International Nuclear Information System (INIS)
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation
Bistability in the Chemical Master Equation for Dual Phosphorylation Cycles
Bazzani, A; Giampieri, E; Remondini, D; Cooper, L N
2011-01-01
Dual phospho/dephosphorylation cycles, as well as covalent enzymatic-catalyzed modifications of substrates, are widely diffused within cellular systems and are crucial for the control of complex responses such as learning, memory and cellular fate determination. Despite the large body of deterministic studies and the increasing work aimed to elucidate the effect of noise in such systems, some aspects remain unclear. Here we study the stationary distribution provided by the two-dimensional Chemical Master Equation for a well known model of a two step phospho/dephosphorylation cycle using the quasi steady state approximation of the enzymatic kinetics. Our aim is to analyze the role of fluctuations and the molecules distribution properties in the transition to a bistable regime. When detailed balance conditions are satisfied it is possible to compute equilibrium distributions in a closed and explicit form. When detailed balance is not satisfied, the stationary non-equilibrium state is strongly influenced by the ...
Order reduction of the chemical master equation via balanced realisation.
Directory of Open Access Journals (Sweden)
Fernando López-Caamal
Full Text Available We consider a Markov process in continuous time with a finite number of discrete states. The time-dependent probabilities of being in any state of the Markov chain are governed by a set of ordinary differential equations, whose dimension might be large even for trivial systems. Here, we derive a reduced ODE set that accurately approximates the probabilities of subspaces of interest with a known error bound. Our methodology is based on model reduction by balanced truncation and can be considerably more computationally efficient than solving the chemical master equation directly. We show the applicability of our method by analysing stochastic chemical reactions. First, we obtain a reduced order model for the infinitesimal generator of a Markov chain that models a reversible, monomolecular reaction. Later, we obtain a reduced order model for a catalytic conversion of substrate to a product (a so-called Michaelis-Menten mechanism, and compare its dynamics with a rapid equilibrium approximation method. For this example, we highlight the savings on the computational load obtained by means of the reduced-order model. Furthermore, we revisit the substrate catalytic conversion by obtaining a lower-order model that approximates the probability of having predefined ranges of product molecules. In such an example, we obtain an approximation of the output of a model with 5151 states by a reduced model with 16 states. Finally, we obtain a reduced-order model of the Brusselator.
Nguyen, Thanh Lam; Stanton, John F
2015-07-16
In the field of chemical kinetics, the solution of a two-dimensional master equation that depends explicitly on both total internal energy (E) and total angular momentum (J) is a challenging problem. In this work, a weak-E/fixed-J collisional model (i.e., weak-collisional internal energy relaxation/free-collisional angular momentum relaxation) is used along with the steady-state approach to solve the resulting (simplified) two-dimensional (E,J)-grained master equation. The corresponding solutions give thermal rate constants and product branching ratios as functions of both temperature and pressure. We also have developed a program that can be used to predict and analyze experimental chemical kinetics results. This expedient technique, when combined with highly accurate potential energy surfaces, is cable of providing results that may be meaningfully compared to experiments. The reaction of singlet oxygen with methane proceeding through vibrationally excited methanol is used as an illustrative example. PMID:25815602
Dynamics of the chemical master equation, a strip of chains of equations in d-dimensional space.
Galstyan, Vahe; Saakian, David B
2012-07-01
We investigate the multichain version of the chemical master equation, when there are transitions between different states inside the long chains, as well as transitions between (a few) different chains. In the discrete version, such a model can describe the connected diffusion processes with jumps between different types. We apply the Hamilton-Jacobi equation to solve some aspects of the model. We derive exact (in the limit of infinite number of particles) results for the dynamic of the maximum of the distribution and the variance of distribution. PMID:23005386
Computational study of p53 regulation via the chemical master equation
Vo, Huy D.; Sidje, Roger B.
2016-06-01
A stochastic model of cellular p53 regulation was established in Leenders, and Tuszynski (2013 Front. Oncol. 3 1–16) to study the interactions of p53 with MDM2 proteins, where the stochastic analysis was done using a Monte Carlo approach. We revisit that model here using an alternative scheme, which is to directly solve the chemical master equation (CME) by an adaptive Krylov-based finite state projection method that combines the stochastic simulation algorithm with other computational strategies, namely Krylov approximation techniques to the matrix exponential, divide and conquer, and aggregation. We report numerical results that demonstrate the extend of tackling the CME with this combination of tools.
Dinh, Khanh N.; Sidje, Roger B.
2016-06-01
The finite state projection (FSP) method has enabled us to solve the chemical master equation of some biological models that were considered out of reach not long ago. Since the original FSP method, much effort has gone into transforming it into an adaptive time-stepping algorithm as well as studying its accuracy. Some of the improvements include the multiple time interval FSP, the sliding windows, and most notably the Krylov-FSP approach. Our goal in this tutorial is to give the reader an overview of the current methods that build on the FSP.
Energy Technology Data Exchange (ETDEWEB)
Alarcón, Tomás [Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona) (Spain); Departament de Matemàtiques, Universitat Atonòma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)
2014-05-14
In this paper, we propose two methods to carry out the quasi-steady state approximation in stochastic models of enzyme catalytic regulation, based on WKB asymptotics of the chemical master equation or of the corresponding partial differential equation for the generating function. The first of the methods we propose involves the development of multiscale generalisation of a WKB approximation of the solution of the master equation, where the separation of time scales is made explicit which allows us to apply the quasi-steady state approximation in a straightforward manner. To the lowest order, the multi-scale WKB method provides a quasi-steady state, Gaussian approximation of the probability distribution. The second method is based on the Hamilton-Jacobi representation of the stochastic process where, as predicted by large deviation theory, the solution of the partial differential equation for the corresponding characteristic function is given in terms of an effective action functional. The optimal transition paths between two states are then given by those paths that maximise the effective action. Such paths are the solutions of the Hamilton equations for the Hamiltonian associated to the effective action functional. The quasi-steady state approximation is applied to the Hamilton equations thus providing an approximation to the optimal transition paths and the transition time between two states. Using this approximation we predict that, unlike the mean-field quasi-steady approximation result, the rate of enzyme catalysis depends explicitly on the initial number of enzyme molecules. The accuracy and validity of our approximated results as well as that of our predictions regarding the behaviour of the stochastic enzyme catalytic models are verified by direct simulation of the stochastic model using Gillespie stochastic simulation algorithm.
Direct solution of the Chemical Master Equation using quantized tensor trains.
Kazeev, Vladimir; Khammash, Mustafa; Nip, Michael; Schwab, Christoph
2014-03-01
The Chemical Master Equation (CME) is a cornerstone of stochastic analysis and simulation of models of biochemical reaction networks. Yet direct solutions of the CME have remained elusive. Although several approaches overcome the infinite dimensional nature of the CME through projections or other means, a common feature of proposed approaches is their susceptibility to the curse of dimensionality, i.e. the exponential growth in memory and computational requirements in the number of problem dimensions. We present a novel approach that has the potential to "lift" this curse of dimensionality. The approach is based on the use of the recently proposed Quantized Tensor Train (QTT) formatted numerical linear algebra for the low parametric, numerical representation of tensors. The QTT decomposition admits both, algorithms for basic tensor arithmetics with complexity scaling linearly in the dimension (number of species) and sub-linearly in the mode size (maximum copy number), and a numerical tensor rounding procedure which is stable and quasi-optimal. We show how the CME can be represented in QTT format, then use the exponentially-converging hp-discontinuous Galerkin discretization in time to reduce the CME evolution problem to a set of QTT-structured linear equations to be solved at each time step using an algorithm based on Density Matrix Renormalization Group (DMRG) methods from quantum chemistry. Our method automatically adapts the "basis" of the solution at every time step guaranteeing that it is large enough to capture the dynamics of interest but no larger than necessary, as this would increase the computational complexity. Our approach is demonstrated by applying it to three different examples from systems biology: independent birth-death process, an example of enzymatic futile cycle, and a stochastic switch model. The numerical results on these examples demonstrate that the proposed QTT method achieves dramatic speedups and several orders of magnitude storage
Direct solution of the Chemical Master Equation using quantized tensor trains.
Directory of Open Access Journals (Sweden)
Vladimir Kazeev
2014-03-01
Full Text Available The Chemical Master Equation (CME is a cornerstone of stochastic analysis and simulation of models of biochemical reaction networks. Yet direct solutions of the CME have remained elusive. Although several approaches overcome the infinite dimensional nature of the CME through projections or other means, a common feature of proposed approaches is their susceptibility to the curse of dimensionality, i.e. the exponential growth in memory and computational requirements in the number of problem dimensions. We present a novel approach that has the potential to "lift" this curse of dimensionality. The approach is based on the use of the recently proposed Quantized Tensor Train (QTT formatted numerical linear algebra for the low parametric, numerical representation of tensors. The QTT decomposition admits both, algorithms for basic tensor arithmetics with complexity scaling linearly in the dimension (number of species and sub-linearly in the mode size (maximum copy number, and a numerical tensor rounding procedure which is stable and quasi-optimal. We show how the CME can be represented in QTT format, then use the exponentially-converging hp-discontinuous Galerkin discretization in time to reduce the CME evolution problem to a set of QTT-structured linear equations to be solved at each time step using an algorithm based on Density Matrix Renormalization Group (DMRG methods from quantum chemistry. Our method automatically adapts the "basis" of the solution at every time step guaranteeing that it is large enough to capture the dynamics of interest but no larger than necessary, as this would increase the computational complexity. Our approach is demonstrated by applying it to three different examples from systems biology: independent birth-death process, an example of enzymatic futile cycle, and a stochastic switch model. The numerical results on these examples demonstrate that the proposed QTT method achieves dramatic speedups and several orders of
Direct solution of the Chemical Master Equation using quantized tensor trains.
Kazeev, Vladimir; Khammash, Mustafa; Nip, Michael; Schwab, Christoph
2014-03-01
The Chemical Master Equation (CME) is a cornerstone of stochastic analysis and simulation of models of biochemical reaction networks. Yet direct solutions of the CME have remained elusive. Although several approaches overcome the infinite dimensional nature of the CME through projections or other means, a common feature of proposed approaches is their susceptibility to the curse of dimensionality, i.e. the exponential growth in memory and computational requirements in the number of problem dimensions. We present a novel approach that has the potential to "lift" this curse of dimensionality. The approach is based on the use of the recently proposed Quantized Tensor Train (QTT) formatted numerical linear algebra for the low parametric, numerical representation of tensors. The QTT decomposition admits both, algorithms for basic tensor arithmetics with complexity scaling linearly in the dimension (number of species) and sub-linearly in the mode size (maximum copy number), and a numerical tensor rounding procedure which is stable and quasi-optimal. We show how the CME can be represented in QTT format, then use the exponentially-converging hp-discontinuous Galerkin discretization in time to reduce the CME evolution problem to a set of QTT-structured linear equations to be solved at each time step using an algorithm based on Density Matrix Renormalization Group (DMRG) methods from quantum chemistry. Our method automatically adapts the "basis" of the solution at every time step guaranteeing that it is large enough to capture the dynamics of interest but no larger than necessary, as this would increase the computational complexity. Our approach is demonstrated by applying it to three different examples from systems biology: independent birth-death process, an example of enzymatic futile cycle, and a stochastic switch model. The numerical results on these examples demonstrate that the proposed QTT method achieves dramatic speedups and several orders of magnitude storage
Cao, Youfang; Terebus, Anna; Liang, Jie
2016-04-01
The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space
Martirosyan, A; Saakian, David B
2011-08-01
We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs. PMID:21928964
Algebraic solution of master equations
R. Rangel; L. Carvalho
2003-01-01
We present a simple analytical method to solve master equations for finite temperatures and any initial conditions, which consists in the expansion of the density operator into normal modes. These modes and the expansion coefficients are obtained algebraically by using ladder superoperators. This algebraic technique is successful in cases in which the Liouville superoperator is quadratic in the creation and annihilation operators.
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Luciana Renata de; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C., E-mail: Gastone.Castellani@unibo.it [Physics and Astronomy Department, Bologna University and INFN Sezione di Bologna (Italy)
2014-08-14
We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their “far from equilibrium behavior,” hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative “external vector field” whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the “plasticity property” of biological
Master equations and the theory of stochastic path integrals
Weber, Markus F
2016-01-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. We discuss analytical and numerical methods for the solution of master equations, keeping our focus on methods that are applicable even when stochastic fluctuations are strong. The reviewed methods include the generating function technique and the Poisson representation, as well as novel ways of mapping the forward and backward master equations onto linear partial differential equations (PDEs). Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE obeyed by the generating function. After outlining these methods, we solve the derived PDEs in terms of two path integrals. The path integrals provide distinct exact representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Furthermore, we review a method for the approxima...
From convolutionless generalized master to Pauli master equations
International Nuclear Information System (INIS)
The paper is a continuation of previous work within which it has been proved that time integrals of memory function (i.e. Markovian transfer rates from Pauli Master Equations, PME) in Time-Convolution Generalized Master Equations (TC-GME) for probabilities of finding a state of an asymmetric system interacting with a bath with a continuous spectrum are exactly zero, provided that no approximation is involved, irrespective of the usual finite-perturbation-order correspondence with the Golden Rule transition rates. In this paper, attention is paid to an alternative way of deriving the rigorous PME from the TCL-GME. Arguments are given in favor of the proposition that the long-time limit of coefficients in TCL-GME for the above probabilities, under the same assumption and presuming that this limit exists, is equal to zero. 11 refs
Master equation as a radial constraint
Hussain, Uzair; Booth, Ivan; Kunduri, Hari K.
2016-06-01
We revisit the problem of perturbations of Schwarzschild-AdS4 black holes by using a combination of the Martel-Poisson formalism for perturbations of four-dimensional spherically symmetric spacetimes [K. Martel and E. Poisson, Phys. Rev. D 71, 104003 (2005).] and the Kodama-Ishibashi formalism [H. Kodama and A. Ishibashi, Prog. Theor. Phys. 110, 701 (2003).]. We clarify the relationship between both formalisms and express the Brown-York-Balasubramanian-Krauss boundary stress-energy tensor, T¯μ ν, on a finite-r surface purely in terms of the even and odd master functions. Then, on these surfaces we find that the spacelike components of the conservation equation D¯μT¯μ ν=0 are equivalent to the wave equations for the master functions. The renormalized stress-energy tensor at the boundary r/L lim r →∞ T¯μ ν is calculated directly in terms of the master functions.
On the quantum master equation for fermions
Huang, C. F.; Huang, K. -N.
2006-01-01
A quantum master equation is obtained for identical fermions by including a relaxation term in addition to the mean-field Hamiltonian. [Huang C F and Huang K N 2004 Chinese J. Phys. ${\\bf 42}$ 221; Gebauer R and Car R 2004 Phys. Rev. B ${\\bf 70}$ 125324] It is proven in this paper that both the positivity and Pauli's exclusion principle are preserved under this equation when there exists an upper bound for the transition rate. Such an equation can be generalized to model BCS-type quasiparticl...
Directory of Open Access Journals (Sweden)
Lisa M. Bishop
2010-09-01
Full Text Available We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics, phosphorylation-dephosphorylation cycle (PdPC with bistability, and network exhibiting oscillations. Emphasis is paid to the comparison between the stochastic dynamics and the prediction based on the traditional approach based on the Law of Mass Action. We introduce the difference between nonlinear bistability and stochastic bistability, the latter has no deterministic counterpart. For systems with nonlinear bistability, there are three different time scales: (a individual biochemical reactions, (b nonlinear network dynamics approaching to attractors, and (c cellular evolution. For mesoscopic systems with size of a living cell, dynamics in (a and (c are stochastic while that with (b is dominantly deterministic. Both (b and (c are emergent properties of a dynamic biochemical network; We suggest that the (c is most relevant to major cellular biochemical processes such as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution proceeds with transitions among the attractors of (b in a “punctuated equilibrium” manner.
Qian, Hong; Bishop, Lisa M
2010-01-01
We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics, phosphorylation-dephosphorylation cycle (PdPC) with bistability, and network exhibiting oscillations. Emphasis is paid to the comparison between the stochastic dynamics and the prediction based on the traditional approach based on the Law of Mass Action. We introduce the difference between nonlinear bistability and stochastic bistability, the latter has no deterministic counterpart. For systems with nonlinear bistability, there are three different time scales: (a) individual biochemical reactions, (b) nonlinear network dynamics approaching to attractors, and (c) cellular evolution. For mesoscopic systems with size of a living cell, dynamics in (a) and (c) are stochastic while that with (b) is dominantly deterministic. Both (b) and (c) are emergent properties of a dynamic biochemical network; We suggest that the (c) is most relevant to major cellular biochemical processes such as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution proceeds with transitions among the attractors of (b) in a "punctuated equilibrium" manner. PMID:20957107
Hasenauer, J; Wolf, V; Kazeroonian, A; Theis, F J
2014-09-01
The time-evolution of continuous-time discrete-state biochemical processes is governed by the Chemical Master Equation (CME), which describes the probability of the molecular counts of each chemical species. As the corresponding number of discrete states is, for most processes, large, a direct numerical simulation of the CME is in general infeasible. In this paper we introduce the method of conditional moments (MCM), a novel approximation method for the solution of the CME. The MCM employs a discrete stochastic description for low-copy number species and a moment-based description for medium/high-copy number species. The moments of the medium/high-copy number species are conditioned on the state of the low abundance species, which allows us to capture complex correlation structures arising, e.g., for multi-attractor and oscillatory systems. We prove that the MCM provides a generalization of previous approximations of the CME based on hybrid modeling and moment-based methods. Furthermore, it improves upon these existing methods, as we illustrate using a model for the dynamics of stochastic single-gene expression. This application example shows that due to the more general structure, the MCM allows for the approximation of multi-modal distributions.
Hasenauer, J; Wolf, V; Kazeroonian, A; Theis, F J
2014-09-01
The time-evolution of continuous-time discrete-state biochemical processes is governed by the Chemical Master Equation (CME), which describes the probability of the molecular counts of each chemical species. As the corresponding number of discrete states is, for most processes, large, a direct numerical simulation of the CME is in general infeasible. In this paper we introduce the method of conditional moments (MCM), a novel approximation method for the solution of the CME. The MCM employs a discrete stochastic description for low-copy number species and a moment-based description for medium/high-copy number species. The moments of the medium/high-copy number species are conditioned on the state of the low abundance species, which allows us to capture complex correlation structures arising, e.g., for multi-attractor and oscillatory systems. We prove that the MCM provides a generalization of previous approximations of the CME based on hybrid modeling and moment-based methods. Furthermore, it improves upon these existing methods, as we illustrate using a model for the dynamics of stochastic single-gene expression. This application example shows that due to the more general structure, the MCM allows for the approximation of multi-modal distributions. PMID:23918091
Ge, Hao
2009-01-01
A new type of cooperativity termed temporal cooperativity [Biophys. Chem. 105 585-593 (2003), Annu. Rev. Phys. Chem. 58 113-142 (2007)], emerges in the signal transduction module of phosphorylation-dephosphorylation cycle (PdPC). It utilizes multiple kinetic cycles in time, in contrast to allosteric cooperativity that utilizes multiple subunits in a protein. In the present paper, we thoroughly investigate both the deterministic (microscopic) and stochastic (mesoscopic) models, and focus on the identification of the source of temporal cooperativity via comparing with allosteric cooperativity. A thermodynamic analysis confirms again the claim that the chemical equilibrium state exists if and only if the phosphorylation potential $\\triangle G=0$, in which case the amplification of sensitivity is completely abolished. Then we provide comprehensive theoretical and numerical analysis with the first-order and zero-order assumptions in phosphorylation-dephosphorylation cycle respectively. Furthermore, it is interesti...
Maximally Robust Unravelings of Quantum Master Equations
Wiseman, H M
1998-01-01
The stationary solution \\rho of a quantum master equation can be represented as an ensemble of pure states in a continuous infinity of ways. An ensemble which is physically realizable through monitoring the system's environment we call an `unraveling'. The survival probability S(t) of an unraveling is the average probability for each of its elements to be unchanged a time t after cessation of monitoring. The maximally robust unraveling is the one for which S(t) remains greater than the largest eigenvalue of \\rho for the longest time. The optical parametric oscillator is a soluble example.
On the quantum master equation under feedback control
Institute of Scientific and Technical Information of China (English)
QI Bo
2009-01-01
The nature of the quantum trajectories,described by stochastic master equations,may be jump-like or diffusive,depending upon different measurement processes.There are many different unravelings corresponding to different types of stochastic master equations for a given master equation.In this paper,we study the relationship between the quantum stochastic master equations and the quantum master equations in the Markovian case under feedback control.We show that the corresponding unraveling no longer exists when we further consider feedback control besides measurement.It is due to the fact that the information gained by the measurement plays an important role in the control process.The master equation governing the evolution of ensemble average cannot be restored simply by eliminating the noise term unlike the case without a control term.By establishing a fundamental limit on performance of the master equation with feedback control,we demonstrate the differences between the stochastic master equation and the master equation via theoretical proof and simulation,and show the superiority of the stochastic master equation for feedback control.
Extended master equation models for molecular communication networks
Chou, Chun Tung
2012-01-01
We consider molecular communication networks consisting of transmitters and receivers distributed in a fluidic medium. In such networks, a transmitter sends one or more signalling molecules, which are diffused over the medium, to the receiver to realise the communication. In order to be able to engineer synthetic molecular communication networks, mathematical models for these networks are required. This paper proposes a new stochastic model for molecular communication networks called reaction-diffusion master equation with exogenous input (RDMEX). The key idea behind RDMEX is to model the transmitters as time sequences specify the emission patterns of signalling molecules, while diffusion in the medium and chemical reactions at the receivers are modelled as Markov processes using master equation. An advantage of RDMEX is that it can readily be used to model molecular communication networks with multiple transmitters and receivers. For the case where the reaction kinetics at the receivers is linear, we show ho...
Epidemics in networks: A master equation approach
Cotacallapa, M
2016-01-01
A problem closely related to epidemiology, where a subgraph of 'infected' links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.
Master Equations for Correlated Quantum Channels
Giovannetti, V.; Palma, G. M.
2012-01-01
We derive the general form of a master equation describing the reduced time evolution of a sequence of subsystems “propagating” in an environment which can be described as a sequence of subenvironments. The interaction between subsystems and subenvironments is described in terms of a collision model, with the irreversible dynamics of the subenvironments between collisions explicitly taken into account. In the weak coupling regime, we show that the collisional model produces a correlated Markovian evolution for the joint density matrix of the multipartite system. The associated Lindblad superoperator contains pairwise terms describing cross correlation between the different subsystems. Such a model can describe a broad range of physical situations, ranging from quantum channels with memory to photon propagation in concatenated quantum optical systems.
Decoherence and quantum-classical master equation dynamics
Grunwald, Robbie; Kapral, Raymond
2007-03-01
The conditions under which quantum-classical Liouville dynamics may be reduced to a master equation are investigated. Systems that can be partitioned into a quantum-classical subsystem interacting with a classical bath are considered. Starting with an exact non-Markovian equation for the diagonal elements of the density matrix, an evolution equation for the subsystem density matrix is derived. One contribution to this equation contains the bath average of a memory kernel that accounts for all coherences in the system. It is shown to be a rapidly decaying function, motivating a Markovian approximation on this term in the evolution equation. The resulting subsystem density matrix equation is still non-Markovian due to the fact that bath degrees of freedom have been projected out of the dynamics. Provided the computation of nonequilibrium average values or correlation functions is considered, the non-Markovian character of this equation can be removed by lifting the equation into the full phase space of the system. This leads to a trajectory description of the dynamics where each fictitious trajectory accounts for decoherence due to the bath degrees of freedom. The results are illustrated by computations of the rate constant of a model nonadiabatic chemical reaction.
Staying positive: going beyond Lindblad with perturbative master equations
Whitney, Robert S.
2008-05-01
The perturbative master equation (Bloch-Redfield) is used extensively to study dissipative quantum mechanics—particularly for qubits—despite the 25-year-old criticism that it violates positivity (generating negative probabilities). We take an arbitrary system coupled to an environment containing many degrees-of-freedom and cast its perturbative master equation (derived from a perturbative treatment of Nakajima-Zwanzig or Schoeller-Schön equations) in the form of a Lindblad master equation. We find that the equation's parameters are time dependent. This time dependence is rarely accounted for and invalidates Lindblad's dynamical semigroup analysis. We analyse one such Bloch-Redfield master equation (for a two-level system coupled to an environment with a short but non-vanishing memory time), which apparently violates positivity. We analytically show that, once the time dependence of the parameters is accounted for, positivity is preserved.
Extended master equation models for molecular communication networks.
Chou, Chun Tung
2013-06-01
We consider molecular communication networks consisting of transmitters and receivers distributed in a fluidic medium. In such networks, a transmitter sends one or more signaling molecules, which are diffused over the medium, to the receiver to realize the communication. In order to be able to engineer synthetic molecular communication networks, mathematical models for these networks are required. This paper proposes a new stochastic model for molecular communication networks called reaction-diffusion master equation with exogenous input (RDMEX). The key idea behind RDMEX is to model the transmitters as time series of signaling molecule counts, while diffusion in the medium and chemical reactions at the receivers are modeled as Markov processes using master equation. An advantage of RDMEX is that it can readily be used to model molecular communication networks with multiple transmitters and receivers. For the case where the reaction kinetics at the receivers is linear, we show how RDMEX can be used to determine the mean and covariance of the receiver output signals, and derive closed-form expressions for the mean receiver output signal of the RDMEX model. These closed-form expressions reveal that the output signal of a receiver can be affected by the presence of other receivers. Numerical examples are provided to demonstrate the properties of the model.
Master equation for a quantum particle in a gas
Hornberger, Klaus
2006-01-01
The equation for the quantum motion of a Brownian particle in a gaseous environment is derived by means of S-matrix theory. This quantum version of the linear Boltzmann equation accounts non-perturbatively for the quantum effects of the scattering dynamics and describes decoherence and dissipation in a unified framework. As a completely positive master equation it incorporates both the known equation for an infinitely massive Brownian particle and the classical linear Boltzmann equation as li...
Counting master integrals: Integration by parts vs. functional equations
Kniehl, Bernd A
2016-01-01
We illustrate the usefulness of functional equations in establishing relationships between master integrals under the integration-by-parts reduction procedure by considering a certain two-loop propagator-type diagram as an example.
Counting master integrals. Integration by parts vs. functional equations
International Nuclear Information System (INIS)
We illustrate the usefulness of functional equations in establishing relationships between master integrals under the integration-by-parts reduction procedure by considering a certain two-loop propagator-type diagram as an example.
Counting master integrals. Integration by parts vs. functional equations
Energy Technology Data Exchange (ETDEWEB)
Kniehl, Bernd A.; Tarasov, Oleg V. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2016-01-15
We illustrate the usefulness of functional equations in establishing relationships between master integrals under the integration-by-parts reduction procedure by considering a certain two-loop propagator-type diagram as an example.
Master equations for photochemistry with intense infrared light. Pt. 4
Energy Technology Data Exchange (ETDEWEB)
Quack, M.
1981-04-01
A unified master equation for unimolecular reactions induced by monochromatic infrared radiation (URIMIR) is presented. Its effective rate coefficient matrix covers both case B (Pauli equation) and case C, properly including the nonlinearity of the latter. Exact quantum mechanical model solutions are compared with results from the approximate unified master equation. The exact analytical solutions of the master equation are presented for the URIMIR of some realistic molecular models. The important new properties of the transition range between case B and case C are quantitatively discussed with respect to time dependent and steady state level populations, time dependent and steady state rate coefficients and their nonlinear intensity dependence, and with respect to the influence of molecular properties. The role of case C for the interpretation of static field effects and its importance for efficient isotope separation are pointed out.
Variational master equation approach to dynamics of magnetic moments
Bogolubov, N. N.; Soldatov, A. V.
2016-07-01
Non-equilibrium properties of a model system comprised of a subsystem of magnetic moments strongly coupled to a selected Bose field mode and weakly coupled to a heat bath made of a plurality of Bose field modes was studied on the basis of non-equilibrium master equation approach combined with the approximating Hamiltonian method. A variational master equation derived within this approach is tractable numerically and can be readily used to derive a set of ordinary differential equations for various relevant physical variables belonging to the subsystem of magnetic moments. Upon further analysis of the thus obtained variational master equation, an influence of the macroscopic filling of the selected Bose field mode at low enough temperatures on the relaxation dynamics of magnetic moments was revealed.
A Master Equation Approach to Quantum Chaos
Romanelli, A; Abal, G; Siri, R; Donangelo, R J
2002-01-01
We look at quantum diffusion and dynamical localization from a perspective which provides an intuitive framework to interpret known experimental and numerical results. We separate the Schr\\"{o}dinger equation into Markovian and interference terms, and show that the localized or diffusive character of the dynamics results from the competition between those terms. The procedure is illustrated through several examples.
Maxwell boundary conditions imply non-Lindblad master equation
Bamba, Motoaki; Imoto, Nobuyuki
2016-09-01
From the Hamiltonian connecting the inside and outside of a Fabry-Pérot cavity, which is derived from the Maxwell boundary conditions at a mirror of the cavity, a master equation of a non-Lindblad form is derived when the cavity embeds matters, although we can transform it to the Lindblad form by performing the rotating-wave approximation to the connecting Hamiltonian. We calculate absorption spectra by these Lindblad and non-Lindblad master equations and also by the Maxwell boundary conditions in the framework of the classical electrodynamics, which we consider the most reliable approach. We found that, compared to the Lindblad master equation, the absorption spectra by the non-Lindblad one agree better with those by the Maxwell boundary conditions. Although the discrepancy is highlighted only in the ultrastrong light-matter interaction regime with a relatively large broadening, the master equation of the non-Lindblad form is preferable rather than of the Lindblad one for pursuing the consistency with the classical electrodynamics.
Maxwell boundary conditions impose non-Lindblad master equation
Bamba, Motoaki
2016-01-01
From the Hamiltonian connecting the inside and outside of an Fabry-Perot cavity, which is derived from the Maxwell boundary conditions at a mirror of the cavity, a master equation of a non-Lindblad form is derived when the cavity embeds matters, although we can transform it to the Lindblad form by performing the rotating-wave approximation to that Hamiltonian. We calculate absorption spectra by these Lindblad and non-Lindblad master equations and also by the Maxwell boundary conditions in framework of the classical electrodynamics, which we consider the most reliable approach. We found that, compared to the Lindblad master equation, the absorption spectra by the non-Lindblad one agree better with those by the Maxwell boundary conditions. Although the discrepancy is highlighted only in the ultra-strong light-matter interaction regime with a relatively large broadening, the master equation of the non-Lindblad form is preferable rather than of the Lindblad one for pursuing the consistency with the classical elec...
Post-Markovian quantum master equations from classical environment fluctuations.
Budini, Adrián A
2014-01-01
In this paper we demonstrate that two commonly used phenomenological post-Markovian quantum master equations can be derived without using any perturbative approximation. A system coupled to an environment characterized by self-classical configurational fluctuations, the latter obeying a Markovian dynamics, defines the underlying physical model. Both Shabani-Lidar equation [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101(R) (2005)] and its associated approximated integrodifferential kernel master equation are obtained by tracing out two different bipartite Markovian Lindblad dynamics where the environment fluctuations are taken into account by an ancilla system. Furthermore, conditions under which the non-Markovian system dynamics can be unraveled in terms of an ensemble of measurement trajectories are found. In addition, a non-Markovian quantum jump approach is formulated. Contrary to recent analysis [L. Mazzola, E. M. Laine, H. P. Breuer, S. Maniscalco, and J. Piilo, Phys. Rev. A 81, 062120 (2010)], we also demonstrate that these master equations, even with exponential memory functions, may lead to non-Markovian effects such as an environment-to-system backflow of information if the Hamiltonian system does not commutate with the dissipative dynamics. PMID:24580212
Post-Markovian quantum master equations from classical environment fluctuations
Budini, Adrián A.
2014-01-01
In this paper we demonstrate that two commonly used phenomenological post-Markovian quantum master equations can be derived without using any perturbative approximation. A system coupled to an environment characterized by self-classical configurational fluctuations, the latter obeying a Markovian dynamics, defines the underlying physical model. Both Shabani-Lidar equation [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101(R) (2005), 10.1103/PhysRevA.71.020101] and its associated approximated integrodifferential kernel master equation are obtained by tracing out two different bipartite Markovian Lindblad dynamics where the environment fluctuations are taken into account by an ancilla system. Furthermore, conditions under which the non-Markovian system dynamics can be unraveled in terms of an ensemble of measurement trajectories are found. In addition, a non-Markovian quantum jump approach is formulated. Contrary to recent analysis [L. Mazzola, E. M. Laine, H. P. Breuer, S. Maniscalco, and J. Piilo, Phys. Rev. A 81, 062120 (2010), 10.1103/PhysRevA.81.062120], we also demonstrate that these master equations, even with exponential memory functions, may lead to non-Markovian effects such as an environment-to-system backflow of information if the Hamiltonian system does not commutate with the dissipative dynamics.
Quantum Markovian master equation for scattering from surfaces.
Li, Haifeng; Shao, Jiushu; Azuri, Asaf; Pollak, Eli; Alicki, Robert
2014-01-01
We propose a semi-phenomenological Markovian Master equation for describing the quantum dynamics of atom-surface scattering. It embodies the Lindblad-like structure and can describe both damping and pumping of energy between the system and the bath. It preserves positivity and correctly accounts for the vanishing of the interaction of the particle with the surface when the particle is distant from the surface. As a numerical test, we apply it to a model of an Ar atom scattered from a LiF surface, allowing for interaction only in the vertical direction. At low temperatures, we find that the quantum mechanical average energy loss is smaller than the classical energy loss. The numerical results obtained from the space dependent friction master equation are compared with numerical simulations for a discretized bath, using the multi-configurational time dependent Hartree methodology. The agreement between the two simulations is quantitative. PMID:24410218
Master Equation for Electromagnetic Dissipation and Decoherence of Density Matrix
Haba, Z.; Kleinert, H.
2000-01-01
We set up a forward--backward path integral for a point particle in a bath of photons to derive a master equation for the density matrix which describes electromagnetic dissipation and decoherence. As an application, we recalculate the Weisskopf-Wigner formula for the natural line width of an atomic state at zero temperature and find, in addition, the temperature broadening caused by the decoherence term.
Random transition-rate matrices for the master equation
Timm, Carsten
2009-01-01
Random-matrix theory is applied to transition-rate matrices in the Pauli master equation. We study the distribution and correlations of eigenvalues, which govern the dynamics of complex stochastic systems. Both the cases of identical and of independent rates of forward and backward transitions are considered. The first case leads to symmetric transition-rate matrices, whereas the second corresponds to general, asymmetric matrices. The resulting matrix ensembles are different from the standard...
Reaction rates for a generalized reaction-diffusion master equation.
Hellander, Stefan; Petzold, Linda
2016-01-01
It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.
Reaction rates for a generalized reaction-diffusion master equation
Hellander, Stefan; Petzold, Linda
2016-01-01
It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.
Master equation for collective spontaneous emission with quantized atomic motion
Damanet, François; Braun, Daniel; Martin, John
2015-01-01
We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including the quantization of their motion. Our equation provides a unifying picture of the effects of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, generalizing those in Ref. [1]. We find closed-form formulas for a numb...
Temperature characteristics of quantum dot devices: Rate vs. Master Equation Models
DEFF Research Database (Denmark)
Berg, Tommy Winther; Bischoff, Svend; Magnúsdóttir, Ingibjörg;
2001-01-01
The change of transparency current with temperature for quantum dot devices depends strongly on whether a rate or master equation model is used. The master equation model successfully explains experimental observations of negative characteristic temperatures.......The change of transparency current with temperature for quantum dot devices depends strongly on whether a rate or master equation model is used. The master equation model successfully explains experimental observations of negative characteristic temperatures....
From convolutionless Generalized Master to finite-coupling Pauli Master Equations
International Nuclear Information System (INIS)
Time-convolutionless Generalized Master Equations (TCL-GME) for probabilities of finding a system in a general state irrespective of the state of the thermodynamic bath, are investigated. For general systems interacting with a genuine bath with a continuous spectrum described by time-independent system + bath Hamiltonians and after the thermodynamic limit for the bath, the long-time asymptotics of time-dependent coefficients can be taken as counterparts of Pauli-Master-Equation (PME) transfer rates. Here, within TCL-GME, asymptotics of these coefficients is calculated without resorting to any approximation. In the lowest order, these coefficients are known to turn into the usual Fermi Golden Rule transfer rates. Anyway, it is argued that if the exact form of these coefficients has a long-time limit, this limit is inevitably equal to zero. This makes illusory the possibility to derive standard Markovian finite-coupling Pauli, rate or balance equations as long-time asymptotics to TCL-GME. (author)
Atom-wall dispersive forces from master equation formalism
Mendes, T. N. C.; Farina, C.
2007-01-01
Using the general expressions for level shifts obtained from the master equation for a small system interacting with a large one considered as a reservoir, we calculate the dispersive potentials between an atom and a wall in the dipole approximation. We analyze in detail the particular case of a two-level atom in the presence of a perfectly conducting wall. We study the van der Waals as well as the resonant interactions. All distance regimes as well as the high and low temperature regimes are...
Random transition-rate matrices for the master equation.
Timm, Carsten
2009-08-01
Random-matrix theory is applied to transition-rate matrices in the Pauli master equation. We study the distribution and correlations of eigenvalues, which govern the dynamics of complex stochastic systems. Both the cases of identical and of independent rates of forward and backward transitions are considered. The first case leads to symmetric transition-rate matrices, whereas the second corresponds to general asymmetric matrices. The resulting matrix ensembles are different from the standard ensembles and show different eigenvalue distributions. For example, the fraction of real eigenvalues scales anomalously with matrix dimension in the asymmetric case. PMID:19792110
The breakdown of the reaction-diffusion master equation with non-elementary rates
Smith, Stephen
2016-01-01
The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well-mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the RDME of a chemical system should converge to the solution of the CME of the same system in the limit of fast diffusion: indeed, this has been tacitly assumed in most literature concerning the RDME. We show that, in the limit of fast diffusion, the RDME indeed converges to a master equation, but not necessarily the CME. We introduce a class of propensity functions, such that if the RDME has propensities exclusively of this class then the RDME converges to the CME of the same system; while if the RDME has propensities not in this class then convergence is not guaranteed. These are revealed to be elementary and non-element...
Operator Approach to the Master Equation for the One-Step Process
Hnatič, M.; Eferina, E. G.; Korolkova, A. V.; Kulyabov, D. S.; Sevastyanov, L. A.
2016-02-01
Background. Presentation of the probability as an intrinsic property of the nature leads researchers to switch from deterministic to stochastic description of the phenomena. The kinetics of the interaction has recently attracted attention because it often occurs in the physical, chemical, technical, biological, environmental, economic, and sociological systems. However, there are no general methods for the direct study of this equation. The expansion of the equation in a formal Taylor series (the so called Kramers-Moyal's expansion) is used in the procedure of stochastization of one-step processes. Purpose. However, this does not eliminate the need for the study of the master equation. Method. It is proposed to use quantum field perturbation theory for the statistical systems (the so-called Doi method). Results: This work is a methodological material that describes the principles of master equation solution based on quantum field perturbation theory methods. The characteristic property of the work is that it is intelligible for non-specialists in quantum field theory. Conclusions: We show the full equivalence of the operator and combinatorial methods of obtaining and study of the one-step process master equation.
A Master Equation for Multi-Dimensional Non-Linear Field Theories
Park, Q H
1992-01-01
A master equation ( $n$ dimensional non--Abelian current conservation law with mutually commuting current components ) is introduced for multi-dimensional non-linear field theories. It is shown that the master equation provides a systematic way to understand 2-d integrable non-linear equations as well as 4-d self-dual equations and, more importantly, their generalizations to higher dimensions.
Quantum Master Equation for QED in Exact Renormalization Group
Igarashi, Yuji; Sonoda, Hidenori
2007-01-01
Recently, one of us (H.S.) gave an explicit form of the Ward-Takahashi identity for the Wilson action of QED. We first rederive the identity using a functional method. The identity makes it possible to realize the gauge symmetry even in the presence of a momentum cutoff. In the cutoff dependent realization, the abelian nature of the gauge symmetry is lost, breaking the nilpotency of the BRS transformation. Using the Batalin-Vilkovisky formalism, we extend the Wilson action by including the antifield contributions. Then, the Ward-Takahashi identity for the Wilson action is lifted to a quantum master equation, and the modified BRS transformation regains nilpotency. We also obtain a flow equation for the extended Wilson action.
Diffusive Limits of the Master Equation in Inhomogeneous Media
Sattin, F; Salasnich, L
2015-01-01
In inhomogeneous environments several expressions for the flux of a diffusing quantity may apply--from Fick-Fourier's to Fokker-Planck's--depending upon the system studied. The integro-differential Master Equation (ME) provides a fairly generic framework for describing the dynamics of arbitrary systems driven by stochastic rules. Diffusive dynamics does arise as long-wavelength limit of the ME. However, while it is straightforward to obtain a diffusion equation with Fokker-Planck flux, its Fick-Fourier counterpart has never been worked out from the ME. In this work we show under which hypothesis the Fick's flux can actually be recovered from the ME. Analytical considerations are supported by explicit computer models.
Generalized master equations for exciton dynamics in molecular systems
Schreiber, Michael; May, V.
1995-02-01
The paper demonstrates the applicability of a special type of density matrix theory for the derivation of generalized Master equations. The density matrix theory has been formulated for the description of the dissipative electron transfer dynamics in molecular complexes. The theoretical approach is based on a representation of the density matrix in appropriately taken diabatic electron-vibrational states. Dissipative effects are taken into account by a coupling of these states to further vibrational modes of the molecular complex as well as to environmental degrees of freedom. The approach is applied to a two-center system as well as to a molecular chain. Memory kernels are derived in second order with respect to the inter-center coupling. The kernels are discussed under the assumption of a quick intra-center relaxation for a part of the vibrational modes as well as for all vibrational modes. Standard expressions for the transition rates between different sites are extended to include finite life times of the vibrational levels. Results which have been obtained in the study of the so-called spin boson model can be simply reproduced. The application of the derived generalized Master equations to the investigation of the motion of Frenkel excitons in molecular chains is also presented.
Nonlinear generalized master equations and accounting for initial correlations
Los, V. F.
2009-08-01
We develop a new method based on using a time-dependent operator (generally not a projection operator) converting a distribution function (statistical operator) of a total system into the relevant form that allows deriving new exact nonlinear generalized master equations (GMEs). The derived inhomogeneous nonlinear GME is a generalization of the linear Nakajima-Zwanzig GME and can be viewed as an alternative to the BBGKY chain. It is suitable for obtaining both nonlinear and linear evolution equations. As in the conventional linear GME, there is an inhomogeneous term comprising all multiparticle initial correlations. To include the initial correlations into consideration, we convert the obtained inhomogeneous nonlinear GME into the homogenous form by the previously suggested method. We use no conventional approximation like the random phase approximation (RPA) or the Bogoliubov principle of weakening of initial correlations. The obtained exact homogeneous nonlinear GME describes all evolution stages of the (sub)system of interest and treats initial correlations on an equal footing with collisions via the modified memory kernel. As an application, we obtain a new homogeneous nonlinear equation retaining initial correlations for a one-particle distribution function of the spatially inhomogeneous nonideal gas of classical particles. In contrast to existing approaches, this equation holds for all time scales and takes the influence of pair collisions and initial correlations on the dissipative and nondissipative characteristics of the system into account consistently with the adopted approximation (linear in the gas density). We show that on the kinetic time scale, the time-reversible terms resulting from the initial correlations vanish (if the particle dynamics are endowed with the mixing property) and this equation can be converted into the Vlasov-Landau and Boltzmann equations without any additional commonly used approximations. The entire process of transition can
Generalized master equations for non-Poisson dynamics on networks
Hoffmann, Till; Porter, Mason A.; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
Interaction representation method for Markov master equations in quantum optics
Chebotarev, A M; Quezada, R; Chebotarev, Alexander; Garcia, Julio; Quezada, Roberto
2001-01-01
Conditions sufficient for a quantum dynamical semigroup (QDS) to be unital are proved for a class of problems in quantum optics with Hamiltonians which are self-adjoint polynomials of any finite order in creation and annihilation operators. The order of the Hamiltonian may be higher than the order of completely positive part of the formal generator of a QDS. The unital property of a minimal quantum dynamical semigroup implies the uniqueness of the solution of the corresponding Markov master equation in the class of quantum dynamical semigroups and, in the corresponding representation, it ensures preservation of the trace or unit operator. We recall that only in the unital case the formal generator of MME determines uniquely the corresponding QDS.
Continuous monitoring of dynamical systems and master equations
Energy Technology Data Exchange (ETDEWEB)
Lopes Oliveira, L.F. [Programa de Pós-Graduação em Modelagem Matemática e Computacional, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000, Belo Horizonte, MG (Brazil); Rossi, R., E-mail: romeu_rossi@hotmail.com [Universidade Federal de Viçosa, Campus Florestal, 35690-000, Florestal, MG (Brazil); Bosco de Magalhães, A.R.; Peixoto de Faria, J.G. [Programa de Pós-Graduação em Modelagem Matemática e Computacional, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000, Belo Horizonte, MG (Brazil); Departamento de Física e Matemática, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000, Belo Horizonte, MG (Brazil); Nemes, M.C. [Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, CP 702, 30161-970, Belo Horizonte, MG (Brazil)
2012-04-30
We illustrate the equivalence between the non-unitary evolution of an open quantum system governed by a Markovian master equation and a process of continuous measurements involving this system. We investigate a system of two coupled modes, only one of them interacting with external degrees of freedom, represented, in the first case, by a finite number of harmonic oscillators, and, in the second, by a sequence of atoms where each one interacts with a single mode during a limited time. Two distinct regimes appear, one of them corresponding to a Zeno-like behavior in the limit of large dissipation. -- Highlights: ► We illustrate the conjecture that non-unitary evolution can be simulated by continuous measurements. ► The relation between unitary and non-unitary couplings define distinct dynamical regimes. ► One regime with large “dissipation constant” is a Zeno-like behavior.
Continuous monitoring of dynamical systems and master equations
International Nuclear Information System (INIS)
We illustrate the equivalence between the non-unitary evolution of an open quantum system governed by a Markovian master equation and a process of continuous measurements involving this system. We investigate a system of two coupled modes, only one of them interacting with external degrees of freedom, represented, in the first case, by a finite number of harmonic oscillators, and, in the second, by a sequence of atoms where each one interacts with a single mode during a limited time. Two distinct regimes appear, one of them corresponding to a Zeno-like behavior in the limit of large dissipation. -- Highlights: ► We illustrate the conjecture that non-unitary evolution can be simulated by continuous measurements. ► The relation between unitary and non-unitary couplings define distinct dynamical regimes. ► One regime with large “dissipation constant” is a Zeno-like behavior.
On the Reaction Diffusion Master Equation in the Microscopic Limit
Hellander, Stefan; Petzold, Linda
2011-01-01
Stochastic modeling of reaction-diffusion kinetics has emerged as a powerful theoretical tool in the study of biochemical reaction networks. Two frequently employed models are the particle-tracking Smoluchowski framework and the on-lattice Reaction-Diffusion Master Equation (RDME) framework. As the mesh size goes from coarse to fine, the RDME initially becomes more accurate. However, recent developments have shown that it will become increasingly inaccurate compared to the Smoluchowski model as the lattice spacing becomes very fine. In this paper we give a new, general and simple argument for why the RDME breaks down. Our analysis reveals a hard limit on the voxel size for which no local RDME can agree with the Smoluchowski model.
Reaction-diffusion master equation in the microscopic limit
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2012-04-01
Stochastic modeling of reaction-diffusion kinetics has emerged as a powerful theoretical tool in the study of biochemical reaction networks. Two frequently employed models are the particle-tracking Smoluchowski framework and the on-lattice reaction-diffusion master equation (RDME) framework. As the mesh size goes from coarse to fine, the RDME initially becomes more accurate. However, recent developments have shown that it will become increasingly inaccurate compared to the Smoluchowski model as the lattice spacing becomes very fine. Here we give a general and simple argument for why the RDME breaks down. Our analysis reveals a hard limit on the voxel size for which no local RDME can agree with the Smoluchowski model and lets us quantify this limit in two and three dimensions. In this light we review and discuss recent work in which the RDME has been modified in different ways in order to better agree with the microscale model for very small voxel sizes.
Atom-wall dispersive forces from master equation formalism
Mendes, T N C
2007-01-01
Using the general expressions for level shifts obtained from the master equation for a small system interacting with a large one considered as a reservoir, we calculate the dispersive potentials between an atom and a wall in the dipole approximation. We analyze in detail the particular case of a two-level atom in the presence of a perfectly conducting wall. We study the van der Waals as well as the resonant interactions. All distance regimes as well as the high and low temperature regimes are considered. We show that the Casimir-Polder interaction can not be considered as a direct result of the vacuum fluctuations only. Concerning the interaction between the atom and the wall at high temperature, which show that a saturation of the potential for all distances occurs. This saturated potential coincides exactly with that obtained in the London-van der Waals limit.
Master Equation Approach to Molecular Motor's Directed Motion
Institute of Scientific and Technical Information of China (English)
FENG Juan; ZHUO Yi-Zhong
2005-01-01
@@ The master equation approach based on the periodic one-dimensional three-state hopping model is developed to study the molecular motor's directed motion. An explicit solution Px ( t ) is obtained for the probability distribution as a function of the time for any initial distribution Px(0) with all the transients included. We introduce dj to represent the sub-step lengths, which can reflect how the external load affects the individual rate via load distribution factors θ+j and θ-j. A wide variety of molecular motor behaviour under external load f can readily be obtained by the unequal-distance transition model with load-dependent transition rates. By comparison with the experiments, namely of the drift velocity v and the randomness parameter r versus adenosine triphosphate concentration and external load f, it is shown that the model presented here can rather satisfactorily explain the available data.
Master equation calculations of cluster formation in supersonic jets
International Nuclear Information System (INIS)
The kinetics of cluster formation in supersonic jets is examined by numerical integration of the master equation system. Some general characteristics of cluster kinetics could be formulated. Excellent agreement between experimental curves of p-cresol (H2O)0,1,2,3 formation as function of H2O pressure and the corresponding calculated curves were obtained assuming successive cluster formation. From the kinetic curves, and unambiguous assignment of cluster size was possible which agreed with mass-resolved REMPI measurements. The fit of the rate coefficients shows the formation of p-cresol (H2O)1 to be faster than p-cresol (H2O)2 and p-cresol (H2O)3. (orig.)
Master equation approach to DNA breathing in heteropolymer DNA
DEFF Research Database (Denmark)
Ambjörnsson, Tobias; Banik, Suman K; Lomholt, Michael A;
2007-01-01
After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies up to a few k(B)T. Thermal motion within the DNA double strand therefore causes the opening of intermittent single-stranded denaturation zones......, the DNA bubbles. The unzipping and zipping dynamics of bps at the two zipper forks of a bubble, where the single strand of the denatured zone joins the still intact double strand, can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA breathing...... in a heteropolymer DNA with given sequence in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function...
Solution to the Master Equation of a Free Damped Harmonic Oscillator with Linear Driving
Institute of Scientific and Technical Information of China (English)
杨洁; 逯怀新; 赵博; 赵梅生; 张永德
2003-01-01
We use the Lie algebra representation theory for superoperators to solve the master equation for a harmonic oscillator with a linear driving term in a squeezed thermal reservoir. By using the quantum displacement transformation and squeeze transformation, we show that the master equation has an su(1, 1) Lie algebra structure,with which we obtain the explicit solution to the master equation. A simple but typical example is given to illustrate our method.
Master equation solutions in the linear regime of characteristic formulation of general relativity
M., C E Cedeño
2015-01-01
From the field equations in the linear regime of the characteristic formulation of general relativity, Bishop, for a Schwarzschild's background, and M\\"adler, for a Minkowski's background, were able to show that it is possible to derive a fourth order ordinary differential equation, called master equation, for the $J$ metric variable of the Bondi-Sachs metric. Once $\\beta$, another Bondi-Sachs potential, is obtained from the field equations, and $J$ is obtained from the master equation, the other metric variables are solved integrating directly the rest of the field equations. In the past, the master equation was solved for the first multipolar terms, for both the Minkowski's and Schwarzschild's backgrounds. Also, M\\"adler recently reported a generalisation of the exact solutions to the linearised field equations when a Minkowski's background is considered, expressing the master equation family of solutions for the vacuum in terms of Bessel's functions of the first and the second kind. Here, we report new sol...
Master equation simulation analysis of immunostained Bicoid morphogen gradient
Directory of Open Access Journals (Sweden)
Reinitz John
2007-11-01
Full Text Available Abstract Background The concentration gradient of Bicoid protein which determines the developmental pathways in early Drosophila embryo is the best characterized morphogen gradient at the molecular level. Because different developmental fates can be elicited by different concentrations of Bicoid, it is important to probe the limits of this specification by analyzing intrinsic fluctuations of the Bicoid gradient arising from small molecular number. Stochastic simulations can be applied to further the understanding of the dynamics of Bicoid morphogen gradient formation at the molecular number level, and determine the source of the nucleus-to-nucleus expression variation (noise observed in the Bicoid gradient. Results We compared quantitative observations of Bicoid levels in immunostained Drosophila embryos with a spatially extended Master Equation model which represents diffusion, decay, and anterior synthesis. We show that the intrinsic noise of an autonomous reaction-diffusion gradient is Poisson distributed. We demonstrate how experimental noise can be identified in the logarithm domain from single embryo analysis, and then separated from intrinsic noise in the normalized variance domain of an ensemble statistical analysis. We show how measurement sensitivity affects our observations, and how small amounts of rescaling noise can perturb the noise strength (Fano factor observed. We demonstrate that the biological noise level in data can serve as a physical constraint for restricting the model's parameter space, and for predicting the Bicoid molecular number and variation range. An estimate based on a low variance ensemble of embryos suggests that the steady-state Bicoid molecular number in a nucleus should be larger than 300 in the middle of the embryo, and hence the gradient should extend to the posterior end of the embryo, beyond the previously assumed background limit. We exhibit the predicted molecular number gradient together with
Institute of Scientific and Technical Information of China (English)
Xu Xing-Lei; Li Hong-Qi; Fan Hong-Yi
2009-01-01
By virtue of the well-behaved properties of the bipartite entangled states representation, this paper analyse and solves some master equations for generalized phase diffusion models, which seems concise and effective. This method can also be applied to solve other master equations.
Symmetric and antisymmetric forms of the Pauli master equation.
Klimenko, A Y
2016-01-01
When applied to matter and antimatter states, the Pauli master equation (PME) may have two forms: time-symmetric, which is conventional, and time-antisymmetric, which is suggested in the present work. The symmetric and antisymmetric forms correspond to symmetric and antisymmetric extensions of thermodynamics from matter to antimatter - this is demonstrated by proving the corresponding H-theorem. The two forms are based on the thermodynamic similarity of matter and antimatter and differ only in the directions of thermodynamic time for matter and antimatter (the same in the time-symmetric case and the opposite in the time-antisymmetric case). We demonstrate that, while the symmetric form of PME predicts an equibalance between matter and antimatter, the antisymmetric form of PME favours full conversion of antimatter into matter. At this stage, it is impossible to make an experimentally justified choice in favour of the symmetric or antisymmetric versions of thermodynamics since we have no experience of thermodynamic properties of macroscopic objects made of antimatter, but experiments of this kind may become possible in the future. PMID:27440454
Calculating work in weakly driven quantum master equations: Backward and forward equations
Liu, Fei
2016-01-01
I present a technical report indicating that the two methods used for calculating characteristic functions for the work distribution in weakly driven quantum master equations are equivalent. One involves applying the notion of quantum jump trajectory [Phys. Rev. E 89, 042122 (2014), 10.1103/PhysRevE.89.042122], while the other is based on two energy measurements on the combined system and reservoir [Silaev et al., Phys. Rev. E 90, 022103 (2014), 10.1103/PhysRevE.90.022103]. These represent backward and forward methods, respectively, which adopt a very similar approach to that of the Kolmogorov backward and forward equations used in classical stochastic theory. The microscopic basis for the former method is also clarified. In addition, a previously unnoticed equality related to the heat is also revealed.
Closed description of arbitrariness in resolving quantum master equation
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Closed description of arbitrariness in resolving quantum master equation
Directory of Open Access Journals (Sweden)
Igor A. Batalin
2016-07-01
Full Text Available In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Kinetic limits for pair-interaction driven master equations and biological swarm models
Carlen, Eric; Degond, Pierre; Wennberg, Bernt
2011-01-01
We consider a class of stochastic processes modeling binary interactions in an N-particle system. Examples of such systems can be found in the modeling of biological swarms. They lead to the definition of a class of master equations that we call pair interaction driven master equations. We prove a propagation of chaos result for this class of master equations which generalizes Mark Kac's well know result for the Kac model in kinetic theory. We use this result to study kinetic limits for two b...
Kinetic limits for pair-interaction driven master equations and biological swarm models
Carlen, Eric; Wennberg, Bernt
2011-01-01
We consider a class of stochastic processes modeling binary interactions in an N-particle system. Examples of such systems can be found in the modeling of biological swarms. They lead to the definition of a class of master equations that we call pair interaction driven master equations. We prove a propagation of chaos result for this class of master equations which generalizes Mark Kac's well know result for the Kac model in kinetic theory. We use this result to study kinetic limits for two biological swarm models. We show that propagation of chaos may be lost at large times and we exhibit an example where the invariant density is not chaotic.
Dynamics of open quantum spin systems: An assessment of the quantum master equation approach.
Zhao, P; De Raedt, H; Miyashita, S; Jin, F; Michielsen, K
2016-08-01
Data of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-1/2 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of which agree very well with the solution of the time-dependent Schrödinger equation. PMID:27627265
Dynamics of open quantum spin systems: An assessment of the quantum master equation approach
Zhao, P.; De Raedt, H.; Miyashita, S.; Jin, F.; Michielsen, K.
2016-08-01
Data of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-1/2 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of which agree very well with the solution of the time-dependent Schrödinger equation.
Exact Solution of the Curved Dirac Equation in Polar Coordinates: Master Function Approach
Directory of Open Access Journals (Sweden)
H. Panahi
2015-01-01
Full Text Available We show that the (2+1 curved Dirac equation in polar coordinates can be transformed into Schrodinger-like differential equation for upper spinor component. We compare this equation with the Schrodinger equation derived from shape invariance property of second order differential equations of mathematical physics. This formalism enables us to determine the electrostatic potential and relativistic energy in terms of master function and corresponding weight function. We also obtain the spinor wave function in terms of orthogonal polynomials.
Number-conserving master equation theory for a dilute Bose-Einstein condensate
Schelle, Alexej; Wellens, Thomas; Delande, Dominique; Buchleitner, Andreas
2010-01-01
We describe the transition of $N$ weakly interacting atoms into a Bose-Einstein condensate within a number-conserving quantum master equation theory. Based on the separation of time scales for condensate formation and non-condensate thermalization, we derive a master equation for the condensate subsystem in the presence of the non-condensate environment under the inclusion of all two body interaction processes. We numerically monitor the condensate particle number distribution during condensa...
Modified Bloch-Redfield Master Equation for Incoherent Excitation of Multilevel Quantum Systems
Tscherbul, Timur V.; Brumer, Paul
2014-01-01
We present an efficient theoretical method for calculating the time evolution of the density matrix of a multilevel quantum system weakly interacting with incoherent light. The method combines the Bloch-Redfield theory with a partial secular approximation for one-photon coherences, resulting in a master equation that explicitly exposes the reliance on transition rates and the angles between transition dipole moments in the energy basis. The modified Bloch-Redfield master equation allows an un...
A classical Master equation approach to modeling an artificial protein motor
International Nuclear Information System (INIS)
Inspired by biomolecular motors, as well as by theoretical concepts for chemically driven nanomotors, there is significant interest in constructing artificial molecular motors. One driving force is the opportunity to create well-controlled model systems that are simple enough to be modeled in detail. A remaining challenge is the fact that such models need to take into account processes on many different time scales. Here we describe use of a classical Master equation approach, integrated with input from Langevin and molecular dynamics modeling, to stochastically model an existing artificial molecular motor concept, the Tumbleweed, across many time scales. This enables us to study how interdependencies between motor processes, such as center-of-mass diffusion and track binding/unbinding, affect motor performance. Results from our model help guide the experimental realization of the proposed motor, and potentially lead to insights that apply to a wider class of molecular motors.
Generalized Quantum Master Equations In and Out of Equilibrium: When Can One Win?
Kelly, Aaron; Wang, Lu; Markland, Thomas E
2016-01-01
Generalized quantum master equations (GQMEs) are an important tool in modeling chemical and physical processes. The central quantity in these approaches is the memory kernel, which encodes the effect of the projected dynamical degrees of freedom on the observable of interest. For a large number of problems it has been shown that exact and approximate methods can be made dramatically more efficient, and in the latter case more accurate, by proceeding via the GQME formalism. However, there are many situations where utilizing the GQME approach seems to offer no advantage over a direct evaluation of the property of interest. The development of a more detailed understanding of the conditions under which these methods will offer benefits would thus greatly enhance their utility. Here, we derive exact expressions for the memory kernel obtained from projection operators for systems both in and out of equilibrium, and show the conditions under which these expressions will be guaranteed to return an identical result to...
Alfonso, L.
2015-01-01
In cloud modeling studies, the time evolution of droplet size distributions due to collision–coalescence events is usually modeled with the Smoluchowski coagulation equation, also known as the kinetic collection equation (KCE). However, the KCE is a deterministic equation with no stochastic fluctuations or correlations. Therefore, the full stochastic description of cloud droplet growth in a coalescing system must be obtained from the solution of the multivariate master equat...
Dynamics of open quantum spin systems: An assessment of the quantum master equation approach
Zhao, P; Miyashita, S; Jin, F; Michielsen, K
2016-01-01
Data of the numerical solution of the time-dependent Schr\\"odinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects in as much the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-like equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-1/2 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this equation yields a rather poor description of the original data.
Gelin, Maxim F
2014-12-01
We consider a classical point particle bilinearly coupled to a harmonic bath. Assuming that the evolution of the particle is monitored on a timescale which is longer than the characteristic bath correlation time, we derive the Markovian master equation for the probability density of the particle. The relaxation operator of this master equation is evaluated analytically, without invoking the perturbation theory and the approximation of weak system-bath coupling. When the bath correlation time tends to zero, the Fokker-Planck equation is recovered. For a finite bath correlation time, the relaxation operator contains contributions of all orders in the system-bath coupling. PMID:25481131
Fleming, C H; Hu, B L
2010-01-01
We revisit the model of a quantum Brownian oscillator linearly coupled to an environment of quantum oscillators at finite temperature. By introducing a compact and particularly well-suited formulation, we give a rather quick and direct derivation of the master equation and its solutions for general spectral functions and arbitrary temperatures. The flexibility of our approach allows for an immediate generalization to cases with an external force and with an arbitrary number of Brownian oscillators. More importantly, we point out an important mathematical subtlety concerning boundary-value problems for integro-differential equations which led to incorrect master equation coefficients and impacts on the description of nonlocal dissipation effects in all earlier derivations. Furthermore, we provide explicit, exact analytical results for the master equation coefficients and its solutions in a wide variety of cases, including ohmic, sub-ohmic and supra-ohmic environments with a finite cut-off.
Quantal Brownian Motion from RPA dynamics: The master and Fokker-Planck equations
International Nuclear Information System (INIS)
From the purely quantal RPA description of the damped harmonic oscillator and of the corresponding Brownian Motion within the full space (phonon subspace plus reservoir), a master equation (as well as a Fokker-Planck equation) for the reduced density matrix (for the reduced Wigner function, respectively) within the phonon subspace is extracted. The RPA master equation agrees with the master equation derived by the time-dependent perturbative approaches which utilize Tamm-Dancoff Hilbert spaces and invoke the rotating wave approximation. Since the RPA yields a full, as well as a contracted description, it can account for both the kinetic and the unperturbed oscillator momenta. The RPA description of the quantal Brownian Motion contrasts with the descriptions provided by the time perturbative approaches whether they invoke or not the rotating wave approximation. The RPA description also contrasts with the phenomenological phase space quantization. (orig.)
Theory of Electron Transport in Small Semiconductor Devices Using the Pauli Master Equation
M. V. Fischetti
1998-01-01
It is argued that the Pauli master equation can be used to simulate electron transport in very small electronic devices under steady-state conditions. Written in a basis of suitable wavefunctions and with the appropriate open boundary conditions, this equation removes some of the approximations which render the Boltzmann equation unsatisfactory at small length-scales. The main problems consist in describing the interaction of the system with the reservoirs and in assessing the ...
An extended master-equation approach applied to aggregation in freeway traffic
Institute of Scientific and Technical Information of China (English)
Li Jun-Wei; Lin Bo-Liang; Huang Yong-Chang
2008-01-01
We restudy the master-equation approach applied to aggregation in a one-dimensional freeway,where the decay transition probabilities for the jump processes are reconstructed based on a car-following model. According to the reconstructed transition probabilities,the clustering behaviours and the stochastic properties of the master equation in a one-lane freeway traffic model are investigated in detail.The numerical results show that the size of the clusters initially below the critical size of the unstable cluster and initially above that of the unstable cluster all enter the same stable state,which also accords with the nucleation theory and is known from the result in earlier work.Moreover,we have obtained more reasonable parameters of the master equation based on some results of cellular automata models.
Vibrational energy flow in the villin headpiece subdomain: Master equation simulations
Energy Technology Data Exchange (ETDEWEB)
Leitner, David M., E-mail: dml@unr.edu, E-mail: stock@physik.uni-freiburg.de [Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557 (United States); Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg (Germany); Buchenberg, Sebastian; Brettel, Paul [Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg (Germany); Stock, Gerhard, E-mail: dml@unr.edu, E-mail: stock@physik.uni-freiburg.de [Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg (Germany); Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg (Germany)
2015-02-21
We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water.
Master Equation Approach to Current-Voltage Characteristics of Solar Cells
Oh, Sangchul; Zhang, Yiteng; Alharbi, Fahhad; Kais, Sabre
2015-03-01
The current-voltage characteristics of solar cells is obtained using quantum master equations for electrons, holes, and excitons, in which generation, recombination, and transport processes are taken into account. As a first example, we simulate a photocell with a molecular aggregate donor to investigate whether a delocalized quantum state could enhance the efficiency. As a second example, we calculate the current-voltage characteristics of conventional p-n junction solar cells and perovskite solar cells using the master equation. The connection between the drift-diffusion model and the master equation method is established. The short-circuit current and the open-circuit voltage are calculated numerically as a function of the intensity of the sunlight and material properties such as energy gaps, diffusion constants, etc.
Modified Bloch-Redfield Master Equation for Incoherent Excitation of Multilevel Quantum Systems
Tscherbul, Timur V
2014-01-01
We present an efficient theoretical method for calculating the time evolution of the density matrix of a multilevel quantum system weakly interacting with incoherent light. The method combines the Bloch-Redfield theory with a partial secular approximation for one-photon coherences, resulting in a master equation that explicitly exposes the reliance on transition rates and the angles between transition dipole moments in the energy basis. The modified Bloch-Redfield master equation allows an unambiguous distinction between the regimes of quantum coherent vs. incoherent energy transfer under incoherent light illumination. The fully incoherent regime is characterized by orthogonal transition dipole moments in the energy basis, leading to a dynamical evolution governed by a coherence-free Pauli-type master equation. The coherent regime requires non-orthogonal transition dipole moments in the energy basis, and leads to the generation of noise-induced quantum coherences and population-to-coherence couplings. As a fi...
Number-resolved master equation approach to quantum measurement and quantum transport
Li, Xin-Qi
2016-08-01
In addition to the well-known Landauer-Büttiker scattering theory and the nonequilibrium Green's function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the particle-number ( n)-resolved master equation ( n-ME) approach and its systematic applications in quantum measurement and quantum transport problems. The n-ME contains rich dynamical information, allowing efficient study of topics such as shot noise and full counting statistics analysis. Moreover, we also review a newly developed master equation approach (and its n-resolved version) under self-consistent Born approximation. The application potential of this new approach is critically examined via its ability to recover the exact results for noninteracting systems under arbitrary voltage and in presence of strong quantum interference, and the challenging non-equilibrium Kondo effect.
Number-conserving master equation theory for a dilute Bose-Einstein condensate
Schelle, Alexej; Delande, Dominique; Buchleitner, Andreas
2010-01-01
We describe the transition of $N$ weakly interacting atoms into a Bose-Einstein condensate within a number-conserving quantum master equation theory. Based on the separation of time scales for condensate formation and non-condensate thermalization, we derive a master equation for the condensate subsystem in the presence of the non-condensate environment under the inclusion of all two body interaction processes. We numerically monitor the condensate particle number distribution during condensate formation, and derive a condition under which the unique equilibrium steady state of a dilute, weakly interacting Bose-Einstein condensate is given by a Gibbs-Boltzmann thermal state of $N$ non-interacting atoms.
Liu, Fei
2014-09-01
We present a characteristic function method to calculate the probability density functions of the inclusive work in adiabatic two-level quantum Markovian master equations. These systems are steered by some slowly varying parameters and the dissipations may depend on time. Our theory is based on the interpretation of the quantum jump for the master equations. In addition to the calculation, we also find that the fluctuation properties of the work can be described by the symmetry of the characteristic functions, which is exactly the same as in the case of isolated systems. A periodically driven two-level model is used to demonstrate the method. PMID:25314409
Chiral Bosons as solutions of the BV master equation 2D chiral gauge theories
Braga, N. R. F.; Montani, H.
1994-01-01
We construct the chiral Wess-Zumino term as a solution for the Batalin-Vilkovisky master equation for anomalous two-dimensional gauge theories, working in an extended field-antifield space, where the gauge group elements are introduced as additional degrees of freedom. We analyze the Abelian and the non-Abelian cases, calculating in both cases the BRST generator in order to show the physical equivalence between this chiral solution for the master equation and the usual (non-chiral) one.
Unified Einstein-Virasoro Master Equation in the General Non-Linear Sigma Model
de Boer, J
2009-01-01
The Virasoro master equation (VME) describes the general affine-Virasoro construction $T=L^abJ_aJ_b+iD^a \\dif J_a$ in the operator algebra of the WZW model, where $L^ab$ is the inverse inertia tensor and $D^a $ is the improvement vector. In this paper, we generalize this construction to find the general (one-loop) Virasoro construction in the operator algebra of the general non-linear sigma model. The result is a unified Einstein-Virasoro master equation which couples the spacetime spin-two f...
Unified Einstein-Virasoro Master Equation in the General Non-Linear Sigma Model
de Boer, J; Halpern, M. B.
1996-01-01
The Virasoro master equation (VME) describes the general affine-Virasoro construction $T=L^{ab}J_aJ_b+iD^a \\dif J_a$ in the operator algebra of the WZW model, where $L^{ab}$ is the inverse inertia tensor and $D^a $ is the improvement vector. In this paper, we generalize this construction to find the general (one-loop) Virasoro construction in the operator algebra of the general non-linear sigma model. The result is a unified Einstein-Virasoro master equation which couples the spacetime spin-t...
Directory of Open Access Journals (Sweden)
L. Alfonso
2015-04-01
Full Text Available In cloud modeling studies, the time evolution of droplet size distributions due to collision-coalescence events is usually modeled with the kinetic collection equation (KCE or Smoluchowski coagulation equation. However, the KCE is a deterministic equation with no stochastic fluctuations or correlations. Therefore, the full stochastic description of cloud droplet growth in a coalescing system must be obtained from the solution of the multivariate master equation, which models the evolution of the state vector for the number of droplets of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels, multivariate initial conditions and small system sizes is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions of the master equation obtained for the constant and sum kernels. Correlation coefficients were calculated for the turbulent hydrodynamic kernel, and true stochastic averages were compared with numerical solutions of the kinetic collection equation for that case. The results for collection kernels depending on droplet mass demonstrates that the magnitude of correlations are significant, and must be taken into account when modeling the evolution of a finite volume coalescing system.
Alfonso, L.
2015-11-01
In cloud modeling studies, the time evolution of droplet size distributions due to collision-coalescence events is usually modeled with the Smoluchowski coagulation equation, also known as the kinetic collection equation (KCE). However, the KCE is a deterministic equation with no stochastic fluctuations or correlations. Therefore, the full stochastic description of cloud droplet growth in a coalescing system must be obtained from the solution of the multivariate master equation, which models the evolution of the state vector for the number of droplets of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain types of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels, multivariate initial conditions and small system sizes is introduced. The performance of the method was seen by comparing the numerically calculated particle mass spectrum with analytical solutions of the master equation obtained for the constant and sum kernels. Correlation coefficients were calculated for the turbulent hydrodynamic kernel, and true stochastic averages were compared with numerical solutions of the kinetic collection equation for that case. The results for collection kernels depending on droplet mass demonstrates that the magnitudes of correlations are significant and must be taken into account when modeling the evolution of a finite volume coalescing system.
Vol, E. D.
2014-01-01
We propose a new representation for several quantum master equations in so-called quasithermodynamic form. This representation (when it exists) let one to write down dynamical equations both for diagonal and non-diagonal elements of density matrix of the quantum system of interest in unified form by means of nonequilibrium potential ("entropy") that is a certain quadratic function depending on all variables describing the state. We prove that above representation exists for the general Pauli ...
Fuchsia and master integrals for splitting functions from differential equations in QCD
Gituliar, O
2016-01-01
We report on the recent progress in reducing differential equations for Feynman master integrals to canonical form with the help of a method proposed by Roman Lee. For the first time, we present Fuchsia --- our open-source implementation of the Lee algorithm written in Python using mathematical routines of a free computer algebra system SageMath. We demonstrate Fuchsia by reducing differential equations for NLO contributions to splitting functions in QCD, which contain both loops and legs integrals.
Solution of the Master Equation for Bak-Sneppen Model of Biological Evolution in Finite Ecosystem
Pis'mak, Yu. M.
1996-01-01
The master equations describing processes of biological evolution in the framework of the random neighbor Bak-Sneppen model are studied. For the eqosystem of $N$ species they are solved exactly and asymptotical behavior of this solution for large $N$ is analyzed.
Quantum dot as a spin-current diode: A master-equation approach
DEFF Research Database (Denmark)
Souza, F.M.; Egues, J.C.; Jauho, Antti-Pekka
2007-01-01
We report a study of spin-dependent transport in a system composed of a quantum dot coupled to a normal metal lead and a ferromagnetic lead NM-QD-FM. We use the master equation approach to calculate the spin-resolved currents in the presence of an external bias and an intradot Coulomb interaction...
Chevalier, Michael W.; El-Samad, Hana
2014-12-01
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.
On the master equation approach to diffusive grain-surface chemistry: the H, O, CO system
Stantcheva, T; Herbst, E
2002-01-01
We have used the master equation approach to study a moderately complex network of diffusive reactions occurring on the surfaces of interstellar dust particles. This network is meant to apply to dense clouds in which a large portion of the gas-phase carbon has already been converted to carbon monoxide. Hydrogen atoms, oxygen atoms, and CO molecules are allowed to accrete onto dust particles and their chemistry is followed. The stable molecules produced are oxygen, hydrogen, water, carbon dioxide (CO2), formaldehyde (H2CO), and methanol (CH3OH). The surface abundances calculated via the master equation approach are in good agreement with those obtained via a Monte Carlo method but can differ considerably from those obtained with standard rate equations.
Generalized quantum master equations in and out of equilibrium: When can one win?
Kelly, Aaron; Montoya-Castillo, Andrés; Wang, Lu; Markland, Thomas E.
2016-05-01
Generalized quantum master equations (GQMEs) are an important tool in modeling chemical and physical processes. For a large number of problems, it has been shown that exact and approximate quantum dynamics methods can be made dramatically more efficient, and in the latter case more accurate, by proceeding via the GQME formalism. However, there are many situations where utilizing the GQME approach with an approximate method has been observed to return the same dynamics as using that method directly. Here, for systems both in and out of equilibrium, we provide a more detailed understanding of the conditions under which using an approximate method can yield benefits when combined with the GQME formalism. In particular, we demonstrate the necessary manipulations, which are satisfied by exact quantum dynamics, that are required to recast the memory kernel in a form that can be analytically shown to yield the same result as a direct application of the dynamics regardless of the approximation used. By considering the connections between these forms of the kernel, we derive the conditions that approximate methods must satisfy if they are to offer different results when used in conjunction with the GQME formalism. These analytical results thus provide new insights as to when proceeding via the GQME approach can be used to improve the accuracy of simulations.
Rodrigues solution of the Dirac equation for fields obtained from the master function formalism
International Nuclear Information System (INIS)
We show that the radial Dirac equation with constant electrostatic potential and for a large class of the field potentials which are obtained from the master function formalism can be solved by the Rodrigues representation of the orthogonal polynomials. We also show that the Schrödinger-like differential equation obtained from the Dirac equation satisfies the supersymmetry and shape invariant conditions in non-relativistic quantum mechanics. The relativistic energy spectrum for a given potential function is calculated from its corresponding non-relativistic energy spectrum. (paper)
A master equation approach for interacting slow- and stationary-light polaritons
Kiffner, Martin
2010-01-01
A master equation approach for the description of dark-state polaritons in coherently driven atomic media is presented. This technique provides a description of light-matter interactions under conditions of electromagnetically induced transparency (EIT) that is well suited for the treatment of polariton losses. The master equation approach allows us to describe general polariton-polariton interactions that may be conservative, dissipative or a mixture of both. In particular, it enables us to study dissipation-induced correlations as a means for the creation of strongly correlated polariton systems. Our technique reveals a loss mechanism for stationary-light polaritons that has not been discussed so far. We find that polariton losses in level configurations with non-degenerate ground states can be a multiple of those in level schemes with degenerate ground states.
Multi-qubit joint measurements in circuit QED: stochastic master equation analysis
Energy Technology Data Exchange (ETDEWEB)
Criger, Ben; Ciani, Alessandro [RWTH, JARA Institut fuer Quanteninformation, Aachen (Germany); DiVincenzo, David P. [RWTH, JARA Institut fuer Quanteninformation, Aachen (Germany); Forschungszentrum Juelich, Juelich (Germany)
2016-12-15
We derive a family of stochastic master equations describing homodyne measurement of multi-qubit diagonal observables in circuit quantum electrodynamics. In the regime where qubit decay can be neglected, our approach replaces the polaron-like transformation of previous work, which required a lengthy calculation for the physically interesting case of three qubits and two resonator modes. The technique introduced here makes this calculation straightforward and manifestly correct. Using this technique, we are able to show that registers larger than one qubit evolve under a non-Markovian master equation. We perform numerical simulations of the three-qubit, two-mode case from previous work, obtaining an average post-measurement state fidelity of ∝94%, limited by measurement-induced decoherence and dephasing. (orig.)
On the accuracy of the Padé-resummed master equation approach to dissipative quantum dynamics.
Chen, Hsing-Ta; Berkelbach, Timothy C; Reichman, David R
2016-04-21
Well-defined criteria are proposed for assessing the accuracy of quantum master equations whose memory functions are approximated by Padé resummation of the first two moments in the electronic coupling. These criteria partition the parameter space into distinct levels of expected accuracy, ranging from quantitatively accurate regimes to regions of parameter space where the approach is not expected to be applicable. Extensive comparison of Padé-resummed master equations with numerically exact results in the context of the spin-boson model demonstrates that the proposed criteria correctly demarcate the regions of parameter space where the Padé approximation is reliable. The applicability analysis we present is not confined to the specifics of the Hamiltonian under consideration and should provide guidelines for other classes of resummation techniques. PMID:27389208
Effects of system-bath coupling on Photosynthetic heat engine: A polaron master equation approach
Qin, M; Zhao, X L; Yi, X X
2016-01-01
In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect charge transfer processes in Photosystem II reaction center (PSII RC) inspired quantum heat engine (QHE) model in a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in details. The results show a variety of dynamical behaviours. We interpret these results in terms of noise-assisted transport effect and dynamical localization which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization...
A Master Equation for Gravitational Decoherence: Probing the Textures of Spacetime
Anastopoulos, C
2013-01-01
We give a first principles derivation of a master equation for the evolution of a quantum matter field in a linearly perturbed Minkowski spacetime, based solely on quantum field theory and general relativity. We make no additional assumptions nor introduce extra ingredients, as is often done in alternative quantum theories. When the quantum matter field is projected to a one-particle state, the master equation for a non-relativistic quantum particle in a weak gravitational field predicts decoherence in the momentum basis, in contrast to most existing theories of gravitational decoherence. We point out the gauge nature of time and space reparameterizations in matter-gravity couplings, and warn that `intrinsic' decoherence or alternative quantum theories invoking stochastic dynamics arising from temporal or spatial fluctuations violate this fundamental symmetry of classical general relativity. Interestingly we find that the decoherence rate depends on extra parameters other than the Planck scale, an important f...
Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia
2016-04-01
We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.
Master Equation for the Motion of a Polarizable Particle in a Multimode Cavity
Nimmrichter, Stefan; Hammerer, Klemens; Asenbaum, Peter; Ritsch, Helmut; Arndt, Markus
2010-01-01
We derive a master equation for the motion of a polarizable particle weakly interacting with one or several strongly pumped cavity modes. We focus here on massive particles with complex internal structure such as large molecules and clusters, for which we assume a linear scalar polarizability mediating the particle-light interaction. The predicted friction and diffusion coefficients are in good agreement with former semiclassical calculations for atoms and small molecules in weakly pumped cav...
Energy Technology Data Exchange (ETDEWEB)
Tscherbul, Timur V., E-mail: ttscherb@chem.utoronto.ca; Brumer, Paul [Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)
2015-03-14
We present an efficient theoretical method for calculating the time evolution of the density matrix of a multilevel quantum system weakly interacting with incoherent light. The method combines the Bloch-Redfield theory with a partial secular approximation for one-photon coherences, resulting in a master equation that explicitly exposes the reliance on transition rates and the angles between transition dipole moments in the energy basis. The partial secular Bloch-Redfield master equation allows an unambiguous distinction between the regimes of quantum coherent vs. incoherent energy transfer under incoherent light illumination. The fully incoherent regime is characterized by orthogonal transition dipole moments in the energy basis, leading to a dynamical evolution governed by a coherence-free Pauli-type master equation. The coherent regime requires non-orthogonal transition dipole moments in the energy basis and leads to the generation of noise-induced quantum coherences and population-to-coherence couplings. As a first application, we consider the dynamics of excited state coherences arising under incoherent light excitation from a single ground state and observe population-to-coherence transfer and the formation of non-equilibrium quasisteady states in the regime of small excited state splitting. Analytical expressions derived earlier for the V-type system [T. V. Tscherbul and P. Brumer, Phys. Rev. Lett. 113, 113601 (2014)] are found to provide a nearly quantitative description of multilevel excited-state populations and coherences in both the small- and large-molecule limits.
Tscherbul, Timur V.; Brumer, Paul
2015-03-01
We present an efficient theoretical method for calculating the time evolution of the density matrix of a multilevel quantum system weakly interacting with incoherent light. The method combines the Bloch-Redfield theory with a partial secular approximation for one-photon coherences, resulting in a master equation that explicitly exposes the reliance on transition rates and the angles between transition dipole moments in the energy basis. The partial secular Bloch-Redfield master equation allows an unambiguous distinction between the regimes of quantum coherent vs. incoherent energy transfer under incoherent light illumination. The fully incoherent regime is characterized by orthogonal transition dipole moments in the energy basis, leading to a dynamical evolution governed by a coherence-free Pauli-type master equation. The coherent regime requires non-orthogonal transition dipole moments in the energy basis and leads to the generation of noise-induced quantum coherences and population-to-coherence couplings. As a first application, we consider the dynamics of excited state coherences arising under incoherent light excitation from a single ground state and observe population-to-coherence transfer and the formation of non-equilibrium quasisteady states in the regime of small excited state splitting. Analytical expressions derived earlier for the V-type system [T. V. Tscherbul and P. Brumer, Phys. Rev. Lett. 113, 113601 (2014)] are found to provide a nearly quantitative description of multilevel excited-state populations and coherences in both the small- and large-molecule limits.
Solve the Master Equation by Python-An Introduction to the Python Computing Environment
Fan, Wei; Xu, Yan; Chen, Bing; Ye, Qianqian
2011-01-01
A brief introduction to the Python computing environment is given. By solving the master equation encountered in quantum transport, we give an example of how to solve the ODE problems in Python. The ODE solvers used are the ZVODE routine in Scipy and the bsimp solver in GSL. For the former, the equation can be in its complex-valued form, while for the latter, it has to be rewritten to a real-valued form. The focus is on the detailed workflow of the implementation process, rather than on the s...
Birth and death master equation for the evolution of complex networks
Alvarez-Martínez, R.; Cocho, G.; Rodríguez, R. F.; Martínez-Mekler, G.
2014-05-01
Master equations for the evolution of complex networks with positive (birth) and negative (death) transition probabilities per unit time are analyzed. Explicit equations for the time evolution of the total number of nodes and for the relative node frequencies are given. It is shown that, in the continuous limit, the master equation reduces to a Fokker-Planck equation (FPE). The basic dynamical function for its stationary solution is the ratio between its drift and diffusion coefficients. When this ratio is approximated by partial fractions (Padé's approximants), a hierarchy of stationary solutions of the FPE is obtained analytically, which are expressed as an exponential times the product of powers of monomials and binomials. It is also shown that if the difference between birth and death transition probabilities goes asymptotically to zero, the exponential factor in the solution is absent. Fits to real complex network probability distribution functions are shown. Comparison with rank-ordered data shows that, in general, the value of this exponential factor is close to unity, evidencing crossovers among power-law scale invariant regimes which might be associated to an underlying criticality and are related to a generalization of the beta distribution. The time dependent solution is also obtained analytically in terms of hyper-geometric functions. It is also shown that the FPE has similarity solutions. The limitations of the approach here presented are also discussed.
Pdf - Transport equations for chemically reacting flows
Kollmann, W.
1989-01-01
The closure problem for the transport equations for pdf and the characteristic functions of turbulent, chemically reacting flows is addressed. The properties of the linear and closed equations for the characteristic functional for Eulerian and Lagrangian variables are established, and the closure problem for the finite-dimensional case is discussed for pdf and characteristic functions. It is shown that the closure for the scalar dissipation term in the pdf equation developed by Dopazo (1979) and Kollmann et al. (1982) results in a single integral, in contrast to the pdf, where double integration is required. Some recent results using pdf methods obtained for turbulent flows with combustion, including effects of chemical nonequilibrium, are discussed.
Vaccaro, S R
2016-01-01
The Na+ current in nerve and muscle membranes may be described in terms of the activation variable m(t) and the inactivation variable h(t), which are dependent on the transitions of S4 sensors in each of the ion channel domains DI to DIV. The time-dependence of the Na+ current and the rate equations satisfied by m(t) and h(t) may be derived from the solution to a master equation which describes the coupling between two activation sensors regulating the Na+ channel conductance and a two stage inactivation process. The voltage dependence of the rate functions for inactivation and recovery from inactivation are consistent with the empirically determined Hodgkin-Huxley expressions, and exhibit saturation for both depolarized and hyperpolarized clamp potentials.
International Nuclear Information System (INIS)
In the framework of the dissipative dynamics of coupled qubits interacting with independent reservoirs, a comparison between non-Markovian master equation techniques and an exact solution is presented here. We study various regimes in order to find the limits of validity of the Nakajima-Zwanzig and the time-convolutionless master equations in the description of the entanglement dynamics. A comparison between the performances of the concurrence and the negativity as entanglement measures for the system under study is also presented.
Iles-Smith, Jake; Lambert, Neill; Nazir, Ahsan
2015-01-01
We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed in [J. Iles-Smith, N. Lambert, and A. Nazir, Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no ...
Hybrid Numerical Solution of the Chemical Master Equation
Henzinger, Thomas A.; Mateescu, Maria; Mikeev, Linar; Wolf, Verena
2010-01-01
We present a numerical approximation technique for the analysis of continuous-time Markov chains that describe networks of biochemical reactions and play an important role in the stochastic modeling of biological systems. Our approach is based on the construction of a stochastic hybrid model in which certain discrete random variables of the original Markov chain are approximated by continuous deterministic variables. We compute the solution of the stochastic hybrid model using a numeri...
Derivation of the phenomenological equations from the master equation. II. Even and odd variables
Kampen, N.G. van
1957-01-01
The analysis of Part I is extended to the case in which both even and odd variables are needed to describe the macroscopic state of a system. In linear approximation this leads to the usual phenomenological equations, obeying reciprocal relations in the form given by Casimir. The fluctuations about
The Master Equation for Two-Level Accelerated Systems at Finite Temperature
Tomazelli, J. L.; Cunha, R. O.
2016-10-01
In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.
Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas
2016-06-01
We present the Born-Markov approximated Redfield quantum master equation (RQME) description for an open system of noninteracting particles (bosons or fermions) on an arbitrary lattice of N sites in any dimension and weakly connected to multiple reservoirs at different temperatures and chemical potentials. The RQME can be reduced to the Lindblad equation, of various forms, by making further approximations. By studying the N =2 case, we show that RQME gives results which agree with exact analytical results for steady-state properties and with exact numerics for time-dependent properties over a wide range of parameters. In comparison, the Lindblad equations have a limited domain of validity in nonequilibrium. We conclude that it is indeed justified to use microscopically derived full RQME to go beyond the limitations of Lindblad equations in out-of-equilibrium systems. We also derive closed-form analytical results for out-of-equilibrium time dynamics of two-point correlation functions. These results explicitly show the approach to steady state and thermalization. These results are experimentally relevant for cold atoms, cavity QED, and far-from-equilibrium quantum dot experiments.
Fermionic Stochastic Schr\\"{o}dinger Equation and Master Equation: An Open System Model
Zhao, Xinyu; Shi, Wufu; Wu, Lian-Ao; Yu, Ting
2012-01-01
This paper considers the extension of the non-Markovian stochastic approach for quantum open systems strongly coupled to a fermionic bath, to the models in which the system operators commute with the fermion bath. This technique can also be a useful tool for studying open quantum systems coupled to a spin-chain environment, which can be further transformed into an effective fermionic bath. We derive an exact stochastic Schr\\"{o}dinger equation (SSE), called fermionic quantum state diffusion (...
Stimulated Raman adiabatic passage in an open quantum system: Master equation approach
International Nuclear Information System (INIS)
A master equation approach to the study of environmental effects in the adiabatic population transfer in three-state systems is presented. A systematic comparison with the non-Hermitian Hamiltonian approach [Vitanov and Stenholm, Phys. Rev. A 56, 1463 (1997)] shows that, in the weak-coupling limit, the two treatments lead to essentially the same results. In contrast, in the strong-damping limit the predictions are quite different: In particular, the counterintuitive sequences in the STIRAP scheme turn out to be much more efficient than expected before. This point is explained in terms of quantum Zeno dynamics.
Intravaia, F; Messina, Andrea
2003-01-01
An original method to exactly solve the non-Markovian Master Equation describing the interaction of a single harmonic oscillator with a quantum environment in the weak coupling limit is reported. By using a superoperatorial approach we succeed in deriving the operatorial solution for the density matrix of the system. Our method is independent of the physical properties of the environment. We show the usefulness of our solution deriving explicit expressions for the dissipative time evolution of some observables of physical interest for the system, such as, for example, its mean energy.
Bayati, Basil S.; Eckhoff, Philip A.
2012-12-01
We perform a high-order analytical expansion of the epidemiological susceptible-infectious-recovered multivariate master equation and include terms up to and beyond single-particle fluctuations. It is shown that higher order approximations yield qualitatively different results than low-order approximations, which is incident to the influence of additional nonlinear fluctuations. The fluctuations can be related to a meaningful physical parameter, the basic reproductive number, which is shown to dictate the rate of divergence in absolute terms from the ordinary differential equations more so than the total number of persons in the system. In epidemiological terms, the effect of single-particle fluctuations ought to be taken into account as the reproductive number approaches unity.
Directory of Open Access Journals (Sweden)
Gianni Pagnini
2012-01-01
inhomogeneity and nonstationarity properties of the medium. For instance, when this superposition is applied to the time-fractional diffusion process, the resulting Master Equation emerges to be the governing equation of the Erdélyi-Kober fractional diffusion, that describes the evolution of the marginal distribution of the so-called generalized grey Brownian motion. This motion is a parametric class of stochastic processes that provides models for both fast and slow anomalous diffusion: it is made up of self-similar processes with stationary increments and depends on two real parameters. The class includes the fractional Brownian motion, the time-fractional diffusion stochastic processes, and the standard Brownian motion. In this framework, the M-Wright function (known also as Mainardi function emerges as a natural generalization of the Gaussian distribution, recovering the same key role of the Gaussian density for the standard and the fractional Brownian motion.
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
Dou, Wenjie; Subotnik, Joseph E
2016-01-14
A broadened classical master equation (BCME) is proposed for modeling nonadiabatic dynamics for molecules near metal surfaces over a wide range of parameter values and with arbitrary initial conditions. Compared with a standard classical master equation-which is valid in the limit of weak molecule-metal couplings-this BCME should be valid for both weak and strong molecule-metal couplings. (The BCME can be mapped to a Fokker-Planck equation that captures level broadening correctly.) Finally, our BCME can be solved with a simple surface hopping algorithm; numerical tests of equilibrium and dynamical observables look very promising. PMID:26772563
Gopakumar, R; Gopakumar, Rajesh; Gross, David J
1994-01-01
The basic concepts of non-commutative probability theory are reviewed and applied to the large N limit of matrix models. We argue that this is the appropriate framework for constructing the master field in terms of which large N theories can be written. We explicitly construct the master field in a number of cases including QCD_2. There we both give an explicit construction of the master gauge field and construct master loop operators as well. Most important we extend these techniques to deal with the general matrix model, in which the matrices do not have independent distributions and are coupled. We can thus construct the master field for any matrix model, in a well defined Hilbert space, generated by a collection of creation and annihilation operators---one for each matrix variable---satisfying the Cuntz algebra. We also discuss the equations of motion obeyed by the master field.
Energy Technology Data Exchange (ETDEWEB)
Iles-Smith, Jake, E-mail: Jakeilessmith@gmail.com [Controlled Quantum Dynamics Theory, Imperial College London, London SW7 2PG (United Kingdom); Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Department of Photonics Engineering, DTU Fotonik, Ørsteds Plads, 2800 Kongens Lyngby (Denmark); Dijkstra, Arend G. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Lambert, Neill [CEMS, RIKEN, Saitama 351-0198 (Japan); Nazir, Ahsan, E-mail: ahsan.nazir@manchester.ac.uk [Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)
2016-01-28
We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously. We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions.
Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation
Zhang, Ming-Liang; Ka, Being J.; Geva, Eitan
2006-07-01
The Nakajima-Zwanzig generalized quantum master equation provides a general, and formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a quantum bath. In this equation, the memory kernel accounts for the influence of the bath on the system's dynamics, and the inhomogeneous term accounts for initial system-bath correlations. In this paper, we propose a new approach for calculating the memory kernel and inhomogeneous term for arbitrary initial state and system-bath coupling. The memory kernel and inhomogeneous term are obtained by numerically solving a single inhomogeneous Volterra equation of the second kind for each. The new approach can accommodate a very wide range of projection operators, and requires projection-free two-time correlation functions as input. An application to the case of a two-state system with diagonal coupling to an arbitrary bath is described in detail. Finally, the utility and self-consistency of the formalism are demonstrated by an explicit calculation on a spin-boson model.
Critical assessment of two-qubit post-Markovian master equations
Campbell, S; Mazzola, L; Gullo, N Lo; Vacchini, B; Busch, Th; Paternostro, M
2012-01-01
A post-Markovian master equation has been recently proposed as a tool to describe the evolution of a system coupled to a memory-keeping environment [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101 (R) (2005)]. For a single qubit affected by appropriately chosen environmental conditions, the corresponding dynamics is always legitimate and physical. Here we extend such situation to the case of two qubits, only one of which experiences the environmental effects. We show how, despite the innocence of such an extension, the introduction of the second qubit should be done cum grano salis to avoid consequences such as the breaking of the positivity of the associated dynamical map. This hints at the necessity of using care when adopting phenomenologically derived models for evolutions occurring outside the Markovian framework.
Paillotin, G; Swenberg, C E; Breton, J; Geacintov, N E
1979-03-01
A Pauli master equation is formulated and solved to describe the fluorescence quantum yield, phi, and the fluorescence temporal decay curves. F(t), obtained in picosecond laser excitation experiments of photosynthetic systems. It is assumed that the lowering of phi with increasing pulse intensity is due to bimolecular singlet exciton annihilation processes which compete with the monomolecular exciton decay processes; Poisson statistics are taken into account. Calculated curves of phi as a function of the number of photon hits per domain are compared with experimental data, and it is concluded that these domains contain at least two to four connected photosynthetic units (depending on the temperature), where each photosynthetic unit is assumed to contain approximately 300 pigment molecules. It is shown that under conditions of high excitation intensities, the fluorescence decays approximately according to the (time)1/2 law. PMID:262402
Master equation approach to charge injection and transport in organic insulators.
Freire, José A; Voss, Grasiela
2005-03-22
We develop a master equation model of a disordered organic insulator sandwiched between metallic electrodes by treating as rate processes both the injection and the internal transport. We show how the master equation model allows for the inclusion of crucial correlation effects in the charge transport, particularly of the Pauli exclusion principle and of space-charge effects, besides, being dependent on just the microscopic form of the transfer rate between the localized electronic states, it allows for the investigation of different microscopic scenarios in the organic, such as polaronic hopping, correlated energy levels, interaction with image charge, etc. The model allows for a separate analysis of the injection and the recombination currents. We find that the disorder, besides increasing the injection current, eliminates the possibility of observation of a Fowler-Nordheim injection current at zero temperature, and that it does not alter the Schottky barrier size of the zero-field thermionic injection current from the value based on the energy difference between the electrode Fermi level and the highest occupied molecular orbital/lowest unoccupied molecular orbital levels in the organic, but it makes the Arrhenius temperature dependence appear at larger temperatures. We investigate how the I(V) characteristics of a device is affected by the presence of correlations in the site energy distribution and by the form of the internal hopping rate, specifically the Miller-Abrahams rate and the Marcus or small-polaron rate. We show that the disorder does not modify significantly the ebeta square root E field dependence of the net current due to the Schottky barrier lowering caused by the attraction between the charge and its image in the electrode. PMID:15836407
Ghaderi, Nima
2016-03-01
Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ˜0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere.
Closed String Field Theory Quantum Action and the BV Master Equation
Zwiebach, B
1993-01-01
The complete quantum theory of covariant closed strings is constructed in detail. The action is defined by elementary vertices satisfying recursion relations that give rise to Jacobi-like identities for an infinite chain of string field products. The genus zero string field algebra is the homotopy Lie algebra $L_\\infty$, and the higher genus algebraic structure implies the Batalin-Vilkovisky (BV) master equation. From these structures on the off-shell state space, we show how to derive the $L_\\infty$ algebra, and the BV equation on physical states, recently constructed in d=2 string theory. The string diagrams are surfaces with minimal area metrics, foliated by closed geodesics of length $2\\pi$. These metrics generalize quadratic differentials in that foliation bands can cross. The string vertices are succinctly characterized; they include the surfaces whose foliation bands are all of height smaller than $2\\pi$. --While this is not a review paper, an effort was made to give a fairly complete and accessible ac...
Indian Academy of Sciences (India)
Marko Žnidarič
2011-11-01
We discuss recent ﬁndings about properties of quantum nonequilibrium steady states. In particular we focus on transport properties. It is shown that the time-dependent density matrix renormalization method can be used successfully to ﬁnd a stationary solution of Lindblad master equation. Furthermore, for a speciﬁc model an exact solution is presented.
A semiclassical generalized quantum master equation for an arbitrary system-bath coupling
Shi, Qiang; Geva, Eitan
2004-06-01
The Nakajima-Zwanzig generalized quantum master equation (GQME) provides a general, and formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a, possibly anharmonic, quantum bath. In this equation, a memory kernel superoperator accounts for the influence of the bath on the dynamics of the system. In a previous paper [Q. Shi and E. Geva, J. Chem. Phys. 119, 12045 (2003)] we proposed a new approach to calculating the memory kernel, in the case of arbitrary system-bath coupling. Within this approach, the memory kernel is obtained by solving a set of two integral equations, which requires a new type of two-time system-dependent bath correlation functions as input. In the present paper, we consider the application of the linearized semiclassical (LSC) approximation for calculating those correlation functions, and subsequently the memory kernel. The new approach is tested on a benchmark spin-boson model. Application of the LSC approximation for calculating the relatively short-lived memory kernel, followed by a numerically exact solution of the GQME, is found to provide an accurate description of the relaxation dynamics. The success of the proposed LSC-GQME methodology is contrasted with the failure of both the direct application of the LSC approximation and the weak coupling treatment to provide an accurate description of the dynamics, for the same model, except at very short times. The feasibility of the new methodology to anharmonic systems is also demonstrated in the case of a two level system coupled to a chain of Lennard-Jones atoms.
Wu, Fuke; Tian, Tianhai; Rawlings, James B; Yin, George
2016-05-01
The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766-1793 (1996); ibid. 56, 1794-1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence. PMID:27155630
Hellander, Andreas; Lawson, Michael J.; Drawert, Brian; Petzold, Linda
2014-06-01
The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps were adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the diffusive finite-state projection (DFSP) method, to incorporate temporal adaptivity.
Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda
2015-01-01
The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735
Reduced master equation analysis of multiple-tunnel junction single-electron memory device
Jalil, M. B. A.; Wagner, M.
2000-07-01
We employ a master equation (ME) approach in the charge transport analysis across a uniform multiple-tunnel junction (MTJ) memory trap, using a much-reduced state list derived from circuit symmetry, and previous assumptions by Jensen and Martinis. This enables all significant single tunneling and higher-order cotunneling sequences to be accounted for, while avoiding the computational cost of the full ME method. The reduced ME method is conceptually simpler and yields greater accuracy, compared with previous approximations based on tunneling probabilities. For an MTJ trap with zero stray capacitance C0, the results obtained are found to agree very closely with the full ME results up to a temperature of T≈3T0/10, where T0=e2/kBC, whereas previous methods break down at T≈T0/10. Furthermore, unlike the earlier methods, the reduced ME approach can be applied to the realistic but less symmetric case of a trap with finite C0, and remains valid up to the trap's maximum operating temperature of T≈T0/100. Finally, our reduced ME results are in close agreement with available experimental data at T
Energy Technology Data Exchange (ETDEWEB)
Kidon, Lyran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Wilner, Eli Y. [School of Physics and Astronomy, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Rabani, Eran [The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Chemistry, University of California and Lawrence Berkeley National Laboratory, Berkeley California 94720-1460 (United States)
2015-12-21
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.
Application of quantum master equation for long-term prognosis of asset-prices
Khrennikova, Polina
2016-05-01
This study combines the disciplines of behavioral finance and an extension of econophysics, namely the concepts and mathematical structure of quantum physics. We apply the formalism of quantum theory to model the dynamics of some correlated financial assets, where the proposed model can be potentially applied for developing a long-term prognosis of asset price formation. At the informational level, the asset price states interact with each other by the means of a "financial bath". The latter is composed of agents' expectations about the future developments of asset prices on the finance market, as well as financially important information from mass-media, society, and politicians. One of the essential behavioral factors leading to the quantum-like dynamics of asset prices is the irrationality of agents' expectations operating on the finance market. These expectations lead to a deeper type of uncertainty concerning the future price dynamics of the assets, than given by a classical probability theory, e.g., in the framework of the classical financial mathematics, which is based on the theory of stochastic processes. The quantum dimension of the uncertainty in price dynamics is expressed in the form of the price-states superposition and entanglement between the prices of the different financial assets. In our model, the resolution of this deep quantum uncertainty is mathematically captured with the aid of the quantum master equation (its quantum Markov approximation). We illustrate our model of preparation of a future asset price prognosis by a numerical simulation, involving two correlated assets. Their returns interact more intensively, than understood by a classical statistical correlation. The model predictions can be extended to more complex models to obtain price configuration for multiple assets and portfolios.
International Nuclear Information System (INIS)
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed
Energy Technology Data Exchange (ETDEWEB)
Boyd, Iain D., E-mail: iainboyd@umich.edu [Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Josyula, Eswar [U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)
2016-01-15
The direct simulation Monte Carlo (DSMC) method is the primary numerical technique for analysis of rarefied gas flows. While recent progress in computational chemistry is beginning to provide vibrationally resolved transition and reaction cross sections that can be employed in DSMC calculations, the particle nature of the standard DSMC method makes it difficult to use this information in a statistically significant way. The current study introduces a new technique that makes it possible to resolve all of the vibrational energy levels by using a master equation approach along with temperature-dependent transition rates. The new method is compared to the standard DSMC technique for several heat bath and shock wave conditions and demonstrates the ability to resolve the full vibrational manifold at the expected overall rates of relaxation. The ability of the new master equation approach to the DSMC method for resolving, in particular, the high-energy states addresses a well-known, longstanding deficiency of the standard DSMC method.
Jang, Seogjoo; Hoyer, Stephan; Fleming, Graham; Whaley, K Birgitta
2014-10-31
A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately described by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments. PMID:25396397
Lee, Keumsook; Park, Jong Soo; Jung, Woo-Sung; Choi, M Y; 10.1088/1751-8113/44/11/115007
2011-01-01
The master equation approach is proposed to describe the evolution of passengers in a subway system. With the transition rate constructed from simple geographical consideration, the evolution equation for the distribution of subway passengers is found to bear skew distributions including log-normal, Weibull, and power-law distributions. This approach is then applied to the Metropolitan Seoul Subway system: Analysis of the trip data of all passengers in a day reveals that the data in most cases fit well to the log-normal distributions. Implications of the results are also discussed.
Institute of Scientific and Technical Information of China (English)
MU Wei-Hua; OU-YANG Zhong-Can; Li Xiao-Qing
2011-01-01
The stochastic systems without detailed balance are common in various chemical reaction systems, such as metabolic network systems. In studies of these systems, the concept of potential landscape is useful. However, what are the sufficient and necessary conditions of the existence of the potential function is still an open problem. Use Hodge decomposition theorem in differential form theory, we focus on the general chemical Langevin equations, which reflect complex chemical reaction systems. We analysis the conditions for the existence of potential landscape of the systems.By mapping the stochastic differential equations to a Hamiltonian mechanical system, we obtain the Fokker-Planck equation of the chemical reaction systems. The obtained Fokker-Planck equation can be used in further studies of other steady properties of complex chemical reaction systems, such as their steady state entropies.
Parameter Estimates in Differential Equation Models for Chemical Kinetics
Winkel, Brian
2011-01-01
We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…
Directory of Open Access Journals (Sweden)
Charles E. Smith
2016-05-01
Full Text Available There is increasing interest concerning the details about how quantum systems interact with their surroundings. A number of methodologies have been used to describe these interactions, including Master Equations (ME based on a system-plus-reservoir (S + R approach, and more recently, Steepest Entropy Ascent Quantum Thermodynamics (SEAQT which asserts that entropy is a fundamental physical property and that isolated quantum systems that are not at stable equilibrium may spontaneously relax without environmental influences. In this paper, the ME, SEAQT approaches, and a simple linear difference equation (DE model are compared with each other and experimental data in order to study the behavior of a single trapped ion as it interacts with one or more external heat reservoirs. The comparisons of the models present opportunities for additional study to verify the validity and limitations of these approaches.
Global asymptotic stability for a class of nonlinear chemical equations
Anderson, David F.
2007-01-01
We consider a class of nonlinear differential equations that arises in the study of chemical reaction systems that are known to be locally asymptotically stable and prove that they are in fact globally asymptotically stable. More specifically, we will consider chemical reaction systems that are weakly reversible, have a deficiency of zero, and are equipped with mass action kinetics. We show that if for each $c \\in \\R_{> 0}^m$ the intersection of the stoichiometric compatibility class $c + S$ ...
Brasil, Carlos Alexandre
2011-01-01
The most general form for the generator of quantum dynamical semigroups is the one proposed by Lindblad, which can be used in several approaches involving quantum mechanics for open systems, from analysis of noise and dissipation to fundamental aspects of the quantum theory of measurement. When dealing with a system interacting with its environment, the trace of the environmental degrees of freedom using the traditional approach of exponentiation of the Hamiltonian terms, originates prohibitive and difficult calculations. This paper presents an alternative analytic method to derive, through superoperator algebra and Nakajima-Zwanzig thermodynamic projectors, a compact and fairly simple master equation describing the reduced system dynamics. As a simple example of the present approach, we analyze a two-level system in contact with an environment, which allows us to observe the decoherence intensification by the interaction.
Nogawa, Tomoaki
2012-10-18
We examine the effectiveness of assuming an equal probability for states far from equilibrium. For this aim, we propose a method to construct a master equation for extensive variables describing nonstationary nonequilibrium dynamics. The key point of the method is the assumption that transient states are equivalent to the equilibrium state that has the same extensive variables, i.e., an equal probability holds for microscopic states in nonequilibrium. We demonstrate an application of this method to the critical relaxation of the two-dimensional Potts model by Monte Carlo simulations. While the one-variable description, which is adequate for equilibrium, yields relaxation dynamics that are very fast, the redundant two-variable description well reproduces the true dynamics quantitatively. These results suggest that some class of the nonequilibrium state can be described with a small extension of degrees of freedom, which may lead to an alternative way to understand nonequilibrium phenomena. © 2012 American Physical Society.
Chemical Equilibrium and Polynomial Equations: Beware of Roots.
Smith, William R.; Missen, Ronald W.
1989-01-01
Describes two easily applied mathematical theorems, Budan's rule and Rolle's theorem, that in addition to Descartes's rule of signs and intermediate-value theorem, are useful in chemical equilibrium. Provides examples that illustrate the use of all four theorems. Discusses limitations of the polynomial equation representation of chemical…
Karimi, F.; Davoody, A. H.; Knezevic, I.
2016-05-01
We introduce a method for calculating the dielectric function of nanostructures with an arbitrary band dispersion and Bloch wave functions. The linear response of a dissipative electronic system to an external electromagnetic field is calculated by a self-consistent-field approach within a Markovian master-equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations. The SCF-MMEF accurately accounts for several concurrent scattering mechanisms. The method captures interband electron-hole-pair generation, as well as the interband and intraband electron scattering with phonons and impurities. We employ the SCF-MMEF to calculate the dielectric function, complex conductivity, and loss function for supported graphene. From the loss-function maximum, we obtain plasmon dispersion and propagation length for different substrate types [nonpolar diamondlike carbon (DLC) and polar SiO2 and hBN], impurity densities, carrier densities, and temperatures. Plasmons on the two polar substrates are suppressed below the highest surface phonon energy, while the spectrum is broad on the nonpolar DLC. Plasmon propagation lengths are comparable on polar and nonpolar substrates and are on the order of tens of nanometers, considerably shorter than previously reported. They improve with fewer impurities, at lower temperatures, and at higher carrier densities.
Boltzmann Equation Solver Adapted to Emergent Chemical Non-equilibrium
Birrell, Jeremiah
2014-01-01
We present a novel method to solve the spatially homogeneous and isotropic relativistic Boltzmann equation. We employ a basis set of orthogonal polynomials dynamically adapted to allow emergence of chemical non-equilibrium. Two time dependent parameters characterize the set of orthogonal polynomials, the effective temperature $T(t)$ and phase space occupation factor $\\Upsilon(t)$. In this first paper we address (effectively) massless fermions and derive dynamical equations for $T(t)$ and $\\Upsilon(t)$ such that the zeroth order term of the basis alone captures the number density and energy density of each particle distribution. We validate our method and illustrate the reduced computational cost and the ability to represent final state chemical non-equilibrium by studying a model problem that is motivated by the physics of the neutrino freeze-out processes in the early Universe, where the essential physical characteristics include reheating from another disappearing particle component ($e^\\pm$-annihilation).
DEFF Research Database (Denmark)
Dyre, Jeppe
1995-01-01
with statistical mechanics. The final part of the paper gives a comprehensive discussion, comparing the EME to related work and listing the EME's qualitatively correct predictions, its new predictions, and some ``wrong'' predictions, most of which go against the common picture of viscous liquids and the glass...
Reineker, P.; Kühne, R.
1980-03-01
Starting from the stochastic Liouville equation of the full Haken-Strobl model, describing the coupled coherent and incoherent motion of excitons in molecular crystals, the Nakajima-Zwanzig generalized master equation (GME) for the probability of finding an exciton at a specific lattice site is derived by an exact straightforward evaluation of its memory function. Various recently derived generalized master equations describing the excition motion are obtained as limiting cases and the Born approximation is discussed. It is shown that, even in the case of nearest-neighbor interaction in the stochastic Liouville equation, in the GME generalized time-dependent transition rates evolve between non-nearest neighbors and that their time behavior shows damped oscillations. Applying the Born approximation to the GME, the range of the generalized transition rates reduces to that of the interaction in the stochastic Liouville equation. Furthermore in this approximation the transition rates show a purely exponential decay with increasing time. Taking into account the interaction with an arbitrary number of neighbors, the mean square displacement of the exciton motion is calculated exactly from the GME. Finally the GME is solved exactly in the general case and several limiting expressions are discussed.
Shi, Qiang; Geva, Eitan
2003-12-01
The Nakajima-Zwanzig generalized quantum master equation provides a general, and formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a quantum bath. In this equation, the memory kernel accounts for the influence of the bath on the system's dynamics. The standard approach is based on using a perturbative treatment of the system-bath coupling for calculating this kernel, and is therefore restricted to systems weakly coupled to the bath. In this paper, we propose a new approach for calculating the memory kernel for an arbitrary system-bath coupling. The memory kernel is obtained by solving a set of two coupled integral equations that relate it to a new type of two-time system-dependent bath correlation functions. The feasibility of the method is demonstrated in the case of an asymetrical two-level system linearly coupled to a harmonic bath.
A New Pseudoinverse Matrix Method For Balancing Chemical Equations And Their Stability
Energy Technology Data Exchange (ETDEWEB)
Risteski, Ice B. [2 Milepost Place, Ontario (Canada)
2008-06-15
In this work is given a new pseudoniverse matrix method for balancing chemical equations. Here offered method is founded on virtue of the solution of a Diophantine matrix equation by using of a Moore-Penrose pseudoinverse matrix. The method has been tested on several typical chemical equations and found to be very successful for the all equations in our extensive balancing research. This method, which works successfully without any limitations, also has the capability to determine the feasibility of a new chemical reaction, and if it is feasible, then it will balance the equation. Chemical equations treated here possess atoms with fractional oxidation numbers. Also, in the present work are introduced necessary and sufficient criteria for stability of chemical equations over stability of their extended matrices.
Håkansson, Pär; Westlund, Per-Olof
2005-01-01
This paper discusses the process of energy migration transfer within reorientating chromophores using the stochastic master equation (SME) and the stochastic Liouville equation (SLE) of motion. We have found that the SME over-estimates the rate of the energy migration compared to the SLE solution for a case of weakly interacting chromophores. This discrepancy between SME and SLE is caused by a memory effect occurring when fluctuations in the dipole-dipole Hamiltonian ( H( t)) are on the same timescale as the intrinsic fast transverse relaxation rate characterized by (1/ T2). Thus the timescale critical for energy-transfer experiments is T2≈10 -13 s. An extended SME is constructed, accounting for the memory effect of the dipole-dipole Hamiltonian dynamics. The influence of memory on the interpretation of experiments is discussed.
Kishi, Ryohei; Nakano, Masayoshi; Minami, Takuya; Fukui, Hitoshi; Nagai, Hiroshi; Yoneda, Kyohei; Takahashi, Hideaki
2009-05-01
We apply the ab initio molecular orbital (MO)-configuration interaction (CI) based quantum master equation (MOQME) method to the investigation of ultrafast exciton dynamics in an anthracene dimer modeled after anthracenophane, which is experimentally found to exhibit an oscillatory signal of fluorescence anisotropy decay. Two low-lying near-degenerate one-photon allowed excited states with a slight energy difference (42 cm(-1)) are obtained at the CIS/6-31G** level of approximation using full valence pi-orbitals. The time evolution of reduced exciton density matrices is performed by numerically solving the quantum master equation. After the creation of a superposition state of these near-degenerate states by irradiating a near-resonant laser field, we observe two kinds of oscillatory behaviors of polarizations: field-induced polarizations with faster periods, and amplitude oscillations of x- and z-polarizations, P(x) and P(z), with a slower period, in which the amplitudes of P(x) and P(z) attain maximum alternately. The latter behavior turns out to be associated with an oscillatory exciton motion between the two monomers, i.e., exciton recurrence motion, using the dynamic exciton expression based on the polarization density. From the analysis of contribution to the exciton distributions, such exciton recurrence motion is found to be characterized by both the difference in eigenfrequencies between the two near-degenerate states excited by the laser field and the relative phases among the frontier MOs primarily contributing to the near-degenerate states.
Uses and abuses of the Langevin equation for chemical reactions in condensed phases
International Nuclear Information System (INIS)
The Langevin and Fokker-Planck equations are useful in the description of many classical and quantum mechanical systems. However, these equations are justifiable from molecular considerations under very restricted conditions. These conditions include weak coupling. Brownian motion, and systems with special Hamiltonians. The application of these equations to chemical reactions in condensed phases is fraught with peril, particularly for fluid systems. The authors examine the molecular derivations of these equations and describe the conditions under which they are justifiable. It is, of course, possible that the equations are useful under other conditions
Directory of Open Access Journals (Sweden)
Andrei Khrennikov
2016-07-01
Full Text Available We present a new conceptual approach for modeling of fluid flows in random porous media based on explicit exploration of the treelike geometry of complex capillary networks. Such patterns can be represented mathematically as ultrametric spaces and the dynamics of fluids by ultrametric diffusion. The images of p-adic fields, extracted from the real multiscale rock samples and from some reference images, are depicted. In this model the porous background is treated as the environment contributing to the coefficients of evolutionary equations. For the simplest trees, these equations are essentially less complicated than those with fractional differential operators which are commonly applied in geological studies looking for some fractional analogs to conventional Euclidean space but with anomalous scaling and diffusion properties. It is possible to solve the former equation analytically and, in particular, to find stationary solutions. The main aim of this paper is to attract the attention of researchers working on modeling of geological processes to the novel utrametric approach and to show some examples from the petroleum reservoir static and dynamic characterization, able to integrate the p-adic approach with multifractals, thermodynamics and scaling. We also present a non-mathematician friendly review of trees and ultrametric spaces and pseudo-differential operators on such spaces.
The equation of state of QCD at finite chemical potential
Gupta, Sourendu; Majumdar, Pushan
2014-01-01
We obtain the baryon number density, n, and the excess contribution to the pressure, Delta P, at finite chemical potential, mu_B, and temperature, T, by resumming the Taylor series expansion in a lattice computation with lattice spacing of 1/(4T) and two flavours of quarks at three different quark masses. The method proceeds by giving a critical mu_B and limits on the critical exponent, and permits reliable estimations of the errors in resummed quantities. We find that n and Delta P are insensitive to the quark mass. We also report the bulk isothermal compressibility, kappa, over a range of T and mu_B.
US Agency for International Development — OPS Master is a management tool and database for integrated financial planning and portfolio management in USAID Missions. Using OPS Master, the three principal...
Fractional Chemotaxis Diffusion Equations
Langlands, T A M
2010-01-01
We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modelling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macro-molecular crowding. The mesoscopic models are formulated using Continuous Time Random Walk master equations and the macroscopic models are formulated with fractional order differential equations. Different models are proposed depending on the timing of the chemotactic forcing. Generalizations of the models to include linear reaction dynamics are also derived. Finally a Monte Carlo method for simulating anomalous subdiffusion with chemotaxis is introduced and simulation results are compared with numerical solutions of the model equations. The model equations developed here could be used to replace Keller-Segel type equations in biological systems with transport hindered by traps, macro-molecular crowding or other obstacles.
A New Mathematical Formulation of the Governing Equations for the Chemical Compositional Simulation
Bekbauov, Bakhbergen E; Berdyshev, Abdumauvlen
2015-01-01
It is the purpose of this work to develop new approach for chemical compositional reservoir simulation, which may be regarded as a sequential method. The development process can be roughly divided into the following two stages: (1) development of a new mathematical formulation for the sequential chemical compositional reservoir simulation, (2) implementation of a sequential solution approach for chemical compositional reservoir simulation based on the formulation described in this paper. This paper addresses the first stage of the development process by presenting a new mathematical formulation of the chemical compositional reservoir flow equations for the sequential simulation. The newly developed mathematical formulation is extended from the model formulation used in existing chemical compositional simulators. During the model development process, it was discovered that the currently used chemical compositional model estimates the adsorption effect on the transport of a component reasonably well but it viol...
Incorporation of a Chemical Equilibrium Equation of State into LOCI-Chem
Cox, Carey F.
2005-01-01
Renewed interest in development of advanced high-speed transport, reentry vehicles and propulsion systems has led to a resurgence of research into high speed aerodynamics. As this flow regime is typically dominated by hot reacting gaseous flow, efficient models for the characteristic chemical activity are necessary for accurate and cost effective analysis and design of aerodynamic vehicles that transit this regime. The LOCI-Chem code recently developed by Ed Luke at Mississippi State University for NASA/MSFC and used by NASA/MSFC and SSC represents an important step in providing an accurate, efficient computational tool for the simulation of reacting flows through the use of finite-rate kinetics [3]. Finite rate chemistry however, requires the solution of an additional N-1 species mass conservation equations with source terms involving reaction kinetics that are not fully understood. In the equilibrium limit, where the reaction rates approach infinity, these equations become very stiff. Through the use of the assumption of local chemical equilibrium the set of governing equations is reduced back to the usual gas dynamic equations, and thus requires less computation, while still allowing for the inclusion of reacting flow phenomenology. The incorporation of a chemical equilibrium equation of state module into the LOCI-Chem code was the primary objective of the current research. The major goals of the project were: (1) the development of a chemical equilibrium composition solver, and (2) the incorporation of chemical equilibrium solver into LOCI-Chem. Due to time and resource constraints, code optimization was not considered unless it was important to the proper functioning of the code.
Institute of Scientific and Technical Information of China (English)
王双进; 李凌云; 张建
2011-01-01
An amendment to the original Master equation was put forward, and a mechanism for node increases was introduced. The modified Master equation was of discreteness, which was more accurate, more efficient to calculate the evolution law of degree distribution of real complex network. The analysis formula of degree distribution of model BA and its calculation by the modified Master equation were discussed. From this. the logarithmic figure of degree distribution of model BA was gotlen. Then a compassion was made between the discrete Master equation and mean - field theory, and logarithmic figure was gotten, that of degree distribution of model BA wich two kinds calculative theory in the same coordinate system.%Master方程是计算无标度网络度分布演化规律的一种常用方法.提出了对原始的Master方程进行修正,加入了节点增长机制,修正后的Master方程具有离散性,能够更精确、更有效的计算真实复杂网络的度分布演化规律.用修正的Master方程分析BA模型度分布的解析武并计算,由此得到BA模型度分布对数图.把离散性的Master方程与连续性的平均场理论进行对比分析,并在同一坐标系下分别做出用两种理论计算的BA模型度分布的对数图.
Institute of Scientific and Technical Information of China (English)
王双进; 李凌云; 李佳
2011-01-01
An amendment to the original Master equation and add a mechanism for node increases is be put for ward. The modified Master equation is of discreteness, which is more accurate, more efficient to calculate the evo lution law of degree distribution of real complex network. The analysis formula of degree distribution of model BA and its calculation by the modified Master equation is discussed. From this we get the logarithmic figure of degree distribution of model BA. Then we make a compassion between the discrete Master equation and mean-field theory, and get logarithmic figure of degree distribution of model BA with two kinds calculative theory in the same coor dinate system.%提出了对原始的Master方程进行修正,加入了节点增长机制,修正后的Master方程具有离散性,能够更精确、更有效地计算真实复杂网络的度分布演化规律.用修正的Master方程分析BA模型度分布的解析式并计算,由此得出BA模型度分布对数图.把离散性的Master方程与连续性的平均场理论进行对比分析,并在同一坐标系下分别作出用2种理论计算的BA模型度分布的对数图.
Institute of Scientific and Technical Information of China (English)
LUO Zhen-dong; ZHOU Yan-jie; ZHU Jiang
2007-01-01
The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical modes by the following governing nonlinear partial differential equations containing velocity vector,temperature field,pressure field,and gas mass field.The mixed finite element(MFE)method is employed to study the system of equations for the vapor deposition chemical reaction processes.The semidiscrete and fully discrete MFE formulations are derived.And the existence and convergence(error estimate)of the semidiscrete and fully discrete MFE solutions are deposition chemical reaction processes,the numerical solutions of the velocity vector,the temperature field,the pressure field,and the gas mass field can be found out simultaneonsly.Thus,these researches are not only of important theoretical means,but also of extremely extensive applied vistas.
Gałdzicki, Z; Miekisz, S
1984-04-01
The role of viscosity in coupling between chemical reaction (complex formation) and diffusion in membranes has been investigated. The Fick law was replaced by the momentum balance equation with the viscous term. The irreversible thermodynamics admits coupling of the chemical reaction rate with the gradient of velocity. The proposed model has shown the contrary effect of viscosity and confirmed the experimental results. The chemical reaction rate increases only above the limit value of viscosity. The parameter Q (degree of complex formation) was introduced to investigate coupling. Q equals to the ratio of the chemical contribution into the flux of the complex to the total flux of the substance transported. For different values of the parameters of the model the dependence of Q upon position inside the membrane has been numerically calculated. The assumptions of the model limit it to a specific case and they only roughly model the biological situation. PMID:6537360
Hot QCD equation of state and quark-gluon plasma-- finite quark chemical potential
Chandra, Vinod
2008-01-01
We explore the relevance of a hot QCD equation of state of $O[g^6\\ln(1/g)]$, which has been obtained\\cite{avrn} for non-vanishing quark-chemical potentials to heavy ion collisions. Employing a method proposed in a recent paper \\cite{chandra1}, we use the EOS to determine a host of thermodynamic quantities, the energy density, specific heat, entropy dnesity, and the temperature dependence of screening lengths, with the behaviour of QGP at RHIC and LHC in mind. We also investigate the sensitivity of these observables to the quark chemical potential.
Mélykúti, Bence
2010-01-01
The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when simulating (bio)chemical kinetics. The CLE model is valid in the regime where molecular populations are abundant enough to assume their concentrations change continuously, but stochastic fluctuations still play a major role. The contribution of this work is that we observe and explore that the CLE is not a single equation, but a parametric family of equations, all of which give the same finite-dimensional distribution of the variables. On the theoretical side, we prove that as many Wiener processes are sufficient to formulate the CLE as there are independent variables in the equation, which is just the rank of the stoichiometric matrix. On the practical side, we show that in the case where there are m1 pairs of reversible reactions and m2 irreversible reactions there is another, simple formulation of the CLE with only m1 + m2 Wiener processes, whereas the standard approach uses 2 m1 + m2. We demonstrate that there are considerable computational savings when using this latter formulation. Such transformations of the CLE do not cause a loss of accuracy and are therefore distinct from model reduction techniques. We illustrate our findings by considering alternative formulations of the CLE for a human ether a-go-go related gene ion channel model and the Goldbeter-Koshland switch. © 2010 American Institute of Physics.
Model reduction for stochastic chemical systems with abundant species
Energy Technology Data Exchange (ETDEWEB)
Smith, Stephen; Cianci, Claudia; Grima, Ramon [School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH93JR, Scotland (United Kingdom)
2015-12-07
Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.
Model reduction for stochastic chemical systems with abundant species
Smith, Stephen; Cianci, Claudia; Grima, Ramon
2015-12-01
Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.
United States chemical policy: Response considerations. Master's Thesis 1 Aug 90-7 Jun 91
Energy Technology Data Exchange (ETDEWEB)
VanDyke, L.L.
1991-06-07
Chemical weapons have been a controversial subject for years. Even before the Germans introduced modern chemical warfare on 22 April 1915 during World War I, issues concerning use of asphyxiating gases and other chemical agents surfaced. Discussions often became emotional and clouded the issues of the effects of this type of warfare. Propaganda and sensationalism contributed to negative public opinion and impacted on policy development. This study examines the development of the US's chemical policy by looking at significant events over time and analyzing developments and trends. An answer to the question of whether or not the US will respond with chemical weapons following use by a third world country against US military forces is concluded based on study findings. This study concluded that the US will not respond with chemical weapons against a third world country such as Iraq. Such use of chemical weapons would reverse the developments the US has made in recent years. The political considerations and the impact on future negotiations toward the banning of chemical weapons would be detrimental if the US did retaliate with chemical weapons.
Upwind differencing and LU factorization for chemical non-equilibrium Navier-Stokes equations
Shuen, Jian-Shun
1992-01-01
By means of either the Roe or the Van Leer flux-splittings for inviscid terms, in conjunction with central differencing for viscous terms in the explicit operator and the Steger-Warming splitting and lower-upper approximate factorization for the implicit operator, the present, robust upwind method for solving the chemical nonequilibrium Navier-Stokes equations yields formulas for finite-volume discretization in general coordinates. Numerical tests in the illustrative cases of a hypersonic blunt body, a ramped duct, divergent nozzle flows, and shock wave/boundary layer interactions, establish the method's efficiency.
Directory of Open Access Journals (Sweden)
S. M. Saunders
2003-01-01
Full Text Available Kinetic and mechanistic data relevant to the tropospheric degradation of volatile organic compounds (VOC, and the production of secondary pollutants, have previously been used to define a protocol which underpinned the construction of a near-explicit Master Chemical Mechanism. In this paper, an update to the previous protocol is presented, which has been used to define degradation schemes for 107 non-aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3. The treatment of 18 aromatic VOC is described in a companion paper. The protocol is divided into a series of subsections describing initiation reactions, the reactions of the radical intermediates and the further degradation of first and subsequent generation products. Emphasis is placed on updating the previous information, and outlining the methodology which is specifically applicable to VOC not considered previously (e.g. a- and b-pinene. The present protocol aims to take into consideration work available in the open literature up to the beginning of 2001, and some other studies known by the authors which were under review at the time. Application of MCM v3 in appropriate box models indicates that the representation of isoprene degradation provides a good description of the speciated distribution of oxygenated organic products observed in reported field studies where isoprene was the dominant emitted hydrocarbon, and that the a-pinene degradation chemistry provides a good description of the time dependence of key gas phase species in a-pinene/NOX photo-oxidation experiments carried out in the European Photoreactor (EUPHORE. Photochemical Ozone Creation Potentials (POCP have been calculated for the 106 non-aromatic non-methane VOC in MCM v3 for idealised conditions appropriate to north-west Europe, using a photochemical trajectory model. The POCP values provide a measure of the relative ozone forming abilities of the VOC. Where applicable, the values are compared with
Li, Daniel
2014-01-01
This easy-to-understand tutorial provides you with several engaging projects that show you how to utilize Grunt with various web technologies, teaching you how to master build automation and testing with Grunt in your applications.If you are a JavaScript developer who is looking to streamline their workflow with build-automation, then this book will give you a kick start in fully understanding the importance of the described web technologies and automate their processes using Grunt.
法学研究生教育中的化学知识%Chemical Knowledge for the Master of Law Program
Institute of Scientific and Technical Information of China (English)
王元凤; 柴艳茹; 徐媛媛
2015-01-01
化学物证在侦查和审判过程中出现的频率越来越高，它在许多案件的解决过程中都扮演着重要的角色。充分论述了化学知识对于法学研究生教育的必要性，对于法庭化学课程的内容设置进行了详尽的阐述，并从自身的学习及教学经验出发对于法学研究生教育中法庭化学课程的授课技巧进行了全面的总结，以期为我国法学研究生教育的完善和司法文明的进步提供参考。%chemical evidence appears more and more frequently during criminal investigation and even in the courtroom. It plays an important role in case solving. Therefore,it is necessary to include chemical knowledge and chemical - related courses into master of law(LLM)program. In this paper,we discussed the necessity of forensic chemistry courses for graduate students in law;we explored the content of forensic chemistry as detailed as possible; we summarized comprehensively the teaching techniques of forensic chemistry for graduate students in law. The points discussed in this paper can provide some references for the improvement of LLM program and the increase of judicial civilization in china.
Directory of Open Access Journals (Sweden)
S. M. Saunders
2002-11-01
Full Text Available Kinetic and mechanistic data relevant to the tropospheric degradation of volatile organic compounds (VOC, and the production of secondary pollutants, have previously been used to define a protocol which underpinned the construction of a near-explicit Master Chemical Mechanism. In this paper, an update to the previous protocol is presented, which has been used to define degradation schemes for 107 non-aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3. The treatment of 18 aromatic VOC is described in a companion paper. The protocol is divided into a series of subsections describing initiation reactions, the reactions of the radical intermediates and the further degradation of first and subsequent generation products. Emphasis is placed on updating the previous information, and outlining the methodology which is specifically applicable to VOC not considered previously (e.g. a- and b-pinene. The present protocol aims to take into consideration work available in the open literature up to the beginning of 2001, and some other studies known by the authors which were under review at the time. Application of MCM v3 in appropriate box models indicates that the representation of isoprene degradation provides a good description of the speciated distribution of oxygenated organic products observed in reported field studies where isoprene was the dominant emitted hydrocarbon, and that the a-pinene degradation chemistry provides a good description of the time dependence of key gas phase species in a-pinene/NO_{X} photo-oxidation experiments carried out in the European Photoreactor (EUPHORE. Photochemical Ozone Creation Potentials (POCP have been calculated for the 106 non-aromatic non-methane VOC in MCM v3 for idealised conditions appropriate to north-west Europe, using a photochemical trajectory model. The POCP
Molecular finite-size effects in stochastic models of equilibrium chemical systems
Cianci, Claudia; Smith, Stephen; Grima, Ramon
2016-01-01
The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibriu...
Validity conditions for moment closure approximations in stochastic chemical kinetics
Energy Technology Data Exchange (ETDEWEB)
Schnoerr, David [School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR (United Kingdom); School of Informatics, University of Edinburgh, Edinburgh EH8 9LE (United Kingdom); Sanguinetti, Guido [School of Informatics, University of Edinburgh, Edinburgh EH8 9LE (United Kingdom); Grima, Ramon [School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR (United Kingdom)
2014-08-28
Approximations based on moment-closure (MA) are commonly used to obtain estimates of the mean molecule numbers and of the variance of fluctuations in the number of molecules of chemical systems. The advantage of this approach is that it can be far less computationally expensive than exact stochastic simulations of the chemical master equation. Here, we numerically study the conditions under which the MA equations yield results reflecting the true stochastic dynamics of the system. We show that for bistable and oscillatory chemical systems with deterministic initial conditions, the solution of the MA equations can be interpreted as a valid approximation to the true moments of the chemical master equation, only when the steady-state mean molecule numbers obtained from the chemical master equation fall within a certain finite range. The same validity criterion for monostable systems implies that the steady-state mean molecule numbers obtained from the chemical master equation must be above a certain threshold. For mean molecule numbers outside of this range of validity, the MA equations lead to either qualitatively wrong oscillatory dynamics or to unphysical predictions such as negative variances in the molecule numbers or multiple steady-state moments of the stationary distribution as the initial conditions are varied. Our results clarify the range of validity of the MA approach and show that pitfalls in the interpretation of the results can only be overcome through the systematic comparison of the solutions of the MA equations of a certain order with those of higher orders.
Directory of Open Access Journals (Sweden)
M. E. Jenkin
2003-01-01
Full Text Available Kinetic and mechanistic data relevant to the tropospheric degradation of aromatic volatile organic compounds (VOC have been used to define a mechanism development protocol, which has been used to construct degradation schemes for 18 aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3. This is complementary to the treatment of 107 non-aromatic VOC, presented in a companion paper. The protocol is divided into a series of subsections describing initiation reactions, the degradation chemistry to first generation products via a number of competitive routes, and the further degradation of first and subsequent generation products. Emphasis is placed on describing where the treatment differs from that applied to the non-aromatic VOC. The protocol is based on work available in the open literature up to the beginning of 2001, and some other studies known by the authors which were under review at the time. Photochemical Ozone Creation Potentials (POCP have been calculated for the 18 aromatic VOC in MCM v3 for idealised conditions appropriate to north-west Europe, using a photochemical trajectory model. The POCP values provide a measure of the relative ozone forming abilities of the VOC. These show distinct differences from POCP values calculated previously for the aromatics, using earlier versions of the MCM, and reasons for these differences are discussed.
Directory of Open Access Journals (Sweden)
M. E. Jenkin
2002-11-01
Full Text Available Kinetic and mechanistic data relevant to the tropospheric degradation of aromatic volatile organic compounds (VOC have been used to define a mechanism development protocol, which has been used to construct degradation schemes for 18 aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3. This is complementary to the treatment of 107 non-aromatic VOC, presented in a companion paper. The protocol is divided into a series of subsections describing initiation reactions, the degradation chemistry to first generation products via a number of competitive routes, and the further degradation of first and subsequent generation products. Emphasis is placed on describing where the treatment differs from that applied to the non-aromatic VOC. The protocol is based on work available in the open literature up to the beginning of 2001, and some other studies known by the authors which were under review at the time. Photochemical Ozone Creation Potentials (POCP have been calculated for the 18 aromatic VOC in MCM v3 for idealised conditions appropriate to north-west Europe, using a photochemical trajectory model. The POCP values provide a measure of the relative ozone forming abilities of the VOC. These show distinct differences from POCP values calculated previously for the aromatics, using earlier versions of the MCM, and reasons for these differences are discussed.
Ab initio studies of equations of state and chemical reactions of reactive structural materials
Zaharieva, Roussislava
subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated
Calculation of Equation of State of QCD at Finite Chemical Potential and Temperature
Institute of Scientific and Technical Information of China (English)
QIAO Qing-Peng; ZONG Hong-Shi; TANG Jian; HOU Feng-Yao; LI Xue-Qian; SUN Wei-Min; L(U) Xiao-Fu
2008-01-01
In this paper, using path integral techniques we derive a model-independent formula for the pressure density (μ, T) (or equivalently the partition function) of Quantum Chromodynamics (QCD), which gives the equation of state (EOS) of QCD at finite chemical potential and temperature. In this formula the pressure density (μ, T) consists of two terms: the first term (μ,T) T=0) is a #-independent (but T-dependent) constant; the second term is totally determined by G[μ, T] (p ωn) (the dressed quark propagator at finite μ and finite T), which contains all the nontrivial μ-dependence. Then, in the framework of the rainbow-ladder approximation of the Dyson-Schwinger (DS) approach and under the approximation of neglecting the μ-dependence of the dressed gluon propagator, we show that G[μ, T] (p, ωn) can be obtained from G[T] (p, ωn) (the dressed quark propagator at μ = 0) by the substitution ωn →ωn + iμ. This result facilitates numerical calculations considerably. By this result, once G[T](p, ωn) is known, one can determine the EOS of QCD under the above approximations (up to the additive term (μ, T)[T=0). Finally, a comparison of the present EOS of QCD and the EOS obtained in the previous literatures in the framework of the rainbow-ladder approximation of the DS approach is given. It is found that the EOS given in the previous literatures does not satisfy the thermodynamic relation p(μ, T) = T.
Chemical and physical FET-based sensors or variations on an equation
Olthuis, Wouter
2005-01-01
This paper exposes the continuous thread of Bergveld’s work: the model equation of the field-effect transistor (FET) derived and repeated in the theoretical section. Zooming in on some of the variables of this equation leads us to several of his important projects. A short description and typical re
Malkin, Tamsin L; Heard, Dwayne E; Hood, Christina; Stocker, Jenny; Carruthers, David; MacKenzie, Ian A; Doherty, Ruth M; Vieno, Massimo; Lee, James; Kleffmann, Jörg; Laufs, Sebastian; Whalley, Lisa K
2016-07-18
Air pollution is the environmental factor with the greatest impact on human health in Europe. Understanding the key processes driving air quality across the relevant spatial scales, especially during pollution exceedances and episodes, is essential to provide effective predictions for both policymakers and the public. It is particularly important for policy regulators to understand the drivers of local air quality that can be regulated by national policies versus the contribution from regional pollution transported from mainland Europe or elsewhere. One of the main objectives of the Coupled Urban and Regional processes: Effects on AIR quality (CUREAIR) project is to determine local and regional contributions to ozone events. A detailed zero-dimensional (0-D) box model run with the Master Chemical Mechanism (MCMv3.2) is used as the benchmark model against which the less explicit chemistry mechanisms of the Generic Reaction Set (GRS) and the Common Representative Intermediates (CRIv2-R5) schemes are evaluated. GRS and CRI are used by the Atmospheric Dispersion Modelling System (ADMS-Urban) and the regional chemistry transport model EMEP4UK, respectively. The MCM model uses a near-explicit chemical scheme for the oxidation of volatile organic compounds (VOCs) and is constrained to observations of VOCs, NOx, CO, HONO (nitrous acid), photolysis frequencies and meteorological parameters measured during the ClearfLo (Clean Air for London) campaign. The sensitivity of the less explicit chemistry schemes to different model inputs has been investigated: Constraining GRS to the total VOC observed during ClearfLo as opposed to VOC derived from ADMS-Urban dispersion calculations, including emissions and background concentrations, led to a significant increase (674% during winter) in modelled ozone. The inclusion of HONO chemistry in this mechanism, particularly during wintertime when other radical sources are limited, led to substantial increases in the ozone levels predicted
Malkin, Tamsin L; Heard, Dwayne E; Hood, Christina; Stocker, Jenny; Carruthers, David; MacKenzie, Ian A; Doherty, Ruth M; Vieno, Massimo; Lee, James; Kleffmann, Jörg; Laufs, Sebastian; Whalley, Lisa K
2016-07-18
Air pollution is the environmental factor with the greatest impact on human health in Europe. Understanding the key processes driving air quality across the relevant spatial scales, especially during pollution exceedances and episodes, is essential to provide effective predictions for both policymakers and the public. It is particularly important for policy regulators to understand the drivers of local air quality that can be regulated by national policies versus the contribution from regional pollution transported from mainland Europe or elsewhere. One of the main objectives of the Coupled Urban and Regional processes: Effects on AIR quality (CUREAIR) project is to determine local and regional contributions to ozone events. A detailed zero-dimensional (0-D) box model run with the Master Chemical Mechanism (MCMv3.2) is used as the benchmark model against which the less explicit chemistry mechanisms of the Generic Reaction Set (GRS) and the Common Representative Intermediates (CRIv2-R5) schemes are evaluated. GRS and CRI are used by the Atmospheric Dispersion Modelling System (ADMS-Urban) and the regional chemistry transport model EMEP4UK, respectively. The MCM model uses a near-explicit chemical scheme for the oxidation of volatile organic compounds (VOCs) and is constrained to observations of VOCs, NOx, CO, HONO (nitrous acid), photolysis frequencies and meteorological parameters measured during the ClearfLo (Clean Air for London) campaign. The sensitivity of the less explicit chemistry schemes to different model inputs has been investigated: Constraining GRS to the total VOC observed during ClearfLo as opposed to VOC derived from ADMS-Urban dispersion calculations, including emissions and background concentrations, led to a significant increase (674% during winter) in modelled ozone. The inclusion of HONO chemistry in this mechanism, particularly during wintertime when other radical sources are limited, led to substantial increases in the ozone levels predicted
Department of Veterans Affairs — As of June 28, 2010, the Master Veteran Index (MVI) database based on the enhanced Master Patient Index (MPI) is the authoritative identity service within the VA,...
Institute of Scientific and Technical Information of China (English)
任益充; 范洪义
2016-01-01
提出了研究原子演化的Ket-Bra纠缠态方法,并用此方法给出了原子主方程的Kraus算符形式的解。在得到此新解后,发现它和激光通道主方程的解形式相似,表现了光场算符a, a†与原子算符σ−,σ+之间具有某种超对称性。通过进一步的探讨,寻找到了Pauli算符的多种Bose表示。%We propose a new Ket-Bra entangled state (KBES) method to solve the master equation of finite-level system. The KBES method can convert the master equation into Schrödinger-like equation which is easier to solve than the master equation, and Schrödinger equation in a certain form can also be used to solve the Schrödinger-like equation. Thus the KBES method has a wider application range. In the paper, we mainly study the master equation of the two-level atom. The corresponding master equation is solved by the KBES method, and for the first time we obtain the opera-sum solution of the atom. Furthermore, we compare this result with the well known solution that describes the laser channel. There is much analogousness between both opera-sum solutions, which show that there is some supersymmetry between Bose creation-annihilation operator and upper-down transition operators of atom. Finally, we further analyze the supersymmetry between the bose and atom system, and find that the spin-up and spin-down operator can be represented by the creation and annihilation operator repectively, which can be achieved in infinite ways. It is easy to understand that the bose operator is infinite-level while the spin operator is two-level, thus the creation-annihilation operator is super-complete for the spin operator. Thus the representation is not unique, and all of this directly shows and proves the supersymmetry.
Thorne, Lawrence R
2011-01-01
I propose a novel approach to balancing equations that is applicable to all chemical-reaction equations; it is readily accessible to students via scientific calculators and basic computer spreadsheets that have a matrix-inversion application. The new approach utilizes the familiar matrix-inversion operation in an unfamiliar and innovative way; its purpose is not to identify undetermined coefficients as usual, but, instead, to compute a matrix null space (or matrix kernel). The null space then provides the coefficients that balance the equation. Indeed, the null space contains everything there is to know about balancing any chemical-reaction equation!
Master equation as a radial constraint
Hussain, Uzair; Kunduri, Hari K
2015-01-01
We revisit the problem of perturbations of Schwarzschild-AdS$_4$ black holes by using a combination of the Martel-Poisson formalism for perturbations of four-dimensional spherically symmetric spacetimes and the Kodama-Ishibashi formalism. We clarify the relationship between both formalisms and express the Brown-York-Balasubramanian-Krauss boundary stress-energy tensor, $\\bar{T}_{\\mu\
Family name distributions: Master equation approach
Baek, Seung Ki; Kiet, Hoang Anh Tuan; Kim, Beom Jun
2008-01-01
Although cumulative family name distributions in many countries exhibit power-law forms, there also exist counterexamples. The origin of different family name distributions across countries is discussed analytically in the framework of a population dynamics model. Combined with empirical observations made, it is suggested that those differences in distributions are closely related with the rate of appearance of new family names.
Validity conditions for moment closure approximations in stochastic chemical kinetics
Schnoerr, David; Sanguinetti, Guido; Grima, Ramon
2014-01-01
Approximations based on moment-closure (MA) are commonly used to obtain estimates of the mean molecule numbers and of the variance of fluctuations in the number of molecules of chemical systems. The advantage of this approach is that it can be far less computationally expensive than exact stochastic simulations of the chemical master equation. Here, we numerically study the conditions under which the MA equations yield results reflecting the true stochastic dynamics of the system. We show tha...
Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application
Zhang, Haiquan; Yuan, Yanping; Sun, Qingrong; Cao, Xiaoling; Sun, Liangliang
2016-01-01
Green CaCl2-based chemical sorbent has been widely used in sorption refrigeration, air purification and air desiccation. Methods to improve the sorption rate have been extensively investigated, but the corresponding theoretical formulations have not been reported. In this paper, a sorption system of solid-liquid coexistence is established based on the hypothesis of steady-state sorption. The combination of theoretical analysis and experimental results indicates that the system can be described by steady-state sorption process. The steady-state sorption equation, μ = (η − γT) , was obtained in consideration of humidity, temperature and the surface area. Based on engineering applications and this equation, two methods including an increase of specific surface area and adjustment of the critical relative humidity (γ) for chemical sorbents, have been proposed to increase the sorption rate. The results indicate that the CaCl2/CNTs composite with a large specific surface area can be obtained by coating CaCl2 powder on the surface of carbon nanotubes (CNTs). The composite reached sorption equilibrium within only 4 h, and the sorption capacity was improved by 75% compared with pure CaCl2 powder. Furthermore, the addition of NaCl powder to saturated CaCl2 solution could significantly lower the solution’s γ. The sorption rate was improved by 30% under the same environment. PMID:27682811
Mastering mathematics geometry & measures
Various
2014-01-01
Deliver outstanding lessons that build fluency, problem-solving and mathematical reasoning skills to enable sustained progress at Key Stage 3, in preparation for GCSE. Mastering Mathematics provides flexible online and print teaching and learning resources. The service focuses on strands within the curriculum to improve progression throughout Secondary Mathematics . Mastering Mathematics Student Books and Whiteboard eTextbooks are organised into progression strands in line with Mastering Mathematics Teaching and Learning Resources:. - Enable students to identify appropriate remediation or exte
Masters Colors -meikkisarjan lanseeraus
Muhonen, Veera; Renlund, Siri
2013-01-01
Toiminnallisen opinnäytetyön tarkoituksena oli suunnitella ja toteuttaa Masters Colors –meikkisarjan lanseeraustoimenpiteet. Opinnäytetyö toteutettiin yhteistyössä hoitolakosmetiikan maahantuontiyritys Benecom Oy:n kanssa. Yrityksen päätoimisena maahantuontisarjana toimii Guinot-hoitolakosmetiikkasarja, jonka lisäksi Benecom Oy tuo maahan Guinot-konsernin Masters Colors –meikkisarjaa sekä Cosmecology –kosmetiikkaa. Masters Colors on kehitetty laajentamaan Guinot-kauneushoitoloiden palveluvali...
Mastering mathematics statistics & probability
Various
2014-01-01
Mastering Mathematics provides flexible online and print teaching and learning resources. The service focuses on strands within the curriculum to improve progression throughout Secondary Mathematics. Mastering Mathematics Student Books and eBooks are organised into progression strands in line with Mastering Mathematics Teaching and Learning Resources:. - Enable students to identify appropriate remediation or extension steps they need in order to progress, through easy to follow progression charts. - Clear explanations of the tools needed for the chapter followed by questions that develop fluen
Various
2014-01-01
Mastering Mathematics provides flexible online and print teaching and learning resources. The service focuses on strands within the curriculum to improve progression throughout Secondary Mathematics. Mastering Mathematics Student Books and Whiteboard eTextbooks are organised into progression strands in line with Mastering Mathematics Teaching and Learning Resources:. - Enable students to identify appropriate remediation or extension steps they need in order to progress, through easy to follow progression charts. - Clear explanations of the tools needed for the chapter followed by questions tha
MASTER TELEVISION ANTENNA SYSTEM.
Rhode Island State Dept. of Education, Providence.
SPECIFICATIONS FOR THE FURNISHING AND INSTALLATION OF TELEVISION MASTER ANTENNA SYSTEMS FOR SECONDARY AND ELEMENTARY SCHOOLS ARE GIVEN. CONTRACTOR REQUIREMENTS, EQUIPMENT, PERFORMANCE STANDARDS, AND FUNCTIONS ARE DESCRIBED. (MS)
Interior design. Mastering the master plan.
Mesbah, C E
1995-10-01
Reflecting on the results of the survey, this proposed interior design master planning process addresses the concerns and issues of both CEOs and facility managers in ways that focus on problem-solving strategies and methods. Use of the interior design master plan process further promotes the goals and outcomes expressed in the survey by both groups. These include enhanced facility image, the efficient selection of finishes and furnishings, continuity despite staff changes, and overall savings in both costs and time. The interior design master plan allows administrators and facility managers to anticipate changes resulting from the restructuring of health care delivery. The administrators and facility managers are then able to respond in ways that manage those changes in the flexible and cost-effective manner they are striving for. This framework permits staff members to concentrate their time and energy on the care of their patients--which is, after all, what it's all about.
Master of science as change masters
DEFF Research Database (Denmark)
Holgaard, Jette Egelund; Bøgelund, Pia; Kolmos, Anette;
2006-01-01
Engineers are the driving forces of technological development – how do engineers obtain the relevant skills in order to fulfil this position? In this chapter, we ask whether the concept of change master could be a possible future direction for engineering skills. Developed by Kanter, the change...... master concept stresses the importance of creativity, innovation, leadership, and change. In this chapter, this concept will be analyzed and elaborated on partly in relation to the concepts of Bildung and Skill and partly to three different notions of engineering practice in technological innovation...
Institute of Scientific and Technical Information of China (English)
YUQIAN
2004-01-01
Celestial burial is worshipped in Tibet as the highest pursuit of life. Of three elements indispensable for celestial burial-celestial rock (also known as altar), cinereous vultures, and masters of celestial burial, celestial burial masters are the most mysteriously important.
Linear Equations: Equivalence = Success
Baratta, Wendy
2011-01-01
The ability to solve linear equations sets students up for success in many areas of mathematics and other disciplines requiring formula manipulations. There are many reasons why solving linear equations is a challenging skill for students to master. One major barrier for students is the inability to interpret the equals sign as anything other than…
Morii, Youhi; Terashima, Hiroshi; Koshi, Mitsuo; Shimizu, Taro; Shima, Eiji
2016-10-01
We herein propose a fast and robust Jacobian-free time integration method named as the extended robustness-enhanced numerical algorithm (ERENA) to treat the stiff ordinary differential equations (ODEs) of chemical kinetics. The formulation of ERENA is based on an exact solution of a quasi-steady-state approximation that is optimized to preserve the mass conservation law through use of a Lagrange multiplier method. ERENA exhibits higher accuracy and faster performance in homogeneous ignition simulations compared to existing popular explicit and implicit methods for stiff ODEs such as VODE, MTS, and CHEMEQ2. We investigate the effects of user-specified threshold values in ERENA, to provide trade-off information between the accuracy and the computational cost.
Berthoumieux, Hélène
2016-01-01
Theoretical and experimental studies have shown that the fluctuations of in vivo systems break the fluctuation-dissipation theorem. One can thus ask what information is contained in the correlation functions of protein concentrations and how they relate to the response of the reactive network to a perturbation. Answers to these questions are of prime importance to extract meaningful parameters from the in vivo fluorescence correlation spectroscopy data. In this paper we study the fluctuations of the concentration of a reactive species involved in a cyclic network that is in a non-equilibrium steady state perturbed by a noisy force, taking into account both the breaking of detailed balance and extrinsic noises. Using a generic model for the network and the extrinsic noise, we derive a Chemical Langevin Equation that describes the dynamics of the system, we determine the expressions of the correlation functions of the concentrations, estimate the deviation of the fluctuation-dissipation theorem and the range of...
Solving stochastic chemical kinetics by Metropolis Hastings sampling
Moosavi, Azam S. Zavar; Tranquilli, Paul; Sandu, Adrian
2014-01-01
This study considers using Metropolis-Hastings algorithm for stochastic simulation of chemical reactions. The proposed method uses SSA (Stochastic Simulation Algorithm) distribution which is a standard method for solving well-stirred chemically reacting systems as a desired distribution. A new numerical solvers based on exponential form of exact and approximate solutions of CME (Chemical Master Equation) is employed for obtaining target and proposal distributions in Metropolis-Hastings algori...
DEFF Research Database (Denmark)
2006-01-01
Development and content of an international Master in Urban Quality development and management. The work has been done in a cooperation between Berlage institut, Holland; Chulalongkorn University, Thailand; Mahidol University, Thailand; University Kebangsaan Malaysia, Malaysia; og Aalborg...
Chao, Xu Jr
2012-01-01
This master thesis deals with the research question of the changes of terrorism, especially after “9, 11”, what the role of mass media plays and how internet is changing terrorism both in international society and China so far.
Cardoso, Ciro
2014-01-01
This book is designed for all levels of Lumion users; from beginner to advanced, you will find useful insights and professional techniques to improve and develop your skills in order to fully control and master Lumion.
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-06-01
This document is a master list of acronyms and other abbreviations that are used by or could be useful to, the personnel at Los Alamos National Laboratory. Many specialized and well-known abbreviations are not included in this list.
Energy Technology Data Exchange (ETDEWEB)
Clifford, David J.; Harris, James M.
2014-12-01
This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris
The objective of this study was to cross-validate prediction equations to estimate the concentration of gross energy (GE), digestible energy (DE), and metabolizable energy (ME) among sources of corn distillers dried grains with solubles (DDGS) with variable chemical composition in growing pigs. Publ...
A Master Action for D=11 Supergravity in the Component Formulation
Michishita, Yoji
2016-01-01
We give a solution to the classical master equation of D=11 supergravity in the conventional component formulation. Based on a careful investigation of the symmetry algebra including terms proportional to the equation of motion, we construct an explicit expression of the master action in an order-by-order manner.
Fundamental aspects of plasma chemical physics kinetics
Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino
2016-01-01
Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...
Thorn, Alan
2015-01-01
Mastering Unity Scripting is an advanced book intended for students, educators, and professionals familiar with the Unity basics as well as the basics of scripting. Whether you've been using Unity for a short time or are an experienced user, this book has something important and valuable to offer to help you improve your game development workflow.
Hvorfor master i medborgerskab?
DEFF Research Database (Denmark)
Korsgaard, Ove
2002-01-01
Danmarks Pædagogiske Universitet planlægger i samarbejde med Syddansk Universitet at udbyde en master i medborgerskab: etisk og demokratisk dannelse. Artiklens forfatter gør rede for nogle af de tanker, der ligger bag uddannelsen, og belyser, hvorfor medborgerskab er blevet et nøglebegreb i nyere...
Kanter, Rosabeth Moss
1984-01-01
The change masters are identified as corporate managers who have the resources and the vision to effect an economic renaissance in the United States. Strategies for change should emphasize horizontal as well as vertical communication, and should reward enterprise and innovation at all levels. (JB)
Groner, Loiane
2013-01-01
Designed to be a structured guide, Mastering Ext JS is full of engaging examples to help you learn in a practical context.This book is for developers who are familiar with using Ext JS who want to augment their skills to create even better web applications.
Clemson Univ., SC. Vocational Education Media Center.
This document is a collection of 43 overhead transparency masters to be used as teaching aids in a course of study involving soils such as geology, agronomy, hydrology, earth science, or land use study. Some transparencies are in color. Selected titles of transparencies may give the reader a better understanding of the graphic content. Titles are:…
DEFF Research Database (Denmark)
Laursen, Steffen
2010-01-01
high status type right above the head of each spring. These tombs of the masters of the springs are distinguished by their larger size and vertical shaft entrance. It is argued that this particular strategy of power was employed after population growth had intensified conflicts over the rights...
Are safe results obtained when the PC-SAFT equation of state is applied to ordinary pure chemicals?
DEFF Research Database (Denmark)
Privat, Romain; Gani, Rafiqul; Jaubert, Jean-Noël
2010-01-01
The PC-SAFT equation of state is a very popular and promising model for fluids that employs a complicated pressure-explicit mathematical function (and can therefore not be solved analytically at a specified pressure and temperature, contrary to classical cubic equations). In this work, we...
Comparison of different moment-closure approximations for stochastic chemical kinetics
Schnoerr, David; Sanguinetti, Guido; Grima, Ramon
2015-01-01
In recent years, moment-closure approximations (MAs) of the chemical master equation have become a popular method for the study of stochastic effects in chemical reaction systems. Several different MA methods have been proposed and applied in the literature, but it remains unclear how they perform with respect to each other. In this paper, we study the normal, Poisson, log-normal, and central-moment-neglect MAs by applying them to understand the stochastic properties of chemical systems whose...
Quantum logics and chemical kinetics
Ivanov, C. I.
1981-06-01
A statistical theory of chemical kinetics is presented based on the quantum logical concept of chemical observables. The apparatus of Boolean algebra B is applied for the construction of appropriate composition polynomials referring to any stipulated arrangement of the atomic constituents. A physically motivated probability measure μ( F) is introduced on the field B of chemical observables, which considers the occurrence of the yes response of a given F ɛ B. The equations for the time evolution of the species density operators and the master equations for the corresponding number densities are derived. The general treatment is applied to a superposition of elementary substitution reactions (AB) α + C ⇄ (AC) β + B. The expressions for the reaction rate coefficients are established.
Clark, Kelly
2004-01-01
In painting and drawing classes, it is typical to ask students to work directly from a master. It is one way to study composition techniques, and to become familiar with classical style firsthand. In museums, easels are set up as artists work, not in an attempt to copy or plagiarize, but in an attempt to be part of history by participating in it.…
Neeraj, Nishant
2013-01-01
Mastering Apache Cassandra is a practical, hands-on guide with step-by-step instructions. The smooth and easy tutorial approach focuses on showing people how to utilize Cassandra to its full potential.This book is aimed at intermediate Cassandra users. It is best suited for startups where developers have to wear multiple hats: programmer, DevOps, release manager, convincing clients, and handling failures. No prior knowledge of Cassandra is required.
Kuc, Rafal
2013-01-01
A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.
Transparency masters for mathematics revealed
Berman, Elizabeth
1980-01-01
Transparency Masters for Mathematics Revealed focuses on master diagrams that can be used for transparencies for an overhead projector or duplicator masters for worksheets. The book offers information on a compilation of master diagrams prepared by John R. Stafford, Jr., audiovisual supervisor at the University of Missouri at Kansas City. Some of the transparencies are designed to be shown horizontally. The initial three masters are number lines and grids that can be used in a mathematics course, while the others are adaptations of text figures which are slightly altered in some instances. The
Keller, Eric
2010-01-01
A beautifully-packaged, advanced reference on the very latest version of Maya. If you already know the basics of Maya, the latest version of this authoritative book takes you to the next level. From modeling, texturing, animation, and visual effects to high-level techniques for film, television, games, and more, this book provides professional-level Maya instruction. With pages of scenarios and examples from some of the leading professionals in the industry, this book will help you master the entire CG production pipeline.: Provides professional-level instruction on Maya, the industry-leading
Palamar, Todd
2011-01-01
The exclusive, official guide to the very latest version of Maya Get extensive, hands-on, intermediate to advanced coverage of Autodesk Maya 2012, the top-selling 3D software on the market. If you already know Maya basics, this authoritative book takes you to the next level. From modeling, texturing, animation, and visual effects to high-level techniques for film, television, games, and more, this book provides professional-level Maya instruction. With pages of scenarios and examples from some of the leading professionals in the industry, author Todd Palamar will help you master the entire CG
DEFF Research Database (Denmark)
Christensen, Andreas Aagaard
2013-01-01
as Europeans. This fact makes their success in forging cultural landscapes from the new land all the more interesting for students of environmental history. As an example of such processes, New Zealand illustrates the way human newcomers learn to master an environment, change the land and its resources...... resources which change as the society itself changes. Newcomers to any environment meet it with a set of technologies and a culture which they bring with them and which changes continuously, as it aligns with experience gathered in that environment. The environmental histories told from a multiplicity...
DEFF Research Database (Denmark)
Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht;
2006-01-01
The cubic-plus-association (CPA) equation of state has been previously applied to vapor-liquid, liquid-liquid, and solid-liquid equilibria of mixtures containing associating compounds (water, alcohols, glycols, acids, amines). Although some high-pressure applications have been presented, emphasis...
Energy Technology Data Exchange (ETDEWEB)
Antila, E.; Kaario, O.; Lahtinen, T. (and others)
2004-07-01
This is the final report of the research project 'Mastering the Diesel Process'. The project has been a joint research effort of the Helsinki University of Technology, the Tampere University of Technology, the Technical Research Centre of Finland, and the Aabo Akademi University. Moreover, the contribution of the Michigan Technological University has been important. The project 'Mastering the Diesel Process' has been a computational research project on the physical phenomena of diesel combustion. The theoretical basis of the project lies on computational fluid dynamics. Various submodels for computational fluid dynamics have been developed or tested within engine simulation. Various model combinations in three diesel engines of different sizes have been studied. The most important submodels comprise fuel spray drop breakup, fuel evaporation, gas-fuel interaction in the spray, mixing model of combustion, heat transfer, emission mechanisms. The boundary conditions and flow field modelling have been studied, as well. The main simulation tool have been Star-CD. KIVA code have been used in the model development, as well. By the help of simulation, we are able to investigate the effect of various design parameters or operational parameters on diesel combustion and emission formation. (orig.)
Bommier, Véronique
2016-06-01
Context. The spectrum of the linear polarization, which is formed by scattering and observed on the solar disk close to the limb, is very different from the intensity spectrum and thus able to provide new information, in particular about anisotropies in the solar surface plasma and magnetic fields. In addition, a large number of lines show far wing polarization structures assigned to partial redistribution (PRD), which we prefer to denote as Rayleigh/Raman scattering. The two-level or two-term atom approximation without any lower level polarization is insufficient for many lines. Aims: In the previous paper of this series, we presented our theory generalized to the multilevel and multiline atom and comprised of statistical equilibrium equations for the atomic density matrix elements and radiative transfer equation for the polarized radiation. The present paper is devoted to applying this theory to model the second solar spectrum of the Na i D1 and D2 lines. Methods: The solution method is iterative, of the lambda-iteration type. The usual acceleration techniques were considered or even applied, but we found these to be unsuccessful, in particular because of nonlinearity or large number of quantities determining the radiation at each depth. Results: The observed spectrum is qualitatively reproduced in line center, but the convergence is yet to be reached in the far wings and the observed spectrum is not totally reproduced there. Conclusions: We need to investigate noniterative resolution methods. The other limitation lies in the one-dimensional (1D) atmosphere model, which is unable to reproduce the intermittent matter structure formed of small loops or spicules in the chromosphere. This modeling is rough, but the computing time in the presence of hyperfine structure and PRD prevents us from envisaging a three-dimensional (3D) model at this instant.
DEFF Research Database (Denmark)
Yan, Wei; Kontogeorgis, Georgios; Stenby, Erling Halfdan
2009-01-01
The complex phase equilibrium between reservoir fluids and associating compounds like water, methanol and glycols has become more and more important as the increasing global energy demand pushes the oil industry to target reservoirs with extreme or complicated conditions, such as deep or offshore...... reservoirs. Conventional equation of state (EoS) with classical mixing rules cannot satisfactorily predict or even correlate the phase equilibrium of those systems. A promising model for such systems is the Cubic-Plus-Association (CPA) EoS, which has been successfully applied to well-defined systems...
MASTER: optical transients without history
Balanutsa, P.; Lipunov, V.; Gorbovskoy, E.; Buckley, D.; Tiurina, N.; Kornilov, V.; Kuznetsov, A.; Gorbunov, I.; Vlasenko, D.; Popova, E.; Shumkov, V.; Potter, S.; Kotze, M.; Rebolo, R.; Serra-Ricart, M.; Lodieu, N.; Israelian, G.; Sergienko, Yu.; Gabovich, A.; Yurkov, V.; Tlatov, A.; Senik, V.; Dormidontov, D.; Gress, O.; Budnev, N.; Krushinsky, K. Ivanov V.
2015-10-01
MASTER-SAAO auto-detection system ( Lipunov et al., Advances in Astronomy, MASTER Global Robotic Net, 2010 ) discovered OT source at (RA, Dec) = 06h 09m 38.37s -58d 21m 58.2s on 2015-10-05.07265 UT. The OT unfiltered magnitude is 16.4 (limit 20.3m).
Lambert, Chip
2015-01-01
You've started down the path of jQuery Mobile, now begin mastering some of jQuery Mobile's higher level topics. Go beyond jQuery Mobile's documentation and master one of the hottest mobile technologies out there. Previous JavaScript and PHP experience can help you get the most out of this book.
Institute of Scientific and Technical Information of China (English)
肖华茵; 肖新成
2015-01-01
硕士学位论文的质量不仅是硕士研究生个人写作与努力的行为,而且与导师的指导作用、学校的科研条件和学科发展水平、研究生培养管理机制等密切相关.论文在相关文献的基础上,梳理了硕士学位论文质量的相关影响因素,利用江西省部分高校硕士生和硕士生导师的调查数据,构建结构方程模型,识别影响硕士学位论文质量的6个关键影响因素.研究结果表明:学术基础、学术意识和学习态度是硕士研究生自身因素的主要影响因子;论文的盲评和学位预答辩是评审与答辩制度的主要影响因子;前沿学科、文献资源和科研经费是学科发展水平与科研条件的主要影响因子;生源质量和培养方式是选拔与培养机制的主要影响因子;团队学术报告和学习氛围是学术氛围的主要影响因子;导师的责任意识是导师因素的重要影响因子.基于以上结论,论文最后提出从关键影响因素入手,提升硕士学位论文质量,进而提高硕士为研究生的教育质量.%Master's degree thesis quality is not only the behavior of individual writing and hard work,but also closely related to the guiding role of the teacher,the school's scientific research condition and the development level of the discipline,the graduate students training management mechanism. This paper summarizes the relevant factors which affect master's degree thesis quality,constructs the structural equation model and identifies key factors affect-ing the quality of master's degree thesis based on the surveys data of the Jiangxi Province by the review of the rele-vant literature. The research results show that the academic foundation,academic awareness and learning attitude are the main factors of influencing postgraduates' own factors. The anonymous thesis judgment and the degree of the pre defense are the main factors affecting the evaluation and defense system. Frontier science
Learning profiles of Master students
DEFF Research Database (Denmark)
Sprogøe, Jonas; Hemmingsen, Lis
2005-01-01
Master education as a part of lifelong learning/education has over the last years increased in Denmark. Danish Universities now offer more than110 different programmes. One of the characteristics of the master education is that the students get credits for their prior learning and practical work ...... and programme designs relate to and support the learning profiles and learning styles of the master students. In other words: What are the consequences of the students' learning styles in terms of planning and teaching in the master programme?...... experiences, and during the study/education theory and practise is combined. At the Master of Adult Learning and Human Resource Development, one of DPU´s master programmes, the students have a very diverse background and have many different experiences and practises. Since the first programme was introduced...... at DPU in 2001 several evaluations and research have been carried out on several topics relating to form, content, and didactics, but one important focus is missing: the research about the psychological profile and learning style of the master student. Knowledge is lacking on how teaching methods...
Medical Service
2002-01-01
It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546
Beaugelin-Seiller, K.; Garnier-Laplace, J.; Gilbin, R.; Adam, C.
2008-08-01
Uranium is an element that has the solely characteristic to behave as significant hazard both from a chemical and radiological point of view. Exclusively of natural occurrence, its distribution into the environment may be influenced by human activities, such as nuclear fuel cycle, military use of depleted uranium, or coal and phosphate fertilizer use, which finally may impact freshwater ecosystems. Until now, the associated environmental impact and risk assessments were conducted separately. We propose here to apply the same methodology to evaluate the ecological risk due to potential chemotoxicity and radiotoxicity of uranium. This methodology is articulated into the classical four steps (EC, 2003: problem formulation, effect and exposure analysis, risk characterisation). The problem formulation dealt both with uranium viewed as a chemical element and as the three isotopes 234, 235 and 238 of uranium and their main daughters. Then, the exposure analysis of non-human species was led on the basis of a common conceptual model of the fluxes occurring in freshwater ecosystems. No-effect values for the ecosystem were derived using the same effect data treatment in parallel. A Species Sensitivity Distribution was fitted : (1) to the ecotoxicity data sets illustrating uranium chemotoxicity and allowing the estimation of a Predicted-No-Effect-Concentration for uranium in water expressed in μg/L; (2) to radiotoxicity effect data as it was done within the ERICA project, allowing the estimation of a Predicted No-Effect-Dose-Rate (in μGyṡh-1). Two methods were then applied to characterize the risk to the ecosystem: a screening method using the risk quotient approach, involving for the radiological aspect back calculation of the water limiting concentration from the PNEDR for each isotope taken into account and a probabilistic risk assessment. A former uranium ore mining case-study will help in demonstrating the application of the whole methodology.
Enhanced Master Station History Report
National Oceanic and Atmospheric Administration, Department of Commerce — The Enhanced Master Station History Report (EMSHR) is a compiled list of basic, historical information for every station in the station history database, beginning...
STS-107 Master Experiment List
2002-12-01
A master list of the various experiments conducted aboard the STS-107 Space Mission is presented. The topics include: 1) Biology; 2) Earth and Space Sciences; 3) Physical Sciences; 4) Space Product Development; and 6) Technology Development.
DEFF Research Database (Denmark)
Danielsen, Oluf
2004-01-01
The Master in ICT and Learning (MIL)was started in 2000, and it is owned in collaboration by five Danish universities. It is an accredited virtual part-time 2-year education. MIL is unique in that it builds on the pedagogical framework of project pedagogy and is based in virtual collaboration....... It is organized around ICT and Learning. This is illustrated through a presentation of the study program, the four modules, the projects and the master thesis....
Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels
Lee, Ki-Hyoung; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon
2010-08-01
The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T0 determination for the tempered martensitic SA508 Gr.4N steels.
Mastering IDEAScript the definitive guide
Mueller, John Paul
2011-01-01
With approximately 44,000 users in the U.S. and Canada, as well as 42,000 in Europe, IDEA software has become a leading provider of data analysis software for use by auditors and accountants. Written to provide users with a quick access guide for optimal use of IDEAScript, Mastering IDEAScript: The Definitive Guide is IDEA's official guide to mastering IDEAScript, covering essential topics such as Introducing IDEAScript, Understanding the Basics of IDEAScript Editor, Designing Structured Applications, Understanding IDEA Databases and much more. For auditors, accountants and controllers.
Advanced light source master oscillator
International Nuclear Information System (INIS)
The Master Oscillator of the Advanced Light Source operates at a frequency of 499.654 MHz which is the 328th harmonic of the storage ring. The oscillator is capable of providing up to a maximum of ± 500 KHz frequency deviation for various experimental purposes. Provisions for external signal injection as well as using an external signal source have been designed into the unit. A power distribution system has also been included to provide signals for various parts of the ALS machine and user requirements. The Master Oscillator is made up with modules housed in a Euro chassis. 4 refs., 7 figs
Mastering Ninject for dependency injection
Baharestani, Daniel
2013-01-01
Mastering Ninject for Dependency Injection teaches you the most powerful concepts of Ninject in a simple and easy-to-understand format using lots of practical examples, diagrams, and illustrations.Mastering Ninject for Dependency Injection is aimed at software developers and architects who wish to create maintainable, extensible, testable, and loosely coupled applications. Since Ninject targets the .NET platform, this book is not suitable for software developers of other platforms. Being familiar with design patterns such as singleton or factory would be beneficial, but no knowledge of depende
Constructing stochastic models from deterministic process equations by propensity adjustment
Directory of Open Access Journals (Sweden)
Wu Jialiang
2011-11-01
Full Text Available Abstract Background Gillespie's stochastic simulation algorithm (SSA for chemical reactions admits three kinds of elementary processes, namely, mass action reactions of 0th, 1st or 2nd order. All other types of reaction processes, for instance those containing non-integer kinetic orders or following other types of kinetic laws, are assumed to be convertible to one of the three elementary kinds, so that SSA can validly be applied. However, the conversion to elementary reactions is often difficult, if not impossible. Within deterministic contexts, a strategy of model reduction is often used. Such a reduction simplifies the actual system of reactions by merging or approximating intermediate steps and omitting reactants such as transient complexes. It would be valuable to adopt a similar reduction strategy to stochastic modelling. Indeed, efforts have been devoted to manipulating the chemical master equation (CME in order to achieve a proper propensity function for a reduced stochastic system. However, manipulations of CME are almost always complicated, and successes have been limited to relative simple cases. Results We propose a rather general strategy for converting a deterministic process model into a corresponding stochastic model and characterize the mathematical connections between the two. The deterministic framework is assumed to be a generalized mass action system and the stochastic analogue is in the format of the chemical master equation. The analysis identifies situations: where a direct conversion is valid; where internal noise affecting the system needs to be taken into account; and where the propensity function must be mathematically adjusted. The conversion from deterministic to stochastic models is illustrated with several representative examples, including reversible reactions with feedback controls, Michaelis-Menten enzyme kinetics, a genetic regulatory motif, and stochastic focusing. Conclusions The construction of a stochastic
A novel method for fabricating polydimethylsiloxane microfluidic chip master molds
Institute of Scientific and Technical Information of China (English)
GAN Ting-ting; XIA Zhi-ning; CHEN Hua; YU Yan-lin
2009-01-01
We proposed a novel method of fabricating polydimethylsiloxane (PDMS) microfluidic chip polymer master molds in this paper. The method mainly includes two steps. First, a stainless steel slice was laser etched to form a metal model. Then, the organic solution of poly(methyl methacrylate) (PMMA) was casted onto the metal model to fabricate the PMMA master which subsequently would be used to fabricate PDMS chips. We systematically researched different laser parameters influencing the surface status of microchannels and obtained optimized etching parameters. We investigated and optimized the organic solution composition of PMMA while casting chip masters, and developed a method to form fine polymer masters using two different viscosity solutions to cast the model in turn, and studied the repeatable replication. Then, we investigated physical performance of this chip and evaluated the practicability by analyzing Rhodamine B. Compared with present methods, the proposed method does not need photolithography on photoresistant and chemical etching. The entire fabricating progress is simple, fast, low-cost and can be controlled easily. Only several minutes are required to make a metal model, 3 hours for a PMMA master, and one day for PDMS chips.
Master-slave micromanipulator method
Energy Technology Data Exchange (ETDEWEB)
Morimoto, A.K.; Kozlowski, D.M.; Charles, S.T.; Spalding, J.A.
1999-12-14
A method is disclosed based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be remotized by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.
Pit Profile Simulation for HD DVD Mastering Process
Yamamoto, Ryousuke; Matsumaru, Masaaki; Nakamura, Naomasa
2007-06-01
We constructed an HD DVD mastering process simulator on the basis of the cell removal model. In the exposure process, we simulated the exposure profile in the photoresist film. In the development process, we defined the density and development rate of the unit cell. We carried out iterative calculation for each unit cell dissolution. The development rate was approximated as the function of the exposure intensity profile. From the results, we were able to simulate the three-dimension (3D) pit profiles of HD DVD-ROM (read only memory). We clarified that our development rate equation is similar to Hirai et al. and Trefonas and Daniels’ type equation in semiconductor lithography.
Adequate bases of phase space master integrals for $gg \\to h$ at NNLO and beyond
Höschele, Maik; Ueda, Takahiro
2014-01-01
We study master integrals needed to compute the Higgs boson production cross section via gluon fusion in the infinite top quark mass limit, using a canonical form of differential equations for master integrals, recently identified by Henn, which makes their solution possible in a straightforward algebraic way. We apply the known criteria to derive such a suitable basis for all the phase space master integrals in afore mentioned process at next-to-next-to-leading order in QCD and demonstrate that the method is applicable to next-to-next-to-next-to-leading order as well by solving a non-planar topology. Furthermore, we discuss in great detail how to find an adequate basis using practical examples. Special emphasis is devoted to master integrals which are coupled by their differential equations.
Adequate bases of phase space master integrals for gg → h at NNLO and beyond
Höschele, Maik; Hoff, Jens; Ueda, Takahiro
2014-09-01
We study master integrals needed to compute the Higgs boson production cross section via gluon fusion in the infinite top quark mass limit, using a canonical form of differential equations for master integrals, recently identified by Henn, which makes their solution possible in a straightforward algebraic way. We apply the known criteria to derive such a suitable basis for all the phase space master integrals in afore mentioned process at next-to-next-to-leading order in QCD and demonstrate that the method is applicable to next-to-next-to-next-to-leading order as well by solving a non-planar topology. Furthermore, we discuss in great detail how to find an adequate basis using practical examples. Special emphasis is devoted to master integrals which are coupled by their differential equations.
PROFESSIONAL MASTER AND ITS CHALLENGES
Directory of Open Access Journals (Sweden)
Lydia Masako Ferreira
2015-01-01
Full Text Available Objective: To describe the history, origin, objectives, characteristics, implications, the questions of the evaluation form and some examples of the Professional Masters (MP, to differentiate the Academic Master, and identify the challenges for the next quadrennial assessment. Methods: The CAPES site on Professional Masters and documents and meeting area of reports from 2004 to 2013 of Medicine III were read as well as the reports and the sub-page of the area in Capes site. The data relating to the evaluation process and the Scoreboard of the other areas were computed and analyzed. From these data it was detected the challenges of Medicine III for the next four years (2013-2016. Results: The creation of the Professional Master is very recent in Medicine III and no Professional Master of Medicine III course was evaluated yet. Were described the objectives, assumptions, characteristics, motivations, the possibilities, the feasibility, the profile of the students, the faculty, the curriculum, funding, intellectual production, social inclusion, the general requirements of Ordinance No. 193/2011 CAPES and some examples of proposals, technological lines of scientific activities, partnerships and counterparties. The evaluation form of the MP was discussed, the need for social, economic and political intellectual production and the differences with the MA. It was also reported the global importance of the MP and its evolution in Brazil. From the understanding of the MP, Medicine III outlined some challenges and goals to be developed in the 2013-2016 quadrennium. Conclusion: Medicine III understood the MP as a new technological scientific horizon within the strict sensu post-graduate and full consistency with the area.
Evolution of Master Planning of Tianjin
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>1.Review on previous master planning of Tianjin From 1953 to 1999,with thanks to the great attention of the Municipal Government of Tianjin to the work of master planning,there had been 21 draft master plans finished successively for Tianjin,
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
At the beginning of 16th century, mathematicians found it easy to solve equations of the first degree(linear equations, involving x) and of the second degree(quadratic equatiorts, involving x2). Equations of the third degree(cubic equations, involving x3)defeated them.
Konseptutvikling av frangible flyplass master
Storhaug, Thomas Angell
2014-01-01
GJennom å studere rapporter og dokumenter rundt brekkbare flyplassmaster prøver denne teksten å foreslå metoder for å bygge en Finite Element Analysis modell for å teste flyplass master mot ICAO's krave til brekkbarhet. Dette gjøres ved å studere ICAO's krav, samt studere eksisterende løsninger og tester utført på disse mastene.
Elliptic partial differential equations
Volpert, Vitaly
If we had to formulate in one sentence what this book is about it might be "How partial differential equations can help to understand heat explosion, tumor growth or evolution of biological species". These and many other applications are described by reaction-diffusion equations. The theory of reaction-diffusion equations appeared in the first half of the last century. In the present time, it is widely used in population dynamics, chemical physics, biomedical modelling. The purpose of this book is to present the mathematical theory of reaction-diffusion equations in the context of their numerous applications. We will go from the general mathematical theory to specific equations and then to their applications. Mathematical anaylsis of reaction-diffusion equations will be based on the theory of Fredholm operators presented in the first volume. Existence, stability and bifurcations of solutions will be studied for bounded domains and in the case of travelling waves. The classical theory of reaction-diffusion equ...
Classes of Exact Solutions to Regge-Wheeler and Teukolsky Equations
Fiziev, P. P.
2009-01-01
The Regge-Wheeler equation describes axial perturbations of Schwarzschild metric in linear approximation. Teukolsky Master Equation describes perturbations of Kerr metric in the same approximation. We present here unified description of all classes of exact solutions to these equations in terms of the confluent Heun's functions. Special attention is paid to the polynomial solutions, which yield novel applications of Teukolsky Master Equation for description of relativistic jets and astrophysi...
Comparison of Space Debris Environment Models: ORDEM2000, MASTER-2001, MASTER-2005 and MASTER-2009
Kanemitsu, Yuki; 赤星, 保浩; Akahoshi, Yasuhiro; 鳴海, 智博; Narumi, Tomohiro; Faure, Pauline; 松本, 晴久; Matsumoto, Haruhisa; 北澤, 幸人; Kitazawa, Yukihito
2012-01-01
Hypervelocity impact by space debris on spacecraft is one of the most important issues for space development and operation, especially considering the growing amount of space debris in recent years. It is therefore important for spacecraft design to evaluate the impact risk by using environment models. In this paper, the authors compared the results of the debris impact flux in low Earth orbit, as calculated by four debris environment engineering models -NASA's ORDEM2000 and ESA's MASTER-2001...
Mumberson, Stephen
2011-01-01
Master Illustrators Federation, Beijing Ziteng Gallery with joint hosts Beijing Yingbao Printmaking House, Beijing Cartoon Centre, Caijing Visual Arts Center, Sachen Publishing House and Red Man Art International. International cartoon and illustration biennial with theme Noah's Ark: New World, New Age, New Hope. World entry winner, best work prize for illustration, honorary prize, excellent prize and selected prize. Best work is awarded a medal and a cash prize. Prize judges: Duchhuan Xia, C...
The use of synthetic master events for waveform cross correlation
Rozhkov, Mikhail; Bobrov, Dmitry; Kitov, Ivan
2013-04-01
It has been clearly demonstrated that waveform cross correlation substantially improves signal detection, phase association and event building. These processes are inherently related to the Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring. The workhorse of cross correlation is the set of seismic master events (earthquakes or explosions) with high quality waveform templates recorded at array stations of the International Monitoring System (IMS). For the monitoring to be globally uniform, these master events have to be evenly distributed and their template waveforms should be representative and pure. However, global seismicity is characterized by a non-uniform distribution. Therefore, the master events selected from the Reviewed Event Bulletin (REB) produced by the International Data Centre (IDC) can be found in the areas constrained by the global seismicity. There are two principal possibilities to populate the globe with master events: to replicate real REB events or to build synthetic events. Here we compare the performance of these two approaches as applied to the aftershock sequence of the April 11, 2012 Sumatera earthquake. To compute synthetic waveforms, we use AK135 teleseismic velocity model and local CRUST-2 models for source and receiver, and four different source functions representing three different source mechanisms for earthquakes and one for explosion. The synthetic modeling is performed for teleseismic events and based on the stationary phase approximation to a wave equation solution developed by J. Hudson. The grid covering the aftershock area consists of 16 points. For each grid point, we find detections associated with real, replicated, and four versions of synthetic master events at seven IMS array stations, and then build event hypothesis using the Local Association (LA) procedure based on the clustering of origin times as estimated by back projection of the relevant arrival times with known master/station travel times. Then all
Institute of Scientific and Technical Information of China (English)
王良华
2007-01-01
Mr Smith was a boss of a butcher's shop(肉店). One day a hungry dog came to the shop. The dog wagged(摇动) its tail again and again. The boss gave it some meat to eat. So later on, the dog always stayed with the owner and looked upon him as its own master. When the people found that the boss was friendly(友好) to the dog, they thought Mr Smith could be trusted. As time passed by, more and more customers(顾客) came to buy fresh meat(鲜肉). And he was getting richer and richer.
Mansfield, Richard
2010-01-01
A comprehensive guide to the language used to customize Microsoft Office. Visual Basic for Applications (VBA) is the language used for writing macros, automating Office applications, and creating custom applications in Word, Excel, PowerPoint, Outlook, and Access. This complete guide shows both IT professionals and novice developers how to master VBA in order to customize the entire Office suite for specific business needs.: Office 2010 is the leading productivity suite, and the VBA language enables customizations of all the Office programs; this complete guide gives both novice and experience
Mastering Microsoft Azure infrastructure services
Savill, John
2015-01-01
Understand, create, deploy, and maintain a public cloud using Microsoft Azure Mastering Microsoft Azure Infrastructure Services guides you through the process of creating and managing a public cloud and virtual network using Microsoft Azure. With step-by-step instruction and clear explanation, this book equips you with the skills required to provide services both on-premises and off-premises through full virtualization, providing a deeper understanding of Azure's capabilities as an infrastructure service. Each chapter includes online videos that visualize and enhance the concepts presented i
Diophantine approximations and Diophantine equations
Schmidt, Wolfgang M
1991-01-01
"This book by a leading researcher and masterly expositor of the subject studies diophantine approximations to algebraic numbers and their applications to diophantine equations. The methods are classical, and the results stressed can be obtained without much background in algebraic geometry. In particular, Thue equations, norm form equations and S-unit equations, with emphasis on recent explicit bounds on the number of solutions, are included. The book will be useful for graduate students and researchers." (L'Enseignement Mathematique) "The rich Bibliography includes more than hundred references. The book is easy to read, it may be a useful piece of reading not only for experts but for students as well." Acta Scientiarum Mathematicarum
Noise-induced multistability in chemical systems: Discrete versus continuum modeling.
Duncan, Andrew; Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek; Grima, Ramon
2015-04-01
The noisy dynamics of chemical systems is commonly studied using either the chemical master equation (CME) or the chemical Fokker-Planck equation (CFPE). The latter is a continuum approximation of the discrete CME approach. It has recently been shown that for a particular system, the CFPE captures noise-induced multistability predicted by the CME. This phenomenon involves the CME's marginal probability distribution changing from unimodal to multimodal as the system size decreases below a critical value. We here show that the CFPE does not always capture noise-induced multistability. In particular we find simple chemical systems for which the CME predicts noise-induced multistability, whereas the CFPE predicts monostability for all system sizes.
Noise-induced multistability in chemical systems: Discrete versus continuum modeling.
Duncan, Andrew; Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek; Grima, Ramon
2015-04-01
The noisy dynamics of chemical systems is commonly studied using either the chemical master equation (CME) or the chemical Fokker-Planck equation (CFPE). The latter is a continuum approximation of the discrete CME approach. It has recently been shown that for a particular system, the CFPE captures noise-induced multistability predicted by the CME. This phenomenon involves the CME's marginal probability distribution changing from unimodal to multimodal as the system size decreases below a critical value. We here show that the CFPE does not always capture noise-induced multistability. In particular we find simple chemical systems for which the CME predicts noise-induced multistability, whereas the CFPE predicts monostability for all system sizes. PMID:25974443
EVALUATION OF THE MASTER MARKETER NEWSLETTER
McCorkle, Dean A.; Waller, Mark L.; Amosson, Stephen H.; Smith, Jackie; Bevers, Stanley J.; Borchardt, Robert
2001-01-01
Several support programs have been developed to help support, reinforce, enhance, and improve the effectiveness of the educational experience of Master Marketer graduates and other marketing club participants. One of those products, the Master Marketer Newsletter, is currently mailed to over 700 Master Marketer graduates and Extension faculty on a quarterly basis. In the June 2000 newsletter, a questionnaire was sent to newsletter recipients asking them to evaluate the various sections of the...
Master constraint operators in loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Han Muxin [Department of Physics, Beijing Normal University, Beijing 100875 (China); Hearne, Horace Jr. [Institute for Theoretical Physics, Louisiana State University, Baton Rouge, LA 70803 (United States)]. E-mail: mhan1@lsu.edu; Ma Yongge [Department of Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: mayg@bnu.edu.cn
2006-04-13
We introduce a master constraint operator M-bar densely defined in the diffeomorphism invariant Hilbert space in loop quantum gravity, which corresponds classically to the master constraint in the programme. It is shown that M-bar is positive and symmetric, and hence has its Friedrichs self-adjoint extension. The same conclusion is tenable for an alternative master operator M-bar {sup '}, whose quadratic form coincides with the one proposed by Thiemann. So the master constraint programme for loop quantum gravity can be carried out in principle by employing either of the two operator000.
Coherence Properties of Discrete Static Kinks, Master Thesis
Landa, H
2009-01-01
A chain of interacting particles subject also to a nonlinear on-site potential admits stable soliton-like configurations : static kinks. The linear normal-modes around such a kink contain a discrete set of localized, gap-separated modes. Quantization of the Hamiltonian in these modes results in an interacting system of phonons. We investigate numerically the coherence properties of such localized modes at low temperatures using a non-Markovian master equation. We show that low decoherence rates can be achieved in these nonlinear configurations for a surprisingly long time. If realized in the ion trap, kink internal modes may be advantageously used for Quantum Information Processing.
Practice Oriented Master's in Optics
Dimmock, John O.
1998-01-01
The development of an interdisciplinary Masters Program with a concentration in Optics and Photonics Technology has been is described. This program was developed under the U.S. Manufacturing Education and Training Activity of the Technology Reinvestment Project. This development was a collaboration between the University of Alabama in Huntsville (UAH), Alabama A&M University, Northwest Shoals Community College, the NASA Marshall Space Flight Center (MSFC), the U.S. Army Missile Command, Oak Ridge National Laboratory (ORNL), Advanced Optical Systems Inc., Dynetics, Inc., Hughes Danbury Optical Systems, Inc., Nichols Research and Speedring Inc. These organizations as well as the National Institute for Standards and Technology and SCI, Inc. have been participating fully in the design, development and implementation of this program. This goal of the program is to produce highly trained graduates who can also solve practical problems. To this end, the program includes an on-site practicum at a manufacturing location. The broad curriculum of this program emphasizes the fundamentals of optics, optical systems manufacturing and testing, and the principles of design and manufacturing to cost for commercial products. The Master's of Science (MS) in Physics and Master's of Science in Engineering (MSE) in Electrical Engineering Degrees with concentration in Optics and Photonics Technology are offered by the respective UAH academic departments with support from and in consultation with a Steering Committee composed of representatives from each of the participating organizations, and a student representative from UAH. The origins of the programs are described. The curricula of the programs is described. The course outlines of the new courses which were developed for the new curriculum are included. Also included are samples of on-site practicums which the students have been involved in. Also included as attachments are samples of the advertisements, which includes flyers, and
RENEWAL OF BASIC LAWS AND PRINCIPLES FOR POLAR CONTINUUM THEORIES (Ⅹ)--MASTER BALANCE LAW
Institute of Scientific and Technical Information of China (English)
DAI Tian-min
2006-01-01
Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar continuum mechanics are naturally deduced. Among them, by extending the well-known conventional concept of energymomentum tensor, the rather general conservation laws and balance equations named after energy-momentum, energy-angular momentum and energy-energy are obtained. It is clear that the forms of the physical field quantities in the master balance law for the last three cases could not be assumed directly by perceiving through the intuition. Finally,some existing results are reduced immediately as special cases.
SOLUTION OF HARMONIC OSCILLATOR OF NONLINEAR MASTER SCHRÃ–DINGER
Directory of Open Access Journals (Sweden)
T B Prayitno
2012-02-01
Full Text Available We have computed the solution of a nonrelativistic particle motion in a harmonic oscillator potential of the nonlinear master SchrÃ¶dinger equation. The equation itself is based on two classical conservation laws, the Hamilton-Jacobi and the continuity equations. Those two equations give each contribution for the definition of quantum particle. We also prove that the solution canâ€™t be normalized. Â Keywords : harmonic oscillator, nonlinear SchrÃ¶dinger.
Moiseiwitsch, B L
2005-01-01
Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco
Nuclear safety research master plan
International Nuclear Information System (INIS)
The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output
Nuclear safety research master plan
Energy Technology Data Exchange (ETDEWEB)
Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others
2001-06-01
The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.
Fractional Fokker-Planck Equations for Subdiffusion with Space-and-Time-Dependent Forces
Henry, B. I.; Langlands, T. A. M; Straka, P.
2010-01-01
We have derived a fractional Fokker-Planck equation for subdiffusion in a general space-and- time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a generalized master equation and is shown to be equivalent to a subordinated stochastic Langevin equation.
Listening and Learning in a Master Class
Hanken, Ingrid Maria
2015-01-01
Most higher education institutions offering programmes in music performance organise master classes for their students. It is commonly agreed that master classes offer valuable learning opportunities for the students performing, but what do they offer for students in the audience? In this article, theories of learning by observation as well as…
14 CFR 27.1361 - Master switch.
2010-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1361 Master switch. (a) There must be a master switch arrangement to allow ready disconnection of each electric power source from the main bus. The point of disconnection must be adjacent to the sources controlled by the...
Directory of Open Access Journals (Sweden)
Lloyd K. Williams
1987-01-01
Full Text Available In this paper we find closed form solutions of some Riccati equations. Attention is restricted to the scalar as opposed to the matrix case. However, the ones considered have important applications to mathematics and the sciences, mostly in the form of the linear second-order ordinary differential equations which are solved herewith.
Preliminary Master Logic Diagram for ITER operation
International Nuclear Information System (INIS)
This paper describes the work performed to develop a Master Logic Diagram (MLD) for the operations phase of the International Thermonuclear Experimental Reactor (ITER). The MLD is a probabilistic risk assessment tool used to identify the broad set of potential initiating events that could lead to an offsite radioactive or toxic chemical release from the facility under study. The MLD described here is complementary to the failure modes and effects analyses (FMEAs) that have been performed for ITER's major plant systems in the engineering evaluation of the facility design. While the FMEAs are a bottom-up or component level approach, the MLD is a top-down or facility level approach to identifying the broad spectrum of potential events. Strengths of the MLD are that it analyzes the entire plant, depicts completeness in the accident initiator process, provides an independent method for identification, and can also identify potential system interactions. MLDs have been used successfully as a hazard analysis tool. This paper describes the process used for the ITER MLD to treat the variety of radiological and toxicological source terms present in the ITER design. One subtree of the nineteen page MLD is shown to illustrate the levels of the diagram
Existence of a solution to an equation arising from the theory of Mean Field Games
Gangbo, Wilfrid; Święch, Andrzej
2015-12-01
We construct a small time strong solution to a nonlocal Hamilton-Jacobi equation (1.1) introduced in [48], the so-called master equation, originating from the theory of Mean Field Games. We discover a link between metric viscosity solutions to local Hamilton-Jacobi equations studied in [2,19,20] and solutions to (1.1). As a consequence we recover the existence of solutions to the First Order Mean Field Games equations (1.2), first proved in [48], and make a more rigorous connection between the master equation (1.1) and the Mean Field Games equations (1.2).
Second Line of Defense Master Spares Catalog
Energy Technology Data Exchange (ETDEWEB)
Henderson, Dale L.; Muller, George; Mercier, Theresa M.; Brigantic, Robert T.; Perkins, Casey J.; Cooley, Scott K.
2012-11-20
This catalog is intended to be a comprehensive listing of repair parts, components, kits, and consumable items used on the equipment deployed at SLD sites worldwide. The catalog covers detection, CAS, network, ancillary equipment, and tools. The catalog is backed by a Master Parts Database which is used to generate the standard report views of the catalog. The master parts database is a relational database containing a record for every part in the master parts catalog along with supporting tables for normalizing fields in the records. The database also includes supporting queries, database maintenance forms, and reports.
Gas Dynamics Equations: Computation
Chen, Gui-Qiang G
2012-01-01
Shock waves, vorticity waves, and entropy waves are fundamental discontinuity waves in nature and arise in supersonic or transonic gas flow, or from a very sudden release (explosion) of chemical, nuclear, electrical, radiation, or mechanical energy in a limited space. Tracking these discontinuities and their interactions, especially when and where new waves arise and interact in the motion of gases, is one of the main motivations for numerical computation for the gas dynamics equations. In this paper, we discuss some historic and recent developments, as well as mathematical challenges, in designing and formulating efficient numerical methods and algorithms to compute weak entropy solutions for the Euler equations for gas dynamics.
Energy Technology Data Exchange (ETDEWEB)
Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A [Department of Chemistry, Physicochemistry of Carbon Materials Research Group, N Copernicus University, Gagarin Street 7, 87-100 Torun (Poland); Kowalczyk, Piotr [Nanochemistry Research Institute, Curtin University, PO Box U1987, Perth, WA 6845 (Australia); Harris, Peter J F, E-mail: aterzyk@chem.uni.torun.pl [Centre for Advanced Microscopy, University of Reading, Whiteknights, Reading RG6 6AF (United Kingdom)
2011-10-05
Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF{sub 6} adsorption isotherm data cannot be used for characterization of the porosity. (paper)
The master T-operator for the Gaudin model and the KP hierarchy
Energy Technology Data Exchange (ETDEWEB)
Alexandrov, Alexander, E-mail: alexandrovsash@gmail.com [Mathematics Institute and Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg (Germany); ITEP, 25 B. Cheremushkinskaya, Moscow 117218 (Russian Federation); Leurent, Sebastien, E-mail: sebastien.leurent@normalesup.org [Imperial College, London SW7 2AZ (United Kingdom); Tsuboi, Zengo, E-mail: ztsuboi@yahoo.co.jp [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Zabrodin, Anton, E-mail: zabrodin@itep.ru [ITEP, 25 B. Cheremushkinskaya, Moscow 117218 (Russian Federation); Institute of Biochemical Physics, 4 Kosygina st., Moscow 119334 (Russian Federation); National Research University, Higher School of Economics, International Laboratory of Representation Theory and Mathematical Physics, 20 Myasnitskaya Ulitsa, Moscow 101000 (Russian Federation)
2014-06-15
Following the approach of [1], we construct the master T-operator for the quantum Gaudin model with twisted boundary conditions and show that it satisfies the bilinear identity and Hirota equations for the classical KP hierarchy. We also characterize the class of solutions to the KP hierarchy that correspond to eigenvalues of the master T-operator and study dynamics of their zeros as functions of the spectral parameter. This implies a remarkable connection between the quantum Gaudin model and the classical Calogero–Moser system of particles.
The master T-operator for inhomogeneous XXX spin chain and mKP hierarchy
Zabrodin, A
2014-01-01
Following the approach of [1], we show how to construct the master T-operator for the quantum GL(N)-invariant inhomogeneous XXX spin chain with twisted boundary conditions. It satisfiesthe bilinear identity and Hirota equations for the classical mKP hierarchy. We also characterize the class of solutions to the mKP hierarchy that correspond to eigenvalues of the master T-operator and study dynamics of their zeros as functions of the spectral parameter. This implies a remarkable connection between the quantum spin chain and the classical Ruijsenaars-Schneider system of particles.
A Better Way to Master English
Institute of Scientific and Technical Information of China (English)
ZHOU XIAOYAN
2010-01-01
@@ Disney English recently held a meeting for parents to communicate with experts on how to master English better by Multiple Intelligences (MI) method. MI is an internationally advocated teaching theory founded by Harvard University.
Moosehorn National Wildlife Refuge Master Plan
US Fish and Wildlife Service, Department of the Interior — The Moosehorn National Wildlife Refuge Master Plan guides the long-range development of the Refuge by identifying and integrating appropriate habitats, management...
Master Plan for Iroquois National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This master plan presents the development and management requirements needed to make Iroquois Refuge one of the most important breeding-migration areas in the...
Browns Park National Wildlife Refuge : Master Plan
US Fish and Wildlife Service, Department of the Interior — Master plan for Browns Park NWR that discusses the history, wildlife goals, recreation goals, habitat goals, recreational and operational facilities, and estimated...
Master Plan Chincoteague National Wildlife Refuge 1993
US Fish and Wildlife Service, Department of the Interior — The purpose of this Master Plan is to give overall guidance for the protection, use, and development of Chincoteague National Wildlife Refuge during the next ten to...
Pixley National Wildlife Refuge master plan
US Fish and Wildlife Service, Department of the Interior — The Pixley NWR Master Plan has been developed as a resource document as well as a guide for Refuge management. The document is designed to be useful for a...
Master Plan: Brigantine National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — The Brigantine Division of Forsythe National Wildlife Refuge Master Plan guides the longrange development of the Refuge by identifying and integrating appropriate...
Inspirational Catalogue of Master Thesis Proposals 2015
DEFF Research Database (Denmark)
Thorndahl, Søren
2015-01-01
This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....
Counterweight system for master-slave manipulator
International Nuclear Information System (INIS)
A counterweight system is described for use in a remote control master-slave manipulator. The manipulator consists of a rotatable horizontal support adapted to extend through the wall and two longitudinally extensible arms, a master and a slave, pivotally connected one to each end of the support. Within the support there is a means of translating linear motion to rotary motion for transfer through the barrier wall and retranslating to linear motion. (U.K.)
Monitoring derivation of the quantum linear Boltzmann equation
Hornberger, Klaus; Vacchini, Bassano
2007-01-01
We show how the effective equation of motion for a distinguished quantum particle in an ideal gas environment can be obtained by means of the monitoring approach introduced in [EPL 77, 50007 (2007)]. The resulting Lindblad master equation accounts for the quantum effects of the scattering dynamics in a non-perturbative fashion and it describes decoherence and dissipation in a unified framework. It incorporates various established equations as limiting cases and reduces to the classical linear...
MASTER OF THE SHIP, MANAGER AND INSTRUCTOR
Directory of Open Access Journals (Sweden)
Florin IORDANOAIA
2010-01-01
Full Text Available The master of the ship is the person on the board who has the qualification and the necessary certificate of competency for running a maritime transport ship. He is the one who takes the ship into administration from the ship-owner, he is the only leader, the legal and direct chief of the entire crew, being invested with authority upon all the members of the crew. The master fulfils the attributes and displays his activity according to the legal laws of his flag, of the marine regulations and of the international conventions. In all the relationships which he establishes with physical or juridical people, the master represents the ship-owner, in a double condition, as an officer and as a commercial manager. In this paper, it is analysed the situation of the ship masters, the relationships which these masters have with the crew and the problems which appear during their voyage. At the end of the paper there are proposed measures to increase the quality of the training of the ship masters, to solve the situations connected with the members of the crew.
Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J; Hasenauer, Jan
2016-01-01
Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/.
Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics
Reeves, Daniel B.; Shi, Yipeng; Weaver, John B.
2016-01-01
Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB) to measure biologically relevant properties (e.g., temperature, viscosity, bound state) surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynamical variables of the surroundings and additionally includes the particles’ size distribution and moment and the applied field’s amplitude and frequency. From an applied perspective, the master variable allows tuning to an optimal MSB biosensing sensitivity range by manipulating both frequency and field amplitude. Calculation of magnetization harmonics in an oscillating applied field is also possible with an approximate closed-form solution in terms of the master variable and a single free parameter. PMID:26959493
Viljamaa, Panu; Jacobs, J. Richard; Chris; JamesHyman; Halma, Matthew; EricNolan; Coxon, Paul
2014-07-01
In reply to a Physics World infographic (part of which is given above) about a study showing that Euler's equation was deemed most beautiful by a group of mathematicians who had been hooked up to a functional magnetic-resonance image (fMRI) machine while viewing mathematical expressions (14 May, http://ow.ly/xHUFi).
19 CFR 10.90 - Master records and metal matrices.
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...
Testing the master constraint programme for loop quantum gravity: I. General framework
International Nuclear Information System (INIS)
Recently, the master constraint programme for loop quantum gravity (LQG) was proposed as a classically equivalent way to impose the infinite number of Wheeler-DeWitt constraint equations in terms of a single master equation. While the proposal has some promising abstract features, it was until now barely tested in known models. In this series of five papers we fill this gap, thereby adding confidence to the proposal. We consider a wide range of models with increasingly more complicated constraint algebras, beginning with a finite-dimensional, Abelian algebra of constraint operators which are linear in the momenta and ending with an infinite-dimensional, non-Abelian algebra of constraint operators which closes with structure functions only and which are not even polynomial in the momenta. In all these models, we apply the master constraint programme successfully; however, the full flexibility of the method must be exploited in order to complete our task. This shows that the master constraint programme has a wide range of applicability but that there are many, physically interesting subtleties that must be taken care of in doing so. In particular, as we will see, that we can possibly construct a master constraint operator for a nonlinear, that is, interacting quantum field theory underlines the strength of the background-independent formulation of LQG. In this first paper, we prepare the analysis of our test models by outlining the general framework of the master constraint programme. The models themselves will be studied in the remaining four papers. As a side result, we develop the direct integral decomposition (DID) programme for solving quantum constraints as an alternative to refined algebraic quantization (RAQ)
Testing the master constraint programme for loop quantum gravity: I. General framework
Energy Technology Data Exchange (ETDEWEB)
Dittrich, B [Albert Einstein Institut, MPI fuer Gravitationsphysik, Am Muehlenberg 1, 14476 Potsdam (Germany); Thiemann, T [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)
2006-02-21
Recently, the master constraint programme for loop quantum gravity (LQG) was proposed as a classically equivalent way to impose the infinite number of Wheeler-DeWitt constraint equations in terms of a single master equation. While the proposal has some promising abstract features, it was until now barely tested in known models. In this series of five papers we fill this gap, thereby adding confidence to the proposal. We consider a wide range of models with increasingly more complicated constraint algebras, beginning with a finite-dimensional, Abelian algebra of constraint operators which are linear in the momenta and ending with an infinite-dimensional, non-Abelian algebra of constraint operators which closes with structure functions only and which are not even polynomial in the momenta. In all these models, we apply the master constraint programme successfully; however, the full flexibility of the method must be exploited in order to complete our task. This shows that the master constraint programme has a wide range of applicability but that there are many, physically interesting subtleties that must be taken care of in doing so. In particular, as we will see, that we can possibly construct a master constraint operator for a nonlinear, that is, interacting quantum field theory underlines the strength of the background-independent formulation of LQG. In this first paper, we prepare the analysis of our test models by outlining the general framework of the master constraint programme. The models themselves will be studied in the remaining four papers. As a side result, we develop the direct integral decomposition (DID) programme for solving quantum constraints as an alternative to refined algebraic quantization (RAQ)
Nguyen, Thanh Lam; Lee, Hyunwoo; Matthews, Devin A; McCarthy, Michael C; Stanton, John F
2015-06-01
The fraction of the collisionally stabilized Criegee species CH2OO produced from the ozonolysis of ethylene is calculated using a two-dimensional (E, J)-grained master equation technique and semiclassical transition-state theory based on the potential energy surface obtained from high-accuracy quantum chemical calculations. Our calculated yield of 42 ± 6% for the stabilized CH2OO agrees well, within experimental error, with available (indirect) experimental results. Inclusion of angular momentum in the master equation is found to play an essential role in bringing the theoretical results into agreement with the experiment. Additionally, yields of HO and HO2 radical products are predicted to be 13 ± 6% and 17 ± 6%, respectively. In the kinetic simulation, the HO radical product is produced mostly from the stepwise decomposition mechanism of primary ozonide rather than from dissociation of hot CH2OO. PMID:25945650
Stochastic Runge-Kutta Software Package for Stochastic Differential Equations
Gevorkyan, M N; Korolkova, A V; Kulyabov, D S; Sevastyanov, L A
2016-01-01
As a result of the application of a technique of multistep processes stochastic models construction the range of models, implemented as a self-consistent differential equations, was obtained. These are partial differential equations (master equation, the Fokker--Planck equation) and stochastic differential equations (Langevin equation). However, analytical methods do not always allow to research these equations adequately. It is proposed to use the combined analytical and numerical approach studying these equations. For this purpose the numerical part is realized within the framework of symbolic computation. It is recommended to apply stochastic Runge--Kutta methods for numerical study of stochastic differential equations in the form of the Langevin. Under this approach, a program complex on the basis of analytical calculations metasystem Sage is developed. For model verification logarithmic walks and Black--Scholes two-dimensional model are used. To illustrate the stochastic "predator--prey" type model is us...
Equations for static vacuum solutions arising from trace dynamics modifications to gravitation
Adler, Stephen L
2013-01-01
We derive the equations governing static, spherically symmetric vacuum solutions to the Einstein equations as modified by the frame-dependent effective action arising from trace dynamics. We give several equivalent forms of the master second order, nonlinear differential equation implied by the trace dynamics effective action, and calculate the leading perturbative correction to the Schwarzschild metric. We then analyze the master equation in the regimes $r \\to 0$, $r \\to \\infty$, and $0
Master alloy for manufacture of stainless and refractory steels and alloys
International Nuclear Information System (INIS)
The master alloy contains iron, 0.01 to 0.03% carbon, 0.1 to 2.0% manganese, 0.01 to 0.2% silicon, possibly impurities, such as traces of up to 0.015% sulphur, up to 0.01% phosphorus, 0.01%. nitrogen, 0.1% copper, up to 0.01% cobalt and traces of up to 0.05% arsenic, tin, lead, zinc or bismuth separate or in combination. The master alloy is used in the manufacture of steels and alloys for the chemical industry and for nuclear power. (B.S.)
The Composition of the Master Schedule
Thomas, Cynthia C.; Behrend, Dirk; MacMillan, Daniel S.
2010-01-01
Over a period of about four months, the IVS Coordinating Center (IVSCC) each year composes the Master Schedule for the IVS observing program of the next calendar year. The process begins in early July when the IVSCC contacts the IVS Network Stations to request information about available station time as well as holiday and maintenance schedules for the upcoming year. Going through various planning stages and a review process with the IVS Observing Program Committee (OPC), the final version of the Master Schedule is posted by early November. We describe the general steps of the composition and illustrate them with the example of the planning for the Master Schedule of the 2010 observing year.
Mikheev, S. A.; Tsvetkov, V. P.
2016-07-01
A system of equations and inequalities that allows one to determine the constraints on central density ρ c and the chemical composition, which is governed by parameter μ e , of the white dwarf RX J0648.0- 4418 with a record short period of rotation T = 13.18s and mass m = (1.28 ± 0.05) m⊙, has been derived. The analysis of numerical solutions of this system reveal a complex dependence of μ e on ρ c . The intervals of variation of μ e and ρ c are as follows: 1.09 ≤ μ e ≤ 1.21 and 9.04 ≤ μ e /ρ0 ≤ 103 (ρ0 = 0.98 × 106 g/cm3). This range of μ e values suggests that the white dwarf RX J0648.0-4418 is not made of pure hydrogen and should contain 9-21% of heavy elements. Calculations have been performed with the equation of state of an ideal degenerate electron gas. Approximate analytic expressions (with an accuracy of 10-3) for the minimum period T min and mass m of the white dwarf are obtained. It is demonstrated that the white-dwarf mass is almost doubled (compared to the case of no rotation at a fixed central density) as period T approaches T min.
Master-slave robot force telepresence technology
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In order to make the manipulators useful, some force-feedback is required to enable the operator to sense the robot's feelings. Without force-feedback, many tasks will not be able to be carried out. For these rea sons, a master-slave system with different kinematics has been developed. The system permits us to vary the ra tio of the position/attitude, to design a master manipulator without considering the kinematics of the slave ma nipulator, and so on. To overcome the difficulties, a master-slave manipulator system with different kinematics is proposed. The master manipulator is force-controlled via a force torque sensor in the handle. As to master slave manipulator system with two way force feedback is concerned, the force goes to the actuator from the oper ator, and come back to the operator from the actuator. The working situation is viewed by the stereo TV supervi sory system. The force and vision telepresence are thus achieved. In order to ensure the maneuverability, direct drive DC motors and PWM servo units are adopted to improve the response speed. It can provide force response in a wide range. A lot of experiments were performed with the master-slave manipulator system force telepres ence to study the force response under restricted environment. By two force sensors, the force-position bilateral force response system effectively decreases the affection of friction and inertia force, and increases the authen ticity of bilateral force response. When the slave manipulator ann is encountered with soft-object(sponge), in the experiments, the operator can clearly have the fine feeling as if he himself is contacted with the object.
DEFF Research Database (Denmark)
Tybjerg, Casper
2014-01-01
In this interview, produced by the Criterion Collection in 2014, Danish film historian Casper Tybjerg discusses how Master of the House went from being a popular stage play to a film, one that was a major stepping-stone in director Carl Theodor Dreyer's career.......In this interview, produced by the Criterion Collection in 2014, Danish film historian Casper Tybjerg discusses how Master of the House went from being a popular stage play to a film, one that was a major stepping-stone in director Carl Theodor Dreyer's career....
Lowe, Scott
2011-01-01
A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the
Critical points and number of master integrals
Lee, Roman N
2013-01-01
We consider the question about the number of master integrals for a multiloop Feynman diagram. We show that, for a given set of denominators, this number is totally determined by the critical points of the polynomials entering either of the two representations: the parametric representation and the Baikov representation. In particular, for the parametric representation the corresponding polynomial is just the sum of Symanzik polynomials. The relevant topological invariant is the sum of the Milnor numbers of the proper critical points. We present a Mathematica package Mint to automatize the counting of the master integrals.
Mastering Adobe Premiere Pro CS6
Ekert, Paul
2013-01-01
Designed to be practical and engaging, Mastering Adobe Premiere Pro CS6 is a project-based book to help you truly augment your skills and become a film editing hotshot.If you're just starting out or even migrating from existing video editing software, then this book is for you. With rapid progression through practical examples constructed to be both engaging and useful, Mastering Adobe Premiere Pro CS6 is ideal for learning the sometimes complex workflows of this powerful application.
MASTER OF THE SHIP, MANAGER AND INSTRUCTOR
Florin IORDANOAIA
2010-01-01
The master of the ship is the person on the board who has the qualification and the necessary certificate of competency for running a maritime transport ship. He is the one who takes the ship into administration from the ship-owner, he is the only leader, the legal and direct chief of the entire crew, being invested with authority upon all the members of the crew. The master fulfils the attributes and displays his activity according to the legal laws of his flag, of the marine regulations and...
An introduction to ordinary differential equations
Coddington, Earl A
1989-01-01
""Written in an admirably cleancut and economical style."" - Mathematical Reviews. This concise text offers undergraduates in mathematics and science a thorough and systematic first course in elementary differential equations. Presuming a knowledge of basic calculus, the book first reviews the mathematical essentials required to master the materials to be presented. The next four chapters take up linear equations, those of the first order and those with constant coefficients, variable coefficients, and regular singular points. The last two chapters address the existence and uniqueness of solu
Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics
Reeves, Daniel B.; Yipeng Shi; Weaver, John B.
2016-01-01
Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB) to measure biologically relevant properties (e.g., temperature, viscosity, bound state) surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. T...
Institute of Scientific and Technical Information of China (English)
李青云
2011-01-01
《化工原理》以化工单元操作为研究对象,需要用工程方法处理实际问题。初学者面对课程中出现的大量的公式、参数往往会感到无所适从。文章选取传热和吸收两个单元操作为例,介绍了用＂三传＂唯象方程连接各个章节主要公式、知识点的方法,希望能起到化繁为简的作用。%The Chemical Engineering Principles studies chemical unit operations,which should solve engineering problem.Facing so many formulae and parameter,the beginners often feel puzzled.The paper selects two unit operations,heat transfer and absorption,for example,to describe the use of the ＂ Momentum,Heat and Mass Transfer ＂ phenomenological equation which connecting the various sections of the main formula and knowledge points,and hoping to play a role in simplifying.
Executive Master of Business Administration, Introduction
Naval Postgraduate School (U.S.)
2014-01-01
Screenshot of EMBA Program Introduction. The Executive Master of Business Administration (EMBA) is a defense-focused general management program for senior Department of Navy officers and senior Department of Navy civilians. The program design and course work capitalizes on the current managerial and leadership experience of program participants.
Inspirational catalogue of Master Thesis proposals 2014
DEFF Research Database (Denmark)
This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project. If you have an idea for a project which...
Transparency Master: The Annual Aphid Cycle.
Sessions, Mary Lynne
1983-01-01
Aphids, often referred to as plant lice, can be found in great numbers on stems, leaves, and flowers of many plants. In many cases these organisms are potentially harmful to their plant hosts. Provided is a description of the annual life cycle of the aphid and an accompanying transparency master. (Author/JN)
The Four Master Tropes: Analogues of Development.
D'Angelo, Frank J.
1992-01-01
Discusses a rhetorical competence theory that is primarily concerned with an abstract understanding of the rhetorical and cognitive processes that underlie rhetorical acts. Presents the theory as an analogical system based on the four master tropes: metaphor, metonymy, synecdoche, and irony. Draws upon the systems of analogical reasoning, problem…
Evaluating the Georgia Master Naturalist Program
Hildreth, Lauren; Mengak, Michael T.
2016-01-01
We evaluated the Georgia Master Naturalist Program using an online survey. Survey participation was voluntary, and the survey addressed areas such as satisfaction, volunteerism, and future training. The program received high scores from survey respondents. They appreciated training on native plants, environmental awareness, and ecological…
Mastering SQL Server 2014 data mining
Bassan, Amarpreet Singh
2014-01-01
If you are a developer who is working on data mining for large companies and would like to enhance your knowledge of SQL Server Data Mining Suite, this book is for you. Whether you are brand new to data mining or are a seasoned expert, you will be able to master the skills needed to build a data mining solution.
Transparency Master: Planaria in the Classroom.
Jensen, Lauritz A.; Allen, A. Lester
1983-01-01
Background information on the morphology and physiology of planarians and uses of the organism in schools is provided. Also provided is a transparency master demonstrating a planarian with an everted proboscis, two-headed/two-tailed planarians, and a planarian demonstrating the digestive tract. (JN)
Colorado Academic Library Master Plan. Revised Edition.
Johns, Claude, Jr., Ed.; Moore, Beverly, Ed.
This master plan for Colorado academic libraries assesses current strengths and weaknesses of public and private academic libraries in the state and forecasts the role of academic libraries in support of higher education. The plan consists of a series of recommendations divided into six related and overlapping sections: access, collection…
Does California's Master Plan Still Work?
Burdman, Pamela
2009-01-01
For nearly 50 years, California's higher education system has been shaped by the tripartite division of the vaunted Master Plan. The 1960 document's bold vision of access and quality safeguarded a system of selective research universities (the University of California) and provided baccalaureate education through less-selective campuses (the…
Mathematical Modeling of Chemical Stoichiometry
Croteau, Joshua; Fox, William P.; Varazo, Kristofoland
2007-01-01
In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…
Malheur National Wildlife Refuge Master Plan/Environmental Assessment
US Fish and Wildlife Service, Department of the Interior — This is the updated Malheur National Wildlife Refuge Master Plan and Environmental Assessment. It replaces the former Master Plan Technical Report that was prepared...
Effective vs. Efficient: Teaching Methods of Solving Linear Equations
Ivey, Kathy M. C.
2003-01-01
The choice of teaching an effective method--one that most students can master--or an efficient method--one that takes the fewest steps--occurs daily in Algebra I classrooms. This decision may not be made in the abstract, however, but rather in a ready-to-hand mode. This study examines how teachers solve linear equations when the purpose is…
46 CFR 169.817 - Master to instruct ship's company.
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Master to instruct ship's company. 169.817 Section 169.817 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations § 169.817 Master to instruct ship's company. The master shall conduct drills and...
21 CFR 874.3330 - Master hearing aid.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Master hearing aid. 874.3330 Section 874.3330 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3330 Master hearing aid. (a) Identification. A master hearing aid is an electronic device intended to simulate a hearing aid during...
Lake Washington's Master Plan--A System for Growth.
Scarr, L. E.
1988-01-01
Describes Lake Washington (Washington) School District's master plan to balance building-based decision-making and administrative input, encourage collegiality, and respond positively to change. For each building, the district master plan is mirrored by a locally developed master plan. Each teacher is also developing a classroom plan. (MLH)
Indian Academy of Sciences (India)
Ranjit Kumar
2012-09-01
Travelling and solitary wave solutions of certain coupled nonlinear diffusion-reaction equations have been constructed using the auxiliary equation method. These equations arise in a variety of contexts not only in biological, chemical and physical sciences but also in ecological and social sciences.
Master Symmetry for Holographic Wilson Loops
Klose, Thomas; Munkler, Hagen
2016-01-01
We identify the symmetry underlying the recently observed spectral-parameter transformations of holographic Wilson loops alias minimal surfaces in AdS/CFT. The generator of this nonlocal symmetry is shown to furnish a raising operator on the classical Yangian-type charges of symmetric coset models. We explicitly demonstrate how this master symmetry acts on strong-coupling Wilson loops and indicate a possible extension to arbitrary coupling.
Structural master plan of flood mitigation measures
A. Heidari
2009-01-01
Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possi...
The Master of Ceremonies : Dramaturgies of Power
Brueckner, Laura Anne
2014-01-01
This dissertation argues that the theatrical master of ceremonies, an entity seen in many genres of popular theatre across centuries, exists in every instance as the expression of specific understandings of (and anxieties about) coercive social power. By examining key dramaturgical components of this entity, and comparing them to attributes of several modes of real power, I will show how the MC adapts the presentational techniques of power for the stage, producing a phenomenon I call "synthet...
Mastering cloud computing foundations and applications programming
Buyya, Rajkumar; Selvi, SThamarai
2013-01-01
Mastering Cloud Computing is designed for undergraduate students learning to develop cloud computing applications. Tomorrow's applications won't live on a single computer but will be deployed from and reside on a virtual server, accessible anywhere, any time. Tomorrow's application developers need to understand the requirements of building apps for these virtual systems, including concurrent programming, high-performance computing, and data-intensive systems. The book introduces the principles of distributed and parallel computing underlying cloud architectures and specifical
Master planning--a new way forward?
Heavisides, Bob
2009-04-01
Bob Heavisides, director of facilities, Milton Keynes Hospital NHS Foundation Trust, and senior research fellow, Medical Architecture Research Unit (MARU), at London South Bank University, considers, in a précis of a paper presented at last year's Healthcare Estates conference, how a new master planning approach may bring significant benefits to the healthcare estate, arguing that, against today's fast-changing backdrop, typical existing estates strategies may no longer be fully "fit-for-purpose".
Phase-Transition Mastering of High-Density Optical Media
Meinders, Erwin R.; Rastogi, Ruchi; van der Veer, Mark; Peeters, Patrick; El Majdoubi, Hamid; Bulle, Herman; Millet, Antoine; Bruls, Dominique
2007-06-01
A new phase-transition mastering (PTM) process was developed for Blu-ray Disc read-only memory (BD-ROM) mastering. Results obtained with both a 266 and 405 nm laser beam recorder (LBR) are discussed in this paper. The feasibility of BD-ROM mastering was successfully demonstrated on both LBRs. With the insight that 25 Gbytes BD-ROM can be mastered with a 405 nm wavelength LBR, the availability of the 266 nm wavelength LBR opened the route to explore PTM of near-field data densities. First experiments indicate that the PTM process is also suitable for mastering data densities beyond 25 Gbytes data density.
Efficient Moment Matrix Generation for Arbitrary Chemical Networks.
Smadbeck, P; Kaznessis, Y N
2012-12-24
As stochastic simulations become increasingly common in biological research, tools for analysis of such systems are in demand. The deterministic analogue to stochastic models, a set of probability moment equations equivalent to the Chemical Master Equation (CME), offers the possibility of a priori analysis of systems without the need for computationally costly Monte Carlo simulations. Despite the drawbacks of the method, in particular non-linearity in even the simplest of cases, the use of moment equations combined with moment-closure techniques has been used effectively in many fields. The techniques currently available to generate moment equations rely upon analytical expressions that are not efficient upon scaling. Additionally, the resulting moment-dependent matrix is lower diagonal and demands massive memory allocation in extreme cases. Here it is demonstrated that by utilizing factorial moments and the probability generating function (the Z-transform of the probability distribution) a recursive algorithm is produced. The resulting method is scalable and particularly efficient when high-order moments are required. The matrix produced is banded and often demands substantially less memory resources.
Model-Based Power Plant Master Control
Energy Technology Data Exchange (ETDEWEB)
Boman, Katarina; Thomas, Jean; Funkquist, Jonas
2010-08-15
The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are
Three-loop master integrals for ladder-box diagrams with one massive leg
Di Vita, Stefano; Schubert, Ulrich; Yundin, Valery
2014-01-01
The three-loop master integrals for ladder-box diagrams with one massive leg are computed from an eighty-five by eighty-five system of differential equations, solved by means of Magnus exponential. The results of the considered box-type integrals, as well as of the tower of vertex- and bubble-type master integrals associated to subtopologies, are given as a Taylor series expansion in the dimensional regulator parameter epsilon = (4-d)/2. The coefficients of the series are expressed in terms of uniform weight combinations of multiple polylogarithms and transcendental constants up to weight six. The considered integrals enter the next-to-next-to-next-to-leading order virtual corrections to scattering processes like the three-jet production mediated by vector boson decay, V* -> jjj, as well as the Higgs plus one-jet production in gluon fusion, pp -> Hj.
The Master T-Operator for Inhomogeneous XXX Spin Chain and mKP Hierarchy
Zabrodin, Anton
2014-01-01
Following the approach of [Alexandrov A., Kazakov V., Leurent S., Tsuboi Z., Zabrodin A., J. High Energy Phys. 2013 (2013), no. 9, 064, 65 pages, arXiv:1112.3310], we show how to construct the master T-operator for the quantum inhomogeneous GL(N) XXX spin chain with twisted boundary conditions. It satisfies the bilinear identity and Hirota equations for the classical mKP hierarchy. We also characterize the class of solutions to the mKP hierarchy that correspond to eigenvalues of the master T-operator and study dynamics of their zeros as functions of the spectral parameter. This implies a remarkable connection between the quantum spin chain and the classical Ruijsenaars-Schneider system of particles.
Fracture toughness master curve analysis of the tempered martensitic steel Eurofer97
Energy Technology Data Exchange (ETDEWEB)
Mueller, P.; Spatig, P.; Bonade, R. [EPFL-CBPP, Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH Villigen PSI (Switzerland); Odette, G. [UCSB, Santa-Barbara, Dept. of Mechanical Engineering UCSB, AK (United States)
2007-07-01
Full text of publication follows: The reduced activation tempered martensitic steel Eurofer97 is the European reference reduced activation steel for fusion applications. In this study, the fracture toughness properties of this steel are investigated in the ductile-to-brittle fracture transition region. The ASTM E-1921 master curve (equation 1 with {alpha} 0.019) describes well the temperature dependence of the median toughness of a variety of nuclear reactor pressure vessel steels. K{sub Jc(median)} = 30 + 70 exp[{alpha}(T - T{sub 0})] (1). We previously showed that fracture toughness data obtained with 0.35 T compact tension specimens are not satisfactorily described by the ASTM E1921 master curve in the lower transition region, corresponding to the temperature range [-150, -100 deg. C]. A better statistical description of the data was done, using a modified master curve shape with a coefficient {alpha} equal to 0.04 and a T{sub 0} value of -97 deg. C. In order to confirm the different shape of the fracture toughness curve of the Eurofer97, new fracture toughness tests were carried out at higher temperatures, up to -50 deg. C. These new data indicate that the K{sub Jc(median)}(T) curve in the transition is indeed steeper than the ASTM E1921 master curve. The validation of the modified master curve is discussed in terms of: i) the statistical predictions of scatter with temperature in comparison to the experimental data and ii) a self-consistent determination of T{sub 0} by performing series of single temperature T{sub 0}-analysis as well as multi-temperature T{sub 0}-analysis. A very good agreement between the predictions and experimental observations is found. Finally, the underlying possible physical reasons responsible for this specific fracture behavior of the Eurofer97 steel in the transition are briefly discussed in relation to its microstructure. (authors)
Setting the stage for master's level success
Roberts, Donna
Comprehensive reading, writing, research, and study skills play a critical role in a graduate student's success and ability to contribute to a field of study effectively. The literature indicated a need to support graduate student success in the areas of mentoring, navigation, as well as research and writing. The purpose of this two-phased mixed methods explanatory study was to examine factors that characterize student success at the Master's level in the fields of education, sociology and social work. The study was grounded in a transformational learning framework which focused on three levels of learning: technical knowledge, practical or communicative knowledge, and emancipatory knowledge. The study included two data collection points. Phase one consisted of a Master's Level Success questionnaire that was sent via Qualtrics to graduate level students at three colleges and universities in the Central Valley of California: a California State University campus, a University of California campus, and a private college campus. The results of the chi-square indicated that seven questionnaire items were significant with p values less than .05. Phase two in the data collection included semi-structured interview questions that resulted in three themes emerged using Dedoose software: (1) the need for more language and writing support at the Master's level, (2) the need for mentoring, especially for second-language learners, and (3) utilizing the strong influence of faculty in student success. It is recommended that institutions continually assess and strengthen their programs to meet the full range of learners and to support students to degree completion.
Different Behaviour for the Solutions of Some Chemotaxis Equations
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
@@ In biology, it is very important to investigate the movement of some cells ororganisms in some given biological system (cf. ［1, 2］). In order to understand howthe movement rules are affected by the effect of the chemo-attractant, Othmer and Stevens introduced in ［1］ several general classes of partial differential equations. In one of their models, they considered a master equation, i.e. barrier and nearestneighbor lattice model. Following a limiting process the model is described by the following system of partial differential equations:
Mastering Windows Server 2008 Networking Foundations
Minasi, Mark; Mueller, John Paul
2011-01-01
Find in-depth coverage of general networking concepts and basic instruction on Windows Server 2008 installation and management including active directory, DNS, Windows storage, and TCP/IP and IPv4 networking basics in Mastering Windows Server 2008 Networking Foundations. One of three new books by best-selling author Mark Minasi, this guide explains what servers do, how basic networking works (IP basics and DNS/WINS basics), and the fundamentals of the under-the-hood technologies that support staff must understand. Learn how to install Windows Server 2008 and build a simple network, security co
The Survivor Master Narrative in Sexual Assault.
Muldoon, Shane D; Taylor, S Caroline; Norma, Caroline
2016-04-01
This article is based on data drawn from 90 Victoria Police operational files covering the period 2004-2008. Several thematic responses by sexual assault survivors are described as forming a master narrative of "identity shock." It is argued that the "minor/serious" sexual assault legal distinction is meaningless to survivors and conceals a shared felt experience. It is also argued that sexual assault is fundamentally a "public issue" of betrayal of citizen trust--not just a collection of "private troubles"--and that effective resolutions require more than individualized therapeutic and criminal justice measures. PMID:26721902
Master stability analysis in transient spatiotemporal chaos.
Wackerbauer, Renate
2007-11-01
The asymptotic stability of spatiotemporal chaos is difficult to determine, since transient spatiotemporal chaos may be extremely long lived. A master stability analysis reveals that the asymptotic state of transient spatiotemporal chaos in the Gray-Scott system and in the Bär-Eiswirth system is characterized by negative transverse Lyapunov exponents on the attractor of the invariant synchronization manifold. The average lifetime of transient spatiotemporal chaos depends on the number of transverse directions that are unstable along a typical excitation cycle. PMID:18233739
Personal health benefits of Masters athletics competition.
Shephard, R. J.; Kavanagh, T.; Mertens, D J; Qureshi, S; Clark, M.
1995-01-01
Questionnaires (750 respondents, 44.4% response rate) examined the long-term health value of endurance exercise training in older age-classed competitors ('Masters Athletes', 551 men and 199 women) over a 7-year period (1985-1992). The majority had initially completed maximal exercise tests. The weekly time devoted to training, competition and exercise-related travel was 10 to 30 h, and the annual expenditure on clothing, equipment and entrance fees was typically in the range Canadian $500-15...
SAS essentials mastering SAS for data analytics
Elliott, Alan C
2015-01-01
A step-by-step introduction to using SAS® statistical software as a foundational approach to data analysis and interpretation Presenting a straightforward introduction from the ground up, SAS® Essentials: Mastering SAS for Data Analytics, Second Edition illustrates SAS using hands-on learning techniques and numerous real-world examples. Keeping different experience levels in mind, the highly-qualified author team has developed the book over 20 years of teaching introductory SAS courses. Divided into two sections, the first part of the book provides an introduction to data manipulation, st
The antioxidant master glutathione and periodontal health
Bains, Vivek Kumar; Bains, Rhythm
2015-01-01
Glutathione, considered to be the master antioxidant (AO), is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH) in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials. PMID:26604952
The Alchemist in Fiction: The Master Narrative
Directory of Open Access Journals (Sweden)
Roslynn Haynes
2006-06-01
Full Text Available In Western culture, as expressed in fiction and film, the master narrative concerning science and the pursuit of knowledge perpetuates the archetype of the alchemist/scientist as sinister, dangerous, and possibly mad. Like all myths this story may appear simplistic but its recurrence suggests that it embodies complex ideas and suppressed desires and fears that each generation must work through. This paper explores some of the most influential examples of such characterization, links them to contemporary correlatives of the basic promises of alchemy and suggests reasons for the continuing power of such images.
The antioxidant master glutathione and periodontal health
Directory of Open Access Journals (Sweden)
Vivek Kumar Bains
2015-01-01
Full Text Available Glutathione, considered to be the master antioxidant (AO, is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials.
Mastering Microsoft Forefront UAG 2010 Customization
Ben-Ari, Erez
2012-01-01
"Mastering Microsoft Forefront UAG 2010 Customization" is a hands-on guide with step-by-step instructions for enhancing the functionality of UAG through customization. Each topic details one key aspect of functionality and the operative mechanism behind it, and suggests functionality that can be achieved with customization, along with helpful code samples. Whether you are a seasoned UAG consultant, deployment and support engineer or a UAG customer, this book is for you. Consultants will be able to enhance the services you can provide for UAG customization, while the book helps customers to ach
Boundary value problems and partial differential equations
Powers, David L
2005-01-01
Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples
Creating a Masters in Numeracy Program
Directory of Open Access Journals (Sweden)
Eric Gaze
2010-07-01
Full Text Available The Master of Science in Numeracy program at Alfred University received full approval from the New York State Education Department (NYSED in May of 2007. This first-of-its-kind program seeks to provide teachers at all levels, from across the curriculum, the skills, and more importantly the confidence, to introduce relevant quantitative concepts in their own disciplines. Created to be a complement of the MS Ed. in Literacy, the 30-hour MS in Numeracy program consists of four required core courses (Teaching Numeracy, Teaching with Data, Assessment and Learning Theories in Numeracy, and Doing Science and Numeracy, five electives from a list of numeracy and literacy courses, and a Masters project. The program graduated its first student in May 2008 and three more since then. Major challenges for the program have included the uncertain (i.e., by-application connection between an MS and licensure (in contrast to the automatic professional certification for MS Ed. degrees and the small number of faculty involved in teaching the numeracy courses. The current status of the program is questionable as the person (the author who taught the first three core courses has left the University and has not yet been replaced. Even so, I believe this MS in Numeracy program offers a potentially useful example of a strategy to enhance the spread of QL through teacher preparation.
Dissecting microregulation of a master regulatory network
Directory of Open Access Journals (Sweden)
Kaimal Vivek
2008-02-01
Full Text Available Abstract Background The master regulator p53 tumor-suppressor protein through coordination of several downstream target genes and upstream transcription factors controls many pathways important for tumor suppression. While it has been reported that some of the p53's functions are microRNA-mediated, it is not known as to how many other microRNAs might contribute to the p53-mediated tumorigenesis. Results Here, we use bioinformatics-based integrative approach to identify and prioritize putative p53-regulated miRNAs, and unravel the miRNA-based microregulation of the p53 master regulatory network. Specifically, we identify putative microRNA regulators of a transcription factors that are upstream or downstream to p53 and b p53 interactants. The putative p53-miRs and their targets are prioritized using current knowledge of cancer biology and literature-reported cancer-miRNAs. Conclusion Our predicted p53-miRNA-gene networks strongly suggest that coordinated transcriptional and p53-miR mediated networks could be integral to tumorigenesis and the underlying processes and pathways.
Vitamin supplementation benefits in master athletes.
Brisswalter, Jeanick; Louis, Julien
2014-03-01
Master athletes are more than 35 years of age and continue to train as hard as their young counterparts despite the aging process. All life long, they are capable of accomplishing exceptional sporting performances. For these participants in endurance events, matching energy intake and expenditure is critical to maintain health and performance. The proportions of carbohydrate, fat, and protein must be optimized to provide enough calories to sustain the energy requirements of competition or training, and for recovery. In addition, endurance athletes must include adequate vitamins and minerals in their diets to maintain healthy immune function. Vitamins and minerals may be sufficient in the diets of endurance athletes, who have a high energy intake. This would make it unnecessary to use vitamin and mineral supplements. Furthermore, one major limitation for these athletes is the management of oxidative stress, which, when in excess, can be deleterious for the organism. For individuals exposed to oxidative stress, micronutritional supplementations rich in vitamins and minerals can be also an alternative strategy. Although these supplementations are increasingly used by master athletes, very few data are available on their effects on oxidative stress, muscle recovery, and physical performance. The potential benefits of supplement use in athletes are thus questionable. Some studies indicate no benefits, while others highlight potential negative side effects of vitamin supplementation. Additional studies are warranted in order to design adapted prescriptions in antioxidant vitamins and minerals. PMID:24323888
Iimori, Yuki
2015-01-01
Developing the analysis in JHEP 03 (2014) 044 [arXiv:1312.1677] by the present authors et al., we clarify the relation between the Witten formulation and the Berkovits formulation of open superstring field theory at the level of the master action, namely the solution to the classical master equation in the Batalin-Vilkovisky formalism, which is the key for the path-integral quantization. We first scrutinize the reducibility structure, a detailed gauge structure containing the information about ghost string fields. Then, extending the condition for partial gauge fixing introduced in the above-mentioned paper to the sector of ghost string fields, we investigate the master action. We show that the reducibility structure and the master action under partial gauge fixing of the Berkovits formulation can be regarded as the regularized versions of those in the Witten formulation.
Leadership Profiling of Ocean Going Ship Masters1
Directory of Open Access Journals (Sweden)
Ioannis Theotokas
2014-12-01
This paper focuses on the ocean going ship Masters and aims at identifying their leadership profiles and understanding their attitudes and reactions in given circumstances. It analyses and discusses the results of a field study of ship officers of different nationalities employed as Masters on board ships of a leading international maritime group. Results of the research reveal that the characteristics and the competencies of ship Masters as identified using the specially developed questionnaire, are compatible with those proposed by situational leadership theories. Ship Masters seem to give priority to the people on board and their needs and try to be supportive in their decisions.
Two-loop planar master integrals for Higgs$\\to 3$ partons with full heavy-quark mass dependence
Bonciani, Roberto; Frellesvig, Hjalte; Henn, Johannes M; Moriello, Francesco; Smirnov, Vladimir A
2016-01-01
We present the analytic computation of all the planar master integrals which contribute to the two-loop scattering amplitudes for Higgs$\\to 3$ partons, with full heavy-quark mass dependence. These are relevant for the NNLO corrections to fully inclusive Higgs production and to the NLO corrections to Higgs production in association with a jet, in the full theory. The computation is performed using the differential equations method. Whenever possible, a basis of master integrals that are pure functions of uniform weight is used. The result is expressed in terms of one-fold integrals of polylogarithms and elementary functions up to transcendental weight four. Two integral sectors are expressed in terms of elliptic functions. We show that by introducing a one-dimensional parametrization of the integrals the relevant second order differential equation can be readily solved, and the solution can be expressed to all orders of the dimensional regularization parameter in terms of iterated integrals over elliptic kerne...
Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations
Eden, Burkhard
2016-01-01
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.
Difference equations by differential equation methods
Hydon, Peter E
2014-01-01
Most well-known solution techniques for differential equations exploit symmetry in some form. Systematic methods have been developed for finding and using symmetries, first integrals and conservation laws of a given differential equation. Here the author explains how to extend these powerful methods to difference equations, greatly increasing the range of solvable problems. Beginning with an introduction to elementary solution methods, the book gives readers a clear explanation of exact techniques for ordinary and partial difference equations. The informal presentation is suitable for anyone who is familiar with standard differential equation methods. No prior knowledge of difference equations or symmetry is assumed. The author uses worked examples to help readers grasp new concepts easily. There are 120 exercises of varying difficulty and suggestions for further reading. The book goes to the cutting edge of research; its many new ideas and methods make it a valuable reference for researchers in the field.
A Joint Master Program in Remote Engineering
Directory of Open Access Journals (Sweden)
Doru Ursutiu
2006-04-01
Full Text Available Within an EU funded SOCRATES project universities from Austria, Germany, Ireland, Romania and Slovenia develop a Ã¢Â€ÂœJoint European Master Program Remote EngineeringÃ¢Â€Â (MARE. Remote Engineering (or more common Online Engineering is one of the future directions for advanced teleworking/e working environments especially in engineering and science (economics, informatics but also in all other fields of society. In the last two Ã¢Â€Â“ three years in Europe, a lot of projects and works in designing and developing remote and virtual labs were done. We can see the same trend overseas. This is related to the growing technical possibilities of the internet (bandwidth and new models of e- and distance learning and e-work. The forerunners in this area are engineering disciplines and natural sciences. Remote Engineering and Virtual Instrumentation are very future trends in engineering and science.
Structural master plan of flood mitigation measures
Heidari, A.
2009-01-01
Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possibility of flood overtopping. Different flood mitigation alternatives are investigated from various aspects in the Dez and Karun river floodplain areas as a case study in south west of IRAN. The results show that detention dam and flood diversion are the best alternatives of flood mitigation methods as well as enforcing the flood control purpose of upstream multipurpose reservoirs. Dyke and levees are not mostly justifiable because of negative impact on down stream by enhancing routed flood peak discharge magnitude and flood damages as well.
Collaborative development of Estonian nuclear master's program
International Nuclear Information System (INIS)
In 2009 Estonia approved the National Development Plan for the Energy Sector, including the nuclear energy option. This can be realized by construction of a nuclear power plant (NPP) in Estonia or by participation in neighboring nuclear projects (e.g., Lithuania and/or Finland). Either option requires the availability of competent personnel. It is necessary to prepare specialists with expertise in all aspects related to nuclear infrastructure and to meet workforce needs (e.g. energy enterprises, public agencies, municipalities). Estonia's leading institutions of higher education and research with the support of the European Social Fund have announced in this context a new nuclear master's curriculum to be developed. The language of instruction will be English. (authors)
"Master and Slave" fluidic amplifier cascade
Directory of Open Access Journals (Sweden)
Tesař Václav
2012-04-01
Full Text Available No-moving-part fluidics recently found interesting application in generation of gas microbubbles by oscillating the inlet flow of the gas into the aerator. The oscillation frequency has to be high and this calls for small size of the oscillator. On the other hand, most microbubble applications require a large total gas flow. This calls for large fluidic device – a les expensive alternative than “numbering up” (several oscillators in parallel. The contradiction of the large and small scale is solved by the “MASTER & SLAVE” fluidic circuit: large output device controlled by a small oscillator. Paper discusses basic problems encountered in designing the circuit which requires matching the characteristics of the two devices.
Mastering Technologies in Design-Driven Innovation
DEFF Research Database (Denmark)
Dell'era, Claudio; Marchesi, Alessio; Verganti, Roberto
2010-01-01
Only a few companies have mastered the design-driven approach to innovation. This paper examines what it means to make design a central part of the business process, able to add value to products and create new markets. More specifically, it focuses on the interplay between the functional...... and semantic dimensions of a product. Case studies of two leading Italian companies in the furniture industry--Kartell and Luceplan--illustrate two principal interpretations of the role of technology in radical design-driven innovation: technology as an enabler of new product meanings for the customer......, and the importance of supply networks that allow manufacturers to change product technologies quickly and experiment with new technologies....
Master environmental plan for Fort Devens, Massachusetts
Energy Technology Data Exchange (ETDEWEB)
Biang, C.A.; Peters, R.W.; Pearl, R.H.; Tsai, S.Y. (Argonne National Lab., IL (United States). Energy Systems Div.)
1991-11-01
Argonne National Laboratory has prepared a master environmental plan (MEP) for Fort Devens, Massachusetts, for the US Army Toxic and Hazardous Materials Agency. The MEP is an assessment based on environmental laws and regulations of both the federal government and the Commonwealth of Massachusetts. The MEP assess the physical and environmental status of 58 potential hazardous waste sites, including 54 study areas (SAs) that pose a potential for releasing contamination into the environment and 4 areas of concern (AOCs) that are known to have substantial contamination. For each SA or AOC, this MEP describes the known history and environment, identifies additional data needs, and proposes possible response actions. Most recommended response actions consist of environmental sampling and monitoring and other characterization studies. 74 refs., 63 figs., 50 tabs.
MASTER-2.0: Multi-purpose analyzer for static and transient effects of reactors
Energy Technology Data Exchange (ETDEWEB)
Cho, Byung Oh; Song, Jae Seung; Joo, Han Gyu [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-01-01
MASTER-2.0 (Multi-purpose Analyzer for Static and Transient Effects of Reactors) is a nuclear design code based on the two group diffusion theory to calculate the steady-state and transient pressurized water reactor core in a 3-dimensional Cartesian or hexagonal geometry. Its neutronics model solves the space-time dependent neutron diffusion equations with NIM(Nodal Integration Method), NEM (Nodal Expansion Method), AFEN (Analytic Function Expansion Nodal Method)/NEM Hybrid Method, NNEM (Non-linear Nodal Expansion Method) or NANM (Non-linear Analytic Nodal Method) for a Cartesian geometry and with AFEN/NEM Hybrid Method or NLFM (Non-linear Local Fine-Mesh Method) for a hexagonal one. Coarse mesh rebalancing, Krylov Subspace method and asymptotic extrapolation method are implemented to accelerate the convergence of iteration process. Master-2.0 performs microscopic depletion calculations using microscopic cross sections provided by CASMO-3 or HELIOS and also has the reconstruction capability of pin information by use of MSS-IAS (Method of Successive Smoothing with Improved Analytic Solution). For the thermal-hydraulic calculation, fuel temperature table or COBRA3-C/P model can be used selectively. In addition, MASTER-2.0 is designed to cover various PWRs including SMART as well as WH-and CE-type reactors, providing all data required in their design procedures. (author). 39 refs., 12 figs., 4 tabs.
Master-3.0: multi-purpose analyzer for static and transient effects of reactors
Energy Technology Data Exchange (ETDEWEB)
Cho, Byung Oh; Joo, Han Gyu; Cho, Jin Young; Song, Jae Seung; Zee, Sung Quun
2002-03-01
MASTER-3.0 (Multi-purpose Analyzer for Static and Transient Effects of Reactors) is a nuclear design code based on the multi-group diffusion theory to calculate the steady-state and transient pressurized water reactor core in a 3-dimensional Cartesian or hexagonal geometry. Its neutronics model solves the space-time dependent neutron diffusion equations with NIM (Nodal Integration Method), NEM (Nodal Expansion Method), AFEN (Analytic Function Expansion Nodal Method)/NEM Hybrid Method, NNEM (Non-linear Nodal Expansion Method) or NANM (Non-linear Analytic Nodal Method) for a Cartesian geometry and with NTPEN (Non-linear Triangle-based Polynomial Expansion Nodal Method), AFEN (Analytic Function Expansion Nodal)/NEM Hybrid Method or NLFM (Non-linear Local Fine-Mesh Method) for a hexagonal one. Coarse mesh rebalancing, Krylov Subspace method, energy group restriction/prolongation method and asymptotic extrapolation method are implemented to accelerate the convergence of iteration process. MASTER-3.0 performs microscopic depletion calculations using microscopic cross sections provided by CASMO-3 or HELIOS and also has the reconstruction capability of pin information by use of MSS-IAS (Method of Successive Smoothing with Improved Analytic Solution). For the thermal-hydraulic calculation, fuel temperature table or COBRA3-C/P or MATRA model can be used selectively. In addition, MASTER-3.0 is designed to cover various PWRs including SMART as well as WH- and CE-type reactors, providing all data required in their design procedures.
Master curves for gas amplification in low vacuum and environmental scanning electron microscopy.
Thiel, Bradley L
2004-02-01
The concept of universal amplification profiles for gas cascade amplification of signals in low vacuum and environmental scanning electron microscopes is demonstrated both experimentally and theoretically using water vapor. For a given gas, cascade amplification gain profiles can be plotted onto a single master curve where the independent reduced parameter is the ratio of pressure to amplification field strength. When plotted in this fashion, both desired secondary electron and spurious background signal components fall onto respective master curves, with the amplitude being a function of anode bias only. These master curves can be described by simple Townsend Gas Capacitor equations using only two gas-specific parameters. As long as single scattering conditions apply, this approach allows for simplified, direct comparison of the gain characteristics of different gases and allows more intelligent selection of imaging conditions. The utility of treating signal amplification in this manner is demonstrated through a series of images collected under a variety of conditions, but with the ratio of pressure to amplification field strength kept constant. In practice, the range of operational parameter space in which this description can be applied to imaging is limited, as images typically have a mixture of secondary and backscattered contributions.
Dual Diagonalization of Reactive Transport Equations
Yeh, G.; Tsai, C.
2013-12-01
One solves a system of species transport equations in the primitive approach to reactive transport modeling. This approach is not able to decouple equilibrium reaction rates from species concentrations. This problem has been overcome with the approach to diagonalizing the reaction matrix since mid 1990's, which yields the same number of transport equations for reaction-extents. In the diagonalization approach, first, a subset of reaction- extent transport equations is solved for concentrations of components and kinetic-variables. Then, the component, kinetic-variable, and mass action equations are solved for all species concentrations. Finally, the equilibrium reaction rates are posterior computed. The difficulty in this approach is that the solution of species concentrations in the second step is a stiff problem when the concentrations of master species are small compared to those of equilibrium species. To overcome the problem of stiffness, we propose a dual diagonalization approach. Here, a second diagonalization is performed on the decomposed unit matrix to yield species concentrations, each as a linear function of reaction extents. In this dual diagonalization approach, four steps are needed to complete the modeling. First, component and kinetic-variable transport equations are solved for the concentrations of components (a subset of reaction-extents) and kinetic-variables (another subset of reaction-extents). Second, the set of mass action equations written in terms of reaction extents are solved for equilibrium-variables (yet another subset of reaction-extents). Third, species concentrations are posterior obtained by solving the set of linear equations defining reaction-extents. Fourth, equilibrium rates are posterior calculated with transport equations for equilibrium-variables. Several example problems will be used to demonstrate the efficiency of this approach. Keywords: Reactive Transport, Reaction-Extent, Component, Kinetic-Variable, Equilibrium
European Master of Science in Nuclear Engineering
International Nuclear Information System (INIS)
The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognised since a couple of years. It appears that within the European university education and training network, nuclear engineering is presently sufficiently covered, although somewhat fragmented. To take up the challenges of offering top quality, new, attractive and relevant curricula, higher education institutions should cooperate with industry, regulatory bodies and research centres, and more appropriate funding a.o. from public and private is to be re-established. More, European nuclear education and training should benefit from links with international organisations like IAEA, OECD-NEA and others, and should include world-wide cooperation with academic institutions and research centres. The European master in nuclear engineering guarantees a high quality nuclear education in Europe by means of stimulating student and instructor exchange, through mutual checks of the quality of the programmes offered, by close collaboration with renowned nuclear-research groups at universities and laboratories. The concept for a nuclear master programme consists of a solid basket of recommended basic nuclear science and engineering courses, but also contains advanced courses as well as practical training. Some of the advanced courses also serve as part of the curricula for doctoral programmes. A second important issue identified is Continued Professional Development. In order to achieve the objectives and practical goals described above, the ENEN association was formed. This international, non-profit association is be considered as a step towards a virtual European Nuclear University symbolising the active collaboration between various national institutions pursuing nuclear education. (author)
Random diophantine equations, I
Brüdern, Jörg; Dietmann, Rainer
2012-01-01
We consider additive diophantine equations of degree $k$ in $s$ variables and establish that whenever $s\\ge 3k+2$ then almost all such equations satisfy the Hasse principle. The equations that are soluble form a set of positive density, and among the soluble ones almost all equations admit a small solution. Our bound for the smallest solution is nearly best possible.
The UK Postgraduate Masters Dissertation: An "Elusive Chameleon"?
Pilcher, Nick
2011-01-01
Many studies into the process of producing and supervising dissertations exist, yet little research into the "product" of the Masters dissertation, or into how Masters supervision changes over time exist. Drawing on 62 semi-structured interviews with 31 Maths and Computer Science supervisors over a two-year period, this paper explores the Masters…
46 CFR 78.30-20 - Master's and officer's responsibility.
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Master's and officer's responsibility. 78.30-20 Section 78.30-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Lookouts, Pilothouse Watch, Patrolmen, and Watchmen § 78.30-20 Master's and...
Agonistic Struggle: Master-Slave Dialogues in Humanities Supervision
Grant, Barbara M.
2008-01-01
Hegel's master and slave is a significant archetype for graduate research supervision. The master-slave relation vividly exemplifies the hierarchical bond that ties supervisor and student together. Such a confronting view of supervision provides a counterbalance to contemporary emphases on equality between supervisor and student. In what follows,…
Trends in Exiting Physics Master's. Focus On
Mulvey, Patrick J.; Nicholson, Starr
2014-01-01
A physics master's degree provides the recipient with a variety of career options. Some master's recipients will continue their education at the graduate level in physics or another field, where others enter the workforce pursuing a wide range of employment opportunities. This "Focus On" provides an in-depth analysis of physics…
MASTER: very bright OT in Large Magellanic cloud direction
Gorbovskoy, E.; Lipunov, V.; Buckley, D.; Tiurina, N.; Balanutsa, P.; Kornilov, V.; Gorbunov, I.; Kuznetsov, A.; Gress, O.; Vladimirov, V.; Popova, E.; Vlasenko, D.; Kuvshinov, D.; Potter, S.
2016-05-01
MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171 ) discovered OT source at (RA, Dec) = 05h 10m 32.58s -69d 21m 30.4s on 2016-05-10.72797 UT. The OT unfiltered magnitude is (limit 17.6m).
Comparative Analysis of Master of Industrial Design Education in Turkey
Erkarslan, Onder; Imamogullari, Beril
2010-01-01
This research focused on the masters degree programme in industrial design (ID), which is research and practice oriented in the light of current themes and design principles. It argued that a masters degree in industrial design would help graduates specialise in the related field and improve their skills. Therefore, institutional and academic…
Possible Orphan Transient Detection at PGC143111 galaxy by MASTER
Popova, E.; Lipunov, V.; Gorbovskoy, E.; Lopez, R. Rebolo; Serra-Ricart, M.; Israelian, G.; Lodieu, N.; Suarez-Andres, L.; Kornilov, V.; Tiurina, N.; Balanutsa, P.; Samus, N.; Gress, O.; Budnev, N.; Ivanov, K.; Buckley, D.; Potter, S.; Knyazev, A.; Kotze, M.; Tlatov, A.; Senik, V.; Dormidontov, D.; Krushinskiy, V.; Sergienko, Yu.; Gabovich, A.; Yurkov, V.
2015-10-01
MASTER-IAC auto-detection system ( Lipunov et al., Advances in Astronomy, MASTER Global Robotic Net, 2010 ) discovered OT source at (RA, Dec) = 00h 00m 08.72s -33d 41m 56.5s on 2015-10-13.98017 UT. The OT unfiltered magnitude is 17.6m (the limit is 19.9m).
Mastering Inflectional Suffixes: A Longitudinal Study of Beginning Writers' Spellings
Turnbull, Kathryn; Deacon, S. Helene; Bird, Elizabeth Kay-Raining
2011-01-01
This study tracked the order in which ten beginning spellers (M age = 5 ; 05; SD = 0.21 years) mastered the correct spellings of common inflectional suffixes in English. Spellings from children's journals from kindergarten and grade 1 were coded. An inflectional suffix was judged to be mastered when children spelled it accurately in 90 percent of…
MD3M: The Master Data Management Maturity Model
Spruit, Marco; Pietzka, Katharina
2015-01-01
This research aims to assess the master data maturity of an organization. It is based on thorough literature study to derive the main concepts and best practices in master data maturity assessment. A maturity matrix relating 13 focus areas and 65 capabilities was designed and validated. Furthermore,
Assessing Changes in Virginia Master Gardener Volunteer Management
Dorn, Sheri T.
1999-01-01
ASSESSING CHANGES IN VIRGINIA MASTER GARDENER VOLUNTEER MANAGEMENT Sheri T. Dorn ABSTRACT Master Gardener (MG) volunteers are nonpaid, education partners with Virginia Cooperative Extension (VCE). VCE MGs have assisted Extension agents in meeting VCE's educational goals and mission by following the Sustainable Landscape Management educational program objectives within the VCE Plan of Work. Local MG volunteer programs must be managed appropriately so that vol...
Enhancing the Academic Experiences of First-Generation Master's Students
Portnoi, Laura M.; Kwong, Tiffany M.
2011-01-01
Is being "first generation" significant for undergraduates only? The narratives of 25 first-generation master's students in this phenomenological study suggest not. Participants experienced challenges pursuing their master's degrees, yet these were counterbalanced by other factors. The authors identified five areas that educators may address to…
Notes on the Lumped Backward Master Equation for the Neutron Extinction/Survival Probability
Energy Technology Data Exchange (ETDEWEB)
Prinja, Anil K [Los Alamos National Laboratory
2012-07-02
The expected or mean neutron number (or density) provides an adequate characterization of the neutron population and its dynamical excursions in most neutronic applications, in particular power reactors. Fluctuations in the neutron number, originating from the inherent randomness of neutron interactions and fission neutron multiplicities, are relatively small and ignorable for operational purposes, although measurements of the variance and time correlations provide valuable diagnostic information on fundamental reactor physics parameters. However, it is well known that there exist situations of great interest and importance in which a strictly deterministic description, or even one supplemented with a knowledge of low order statistical averages (variance, correlation), provides an incomplete and very unsatisfactory description of the state of the neutron population. These situations are marked by persistent large fluctuations in the neutron number where the emergence of a deterministic phase is suppressed. Such situations are strongly stochastic and therefore unpredictable (i.e., the mean is not representative of the actual population), and can arise either by design or by accident. Examples where the stochastic behavior of neutron populations must be taken into account include: nuclear weapon single-point safety assessment; criticality excursions in spent fuel storage and in the handling of fissile solutions in fuel fabrication and reprocessing; approach to critical under suboptimal reactor start-up conditions; preinitiation in fast burst research reactors; and weak nuclear signatures in the passive detection of nuclear materials. What distinguishes strongly stochastic neutronic systems from strongly deterministic systems is that, in the former, neutron multiplication occurs in the presence of weak neutron sources, such as spontaneous fission and background (cosmic) radiation. Weak sources (in a sense that can be made quite precise) lead to well separated fission chains (a fission chain is defined as the initial source neutron and all its subsequent progeny) in which some chains are short lived while others propagate for unusually long times. Under these conditions, fission chains do not overlap strongly and this precludes the cancellation of neutron number fluctuations necessary for the mean to become established as the dominant measure of the neutron population. The fate of individual chains then plays a defining role in the evolution of the neutron population in strongly stochastic systems, and of particular interest and importance in supercritical systems is the extinction probability, defined as the probability that the neutron chain (initiating neutron and its progeny) will be extinguished at a particular time, or its complement, the time-dependent survival probability. The time-asymptotic limit of the latter, the probability of divergence, gives the probability that the neutron population will grow without bound, and is more commonly known as the probability of initiation or just POI. The ability to numerically compute these probabilities, with high accuracy and without overly restricting the underlying physics (e.g., fission neutron multiplicity, reactivity variation) is clearly essential in developing an understanding of the behavior of strongly stochastic systems.
International Master Erasmus Mundus Quaternary and Prehistory, Master Theses 2006-2007.
Directory of Open Access Journals (Sweden)
Cecilia Buonsanto
2008-11-01
Full Text Available This special volume of the Annals of the University of Ferrara presents a rich collection of research carried out by a group of young scholars from around the world gathered in the Erasmus Mundus Master-Prehistory and Quaternary.This is a selection of the arguments put forward by students who participated in the first two years of this extraordinary course financed by the European Union. The first point to make as a synthesis of this advanced course is light here in these pages written in many different languages but that speak all the only language of international research.This book gives us evidence of a University that has become fully European, first of all because the institutions have invested in advanced studies and frontier research, bringing together universities from across the Continent that, in a common effort here have joined with us to give us the best possible conditions to enable young people, not only in Europe but coming from all over the world to play together a basic research on the origins of life in our common Earth.Just beware the origin of these authors to be affected: Jordan, Italy, Senegal, Spain, France, Brazil, Argentina, China, Algeria, Cambodia, Ivory Coast, Georgia, Indonesia.This volume contains the research results conducted by the master students of the first two years of training. The results represent an integral part of the final Master thesis defended before the last discussion in front of the International Commission.
Kinetic energy equations for the average-passage equation system
Johnson, Richard W.; Adamczyk, John J.
1989-01-01
Important kinetic energy equations derived from the average-passage equation sets are documented, with a view to their interrelationships. These kinetic equations may be used for closing the average-passage equations. The turbulent kinetic energy transport equation used is formed by subtracting the mean kinetic energy equation from the averaged total instantaneous kinetic energy equation. The aperiodic kinetic energy equation, averaged steady kinetic energy equation, averaged unsteady kinetic energy equation, and periodic kinetic energy equation, are also treated.
Variable-stepsize Runge-Kutta methods for stochastic Schroedinger equations
International Nuclear Information System (INIS)
Stochastic wave equations of Schroedinger type are widely employed in physics and have numerous potential applications in chemistry. While some accurate numerical methods exist for particular classes of stochastic differential equations they cannot generally be used for Schroedinger equations. Efficient and accurate methods for their numerical solution therefore need to be developed. Here we show that existing Runge-Kutta methods for ordinary differential equations (odes) can be modified to solve stochastic wave equations provided that appropriate changes are made to the way stepsizes are selected. The order of the resulting stochastic differential equation (sde) scheme is half the order of the ode scheme. Specifically, we show that an explicit 9th order Runge-Kutta method (with an embedded 8th order method) for odes yields an order 4.5 method for sdes which can be implemented with variable stepsizes. This method is tested by solving systems of equations originating from master equations and from the many-body Schroedinger equation
Hasrati, Mostafa
2013-01-01
This article reports the results of a mixed methodology analysis of the assumptions of academic staff and Masters students in an Iranian university regarding various aspects of the assessment of the Masters degree thesis, including the main objective for writing the thesis, the role of the students, supervisors and advisors in writing the…
European master of science in nuclear engineering
International Nuclear Information System (INIS)
Full text: The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognised since a couple of years. Among others, 'networking to maintain nuclear competence through education and training', was recommended in 2001 by an expert panel to the European Commission. (EUR 19150 EN). It appears that within the European university education and training framework, nuclear engineering is presently still sufficiently covered, although somewhat fragmented. However it has been observed that several areas are at risk in the very near future including safety relevant fields such as reactor physics and nuclear thermal-hydraulics. Furthermore, in some countries deficiencies have been identified in areas such as the back-end of the nuclear fuel cycle, waste management and decommissioning. To overcome these risks and deficiencies, it is of very high importance that European countries work more closely together. Harmonisation and improvement of the nuclear education and training have to take place at an international level in order to maintain the knowledge properly and to transfer it throughout Europe for the safe and economic design, operation and dismantling of present and future nuclear systems. To take up the challenges of offering top quality, new, attractive and relevant curricula, higher education institutions should cooperate with industry, regulatory bodies and research centres, and more appropriate funding from public and private sources. In addition, European nuclear education and training should benefit from links with international organisations like IAEA, OECD-NEA and others, and should include world-wide cooperation with academic institutions and research centres. The first and central issue is to establish a European Master of Science in Nuclear Engineering. The concept envisaged is compatible with the projected harmonised European architecture for higher education defining Bachelors and Masters degrees. The basic goal is to guarantee a high
European Master of Science in Nuclear Engineering
International Nuclear Information System (INIS)
The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognised since a couple of years. Among others, 'networking to maintain nuclear competence through education and training', was recommended in 2001 by an expert panel to the European Commission [EUR, 19150 EN, Strategic issues related to a 6th Euratom Framework Programme (2002-2006). Scientific and Technical Committee Euratom, pp. 14]. It appears that within the European University education and training framework, nuclear engineering is presently still sufficiently covered, although somewhat fragmented. However, it has been observed that several areas are at risk in the very near future including safety relevant fields such as reactor physics and nuclear thermal-hydraulics. Furthermore, in some countries deficiencies have been identified in areas such as the back-end of the nuclear fuel cycle, waste management and decommissioning. To overcome these risks and deficiencies, it is of very high importance that European countries work more closely together. Harmonisation and improvement of the nuclear education and training have to take place at an international level in order to maintain the knowledge properly and to transfer it throughout Europe for the safe and economic design, operation and dismantling of present and future nuclear systems. To take up the challenges of offering top quality, new, attractive and relevant curricula, higher education institutions should cooperate with industry, regulatory bodies and research centres, and more appropriate funding from public and private sources. In addition, European nuclear education and training should benefit from links with international organisations like IAEA, OECD-NEA and others, and should include worldwide cooperation with academic institutions and research centres. The first and central issue is to establish a European Master of Science in Nuclear Engineering. The concept envisaged is compatible with the projected harmonised European
Coho Salmon Master Plan, Clearwater River Basin.
Energy Technology Data Exchange (ETDEWEB)
Nez Perce Tribe; FishPro
2004-10-01
The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these
The Modified Magnetohydrodynamical Equations
Institute of Scientific and Technical Information of China (English)
EvangelosChaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similar fashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is done by replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vector potential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vector analysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHD equations.
Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.
Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W C; Cao, Jinde
2015-01-01
In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results.
A force feedback master finger in exoskeleton type
Institute of Scientific and Technical Information of China (English)
Fang Honggen; Liu Hong; Xie Zongwu
2010-01-01
In order to eliminate the drawbacks of conventional force feedback gloves,a new type of master finger has been developed.By utilizing three"four-bar mechanism joint"in series and wire coupling mechanism,the master finger transmission ratio is kept exactly 1:1.4:1 in the whole movement range and it can make active motions in both extension and flexion directions.Additionally,to assttre faster data transmission and near zero delay in the master-slave operation,a digital signal processing/field programmable gate array(DSP/FPGA-FPGA)structure with 200μs cycle time is designed.The operating modes of the master finger can be contact or non-contact,which depends on the motion states of a slave finger,free motion or constrained motion.The position control employed in non-contact mode ensures unconstrained motion and the force control adopted in contact mode guarantees natural contact sensation.To evaluate the performances of the master finger,an experiment between the master finger and a DLR/HIT dexterous finger is conducted.The results demonstrate that this new type master finger can augment telepresence.
Tilts of the Master Equatorial Tower
Ahlstrom, H. G., Jr.; Gawronski, W.; Girdner, D.; Noskoff, E.; Sommerville, J. N.
2000-07-01
At the center of the DSS-14 antenna, a tower reaches to the focal point of the antenna dish. The master equatorial (ME) instrument is located at the top of the tower. This instrument precisely (with an accuracy that exceeds that of the antenna) follows the commanded trajectory. Through the optical coupling, the antenna focal point follows the ME. One factor of the antenna pointing precision is the movement of the ME base, i.e., the top of the tower. For this reason, measurements of the ME tower tilts have been taken in order to quantify the tilts, to determine possible causes of the tilting, and to update the antenna pointing budget. They were conducted under three antenna operating modes: during tracking, slewing, and antenna stowing. The measurements indicate that the ME tower tilts introduce significant pointing errors that exceed the required 32-GHz (Ka-band) pointing precision (estimated as 0.8 mdeg for a 0.1-dB gain loss). Four different sources of tilt were identified and require verification.
Structural master plan of flood mitigation measures
Directory of Open Access Journals (Sweden)
A. Heidari
2009-01-01
Full Text Available Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possibility of flood overtopping. Different flood mitigation alternatives are investigated from various aspects in the Dez and Karun river floodplain areas as a case study in south west of IRAN. The results show that detention dam and flood diversion are the best alternatives of flood mitigation methods as well as enforcing the flood control purpose of upstream multipurpose reservoirs. Dyke and levees are not mostly justifiable because of negative impact on down stream by enhancing routed flood peak discharge magnitude and flood damages as well.
Forecast Master Program case studies: Final report
Energy Technology Data Exchange (ETDEWEB)
Engle, R.; Granger, C.; Ramanathan, R. (ed.)
1987-04-01
This report presents a number of case studies using the computer software package FORECAST MASTER (FM). The series studied and forecast are, aggregate monthly California Electricity Sales, system energy demand data from Ontario Hydro, peak demand data for the residential and commercial customers of Georgia Power Company, Massachusetts Electric commercial sales, Narragansett Electric commercial sales, average and peak demand using Georgia Power Company data. A variety of methods have been studied by each of the contributing authors; trend line fitting, exponential smoothing, Box-Jenkins univariate forecasting, vector autoregression, state space modeling, dynamic econometric models including time-varying parameters and general order serial correlation corrections. Thus both the data sets and the modeling/forecasting methodologies are varied. A number of conclusions emerge from these case studies: FM provides a powerful set of tools to aid a utility forecaster, a great deal of caution should be exercised in pre-processing the data; it can have unintended side effects, diagnostic tests are very useful in econometric models, the Akaike Information Criterion is a useful measure for selecting the best state space model, and state space and econometric approaches both need equal amounts of care in model analysis and presentation.
Color silver halide hologram production and mastering
Bjelkhagen, Hans I.; Huang, Qiang
1997-04-01
Color reflection holograms recorded with the Denisyuk geometry have been demonstrated by the recently formed HOLOS Corporation in New Hampshire. The Slavich red-green-blue (RGB) sensitized ultra-high resolution silver halide emulsion was used for the hologram recording. The employed laser wavelengths were 647 nm, 532 nm, and 476 nm, generated by an argon ion, a frequency doubled Nd:YAG, and a krypton ion laser, respectively. A beam combination mechanism with dichroic filters enabled a simultaneous RGB exposure, which made the color balance and overall exposure energy easy to control as well as simplifying the recording procedure. HOLOS has been producing limited edition color holograms in various sizes from 4' X 5' to 12' X 16'. A 30 foot long optical table and high power lasers will enable HOLOS to record color holograms up to the size of one meter square in the near future. Various approaches have been investigated in generating color hologram masters which have sufficiently high diffraction efficiency to contact copy the color images onto photopolymer materials. A specially designed test object including the 1931 CIE chromaticity diagram, a rainbow ribbon cable, pure yellow dots, and a cloisonne elephant was used for color recording experiments. In addition, the Macbeth Color Checker chart was used. Both colorimetric evaluation and scattering noise measurements were performed using the PR-650 Photo Research SpectraScan SpectraCalorimeter.
Coho Salmon Master Plan, Clearwater River Basin.
Energy Technology Data Exchange (ETDEWEB)
Nez Perce Tribe; FishPro
2004-10-01
The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these
A cleavage toughness master curve model
International Nuclear Information System (INIS)
Development of fusion power will require a fracture toughness database, derived largely from small specimen tests, closely integrated with methods to assess first wall and blanket structural integrities. A master curve-shift (MC-ΔT) method has been proposed as an engineering expedient to treat the effects of structural geometry, irradiation, loading rates and safety margins. However, a number of issues related to the MC-ΔT method remain to be resolved, including the universality of MC shapes. A new micromechanical model of fracture toughness in the cleavage transition regime is proposed that combines analytical representations of finite element analysis simulations of crack-tip stress fields with a local critical stress-critical stressed area (σ*-A*) fracture criterion. This model, has been successful in predicting geometry effects, as well as high loading rate and irradiation hardening-induced Charpy shifts. By incorporating a modest temperature dependence in σ*(T), an inconsistency between model predictions and an observed universal-type MC shape is resolved
Simple jumping process with memory: Transport equation and diffusion
Kamińska, A.; Srokowski, T.
2004-06-01
We present a stochastic jumping process, defined in terms of jump-size probability density and jumping rate, which is a generalization of the well-known kangaroo process. The definition takes into account two process values: after and before the jump. Therefore, the process is able to preserve memory about its previous values. It possesses a simple stationary limit. Its master equation is interpreted as the kinetic equation with variable collision rate. The process can be easily applied to model systems which relax to distributions other than Maxwellian. The case of a constant jumping rate corresponds to the diffusion process, either normal or ballistic.
Indian Academy of Sciences (India)
George F R Ellis
2007-07-01
The Raychaudhuri equation is central to the understanding of gravitational attraction in astrophysics and cosmology, and in particular underlies the famous singularity theorems of general relativity theory. This paper reviews the derivation of the equation, and its significance in cosmology.
Directory of Open Access Journals (Sweden)
Chengdong Yang
2015-01-01
Full Text Available This paper addresses the exponential synchronization problem of a class of master-slave distributed parameter systems (DPSs with spatially variable coefficients and spatiotemporally variable nonlinear perturbation, modeled by a couple of semilinear parabolic partial differential equations (PDEs. With a locally Lipschitz constraint, the perturbation is a continuous function of time, space, and system state. Firstly, a sufficient condition for the robust exponential synchronization of the unforced semilinear master-slave PDE systems is investigated for all admissible nonlinear perturbations. Secondly, a robust distributed proportional-spatial derivative (P-sD state feedback controller is desired such that the closed-loop master-slave PDE systems achieve exponential synchronization. Using Lyapunov’s direct method and the technique of integration by parts, the main results of this paper are presented in terms of spatial differential linear matrix inequalities (SDLMIs. Finally, two numerical examples are provided to show the effectiveness of the proposed methods applied to the robust exponential synchronization problem of master-slave PDE systems with nonlinear perturbation.
Bilateral Control Using Master/Slave Simulator for Haptic Communication
Yokokura, Yuki; Katsura, Seiichiro; Ohishi, Kiyoshi
A bilateral controller is used to transmit and share haptic information between a master system and a slave system. In a transmission system, the bilateral controller encounters problems in the event of data packet loss and/or disconnections. In this study, a master/slave simulator and environmental data memory are used to solve the problems. In the case of normal operation, the environmental data memory stores force data in a remote side. The control system is operated by the environmental data memory and master/slave simulator when the communication lines are disconnected.
Achieving Reliability in Master-worker Computing via Evolutionary Dynamics
Christoforou, Evgenia; Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A.; Sánchez, Angel
2012-01-01
This work considers Internet-based task computations in which a master process assigns tasks, over the Internet, to rational workers and collect their responses. The objective is for the master to obtain the correct task outcomes. For this purpose we formulate and study the dynamics of evolution of Internet-based master-worker computations through reinforcement learning. This work is supported by the Cyprus Research Promo-tion Foundation grant TΠE/ΠΛHPO/0609(BE)/05, NSF grants CCF-0937829,...
Revisiting the master-signifier, or, Mandela and repression
Hook, Derek; Vanheule, Stijn
2016-01-01
The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or “empty”) signifier in political discourse analysis has thus proved a double-edged sword. On the o...
Burkhardt-Holm, Patricia; Chebbi, Camelia
2008-03-01
Sustainable development has become a key aspect in society, economics and environment. Therefore, experts dealing with questions relating to people, the environment and its resources are more and more requested. This paper presents the concept and first experiences of a specialised Master's Degree in Sustainable Development (MSD). This is a pioneer course as it is equally anchored in three faculties (Human science, Natural science, Business and Economy) at the University of Basel, Switzerland. It aims to transmit knowledge, teach methodology and enable practical work experience in the field of sustainable development. This interdisciplinary master's degree is composed of several modules. At first, the attendance of modules providing a basic understanding in the disciplines not yet covered by the former Bachelor degree, is mandatory. In optional modules, the acquired knowledge of the compulsory modules is further enhanced, focussing on four different topics and are titled as: Agglomeration and Ecosystems; Conservation and Utilisation of Natural Resources; Environment, Values, Societal Transformation and Health; and Environmental Problems in a Globalised World. In another optional module, students may complete an internship in which they can apply theoretical and thematic knowledge. To work independently on a problem in the context of, interdisciplinary projects are a central request in the MSD. Finally, the master thesis has to be planned and realized by a plying the scientific methods and skills acquired in the previous modules. Since the beginning of the programme in the winter of 2005/2006, 45 students have enrolled. They received degrees at 25 different universities, 13 of which are from abroad. Some already have several years of working experience, while others have only just completed their Bachelor's degrees. A analysis has shown that the graduates will have excellent chances in the employment market, since they are well qualified to take over sought
Ordinary differential equations
Greenberg, Michael D
2014-01-01
Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps
Beginning partial differential equations
O'Neil, Peter V
2014-01-01
A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or
Reducible functional differential equations
Directory of Open Access Journals (Sweden)
S. M. Shah
1985-01-01
Full Text Available This is the first part of a survey on analytic solutions of functional differential equations (FDE. Some classes of FDE that can be reduced to ordinary differential equations are considered since they often provide an insight into the structure of analytic solutions to equations with more general argument deviations. Reducible FDE also find important applications in the study of stability of differential-difference equations and arise in a number of biological models.
New unified evolution equation
Lim, Jyh-Liong; Li, Hsiang-nan
1998-01-01
We propose a new unified evolution equation for parton distribution functions appropriate for both large and small Bjorken variables $x$, which is an improved version of the Ciafaloni-Catani-Fiorani-Marchesini equation. In this new equation the cancellation of soft divergences between virtual and real gluon emissions is explicit without introducing infrared cutoffs, next-to-leading contributions to the Sudakov resummation can be included systematically. It is shown that the new equation reduc...
Diophantine equations and identities
Directory of Open Access Journals (Sweden)
Malvina Baica
1985-01-01
Full Text Available The general diophantine equations of the second and third degree are far from being totally solved. The equations considered in this paper are i x2−my2=±1 ii x3+my3+m2z3−3mxyz=1iii Some fifth degree diopantine equations
Fick's law and Fokker-Planck equation in inhomogeneous environments
International Nuclear Information System (INIS)
In inhomogeneous environments, the correct expression of the diffusive flux is not always given by the Fick's law Γ=-D∇n. The most general hydrodynamic equation modelling diffusion is indeed the Fokker-Planck equation (FPE). The microscopic dynamics of each specific system may affect the form of the FPE, either establishing connections between the diffusion and the convection term, as well as providing supplementary terms. In particular, the Fick's form for the diffusion equation may arise only in consequence of a specific kind of microscopic dynamics. It is also shown how, in the presence of sharp inhomogeneities, even the hydrodynamic FPE limit may becomes inaccurate and mask some features of the true solution, as computed from the Master equation
A kinetic model for chemical neurotransmission
Ramirez-Santiago, Guillermo; Martinez-Valencia, Alejandro; Fernandez de Miguel, Francisco
Recent experimental observations in presynaptic terminals at the neuromuscular junction indicate that there are stereotyped patterns of cooperativeness in the fusion of adjacent vesicles. That is, a vesicle in hemifusion process appears on the side of a fused vesicle and which is followed by another vesicle in a priming state while the next one is in a docking state. In this talk we present a kinetic model for this morphological pattern in which each vesicle state previous to the exocytosis is represented by a kinetic state. This chain states kinetic model can be analyzed by means of a Master equation whose solution is simulated with the stochastic Gillespie algorithm. With this approach we have reproduced the responses to the basal release in the absence of stimulation evoked by the electrical activity and the phenomena of facilitation and depression of neuromuscular synapses. This model offers new perspectives to understand the underlying phenomena in chemical neurotransmission based on molecular interactions that result in the cooperativity between vesicles during neurotransmitter release. DGAPA Grants IN118410 and IN200914 and Conacyt Grant 130031.
The Modified Magnetohydrodynamical Equations
Institute of Scientific and Technical Information of China (English)
Evangelos Chaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similarfashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is doneby replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vectorpotential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vectoranalysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHDequations.
Fractional Differential Equations
Directory of Open Access Journals (Sweden)
Jianping Zhao
2012-01-01
Full Text Available An extended fractional subequation method is proposed for solving fractional differential equations by introducing a new general ansätz and Bäcklund transformation of the fractional Riccati equation with known solutions. Being concise and straightforward, this method is applied to the space-time fractional coupled Burgers’ equations and coupled MKdV equations. As a result, many exact solutions are obtained. It is shown that the considered method provides a very effective, convenient, and powerful mathematical tool for solving fractional differential equations.
Singular stochastic differential equations
Cherny, Alexander S
2005-01-01
The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.
General particle transport equation. Final report
International Nuclear Information System (INIS)
The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence
Learning Objectives for Master's theses at DTU Management Engineering
DEFF Research Database (Denmark)
Hansen, Claus Thorp; Rasmussen, Birgitte; Hinz, Hector Nøhr
2010-01-01
, different. The DTU Study Handbook states that:”Learning objectives are an integrated part of the supervision”, which provides you with the opportunity – naturally in cooperation with your supervisor – to formulate learning objectives for your Master's thesis. There are at least three good reasons for being......Learning objectives are normally formulated when you participate in a DTU course. It is namely the teacher’s task to formulate learning objectives and then evaluate your fulfilment of the learning objectives when assessing you exam or replacement assignment. With Master's theses it is, however...... thorough when formulating learning objectives for your Master's thesis. Firstly, the learning objectives will help you find a prudent approach to be used in your Master's thesis. Secondly, the learning objectives will help describe the basis on which you are assessed when the report has been submitted...
Design of haptic master featuring small-sized MR brakes
Gang, Han Gyeol; Choi, Seung-Bok; Sohn, Jung Woo
2016-04-01
In this work, a new type of haptic master featuring small-sized MR brake is proposed and its performances are evaluated. The proposed haptic master consists of base frame, stick grip and small-sized four MR brakes for 3-DOF rotational motion and 1-DOF gripper motion. To obtain large braking torque under limited small size of MR brake, dual tapered shape inner magnetic core is proposed and its performance is evaluated via both numerical estimation and experimental test. After design and implementation of control algorithm, it has been demonstrated through experiment that the proposed actuator has good performances on tracking control of desired torques. Then, a new haptic master device is designed and constructed by adopting the proposed MR brakes and light weight frame structures. It is verified that the proposed haptic master device is effective for the real application in the field.
Master Cooperative Wildland Fire Management and Stafford Act Response Agreement
US Fish and Wildlife Service, Department of the Interior — This Master Cooperative Wildland Fire Management Agreement is an interagency agreement for fire control in Washington and Oregon. The plan outlines resources,...
Master Development Plan for Tewaukon National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This Master Development Plan for Tewaukon National Wildlife Refuge is divided into the following six parts: general characteristics, management objectives,...
[MODERN EDUCATIONAL TECHNOLOGY MASTERING PRACTICAL SKILLS OF GENERAL PRACTITIONERS].
Kovalchuk, L I; Prokopchuk, Y V; Naydyonova, O V
2015-01-01
The article presents the experience of postgraduate training of general practitioners--family medicine. Identified current trends, forms and methods of pedagogical innovations that enhance the quality of learning and mastering the practical skills of primary professionals providing care.
Minnesota Valley National Wildlife Refuge: Master Plan Amendment No. 1
US Fish and Wildlife Service, Department of the Interior — The Master Plan developed for Minnesota Valley National Wildlife Refuge proposed that a refuge administration office and maintenance facility be located on an...
Developing Scientific Index System of Urban Master Planning
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>Master plan is the fundamental basis for urban construction and administration, an important public policy of the govern-ments, as well as an overall, comprehen-sive, and strategic task related to politics, economy,
Thermal 2-loop master spectral function at finite momentum
Laine, M
2013-01-01
When considering NLO corrections to thermal particle production in the "relativistic" regime, in which the invariant mass squared of the produced particle is K^2 ~ (pi T)^2, then the production rate can be expressed as a sum of a few universal "master" spectral functions. Taking the most complicated 2-loop master as an example, a general strategy for obtaining a convergent 2-dimensional integral representation is suggested. The analysis applies both to bosonic and fermionic statistics, and shows that for this master the non-relativistic approximation is only accurate for K^2 > (8 pi T)^2, whereas the zero-momentum approximation works surprisingly well. Once the simpler masters have been similarly resolved, NLO results for quantities such as the right-handed neutrino production rate from a Standard Model plasma or the dilepton production rate from a QCD plasma can be assembled for K^2 ~ (pi T)^2.
"Master i Margarita" - teatralnõi roman? / Susanna Witt
Witt, Susanna
1998-01-01
Bibl. lk. 316. Kokkuvõte inglise k. "Master and Margarita - a theatrical novel?". ""Meister ja Margarita" - teatriromaan?". Mihhail Bulgakovi romaani "Meister ja Margarita" kahene struktuur ja ukraina rahvuslik nukuteater vertep
Bayou Sauvage National Wildlife Refuge Master Plan Report
US Fish and Wildlife Service, Department of the Interior — Work on the Bayou Sauvage National Wildlife Refuge Master Plan and Environmental Impact Statement (EIS) was initiated in November 1992 and scheduled for completion...
Compact 2050 nm Semiconductor Diode Laser Master Oscillator Project
National Aeronautics and Space Administration — This Phase I effort seeks to develop DFB laser master oscillators at the novel wavelength of 12050 nm. Two prototypes will be built, tested, and delivered ....
A study at Masters Level Training in Software Engineering
George Clinton
2012-01-01
Sponsored by the Department of Defense in the United States was formed an alliance among professionals from the academy, industry and government to design and structure a new model curriculum for Masters Programs in Software Engineering. Before starting this work was conducted at study to 28 of existing programs to determine the level of training in these masters in the country and the world. This article presents the results of that study.
LLNL line-item construction projects Master Site Plan
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-04-15
This interim submittal is an updated 1996 overview of the Master Plan based on the 1995 LLNL Site Development Plan, illustrating the future land use considerations, and the locations of proposed facilities as documented through the line item development process and keyed to the summary table. The following components in addition to the line-item proposals remain key elements in the implementation strategy of the Master Plan: personnel migration, revitalization, space reduction, classified core contraction, utility systems, and environmental restoration.
MASTER: OT discovered during inspection of HESE 58537957 trigger
Tyurina, N.; Lipunov, V.; Buckley, D.; Gorbovskoy, E.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Kuvshinov, D.; Vlasenko, D.; Gress, O.; Ivanov, K.; Shumkov, V.; Potter, S.
2016-08-01
MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171 ) discovered OT source at (RA, Dec) = 13h 08m 45.02s -32d 32m 54.9s on 2016-08-24.73811 UT during inspection of HESE alert ( 58537957 trigger number ) http://gcn.gsfc.nasa.gov/notices_amon/58537957_128340.amon . The OT unfiltered magnitude is 19.6m (limit 20.5m).
AN INVESTMENT FOR THE FUTURE: THE SOCIAL ECONOMY MASTER PROGRAM
Iosefina Cristina Loghin
2012-01-01
The Master Program of Social Economy is a highly applied and inter-disciplinary program addressed to those higher education graduates showing interest in social economy, an area of expertise that is new in Romania and that opens up alternative opportunities for helping decision-makers formulate occupational policies targeting the groups at risk of exclusion from the labor market. The goal of the master program is to develop specialists skilled in creating innovative employment opportunities, ...
A study at Masters Level Training in Software Engineering
Directory of Open Access Journals (Sweden)
George Clinton
2012-12-01
Full Text Available Sponsored by the Department of Defense in the United States was formed an alliance among professionals from the academy, industry and government to design and structure a new model curriculum for Masters Programs in Software Engineering. Before starting this work was conducted at study to 28 of existing programs to determine the level of training in these masters in the country and the world. This article presents the results of that study.
Discrete micropayment protocol based on master-slave payword chain
Institute of Scientific and Technical Information of China (English)
FAN Li-min; LIAO Jian-xin
2007-01-01
Using the idea of Payword, the new concept of master-slave payword chain (MSPC) is proposed in this article.MSPC consists of one master payword chain and one slave payword chain. On the basis of MSPC, a new micropaymentprotocol called discrete micropayment protocol (DMP), is presented in this article. DMP consists of three sub-protocols:registration, payment, and settlement. Both part fairness and non-unit-wise payment can be provided by DMP.
Supporting internet protocols in master-slave fieldbus networks
Pacheco, Filipe; Tovar, Eduardo; Kalogeras, A.; Pereira, Nuno
2001-01-01
In this paper we describe how to integrate Internet Protocols (IP) into a typical hierarchical master-slave fieldbus network, supporting a logical ring token passing mechanism between master stations. The integration of the TCP/IP protocols in the fieldbus protocol rises a number of issues that must be addressed properly. In this paper we particularly address the issues related to the conveyance of IP fragments in fieldbus frames (fragmentation/de-fragmentation) and on how to support the symm...
Control of 4-DOF MR haptic master for medical application
Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok
2014-03-01
In this work, magnetorheological (MR) based haptic master for robot-assisted minimally invasive surgery (RMIS) is proposed and analyzed. Using a controllable MR fluid, the masters can generate a reflection force with the 4-DOF motion. The proposed master consists of two actuators: MR clutch featuring gimbal mechanism for 2-DOF rotational motion (X and Y axes) and MR clutch attached at gripper of gimbal structures for 1-DOF rotational motion (Z axis) and 1-DOF translational motion. After analyzing the dynamic motion by integrating mechanical and physical properties of the actuators, torque model of the proposed haptic master is derived. For realization of master-slave system, an encoder which can measure position information is integrated with the MR haptic master. In the RMIS system, the measured position is converted as a command signal and sent to the slave robot. In this work, slave and organ of patient are modeled in virtual space. In order to embody a human organ into virtual space, a volumetric deformable object is mathematically formulated by a shape retaining chain linked (S-chain) model. Accordingly, the haptic architecture is established by incorporating the virtual slave with the master device in which the reflection force and desired position originated from the object of the virtual slave and operator of the master, respectively, are transferred to each other. In order to achieve the desired force trajectories, a proportional-integral-derivative (PID) controller is designed and implemented. It has been demonstrated that the effective tracking control performance for the desired motion of reflection force is well presented in time domain.
Oil and gas field code master list, 1993
Energy Technology Data Exchange (ETDEWEB)
1993-12-16
This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.
European Master Programs in Nanoelectronics and Microsystems
DEFF Research Database (Denmark)
Bruun, Erik; Demarchi, Danilo; Nielsen, Ivan Ring
2014-01-01
and non-electronic devices (such as bio-devices or chemical devices), and possibilities for developing fundamentally new nanoscale electronic devices. This development is often described in terms of technology roadmaps related to Moore's law. Engineering curricula taking this development into account have...
Revisiting the Master-Signifier, or, Mandela and Repression.
Hook, Derek; Vanheule, Stijn
2015-01-01
The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or "empty") signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents. PMID:26834664
Revisiting the master-signifier, or, Mandela and repression
Directory of Open Access Journals (Sweden)
Derek eHook
2016-01-01
Full Text Available The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual psychical economy. The popularity of the concept of the master (or ‘empty’ signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is as much the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents.
Revisiting the Master-Signifier, or, Mandela and Repression
Hook, Derek; Vanheule, Stijn
2016-01-01
The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or “empty”) signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents. PMID:26834664
Lanczos's equation to replace Dirac's equation ?
Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre
1994-01-01
Lanczos's quaternionic interpretation of Dirac's equation provides a unified description for all elementary particles of spin 0, 1/2, 1, and 3/2. The Lagrangian formulation given by Einstein and Mayer in 1933 predicts two main classes of solutions. (1) Point like partons which come in two families, quarks and leptons. The correct fractional or integral electric and baryonic charges, and zero mass for the neutrino and the u-quark, are set by eigenvalue equations. The electro-weak interaction of the partons is the same as with the Standard model, with the same two free parameters: e and sin^2 theta. There is no need for a Higgs symmetry breaking mechanism. (2) Extended hadrons for which there is no simple eigenvalue equation for the mass. The strong interaction is essentially non-local. The pion mass and pion-nucleon coupling constant determine to first order the nucleon size, mass and anomalous magnetic moment.
International Nuclear Information System (INIS)
We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A0(t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field
Energy Technology Data Exchange (ETDEWEB)
Kalmykov, Mikhail Yu.; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2012-05-15
We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.
Report of the River Master of the Delaware River for the period December 1, 2008–November 30, 2009
Krejmas, Bruce E.; Paulachok, Gary N.; Mason, Jr., Robert R.; Owens, Marie
2016-04-06
A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 56th Annual Report of the River Master of the Delaware River. It covers the 2009 River Master report year, the period from December 1, 2008, to November 30, 2009.During the report year, precipitation in the upper Delaware River Basin was 50.89 inches (in.) or 116 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs remained high throughout the year and did not decline below 80 percent of combined capacity at any time. Delaware River operations during the year were conducted as stipulated by the Decree and the Flexible Flow Management Program (FFMP).Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 25 days during the report year. Releases were made at conservation rates—rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs—on all other days.During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master.As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance
Acuff, Joni Boyd; Hirak, Brent; Nangah, Mary
2012-01-01
The consequence of narratives becoming stagnant or controlled is that they become a Master Narrative. The Master Narrative is an "ideological script that is being imposed by the people in authority on everybody else: The Master Fiction... history" (Moyers, 1990, para. 4). Master Narratives use myths and ideologies to sustain a sanitized version of…
Differential equations for dummies
Holzner, Steven
2008-01-01
The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Lessons learned from a great master!
Directory of Open Access Journals (Sweden)
Wagner Seixas da Silva
2015-06-01
critical thinking as early as the their first semester was something revolutionary and very attractive. This teaching strategy was so well accepted that was common to find either students who had already approved the course of Biochemistry or students attending advanced semesters returning to attend the class and to see the beloved teacher once again! In class it was possible to both discuss biochemistry and learn history! To have the classroom invaded by "actors" playing the judgment and beheading of Antoine-Laurent Lavoisier over 100 years after his death while discussing his experiments caused a whirlwind of emotions in the students. This was important to sensitize them to the challenges experienced by renowned scientists who paid with their lives to defend their ideas. Thus, students became protagonists of story and the biochemistry classes more interesting and challenging. This challenge was shared by the "actors", who actually were students of the Biological Chemistry program sharing the classroom with the great master. For these graduate students, it was an experience where they raised awareness of the importance of dedication to the teaching of Sciences.Prof. de Meis’ speech where he stated no one owns the truth or all knowledge was another point closing the relationship with the undergraduate students. In the modern world it is nearly impossible to keep yourself up to date, so we ended up specializing in something. De Meis used to cause some perplexity among the students by showing a picture with all copies of a single reputable scientific journal in the biochemistry field published over a year. Surprisingly, this stack of magazines was 1.5 meters tall! Could you imagine that all recent knowledge in biochemistry is compiled in few pages of a textbook? de Meis, then, revealed that we do not know everything, but we do need to learn how to interpret new facts, a new experiment, a new concept, a new technique, a new discovery. We need to develop critical thinking to
Directory of Open Access Journals (Sweden)
K. Banoo
1998-01-01
equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.
Solving Ordinary Differential Equations
Krogh, F. T.
1987-01-01
Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.
Fundamental Equation of Economics
Wayne, James J.
2013-01-01
Recent experience of the great recession of 2008 has renewed one of the oldest debates in economics: whether economics could ever become a scientific discipline like physics. This paper proves that economics is truly a branch of physics by establishing for the first time a fundamental equation of economics (FEOE), which is similar to many fundamental equations governing other subfields of physics, for example, Maxwell’s Equations for electromagnetism. From recently established physics laws of...
Differential equations I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.
On the Use of the Master Curve based on the Precracked Charpy Specimen
International Nuclear Information System (INIS)
Recently, worldwide interest has been demonstrated in the evaluation of the use of the Master Curve approach to characterize fracture toughness of ferritic steels in the transition regime. This was acknowledged by the recent release of the ASTM Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range (E1921). The present work aims to investigate the use of the Charpy specimen along with the Master Curve approach to derive the fracture toughness behaviour of reactor pressure vessel steels. Therefore, four well characterized and documented reactor pressure vessel steels were selected. A large experimental program to measure fracture toughness with Charpy size specimens was carried out. Four important aspects were investigated: (1) the T0 determination as a function of test temperature; (2) the E1921 specimen size requirement (factor M=30); (3) the censoring procedure for specimens not satisfying the E1921 size requirements; (4) the estimation of the fracture toughness lower bound, and its comparison to the ASME KIC curve. It is found that within the experimental and statistical uncertainties, the reference temperature T0 is not affected by the test temperature, even when data are not valid according to E1921 requirements. By application of the censoring procedure, the determination of the reference temperature may lead to non conservative results. Comparison to larger specimen size suggests the use of M=60 rather than 30 to limit the loss of constraint, in agreement with finite element calculations. Nevertheless, the differences are not large enough to be statistically significant. The lower bound based on the Master Curve is very close to the experimental lower bound, while the ASME KIC curve trends to be over conservative. Replacing RTNDT by the new index, RTTo, in the ASME KIC equation reduces this over conservatism
On the Use of the Master Curve based on the Precracked Charpy Specimen
Energy Technology Data Exchange (ETDEWEB)
Chaouadi, R.; Scibetta, M.; Van Walle, E.; Gerard, R
1999-08-01
Recently, worldwide interest has been demonstrated in the evaluation of the use of the Master Curve approach to characterize fracture toughness of ferritic steels in the transition regime. This was acknowledged by the recent release of the ASTM Standard Test Method for Determination of Reference Temperature, T{sub 0}, for Ferritic Steels in the Transition Range (E1921). The present work aims to investigate the use of the Charpy specimen along with the Master Curve approach to derive the fracture toughness behaviour of reactor pressure vessel steels. Therefore, four well characterized and documented reactor pressure vessel steels were selected. A large experimental program to measure fracture toughness with Charpy size specimens was carried out. Four important aspects were investigated: (1) the T0 determination as a function of test temperature; (2) the E1921 specimen size requirement (factor M=30); (3) the censoring procedure for specimens not satisfying the E1921 size requirements; (4) the estimation of the fracture toughness lower bound, and its comparison to the ASME KIC curve. It is found that within the experimental and statistical uncertainties, the reference temperature T0 is not affected by the test temperature, even when data are not valid according to E1921 requirements. By application of the censoring procedure, the determination of the reference temperature may lead to non conservative results. Comparison to larger specimen size suggests the use of M=60 rather than 30 to limit the loss of constraint, in agreement with finite element calculations. Nevertheless, the differences are not large enough to be statistically significant. The lower bound based on the Master Curve is very close to the experimental lower bound, while the ASME K{sub IC} curve trends to be over conservative. Replacing RT{sub NDT} by the new index, RT{sub To}, in the ASME KIC equation reduces this over conservatism.
Entropy methods for diffusive partial differential equations
Jüngel, Ansgar
2016-01-01
This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
Zhalij, Alexander
2002-01-01
We classify (1+3)-dimensional Pauli equations for a spin-1/2 particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the eleven classes of vector-potentials of the electro-magnetic field A(t,x) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is...
International Nuclear Information System (INIS)
A new evolution equation is proposed for the gluon density relevant (GLR) for the region of small xB. It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multi gluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed αs. It is found that the effects of multi gluon correlations on the deep-inelastic structure function are small. (author) 15 refs, 5 figs, 2 tabs
Classes of N-Dimensional Nonlinear Fokker-Planck Equations Associated to Tsallis Entropy
Directory of Open Access Journals (Sweden)
Fernando D. Nobre
2011-11-01
Full Text Available Several previous results valid for one-dimensional nonlinear Fokker-Planck equations are generalized to N-dimensions. A general nonlinear N-dimensional Fokker-Planck equation is derived directly from a master equation, by considering nonlinearitiesin the transition rates. Using nonlinear Fokker-Planck equations, the H-theorem is proved;for that, an important relation involving these equations and general entropic forms is introduced. It is shown that due to this relation, classes of nonlinear N-dimensional Fokker-Planck equations are connected to a single entropic form. A particular emphasis is given to the class of equations associated to Tsallis entropy, in both cases of the standard, and generalized definitions for the internal energy.
Systematic Staging in Chemical Reactor Design : Fischer-Tropsch
Foss, Martin Skjærvø
2013-01-01
Today, crude oil is the main resource for production of liquid fuels. As the demandincreases, utilization of alternative resources becomes more and more urgent. Thus,the development of new and continued research on established process technologies isimportant.The scope of this Master?s thesis has been the catalytic hydrogenation of CO for production of linear, long chained hydrocarbons, known as the Fischer-Tropsch process. The core of a chemical plant is the reactor, thus the ultimate goal i...
Process window control using CDU master
Fujiwara, Tomoharu; Toki, Tsuyoshi; Tanaka, Daishi; Sato, Maki; Kosugi, Junichi; Tanaka, Rika; Sakasai, Naruo; Ohashi, Toshio; Nakasone, Ryoko; Tokui, Akira
2012-03-01
As double patterning techniques such as spacer double/quadruple patterning mature, ArF water immersion lithography is expected to be applied down to the 1x nm hp node or beyond. This will necessitate precise process control solutions to accommodate extremely small process windows. In the case of spacer double/quadruple patterning in particular, CD uniformity of the final feature is strongly related to the lithography performance of the initial pre-spacer feature. CD uniformity of the resist image is affected by many sources. In the case of the exposure tool, CD error on the reticle, as well as exposure dose and focus errors are the key factors. For the resist process, heterogeneity of the stacked resist film thickness, post exposure bake (PEB) plate temperature, and development all have an impact. Furthermore, the process wafer also has error sources that include under-layer non-uniformities or wafer flatness. Fortunately, the majorities of these non-uniformities are quite stable in a volume production process. To improve and maintain the CD uniformity, a technique to calculate exposure dose and focus correction values simultaneously using the measured resist image feature was reported previously [1]. Further, a demonstration of a correction loop using a neural network calculation model was reported in SPIE 2010 [2], and the corrected CD uniformity was less than 1.5 nm (3 sigma) within a wafer. For further improvement, a demonstration of precise dose and focus control using high order field-by-field correction was then reported at SPIE 2011[3]. In that work, the interand intra-field CD uniformities reported were less than 1 nm (3 sigma) respectively. A key aspect of this method is the simultaneous compensation of dose and focus offsets, which successfully maximizes the process margin of a target pattern. The Nikon CDU Master then derives the optimal control parameters for each compensation function in the scanner using the exposure dose and focus correction data
Master scaling of perceived intensity of touch, cold and warmth.
Berglund, Birgitta; Harju, Eva-Liz
2003-01-01
A new approach is presented for scaling perceived intensity of touch, cold and warmth based on magnitude estimation. In this method named master scaling thenar is utilized as common reference area for scaling and calibrating perceived intensity. The master scaling is particularly well suited for clinical applications in which the stimulation in pain-affected body areas creates a complex perception (e.g., paradoxical heat for cold stimulation) and/or aberrant psychophysical functions for perceived intensity. The results from three different experiments showed that: (a) All patients and healthy subjects were able to scale adequately the perceived intensity of touch, cold, and warmth at unaffected body areas. (b) Thenar stimulations were shown to be adequate common references in the joint scaling of perceived intensity of other body areas in pain patients as well as healthy persons. (c) Individual thenar psychophysical functions can be used for screening patients and healthy persons with regard to their ability to scale perceived intensity of touch, cold and warmth. (d) Master scaled perceived intensity scales can be used for determining if various pain-unaffected body areas are normal or abnormal in patients and in healthy persons. (e) The interindividual variation in perceived intensity is considerably reduced after master scaling and approaches that of intraindividual variation as found in olfaction and hearing. Finally, empirically based thenar Master Functions of perceived intensity for touch, cold and warmth are proposed to be used in future sensory testing of patients, as well as of healthy persons.
Wetterich, C
2016-01-01
We propose a gauge invariant flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations, corresponding to a particular gauge fixing. The freedom in the precise choice of the macroscopic field can be exploited in order to keep the flow equation simple.
Zahari, N. M.; Sapar, S. H.; Mohd Atan, K. A.
2013-04-01
This paper discusses an integral solution (a, b, c) of the Diophantine equations x3n+y3n = 2z2n for n ≥ 2 and it is found that the integral solution of these equation are of the form a = b = t2, c = t3 for any integers t.
Some classical Diophantine equations
Directory of Open Access Journals (Sweden)
Nikita Bokarev
2014-09-01
Full Text Available An attempt to find common solutions complete some Diophantine equations of the second degree with three variables, traced some patterns, suggest a common approach, which being elementary, however, lead to a solution of such equations. Using arithmetic functions allowed to write down the solutions in a single formula with no restrictions on the parameters used.
Ramirez, Erandy; Liddle, Andrew
2004-01-01
We generalize the flow equations approach to inflationary model building to the Randall–Sundrum Type II braneworld scenario. As the flow equations are quite insensitive to the expansion dynamics, we find results similar to, though not identical to, those found in the standard cosmology.
Hazewinkel, M.
1995-01-01
Dedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an original space-
Directory of Open Access Journals (Sweden)
Hannelore Breckner
2000-01-01
Full Text Available We consider a stochastic equation of Navier-Stokes type containing a noise part given by a stochastic integral with respect to a Wiener process. The purpose of this paper is to approximate the solution of this nonlinear equation by the Galerkin method. We prove the convergence in mean square.
The relativistic Pauli equation
Delphenich, David
2012-01-01
After discussing the way that C2 and the algebra of complex 2x2 matrices can be used for the representation of both non-relativistic rotations and Lorentz transformations, we show that Dirac bispinors can be more advantageously represented as 2x2 complex matrices. One can then give the Dirac equation a form for such matrix-valued wave functions that no longer necessitates the introduction of gamma matrices or a choice for their representation. The minimally-coupled Dirac equation for a charged spinning particle in an external electromagnetic field then implies a second order equation in the matrix-valued wave functions that is of Klein-Gordon type and represents the relativistic analogue of the Pauli equation. We conclude by presenting the Lagrangian form for the relativistic Pauli equation.
Applied partial differential equations
Logan, J David
2004-01-01
This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...
Conceptual Integration of Chemical Equilibrium by Prospective Physical Sciences Teachers
Ganaras, Kostas; Dumon, Alain; Larcher, Claudine
2008-01-01
This article describes an empirical study concerning the mastering of the chemical equilibrium concept by prospective physical sciences teachers. The main objective was to check whether the concept of chemical equilibrium had become an integrating and unifying concept for them, that is to say an operational and functional knowledge to explain and…
Partial differential equations modeling, analysis and numerical approximation
Le Dret, Hervé
2016-01-01
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems. .
Network on chip master control board for neutron acquisition
International Nuclear Information System (INIS)
The acquisition master control board is designed to assemble the various acquisition modes in use at the Institut Laue-Langevin (ILL). The main goal is to make the card common for all the ILL's instruments in a simple, modular and open way, giving the possibility to add new functionalities in order to follow the evolving demand. It has been necessary to define a central element to provide synchronization to the rest of the units. The backbone of the proposed acquisition control system is the denominated master acquisition board. The master board consists on a VME64X configurable high density I/O connection carrier board based on the latest Xilinx Virtex-6T FPGA. The internal architecture of the FPGA is designed as a Network on Chip (NoC) approach. The complete system also includes a display board and n histogram modules for live display of the data from the detectors. (authors)
The art of insight in science and engineering mastering complexity
Mahajan, Sanjoy
2014-01-01
In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. To master complexity, we can organize it or discard it. The Art of Insight in Science and Engineering first teaches the tools for organizing complexity, then distinguishes the two paths for discarding complexity: with and without loss of information. Questions and problems throughout the text help readers master and apply these groups of tools. Armed with this three-part toolchest, and without complicated mathematics, readers can estimate the flight ...
Stabilized master laser system for differential absorption lidar.
Dinovitser, Alex; Hamilton, Murray W; Vincent, Robert A
2010-06-10
Wavelength accuracy and stability are key requirements for differential absorption lidar (DIAL). We present a control and timing design for the dual-stabilized cw master lasers in a pulsed master-oscillator power-amplifier configuration, which forms a robust low-cost water-vapor DIAL transmitter system. This design operates at 823 nm for water-vapor spectroscopy using Fabry-Perot-type laser diodes. However, the techniques described could be applied to other laser technologies at other wavelengths. The system can be extended with additional off-line or side-line wavelengths. The on-line master laser is locked to the center of a water absorption line, while the beat frequency between the on-line and the off-line is locked to 16 GHz using only a bandpass microwave filter and low-frequency electronics. Optical frequency stabilities of the order of 1 MHz are achieved.