01-01

    Highlights: • Chemically modified graphite felt was prepared using ethanol and hydrazine hydrate as reagents. • Carbon nanoparticles with functional groups were deposited on the surface after modification. • The electrochemical activity for ORR and H 2 O 2 generation on the modified electrode was improved. • The cathode modification effictively improved the EF performance for pollutant degradation. - Abstract: A simple method with low-cost chemical reagents ethanol and hydrazine hydrate was used to modify graphite felt as the cathode for electro-Fenton (EF) application, using p-nitrophenol (p-Np) as the model pollutant. Characterized by scanning electron microscope, contact angle, Raman spectrum and X-ray photoelectron spectroscopy, the morphology and surface physicochemical properties after modification were observed considerably changed. After modification, some nanoparticles and oxygen and nitrogen-containing functional groups appeared on the cathode surface, which greatly improved the surface hydrophilic property and the electrocatalytic activity for oxygen reduction reaction. The effects led to the hydrogen peroxide accumulation on the modified cathode markedly increased to 175.8 mg L −1 , while that on the unmodified one was only 67.5 mg L −1 . p-Np of initial 50 mg L −1 could be completely removed by EF using the modified cathode, and the mineralization ratio reached 51.4%, more than 2 times of the pristine one. After 10 cycles, the mineralization ratio of the modified cathode was still above 45%, suggesting that the modification method can provide an effective approach to improve EF performance, and thus benefits to promote its environmental applications

  17. Binding energies and chemical shifts of least bound core electron excitations in cubic Asub(N)Bsub(8-N) semiconductors

    International Nuclear Information System (INIS)

    Bechstedt, F.; Enderlein, R.; Wischnewski, R.

    1981-01-01

    Core electron binding energies Esup(B) with respect to the vacuum level and their chemical shifts are calculated for the least bound core levels of cations and anions of cubic Asub(N)Bsub(8-N) semiconductors. Starting from the HF-binding energy of the free atom absolute values of Esup(B) are obtained by adding core level shifts and relaxation energies. Core level shifts are calculated by means of an electrostatic model with ionic and bond charges according to Phillips' bond charge model. For the calculation of relaxation energies the linear dielectric theory of electronic polarization is applied. Valence and core electrons, and diagonal and non-diagonal screening are taken into account. The theoretical results for chemical shifts of binding energies are compared with experimental values from XPS-measurements corrected by work function data. Good agreement is obtained in all cases within the error limit of about one eV. Chemical and atomic trends of core level shifts, relaxation energies, and binding energies are discussed in terms of changes of atomic and solid state parameters. Chemical shifts and relaxation energies are predicted for various ternary Asub(N)Bsub(8-N) compounds. (author)

  18. Mechanism of NO Photocatalytic Oxidationon g-C3N4 Was Changed by Pd-QDs Modification

    Directory of Open Access Journals (Sweden)

    Yuhan Li

    2015-12-01

    Full Text Available Quantum dot (QD sensitization can increase the light absorption and electronic transmission of photocatalysts. However, limited studies have been conducted on the photocatalytic activity of photocatalysts after modification by noble metal QDs. In this study, we developed a simple method for fabricating Pd-QD-modified g-C3N4. Results showed that the modification of Pd-QDs can improve the NO photocatalytic oxidation activity of g-C3N4. Moreover, Pd-QD modification changed the NO oxidation mechanism from the synergistic action of h+ and O2− to the single action of ·OH. We found that the main reason for the mechanism change was that Pd-QD modification changed the molecular oxygen activation pathway from single-electron reduction to two-electron reduction. This study can not only develop a novel strategy for modifying Pd-QDs on the surface of photocatalysts, but also provides insight into the relationship between Pd-QD modification and the NO photocatalytic oxidation activity of semiconductor photocatalysts.

  19. Modification of the sulphur resistance of platinum by addition of metals for aromatics hydrogenation; Modification de la thioresistance du platine par ajouts d'elements metalliques pour l'hydrogenation d'aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E.

    1999-09-15

    The aim of this study is based on the understanding of sulphur resistance of platinum catalytic systems. In this work, bimetallic systems (Pt-Ge, Pt-Au and Pt-Pd) supported on {gamma}-alumina have been studied. Preparation methods have been chosen to give the best control of the physicochemical properties of final system. Electronic and geometrical properties of the metallic phase were characterised by various techniques (TPR, infrared spectroscopy of adsorbed CO (IR(CO)), EXAFS, LEIS). Ortho-xylene hydrogenation in presence of 100 ppm of sulphur was used as model catalytic test in order to study the sulphur resistance of the catalysts. It has been shown that germanium and palladium act as electro-acceptors toward platinum. The ranking of catalytic activity in presence of sulphur is as followed: Pt-Pd > Pt-Au {approx_equal} Pt >> Pt-Ge {approx_equal} 0. The best sulphur resistance for Pt-Pd was obtained for the composition Pt{sub 20}Pd{sub 80} (Pd/Pt=4). An eggshell PdS structure with Pt (sulfur free) core is proposed. These works show that the sulphur resistance of platinum is not only linked with its electronic properties. They allow us to propose an original concept of sulphur resistant catalyst taking into account each catalytic parameters such as chemical bonding of S and aromatic compounds on the metallic site, physico-chemical characteristics of the bimetallic aggregates (particle size, structure, surface composition) and electronic modification of surface atoms in bimetallic catalysts. (author)

  20. Study and structural and chemical characterization of human dental smalt by electron microscopy

    International Nuclear Information System (INIS)

    Belio R, I.A.; Reyes G, J.

    1998-01-01

    The study of human dental smalt has been subject to investigation for this methods with electron microscopy, electron diffraction, X-ray diffraction and image simulation programs have been used with the purpose to determine its chemical and structural characteristics of the organic and inorganic materials. This work has been held mainly for the characterization of hydroxyapatite (Ca) 10 (PO 4 ) 6 (OH 4 ) 2 , inorganic material which conforms the dental smalt in 97%, so observing its structural unity which is composed by the prisms and these by crystals and atoms. It was subsequently initiated the study of the organic material, with is precursor of itself. (Author)

  1. Surface Modification for Improved Design and Functionality of Nanostructured Materials and Devices

    Science.gov (United States)

    Keiper, Timothy Keiper

    Progress in nanotechnology is trending towards applications which require the integration of soft (organic or biological) and hard (semiconductor or metallic) materials. Many applications for functional nanomaterials are currently being explored, including chemical and biological sensors, flexible electronics, molecular electronics, etc., with researchers aiming to develop new paradigms of nanoelectronics through manipulation of the physical properties by surface treatments. This dissertation focuses on two surface modification techniques important for integration of hard and soft materials: thermal annealing and molecular modification of semiconductors. First, the effects of thermal annealing are investigated directly for their implication in the fundamental understanding of transparent conducting oxides with respect to low resistivity contacts for electronic and optoelectronic applications and the response to environmental stimuli for sensing applications. The second focus of this dissertation covers two aspects of the importance of molecular modification on semiconductor systems. The first of these is the formation of self-assembled monolayers in patterned arrays which leads explicitly to the directed self-assembly of nanostructures. The second aspect concerns the modification of the underlying magnetic properties of the preeminent dilute magnetic semiconductor, manganese-doped gallium arsenide. Tin oxide belongs to a class of materials known as transparent conducting oxides which have received extensive interest due to their sensitivity to environmental stimuli and their potential application in transparent and flexible electronics. Nanostructures composed of SnO2 have been demonstrated as an advantageous material for high performance, point-of-care nanoelectronic sensors, capable of detecting and distinguishing gaseous or biomolecular interactions on unprecedented fast timescales. Through bottom-up fabrication techniques, binary oxide nanobelts synthesized

  2. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    Science.gov (United States)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  3. Modification of Polymer Materials by Ion Bombardment: Case Studies

    International Nuclear Information System (INIS)

    Bielinski, D. M.; Jagielski, J.; Lipinski, P.; Pieczynska, D.; Ostaszewska, U.; Piatkowska, A.

    2009-01-01

    The paper discusses possibility of application of ion beam bombardment for modification of polymers. Changes to composition, structure and morphology of the surface layer produced by the treatment and their influence on engineering and functional properties of wide range of polymer materials are presented. Special attention has been devoted to modification of tribological properties. Ion bombardment results in significant reduction of friction, which can be explained by increase of hardness and wettability of polymer materials. Hard but thin enough skin does not result in cracking but improves their abrasion resistance. Contrary to conventional chemical treatment ion beam bombardment works even for polymers hardly susceptible to modification like silicone rubber or polyolefines.

  4. Chemical modifications of liquid natural rubber

    Science.gov (United States)

    Azhar, Nur Hanis Adila; Rasid, Hamizah Md; Yusoff, Siti Fairus M.

    2016-11-01

    Liquid natural rubber (LNR) was synthesized via photosentisized degradation of natural rubber (NR). LNR was modified into epoxidized liquid natural rubber (LENR) and hydroxylated liquid natural rubber (LNR-OH) using Na2WO4/CH3COOH/H2O2 catalytic system. Chemical structures of LNR and modified LNRs were characterized using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and 1H Nuclear Magnetic Resonance (NMR) spectroscopies. Integration of 1H NMR was used to calculate the epoxy content (%) of LENR. 1H NMR detected the formation of LNR-OH after prolonged heating and increased of catalyst in oxidation reaction.

  5. Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

    Science.gov (United States)

    Waqas Khaliq, M.; Butt, M. Z.; Saleem, Murtaza

    2017-07-01

    Cylindrical specimens of (1 0 4) oriented zinc single crystal (diameter  =  6 mm and length  =  5 mm) were irradiated with 500 keV C+1 ions with the help of a Pelletron accelerator. Six specimens were irradiated in an ultra-high vacuum (~10‒8 Torr) with different ion doses, namely 3.94  ×  1014, 3.24  ×  1015, 5.33  ×  1015, 7.52  ×  1015, 1.06  ×  1016, and 1.30  ×  1016 ions cm-2. A field emission scanning electron microscope (FESEM) was utilized for the morphological study of the irradiated specimens. Formation of nano- and sub-micron size rods, clusters, flower- and fork-like structures, etc, was observed. Surface roughness of the irradiated specimens showed an increasing trend with the ions dose. Energy dispersive x-ray spectroscopy (EDX) helped to determine chemical modifications in the specimens. It was found that carbon content varied in the range 22.86-31.20 wt.% and that oxygen content was almost constant, with an average value of 10.16 wt.%. The balance content was zinc. Structural parameters, i.e. crystallite size and lattice strain, were determined by Williamson-Hall analysis using x-ray diffraction (XRD) patterns of the irradiated specimens. Both crystallite size and lattice strain showed a decreasing trend with the increasing ions dose. A good linear relationship between crystallite size and lattice strain was observed. Surface hardness depicted a decreasing trend with the ions dose and followed an inverse Hall-Petch relation. FTIR spectra of the specimens revealed that absorption bands gradually diminish as the dose of singly-charged carbon ions is increased from 3.94  ×  1014 ions cm-1 to 1.30  ×  1016 ions cm-1. This indicates progressive deterioration of chemical bonds with the increase in ion dose.

  6. Fifty-Year Trends in the Chemical Industry: What Do They Mean for Chemical Education?

    Science.gov (United States)

    Tolman, Chadwick A.; Parshall, George W.

    1999-01-01

    Describes major changes that have occurred in the chemical industry over the last 50 years including trends in the development of products and processes, changes in chemical manufacturing, the globalization of business, and modifications of research laboratory practices. Discusses implications for chemistry education and predictions for future…

  7. Use of modern methods of fibre surface modification to obtain the multifunctional properties of textile materials

    Directory of Open Access Journals (Sweden)

    Jocić Dragan

    2003-01-01

    Full Text Available The modern textile fibre treatments aim to obtain the required level of beneficial effect while attempting to confine the modification to the fibre surface. Recently, much attention has been focused on different physical methods of fibre surface modification, cold plasma treatment being considered as very useful. Moreover, there are efficient chemical methods available, such as peroxide, biopolymer and enzyme treatment. Some interesting combinations of these physical and chemical surface modification methods as means to modify fibre surface topography and thus controlling the surface-related properties of the fibre are presented in this paper. The properties obtained are discussed on the basis of the physico-chemical changes in the surface layer of the fibre, being assessed by wettability and contact angle measurements, as well as by FTIR-ATR and XPS analysis. The SEM and AFM technique are used to assess the changes in the fibre surface topography and to correlate these changes to the effectiveness, uniformity and severity of the textile fibre surface modification treatments.

  8. BIOCHAR MODIFICATION, THERMAL STABILITY AND TOXICITY OF PRODUCTS MODIFICATION

    Directory of Open Access Journals (Sweden)

    Romana FRIEDRICHOVÁ

    2017-12-01

    Full Text Available Biochar is a product obtained from processing of waste biomass. The main application of biochar is in soil and environment remediation. Some new applications of this carbonaceous material take advantage of its adsorption capacity use it as a heterogeneous catalyst for energy storage and conversion etc. This contribution describes thermal stability of the original biochar. It discusses biochar modified by chemical and physical methods including a new compound of biochar-graphene oxide. The purpose of the modifications is to increase its active surface to introduce active functional groups into the carbon structure of biochar in relation to fire safety and toxicity of those products.

  9. Chemical potential pinning due to equilibrium electron transfer at metal/C{sub 60}-doped polymer interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heller, C.M.; Campbell, I.H.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    1997-04-01

    We report electroabsorption measurements of the built-in electrostatic potential in metal/C{sub 60}-doped polymer/metal structures to investigate chemical potential pinning due to equilibrium electron transfer from a metal contact to the electron acceptor energy level of C{sub 60} molecules in the polymer film. The built-in potentials of a series of structures employing thin films of both undoped and C{sub 60}-doped poly[2-methoxy, 5-(2{sup {prime}}-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were measured. For undoped MEH-PPV, which has an energy gap of about 2.4 eV, the maximum built-in potential is about 2.1 eV, whereas for C{sub 60}-doped MEH-PPV the maximum built-in potential decreases to 1.5 eV. Electron transfer to the C{sub 60} molecules close to the metal interface pins the chemical potential of the metal contact near the electron acceptor energy level of C{sub 60} and decreases the built-in potential of the structure. From the systematic dependence of the built-in potential on the metal work function we find that the electron acceptor energy level of C{sub 60} in MEH-PPV is about 1.7 eV above the hole polaron energy level of MEH-PPV. {copyright} {ital 1997 American Institute of Physics.}

  10. Industrial applications of electron beam

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1997-01-01

    The review of industrial applications with use of electron beams has been done. Especially the radiation technologies being developed in Poland have been shown. Industrial installations with electron accelerators as radiation source have been applied for: modification of polymers; modification of thyristors; sterilization of health care materials; radiopreservation of food and other consumer products; purification of combustion flue gases in heat and power plants. 14 refs, 6 tabs, 7 figs

  11. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  12. Surface chemical reactions probed with scanning force microscopy

    NARCIS (Netherlands)

    Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this letter we report the study of surface chemical reactions with scanning force microscopy (SFM) with chemical specificity. Using chemically modified SFM probes, we can determine the local surface reaction conversion during a chemical surface modification. The adhesion forces between a

  13. In-situ kinetics of modifications induced by swift heavy ions in Al2O3: Colour centre formation, structural modification and amorphization

    International Nuclear Information System (INIS)

    Grygiel, C.; Moisy, F.; Sall, M.; Lebius, H.; Balanzat, E.; Madi, T.; Been, T.; Marie, D.; Monnet, I.

    2017-01-01

    This paper details in-situ studies of modifications induced by swift heavy ion irradiation in α-Al2O3. This complex behaviour is intermediary between the behaviour of amorphizable and non-amorphizable materials, respectively. A unique combination of irradiation experiments was performed at the IRRSUD beam line of the GANIL facility, with three different characterisation techniques: in-situ UV–Vis absorption, in-situ grazing incidence X-Ray diffraction and ex-situ transmission electron microscopy. This allows a complete study of point defects, and by depth profile of structural and microstructural modifications created on the trajectory of the incident ion. The α-Al2O3 crystals have been irradiated by 92 MeV Xenon and 74 MeV Krypton ions, the irradiation conditions have been chosen rather similar with an energy range where the ratio between electronic and nuclear stopping power changes dramatically as function of depth penetration. The main contribution of electronic excitation, above the threshold for track formation, is present beneath the surface to finally get almost only elastic collisions at the end of the projected range. Amorphization kinetics by the overlapping of multiple ion tracks is observed. In the crystalline matrix, long range strains, unit-cell swelling, local microstrain, domain size decrease, disordering of oxygen sublattice as well as colour centre formation are found. This study highlights the relationship between ion energy losses into a material and its response. While amorphization requires electronic stopping values above a certain threshold, point defects are predominantly induced by elastic collisions, while some structural modifications of the crystalline matrix, such as unit-cell swelling, are due to contribution of both electronic and nuclear processes.

  14. Electron nature of chemically active state of spiropyran with nitro group. Dependence of efficiency of radiation colouring of spiropyrans on their structure

    International Nuclear Information System (INIS)

    Kholmanskij, A.S.; Zubkov, A.V.; Dyumaev, K.M.

    1980-01-01

    Using the theory of solvatochromy it is shown that chemically active state of spiropyran with nitro group is its highly polar electron-excitated state. On the basis of the image on the electron nature of chemically active state of spiropyran the dependence of the values of radiation yield of the coloured forms of spiropyrans upon their structure is explained

  15. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    Science.gov (United States)

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-28

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod.

  16. Modification of PMMA/graphite nanocomposites through ion beam technique

    Science.gov (United States)

    Singhal, Prachi; Rattan, Sunita; Avasthi, Devesh Kumar; Tripathi, Ambuj

    2013-08-01

    Swift heavy ion (SHI) irradiation is a special technique for inducing physical and chemical modifications in bulk materials. In the present work, the SHI hs been used to prepare nanocomposites with homogeneously dispersed nanoparticles. The nanographite was synthesized from graphite using the intercalation-exfoliation method. PMMA Poly(methyl methacrylate)/graphite nanocomposites have been synthesized by in situ polymerization. The prepared PMMA/graphite nanocomposite films were irradiated with SHI irradiation (Ni ion beam, 80 MeV and C ion beam, 50 MeV) at a fluence of 1×1010 to 3×1012 ions/cm2. The nanocomposite films were characterized by scanning electron microscope (SEM) and were evaluated for their electrical and sensor properties. After irradiation, significant changes in surface morphology of nanocomposites were observed as evident from the SEM images, which show the presence of well-distributed nanographite platelets. The irradiated nanocomposites exhibit better electrical and sensor properties for the detection of nitroaromatics with marked improvement in sensitivity as compared with unirradiated nanocomposites.

  17. Microwave plasma initiated graft copolymerization modification of monomers onto PTFE surface

    International Nuclear Information System (INIS)

    Guan Weishu; Wen Yunjian; Fang Yan; Yin Yongxiang

    1996-02-01

    A graft copolymerization modification technique of monomers onto polytetrafluoroethylene (PTFE) surface initiated by a 2.45 GHz non-equilibrium microwave plasma has been investigated. Standard X-Ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (sEM) and wetting techniques were used for examination and analysis of samples. Considerable changes in chemical structure, composition and in morphology of grafted surface of PTFE were found. Results showed the occurrence of noticeable defluorination and cross-linked structure on grafted surface, and indicated that different kinds and contents of oxygen-containing functional groups were introduced into the surface of PTFE. Wetting and adhesion experiment of the sample proved that significant improvements in hydrophilicity and adhesion of surface were exhibited. These results confirmed the success of grafting. (8 refs., 7 figs., 1 tab.)

  18. Electronic spectra from TDDFT and machine learning in chemical space

    International Nuclear Information System (INIS)

    Ramakrishnan, Raghunathan; Hartmann, Mia; Tapavicza, Enrico; Lilienfeld, O. Anatole von

    2015-01-01

    Due to its favorable computational efficiency, time-dependent (TD) density functional theory (DFT) enables the prediction of electronic spectra in a high-throughput manner across chemical space. Its predictions, however, can be quite inaccurate. We resolve this issue with machine learning models trained on deviations of reference second-order approximate coupled-cluster (CC2) singles and doubles spectra from TDDFT counterparts, or even from DFT gap. We applied this approach to low-lying singlet-singlet vertical electronic spectra of over 20 000 synthetically feasible small organic molecules with up to eight CONF atoms. The prediction errors decay monotonously as a function of training set size. For a training set of 10 000 molecules, CC2 excitation energies can be reproduced to within ±0.1 eV for the remaining molecules. Analysis of our spectral database via chromophore counting suggests that even higher accuracies can be achieved. Based on the evidence collected, we discuss open challenges associated with data-driven modeling of high-lying spectra and transition intensities

  19. Electronic spectra from TDDFT and machine learning in chemical space

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Raghunathan [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Hartmann, Mia; Tapavicza, Enrico, E-mail: Enrico.Tapavicza@csulb.edu [Department of Chemistry and Biochemistry, California State University, 1250 Bellflower Boulevard, Long Beach, California 90840 (United States); Lilienfeld, O. Anatole von, E-mail: anatole.vonlilienfeld@unibas.ch [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439 (United States)

    2015-08-28

    Due to its favorable computational efficiency, time-dependent (TD) density functional theory (DFT) enables the prediction of electronic spectra in a high-throughput manner across chemical space. Its predictions, however, can be quite inaccurate. We resolve this issue with machine learning models trained on deviations of reference second-order approximate coupled-cluster (CC2) singles and doubles spectra from TDDFT counterparts, or even from DFT gap. We applied this approach to low-lying singlet-singlet vertical electronic spectra of over 20 000 synthetically feasible small organic molecules with up to eight CONF atoms. The prediction errors decay monotonously as a function of training set size. For a training set of 10 000 molecules, CC2 excitation energies can be reproduced to within ±0.1 eV for the remaining molecules. Analysis of our spectral database via chromophore counting suggests that even higher accuracies can be achieved. Based on the evidence collected, we discuss open challenges associated with data-driven modeling of high-lying spectra and transition intensities.

  20. Identification of Maillard reaction induced chemical modifications on Ara h 1

    Science.gov (United States)

    The Maillard reaction is a non-enzymatic glycation reaction between proteins and reducing sugars that can modify nut allergens during thermal processing. These modifications can alter the structural and immunological properties of these allergens, and may result in increased IgE binding. Here, we ...

  1. Tuning the electronic structure of bulk FeSe with chemical pressure using quantum oscillations and angle resolved photoemission spectroscopy (ARPES)

    Science.gov (United States)

    Coldea, Amalia

    FeSe is a unique and intriguing superconductor which can be tuned into a high temperature superconducting state using applied pressure, chemical intercalation and surface doping. In the absence of magnetism, the structural transition in FeSe is believed to be electronically driven, with the orbital degrees of freedom playing an important part. This scenario supports the stabilization of a nematic state in FeSe, which manifests as a Fermi surface deformation in the presence of strong interactions, as detected by ARPES. Another manifestation of the nematicity is the enhanced nematic susceptibility determined from elastoresistance measurements under applied strain. Isovalent Sulphur substitution onto the Selenium site constitutes a chemical pressure, which subtly modifies the electronic structure of FeSe, suppressing the structural transition without inducing high temperature superconductivity. I will present the evolution of the electronic structure with chemical pressure in FeSe, as determined from quantum oscillations and ARPES studies and I will discuss the suppression of the nematic electronic state and the role of electronic correlations. Experiments were performed at high magnetic field facilities in Tallahassee, Nijmegen and Toulouse and Diamond Light Source, UK. This work is mainly supported by EPSRC, UK (EP/I004475/1, EP/I017836/1) and I acknowledge my collaborators from Refs. .

  2. Electronic structure, chemical bonding, phase stability, and ground-state properties of YNi2-x(Co/Cu)xB2C

    International Nuclear Information System (INIS)

    Ravindran, P.; Johansson, B.; Eriksson, O.

    1998-01-01

    In order to understand the role of Ni site substitution on the electronic structure and chemical bonding in YNi 2 B 2 C, we have made systematic electronic-structure studies on YNi 2 B 2 C as a function of Co and Cu substitution using the supercell approach within the local density approximation. The equilibrium volume, bulk modulus (B 0 ) and its pressure derivative (B 0 ' ), Grueneisen constant (γ G ), Debye temperature (Θ D ), cohesive energy (E c ), and heat of formation (ΔH) are calculated for YNi 2-x (Co/Cu) x B 2 C (x=0,0.5,1.0,1.5,2). From the total energy, electron-energy band structure, site decomposed density of states, and charge-density contour we have analyzed the structural stability and chemical bonding behavior of YNi 2 B 2 C as a function of Co/Cu substitution. We find that the simple rigid band model successfully explains the electronic structure and structural stability of Co/Cu substitution for Ni. In addition to studying the chemical bonding and electronic structure we present a somewhat speculative analysis of the general trends in the behavior of critical temperature for superconductivity as a function of alloying. copyright 1998 The American Physical Society

  3. Improving the electrical properties of graphene layers by chemical doping

    International Nuclear Information System (INIS)

    Khan, Muhammad Farooq; Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Eom, Jonghwa

    2014-01-01

    Although the electronic properties of graphene layers can be modulated by various doping techniques, most of doping methods cost degradation of structural uniqueness or electrical mobility. It is matter of huge concern to develop a technique to improve the electrical properties of graphene while sustaining its superior properties. Here, we report the modification of electrical properties of single- bi- and trilayer graphene by chemical reaction with potassium nitrate (KNO 3 ) solution. Raman spectroscopy and electrical transport measurements showed the n-doping effect of graphene by KNO 3 . The effect was most dominant in single layer graphene, and the mobility of single layer graphene was improved by the factor of more than 3. The chemical doping by using KNO 3 provides a facile approach to improve the electrical properties of graphene layers sustaining their unique characteristics. (paper)

  4. Preparation of Robust Superhydrophobic Halloysite Clay Nanotubes via Mussel-Inspired Surface Modification

    Directory of Open Access Journals (Sweden)

    Yang Meng

    2017-11-01

    Full Text Available In this study, a novel and convenient bio-inspired modification strategy was used to create stable superhydrophobic structures on halloysite clay nanotubes (HNTs surfaces. The polydopamine (PDA nanoparticles can firmly adhere on HNTs surfaces in a mail environment of pH 8.5 via the oxidative self-polymerization of dopamine and synthesize a rough nano-layer assisted with vitamin M, which provides a catechol functional platform for the secondary reaction to graft hydrophobic long-chain alkylamine for preparation of hierarchical micro/nano structures with superhydrophobic properties. The micromorphology, crystal structure, and surface chemical composition of the resultant superhydrophobic HNTs were characterized by field emission scanning electron (FE-SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, and X-ray photoelectron spectroscopy (XPS. The as-formed surfaces exhibited outstanding superhydrophobicity with a water contact angle (CA of 156.3 ± 2.3°, while having little effect on the crystal structures of HNTs. Meanwhile, the resultant HNTs also showed robust stability that can conquer various harsh conditions including strong acidic/alkaline solutions, organic solvents, water boiling, ultrasonic cleaning, and outdoor solar radiation. In addition, the novel HNTs exhibited excellent packaged capabilities of phase change materials (PCMs for practical application in thermal energy storage, which improved the mass fractions by 22.94% for stearic acid and showed good recyclability. These HNTs also exhibited good oil/water separation ability. Consequently, due to the superior merits of high efficiency, easy operation, and non-toxicity, this bionic surface modification approach may make HNTs have great potentials for extensive applications.

  5. Organic Metals. Systematic Molecular Modifications of Hexamethylenetetraheterofulvalene Donors

    DEFF Research Database (Denmark)

    Engler, E. M.; Patel, V. V.; Andersen, Jan Rud

    1978-01-01

    Two synthetic approaches for modifying hexamethylenetetraheterofulvalene donors are described for the purpose of perturbing in a systematic way the interesting solid state properties of the TCNQ salts of the parent systems. The first approach consists of a steric modification in which a methyl gr...... group is introduced into the outer five-membered rings of the parent molecules. The second type of modification involves an electronic perturbation in which the outer five-membered alkyl rings are replaced with fused thiophene derivatives...

  6. Soy protein modification: A review

    Directory of Open Access Journals (Sweden)

    Barać Miroljub B.

    2004-01-01

    Full Text Available Soy protein products such as flour, concentrates and isolates are used in food formulation because of their functionality, nutritional value and low cost. To obtain their optimal nutritive and functional properties as well as desirable flavor different treatments are used. Soybean proteins can be modified by physical, chemical and enzymatic treatments. Different thermal treatments are most commonly used, while the most appropriate way of modifying soy proteins from the standpoint of safety is their limited proteolysis. These treatments cause physical and chemical changes that affect their functional properties. This review discusses three principal methods used for modification of soy protein products, their effects on dominant soy protein properties and some biologically active compounds.

  7. Ion bombardment modification of surfaces

    International Nuclear Information System (INIS)

    Auciello, O.

    1984-01-01

    An historical overview of the main advances in the understanding of bombardment-induced surface topography is presented. The implantation and sputtering mechanisms which are relevant to ion bombardment modification of surfaces and consequent structural, electronic and compositional changes are described. Descriptions of plasma and ion-beam sputtering-induced film formation, primary ion-beam deposition, dual beam techniques, cluster of molecule ion-beam deposition, and modification of thin film properties by ion bombardment during deposition are presented. A detailed account is given of the analytical and computational modelling of topography from the viewpoint of first erosion theory. Finally, an account of the possible application and/or importance of textured surfaces in technologies and/or experimental techniques not considered in previous chapters is presented. refs.; figs.; tabs

  8. pH-Induced Surface Modification of Atomically Precise Silver Nanoclusters: An Approach for Tunable Optical and Electronic Properties

    KAUST Repository

    AbdulHalim, Lina G.

    2016-10-24

    Noble metal nanoclusters (NCs) play a pivotal role in bridging the gap between molecules and quantum dots. Fundamental understanding of the evolution of the structural, optical, and electronic properties of these materials in various environments is of paramount importance for many applications. Using state-of-the-art spectroscopy, we provide the first decisive experimental evidence that the structural, electronic, and optical properties of Ag-44(MNBA)(30) NCs can now be tailored by controlling the chemical environment. Infrared and photoelectron spectroscopies clearly indicate that there is a dimerization between two adjacent ligands capping the NCs that takes place upon lowering the pH from 13 to 7.

  9. Laser surface modification of PEEK

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A., E-mail: ariveiro@uvigo.es [Applied Physics Department, University of Vigo ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de Espana 2, 36920 Marin (Spain); Soto, R.; Comesana, R.; Boutinguiza, M.; Val, J. del; Quintero, F.; Lusquinos, F.; Pou, J. [Applied Physics Department, University of Vigo ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Role of laser irradiation wavelength on the surface modification of PEEK (polyether-ether-ketone) was investigated. Black-Right-Pointing-Pointer Adequate processing conditions to improve wettability, roughness, and cell adhesion characteristics are determined. Black-Right-Pointing-Pointer A design of experiments (DOE) methodology was performed. Black-Right-Pointing-Pointer UV (355 nm) radiation is the most promising laser radiation for improving the adhesive surface properties of PEEK. - Abstract: Polyether-ether-ketone (PEEK) is a synthetic thermoplastic polymer with excellent mechanical and chemical properties, which make it attractive for the field of reconstructive surgery. Nevertheless, this material has a poor interfacial biocompatibility due to its large chemical stability which induces poor adhesive bonding properties. The possibilities of enhancing the PEEK adhesive properties by laser treatments have been explored in the past. This paper presents a systematic approach to discern the role of laser irradiation wavelength on the surface modification of PEEK under three laser wavelengths ({lambda} = 1064, 532, and 355 nm) with the aim to determine the most adequate processing conditions to increase the roughness and wettability, the main parameters affecting cell adhesion characteristics of implants. Overall results show that the ultraviolet ({lambda} = 355 nm) laser radiation is the most suitable one to enhance surface wettability of PEEK.

  10. Plasma assisted surface coating/modification processes: An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  11. Plasma assisted surface coating/modification processes - An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  12. Experience of secondary cooling system modification at fast breeder reactor MONJU

    International Nuclear Information System (INIS)

    Ito, Keisuke; Nakatsuji, M.; Matsuno, Hiroki; Matsui, K.; Tone, T.

    2007-01-01

    The prototype fast breeder reactor MONJU has been shut down since the secondary sodium leak accident which occurred in December 1995. After the accident, the investigation of its cause and the comprehensive review were performed and the various counter measures against the sodium leak were also discussed. The main modification works of MONJU started in September 2005. The work should adopt suitable methods to treat sodium, since MONJU uses chemically active sodium as a coolant. Considering the chemical activity of sodium, MONJU learned the modification methods from the experimental fast reactor JOYO and precedent plants of overseas and adopted plastic bags when the sodium boundary is opened, management of oxygen concentration in the plastic bags, a slightly positive control of the cover gas pressure, compress cut by the roll cutters to prevent the entry of the chips, etc.. Owing to introduction of these methods, the modification works have proceeded almost on schedule without troubles. (author)

  13. Influence of Polylactide Modification with Blowing Agents on Selected Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Aneta Tor-Świątek

    2017-12-01

    Full Text Available Article presents research of modification of PLA with four types of chemical blowing agents with a different decomposition characteristic. The modification was done both cellular extrusion and injection molding processes. Obtained results shows that dosing blowing agents have the influence on mechanical properties and structure morphology of PLA. The differences in obtained results are also visible and significant between cellular processes.

  14. Electronic parameters and top surface chemical stability of RbPb{sub 2}Br{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Isaenko, L.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Kesler, V.G. [Laboratory of Physical Principles for Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Pokrovsky, L.D. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Tarasova, A.Yu. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer Bridgman growth of RbPb{sub 2}Br{sub 5} crystal. Black-Right-Pointing-Pointer Electronic structure measurements with XPS. Black-Right-Pointing-Pointer Optical crystalline surface fabrication. - Abstract: The RbPb{sub 2}Br{sub 5} crystal has been grown by Bridgman method. The electronic structure of RbPb{sub 2}Br{sub 5} has been measured with XPS for a powder sample. High chemical stability of RbPb{sub 2}Br{sub 5} surface is verified by weak intensity of O 1s core level recorded by XPS and structural RHEED measurements. Chemical bonding effects have been observed by the comparative analysis of element core levels and crystal structure of RbPb{sub 2}Br{sub 5} and several rubidium- and lead-containing bromides using binding energy difference parameters {Delta}{sub Rb} = (BE Rb 3d - BE Br 3d) and {Delta}{sub Pb} = (BE Pb 4f{sub 7/2} - BE Br 3d).

  15. Homogeneity of Ge-rich nanostructures as characterized by chemical etching and transmission electron microscopy

    International Nuclear Information System (INIS)

    Bollani, Monica; Chrastina, Daniel; Montuori, Valeria; Vanacore, Giovanni M; Tagliaferri, Alberto; Sordan, Roman; Terziotti, Daniela; Bonera, Emiliano; Spinella, Corrado; Nicotra, Giuseppe

    2012-01-01

    The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe. (paper)

  16. Homogeneity of Ge-rich nanostructures as characterized by chemical etching and transmission electron microscopy.

    Science.gov (United States)

    Bollani, Monica; Chrastina, Daniel; Montuori, Valeria; Terziotti, Daniela; Bonera, Emiliano; Vanacore, Giovanni M; Tagliaferri, Alberto; Sordan, Roman; Spinella, Corrado; Nicotra, Giuseppe

    2012-02-03

    The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe.

  17. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu [INPAC – Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U. Leuven, Celestijnenlaan 200D, B–3001 Leuven (Belgium); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Stesmans, Andre [INPAC – Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U. Leuven, Celestijnenlaan 200D, B–3001 Leuven (Belgium); Tol, Johan van [National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310 (United States); Kosynkin, D. V. [Department of Chemistry, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Tour, James M. [Department of Chemistry, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Department of Mechanical Engineering and Materials Science, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA. (United States)

    2014-04-15

    Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH{sub 3} adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and {sup 13}C atoms. With the provided identification of intrinsic point magnetic defects such as proton and {sup 13}C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.

  18. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Singamaneni

    2014-04-01

    Full Text Available Electronic spin transport properties of graphene nanoribbons (GNRs are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element spin-sensitive techniques such as electron spin resonance (ESR spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW, pulse and hyperfine sublevel correlation (HYSCORE ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs, which were subsequently chemically converted (CCGNRs with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns and fast (39 ns components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic-based transport properties of CCGNRs.

  19. Electron emission induced modifications in amorphous tetrahedral diamondlike carbon

    International Nuclear Information System (INIS)

    Mercer, T.W.; DiNardo, N.J.; Rothman, J.B.; Siegal, M.P.; Friedmann, T.A.; Martinez-Miranda, L.J.

    1998-01-01

    The cold-cathode electron emission properties of amorphous tetrahedral diamondlike carbon are promising for flat-panel display and vacuum microelectronics technologies. The onset of electron emission is, typically, preceded by open-quotes conditioningclose quotes where the material is stressed by an applied electric field. To simulate conditioning and assess its effect, we combined the spatially localized field and current of a scanning tunneling microscope tip with high-spatial-resolution characterization. Scanning force microscopy shows that conditioning alters surface morphology and electronic structure. Spatially resolved electron-energy-loss spectroscopy indicates that the predominant bonding configuration changes from predominantly fourfold to threefold coordination. copyright 1998 American Institute of Physics

  20. Electronic and Mechanical Properties of GrapheneGermanium Interfaces Grown by Chemical Vapor Deposition

    Science.gov (United States)

    2015-10-27

    that graphene acts as a diffusion barrier to ambient contaminants, as similarly prepared bare Ge exposed to ambient conditions possesses a much...in-plane order underneath the graphene (Figure 1b,f). The stabilization of Ge terraces with half-step heights indicates that the graphene modifies the...Electronic and Mechanical Properties of Graphene −Germanium Interfaces Grown by Chemical Vapor Deposition Brian Kiraly,†,‡ Robert M. Jacobberger

  1. Structural Modification in Carbon Nanotubes by Boron Incorporation

    Directory of Open Access Journals (Sweden)

    Handuja Sangeeta

    2009-01-01

    Full Text Available Abstract We have synthesized boron-incorporated carbon nanotubes (CNTs by decomposition of ferrocene and xylene in a thermal chemical vapor deposition set up using boric acid as the boron source. Scanning and transmission electron microscopy studies of the synthesized CNT samples showed that there was deterioration in crystallinity and improvement in alignment of the CNTs as the boron content in precursor solution increased from 0% to 15%. Raman analysis of these samples showed a shift of ~7 cm−1in wave number to higher side and broadening of the G band with increasing boron concentration along with an increase in intensity of the G band. Furthermore, there was an increase in the intensity of the D band along with a decrease in its wave number position with increase in boron content. We speculate that these structural modifications in the morphology and microstructure of CNTs might be due to the charge transfer from boron to the graphite matrix, resulting in shortening of the carbon–carbon bonds.

  2. Chitosan Modification and Pharmaceutical/Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jiali Zhang

    2010-06-01

    Full Text Available Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1 enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2 the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3 synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy.

  3. Roman sophisticated surface modification methods to manufacture silver counterfeited coins

    Science.gov (United States)

    Ingo, G. M.; Riccucci, C.; Faraldi, F.; Pascucci, M.; Messina, E.; Fierro, G.; Di Carlo, G.

    2017-11-01

    By means of the combined use of X-ray photoelectron spectroscopy (XPS), optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) the surface and subsurface chemical and metallurgical features of silver counterfeited Roman Republican coins are investigated to decipher some aspects of the manufacturing methods and to evaluate the technological ability of the Roman metallurgists to produce thin silver coatings. The results demonstrate that over 2000 ago important advances in the technology of thin layer deposition on metal substrates were attained by Romans. The ancient metallurgists produced counterfeited coins by combining sophisticated micro-plating methods and tailored surface chemical modification based on the mercury-silvering process. The results reveal that Romans were able systematically to chemically and metallurgically manipulate alloys at a micro scale to produce adherent precious metal layers with a uniform thickness up to few micrometers. The results converge to reveal that the production of forgeries was aimed firstly to save expensive metals as much as possible allowing profitable large-scale production at a lower cost. The driving forces could have been a lack of precious metals, an unexpected need to circulate coins for trade and/or a combinations of social, political and economic factors that requested a change in money supply. Finally, some information on corrosion products have been achieved useful to select materials and methods for the conservation of these important witnesses of technology and economy.

  4. Estudo da modificação química de polidienos do tipo SBR e BR Study of chemical modification of SBR and BR polydiene

    Directory of Open Access Journals (Sweden)

    Tatiana L. A. C. Rocha

    2004-12-01

    Full Text Available A utilização de modificações químicas de polidienos comerciais tem sido estudada como um meio alternativo à síntese de novos polímeros, para otimização das propriedades finais destes materiais através da introdução de diferentes grupamentos reativos na cadeia polimérica. A modificação química pode ser feita através de diferentes métodos, os quais podem ser realizados tanto em solução como em massa, onde podem ser destacadas as reações de epoxidação, sulfonação, maleinização, carboxilação, etc. Neste trabalho foi estudado o método de epoxidação de borrachas do tipo SBR e BR. Foi possível observar que mesmo pequenos graus de modificação química causam mudanças marcantes nas propriedades finais dos polímeros, como determinado para a temperatura de transição vítrea.Chemical modification of polydiene has been studied as an alternative route to obtain modified polymers with improved final properties. This improvement is due to the introduction of different kinds of reactive groups into a polymer chain, and it can be done in solution as well as in bulk. The chemical modification can be carried out by different methods such as epoxidation, maleination, carboxylation, sulfonation etc. In this work we show that in the epoxidation of SBR and BR even a small degree of modification can change the final properties of the polymer, as it occurred for the glass transition temperature.

  5. ANALYSIS AND IDENTIFICATION SPIKING CHEMICAL COMPOUNDS RELATED TO CHEMICAL WEAPON CONVENTION IN UNKNOWN WATER SAMPLES USING GAS CHROMATOGRAPHY AND GAS CHROMATOGRAPHY ELECTRON IONIZATION MASS SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2010-06-01

    Full Text Available The identification and analysis of chemical warfare agents and their degradation products is one of important component for the implementation of the convention. Nowadays, the analytical method for determination chemical warfare agent and their degradation products has been developing and improving. In order to get the sufficient analytical data as recommended by OPCW especially in Proficiency Testing, the spiking chemical compounds related to Chemical Weapon Convention in unknown water sample were determined using two different techniques such as gas chromatography and gas chromatography electron-impact ionization mass spectrometry. Neutral organic extraction, pH 11 organic extraction, cation exchanged-methylation, triethylamine/methanol-silylation were performed to extract the chemical warfare agents from the sample, before analyzing with gas chromatography. The identification of chemical warfare agents was carried out by comparing the mass spectrum of chemicals with mass spectrum reference from the OPCW Central Analytical Database (OCAD library while the retention indices calculation obtained from gas chromatography analysis was used to get the confirmation and supported data of  the chemical warfare agents. Diisopropyl methylphosphonate, 2,2-diphenyl-2-hydroacetic acid and 3-quinuclidinol were found in unknown water sample. Those chemicals were classified in schedule 2 as precursor or reactant of chemical weapons compound in schedule list of Chemical Weapon Convention.   Keywords: gas chromatography, mass spectrometry, retention indices, OCAD library, chemical warfare agents

  6. Vapor phase modification of sol-gel derived titania (TiO{sub 2}) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Piwonski, Ireneusz [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)]. E-mail: irek@uni.lodz.pl; Ilik, Aneta [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)

    2006-12-30

    Chemical vapor deposition (CVD) method was used in titania surface modification. Titania layers were obtained in sol-gel process and prepared as thin films on silicon wafers in dip-coating method. In order to define the influence of modification on titania surface properties (e.g., friction), various types of fluoroalkylsilanes were used. The effectiveness of the modification was monitored by FT-IR spectroscopy. The topography and frictional measurements were investigated with the use of atomic force microscopy (AFM)

  7. Chemical display of pyrimidine bases flipped out by modification-dependent restriction endonucleases of MspJI and PvuRts1I families.

    Directory of Open Access Journals (Sweden)

    Evelina Zagorskaitė

    Full Text Available The epigenetic DNA modifications 5-methylcytosine (5mC and 5-hydroxymethylcytosine (5hmC in eukaryotes are recognized either in the context of double-stranded DNA (e.g., by the methyl-CpG binding domain of MeCP2, or in the flipped-out state (e.g., by the SRA domain of UHRF1. The SRA-like domains and the base-flipping mechanism for 5(hmC recognition are also shared by the recently discovered prokaryotic modification-dependent endonucleases of the MspJI and PvuRts1I families. Since the mechanism of modified cytosine recognition by many potential eukaryotic and prokaryotic 5(hmC "readers" is still unknown, a fast solution based method for the detection of extrahelical 5(hmC would be very useful. In the present study we tested base-flipping by MspJI- and PvuRts1I-like restriction enzymes using several solution-based methods, including fluorescence measurements of the cytosine analog pyrrolocytosine and chemical modification of extrahelical pyrimidines with chloroacetaldehyde and KMnO4. We find that only KMnO4 proved an efficient probe for the positive display of flipped out pyrimidines, albeit the method required either non-physiological pH (4.3 or a substitution of the target cytosine with thymine. Our results imply that DNA recognition mechanism of 5(hmC binding proteins should be tested using a combination of all available methods, as the lack of a positive signal in some assays does not exclude the base flipping mechanism.

  8. Atomic and electronic structures of novel silicon surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  9. Chemical modifications and applications of alternating aliphatic polyketones

    NARCIS (Netherlands)

    Zhang, Youchun

    2008-01-01

    Alternating aliphatic polyketones, produced by co- and terpolymerization of carbon monoxide and olefins (mixtures of ethylene and propylene) using palladium-based homogeneous catalysis represent a very promising class of polymers for a wide range of applications. Besides many interesting chemical

  10. Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes: Exploring relationships of log SW, log KOA, and log KOW with electron-correlation

    International Nuclear Information System (INIS)

    Chayawan; Vikas

    2015-01-01

    Highlights: • Aqueous solubility and partition coefficient are modelled using single-parameter. • Electron-correlation observed as a vital predictorof physico-chemical properties. • For octanol-air partition coefficient, energy and polarizability yield best models. • Dipole-moment is found to be worst single-descriptor for the properties analysed. - Abstract: Quantitative structure–property relationships (QSPRs), based only on a single-parameter, are proposed for the prediction of physico-chemical properties, namely, aqueous solubility (log S W ), octanol–water partition coefficient (log K OW ) and octanol–air partition coefficient (log K OA ) of polychloronaphthalenes (PCNs) including all the 75 chloronaphthalene congeners. The QSPR models are developed using molecular descriptors computed through quantum mechanical methods including ab-initio as well as advanced semi-empirical methods. The predictivity of the developed models is tested through state-of-the-art external validation procedures employing an external prediction set of compounds. To analyse the role of instantaneous interactions between electrons (the electron-correlation), the models are also compared with those developed using only the electron-correlation contribution of the quantum chemical descriptor. The electron-correlation contribution towards the chemical hardness and the LUMO energy are observed to be the best predictors for octanol–water partition coefficient, whereas for the octanol–air partition coefficient, the total electronic energy and electron-correlation energy are found to be reliable descriptors, in fact, even better than the polarisability. For aqueous solubility of PCNs, the absolute electronegativity is observed to be the best predictor. This work suggests that the electron-correlation contribution of a quantum-chemical descriptor can be used as a reliable indicator for physico-chemical properties, particularly the partition coefficients

  11. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    International Nuclear Information System (INIS)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno

    2016-01-01

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N_2 and 20% O_2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 10"1"3" cm"−"3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the

  12. Application of xenon difluoride for surface modification of polymers

    International Nuclear Information System (INIS)

    Barsamyan, G.B.; Belokonov, K.V.; Vargasova, N.A.; Sokolov, V.B.; Chaivanov, B.B.; Zubov, V.P.

    1994-01-01

    Chemical interaction between xenon difluoride (XeF 2 ) and polymeric materials was investigated. It was shown that the reaction occurs on the surface of solid polymer layer and brings to chemical modification of the surface properties of the polymer leaving the bulk properties unchanged. The results of various analysis of the fluorinated samples (IR, FTIR-ATR, ESCA, bulk analysis etc) are presented. The mechanism of reaction is proposed. 12 refs.; 13 figs

  13. 78 FR 57156 - General Services Administration Acquisition Regulation; Submission for OMB Review; Modifications...

    Science.gov (United States)

    2013-09-17

    ... GENERAL SERVICES ADMINISTRATION [OMB Control No. 3090-0302; Docket No. 2013-0001; Sequence 9... (GSAR) to add clause 552.243-81 Modifications (Federal Supply Schedule) and an Alternate I version of..., Modifications (Federal Supply Schedule). The alternate version of the clause implements and mandates electronic...

  14. Nobel Prize 1992: Rudolph A. Marcus: theory of electron transfer reactions in chemical systems

    International Nuclear Information System (INIS)

    Ulate Segura, Diego Guillermo

    2011-01-01

    A review of the theory developed by Rudolph A. Marcus is presented, who for his rating to the theory of electron transfer in chemical systems was awarded the Nobel Prize in Chemistry in 1992. Marcus theory has constituted not only a good extension of the use of a spectroscopic principle, but also has provided an energy balance and the application of energy conservation for electron transfer reactions. A better understanding of the reaction coordinate is exposed in terms energetic and establishing the principles that govern the transfer of electrons, protons and some labile small molecular groups as studied at present. Also, the postulates and equations described have established predictive models of reaction time, very useful for industrial environments, biological, metabolic, and others that involve redox processes. Marcus theory itself has also constituted a large contribution to the theory of complex transition [es

  15. Chemical-modification studies of a unique sialic acid-binding lectin from the snail Achatina fulica. Involvement of tryptophan and histidine residues in biological activity.

    Science.gov (United States)

    Basu, S; Mandal, C; Allen, A K

    1988-01-01

    A unique sialic acid-binding lectin, achatininH (ATNH) was purified in single step from the haemolymph of the snail Achatina fulica by affinity chromatography on sheep submaxillary-gland mucin coupled to Sepharose 4B. The homogeneity was checked by alkaline gel electrophoresis, immunodiffusion and immunoelectrophoresis. Amino acid analysis showed that the lectin has a fairly high content of acidic amino acid residues (22% of the total). About 1.3% of the residues are half-cystine. The glycoprotein contains 21% carbohydrate. The unusually high content of xylose (6%) and fucose (2.7%) in this snail lectin is quite interesting. The protein was subjected to various chemical modifications in order to detect the amino acid residues and carbohydrate residues present in its binding sites. Modification of tyrosine and arginine residues did not affect the binding activity of ATNH; however, modification of tryptophan and histidine residues led to a complete loss of its biological activity. A marked decrease in the fluorescence emission was found as the tryptophan residues of ATNH were modified. The c.d. data showed the presence of an identical type of conformation in the native and modified agglutinin. The modification of lysine and carboxy residues partially diminished the biological activity. The activity was completely lost after a beta-elimination reaction, indicating that the sugars are O-glycosidically linked to the glycoprotein's protein moiety. This result confirms that the carbohydrate moiety also plays an important role in the agglutination property of this lectin. Images Fig. 3. PMID:3140796

  16. Quantum-Chemical Electron Densities of Proteins and of Selected Protein Sites from Subsystem Density Functional Theory

    NARCIS (Netherlands)

    Kiewisch, K.; Jacob, C.R.; Visscher, L.

    2013-01-01

    The ability to calculate accurate electron densities of full proteins or of selected sites in proteins is a prerequisite for a fully quantum-mechanical calculation of protein-protein and protein-ligand interaction energies. Quantum-chemical subsystem methods capable of treating proteins and other

  17. Formation of hydrogen-related traps in electron-irradiated n-type silicon by wet chemical etching

    International Nuclear Information System (INIS)

    Tokuda, Yutaka; Shimada, Hitoshi

    1998-01-01

    Interaction of hydrogen atoms and vacancy-related defects in 10 MeV electron-irradiated n-type silicon has been studied by deep-level transient spectroscopy. Hydrogen has been incorporated into electron-irradiated n-type silicon by wet chemical etching. The reduction of the concentration of the vacancy-oxygen pair and divacancy occurs by the incorporation of hydrogen, while the formation of the NH1 electron trap (E c - 0.31 eV) is observed. Further decrease of the concentration of the vacancy-oxygen pair and further increase of the concentration of the NH1 trap are observed upon subsequent below-band-gap light illumination. It is suggested that the trap NH1 is tentatively ascribed to the vacancy-oxygen pair which is partly saturated with hydrogen

  18. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers.

    Science.gov (United States)

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.

  19. Surface modification and characterization Collaborative Research Center at ORNL

    International Nuclear Information System (INIS)

    1986-01-01

    The Surface Modification and Characterization Collaborative Research Center (SMAC/CRC) is a unique facility for the alteration and characterization of the near-surface properties of materials. The SMAC/CRC facility is equipped with particle accelerators and high-powered lasers which can be used to improve the physical, electrical, and/or chemical properties of solids and to create unique new materials not possible to obtain with conventional ''equilibrium'' processing techniques. Surface modification is achieved using such techniques as ion implantation doping, ion beam mixing, laser mixing, ion deposition, and laser annealing

  20. Chemical modification of antifungal polyene macrolide antibiotics

    International Nuclear Information System (INIS)

    Solovieva, S E; Olsufyeva, E N; Preobrazhenskaya, M N

    2011-01-01

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  1. Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean Nuclease Assay.

    Directory of Open Access Journals (Sweden)

    Jun Yang

    Full Text Available Ribosomes are large ribonucleoprotein complexes that are fundamental for protein synthesis. Ribosomes are ribozymes because their catalytic functions such as peptidyl transferase and peptidyl-tRNA hydrolysis depend on the rRNA. rRNA is a heterogeneous biopolymer comprising of at least 112 chemically modified residues that are believed to expand its topological potential. In the present study, we established a comprehensive modification profile of Saccharomyces cerevisiae's 18S and 25S rRNA using a high resolution Reversed-Phase High Performance Liquid Chromatography (RP-HPLC. A combination of mung bean nuclease assay, rDNA point mutants and snoRNA deletions allowed us to systematically map all ribose and base modifications on both rRNAs to a single nucleotide resolution. We also calculated approximate molar levels for each modification using their UV (254nm molar response factors, showing sub-stoichiometric amount of modifications at certain residues. The chemical nature, their precise location and identification of partial modification will facilitate understanding the precise role of these chemical modifications, and provide further evidence for ribosome heterogeneity in eukaryotes.

  2. Shock modification and chemistry and planetary geologic processes

    International Nuclear Information System (INIS)

    Boslough, M.S.

    1991-01-01

    This paper brings the rapid advances on shock processing of materials to the attention of Earth scientists, and to put these advances in the context of planetary geologic processes. Most of the recent research in this area has been directed at materials modification an synthesis, and the information gained has direct relevance to shock effects in nature. Research on various types of shock modification and chemistry in both naturally and experimentally shocked rocks and minerals is reviewed, and where appropriate their significance to planetary processes is indicated. As a case study, the surface of Mars is suggested as a place where conditions are optimal for shock processing to be a dominant factor. The various mechanisms of shock modification, activation, synthesis and decomposition are all proposed as major contributors to the evolution of chemical, mineralogical, and physical properties of the Martian regolith

  3. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  4. Simultaneous Scanning Electron Microscope Imaging of Topographical and Chemical Contrast Using In-Lens, In-Column, and Everhart-Thornley Detector Systems.

    Science.gov (United States)

    Zhang, Xinming; Cen, Xi; Ravichandran, Rijuta; Hughes, Lauren A; van Benthem, Klaus

    2016-06-01

    The scanning electron microscope provides a platform for subnanometer resolution characterization of material morphology with excellent topographic and chemical contrast dependent on the used detectors. For imaging applications, the predominantly utilized signals are secondary electrons (SEs) and backscattered electrons (BSEs) that are emitted from the sample surface. Recent advances in detector technology beyond the traditional Everhart-Thornley geometry have enabled the simultaneous acquisition and discrimination of SE and BSE signals. This study demonstrates the imaging capabilities of a recently introduced new detector system that consists of the combination of two in-lens (I-L) detectors and one in-column (I-C) detector. Coupled with biasing the sample stage to reduce electron-specimen interaction volumes, this trinity of detector geometry allows simultaneous acquisition of signals to distinguish chemical contrast from topographical changes of the sample, including the identification of surface contamination. The I-C detector provides 4× improved topography, whereas the I-L detector closest to the sample offers excellent simultaneous chemical contrast imaging while not limiting the minimization of working distance to obtain optimal lateral resolution. Imaging capabilities and contrast mechanisms for all three detectors are discussed quantitatively in direct comparison to each other and the conventional Everhart-Thornley detector.

  5. Identification and Interrogation of Combinatorial Histone Modifications

    Directory of Open Access Journals (Sweden)

    Kelly R Karch

    2013-12-01

    Full Text Available Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs. Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.

  6. Cell signaling, post-translational protein modifications and NMR spectroscopy

    International Nuclear Information System (INIS)

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy; Selenko, Philipp

    2012-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

  7. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    Science.gov (United States)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  8. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    Directory of Open Access Journals (Sweden)

    Bussy Cyrill

    2012-11-01

    Full Text Available Abstract Given the increasing use of carbon nanotubes (CNT in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT specifically synthesized following a similar production process (aerosol-assisted CVD, and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects and chemical (i.e. oxidation modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized compared to long (pristine MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.

  9. Surface Modification of Polymer Substrates for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Oldřich Neděla

    2017-09-01

    Full Text Available While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces—mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

  10. Chemical and morphological modifications of single layer graphene submitted to annealing in water vapor

    Science.gov (United States)

    Rolim, Guilherme Koszeniewski; Corrêa, Silma Alberton; Galves, Lauren Aranha; Lopes, João Marcelo J.; Soares, Gabriel Vieira; Radtke, Cláudio

    2018-01-01

    Modifications of single layer graphene transferred to SiO2/Si substrates resulting from annealing in water vapor were investigated. Near edge X-ray absorption fine structure spectroscopy evidenced graphene puckering between 400 and 500 °C. Synchrotron radiation based X-ray photoelectron spectroscopy showed variation of sp2 and sp3C bonding configurations specially in this same temperature range. Moreover, oxygen related functionalities are formed as a result of water vapor annealing. Based on these results and complementary Raman and nuclear reaction analysis, one distinguishes three different regimes of water interaction with graphene concerning modifications of the graphene layer. In the low temperature range (200-400 °C), no prominent modification of graphene itself is observed. At higher temperatures (400-500 °C), to accommodate newly formed oxygen functionalities, the flat and continuous sp2 bonding network of graphene is disrupted, giving rise to a puckered layer. For 600 °C and above, shrinking of graphene domains and a higher doping level take place.

  11. Utilization of low-energy electron accelerators in Korea

    International Nuclear Information System (INIS)

    Lee, Byung Cheol

    2003-01-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  12. Utilization of low-energy electron accelerators in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-02-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  13. Electronic structure of low work function electrodes modified by C{sub 16}H{sub 33}SH

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunbok [Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003 (United States); Cho, Sang Wan, E-mail: dio8027@yonsei.ac.kr [Department of Physics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 220-710 (Korea, Republic of); Park, Sang Han; Cho, Mann-Ho; Yi, Yeonjin [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemoon-Gu, Seoul, 120-749 (Korea, Republic of)

    2014-10-15

    Highlights: • The electronic structure of pentacene/C{sub 16}H{sub 33}SH/Au is investigated. • The work function of Au is significantly decreased with C{sub 16}H{sub 33}SH treatment. • The reduced work function is attributed to its permanent dipole moment. - Abstract: Organic and printed electronics technologies require electrodes with low work functions to facilitate the transport of electrons in and out of various optoelectronic devices. We show that the surface modifier of 1-hexadecanethiol reduces the work function of conductors using in situ ultraviolet photoemission spectroscopy, and we combine experimental and theoretical methods to investigate the origin of the work function changes. The interfacial electronic structures of pentacene/1-hexadecanethiol/Au were investigated via in situ ultraviolet photoemission spectroscopy and X-ray photoemission spectroscopy in order to understand the change in the carrier injection barrier and chemical reactions upon surface modification. Theoretical calculations using density functional theory were also performed to understand the charge distribution of 1-hexadecanethiol, which affects the reduction of the work function. The 1-hexadecanethiol surface modifier is processed in air from solution, providing an appealing alternative to chemically-reactive low-work-function metals.

  14. Modifications to the control program HASP

    International Nuclear Information System (INIS)

    Bartoli, M.; Dall'Olio, L.; Mareso, T.; Ricci, F.

    1973-01-01

    Modification to HASP version 3, level 0, a control program for an electronic computer, was described with the purpose of solving some operative and managing problems not solved by the standard version for the IBM 360/75 computer. The application and utilization of these facilities require a deep knowledge of the HASP II design, version 3, level 0, 360D-05.1.014

  15. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.

    Science.gov (United States)

    Bauer, Christophe; Abid, Jean-Pierre; Fermin, David; Girault, Hubert H

    2004-05-15

    The use of 4.2 nm gold nanoparticles wrapped in an adsorbates shell and embedded in a TiO2 metal oxide matrix gives the opportunity to investigate ultrafast electron-electron scattering dynamics in combination with electronic surface phenomena via the surface plasmon lifetimes. These gold nanoparticles (NPs) exhibit a large nonclassical broadening of the surface plasmon band, which is attributed to a chemical interface damping. The acceleration of the loss of surface plasmon phase coherence indicates that the energy and the momentum of the collective electrons can be dissipated into electronic affinity levels of adsorbates. As a result of the preparation process, gold NPs are wrapped in a shell of sulfate compounds that gives rise to a large density of interfacial molecules confined between Au and TiO2, as revealed by Fourier-transform-infrared spectroscopy. A detailed analysis of the transient absorption spectra obtained by broadband femtosecond transient absorption spectroscopy allows separating electron-electron and electron-phonon interaction. Internal thermalization times (electron-electron scattering) are determined by probing the decay of nascent nonthermal electrons (NNEs) and the build-up of the Fermi-Dirac electron distribution, giving time constants of 540 to 760 fs at 0.42 and 0.34 eV from the Fermi level, respectively. Comparison with literature data reveals that lifetimes of NNEs measured for these small gold NPs are more than four times longer than for silver NPs with similar sizes. The surprisingly long internal thermalization time is attributed to an additional decay mechanism (besides the classical e-e scattering) for the energy loss of NNEs, identified as the ultrafast chemical interface scattering process. NNEs experience an inelastic resonant scattering process into unoccupied electronic states of adsorbates, that directly act as an efficient heat bath, via the excitation of molecular vibrational modes. The two-temperature model is no longer

  16. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Steven F. [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista-UNESP, Avenida Tres de Marco, 511, Alto da Boa Vista, 18087-180, Soracaba, SP (Brazil)], E-mail: steve@sorocaba.unesp.br; Rouxinol, Francisco P.M.; Gelamo, Rogerio V. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Trasferetti, B. Claudio [Present address: Superintendencia Regional da Policia Federal em Sao Paulo, Setor Tecnico-Cientifico, Rua Hugo d' Antola 95/10o Andar, Lapa de Baixo, 05038-090 Sao Paulo, SP (Brazil); Davanzo, C.U. [Instituto de Quimica, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Bica de Moraes, Mario A. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil)

    2008-01-15

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (V{sub S}) and of the proportion of TEOS in the mixture (X{sub T}) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on V{sub S} and X{sub T} are presented.

  17. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Durrant, Steven F.; Rouxinol, Francisco P.M.; Gelamo, Rogerio V.; Trasferetti, B. Claudio; Davanzo, C.U.; Bica de Moraes, Mario A.

    2008-01-01

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (V S ) and of the proportion of TEOS in the mixture (X T ) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on V S and X T are presented

  18. Reduction of density-modification bias by β correction

    International Nuclear Information System (INIS)

    Skubák, Pavol; Pannu, Navraj S.

    2011-01-01

    A cross-validation-based method for bias reduction in ‘classical’ iterative density modification of experimental X-ray crystallography maps provides significantly more accurate phase-quality estimates and leads to improved automated model building. Density modification often suffers from an overestimation of phase quality, as seen by escalated figures of merit. A new cross-validation-based method to address this estimation bias by applying a bias-correction parameter ‘β’ to maximum-likelihood phase-combination functions is proposed. In tests on over 100 single-wavelength anomalous diffraction data sets, the method is shown to produce much more reliable figures of merit and improved electron-density maps. Furthermore, significantly better results are obtained in automated model building iterated with phased refinement using the more accurate phase probability parameters from density modification

  19. Soft chemical synthesis of silicon nanosheets and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Hideyuki; Ikuno, Takashi [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2016-12-15

    Two-dimensional silicon nanomaterials are expected to show different properties from those of bulk silicon materials by virtue of surface functionalization and quantum size effects. Since facile fabrication processes of large area silicon nanosheets (SiNSs) are required for practical applications, a development of soft chemical synthesis route without using conventional vacuum processes is a challenging issue. We have recently succeeded to prepare SiNSs with sub-nanometer thicknesses by exfoliating layered silicon compounds, and they are found to be composed of crystalline single-atom-thick silicon layers. In this review, we present the synthesis and modification methods of SiNSs. These SiNSs have atomically flat and smooth surfaces due to dense coverage of organic moieties, and they are easily self-assembled in a concentrated state to form a regularly stacked structure. We have also characterized the electron transport properties and the electronic structures of SiNSs. Finally, the potential applications of these SiNSs and organic modified SiNSs are also reviewed.

  20. Influence of chemical disorder on the electronic level spacing distribution of the Ag{sub 5083} nanoparticle: A tight-binding study

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, L.R., E-mail: leonardoms20@gmail.com [Faculty of Physical Sciences, National University of San Marcos, P.O. Box 14-0149, Lima 14 (Peru); Landauro, C.V., E-mail: clandauros@unmsm.edu.pe [Faculty of Physical Sciences, National University of San Marcos, P.O. Box 14-0149, Lima 14 (Peru)

    2013-03-01

    In the present work we study, employing a tight-binding Hamiltonian, the influence of chemical disorder on the electronic level spacing distribution of a silver nanoparticle containing 5083 atoms (∼ 5.5 nm). This nanoparticle was obtained by molecular dynamics simulations with a tight-binding atomic potential. The results indicate that in the absence of disorder the level spacing distributions are similar to those expected for systems belonging to the Gaussian Orthogonal Ensemble. Whereas, after increasing the chemical disorder, the electronic level spacing distribution and the Σ{sub 2} statistics tend to the corresponding form for the Poisson Ensemble, i.e., the silver nanoparticle acquires an insulating character which is expected for strongly disordered systems. Hence, this kind of disorder produces the localization of the electronic states of the nanoparticle.

  1. Ion beam-induced topographical and chemical modification on the poly(styrene-co-allyl alcohol) and its effect on the molecular interaction between the modified surface and liquid crystals

    International Nuclear Information System (INIS)

    Jeong, Hae-Chang; Park, Hong-Gyu; Lee, Ju Hwan; Jang, Sang Bok; Oh, Byeong-Yun; Seo, Dae-Shik

    2016-01-01

    We demonstrated uniform liquid crystal (LC) alignment on ion beam (IB)-irradiated poly(styrene-co-allyl alcohol) by modifying the chemical bonding on the surface. An IB-irradiated copolymer was used for the alignment layer. We used physico-chemical analysis to determine the IB-irradiated surface modification and LC alignment mechanism on the surface. During IB treatment on poly(styrene-co-allyl alcohol), IB irradiation induces breaking of chemical bonds on the surface to give rise to new bonds with oxygen atoms. This causes a strong Van der Waals interaction between LCs and the modified surface, thereby resulting in uniform LC alignment. The results of contact angle (CA) studies of the copolymer support the chemical bonding changes that were investigated by XPS. We achieved uniform homogeneous LC alignment and obtained stable electro-optical performance by controlling the IB energy. Therefore, the LC cells with IB-irradiated poly(styrene-co-allyl alcohol) exhibited a good potential for alternative alignment of layers in LC applications.

  2. Ion beam-induced topographical and chemical modification on the poly(styrene-co-allyl alcohol) and its effect on the molecular interaction between the modified surface and liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Chang [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Park, Hong-Gyu [School of Electrical, Electronic & Control Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongsangnam-do, 51140 (Korea, Republic of); Lee, Ju Hwan; Jang, Sang Bok [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Oh, Byeong-Yun [ZeSHTech Co., Ltd., Business Incubator, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 500-712 (Korea, Republic of); Seo, Dae-Shik, E-mail: dsseo@yonsei.ac.kr [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)

    2016-10-01

    We demonstrated uniform liquid crystal (LC) alignment on ion beam (IB)-irradiated poly(styrene-co-allyl alcohol) by modifying the chemical bonding on the surface. An IB-irradiated copolymer was used for the alignment layer. We used physico-chemical analysis to determine the IB-irradiated surface modification and LC alignment mechanism on the surface. During IB treatment on poly(styrene-co-allyl alcohol), IB irradiation induces breaking of chemical bonds on the surface to give rise to new bonds with oxygen atoms. This causes a strong Van der Waals interaction between LCs and the modified surface, thereby resulting in uniform LC alignment. The results of contact angle (CA) studies of the copolymer support the chemical bonding changes that were investigated by XPS. We achieved uniform homogeneous LC alignment and obtained stable electro-optical performance by controlling the IB energy. Therefore, the LC cells with IB-irradiated poly(styrene-co-allyl alcohol) exhibited a good potential for alternative alignment of layers in LC applications.

  3. A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices

    Science.gov (United States)

    Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.

    2016-12-01

    A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.

  4. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Eda D; Gueceri, Selcuk; Sun, Wei [Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Besunder, Robyn; Allen, Fred [Drexel University, School of Biomedical Engineering Science and Health System, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pappas, Daphne, E-mail: edy22@drexel.ed [Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2010-03-15

    A combined effect of protein coating and plasma modification on the quality of the osteoblast-scaffold interaction was investigated. Three-dimensional polycaprolactone (PCL) scaffolds were manufactured by the precision extrusion deposition (PED) system. The structural, physical, chemical and biological cues were introduced to the surface through providing 3D structure, coating with adhesive protein fibronectin and modifying the surface with oxygen-based plasma. The changes in the surface properties of PCL after those modifications were examined by contact angle goniometry, surface energy calculation, surface chemistry analysis (XPS) and surface topography measurements (AFM). The effects of modification techniques on osteoblast short-term and long-term functions were examined by cell adhesion, proliferation assays and differentiation markers, namely alkaline phosphatase activity (ALP) and osteocalcin secretion. The results suggested that the physical and chemical cues introduced by plasma modification might be sufficient for improved cell adhesion, but for accelerated osteoblast differentiation the synergetic effects of structural, physical, chemical and biological cues should be introduced to the PCL surface.

  5. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma

    International Nuclear Information System (INIS)

    Wang Chen; Chen Jierong; Li Ru

    2008-01-01

    Poly(tetrafluoroethylene) (PTFE) surfaces are modified with remote and direct Ar plasma, and the effects of the modification on the hydrophilicity of PTFE are investigated. The surface microstructures and compositions of the PTFE film were characterized with the goniometer, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Results show that the remote and direct plasma treatments modify the PTFE surface in morphology and composition, and both modifications cause surface oxidation of PTFE films, in the forming of some polar functional groups enhancing polymer wettability. When the remote and direct Ar plasma treats PTFE film, the contact angles decrease from the untreated 108-58 o and 65.2 o , respectively. The effect of the remote Ar plasma is more noticeable. The role of all kinds of active species, e.g. electrons, ions and free radicals involved in plasma surface modification is further evaluated. This shows that remote Ar plasma can restrain the ion and electron etching reaction and enhance radical reaction

  6. Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b6f Complex from Nostoc sp. PCC 7120*

    Science.gov (United States)

    Baniulis, Danas; Yamashita, Eiki; Whitelegge, Julian P.; Zatsman, Anna I.; Hendrich, Michael P.; Hasan, S. Saif; Ryan, Christopher M.; Cramer, William A.

    2009-01-01

    The crystal structure of the cyanobacterial cytochrome b6f complex has previously been solved to 3.0-Å resolution using the thermophilic Mastigocladus laminosus whose genome has not been sequenced. Several unicellular cyanobacteria, whose genomes have been sequenced and are tractable for mutagenesis, do not yield b6f complex in an intact dimeric state with significant electron transport activity. The genome of Nostoc sp. PCC 7120 has been sequenced and is closer phylogenetically to M. laminosus than are unicellular cyanobacteria. The amino acid sequences of the large core subunits and four small peripheral subunits of Nostoc are 88 and 80% identical to those in the M. laminosus b6f complex. Purified b6f complex from Nostoc has a stable dimeric structure, eight subunits with masses similar to those of M. laminosus, and comparable electron transport activity. The crystal structure of the native b6f complex, determined to a resolution of 3.0Å (PDB id: 2ZT9), is almost identical to that of M. laminosus. Two unique aspects of the Nostoc complex are: (i) a dominant conformation of heme bp that is rotated 180° about the α- and γ-meso carbon axis relative to the orientation in the M. laminosus complex and (ii) acetylation of the Rieske iron-sulfur protein (PetC) at the N terminus, a post-translational modification unprecedented in cyanobacterial membrane and electron transport proteins, and in polypeptides of cytochrome bc complexes from any source. The high spin electronic character of the unique heme cn is similar to that previously found in the b6f complex from other sources. PMID:19189962

  7. Structural and XPS studies of PSi/TiO2 nanocomposites prepared by ALD and Ag-assisted chemical etching

    International Nuclear Information System (INIS)

    Iatsunskyi, Igor; Kempiński, Mateusz; Nowaczyk, Grzegorz; Jancelewicz, Mariusz; Pavlenko, Mykola; Załęski, Karol; Jurga, Stefan

    2015-01-01

    Highlights: • Porous silicon/TiO 2 nanocomposites have been investigated. • Morphology and chemical composition of PSi/TiO 2 nanocomposites were established. • Valence-band XPS maximums for PSi/TiO 2 nanocomposites were found and analyzed. - Abstract: PSi/TiO 2 nanocomposites fabricated by atomic layer deposition (ALD) and metal-assisted chemical etching (MACE) were investigated. The morphology and phase structure of PSi/TiO 2 nanocomposites were studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) with an energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. The mean size of TiO 2 nanocrystals was determined by TEM and Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical elemental composition by observing the behavior of the Ti 2p, O 1s and Si 2p lines. TEM, Raman spectroscopy and XPS binding energy analysis confirmed the formation of TiO 2 anatase phase inside the PSi matrix. The XPS valence band analysis was performed in order to investigate the modification of PSi/TiO 2 nanocomposites electronic structure. Surface defects states of Ti 3+ at PSi/TiO 2 nanocomposites were identified by analyzing of XPS valence band spectra

  8. Chemical changes in PMMA as a function of depth due to proton beam irradiation

    International Nuclear Information System (INIS)

    Szilasi, S.Z.; Huszank, R.; Szikra, D.; Vaczi, T.; Rajta, I.; Nagy, I.

    2011-01-01

    Highlights: → Chemical changes were investigated as a function of depth in proton irradiated PMMA → The depth profile of numerous functional groups was determined along the depth → The degree of chemical modification strongly depends on the LET of protons → At low-fluences the zone of maximal modification is restricted to the Bragg peak → At higher fluences the zone of max. modification extends towards the sample surface. - Abstract: In this work we determined depth profiles of the chemical change in PMMA irradiated with 2 MeV protons by infrared spectroscopic and micro-Raman measurements. The measurements were carried out on 10 μm thin stacked foil samples using an infrared spectrometer in universal attenuated total reflectance (UATR) and transmission modes; while the thick samples were analyzed with a confocal micro-Raman spectrometer. The depth profiles of the changes formed due to the various delivered fluences were compared to each other. The measurements show the strong dependence of the degree of modification on the energy transfer from the decelerating protons. Depth profiles reveal that at the fluences applied in this work the entire irradiated volume suffered some chemical modifications. In case of low-fluence samples the zone of maximal modification is restricted only to the Bragg peak, but with increasing fluences the region of maximal modification extends towards the sample surface.

  9. Surface charging, discharging and chemical modification at a sliding contact

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Kusano, Yukihiro; Morgen, Per

    2012-01-01

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X...... are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly...

  10. Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: Interfacial characterization of MDI grafted PET

    Science.gov (United States)

    Razavizadeh, Mahmoud; Jamshidi, Masoud

    2016-08-01

    Fiber to rubber adhesion is an important subject in rubber industry. It is well known that surface treatment (i.e. physical, mechanical and chemical) is an effective method to improve interfacial bonding of fibers and/or fabrics to rubbers. UV irradiation is an effective method which has been used to increase fabric-rubber interfacial interactions. In this research UV assisted chemical modification of PET fabrics was used to increase PET to nitrile rubber (NBR) adhesion. Nitrile rubber is a perfect selection as fuel and oil resistant rubber. However it has weak bonding to PET fabric. For this purpose PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was grafted on carboxylated PET. The chemical composition of the fabric before and after surface treatment was investigated by X-ray photoelectron spectroscopy (XPS). The sectional morphology of the experimental PET fibers and the interface between rubber compound and PET fabric was studied using scanning electron microscope (SEM). The morphology and structure of the product were analyzed by an energy dispersive X-ray spectrometer (EDX). FTIR-ATR and H NMR analysis were used to assess surface modifications on the PET irradiated fabrics.

  11. Chemical modification of birch allergen extract leads to a reduction in allergenicity as well as immunogenicity.

    Science.gov (United States)

    Würtzen, Peter Adler; Lund, Lise; Lund, Gitte; Holm, Jens; Millner, Anders; Henmar, Helene

    2007-01-01

    In Europe, specific immunotherapy is currently conducted with vaccines containing allergen preparations based on intact extracts. In addition to this, chemically modified allergen extracts (allergoids) are used for specific allergy treatment. Reduced allergenicity and thereby reduced risk of side effects in combination with retained ability to activate T cells and induce protective allergen-specific antibody responses has been claimed for allergoids. In the current study, we compared intact allergen extracts and allergoids with respect to allergenicity and immunogenicity. The immunological response to birch allergen extract, alum-adsorbed extract, birch allergoid and alum-adsorbed allergoid was investigated in vitro in human basophil histamine release assay and by stimulation of human allergen-specific T cell lines. In vivo, Bet v 1-specific IgG titers in mice were determined after repetitive immunizations. In all patients tested (n = 8), allergoid stimulations led to reduced histamine release compared to the intact allergen extract. However, the allergoid preparations were not recognized by Bet v 1-specific T cell lines (n = 7), which responded strongly to the intact allergen extract. Mouse immunizations showed a clearly reduced IgG induction by allergoids and a strongly potentiating effect of the alum adjuvant. Optimal IgG titers were obtained after 3 immunizations with intact allergen extracts, while 5 immunizations were needed to obtain maximal response to the allergoid. The reduced histamine release observed for allergoid preparations may be at the expense of immunological efficacy because the chemical modifications lead to a clear reduction in T cell activation and the ability to induce allergen-specific IgG antibody responses. Copyright 2007 S. Karger AG, Basel.

  12. Role of oxygen adsorption in modification of optical and surface electronic properties of MoS2

    Science.gov (United States)

    Shakya, Jyoti; Kumar, Sanjeev; Mohanty, Tanuja

    2018-04-01

    In this work, the effect of surface oxidation of molybdenum disulfide (MoS2) nanosheets induced by hydrogen peroxide (H2O2) on the work function and bandgap of MoS2 has been investigated for tuning its optical and electronic properties. Transmission electron microscopy studies reveal the existence of varying morphologies of few layers of MoS2 as well as quantum dots due to the different absorbing effects of two mixed solvents on MoS2. The X-ray diffraction, electron paramagnetic resonance, and Raman studies indicate the presence of physical as well as chemical adsorption of oxygen atoms in MoS2. The photoluminescence spectra show the tuning of bandgap arising from the passivation of trapping centers leading to radiative recombination of excitons. The value of work function obtained from scanning Kelvin probe microscopy of MoS2 in mixed solvents of H2O2 and N-methyl-2-pyrrolidone increases with an increase in the concentration of H2O2. A linear relationship could be established between H2O2 content in mixed solvent and measured values of work function. This work gives the alternative route towards the commercial use of defect engineered transition metal dichalcogenide materials in diverse fields.

  13. Low temperature atmospheric microplasma jet array for uniform treatment of polymer surface for flexible electronics

    Science.gov (United States)

    Wang, Tao; Wang, Xiaolin; Yang, Bin; Chen, Xiang; Yang, Chunsheng; Liu, Jingquan

    2017-07-01

    In this paper, the uniformity of polymer film etching by an atmospheric pressure He/O2 microplasma jet array (μPJA) is first investigated with different applied voltage. Plasma characteristics of μPJA were recorded by optical discharge images. Morphologies and chemical compositions of polymer film etched by μPJA were analyzed by optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS). By increasing the applied voltage from 8.5 kV to 16.4 kV, the non-uniformity of the luminous intensity of the plasma jets increases. It is interesting that the plasma treated regions are actually composed of an etched region and modification region, with distinct morphologies and chemical compositions. The diameters of the etched parylene-C film show the increase of non-uniformity with higher applied voltage. SEM results show that the non-uniformity of surface morphologies of both the modification regions and etched regions increases with the increase of applied voltage. EDS and XPS results also present the significant effect of higher applied voltage on the non-uniformity of surface chemical compositions of both modification and etched regions. The Coulomb interaction of the streamer heads and the hydrodynamic interaction between the plasma jets and the surrounding air are considered to be responsible for this phenomenon. The results shown in this work can help improve the processing quality of polymer film etched by an atmospheric pressure microplasma jet array and two applications are demonstrated to illustrate the uniform downstream surface treatment.

  14. Tyrosine residues modification studied by MALDI-TOF mass spectrometry

    International Nuclear Information System (INIS)

    Santrucek, Jiri; Strohalm, Martin; Kadlcik, Vojtech; Hynek, Radovan; Kodicek, Milan

    2004-01-01

    Amino acid residue-specific reactivity in proteins is of great current interest in structural biology as it provides information about solvent accessibility and reactivity of the residue and, consequently, about protein structure and possible interactions. In the work presented tyrosine residues of three model proteins with known spatial structure are modified with two tyrosine-specific reagents: tetranitromethane and iodine. Modified proteins were specifically digested by proteases and the mass of resulting peptide fragments was determined using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results show that there are only small differences in the extent of tyrosine residues modification by tetranitromethane and iodine. However, data dealing with accessibility of reactive residues obtained by chemical modifications are not completely identical with those obtained by nuclear magnetic resonance and X-ray crystallography. These interesting discrepancies can be caused by local molecular dynamics and/or by specific chemical structure of the residues surrounding

  15. Modification of inorganic surface with 1-alkenes and 1-alkynes

    NARCIS (Netherlands)

    Maat, ter J.

    2012-01-01

    Surface modification is important because it allows the tuning of surface properties, thereby enabling new applications of a material. It can change physical properties such as wettability and friction, but can also introduce chemical functionalities and binding specificity. Several techniques

  16. Topography and nanostructural evaluation of chemically and thermally modified titanium substrates.

    Science.gov (United States)

    Salemi, Hoda; Behnamghader, Aliasghar; Afshar, Abdollah

    2016-10-01

    In this research, the effects of chemical and thermal treatment on the morphological and compositional aspects of titanium substrates and so, potentially, on development of biomimetic bone like layers formation during simulated body fluid (SBF) soaking was investigated. The HF, HF/HNO3 and NaOH solutions were used for chemical treatment and some of alkali-treated samples followed a heat treatment at 600°C. The treated samples before and after soaking were subjected to material characterization tests using scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). White light interferometry (WLI) was used to determine the roughness parameters such as Ra, Rq, RKu and Rsk. The significance of the obtained data was assessed using ANOVA variance analysis between all samples. It was observed that the reaction at grain boundaries and sodium titanate intermediate layers play a great role in the nucleation of calcium phosphate layers. Based on the obtained results in this work, the calcium phosphate microstructure deposited on titanium substrates was more affected by chemical modification than surface topography.

  17. Hybrid membrane using polyethersulfone-modification of multiwalled carbon nanotubes with silane agent to enhance high performance oxygen separation

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2014-04-01

    Full Text Available Mixed matrix membrane comprising carbon nanotubes embedded in polymer matrix have become one of the emerging technologies. This study was investigated in order to study the effect of silane agent modification towards carbon nanotubes (CNT surface at different concentration on oxygen enrichment performances of asymmetric mixed matrix membrane. The modified carbon nanotubes were prepared by treating the carbon nanotubes with chemical modification using Dynasylan Ameo (DA silane agent to allow PES chains to be grafted on carbon nanotubes surface. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Sieve-in-a-cage’ morphology observed shows the poor adhesion between polymer and unmodified CNT. The gas separation performance of the asymmetric flat sheet mixed matrix membranes with modified CNT were relatively higher compared to the unmodified CNT. Hence, coated hollow fiber mixed matrix membrane with chemical modification on CNT surface using (3-aminopropyl-triethoxy methyl silane agent can potentially enhance the gas separation performance of O2 and N2.

  18. Investigation of graft copolymerization modification of PTFE surface using microwave plasma

    International Nuclear Information System (INIS)

    Wen Yunjian; Guan Weishu; Fang Yan; Ying Yongxiang

    1995-03-01

    Investigation of graft copolymerization modification of PTFE surface with kind of one or another reactive monomers was performed by using non-equilibrium microwave plasma at 2.45 GHz under various operating conditions. Untreated clean samples and grafted samples were examined and analyzed with different surface analytical techniques such as X-Ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscopy (SEM). The results showed that the occurrence of noticeable de-fluorination and cross linking on grafted surface, and different polar groups and content of oxygen-containing were introduced into the grafted surface of PTFE. Fibriform hetero-structure layer was also formed. These results confirmed the success of graft and indicated that the hydrophilicity of the grafted surface is excellent and a significant improvement in adhesion characteristics has been achieved. The experiments revealed that the changes in surface properties are correlated closely to the changes in chemical structure, composition and morphology. (8 figs., 1 refs.)

  19. Effects of Rice Husk Modification with Liquid Natural Rubber and Exposure to Electron Beam Radiation on the Mechanical Properties of NR/ HDPE/ Rice Husk Composites

    International Nuclear Information System (INIS)

    Lane, C.E.; Ishak Ahmad; Ibrahim Abdullah; Dahlan Mohd

    2011-01-01

    Rice husk (RH) powder is a natural fibre capable of reinforcing natural rubber thermoplastic (TPNR) NR/ HDPE composites on specific modification of the particle surface. In this study the modification of RH powder involved pre-treatment with 5 % sodium hydroxide (NaOH) solution, soaking in LNR solution and exposure of LNR coated RH to electron beam (EB) irradiation. Preparation of NR/ HDPE/ RH composites was via melt-mixing in an internal mixer at predetermined conditions. Morphology study of the composites using scanning electron microscope (SEM) showed a homogeneous distribution of modified RH particles and particle-matrix interaction in the composite. Modified RH filled composites exhibited a significant change in mechanical properties. The maximum stress and impact strength were 6.7 MPa and 13.2 kJ/ m 2 , respectively at 20 kGy radiation, while the tensile modulus was 79 MPa at 30 kGy dose. The interfacial RH-TPNR interaction for the LNR-EB treated RH particles had improved in the EB dosage range of 20-30 kGy. However, over exposure to radiation caused degradation of rubber coat and interaction between particles to increase. Agglomeration of filler particles would occur and caused inhomogeneous distribution of filler in the composite. (author)

  20. SURFACE MODIFICATION OF SUGARCANE BAGASSE CELLULOSE AND ITS EFFECT ON MECHANICAL AND WATER ABSORPTION PROPERTIES OF SUGARCANE BAGASSE CELLULOSE/ HDPE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Daniella Regina Mulinari

    2010-05-01

    Full Text Available Cellulose fibres from sugarcane bagasse were bleached and modified by zirconium oxychloride in order to improve the mechanical properties of composites with high density polyethylene (HDPE. The mechanical properties of the composites prepared from chemically modified cellulose fibres were found to increase compared to those of bleached fibres. Tensile strengths of the composites showed a decreasing trend with increasing filler content. However, the values for the chemically modified cellulose fibres/HDPE composites at all mixing ratios were found to be higher than that of neat HDPE. Results of water immersion tests showed that the water absorption affected the mechanical properties. The fracture surfaces of the composites were recorded using scanning electron microscopy (SEM. The SEM micrographs revealed that interfacial bonding between the modified filler and the matrix was significantly improved by the fibre modification.