Horowitz, Jordan M
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Delay chemical master equation: direct and closed-form solutions.
Leier, Andre; Marquez-Lago, Tatiana T
2015-07-08
The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.
Grima, Ramon
2011-11-01
The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.
Kryven, I.; Röblitz, S; Schütte, C.
2015-01-01
Background: The chemical master equation is the fundamental equation of stochastic chemical kinetics. This differential-difference equation describes temporal evolution of the probability density function for states of a chemical system. A state of the system, usually encoded as a vector, represents
National Research Council Canada - National Science Library
Munsky, Brian; Khammash, Mustafa
2006-01-01
At the mesoscopic scale, chemical processes have probability distributions that evolve according to an infinite set of linear ordinary differential equations known as the chemical master equation (CME...
Reformulation and solution of the master equation for multiple-well chemical reactions.
Georgievskii, Yuri; Miller, James A; Burke, Michael P; Klippenstein, Stephen J
2013-11-21
We consider an alternative formulation of the master equation for complex-forming chemical reactions with multiple wells and bimolecular products. Within this formulation the dynamical phase space consists of only the microscopic populations of the various isomers making up the reactive complex, while the bimolecular reactants and products are treated equally as sources and sinks. This reformulation yields compact expressions for the phenomenological rate coefficients describing all chemical processes, i.e., internal isomerization reactions, bimolecular-to-bimolecular reactions, isomer-to-bimolecular reactions, and bimolecular-to-isomer reactions. The applicability of the detailed balance condition is discussed and confirmed. We also consider the situation where some of the chemical eigenvalues approach the energy relaxation time scale and show how to modify the phenomenological rate coefficients so that they retain their validity.
Energy Technology Data Exchange (ETDEWEB)
Fox, Zachary [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Neuert, Gregor [Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 (United States); Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232 (United States); Munsky, Brian [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)
2016-08-21
Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.
A finite state projection algorithm for the stationary solution of the chemical master equation
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-01
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.
Liang, Jie; Qian, Hong
2010-01-01
Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.
A finite state projection algorithm for the stationary solution of the chemical master equation.
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-21
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 10 6 states can be efficiently solved.
Direct solution of the Chemical Master Equation using quantized tensor trains.
Directory of Open Access Journals (Sweden)
Vladimir Kazeev
2014-03-01
Full Text Available The Chemical Master Equation (CME is a cornerstone of stochastic analysis and simulation of models of biochemical reaction networks. Yet direct solutions of the CME have remained elusive. Although several approaches overcome the infinite dimensional nature of the CME through projections or other means, a common feature of proposed approaches is their susceptibility to the curse of dimensionality, i.e. the exponential growth in memory and computational requirements in the number of problem dimensions. We present a novel approach that has the potential to "lift" this curse of dimensionality. The approach is based on the use of the recently proposed Quantized Tensor Train (QTT formatted numerical linear algebra for the low parametric, numerical representation of tensors. The QTT decomposition admits both, algorithms for basic tensor arithmetics with complexity scaling linearly in the dimension (number of species and sub-linearly in the mode size (maximum copy number, and a numerical tensor rounding procedure which is stable and quasi-optimal. We show how the CME can be represented in QTT format, then use the exponentially-converging hp-discontinuous Galerkin discretization in time to reduce the CME evolution problem to a set of QTT-structured linear equations to be solved at each time step using an algorithm based on Density Matrix Renormalization Group (DMRG methods from quantum chemistry. Our method automatically adapts the "basis" of the solution at every time step guaranteeing that it is large enough to capture the dynamics of interest but no larger than necessary, as this would increase the computational complexity. Our approach is demonstrated by applying it to three different examples from systems biology: independent birth-death process, an example of enzymatic futile cycle, and a stochastic switch model. The numerical results on these examples demonstrate that the proposed QTT method achieves dramatic speedups and several orders of
DEFF Research Database (Denmark)
Dyre, Jeppe
1995-01-01
energies chosen randomly according to a Gaussian. The random-walk model is here derived from Newton's laws by making a number of simplifying assumptions. In the second part of the paper an approximate low-temperature description of energy fluctuations in the random-walk modelthe energy master equation...... (EME)is arrived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation dominates the relaxational properties of the random-walk model at low temperatures. The approximate EME description of the random-walk model is expected to be valid at low temperatures...... of the random-walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory time scales for an arbitrarily varying temperature as function of time. The EME is probably the only realistic equation available today with this property that is also explicitly consistent...
Martirosyan, A; Saakian, David B
2011-08-01
We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.
de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C
2014-08-14
We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their
International Nuclear Information System (INIS)
Oliveira, Luciana Renata de; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C.
2014-01-01
We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their “far from equilibrium behavior,” hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative “external vector field” whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the “plasticity property” of biological
Hybrid quantum-classical master equations
International Nuclear Information System (INIS)
Diósi, Lajos
2014-01-01
We discuss hybrid master equations of composite systems, which are hybrids of classical and quantum subsystems. A fairly general form of hybrid master equations is suggested. Its consistency is derived from the consistency of Lindblad quantum master equations. We emphasize that quantum measurement is a natural example of exact hybrid systems. We derive a heuristic hybrid master equation of time-continuous position measurement (monitoring). (paper)
Quantum adiabatic Markovian master equations
International Nuclear Information System (INIS)
Albash, Tameem; Zanardi, Paolo; Boixo, Sergio; Lidar, Daniel A
2012-01-01
We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state. (paper)
Scott, M
2012-08-01
The time-covariance function captures the dynamics of biochemical fluctuations and contains important information about the underlying kinetic rate parameters. Intrinsic fluctuations in biochemical reaction networks are typically modelled using a master equation formalism. In general, the equation cannot be solved exactly and approximation methods are required. For small fluctuations close to equilibrium, a linearisation of the dynamics provides a very good description of the relaxation of the time-covariance function. As the number of molecules in the system decrease, deviations from the linear theory appear. Carrying out a systematic perturbation expansion of the master equation to capture these effects results in formidable algebra; however, symbolic mathematics packages considerably expedite the computation. The authors demonstrate that non-linear effects can reveal features of the underlying dynamics, such as reaction stoichiometry, not available in linearised theory. Furthermore, in models that exhibit noise-induced oscillations, non-linear corrections result in a shift in the base frequency along with the appearance of a secondary harmonic.
Recent developments in the Virasoro master equation
International Nuclear Information System (INIS)
Halpern, M.B.
1991-01-01
The Virasoro master equation collects all possible Virasoro constructions which are quadratic in the currents of affine Lie g. The solution space of this system is immense, with generically irrational central charge, and solutions which have so far been observed are generically unitary. Other developments reviewed include the exact C-function, the superconformal master equation and partial classification of solutions by graph theory and generalized graph theories. 37 refs., 1 fig., 1 tab
From convolutionless generalized master to Pauli master equations
International Nuclear Information System (INIS)
Capek, V.
1995-01-01
The paper is a continuation of previous work within which it has been proved that time integrals of memory function (i.e. Markovian transfer rates from Pauli Master Equations, PME) in Time-Convolution Generalized Master Equations (TC-GME) for probabilities of finding a state of an asymmetric system interacting with a bath with a continuous spectrum are exactly zero, provided that no approximation is involved, irrespective of the usual finite-perturbation-order correspondence with the Golden Rule transition rates. In this paper, attention is paid to an alternative way of deriving the rigorous PME from the TCL-GME. Arguments are given in favor of the proposition that the long-time limit of coefficients in TCL-GME for the above probabilities, under the same assumption and presuming that this limit exists, is equal to zero. 11 refs
Properties of quantum Markovian master equations
International Nuclear Information System (INIS)
Gorini, V.; Frigerio, A.; Verri, M.; Kossakowski, A.; Sudarshan, E.C.G.
1976-11-01
An essentially self-contained account is given of some general structural properties of the dynamics of quantum open Markovian systems. Some recent results regarding the problem of the classification of quantum Markovian master equations and the limiting conditions under which the dynamical evolution of a quantum open system obeys an exact semigroup law (weak coupling limit and singular coupling limit are reviewed). A general form of quantum detailed balance and its relation to thermal relaxation and to microreversibility is discussed
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
Graph theory and the Virasoro master equation
International Nuclear Information System (INIS)
Obers, N.A.J.
1991-01-01
A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n) diag , which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {g metric }, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g metric is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n) diag in the Cartesian basis of SO(n), and the ansatz SU(n) metric in the Pauli-like basis of SU(n). Finally, he defines the 'sine-area graphs' of SU(n), which label the conformal field theories of SU(n) metric , and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g metric
Superspace formulation for the master equation
International Nuclear Information System (INIS)
Abreu, E.M.; Braga, N.R.
1996-01-01
It is shown that the quantum master equation of the field-antifield quantization method at one-loop order can be translated into the requirement of a superfield structure for the action. The Pauli-Villars regularization is implemented in this BRST superspace and the case of anomalous gauge theories is investigated. The quantum action, including Wess-Zumino terms, shows up as one of the components of a superfield that includes the BRST anomalies in the other component. The example of W2 quantum gravity is also discussed. copyright 1996 The American Physical Society
Master equations and the theory of stochastic path integrals
Weber, Markus F.; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from
Master equations and the theory of stochastic path integrals.
Weber, Markus F; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon
The Kovacs effect: a master equation analysis
Prados, A.; Brey, J. J.
2010-02-01
The Kovacs or crossover effect is one of the peculiar behaviours exhibited by glasses and other complex, slowly relaxing systems. Roughly it consists of the non-monotonic relaxation to its equilibrium value of a macroscopic property of a system evolving at constant temperature, when starting from a non-equilibrium state. Here, this effect is investigated for general systems whose dynamics is described by a master equation. To carry out a detailed analysis, the limit of small perturbations in which linear response theory applies is considered. It is shown that, under very general conditions, the observed experimental features of the Kovacs effect are recovered. The results are particularized for a very simple model, a two-level system with dynamical disorder. An explicit analytical expression for its non-monotonic relaxation function is obtained, showing a resonant-like behaviour when the dependence on the temperature is investigated.
The Kovacs effect: a master equation analysis
International Nuclear Information System (INIS)
Prados, A; Brey, J J
2010-01-01
The Kovacs or crossover effect is one of the peculiar behaviours exhibited by glasses and other complex, slowly relaxing systems. Roughly it consists of the non-monotonic relaxation to its equilibrium value of a macroscopic property of a system evolving at constant temperature, when starting from a non-equilibrium state. Here, this effect is investigated for general systems whose dynamics is described by a master equation. To carry out a detailed analysis, the limit of small perturbations in which linear response theory applies is considered. It is shown that, under very general conditions, the observed experimental features of the Kovacs effect are recovered. The results are particularized for a very simple model, a two-level system with dynamical disorder. An explicit analytical expression for its non-monotonic relaxation function is obtained, showing a resonant-like behaviour when the dependence on the temperature is investigated
Master equation and two heat reservoirs.
Trimper, Steffen
2006-11-01
A simple spin-flip process is analyzed under the presence of two heat reservoirs. While one flip process is triggered by a bath at temperature T, the inverse process is activated by a bath at a different temperature T'. The situation can be described by using a master equation approach in a second quantized Hamiltonian formulation. The stationary solution leads to a generalized Fermi-Dirac distribution with an effective temperature Te. Likewise the relaxation time is given in terms of Te. Introducing a spin representation we perform a Landau expansion for the averaged spin as order parameter and consequently, a free energy functional can be derived. Owing to the two reservoirs the model is invariant with respect to a simultaneous change sigma-sigma and TT'. This symmetry generates a third order term in the free energy which gives rise a dynamically induced first order transition.
Epidemics in networks: a master equation approach
International Nuclear Information System (INIS)
Cotacallapa, M; Hase, M O
2016-01-01
A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network. (paper)
Epidemics in networks: a master equation approach
Cotacallapa, M.; Hase, M. O.
2016-02-01
A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.
Counting master integrals. Integration by parts vs. functional equations
International Nuclear Information System (INIS)
Kniehl, Bernd A.; Tarasov, Oleg V.
2016-01-01
We illustrate the usefulness of functional equations in establishing relationships between master integrals under the integration-by-parts reduction procedure by considering a certain two-loop propagator-type diagram as an example.
Quantum trajectories for time-dependent adiabatic master equations
Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.
2018-02-01
We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.
Energy Technology Data Exchange (ETDEWEB)
Vacchini, Bassano [Dipartimento di Fisica dell' Universita di Milano, Via Celoria 16, 20133 Milan (Italy); Istituto Nazionale di Fisica Nucleare, sezione di Milano, Via Celoria 16, 20133 Milan (Italy)
2007-03-09
We point out that the celebrated GRW master equation is invariant under translations, reflecting the homogeneity of space, thus providing a particular realization of a general class of translation-covariant Markovian master equations. Such master equations are typically used for the description of decoherence due to momentum transfers between the system and environment. Building on this analogy we show the exact relationship between the GRW master equation and decoherence master equations, further providing a collisional decoherence model formally equivalent to the GRW master equation. This allows for a direct comparison of order of magnitudes of relevant parameters. This formal analogy should not lead to confusion on the utterly different spirit of the two research fields, in particular it has to be stressed that the decoherence approach does not lead to a solution of the measurement problem. Building on this analogy however the feasibility of the extension of spontaneous localization models in order to avoid the infinite energy growth is discussed. Apart from a particular case considered in the paper, it appears that the amplification mechanism is generally spoiled by such modifications.
Two derivations of the master equation of quantum Brownian motion
Energy Technology Data Exchange (ETDEWEB)
Halliwell, J J [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)
2007-03-23
Central to many discussion of decoherence is a master equation for the reduced density matrix of a massive particle experiencing scattering from its surrounding environment, such as that of Joos and Zeh. Such master equations enjoy a close relationship with spontaneous localization models, like the GRW model. The aim of this paper is to present two derivations of the master equation. The first derivation is a pedagogical model designed to illustrate the origins of the master equation as simply as possible, focusing on physical principles and without the complications of S-matrix theory. This derivation may serve as a useful tutorial example for students attempting to learn this subject area. The second is the opposite: a very general derivation using non-relativistic many-body field theory. It reduces to the equation of the type given by Joos and Zeh in the one-particle sector, but correcting certain numerical factors which have recently become significant in connection with experimental tests of decoherence. This master equation also emphasizes the role of local number density as the 'preferred basis' for decoherence in this model.
Two derivations of the master equation of quantum Brownian motion
International Nuclear Information System (INIS)
Halliwell, J J
2007-01-01
Central to many discussion of decoherence is a master equation for the reduced density matrix of a massive particle experiencing scattering from its surrounding environment, such as that of Joos and Zeh. Such master equations enjoy a close relationship with spontaneous localization models, like the GRW model. The aim of this paper is to present two derivations of the master equation. The first derivation is a pedagogical model designed to illustrate the origins of the master equation as simply as possible, focusing on physical principles and without the complications of S-matrix theory. This derivation may serve as a useful tutorial example for students attempting to learn this subject area. The second is the opposite: a very general derivation using non-relativistic many-body field theory. It reduces to the equation of the type given by Joos and Zeh in the one-particle sector, but correcting certain numerical factors which have recently become significant in connection with experimental tests of decoherence. This master equation also emphasizes the role of local number density as the 'preferred basis' for decoherence in this model
The Approach to Equilibrium: Detailed Balance and the Master Equation
Alexander, Millard H.; Hall, Gregory E.; Dagdigian, Paul J.
2011-01-01
The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master…
Adiabatically steered open quantum systems: Master equation and optimal phase
International Nuclear Information System (INIS)
Salmilehto, J.; Solinas, P.; Ankerhold, J.; Moettoenen, M.
2010-01-01
We introduce an alternative way to derive the generalized form of the master equation recently presented by J. P. Pekola et al. [Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically steered two-level quantum system interacting with a Markovian environment. The original derivation employed the effective Hamiltonian in the adiabatic basis with the standard interaction picture approach but without the usual secular approximation. Our approach is based on utilizing a master equation for a nonsteered system in the first superadiabatic basis. It is potentially efficient in obtaining higher-order equations. Furthermore, we show how to select the phases of the adiabatic eigenstates to minimize the local adiabatic parameter and how this selection leads to states which are invariant under a local gauge change. We also discuss the effects of the adiabatic noncyclic geometric phase on the master equation.
Decoherence, discord, and the quantum master equation for cosmological perturbations
Hollowood, Timothy J.; McDonald, Jamie I.
2017-05-01
We examine environmental decoherence of cosmological perturbations in order to study the quantum-to-classical transition and the impact of noise on entanglement during inflation. Given an explicit interaction between the system and environment, we derive a quantum master equation for the reduced density matrix of perturbations, drawing parallels with quantum Brownian motion, where we see the emergence of fluctuation and dissipation terms. Although the master equation is not in Lindblad form, we see how typical solutions exhibit positivity on super-horizon scales, leading to a physically meaningful density matrix. This allows us to write down a Langevin equation with stochastic noise for the classical trajectories which emerge from the quantum system on super-horizon scales. In particular, we find that environmental decoherence increases in strength as modes exit the horizon, with the growth driven essentially by white noise coming from local contributions to environmental correlations. Finally, we use our master equation to quantify the strength of quantum correlations as captured by discord. We show that environmental interactions have a tendency to decrease the size of the discord and that these effects are determined by the relative strength of the expansion rate and interaction rate of the environment. We interpret this in terms of the competing effects of particle creation versus environmental fluctuations, which tend to increase and decrease the discord respectively.
Exact master equation for a noncommutative Brownian particle
International Nuclear Information System (INIS)
Costa Dias, Nuno; Nuno Prata, Joao
2009-01-01
We derive the Hu-Paz-Zhang master equation for a Brownian particle linearly coupled to a bath of harmonic oscillators on the plane with spatial noncommutativity. The results obtained are exact to all orders in the noncommutative parameter. As a by-product we derive some miscellaneous results such as the equilibrium Wigner distribution for the reservoir of noncommutative oscillators, the weak coupling limit of the master equation and a set of sufficient conditions for strict purity decrease of the Brownian particle. Finally, we consider a high-temperature Ohmic model and obtain an estimate for the time scale of the transition from noncommutative to ordinary quantum mechanics. This scale is considerably smaller than the decoherence scale
Resummed memory kernels in generalized system-bath master equations
International Nuclear Information System (INIS)
Mavros, Michael G.; Van Voorhis, Troy
2014-01-01
Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics
The master symmetry and time dependent symmetries of the differential–difference KP equation
International Nuclear Information System (INIS)
Khanizadeh, Farbod
2014-01-01
We first obtain the master symmetry of the differential–difference KP equation. Then we show how this master symmetry, through sl(2,C)-representation of the equation, can construct generators of time dependent symmetries. (paper)
Umut Caglar, Mehmet; Pal, Ranadip
2010-10-01
The central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid.'' However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of data in the cellular level and probabilistic nature of interactions. Probabilistic models like Stochastic Master Equation (SME) or deterministic models like differential equations (DE) can be used to analyze these types of interactions. SME models based on chemical master equation (CME) can provide detailed representation of genetic regulatory system, but their use is restricted by the large data requirements and computational costs of calculations. The differential equations models on the other hand, have low calculation costs and much more adequate to generate control procedures on the system; but they are not adequate to investigate the probabilistic nature of interactions. In this work the success of the mapping between SME and DE is analyzed, and the success of a control policy generated by DE model with respect to SME model is examined. Index Terms--- Stochastic Master Equation models, Differential Equation Models, Control Policy Design, Systems biology
Savoy, L. G.
1988-01-01
Describes a study of students' ability to balance equations. Answers to a test on this topic were analyzed to determine the level of understanding and processes used by the students. Presented is a method to teach this skill to high school chemistry students. (CW)
Master equations in the microscopic theory of nuclear collective dynamics
International Nuclear Information System (INIS)
Matsuo, M.; Sakata, F.; Marumori, T.; Zhuo, Y.
1988-07-01
In the first half of this paper, the authors describe briefly a recent theoretical approach where the mechanism of the large-amplitude dissipative collective motions can be investigated on the basis of the microscopic theory of nuclear collective dynamics. Namely, we derive the general coupled master equations which can disclose, in the framework of the TDHF theory, not only non-linear dynamics among the collective and the single-particle modes of motion but also microscopic dynamics responsible for the dissipative processes. In the latter half, the authors investigate, without relying on any statistical hypothesis, one possible microscopic origin which leads us to the transport equation of the Fokker-Planck type so that usefullness of the general framework is demonstrated. (author)
Quantum master equation for QED in exact renormalization group
International Nuclear Information System (INIS)
Igarashi, Yuji; Itoh, Katsumi; Sonoda, Hidenori
2007-01-01
Recently, one of us (H. S.) gave an explicit form of the Ward-Takahashi identity for the Wilson action of QED. We first rederive the identity using a functional method. The identity makes it possible to realize the gauge symmetry even in the presence of a momentum cutoff. In the cutoff dependent realization, the nilpotency of the BRS transformation is lost. Using the Batalin-Vilkovisky formalism, we extend the Wilson action by including the antifield contributions. Then, the Ward-Takahashi identity for the Wilson action is lifted to a quantum master equation, and the modified BRS transformation regains nilpotency. We also obtain a flow equation for the extended Wilson action. (author)
Master equation and runaway speed of the Francis turbine
Zhang, Zh.
2018-04-01
The master equation of the Francis turbine is derived based on the combination of the angular momentum (Euler) and the energy laws. It relates the geometrical design of the impeller and the regulation settings (guide vane angle and rotational speed) to the discharge and the power output. The master equation, thus, enables the complete characteristics of a given Francis turbine to be easily computed. While applying the energy law, both the shock loss at the impeller inlet and the swirling loss at the impeller exit are taken into account. These are main losses which occur at both the partial load and the overloads and, thus, dominantly influence the characteristics of the Francis turbine. They also totally govern the discharge of the water through the impeller when the impeller is found in the standstill. The computations have been performed for the discharge, the hydraulic torque and the hydraulic efficiency. They were also compared with the available measurements on a model turbine. Excellent agreement has been achieved. The computations also enable the runaway speed of the Francis turbine and the related discharge to be determined as a function of the setting angle of the guide vanes.
Generalized master equations for non-Poisson dynamics on networks.
Hoffmann, Till; Porter, Mason A; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
Master equation approach to DNA breathing in heteropolymer DNA
DEFF Research Database (Denmark)
Ambjörnsson, Tobias; Banik, Suman K; Lomholt, Michael A
2007-01-01
After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies up to a few k(B)T. Thermal motion within the DNA double strand therefore causes the opening of intermittent single-stranded denaturation zones......, the DNA bubbles. The unzipping and zipping dynamics of bps at the two zipper forks of a bubble, where the single strand of the denatured zone joins the still intact double strand, can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA breathing...... in a heteropolymer DNA with given sequence in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function...
Solving for the capacity of a noisy lossy bosonic channel via the master equation
International Nuclear Information System (INIS)
Qin Tao; Zhao Meisheng; Zhang Yongde
2006-01-01
We discuss the noisy lossy bosonic channel by exploiting master equations. The capacity of the noisy lossy bosonic channel and the criterion for the optimal capacities are derived. Consequently, we verify that master equations can be a tool to study bosonic channels
Excess Entropy Production in Quantum System: Quantum Master Equation Approach
Nakajima, Satoshi; Tokura, Yasuhiro
2017-12-01
For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by ln \\breve{ρ }_0 and ρ _0 where ρ _0 is the instantaneous steady state of the QME and \\breve{ρ }_0 is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.
Herschlag, Gregory J; Mitran, Sorin; Lin, Guang
2015-06-21
We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.
Derivation of exact master equation with stochastic description: dissipative harmonic oscillator.
Li, Haifeng; Shao, Jiushu; Wang, Shikuan
2011-11-01
A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described by a stochastic differential equation, and the desired master equation would be acquired with statistical averaging. It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled, and the master equation naturally results. Such an equation possesses the Lindblad form in which time-dependent coefficients are determined by a set of integral equations. It is proved that the obtained master equation is equivalent to the well-known Hu-Paz-Zhang equation based on the path-integral technique. The procedure is also used to obtain the master equation of a dissipative harmonic oscillator in time-dependent fields.
A ''master key'' to chemical separation processes
International Nuclear Information System (INIS)
Madic, Ch.; Hill, C.
2002-01-01
One of the keys to sorting nuclear waste is extracting minor actinides - the most troublesome long-lived elements - from the flow of waste by separating them from lanthanides, which have very similar chemical properties to actinides, for possible transmutation into shorter-lived elements. Thanks to a European initiative coordinated by CEA, this key is now available: its name is Sanex. There now remains to develop tough, straightforward industrial processes to integrate it into a new nuclear waste management approach by 2005. Sanex joins the Diamex process, used for the combined separation of lanthanides and minor actinides from fission products. A third process, Sesame, designed to separate americium, completes the list of available separation processes. (authors)
Closed description of arbitrariness in resolving quantum master equation
Energy Technology Data Exchange (ETDEWEB)
Batalin, Igor A., E-mail: batalin@lpi.ru [P.N. Lebedev Physical Institute, Leninsky Prospect 53, 119 991 Moscow (Russian Federation); Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); Lavrov, Peter M., E-mail: lavrov@tspu.edu.ru [Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk (Russian Federation)
2016-07-10
In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Exact master equations for the non-Markovian decay of a qubit
International Nuclear Information System (INIS)
Vacchini, Bassano; Breuer, Heinz-Peter
2010-01-01
Exact master equations describing the decay of a two-state system into a structured reservoir are constructed. By employing the exact solution for the model, analytical expressions are determined for the memory kernel of the Nakajima-Zwanzig master equation and for the generator of the corresponding time-convolutionless master equation. This approach allows an explicit comparison of the convergence behavior of the corresponding perturbation expansions. Moreover, the structure of widely used phenomenological master equations with a memory kernel may be incompatible with a nonperturbative treatment of the underlying microscopic model. Several physical implications of the results on the microscopic analysis and the phenomenological modeling of non-Markovian quantum dynamics of open systems are discussed.
Modelling with the master equation solution methods and applications in social and natural sciences
Haag, Günter
2017-01-01
This book presents the theory and practical applications of the Master equation approach, which provides a powerful general framework for model building in a variety of disciplines. The aim of the book is to not only highlight different mathematical solution methods, but also reveal their potential by means of practical examples. Part I of the book, which can be used as a toolbox, introduces selected statistical fundamentals and solution methods for the Master equation. In Part II and Part III, the Master equation approach is applied to important applications in the natural and social sciences. The case studies presented mainly hail from the social sciences, including urban and regional dynamics, population dynamics, dynamic decision theory, opinion formation and traffic dynamics; however, some applications from physics and chemistry are treated as well, underlining the interdisciplinary modelling potential of the Master equation approach. Drawing upon the author’s extensive teaching and research experience...
A classical Master equation approach to modeling an artificial protein motor
International Nuclear Information System (INIS)
Kuwada, Nathan J.; Blab, Gerhard A.; Linke, Heiner
2010-01-01
Inspired by biomolecular motors, as well as by theoretical concepts for chemically driven nanomotors, there is significant interest in constructing artificial molecular motors. One driving force is the opportunity to create well-controlled model systems that are simple enough to be modeled in detail. A remaining challenge is the fact that such models need to take into account processes on many different time scales. Here we describe use of a classical Master equation approach, integrated with input from Langevin and molecular dynamics modeling, to stochastically model an existing artificial molecular motor concept, the Tumbleweed, across many time scales. This enables us to study how interdependencies between motor processes, such as center-of-mass diffusion and track binding/unbinding, affect motor performance. Results from our model help guide the experimental realization of the proposed motor, and potentially lead to insights that apply to a wider class of molecular motors.
Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach
Chen, Yusui; You, J. Q.; Yu, Ting
2014-11-01
A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.
Nonperturbative time-convolutionless quantum master equation from the path integral approach
International Nuclear Information System (INIS)
Nan Guangjun; Shi Qiang; Shuai Zhigang
2009-01-01
The time-convolutionless quantum master equation is widely used to simulate reduced dynamics of a quantum system coupled to a bath. However, except for several special cases, applications of this equation are based on perturbative calculation of the dissipative tensor, and are limited to the weak system-bath coupling regime. In this paper, we derive an exact time-convolutionless quantum master equation from the path integral approach, which provides a new way to calculate the dissipative tensor nonperturbatively. Application of the new method is demonstrated in the case of an asymmetrical two-level system linearly coupled to a harmonic bath.
Quantal Brownian Motion from RPA dynamics: The master and Fokker-Planck equations
International Nuclear Information System (INIS)
Yannouleas, C.
1984-05-01
From the purely quantal RPA description of the damped harmonic oscillator and of the corresponding Brownian Motion within the full space (phonon subspace plus reservoir), a master equation (as well as a Fokker-Planck equation) for the reduced density matrix (for the reduced Wigner function, respectively) within the phonon subspace is extracted. The RPA master equation agrees with the master equation derived by the time-dependent perturbative approaches which utilize Tamm-Dancoff Hilbert spaces and invoke the rotating wave approximation. Since the RPA yields a full, as well as a contracted description, it can account for both the kinetic and the unperturbed oscillator momenta. The RPA description of the quantal Brownian Motion contrasts with the descriptions provided by the time perturbative approaches whether they invoke or not the rotating wave approximation. The RPA description also contrasts with the phenomenological phase space quantization. (orig.)
Master equations for degenerate systems: electron radiative cascade in a Coulomb potential
International Nuclear Information System (INIS)
Uskov, D B; Pratt, R H
2004-01-01
We examine the effects of degeneracy and its lifting for the problem of electron radiative cascade, described by master equations of the Lindblad form (quantum optical master equations). A weak external field approximation is used to study the resulting gradual transformation of cascade dynamics between degenerate and non-degenerate forms. Exploiting the spherical symmetry properties of the system we demonstrate significant difference between perturbations commuting with angular momentum and perturbations breaking the spherical symmetry, such as a homogeneous external field. We discuss the possibility and the general approach for reduction of the Lindblad master equations in the case of spectral degeneracy to the Pauli balance equations. This determines the appropriate choice of basis as, for example, spherical or parabolic
Vibrational energy flow in the villin headpiece subdomain: Master equation simulations
International Nuclear Information System (INIS)
Leitner, David M.; Buchenberg, Sebastian; Brettel, Paul; Stock, Gerhard
2015-01-01
We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water
Vibrational energy flow in the villin headpiece subdomain: Master equation simulations
Energy Technology Data Exchange (ETDEWEB)
Leitner, David M., E-mail: dml@unr.edu, E-mail: stock@physik.uni-freiburg.de [Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557 (United States); Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg (Germany); Buchenberg, Sebastian; Brettel, Paul [Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg (Germany); Stock, Gerhard, E-mail: dml@unr.edu, E-mail: stock@physik.uni-freiburg.de [Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg (Germany); Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg (Germany)
2015-02-21
We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water.
Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation
International Nuclear Information System (INIS)
Bolivar, A.O.
2011-01-01
Highlights: → Classical Brownian motion described by a non-Markovian Fokker-Planck equation. → Quantization process. → Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. → A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.
Efficient steady-state solver for hierarchical quantum master equations
Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2017-07-01
Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.
Critical Dynamics : The Expansion of the Master Equation Including a Critical Point
Dekker, H.
1980-01-01
In this thesis it is shown how to solve the master equation for a Markov process including a critical point by means of successive approximations in terms of a small parameter. A critical point occurs if, by adjusting an externally controlled quantity, the system shows a transition from normal
Quantum statistics of stimulated Raman and hyper-Raman scattering by master equation approach
International Nuclear Information System (INIS)
Gupta, P.S.; Dash, J.
1991-01-01
A quantum theoretical density matrix formalism of stimulated Raman and hyper-Raman scattering using master equation approach is presented. The atomic system is described by two energy levels. The effects of upper level population and the cavity loss are incorporated. The photon statistics, coherence characteristics and the building up of the Stokes field are investigated. (author). 8 figs., 5 refs
Zeno dynamics and high-temperature master equations beyond secular approximation
International Nuclear Information System (INIS)
Militello, B; Messina, A; Scala, M
2013-01-01
Complete positivity of a class of maps generated by master equations derived beyond the secular approximation is discussed. The connection between such a class of evolutions and the physical properties of the system is analyzed in depth. It is also shown that under suitable hypotheses a Zeno dynamics can be induced because of the high temperature of the bath. (paper)
A generalized master equation approach to modelling anomalous transport in animal movement
International Nuclear Information System (INIS)
Giuggioli, Luca; Sevilla, Francisco J; Kenkre, V M
2009-01-01
We present some models of random walks with internal degrees of freedom that have the potential to find application in the context of animal movement and stochastic search. The formalism we use is based on the generalized master equation which is particularly convenient here because of its inherent coarse-graining procedure whereby a random walker position is averaged over the internal degrees of freedom. We show some instances in which non-local jump probabilities emerge from the coupling of the motion to the internal degrees of freedom, and how the tuning of one parameter can give rise to sub-, super- and normal diffusion at long times. Remarks on the relation between the generalized master equation, continuous time random walks and fractional diffusion equations are also presented.
Generalized quantum master equations in and out of equilibrium: When can one win?
International Nuclear Information System (INIS)
Kelly, Aaron; Markland, Thomas E.; Montoya-Castillo, Andrés; Wang, Lu
2016-01-01
Generalized quantum master equations (GQMEs) are an important tool in modeling chemical and physical processes. For a large number of problems, it has been shown that exact and approximate quantum dynamics methods can be made dramatically more efficient, and in the latter case more accurate, by proceeding via the GQME formalism. However, there are many situations where utilizing the GQME approach with an approximate method has been observed to return the same dynamics as using that method directly. Here, for systems both in and out of equilibrium, we provide a more detailed understanding of the conditions under which using an approximate method can yield benefits when combined with the GQME formalism. In particular, we demonstrate the necessary manipulations, which are satisfied by exact quantum dynamics, that are required to recast the memory kernel in a form that can be analytically shown to yield the same result as a direct application of the dynamics regardless of the approximation used. By considering the connections between these forms of the kernel, we derive the conditions that approximate methods must satisfy if they are to offer different results when used in conjunction with the GQME formalism. These analytical results thus provide new insights as to when proceeding via the GQME approach can be used to improve the accuracy of simulations.
International Nuclear Information System (INIS)
Smirne, Andrea; Vacchini, Bassano
2010-01-01
We address the microscopic derivation of a quantum master equation in Lindblad form for the dynamics of a massive test particle with internal degrees of freedom, interacting through collisions with a background ideal gas. When either internal or center-of-mass degrees of freedom can be treated classically, previously established equations are obtained as special cases. If in an interferometric setup the internal degrees of freedom are not detected at the output, the equation can be recast in the form of a generalized Lindblad structure, which describes non-Markovian effects. The effect of internal degrees of freedom on center-of-mass decoherence is considered in this framework.
Bimolecular Master Equations for a Single and Multiple Potential Wells with Analytic Solutions.
Ghaderi, Nima
2018-04-12
The analytic solutions, that is, populations, are derived for the K-adiabatic and K-active bimolecular master equations, separately, for a single and multiple potential wells and reaction channels, where K is the component of the total angular momentum J along the axis of least moment of inertia of the recombination products at a given energy E. The analytic approach provides the functional dependence of the population of molecules on its K-active or K-adiabatic dissociation, association rate constants and the intermolecular energy transfer, where the approach may complement the usual numerical approaches for reactions of interest. Our previous work, Part I, considered the solutions for a single potential well, whereby an assumption utilized there is presently obviated in the derivation of the exact solutions and farther discussed. At the high-pressure limit, the K-adiabatic and K-active bimolecular master equations may each reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high-pressure limit expressions) for bimolecular recombination rate constant, for a single potential well, and augmented by isomerization terms when multiple potential wells are present. In the low-pressure limit, the expression for population above the dissociation limit, associated with a single potential well, becomes equivalent to the usual presumed detailed balance between the association and dissociation rate constants, where the multiple well case is also considered. When the collision frequency of energy transfer, Z LJ , between the chemical intermediate and bath gas is sufficiently less than the dissociation rate constant k d ( E' J' K') for postcollision ( E' J' K), then the solution for population, g( EJK) + , above the critical energy further simplifies such that depending on Z LJ , the dissociation and association rate constant k r ( EJK), as g( EJK) + = k r ( EJK)A·BC/[ Z LJ + k d ( EJK)], where A and BC are the reactants, for
Systematic tools for chemical equation balancing
International Nuclear Information System (INIS)
Filby, E.E.; Idaho National Engineering Lab., Idaho Falls, ID; Idaho Univ., Idaho Falls, ID
1989-01-01
One of the most important skills that chemists and chemical engineers must develop is the ability to balance chemical equations. The normal first method taught is ''balancing by inspection'', which is sometimes explained as simply ''mental algebra.'' Every textbook surveyed for this paper presents equation balancing first as a matter of trial and error; this includes four very recently published books. Very little further guidance is provided until oxidation-reduction reactions must be balanced. The most commonly taught approaches for balancing, redox equations have been the oxidation state change and ion-electron methods. Unfortunately, redox reactions are usually treated as a new topic, and what the student has teamed about ''ordinary'' equations is of little or no help. All too often, these contradictions simply confuse and frustrate students, and equation balancing is relegated to the status of a black art. This is ironic because such,confusion and frustration is not necessary: Chemical equations can, in fact, be balanced by explicitly definable mathematical methods. The purpose of this paper is to outline the algebraic methods involved
Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia
2016-04-01
We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.
Recursive approach for non-Markovian time-convolutionless master equations
Gasbarri, G.; Ferialdi, L.
2018-02-01
We consider a general open system dynamics and we provide a recursive method to derive the associated non-Markovian master equation in a perturbative series. The approach relies on a momenta expansion of the open system evolution. Unlike previous perturbative approaches of this kind, the method presented in this paper provides a recursive definition of each perturbative term. Furthermore, we give an intuitive diagrammatic description of each term of the series, which provides a useful analytical tool to build them and to derive their structure in terms of commutators and anticommutators. We eventually apply our formalism to the evolution of the observables of the reduced system, by showing how the method can be applied to the adjoint master equation, and by developing a diagrammatic description of the associated series.
International Nuclear Information System (INIS)
Gelß, Patrick; Matera, Sebastian; Schütte, Christof
2016-01-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO 2 (110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
Gelß, Patrick; Matera, Sebastian; Schütte, Christof
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
Energy Technology Data Exchange (ETDEWEB)
Gelß, Patrick, E-mail: p.gelss@fu-berlin.de; Matera, Sebastian, E-mail: matera@math.fu-berlin.de; Schütte, Christof, E-mail: schuette@mi.fu-berlin.de
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
Rate concept and retarded master equations for dissipative tight-binding models
International Nuclear Information System (INIS)
Egger, R.; Mak, C.H.; Weiss, U.
1994-01-01
Employing a ''noninteracting-cluster approximation,'' the dynamics of multistate dissipative tight-binding models has been formulated in terms of a set of generalized retarded master equations. The rates for the various pathways are expressed as power series in the intersite couplings. We apply this to the superexchange mechanism, which is relevant for bacterial photosynthesis and bridged electron transfer systems. This approach provides a general and unified description of both incoherent and coherent transport
Recent applications of the Boltzmann master equation to heavy ion precompound decay phenomena
International Nuclear Information System (INIS)
Blann, M.; Remington, B.A.
1988-06-01
The Boltzmann master equation (BME) is described and used as a tool to interpret preequilibrium neutron emission from heavy ion collisions gated on evaporation residue or fission fragments. The same approach is used to interpret neutron spectra gated on deep inelastic and quasi-elastic heavy ion collisions. Less successful applications of BME to proton inclusive data with 40 MeV/u incident 12 C ions are presented, and improvements required in the exciton injection term are discussed
The population and decay evolution of a qubit under the time-convolutionless master equation
International Nuclear Information System (INIS)
Huang Jiang; Fang Mao-Fa; Liu Xiang
2012-01-01
We consider the population and decay of a qubit under the electromagnetic environment. Employing the time-convolutionless master equation, we investigate the Markovian and non-Markovian behaviour of the corresponding perturbation expansion. The Jaynes-Cummings model on resonance is investigated. Some figures clearly show the different evolution behaviours. The reasons are interpreted in the paper. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Master equation for a kinetic model of a trading market and its analytic solution.
Chatterjee, Arnab; Chakrabarti, Bikas K; Stinchcombe, Robin B
2005-08-01
We analyze an ideal-gas-like model of a trading market with quenched random saving factors for its agents and show that the steady state income (m) distribution P(m) in the model has a power law tail with Pareto index nu exactly equal to unity, confirming the earlier numerical studies on this model. The analysis starts with the development of a master equation for the time development of P(m) . Precise solutions are then obtained in some special cases.
Flux-probability distributions from the master equation for radiation transport in stochastic media
International Nuclear Information System (INIS)
Franke, Brian C.; Prinja, Anil K.
2011-01-01
We present numerical investigations into the accuracy of approximations in the master equation for radiation transport in discrete binary random media. Our solutions of the master equation yield probability distributions of particle flux at each element of phase space. We employ the Levermore-Pomraning interface closure and evaluate the effectiveness of closures for the joint conditional flux distribution for estimating scattering integrals. We propose a parameterized model for this joint-pdf closure, varying between correlation neglect and a full-correlation model. The closure is evaluated for a variety of parameter settings. Comparisons are made with benchmark results obtained through suites of fixed-geometry realizations of random media in rod problems. All calculations are performed using Monte Carlo techniques. Accuracy of the approximations in the master equation is assessed by examining the probability distributions for reflection and transmission and by evaluating the moments of the pdfs. The results suggest the correlation-neglect setting in our model performs best and shows improved agreement in the atomic-mix limit. (author)
Variance estimates for transport in stochastic media by means of the master equation
International Nuclear Information System (INIS)
Pautz, S. D.; Franke, B. C.; Prinja, A. K.
2013-01-01
The master equation has been used to examine properties of transport in stochastic media. It has been shown previously that not only may the Levermore-Pomraning (LP) model be derived from the master equation for a description of ensemble-averaged transport quantities, but also that equations describing higher-order statistical moments may be obtained. We examine in greater detail the equations governing the second moments of the distribution of the angular fluxes, from which variances may be computed. We introduce a simple closure for these equations, as well as several models for estimating the variances of derived transport quantities. We revisit previous benchmarks for transport in stochastic media in order to examine the error of these new variance models. We find, not surprisingly, that the errors in these variance estimates are at least as large as the corresponding estimates of the average, and sometimes much larger. We also identify patterns in these variance estimates that may help guide the construction of more accurate models. (authors)
Computer Applications in Balancing Chemical Equations.
Kumar, David D.
2001-01-01
Discusses computer-based approaches to balancing chemical equations. Surveys 13 methods, 6 based on matrix, 2 interactive programs, 1 stand-alone system, 1 developed in algorithm in Basic, 1 based on design engineering, 1 written in HyperCard, and 1 prepared for the World Wide Web. (Contains 17 references.) (Author/YDS)
Chemical potential and the gap equation
International Nuclear Information System (INIS)
Chen Huan; Yuan Wei; Chang Lei; Liu Yuxin; Klaehn, Thomas; Roberts, Craig D.
2008-01-01
In general, the kernel of QCD's gap equation possesses a domain of analyticity upon which the equation's solution at nonzero chemical potential is simply obtained from the in-vacuum result through analytic continuation. On this domain the single-quark number- and scalar-density distribution functions are μ independent. This is illustrated via two models for the gap equation's kernel. The models are alike in concentrating support in the infrared. They differ in the form of the vertex, but qualitatively the results are largely insensitive to the Ansatz. In vacuum both models realize chiral symmetry in the Nambu-Goldstone mode, and in the chiral limit, with increasing chemical potential, they exhibit a first-order chiral symmetry restoring transition at μ≅M(0), where M(p 2 ) is the dressed-quark mass function.
Ishizaki, Akihito; Tanimura, Yoshitaka
2008-05-01
Based on the influence functional formalism, we have derived a nonperturbative equation of motion for a reduced system coupled to a harmonic bath with colored noise in which the system-bath coupling operator does not necessarily commute with the system Hamiltonian. The resultant expression coincides with the time-convolutionless quantum master equation derived from the second-order perturbative approximation, which is also equivalent to a generalized Redfield equation. This agreement occurs because, in the nonperturbative case, the relaxation operators arise from the higher-order system-bath interaction that can be incorporated into the reduced density matrix as the influence operator; while the second-order interaction remains as a relaxation operator in the equation of motion. While the equation describes the exact dynamics of the density matrix beyond weak system-bath interactions, it does not have the capability to calculate nonlinear response functions appropriately. This is because the equation cannot describe memory effects which straddle the external system interactions due to the reduced description of the bath. To illustrate this point, we have calculated the third-order two-dimensional (2D) spectra for a two-level system from the present approach and the hierarchically coupled equations approach that can handle quantal system-bath coherence thanks to its hierarchical formalism. The numerical demonstration clearly indicates the lack of the system-bath correlation in the present formalism as fast dephasing profiles of the 2D spectra.
Selected Aspects of Markovian and Non-Markovian Quantum Master Equations
Lendi, K.
A few particular marked properties of quantum dynamical equations accounting for general relaxation and dissipation are selected and summarized in brief. Most results derive from the universal concept of complete positivity. The considerations mainly regard genuinely irreversible processes as characterized by a unique asymptotically stationary final state for arbitrary initial conditions. From ordinary Markovian master equations and associated quantum dynamical semigroup time-evolution, derivations of higher order Onsager coefficients and related entropy production are discussed. For general processes including non-faithful states a regularized version of quantum relative entropy is introduced. Further considerations extend to time-dependent infinitesimal generators of time-evolution and to a possible description of propagation of initial states entangled between open system and environment. In the coherence-vector representation of the full non-Markovian equations including entangled initial states, first results are outlined towards identifying mathematical properties of a restricted class of trial integral-kernel functions suited to phenomenological applications.
Energy Technology Data Exchange (ETDEWEB)
Ferraro, E; Scala, M; Napoli, A [CNISM and Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo, via Archirafi 36, 90123 Palermo (Italy); Migliore, R, E-mail: ferraro@fisica.unipa.i, E-mail: matteo.scala@fisica.unipa.i [CNR-INFM, Research Unit CNISM of Palermo, via Archirafi 36, 90123 Palermo (Italy)
2010-09-01
In the framework of the dissipative dynamics of coupled qubits interacting with independent reservoirs, a comparison between non-Markovian master equation techniques and an exact solution is presented here. We study various regimes in order to find the limits of validity of the Nakajima-Zwanzig and the time-convolutionless master equations in the description of the entanglement dynamics. A comparison between the performances of the concurrence and the negativity as entanglement measures for the system under study is also presented.
A general solution of the BV-master equation and BRST field theories
International Nuclear Information System (INIS)
Dayi, O.F.
1993-05-01
For a class of first order gauge theories it was shown that the proper solution of the BV-master equation can be obtained straightforwardly. Here we present the general condition which the gauge generators should satisfy to conclude that this construction is relevant. The general procedure is illustrated by its application to the Chern-Simons theory in any odd-dimension. Moreover, it is shown that this formalism is also applicable to BRST field theories, when one replaces the role of the exterior derivative with the BRST charge of first quantization. (author). 17 refs
Splitting of the rate matrix as a definition of time reversal in master equation systems
International Nuclear Information System (INIS)
Liu Fei; Le, Hong
2012-01-01
Motivated by recent progress in nonequilibrium fluctuation relations, we present a generalized time reversal for stochastic master equation systems with discrete states, which is defined as a splitting of the rate matrix into irreversible and reversible parts. An immediate advantage of this definition is that a variety of fluctuation relations can be attributed to different matrix splittings. Additionally, we find that the accustomed total entropy production formula and conditions of the detailed balance must be modified appropriately to account for the reversible rate part, which was previously ignored. (paper)
Fuchsia. A tool for reducing differential equations for Feynman master integral to epsilon form
International Nuclear Information System (INIS)
Gituliar, Oleksandr; Magerya, Vitaly
2017-01-01
We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂ x f(x,ε)=A(x,ε)f(x,ε) finds a basis transformation T(x,ε), i.e., f(x,ε)=T(x,ε)g(x,ε), such that the system turns into the epsilon form: ∂ x g(x,ε)=εS(x)g(x,ε), where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ε. That makes the construction of the transformation T(x,ε) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals.
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
Energy Technology Data Exchange (ETDEWEB)
Etim, E; Basili, C [Rome Univ. (Italy). Ist. di Matematica
1978-08-21
The lagrangian in the path integral solution of the master equation of a stationary Markov process is derived by application of the Ehrenfest-type theorem of quantum mechanics and the Cauchy method of finding inverse functions. Applied to the non-linear Fokker-Planck equation the authors reproduce the result obtained by integrating over Fourier series coefficients and by other methods.
Subdiffusive master equation with space-dependent anomalous exponent and structural instability
Fedotov, Sergei; Falconer, Steven
2012-03-01
We derive the fractional master equation with space-dependent anomalous exponent. We analyze the asymptotic behavior of the corresponding lattice model both analytically and by Monte Carlo simulation. We show that the subdiffusive fractional equations with constant anomalous exponent μ in a bounded domain [0,L] are not structurally stable with respect to the nonhomogeneous variations of parameter μ. In particular, the Gibbs-Boltzmann distribution is no longer the stationary solution of the fractional Fokker-Planck equation whatever the space variation of the exponent might be. We analyze the random distribution of μ in space and find that in the long-time limit, the probability distribution is highly intermediate in space and the behavior is completely dominated by very unlikely events. We show that subdiffusive fractional equations with the nonuniform random distribution of anomalous exponent is an illustration of a “Black Swan,” the low probability event of the small value of the anomalous exponent that completely dominates the long-time behavior of subdiffusive systems.
Closed string field theory: Quantum action and the Batalin-Vilkovsky master equation
International Nuclear Information System (INIS)
Zwiebach, B.
1993-01-01
The complete quantum theory of covariant closed strings is constructed in detail. The nonpolynomial action is defined by elementary vertices satisfying recursion relations that give rise to Jacobi-like identities for an infinite chain of string field products. The genus zero string field algebra is the homotopy Lie algebra L ∞ encoding the gauge symmetry of the classical theory. The higher genus algebraic structure implies the Batalin-Vilkovisky (BV) master equation and thus consistent BRST quantization of the quantum action. From the L ∞ algebra, and the BV equation on the off-shell state space we derive the L ∞ algebra, and the BV equation on physical states that were recently constructed in d=2 string theory. The string diagrams are surfaces with minimal area metrics, foliated by closed geodesics of length 2π. These metrics generalize quadratic differentials in that foliation bands can cross. The string vertices are succinctly characterized; they include the surfaces whose foliation bands are all of height smaller than 2π. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Iles-Smith, Jake, E-mail: Jakeilessmith@gmail.com [Controlled Quantum Dynamics Theory, Imperial College London, London SW7 2PG (United Kingdom); Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Department of Photonics Engineering, DTU Fotonik, Ørsteds Plads, 2800 Kongens Lyngby (Denmark); Dijkstra, Arend G. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Lambert, Neill [CEMS, RIKEN, Saitama 351-0198 (Japan); Nazir, Ahsan, E-mail: ahsan.nazir@manchester.ac.uk [Photon Science Institute and School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)
2016-01-28
We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously. We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions.
Energy Technology Data Exchange (ETDEWEB)
Haertle, Rainer [Institut fuer Theoretische Physik, Georg-August-Universitaet Goettingen, Goettingen (Germany); Millis, Andrew J. [Department of Physics, Columbia University, New York (United States)
2016-07-01
We present a new impurity solver for real-time and nonequilibrium dynamical mean field theory applications, based on the recently developed hierarchical quantum master equation approach. Our method employs a hybridization expansion of the time evolution operator, including an advanced, systematic truncation scheme. Convergence to exact results for not too low temperatures has been demonstrated by a direct comparison to quantum Monte Carlo simulations. The approach is time-local, which gives us access to slow dynamics such as, e.g., in the presence of magnetic fields or exchange interactions and to nonequilibrium steady states. Here, we present first results of this new scheme for the description of strongly correlated materials in the framework of dynamical mean field theory, including benchmark and new results for the Hubbard and periodic Anderson model.
Sufficient conditions for positivity of non-Markovian master equations with Hermitian generators
International Nuclear Information System (INIS)
Wilkie, Joshua; Wong Yinmei
2009-01-01
We use basic physical motivations to develop sufficient conditions for positive semidefiniteness of the reduced density matrix for generalized non-Markovian integrodifferential Lindblad-Kossakowski master equations with Hermitian generators. We show that it is sufficient for the memory function to be the Fourier transform of a real positive symmetric frequency density function with certain properties. These requirements are physically motivated, and are more general and more easily checked than previously stated sufficient conditions. We also explore the decoherence dynamics numerically for some simple models using the Hadamard representation of the propagator. We show that the sufficient conditions are not necessary conditions. We also show that models exist in which the long time limit is in part determined by non-Markovian effects
Microscopic coefficients for the quantum master equation of a Fermi system
International Nuclear Information System (INIS)
Stefanescu, E.; Sandulescu, A.
2002-01-01
In a previous paper, we derived a master equation for fermions, of Lindblad's form, with coefficients depending on microscopic quantities. In this paper, we study the properties of the dissipative coefficients taking into account the explicit expressions of: (a) the matrix elements of the dissipative potential, evaluated from the condition that, essentially, this potential induces transitions among the system eigenstates without significantly modifying these states, (b) the densities of the environment states according to the Thomas-Fermi model, and (c) the occupation probabilities of these states taken as a Fermi-Dirac distribution. The matrix of these coefficients correctly describes the system dynamics: (a) for a normal, Fermi-Dirac distribution of the environment population, the decays dominate the excitation processes; (b) for an inverted (exotic) distribution of this population, specific to a clustering state, the excitation processes are dominant. (author)
Quantum dot as a spin-current diode: A master-equation approach
DEFF Research Database (Denmark)
Souza, F.M.; Egues, J.C.; Jauho, Antti-Pekka
2007-01-01
We report a study of spin-dependent transport in a system composed of a quantum dot coupled to a normal metal lead and a ferromagnetic lead NM-QD-FM. We use the master equation approach to calculate the spin-resolved currents in the presence of an external bias and an intradot Coulomb interaction....... We find that for a range of positive external biases current flow from the normal metal to the ferromagnet the current polarization =I↑−I↓ / I↑+I↓ is suppressed to zero, while for the corresponding negative biases current flow from the ferromagnet to the normal metal attains a relative maximum value....... The system thus operates as a rectifier for spin-current polarization. This effect follows from an interplay between Coulomb interaction and nonequilibrium spin accumulation in the dot. In the parameter range considered, we also show that the above results can be obtained via nonequilibrium Green functions...
Fuchsia : A tool for reducing differential equations for Feynman master integrals to epsilon form
Gituliar, Oleksandr; Magerya, Vitaly
2017-10-01
We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂x J(x , ɛ) = A(x , ɛ) J(x , ɛ) finds a basis transformation T(x , ɛ) , i.e., J(x , ɛ) = T(x , ɛ) J‧(x , ɛ) , such that the system turns into the epsilon form : ∂xJ‧(x , ɛ) = ɛ S(x) J‧(x , ɛ) , where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ɛ. That makes the construction of the transformation T(x , ɛ) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals. Program Files doi:http://dx.doi.org/10.17632/zj6zn9vfkh.1 Licensing provisions: MIT Programming language:Python 2.7 Nature of problem: Feynman master integrals may be calculated from solutions of a linear system of differential equations with rational coefficients. Such a system can be easily solved as an ɛ-series when its epsilon form is known. Hence, a tool which is able to find the epsilon form transformations can be used to evaluate Feynman master integrals. Solution method: The solution method is based on the Lee algorithm (Lee, 2015) which consists of three main steps: fuchsification, normalization, and factorization. During the fuchsification step a given system of differential equations is transformed into the Fuchsian form with the help of the Moser method (Moser, 1959). Next, during the normalization step the system is transformed to the form where eigenvalues of all residues are proportional to the dimensional regulator ɛ. Finally, the system is factorized to the epsilon form by finding an unknown transformation which satisfies a system of linear equations. Additional comments
Fuchsia. A tool for reducing differential equations for Feynman master integral to epsilon form
Energy Technology Data Exchange (ETDEWEB)
Gituliar, Oleksandr [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Magerya, Vitaly
2017-01-15
We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂{sub x}f(x,ε)=A(x,ε)f(x,ε) finds a basis transformation T(x,ε), i.e., f(x,ε)=T(x,ε)g(x,ε), such that the system turns into the epsilon form: ∂{sub x}g(x,ε)=εS(x)g(x,ε), where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ε. That makes the construction of the transformation T(x,ε) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals.
Dang, Mia; Ramsaran, Kalinda D; Street, Melissa E; Syed, S Noreen; Barclay-Goddard, Ruth; Stratford, Paul W; Miller, Patricia A
2011-01-01
To estimate the predictive accuracy and clinical usefulness of the Chedoke-McMaster Stroke Assessment (CMSA) predictive equations. A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from -0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted.
Dang, Mia; Ramsaran, Kalinda D.; Street, Melissa E.; Syed, S. Noreen; Barclay-Goddard, Ruth; Miller, Patricia A.
2011-01-01
ABSTRACT Purpose: To estimate the predictive accuracy and clinical usefulness of the Chedoke–McMaster Stroke Assessment (CMSA) predictive equations. Method: A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Results: Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from −0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. Conclusions: This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted. PMID:22654239
On the structure of the master equation for a two-level system coupled to a thermal bath
International Nuclear Information System (INIS)
Vega, Inés de
2015-01-01
We derive a master equation from the exact stochastic Liouville–von-Neumann (SLN) equation (Stockburger and Grabert 2002 Phys. Rev. Lett. 88 170407). The latter depends on two correlated noises and describes exactly the dynamics of an oscillator (which can be either harmonic or present an anharmonicity) coupled to an environment at thermal equilibrium. The newly derived master equation is obtained by performing analytically the average over different noise trajectories. It is found to have a complex hierarchical structure that might be helpful to explain the convergence problems occurring when performing numerically the stochastic average of trajectories given by the SLN equation (Koch et al 2008 Phys. Rev. Lett. 100 230402, Koch 2010 PhD thesis Fakultät Mathematik und Naturwissenschaften der Technischen Universitat Dresden). (paper)
On the structure of the master equation for a two-level system coupled to a thermal bath
de Vega, Inés
2015-04-01
We derive a master equation from the exact stochastic Liouville-von-Neumann (SLN) equation (Stockburger and Grabert 2002 Phys. Rev. Lett. 88 170407). The latter depends on two correlated noises and describes exactly the dynamics of an oscillator (which can be either harmonic or present an anharmonicity) coupled to an environment at thermal equilibrium. The newly derived master equation is obtained by performing analytically the average over different noise trajectories. It is found to have a complex hierarchical structure that might be helpful to explain the convergence problems occurring when performing numerically the stochastic average of trajectories given by the SLN equation (Koch et al 2008 Phys. Rev. Lett. 100 230402, Koch 2010 PhD thesis Fakultät Mathematik und Naturwissenschaften der Technischen Universitat Dresden).
International Nuclear Information System (INIS)
Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George
2016-01-01
The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.
Positioning in a flat two-dimensional space-time: The delay master equation
International Nuclear Information System (INIS)
Coll, Bartolome; Ferrando, Joan Josep; Morales-Lladosa, Juan Antonio
2010-01-01
The basic theory on relativistic positioning systems in a two-dimensional space-time has been presented in two previous papers [B. Coll, J. J. Ferrando, and J. A. Morales, Phys. Rev. D 73, 084017 (2006); ibid.74, 104003 (2006)], where the possibility of making relativistic gravimetry with these systems has been analyzed by considering specific examples. Here, generic relativistic positioning systems in the Minkowski plane are studied. The information that can be obtained from the data received by a user of the positioning system is analyzed in detail. In particular, it is shown that the accelerations of the emitters and of the user along their trajectories are determined by the sole knowledge of the emitter positioning data and of the acceleration of only one of the emitters. Moreover, as a consequence of the so-called master delay equation, the knowledge of this acceleration is only required during an echo interval, i.e., the interval between the emission time of a signal by an emitter and its reception time after being reflected by the other emitter. These results are illustrated with the obtention of the dynamics of the emitters and of the user from specific sets of data received by the user.
Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran
2015-12-01
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.
Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach
Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.
2017-07-01
Stimulated by suggestions of quantum effects in energy transport in photosynthesis, the fundamental principles responsible for the near-unit efficiency of the conversion of solar to chemical energy became active again in recent years. Under natural conditions, the formation of stable charge-separation states in bacteria and plant reaction centers is strongly affected by the coupling of electronic degrees of freedom to a wide range of vibrational motions. These inspire and motivate us to explore the effects of the environment on the operation of such complexes. In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect the exciton-transfer processes in the Photosystem II reaction center described by a quantum heat engine (QHE) model over a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in detail. We interpret these results in terms of noise-assisted transport effect and dynamical localization, which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is the dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms are manifestations of the dual role played by bath-induced fluctuations depending on the range of parameters. The origin and role of coherence are also discussed. It is the constructive interplay between noise and coherent dynamics, rather
Neutron fluctuations in accelerator driven and power reactors via backward master equations
International Nuclear Information System (INIS)
Zhifeng Kuang
2000-05-01
The transport of neutrons in a reactor is a random process, and thus the number of neutrons in a reactor is a random variable. Fluctuations in the number of neutrons in a reactor can be divided into two categories, namely zero noise and power reactor noise. As the name indicates, they dominate (i.e. are observable) at different power levels. The reasons for their occurrences and utilization are also different. In addition, they are described via different mathematical tools, namely master equations and the Langevin equation, respectively. Zero noise carries information about some nuclear properties such as reactor reactivity. Hence methods such as Feynman- and Rossi-alpha methods have been established to determine the subcritical reactivity of a subcritical system. Such methods received a renewed interest recently with the advent of the so-called accelerator driven systems (ADS). Such systems, intended to be used either for energy production or transuranium transmutation, will use a subcritical core with a strong spallation source. A spallation source has statistical properties that are different from those of the traditionally used radioactive sources which were also assumed in the derivation of the Feynman- and Rossi-alpha formulae. Therefore it is necessary to re-derive the Feynman- and Rossi-alpha formulae. Such formulae for ADS have been derived recently but in simpler neutronic models. One subject of this thesis is the extension of such formulae to a more general case in which six groups of delayed neutron precursors are taken into account, and the full joint statistics of the prompt and all delayed groups is included. The involved complexity problems are solved with a combination of effective analytical techniques and symbolic algebra codes. Power reactor noise carries information about parametric perturbation of the system. Langevin technique has been used to extract such information. In such a treatment, zero noise has been neglected. This is a pragmatic
Student Understanding of Chemical Equation Balancing.
Yarroch, W. L.
1985-01-01
Results of interviews with high school chemistry students (N=14) during equation-solving sessions indicate that those who were able to construct diagrams consistent with notation of their balanced equation possessed good concepts of subscript and the balancing rule. Implications for chemistry teaching are discussed. (DH)
Energy Technology Data Exchange (ETDEWEB)
Kidon, Lyran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Wilner, Eli Y. [School of Physics and Astronomy, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Rabani, Eran [The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Chemistry, University of California and Lawrence Berkeley National Laboratory, Berkeley California 94720-1460 (United States)
2015-12-21
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.
Application of quantum master equation for long-term prognosis of asset-prices
Khrennikova, Polina
2016-05-01
This study combines the disciplines of behavioral finance and an extension of econophysics, namely the concepts and mathematical structure of quantum physics. We apply the formalism of quantum theory to model the dynamics of some correlated financial assets, where the proposed model can be potentially applied for developing a long-term prognosis of asset price formation. At the informational level, the asset price states interact with each other by the means of a ;financial bath;. The latter is composed of agents' expectations about the future developments of asset prices on the finance market, as well as financially important information from mass-media, society, and politicians. One of the essential behavioral factors leading to the quantum-like dynamics of asset prices is the irrationality of agents' expectations operating on the finance market. These expectations lead to a deeper type of uncertainty concerning the future price dynamics of the assets, than given by a classical probability theory, e.g., in the framework of the classical financial mathematics, which is based on the theory of stochastic processes. The quantum dimension of the uncertainty in price dynamics is expressed in the form of the price-states superposition and entanglement between the prices of the different financial assets. In our model, the resolution of this deep quantum uncertainty is mathematically captured with the aid of the quantum master equation (its quantum Markov approximation). We illustrate our model of preparation of a future asset price prognosis by a numerical simulation, involving two correlated assets. Their returns interact more intensively, than understood by a classical statistical correlation. The model predictions can be extended to more complex models to obtain price configuration for multiple assets and portfolios.
Kelly, Aaron; Brackbill, Nora; Markland, Thomas E
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Energy Technology Data Exchange (ETDEWEB)
Kelly, Aaron; Markland, Thomas E., E-mail: tmarkland@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Brackbill, Nora [Department of Physics, Stanford University, Stanford, California 94305 (United States)
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Energy Technology Data Exchange (ETDEWEB)
Lee, Keumsook [Department of Geography, Sungshin University, Seoul 136-742 (Korea, Republic of); Goh, Segun; Choi, M Y [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Park, Jong Soo [School of Information Technology, Sungshin University, Seoul 136-742 (Korea, Republic of); Jung, Woo-Sung, E-mail: kslee@sungshin.ac.kr, E-mail: mychoi@snu.ac.kr [Department of Physics and Basic Science Research Institute, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)
2011-03-18
The master equation approach is proposed to describe the evolution of passengers in a subway system. With the transition rate constructed from simple geographical consideration, the evolution equation for the distribution of subway passengers is found to bear skew distributions including log-normal, Weibull, and power-law distributions. This approach is then applied to the Metropolitan Seoul Subway system: analysis of the trip data of all passengers in a day reveals that the data in most cases fit well to the log-normal distributions. Implications of the results are also discussed.
International Nuclear Information System (INIS)
Lee, Keumsook; Goh, Segun; Choi, M Y; Park, Jong Soo; Jung, Woo-Sung
2011-01-01
The master equation approach is proposed to describe the evolution of passengers in a subway system. With the transition rate constructed from simple geographical consideration, the evolution equation for the distribution of subway passengers is found to bear skew distributions including log-normal, Weibull, and power-law distributions. This approach is then applied to the Metropolitan Seoul Subway system: analysis of the trip data of all passengers in a day reveals that the data in most cases fit well to the log-normal distributions. Implications of the results are also discussed.
Parameter Estimates in Differential Equation Models for Chemical Kinetics
Winkel, Brian
2011-01-01
We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…
Insights: A New Method to Balance Chemical Equations.
Garcia, Arcesio
1987-01-01
Describes a method designed to balance oxidation-reduction chemical equations. Outlines a method which is based on changes in the oxidation number that can be applied to both molecular reactions and ionic reactions. Provides examples and delineates the steps to follow for each type of equation balancing. (TW)
International Nuclear Information System (INIS)
Carter, B.; McLenaghan, R.G.
1982-01-01
It is shown how previous general formulae for the separated radial and angular parts of the massive, charged scalar (Klein, Gordon) wave equation on one hand, and of the zero mass, neutral, but higher spin (neutrino, electromagnetic and gravitational) wave equations on the other hand may be combined in a more general formula which also covers the case of the full massive charged Dirac equation in a Kerr or Kerr-Newman background space. (Auth.)
A New Topology of Solutions of Chemical Equations
International Nuclear Information System (INIS)
Risteski, Ice B.
2013-01-01
In this work is induced a new topology of solutions of chemical equations by virtue of point-set topology in an abstract stoichiometrical space. Subgenerators of this topology are the coefficients of chemical reaction. Complex chemical reactions, as those of direct reduction of hematite with a carbon, often exhibit distinct properties which can be interpreted as higher level mathematical structures. Here we used a mathematical model that exploits the stoichiometric structure, which can be seen as a topology too, to derive an algebraic picture of chemical equations. This abstract expression suggests exploring the chemical meaning of topological concept. Topological models at different levels of realism can be used to generate a large number of reaction modifications, with a particular aim to determine their general properties. The more abstract the theory is, the stronger the cognitive power is
Energy Technology Data Exchange (ETDEWEB)
Oh, Suhk Kun [Chungbuk National University, Chungbuk (Korea, Republic of)
2006-01-15
As an extension of our previous work on the relationship between time in Monte Carlo simulation and time in the continuous master equation in the infinit-range Glauber kinetic Ising model in the absence of any magnetic field, we explored the same model in the presence of a static magnetic field. Monte Carlo steps per spin as time in the MC simulations again turns out to be proportional to time in the master equation for the model in relatively larger static magnetic fields at any temperature. At and near the critical point in a relatively smaller magnetic field, the model exhibits a significant finite-size dependence, and the solution to the Suzuki-Kubo differential equation stemming from the master equation needs to be re-scaled to fit the Monte Carlo steps per spin for the system with different numbers of spins.
Mastering algebra retrains the visual system to perceive hierarchical structure in equations.
Marghetis, Tyler; Landy, David; Goldstone, Robert L
2016-01-01
Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.
Chemical Equilibrium and Polynomial Equations: Beware of Roots.
Smith, William R.; Missen, Ronald W.
1989-01-01
Describes two easily applied mathematical theorems, Budan's rule and Rolle's theorem, that in addition to Descartes's rule of signs and intermediate-value theorem, are useful in chemical equilibrium. Provides examples that illustrate the use of all four theorems. Discusses limitations of the polynomial equation representation of chemical…
BALANCER: A Computer Program for Balancing Chemical Equations.
Jones, R. David; Schwab, A. Paul
1989-01-01
Describes the theory and operation of a computer program which was written to balance chemical equations. Software consists of a compiled file of 46K for use under MS-DOS 2.0 or later on IBM PC or compatible computers. Additional specifications of courseware and availability information are included. (Author/RT)
Non-equilibrium reaction rates in chemical kinetic equations
Gorbachev, Yuriy
2018-05-01
Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.
International Nuclear Information System (INIS)
Afsaneh, E.; Yavari, H.
2014-01-01
The superconducting reservoir effect on the current carrying transport of a double quantum dot in Markovian regime is investigated. For this purpose, a quantum master equation at finite temperature is derived for the many-body density matrix of an open quantum system. The dynamics and the steady-state properties of the double quantum dot system for arbitrary bias are studied. We will show that how the populations and coherencies of the system states are affected by superconducting leads. The energy parameter of system contains essentially four contributions due to dots system-electrodes coupling, intra dot coupling, two quantum dots inter coupling and superconducting gap. The coupling effect of each energy contribution is applied to currents and coherencies results. In addition, the effect of energy gap is studied by considering the amplitude and lifetime of coherencies to get more current through the system. (author)
Nogawa, Tomoaki; Ito, Nobuyasu; Watanabe, Hiroshi
2012-01-01
We examine the effectiveness of assuming an equal probability for states far from equilibrium. For this aim, we propose a method to construct a master equation for extensive variables describing nonstationary nonequilibrium dynamics. The key point of the method is the assumption that transient states are equivalent to the equilibrium state that has the same extensive variables, i.e., an equal probability holds for microscopic states in nonequilibrium. We demonstrate an application of this method to the critical relaxation of the two-dimensional Potts model by Monte Carlo simulations. While the one-variable description, which is adequate for equilibrium, yields relaxation dynamics that are very fast, the redundant two-variable description well reproduces the true dynamics quantitatively. These results suggest that some class of the nonequilibrium state can be described with a small extension of degrees of freedom, which may lead to an alternative way to understand nonequilibrium phenomena. © 2012 American Physical Society.
Nogawa, Tomoaki
2012-10-18
We examine the effectiveness of assuming an equal probability for states far from equilibrium. For this aim, we propose a method to construct a master equation for extensive variables describing nonstationary nonequilibrium dynamics. The key point of the method is the assumption that transient states are equivalent to the equilibrium state that has the same extensive variables, i.e., an equal probability holds for microscopic states in nonequilibrium. We demonstrate an application of this method to the critical relaxation of the two-dimensional Potts model by Monte Carlo simulations. While the one-variable description, which is adequate for equilibrium, yields relaxation dynamics that are very fast, the redundant two-variable description well reproduces the true dynamics quantitatively. These results suggest that some class of the nonequilibrium state can be described with a small extension of degrees of freedom, which may lead to an alternative way to understand nonequilibrium phenomena. © 2012 American Physical Society.
Energy Technology Data Exchange (ETDEWEB)
Sun, Ke-Wei [School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Fujihashi, Yuta; Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan); Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)
2016-05-28
A master equation approach based on an optimized polaron transformation is adopted for dynamics simulation with simultaneous diagonal and off-diagonal spin-boson coupling. Two types of bath spectral density functions are considered, the Ohmic and the sub-Ohmic. The off-diagonal coupling leads asymptotically to a thermal equilibrium with a nonzero population difference P{sub z}(t → ∞) ≠ 0, which implies localization of the system, and it also plays a role in restraining coherent dynamics for the sub-Ohmic case. Since the new method can extend to the stronger coupling regime, we can investigate the coherent-incoherent transition in the sub-Ohmic environment. Relevant phase diagrams are obtained for different temperatures. It is found that the sub-Ohmic environment allows coherent dynamics at a higher temperature than the Ohmic environment.
Memory loss process and non-Gibbsian equilibrium solutions of master equations
International Nuclear Information System (INIS)
Cataldo, H.M.; Hernandez, E.S.
1988-01-01
The phonon dynamics of a harmonic oscillator coupled to a steady reservoir is studied. In the Markovian limit, the equilibrium is reached through a progressive loss of memory process which involves the moments of the initial distribution. The relationship to the non-Markovian equations of motion and its resolvent poles is settled. As a particular model of the coupling mechanism is adopted, the possibility of non-Gibbsian equilibrium distribution arises, which is analyzed focusing upon the dependence of various parameters of the system on an effective equilibrium temperature
Caglar, Mehmet Umut; Pal, Ranadip
2011-03-01
Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.
International Nuclear Information System (INIS)
Grinberg, H.
1983-11-01
The projection operator method of Zwanzig and Feshbach is used to construct the time-dependent field operators in the interaction picture. The formula developed to describe the time dependence involves time-ordered cosine and sine projected evolution (memory) superoperators, from which a master equation for the interaction-picture single-particle Green's function in a Liouville space is derived. (author)
Chemical-potential flow equations for graphene with Coulomb interactions
Fräßdorf, Christian; Mosig, Johannes E. M.
2018-06-01
We calculate the chemical potential dependence of the renormalized Fermi velocity and static dielectric function for Dirac quasiparticles in graphene nonperturbatively at finite temperature. By reinterpreting the chemical potential as a flow parameter in the spirit of the functional renormalization group (fRG) we obtain a set of flow equations, which describe the change of these functions upon varying the chemical potential. In contrast to the fRG the initial condition of the flow is nontrivial and has to be calculated separately. Our results are consistent with a charge carrier-independent Fermi velocity v (k ) for small densities n ≲k2/π , supporting the comparison of the zero-density fRG calculation of Bauer et al. [Phys. Rev. B 92, 121409 (2015), 10.1103/PhysRevB.92.121409], with the experiment of Elias et al. [Nat. Phys. 7, 701 (2011), 10.1038/nphys2049].
Bai, Shirong; Skodje, Rex T
2017-08-17
A new approach is presented for simulating the time-evolution of chemically reactive systems. This method provides an alternative to conventional modeling of mass-action kinetics that involves solving differential equations for the species concentrations. The method presented here avoids the need to solve the rate equations by switching to a representation based on chemical pathways. In the Sum Over Histories Representation (or SOHR) method, any time-dependent kinetic observable, such as concentration, is written as a linear combination of probabilities for chemical pathways leading to a desired outcome. In this work, an iterative method is introduced that allows the time-dependent pathway probabilities to be generated from a knowledge of the elementary rate coefficients, thus avoiding the pitfalls involved in solving the differential equations of kinetics. The method is successfully applied to the model Lotka-Volterra system and to a realistic H 2 combustion model.
Mélykúti, Bence; Burrage, Kevin; Zygalakis, Konstantinos C.
2010-01-01
The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when
International Nuclear Information System (INIS)
Freedhoff, Helen
2004-01-01
We study an aggregate of N identical two-level atoms (TLA's) coupled by the retarded interatomic interaction, using the Lehmberg-Agarwal master equation. First, we calculate the entangled eigenstates of the system; then, we use these eigenstates as a basis set for the projection of the master equation. We demonstrate that in this basis the equations of motion for the level populations, as well as the expressions for the emission and absorption spectra, assume a simple mathematical structure and allow for a transparent physical interpretation. To illustrate the use of the general theory in emission processes, we study an isosceles triangle of atoms, and present in the long wavelength limit the (cascade) emission spectrum for a hexagon of atoms fully excited at t=0. To illustrate its use for absorption processes, we tabulate (in the same limit) the biexciton absorption frequencies, linewidths, and relative intensities for polygons consisting of N=2,...,9 TLA's
Nickelsen, Daniel
2017-07-01
The statistics of velocity increments in homogeneous and isotropic turbulence exhibit universal features in the limit of infinite Reynolds numbers. After Kolmogorov’s scaling law from 1941, many turbulence models aim for capturing these universal features, some are known to have an equivalent formulation in terms of Markov processes. We derive the Markov process equivalent to the particularly successful scaling law postulated by She and Leveque. The Markov process is a jump process for velocity increments u(r) in scale r in which the jumps occur randomly but with deterministic width in u. From its master equation we establish a prescription to simulate the She-Leveque process and compare it with Kolmogorov scaling. To put the She-Leveque process into the context of other established turbulence models on the Markov level, we derive a diffusion process for u(r) using two properties of the Navier-Stokes equation. This diffusion process already includes Kolmogorov scaling, extended self-similarity and a class of random cascade models. The fluctuation theorem of this Markov process implies a ‘second law’ that puts a loose bound on the multipliers of the random cascade models. This bound explicitly allows for instances of inverse cascades, which are necessary to satisfy the fluctuation theorem. By adding a jump process to the diffusion process, we go beyond Kolmogorov scaling and formulate the most general scaling law for the class of Markov processes having both diffusion and jump parts. This Markov scaling law includes She-Leveque scaling and a scaling law derived by Yakhot.
International Nuclear Information System (INIS)
Wirtz, Ludger; Reinhold, Carlos O.; Lemell, Christoph; Burgdoerfer, Joachim
2003-01-01
We present a simulation of the neutralization of highly charged ions in front of a lithium fluoride surface including the close-collision regime above the surface. The present approach employs a Monte Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from classical trajectory Monte Carlo calculations as well as quantum-mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface ('trampoline effect'). For Ne 10+ we find that image acceleration is dominant and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutral or even as singly charged negative particles, irrespective of the charge state of the incoming ions
A New Pseudoinverse Matrix Method For Balancing Chemical Equations And Their Stability
International Nuclear Information System (INIS)
Risteski, Ice B.
2008-01-01
In this work is given a new pseudoniverse matrix method for balancing chemical equations. Here offered method is founded on virtue of the solution of a Diophantine matrix equation by using of a Moore-Penrose pseudoinverse matrix. The method has been tested on several typical chemical equations and found to be very successful for the all equations in our extensive balancing research. This method, which works successfully without any limitations, also has the capability to determine the feasibility of a new chemical reaction, and if it is feasible, then it will balance the equation. Chemical equations treated here possess atoms with fractional oxidation numbers. Also, in the present work are introduced necessary and sufficient criteria for stability of chemical equations over stability of their extended matrices
Saitoh, K.; Magnanimo, Vanessa; Luding, Stefan
2016-01-01
Mechanical responses of soft particle packings to quasi-static deformations are determined by the microscopic restructuring of force-chain networks, where complex non-affine displacements of constituent particles cause the irreversible macroscopic behavior. Recently, we have proposed a master
Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang
2018-04-01
The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.
Solutions of the chemical kinetic equations for initially inhomogeneous mixtures.
Hilst, G. R.
1973-01-01
Following the recent discussions by O'Brien (1971) and Donaldson and Hilst (1972) of the effects of inhomogeneous mixing and turbulent diffusion on simple chemical reaction rates, the present report provides a more extensive analysis of when inhomogeneous mixing has a significant effect on chemical reaction rates. The analysis is then extended to the development of an approximate chemical sub-model which provides much improved predictions of chemical reaction rates over a wide range of inhomogeneities and pathological distributions of the concentrations of the reacting chemical species. In particular, the development of an approximate representation of the third-order correlations of the joint concentration fluctuations permits closure of the chemical sub-model at the level of the second-order moments of these fluctuations and the mean concentrations.
Chemical oceanography of the Indian Ocean, North of the equator
Digital Repository Service at National Institute of Oceanography (India)
SenGupta, R.; Naqvi, S.W.A.
Chemical oceanographic studies in the North Indian Ocean have revealed several interesting and unique features. Dissolved oxygen northern boundary, prevents quick renewal of subsurface reducing conditions prevail at intermediate depths (ca. 150...
Self-Reflection and Professional Competences in the Master Program for Chemical Engineers
Reijenga, J.C.; Vinken, E.; Gupta-Bhowon, M.; Jhaumeer-Laulloo, S.; Li Kam Wah, H.; Ramasami, P.
2009-01-01
This paper presents an investigation into the quality of self-reflection during industrial intern-ships by Chemical Engineering students at the Eindhoven University of Technology in The Netherlands. The quality of the self-reflection reports written at the end of a compulsory in-dustrial internship
Remarks on the chemical Fokker-Planck and Langevin equations: Nonphysical currents at equilibrium.
Ceccato, Alessandro; Frezzato, Diego
2018-02-14
The chemical Langevin equation and the associated chemical Fokker-Planck equation are well-known continuous approximations of the discrete stochastic evolution of reaction networks. In this work, we show that these approximations suffer from a physical inconsistency, namely, the presence of nonphysical probability currents at the thermal equilibrium even for closed and fully detailed-balanced kinetic schemes. An illustration is given for a model case.
Directory of Open Access Journals (Sweden)
Andrei Khrennikov
2016-07-01
Full Text Available We present a new conceptual approach for modeling of fluid flows in random porous media based on explicit exploration of the treelike geometry of complex capillary networks. Such patterns can be represented mathematically as ultrametric spaces and the dynamics of fluids by ultrametric diffusion. The images of p-adic fields, extracted from the real multiscale rock samples and from some reference images, are depicted. In this model the porous background is treated as the environment contributing to the coefficients of evolutionary equations. For the simplest trees, these equations are essentially less complicated than those with fractional differential operators which are commonly applied in geological studies looking for some fractional analogs to conventional Euclidean space but with anomalous scaling and diffusion properties. It is possible to solve the former equation analytically and, in particular, to find stationary solutions. The main aim of this paper is to attract the attention of researchers working on modeling of geological processes to the novel utrametric approach and to show some examples from the petroleum reservoir static and dynamic characterization, able to integrate the p-adic approach with multifractals, thermodynamics and scaling. We also present a non-mathematician friendly review of trees and ultrametric spaces and pseudo-differential operators on such spaces.
Forcella, Davide; He, Yang-Hui; Zaffaroni, Alberto
2008-01-01
Supersymmetric gauge theories have an important but perhaps under-appreciated notion of a master space, which controls the full moduli space. For world-volume theories of D-branes probing a Calabi-Yau singularity X the situation is particularly illustrative. In the case of one physical brane, the master space F is the space of F-terms and a particular quotient thereof is X itself. We study various properties of F which encode such physical quantities as Higgsing, BPS spectra, hidden global symmetries, etc. Using the plethystic program we also discuss what happens at higher number N of branes. This letter is a summary and some extensions of the key points of a longer companion paper arXiv:0801.1585.
International Nuclear Information System (INIS)
Brett, Tobias; Galla, Tobias
2014-01-01
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period
Brett, Tobias; Galla, Tobias
2014-03-28
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.
US Agency for International Development — OPS Master is a management tool and database for integrated financial planning and portfolio management in USAID Missions. Using OPS Master, the three principal...
Some Matrix Iterations for Computing Generalized Inverses and Balancing Chemical Equations
Directory of Open Access Journals (Sweden)
Farahnaz Soleimani
2015-11-01
Full Text Available An application of iterative methods for computing the Moore–Penrose inverse in balancing chemical equations is considered. With the aim to illustrate proposed algorithms, an improved high order hyper-power matrix iterative method for computing generalized inverses is introduced and applied. The improvements of the hyper-power iterative scheme are based on its proper factorization, as well as on the possibility to accelerate the iterations in the initial phase of the convergence. Although the effectiveness of our approach is confirmed on the basis of the theoretical point of view, some numerical comparisons in balancing chemical equations, as well as on randomly-generated matrices are furnished.
Kishi, Ryohei; Nakano, Masayoshi
2011-04-21
A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.
Incorporation of a Chemical Equilibrium Equation of State into LOCI-Chem
Cox, Carey F.
2005-01-01
Renewed interest in development of advanced high-speed transport, reentry vehicles and propulsion systems has led to a resurgence of research into high speed aerodynamics. As this flow regime is typically dominated by hot reacting gaseous flow, efficient models for the characteristic chemical activity are necessary for accurate and cost effective analysis and design of aerodynamic vehicles that transit this regime. The LOCI-Chem code recently developed by Ed Luke at Mississippi State University for NASA/MSFC and used by NASA/MSFC and SSC represents an important step in providing an accurate, efficient computational tool for the simulation of reacting flows through the use of finite-rate kinetics [3]. Finite rate chemistry however, requires the solution of an additional N-1 species mass conservation equations with source terms involving reaction kinetics that are not fully understood. In the equilibrium limit, where the reaction rates approach infinity, these equations become very stiff. Through the use of the assumption of local chemical equilibrium the set of governing equations is reduced back to the usual gas dynamic equations, and thus requires less computation, while still allowing for the inclusion of reacting flow phenomenology. The incorporation of a chemical equilibrium equation of state module into the LOCI-Chem code was the primary objective of the current research. The major goals of the project were: (1) the development of a chemical equilibrium composition solver, and (2) the incorporation of chemical equilibrium solver into LOCI-Chem. Due to time and resource constraints, code optimization was not considered unless it was important to the proper functioning of the code.
Kumar, Praveen; Jang, Seogjoo
2013-04-07
The emission lineshape of the B850 band in the light harvesting complex 2 of purple bacteria is calculated by extending the approach of 2nd order time-nonlocal quantum master equation [S. Jang and R. J. Silbey, J. Chem. Phys. 118, 9312 (2003)]. The initial condition for the emission process corresponds to the stationary excited state density where exciton states are entangled with the bath modes in equilibrium. This exciton-bath coupling, which is not diagonal in either site excitation or exciton basis, results in a new inhomogeneous term that is absent in the expression for the absorption lineshape. Careful treatment of all the 2nd order terms are made, and explicit expressions are derived for both full 2nd order lineshape expression and the one based on secular approximation that neglects off-diagonal components in the exciton basis. Numerical results are presented for a few representative cases of disorder and temperature. Comparison of emission line shape with the absorption line shape is also made. It is shown that the inhomogeneous term coming from the entanglement of the system and bath degrees of freedom makes significant contributions to the lineshape. It is also found that the perturbative nature of the theory can result in negative portion of lineshape in some situations, which can be removed significantly by inclusion of the inhomogeneous term and completely by using the secular approximation. Comparison of the emission and absorption lineshapes at different temperatures demonstrates the role of thermal population of different exciton states and exciton-phonon couplings.
Ismail, Mona M; El Zokm, Gehan M; El-Sayed, Abeer A M
2017-11-25
Biochemical constituents and master elements (Pb, Cr, Cd, Fe, Cu, Zn, Hg, B, Al, SO 4 2- , Na, K, Li, Ca, Mg, and F) were investigated in six different seaweed species from Abu Qir Bay in the Egyptian Mediterranean Sea coast. The moisture level ranged from 30.26% in Corallina mediterranea to 77.57% in Padina boryana. On dry weight basis, the ash contents varied from 25.53% in Jania rubens to 88.84% in Sargassum wightii. The protein contents fluctuated from 8.26% in S. wightii to 28.01% in J. rubens. Enteromorpha linza showed the highest lipids (4.66%) and carbohydrate contents (78.95%), whereas C. mediterranea had the lowest lipid (0.5%), and carbohydrate contents (38.12%). Chlorophylls and carotenoid contents varied among the species. Total antioxidant capacity of the tested green seaweeds had the highest activities followed by brown and red seaweeds which had a similar trend of phenol and tannins contents. High reducing power was observed in all tested seaweeds extract except Ulva lactuca. Brown species had the highest amount of elements followed by red and green seaweeds. Notably, SO 4 2- recorded the highest level in the tested green species (108.05 mg/g dry weight (DW)). The Ca/Mg and K/Na ratios reflected highly significant difference between seaweed species. This study keeps an eye on 29 parameters and by applying stepwise multiple regression analysis, prospective equations have been set to describe the interactions between these parameters inside seaweeds. Accordingly, the tested seaweeds can be recommended as a source of healthy food with suitable ion quotient and estimated daily intake values.
Blitz, M A; Green, N J B; Shannon, R J; Pilling, M J; Seakins, P W; Western, C M; Robertson, S H
2015-07-16
Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300-900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988 , 92 , 2455 - 2462 ). These corrections necessitated the development of a detailed model of the B̃(2)A1' (3s)-X̃(2)A2″ transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k∞(T); it was used to fit the experimental rate coefficients using the Levenberg-Marquardt algorithm to minimize χ(2) calculated from the differences between experimental and calculated rate coefficients. Parameters for both k∞(T) and for energy transfer ⟨ΔE⟩down(T) were varied and optimized in the fitting procedure. A wide range of experimental data were fitted, covering the temperature range 300-2000 K. A high pressure limit of k∞(T) = 5.76 × 10(-11)(T/298 K)(-0.34) cm(3) molecule(-1) s(-1) was obtained, which agrees well with the best available theoretical expression.
Mélykúti, Bence
2010-01-01
The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when simulating (bio)chemical kinetics. The CLE model is valid in the regime where molecular populations are abundant enough to assume their concentrations change continuously, but stochastic fluctuations still play a major role. The contribution of this work is that we observe and explore that the CLE is not a single equation, but a parametric family of equations, all of which give the same finite-dimensional distribution of the variables. On the theoretical side, we prove that as many Wiener processes are sufficient to formulate the CLE as there are independent variables in the equation, which is just the rank of the stoichiometric matrix. On the practical side, we show that in the case where there are m1 pairs of reversible reactions and m2 irreversible reactions there is another, simple formulation of the CLE with only m1 + m2 Wiener processes, whereas the standard approach uses 2 m1 + m2. We demonstrate that there are considerable computational savings when using this latter formulation. Such transformations of the CLE do not cause a loss of accuracy and are therefore distinct from model reduction techniques. We illustrate our findings by considering alternative formulations of the CLE for a human ether a-go-go related gene ion channel model and the Goldbeter-Koshland switch. © 2010 American Institute of Physics.
Some Matrix Iterations for Computing Generalized Inverses and Balancing Chemical Equations
Soleimani, Farahnaz; Stanimirovi´c, Predrag; Soleymani, Fazlollah
2015-01-01
An application of iterative methods for computing the Moore–Penrose inverse in balancing chemical equations is considered. With the aim to illustrate proposed algorithms, an improved high order hyper-power matrix iterative method for computing generalized inverses is introduced and applied. The improvements of the hyper-power iterative scheme are based on its proper factorization, as well as on the possibility to accelerate the iterations in the initial phase of the convergence. Although the ...
Model reduction of multiscale chemical langevin equations: a numerical case study.
Sotiropoulos, Vassilios; Contou-Carrere, Marie-Nathalie; Daoutidis, Prodromos; Kaznessis, Yiannis N
2009-01-01
Two very important characteristics of biological reaction networks need to be considered carefully when modeling these systems. First, models must account for the inherent probabilistic nature of systems far from the thermodynamic limit. Often, biological systems cannot be modeled with traditional continuous-deterministic models. Second, models must take into consideration the disparate spectrum of time scales observed in biological phenomena, such as slow transcription events and fast dimerization reactions. In the last decade, significant efforts have been expended on the development of stochastic chemical kinetics models to capture the dynamics of biomolecular systems, and on the development of robust multiscale algorithms, able to handle stiffness. In this paper, the focus is on the dynamics of reaction sets governed by stiff chemical Langevin equations, i.e., stiff stochastic differential equations. These are particularly challenging systems to model, requiring prohibitively small integration step sizes. We describe and illustrate the application of a semianalytical reduction framework for chemical Langevin equations that results in significant gains in computational cost.
Zhou, Yajun
This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of
Lin, Yen Ting; Chylek, Lily A; Lemons, Nathan W; Hlavacek, William S
2018-06-21
The chemical kinetics of many complex systems can be concisely represented by reaction rules, which can be used to generate reaction events via a kinetic Monte Carlo method that has been termed network-free simulation. Here, we demonstrate accelerated network-free simulation through a novel approach to equation-free computation. In this process, variables are introduced that approximately capture system state. Derivatives of these variables are estimated using short bursts of exact stochastic simulation and finite differencing. The variables are then projected forward in time via a numerical integration scheme, after which a new exact stochastic simulation is initialized and the whole process repeats. The projection step increases efficiency by bypassing the firing of numerous individual reaction events. As we show, the projected variables may be defined as populations of building blocks of chemical species. The maximal number of connected molecules included in these building blocks determines the degree of approximation. Equation-free acceleration of network-free simulation is found to be both accurate and efficient.
Directory of Open Access Journals (Sweden)
S. M. Saunders
2003-01-01
Full Text Available Kinetic and mechanistic data relevant to the tropospheric degradation of volatile organic compounds (VOC, and the production of secondary pollutants, have previously been used to define a protocol which underpinned the construction of a near-explicit Master Chemical Mechanism. In this paper, an update to the previous protocol is presented, which has been used to define degradation schemes for 107 non-aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3. The treatment of 18 aromatic VOC is described in a companion paper. The protocol is divided into a series of subsections describing initiation reactions, the reactions of the radical intermediates and the further degradation of first and subsequent generation products. Emphasis is placed on updating the previous information, and outlining the methodology which is specifically applicable to VOC not considered previously (e.g. a- and b-pinene. The present protocol aims to take into consideration work available in the open literature up to the beginning of 2001, and some other studies known by the authors which were under review at the time. Application of MCM v3 in appropriate box models indicates that the representation of isoprene degradation provides a good description of the speciated distribution of oxygenated organic products observed in reported field studies where isoprene was the dominant emitted hydrocarbon, and that the a-pinene degradation chemistry provides a good description of the time dependence of key gas phase species in a-pinene/NOX photo-oxidation experiments carried out in the European Photoreactor (EUPHORE. Photochemical Ozone Creation Potentials (POCP have been calculated for the 106 non-aromatic non-methane VOC in MCM v3 for idealised conditions appropriate to north-west Europe, using a photochemical trajectory model. The POCP values provide a measure of the relative ozone forming abilities of the VOC. Where applicable, the values are compared with
International Nuclear Information System (INIS)
Carver, M.B.; Hanley, D.V.; Chaplin, K.R.
1979-02-01
MAKSIMA-CHEMIST was written to compute the kinetics of simultaneous chemical reactions. The ordinary differential equations, which are automatically derived from the stated chemical equations, are difficult to integrate, as they are coupled in a highly nonlinear manner and frequently involve a large range in the magnitude of the reaction rates. They form a classic 'stiff' differential equaton set which can be integrated efficiently only by recently developed advanced techniques. The new program also contains provision for higher order chemical reactions, and has a dynamic storage and decision feature. This permits it to accept any number of chemical reactions and species, and choose an integraton scheme which will perform most efficiently within the available memory. Sparse matrix techniques are used when the size and structure of the equation set is suitable. Finally, a number of post-analysis options are available, including printer and Calcomp plots of transient response of selected species, and graphical representation of the reaction matrix. (auth)
Li, Daniel
2014-01-01
This easy-to-understand tutorial provides you with several engaging projects that show you how to utilize Grunt with various web technologies, teaching you how to master build automation and testing with Grunt in your applications.If you are a JavaScript developer who is looking to streamline their workflow with build-automation, then this book will give you a kick start in fully understanding the importance of the described web technologies and automate their processes using Grunt.
DEFF Research Database (Denmark)
Maribo-Mogensen, Bjørn
to the CPA EoS in the absence of electrolytes, making it possible to extend the applicability of the CPA EoS while retaining backwards compatibility and resuing the parameters for non-electrolyte systems . There are many challenges related to thermodynamic modeling of mixtures containing electrolytes......This thesis extends the Cubic Plus Association (CPA) equation of state (EoS) to handle mixtures containing ions from fully dissociated salts. The CPA EoS has during the past 18 years been applied to thermodynamic modeling of a wide range of industrially important chemicals, mainly in relation...... rarely been applied to all types of thermodynamic equilibrium calculations relevant to electrolyte solutions. This project has aimed to determine the best recipe to deliver a complete thermodynamic model capable of handling electrolytes in mixed solvents and at a wide range of temperature and pressure...
Solvation effects on chemical shifts by embedded cluster integral equation theory.
Frach, Roland; Kast, Stefan M
2014-12-11
The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.
International Nuclear Information System (INIS)
Yoon, Deok Yong
1981-01-01
This book tells of system and function of 8051 like what micro controller is, command and addressing mode of 8051, handling of interrupt of 8051, and IO port and timer of 8051, outer interface of 8051 such as semiconductor memory and interface, timer and 82C54 PIT, serial communication and 82C55A PPI, parallel transmission and 82C55A PPI, and AP/D/A converter, tool for software development of 8051, 8051 master kit OK-8051, assembly language programming like instruction manual of OK-8051 kit and addition and subtraction program and C-language programing.
Ling, Z. H.; Guo, H.; Lam, S. H. M.; Saunders, S. M.; Wang, T.
2014-09-01
A photochemical box model incorporating the Master Chemical Mechanism (v3.2), constrained with a full suite of measurements, was developed to investigate the photochemical reactivity of volatile organic compounds at a semirural site (Mount Tai Mo Shan (TMS)) and an urban site (Tsuen Wan (TW)) in Hong Kong. The levels of ozone (O3) and its precursors, and the magnitudes of the reactivity of O3 precursors, revealed significant differences in the photochemistry at the two sites. Simulated peak hydroperoxyl radical (HO2) mixing ratios were similar at TW and TMS (p = 0.05), while the simulated hydroxyl radical (OH) mixing ratios were much higher at TW (p TMS, but at TW, both HCHO and O3 photolyses were found to be major contributors. By contrast, radical-radical reactions governed HOx radical losses at TMS, while at TW, the OH + NO2 reaction was found to dominate in the morning and the radical-radical reactions at noon. Overall, the conversion of NO to NO2 by HO2 dictated the O3 production at the two sites, while O3 destruction was dominated by the OH + NO2 reaction at TW, and at TMS, O3 photolysis and the O3 + HO2 reaction were the major mechanisms. The longer OH chain length at TMS indicated that more O3 was produced for each radical that was generated at this site.
Directory of Open Access Journals (Sweden)
M. E. Jenkin
2003-01-01
Full Text Available Kinetic and mechanistic data relevant to the tropospheric degradation of aromatic volatile organic compounds (VOC have been used to define a mechanism development protocol, which has been used to construct degradation schemes for 18 aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3. This is complementary to the treatment of 107 non-aromatic VOC, presented in a companion paper. The protocol is divided into a series of subsections describing initiation reactions, the degradation chemistry to first generation products via a number of competitive routes, and the further degradation of first and subsequent generation products. Emphasis is placed on describing where the treatment differs from that applied to the non-aromatic VOC. The protocol is based on work available in the open literature up to the beginning of 2001, and some other studies known by the authors which were under review at the time. Photochemical Ozone Creation Potentials (POCP have been calculated for the 18 aromatic VOC in MCM v3 for idealised conditions appropriate to north-west Europe, using a photochemical trajectory model. The POCP values provide a measure of the relative ozone forming abilities of the VOC. These show distinct differences from POCP values calculated previously for the aromatics, using earlier versions of the MCM, and reasons for these differences are discussed.
Noise-induced multistability in chemical systems: Discrete versus continuum modeling
Czech Academy of Sciences Publication Activity Database
Duncan, A.; Liao, S.; Vejchodský, Tomáš; Erban, R.; Grima, R.
2015-01-01
Roč. 91, č. 4 (2015), s. 042111 ISSN 1539-3755 EU Projects: European Commission(XE) 328008 - STOCHDETBIOMODEL Institutional support: RVO:67985840 Keywords : chemical master equation * chemical Fokker-Planck equation * multimodality Subject RIV: BA - General Mathematics Impact factor: 2.288, year: 2014 http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.042111
Chemical and physical FET-based sensors or variations on an equation
Olthuis, Wouter
2005-01-01
This paper exposes the continuous thread of Bergveld’s work: the model equation of the field-effect transistor (FET) derived and repeated in the theoretical section. Zooming in on some of the variables of this equation leads us to several of his important projects. A short description and typical
Balancing Chemical Equations: The Role of Developmental Level and Mental Capacity.
Niaz, Mansoor; Lawson, Anton E.
1985-01-01
Tested two hypotheses: (1) formal reasoning is required to balance simple one-step equations; and (2) formal reasoning plus sufficient mental capacity are required to balance many-step equations. Independent variables included intellectual development, mental capacity, and degree of field dependence/independence. With 25 subjects, significance was…
Department of Veterans Affairs — As of June 28, 2010, the Master Veteran Index (MVI) database based on the enhanced Master Patient Index (MPI) is the authoritative identity service within the VA,...
Risteski, Ice B.
2010-01-01
In this article, the author discovers a paradox of balancing chemical equations. The many counterexamples illustrate that the considered procedure of balancing chemical equations given in the paper1 is inconsistent. A new complex vector method for paradox resolution is given too. V članku avtor opisuje paradoks pri uravnoteženju kemijskih reakcij. Več primerov dokazuje, da je procedura uravnoteženja kemijskih reakcij v viru1 inkonsistentna. Predstavljena je nova kompleksna vektorska metoda...
Regional Master on Medical Physics
International Nuclear Information System (INIS)
Gutt, F.
2001-01-01
It points out: the master project; the master objective; the medical physicist profile and tasks; the requirements to be a master student; the master programmatic contents and the investigation priorities [es
The QCD equation of state for two flavours at non-zero chemical potential
Ejiri, S; Döring, M; Hands, S J; Kaczmarek, O; Karsch, Frithjof; Laermann, E; Redlich, K
2006-01-01
We present results of a simulation of 2 flavour QCD on a $16^3\\times4$ lattice using p4-improved staggered fermions with bare quark mass $m/T=0.4$. Derivatives of the thermodynamic grand canonical partition function $Z(V,T,\\mu_u,\\mu_d)$ with respect to chemical potentials $\\mu_{u,d}$ for different quark flavours are calculated up to sixth order, enabling estimates of the pressure and the quark number density as well as the chiral condensate and various susceptibilities as functions of $\\mu_{u,d}$ via Taylor series expansion. Results are compared to high temperature perturbation theory as well as a hadron resonance gas model. We also analyze baryon as well as isospin fluctuations and discuss the relation to the chiral critical point in the QCD phase diagram. We moreover discuss the dependence of the heavy quark free energy on the chemical potential.
Grima, R
2010-07-21
Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the
O'Clock, George D
2016-08-01
Cellular engineering involves modification and control of cell properties, and requires an understanding of fundamentals and mechanisms of action for cellular derived product development. One of the keys to success in cellular engineering involves the quality and validity of results obtained from cell chemical signaling pathway assays. The accuracy of the assay data cannot be verified or assured if the effect of positive feedback, nonlinearities, and interrelationships between cell chemical signaling pathway elements are not understood, modeled, and simulated. Nonlinearities and positive feedback in the cell chemical signaling pathway can produce significant aberrations in assay data collection. Simulating the pathway can reveal potential instability problems that will affect assay results. A simulation, using an electrical analog for the coupled differential equations representing each segment of the pathway, provides an excellent tool for assay validation purposes. With this approach, voltages represent pathway enzyme concentrations and operational amplifier feedback resistance and input resistance values determine pathway gain and rate constants. The understanding provided by pathway modeling and simulation is strategically important in order to establish experimental controls for assay protocol structure, time frames specified between assays, and assay concentration variation limits; to ensure accuracy and reproducibility of results.
DEFF Research Database (Denmark)
Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht
2006-01-01
was given to low pressures and liquid-liquid equilibria. In this work, CPA is applied to two classes of mixtures containing polar chemicals for which high-pressure data are available: acetone-containing systems and dimethyl ether mixtures. They are of both scientific and industrial importance. Moreover, CPA......The cubic-plus-association (CPA) equation of state has been previously applied to vapor-liquid, liquid-liquid, and solid-liquid equilibria of mixtures containing associating compounds (water, alcohols, glycols, acids, amines). Although some high-pressure applications have been presented, emphasis...... to conventional models such as MHV2. Very good results are also obtained for multicomponent vapor-liquid-liquid equilibria for mixtures containing gases, water, and dimethyl ether. Finally, it is shown that high-pressure SLE can be predicted based on interaction parameters obtained from low-pressure SLE data....
Interior design. Mastering the master plan.
Mesbah, C E
1995-10-01
Reflecting on the results of the survey, this proposed interior design master planning process addresses the concerns and issues of both CEOs and facility managers in ways that focus on problem-solving strategies and methods. Use of the interior design master plan process further promotes the goals and outcomes expressed in the survey by both groups. These include enhanced facility image, the efficient selection of finishes and furnishings, continuity despite staff changes, and overall savings in both costs and time. The interior design master plan allows administrators and facility managers to anticipate changes resulting from the restructuring of health care delivery. The administrators and facility managers are then able to respond in ways that manage those changes in the flexible and cost-effective manner they are striving for. This framework permits staff members to concentrate their time and energy on the care of their patients--which is, after all, what it's all about.
Manhattan equation for the operational amplifier
Mishonov, Todor M.; Danchev, Victor I.; Petkov, Emil G.; Gourev, Vassil N.; Dimitrova, Iglika M.; Varonov, Albert M.
2018-01-01
A differential equation relating the voltage at the output of an operational amplifier $U_0$ and the difference between the input voltages ($U_{+}$ and $U_{-}$) has been derived. The crossover frequency $f_0$ is a parameter in this operational amplifier master equation. The formulas derived as a consequence of this equation find applications in thousands of specifications for electronic devices but as far as we know, the equation has never been published. Actually, the master equation of oper...
International Nuclear Information System (INIS)
Haaker, L.W.; Jelatis, D.G.
1981-01-01
A remote control master-slave manipulator for performing work on the opposite side of a barrier wall, is described. The manipulator consists of a rotatable horizontal support adapted to extend through the wall and two longitudinally extensible arms, a master and a slave, pivotally connected one to each end of the support. (U.K.)
Thorne, Lawrence R.
2011-01-01
I propose a novel approach to balancing equations that is applicable to all chemical-reaction equations; it is readily accessible to students via scientific calculators and basic computer spreadsheets that have a matrix-inversion application. The new approach utilizes the familiar matrix-inversion operation in an unfamiliar and innovative way; its purpose is not to identify undetermined coefficients as usual, but, instead, to compute a matrix null space (or matrix kernel). The null space then...
Noise-induced multistability in chemical systems: Discrete versus continuum modeling
Czech Academy of Sciences Publication Activity Database
Duncan, A.; Liao, S.; Vejchodský, Tomáš; Erban, R.; Grima, R.
2015-01-01
Roč. 91, č. 4 (2015), s. 042111 ISSN 1539-3755 EU Projects: European Commission(XE) 328008 - STOCHDETBIOMODEL Institutional support: RVO:67985840 Keywords : chemical master equation * chemical Fokker-Planck equation * multimodality Subject RIV: BA - General Mathematics Impact factor: 2.288, year: 2014 http://journals. aps .org/pre/abstract/10.1103/PhysRevE.91.042111
Pratt, D. T.
1984-01-01
Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.
Wainwright, Camille L.
Four classes of high school chemistry students (N=108) were randomly assigned to experimental and control groups to investigate the effectiveness of a computer assisted instruction (CAI) package during a unit on writing/naming of chemical formulas and balancing equations. Students in the experimental group received drill, review, and reinforcement…
International Nuclear Information System (INIS)
Gopakumar, R.
1996-01-01
We review recent work on the master field in large N theories. In particular the mathematical framework appropriate for its construction is sketched. The calculational utility of this framework is demonstrated in the case of QCD 2 . (orig.)
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-06-01
This document is a master list of acronyms and other abbreviations that are used by or could be useful to, the personnel at Los Alamos National Laboratory. Many specialized and well-known abbreviations are not included in this list.
DEFF Research Database (Denmark)
2006-01-01
Development and content of an international Master in Urban Quality development and management. The work has been done in a cooperation between Berlage institut, Holland; Chulalongkorn University, Thailand; Mahidol University, Thailand; University Kebangsaan Malaysia, Malaysia; og Aalborg...
Cardoso, Ciro
2014-01-01
This book is designed for all levels of Lumion users; from beginner to advanced, you will find useful insights and professional techniques to improve and develop your skills in order to fully control and master Lumion.
International Nuclear Information System (INIS)
Alberty, R.A.; Oppenheim, I.
1993-01-01
When temperature, pressure, and the partial pressure of a reactant are fixed, the criterion of chemical equilibrium can be expressed in terms of the transformed Gibbs energy G' that is obtained by using a Legendre transform involving the chemical potential of the reactant that is fixed. For reactions of ideal gases, the most natural variables to use in the fundamental equation are T, P', and P B , where P' is the partial pressure of the reactants other than the one that is fixed and P B is the partial pressure of the reactant that is fixed. The fundamental equation for G' yields the expression for the transformed entropy S', and a transformed enthalpy can be defined by the additional Legendre transform H'=G'+TS'. This leads to an additional form of the fundamental equation. The calculation of transformed thermodynamic properties and equilibrium compositions is discussed for a simple system and for a general multireaction system. The change, in a reaction, of the binding of the reactant that is at a specified pressure can be calculated using one of the six Maxwell equations of the fundamental equation in G'
Fundamental aspects of plasma chemical physics kinetics
Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino
2016-01-01
Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...
Directory of Open Access Journals (Sweden)
Vladimir Lipunov
2010-01-01
Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.
Kanter, Rosabeth Moss
1984-01-01
The change masters are identified as corporate managers who have the resources and the vision to effect an economic renaissance in the United States. Strategies for change should emphasize horizontal as well as vertical communication, and should reward enterprise and innovation at all levels. (JB)
Thorn, Alan
2015-01-01
Mastering Unity Scripting is an advanced book intended for students, educators, and professionals familiar with the Unity basics as well as the basics of scripting. Whether you've been using Unity for a short time or are an experienced user, this book has something important and valuable to offer to help you improve your game development workflow.
Groner, Loiane
2013-01-01
Designed to be a structured guide, Mastering Ext JS is full of engaging examples to help you learn in a practical context.This book is for developers who are familiar with using Ext JS who want to augment their skills to create even better web applications.
African Journals Online (AJOL)
will be based on the ten clinical domains of family medicine, ... tutors), before finding the model answers online: http://www. ... The series, “Mastering your Fellowship”, provides examples of the question format ... 3.1 What is the argument for the social value of the study? ..... Primary health care re-engineering policy and the.
Hvorfor master i medborgerskab?
DEFF Research Database (Denmark)
Korsgaard, Ove
2002-01-01
Danmarks Pædagogiske Universitet planlægger i samarbejde med Syddansk Universitet at udbyde en master i medborgerskab: etisk og demokratisk dannelse. Artiklens forfatter gør rede for nogle af de tanker, der ligger bag uddannelsen, og belyser, hvorfor medborgerskab er blevet et nøglebegreb i nyere...
International Nuclear Information System (INIS)
Phillips, E.C.; Golden, M.P.
1986-01-01
This report describes the decontamination and renovation of the Master/Slave Manipulator Repair Shop (MSMRS) and the Chemical Crane Room (CCR) at the WVDP from radioactively contaminated conditions to essentially shirt sleeve environments. In both cases, subsequent use recontaminated the rooms. Before decontamination, general exposure rates as high as 20 mrad/hr and surface contamination as high as 10 5 dpm/100 cm 2 were measured in the MSMRS, while general exposure rates in the CCR were 50 to 100 mrad/hr with hot spots as high as 2000 mrad/hr. Smearable levels on the floor in each room were in the range of 10 5 to 10 6 dpm per 100/cm 2 . Respiratory protection was mandatory for entry into the CCR. The MSMRS, located at the north end of the Process Building on ground elevation, is needed for the refurbishment of plant manipulators and other equipment. The MSMRS has been decontaminated and renovated as follows: all tools, equipment and furnishings were removed, the walls were stripped and repainted, and the contaminated concrete floor was removed and disposal of as low-level waste. A new concrete floor was poured and a stainless steel liner covering the entire floor and extending 45.7 cm up the walls was added to provide the WVDP with a shop facility that can be easily decontaminated. Decontamination of the MSMRS has been completed and the facility is available for service. The CCR, located at the north end of the Chemical Process Cell (CPC) is for the storage and servicing of two bridge cranes used in the CPC. Decontamination and exposure reduction in the CCR has been completed using vacuum cleaning, damp wipe down, and surface grinding followed by shielding and painting
Are safe results obtained when the PC-SAFT equation of state is applied to ordinary pure chemicals?
DEFF Research Database (Denmark)
Privat, Romain; Gani, Rafiqul; Jaubert, Jean-Noël
2010-01-01
The PC-SAFT equation of state is a very popular and promising model for fluids that employs a complicated pressure-explicit mathematical function (and can therefore not be solved analytically at a specified pressure and temperature, contrary to classical cubic equations). In this work, we...... demonstrate that in case of pure fluids, the PC-SAFT equation may exhibit up to five different volume-roots whereas cubic equations give at the most three volume-roots (and yet, only one or two volume roots have real significance). The consequence of this strongly atypical behaviour is the existence of two...... different fluid-fluid coexistence lines (the vapour pressure-curve and an additional liquid-liquid equilibrium curve) and two critical points for a same pure component, which is obviously physically inconsistent. In addition to n-alkanes, nearly sixty very common pure components (branched alkanes...
Kuc, Rafal
2013-01-01
A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.
Neeraj, Nishant
2013-01-01
Mastering Apache Cassandra is a practical, hands-on guide with step-by-step instructions. The smooth and easy tutorial approach focuses on showing people how to utilize Cassandra to its full potential.This book is aimed at intermediate Cassandra users. It is best suited for startups where developers have to wear multiple hats: programmer, DevOps, release manager, convincing clients, and handling failures. No prior knowledge of Cassandra is required.
Transparency masters for mathematics revealed
Berman, Elizabeth
1980-01-01
Transparency Masters for Mathematics Revealed focuses on master diagrams that can be used for transparencies for an overhead projector or duplicator masters for worksheets. The book offers information on a compilation of master diagrams prepared by John R. Stafford, Jr., audiovisual supervisor at the University of Missouri at Kansas City. Some of the transparencies are designed to be shown horizontally. The initial three masters are number lines and grids that can be used in a mathematics course, while the others are adaptations of text figures which are slightly altered in some instances. The
Generalized Fokker-Planck equations for coloured, multiplicative Gaussian noise
International Nuclear Information System (INIS)
Cetto, A.M.; Pena, L. de la; Velasco, R.M.
1984-01-01
With the help of Novikov's theorem, it is possible to derive a master equation for a coloured, multiplicative, Gaussian random process; the coefficients of this master equation satisfy a complicated auxiliary integro-differential equation. For small values of the Kubo number, the master equation reduces to an approximate generalized Fokker-Planck equation. The diffusion coefficient is explicitly written in terms of correlation functions. Finally, a straightforward and elementary second order perturbative treatment is proposed to derive the same approximate Fokker-Planck equation. (author)
Palamar, Todd
2011-01-01
The exclusive, official guide to the very latest version of Maya Get extensive, hands-on, intermediate to advanced coverage of Autodesk Maya 2012, the top-selling 3D software on the market. If you already know Maya basics, this authoritative book takes you to the next level. From modeling, texturing, animation, and visual effects to high-level techniques for film, television, games, and more, this book provides professional-level Maya instruction. With pages of scenarios and examples from some of the leading professionals in the industry, author Todd Palamar will help you master the entire CG
Keller, Eric
2010-01-01
A beautifully-packaged, advanced reference on the very latest version of Maya. If you already know the basics of Maya, the latest version of this authoritative book takes you to the next level. From modeling, texturing, animation, and visual effects to high-level techniques for film, television, games, and more, this book provides professional-level Maya instruction. With pages of scenarios and examples from some of the leading professionals in the industry, this book will help you master the entire CG production pipeline.: Provides professional-level instruction on Maya, the industry-leading
MASTER- an indigenous nuclear design code of KAERI
International Nuclear Information System (INIS)
Cho, Byung Oh; Lee, Chang Ho; Park, Chan Oh; Lee, Chong Chul
1996-01-01
KAERI has recently developed the nuclear design code MASTER for the application to reactor physics analyses for pressurized water reactors. Its neutronics model solves the space-time dependent neutron diffusion equations with the advanced nodal methods. The major calculation categories of MASTER consist of microscopic depletion, steady-state and transient solution, xenon dynamics, adjoint solution and pin power and burnup reconstruction. The MASTER validation analyses, which are in progress aiming to submit the Uncertainty Topical Report to KINS in the first half of 1996, include global reactivity calculations and detailed pin-by-pin power distributions as well as in-core detector reaction rate calculations. The objective of this paper is to give an overall description of the CASMO/MASTER code system whose verification results are in details presented in the separate papers
Nonlinear von Neumann equations for quantum dissipative systems
International Nuclear Information System (INIS)
Messer, J.; Baumgartner, B.
1978-01-01
For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Auth.)
Nonlinear von Neumann equations for quantum dissipative systems
International Nuclear Information System (INIS)
Messer, J.; Baumgartner, B.
For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Author)
International Nuclear Information System (INIS)
Rickwood, Peter
2013-01-01
Continuing global efforts to improve the security of nuclear and other radioactive material against the threat of malicious acts are being assisted by a new initiative, the development of a corps of professional experts to strengthen nuclear security. The IAEA, the European Commission, universities, research institutions and other bodies working in collaboration have established an International Nuclear Security Education Network (INSEN). In 2011, six European academic institutions, the Vienna University of Technology, the Brandenburg University of Applied Sciences, the Demokritos National Centre for Scientific Research in Greece, the Reactor Institute Delft of the Delft University of Technology in the Netherlands, the University of Oslo, and the University of Manchester Dalton Nuclear Institute, started developing a European Master of Science Programme in Nuclear Security Management. In March 2013, the masters project was inaugurated when ten students commenced studies at the Brandenburg University of Applied Sciences in Germany for two weeks. In April, they moved to the Delft University of Technology in the Netherlands for a further two weeks of studies. The pilot programme consists of six teaching sessions in different academic institutions. At the inauguration in Delft, IAEA Director General Yukiya Amano commended this effort to train a new generation of experts who can help to improve global nuclear security. ''It is clear that we will need a new generation of policy-makers and nuclear professionals - people like you - who will have a proper understanding of the importance of nuclear security,'' Mr. Amano told students and faculty members. ''The IAEA's goal is to support the development of such programmes on a global basis,'' said David Lambert, Senior Training Officer in the IAEA's Office of Nuclear Security. ''An existing postgraduate degree programme focused on nuclear security at Naif Arab University for Security Sciences (NAUSS) is currently supported by
Curran, James R.
2013-01-01
As early as the 1930s the term Master Hearing Aid (MHA) described a device used in the fitting of hearing aids. In their original form, the MHA was a desktop system that allowed for simulated or actual adjustment of hearing aid components that resulted in a changed hearing aid response. Over the years the MHA saw many embodiments and contributed to a number of rationales for the fitting of hearing aids. During these same years, the MHA was viewed by many as an inappropriate means of demonstrating hearing aids; the audio quality of the desktop systems was often superior to the hearing aids themselves. These opinions and the evolution of the MHA have molded the modern perception of hearing aids and the techniques used in the fitting of hearing aids. This article reports on a history of the MHA and its influence on the fitting of hearing aids. PMID:23686682
The threshold expansion of the 2-loop sunrise self-mass master amplitudes
International Nuclear Information System (INIS)
Caffo, M.; Czyz, H.; Remiddi, E.
2001-01-01
The threshold behavior of the master amplitudes for two loop sunrise self-mass graph is studied by solving the system of differential equations, which they satisfy. The expansion at the threshold of the master amplitudes is obtained analytically for arbitrary masses
DEFF Research Database (Denmark)
Yan, Wei; Kontogeorgis, Georgios; Stenby, Erling Halfdan
2009-01-01
to reservoir fluids in presence of water and polar chemical Such as methanol and monoethylene glycol. With a minimum number of adjustable parameters from binary pairs, satisfactory results have been obtained for different types of phase equilibria in reservoir fluid systems and several relevant model......The complex phase equilibrium between reservoir fluids and associating compounds like water, methanol and glycols has become more and more important as the increasing global energy demand pushes the oil industry to target reservoirs with extreme or complicated conditions, such as deep or offshore...
Lambert, Chip
2015-01-01
You've started down the path of jQuery Mobile, now begin mastering some of jQuery Mobile's higher level topics. Go beyond jQuery Mobile's documentation and master one of the hottest mobile technologies out there. Previous JavaScript and PHP experience can help you get the most out of this book.
Medical Service
2002-01-01
It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546
Learning profiles of Master students
DEFF Research Database (Denmark)
Sprogøe, Jonas; Hemmingsen, Lis
2005-01-01
at DPU in 2001 several evaluations and research have been carried out on several topics relating to form, content, and didactics, but one important focus is missing: the research about the psychological profile and learning style of the master student. Knowledge is lacking on how teaching methods......Master education as a part of lifelong learning/education has over the last years increased in Denmark. Danish Universities now offer more than110 different programmes. One of the characteristics of the master education is that the students get credits for their prior learning and practical work...... experiences, and during the study/education theory and practise is combined. At the Master of Adult Learning and Human Resource Development, one of DPU´s master programmes, the students have a very diverse background and have many different experiences and practises. Since the first programme was introduced...
Master-slave synchronization of Lorenz systems using a single controller
International Nuclear Information System (INIS)
Oancea, Servilia; Grosu, Florin; Lazar, Anca; Grosu, Ioan
2009-01-01
A single controller for synchronization of two Lorenz systems is obtained by using Lyapunov function. Numerical results are given for the all three cases with one controller in each equation. Controller contains two or three variables of the master system.
International Nuclear Information System (INIS)
Beaugelin-Seiller, K.; Garnier-Laplace, J.; Gilbin, R.; Adam, C.
2008-01-01
Uranium is an element that has the solely characteristic to behave as significant hazard both from a chemical and radiological point of view. Exclusively of natural occurrence, its distribution into the environment may be influenced by human activities, such as nuclear fuel cycle, military use of depleted uranium, or coal and phosphate fertilizer use, which finally may impact freshwater ecosystems. Until now, the associated environmental impact and risk assessments were conducted separately. We propose here to apply the same methodology to evaluate the ecological risk due to potential chemotoxicity and radiotoxicity of uranium. This methodology is articulated into the classical four steps (EC, 2003: problem formulation, effect and exposure analysis, risk characterisation). The problem formulation dealt both with uranium viewed as a chemical element and as the three isotopes 234, 235 and 238 of uranium and their main daughters. Then, the exposure analysis of non-human species was led on the basis of a common conceptual model of the fluxes occurring in freshwater ecosystems. No-effect values for the ecosystem were derived using the same effect data treatment in parallel. A Species Sensitivity Distribution was fitted: (1) to the ecotoxicity data sets illustrating uranium chemotoxicity and allowing the estimation of a Predicted-No-Effect-Concentration for uranium in water expressed in μg/L; (2) to radiotoxicity effect data as it was done within the ERICA project, allowing the estimation of a Predicted No-Effect-Dose-Rate (in μGy·h -1 ). Two methods were then applied to characterize the risk to the ecosystem: a screening method using the risk quotient approach, involving for the radiological aspect back calculation of the water limiting concentration from the PNEDR for each isotope taken into account and a probabilistic risk assessment. A former uranium ore mining case-study will help in demonstrating the application of the whole methodology
Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.
Bianca, C; Lemarchand, A
2014-06-14
This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.
Low Impact Development Master Plan
Energy Technology Data Exchange (ETDEWEB)
Loftin, Samuel R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-02
This project creates a Low Impact Development (LID) Master Plan to guide and prioritize future development of LID projects at Los Alamos National Laboratory (LANL or the Laboratory). The LID Master Plan applies to developed areas across the Laboratory and focuses on identifying opportunities for storm water quality and hydrological improvements in the heavily urbanized areas of Technical Areas 03, 35 and 53. The LID Master Plan is organized to allow the addition of LID projects for other technical areas as time and funds allow in the future.
Enhanced Master Station History Report
National Oceanic and Atmospheric Administration, Department of Commerce — The Enhanced Master Station History Report (EMSHR) is a compiled list of basic, historical information for every station in the station history database, beginning...
DEFF Research Database (Denmark)
Danielsen, Oluf
2004-01-01
The Master in ICT and Learning (MIL)was started in 2000, and it is owned in collaboration by five Danish universities. It is an accredited virtual part-time 2-year education. MIL is unique in that it builds on the pedagogical framework of project pedagogy and is based in virtual collaboration....... It is organized around ICT and Learning. This is illustrated through a presentation of the study program, the four modules, the projects and the master thesis....
Dual arm master controller concept
International Nuclear Information System (INIS)
Kuban, D.P.; Perkins, G.S.
1984-01-01
The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures
Dual arm master controller development
Kuban, D. P.; Perkins, G. S.
1985-01-01
The advanced servomanipulator (ASM) slave was designed with an anthropomorphic stance gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape driven manipulators. Studies were performed which addressed to human factor design and performance tradeoffs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented.
International Nuclear Information System (INIS)
Yun, Deok Yong
1999-06-01
The contents of this book are explanation of basic conception for DSP, perfect a complete master of TMS320C31, I/O interface design and memory, practice with PC print port, basic programing skill, assembly and C programing technique, timer and interrupt application skill, serial communication programing technique, application of digital conditioning and application of digital servo control. This book is divided into two parts, which is about TMS320C31 master of theory and application.
Correlation Function and Generalized Master Equation of Arbitrary Age
National Research Council Canada - National Science Library
Allegrini, Paolo; Aquino, Gerardo; Grigolini, Paolo; Palatella, Luigi; Rosa, Angelo; West, Bruce J
2005-01-01
...). Actually, non-Poisson statistics yields infinite memory at the probability level, thereby breaking any form of Markovian approximation, including the one adopted herein, to find an approximated analytical formula...
Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels
Energy Technology Data Exchange (ETDEWEB)
Lee, Ki-Hyoung, E-mail: shirimp@kaist.ac.k [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Kim, Min-Chul; Lee, Bong-Sang [Nuclear Materials Research Division, KAERI, Daejeon 305-353 (Korea, Republic of); Wee, Dang-Moon [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)
2010-08-15
The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T{sub 0} determination for the tempered martensitic SA508 Gr.4N steels.
2011-11-03
... contained 1,4-butylene glycol (``TMG''). TMG is a chemical that, upon ingestion, metabolizes to gamma... that TMG is harmful if swallowed, and that, upon ingestion, it targets the kidneys and central nervous... containing TMG. 11. On November 2, 2007, Spin Master received a report that a child became ill after...
Very Bright CV discovered by MASTER-ICATE (Argentina)
Saffe, C.; Levato, H.; Mallamaci, C.; Lopez, C.; Lipunov, F. Podest V.; Denisenko, D.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kornilov, V.; Belinski, A.; Shatskiy, N.; Chazov, V.; Kuznetsov, A.; Yecheistov, V.; Yurkov, V.; Sergienko, Y.; Varda, D.; Sinyakov, E.; Gabovich, A.; Ivanov, K.; Yazev, S.; Budnev, N.; Konstantinov, E.; Chuvalaev, O.; Poleshchuk, V.; Gress, O.; Frolova, A.; Krushinsky, V.; Zalozhnih, I.; Popov, A.; Bourdanov, A.; Parkhomenko, A.; Tlatov, A.; Dormidontov, D.; Senik, V.; Podvorotny, P.; Shumkov, V.; Shurpakov, S.
2013-06-01
MASTER-ICATE very wide-field camera (d=72mm f/1.2 lens + 11 Mpix CCD) located near San Juan, Argentina has discovered OT source at (RA, Dec) = 14h 20m 23.5s -48d 55m 40s on the combined image (exposure 275 sec) taken on 2013-06-08.048 UT. The OT unfiltered magnitude is 12.1m (limit 13.1m). There is no minor planet at this place. The OT is seen in more than 10 images starting from 2013-06-02.967 UT (275 sec exposure) when it was first detected at 12.4m.
Stochastic thermodynamics and entropy production of chemical reaction systems
Tomé, Tânia; de Oliveira, Mário J.
2018-06-01
We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end, we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states and on appropriate definitions of entropy and entropy production. The system is in contact with a heat reservoir and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlögl reaction models.
Quantum linear Boltzmann equation
International Nuclear Information System (INIS)
Vacchini, Bassano; Hornberger, Klaus
2009-01-01
We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.
Bry, X; Verron, T; Cazes, P
2009-05-29
In this work, we consider chemical and physical variable groups describing a common set of observations (cigarettes). One of the groups, minor smoke compounds (minSC), is assumed to depend on the others (minSC predictors). PLS regression (PLSR) of m inSC on the set of all predictors appears not to lead to a satisfactory analytic model, because it does not take into account the expert's knowledge. PLS path modeling (PLSPM) does not use the multidimensional structure of predictor groups. Indeed, the expert needs to separate the influence of several pre-designed predictor groups on minSC, in order to see what dimensions this influence involves. To meet these needs, we consider a multi-group component-regression model, and propose a method to extract from each group several strong uncorrelated components that fit the model. Estimation is based on a global multiple covariance criterion, used in combination with an appropriate nesting approach. Compared to PLSR and PLSPM, the structural equation exploratory regression (SEER) we propose fully uses predictor group complementarity, both conceptually and statistically, to predict the dependent group.
Wan, Wenshuai; Itri, Jason
2016-01-01
Prices charged for imaging services can be found in the charge master, a catalog of retail list prices for medical goods and services. This article reviews the evolution of reimbursement in the United States and provides a balanced discussion of the factors that influence charge master prices. Reduced payments to hospitals have pressured hospitals to generate additional revenue by increasing charge master prices. An unfortunate consequence is that those least able to pay for health care, the uninsured, are subjected to the highest charges. Yet, differences in pricing also represent an opportunity for radiology practices, which provide imaging services that are larger in scope or superior in quality to promote product differentiation. Physicians, hospital executives, and policy makers need to work together to improve the existing reimbursement system to promote high-quality, low-cost imaging. Copyright © 2016 Mosby, Inc. All rights reserved.
International Nuclear Information System (INIS)
Haaker, L.W.; Jelatis, D.G.
1979-01-01
Remote control manipulator of the master-slave type for carrying out work on the other side of a shield wall. This appliance allows a Y movement relative displacement, the function of which is to extend the range of the manipulator towards the front and also to facilitate its installation, the lateral rotation or inclination of the slave arm in relation to the master arm, and the Z movement extension through which the length of the slave arm is increased in comparison with that of the master arm. Devices have been developed which transform the linear movements into rotational movements to enable these movements to be transmitted through rotational seal fittings capable of ensuring the safety of the separation between the operator's environment and that in the work area. Particular improvements have been made to the handles, handle seals, pincer mechanisms, etc [fr
Mastering Ninject for dependency injection
Baharestani, Daniel
2013-01-01
Mastering Ninject for Dependency Injection teaches you the most powerful concepts of Ninject in a simple and easy-to-understand format using lots of practical examples, diagrams, and illustrations.Mastering Ninject for Dependency Injection is aimed at software developers and architects who wish to create maintainable, extensible, testable, and loosely coupled applications. Since Ninject targets the .NET platform, this book is not suitable for software developers of other platforms. Being familiar with design patterns such as singleton or factory would be beneficial, but no knowledge of depende
Dual arm master controller development
International Nuclear Information System (INIS)
Kuban, D.P.; Perkins, G.S.
1985-01-01
The advanced servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. This work was performed as part of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. 5 refs., 7 figs., 1 tab
Enhanced Master Controller Unit Tester
Benson, Patricia; Johnson, Yvette; Johnson, Brian; Williams, Philip; Burton, Geoffrey; McCoy, Anthony
2007-01-01
The Enhanced Master Controller Unit Tester (EMUT) software is a tool for development and testing of software for a master controller (MC) flight computer. The primary function of the EMUT software is to simulate interfaces between the MC computer and external analog and digital circuitry (including other computers) in a rack of equipment to be used in scientific experiments. The simulations span the range of nominal, off-nominal, and erroneous operational conditions, enabling the testing of MC software before all the equipment becomes available.
Mastering IDEAScript the definitive guide
Mueller, John Paul
2011-01-01
With approximately 44,000 users in the U.S. and Canada, as well as 42,000 in Europe, IDEA software has become a leading provider of data analysis software for use by auditors and accountants. Written to provide users with a quick access guide for optimal use of IDEAScript, Mastering IDEAScript: The Definitive Guide is IDEA's official guide to mastering IDEAScript, covering essential topics such as Introducing IDEAScript, Understanding the Basics of IDEAScript Editor, Designing Structured Applications, Understanding IDEA Databases and much more. For auditors, accountants and controllers.
20 years of power station master training
International Nuclear Information System (INIS)
Schwarz, O.
1977-01-01
In the early fifties, the VGB working group 'Power station master training' elaborated plans for systematic and uniform training of power station operating personnel. In 1957, the first power station master course was held. In the meantime, 1.720 power station masters are in possession of a master's certificate of a chamber of commerce and trade. Furthermore, 53 power station masters have recently obtained in courses of the 'Kraftwerksschule e.V.' the know-how which enables them to also carry out their duty as a master in nuclear power stations. (orig.) [de
Garnavich, Peter; McClelland, Colin
2013-02-01
We observed the optical transient MASTER OT J065608.28+744455.2 (ATEL #4783) with the Vatican Advanced Technology Telescope (VATT) and VATT4K CCD camera. V-band imaging began at 2013 Feb. 5.15 (UT) and continued for 3.3 hours with a time resolution of 22 seconds.
Master-slave micromanipulator method
Energy Technology Data Exchange (ETDEWEB)
Morimoto, A.K.; Kozlowski, D.M.; Charles, S.T.; Spalding, J.A.
1999-12-14
A method is disclosed based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be remotized by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.
Two-Loop Master Integrals for $\\gamma^{*} \\to 3$ Jets the Non-Planar Topologies
Gehrmann, T
2001-01-01
The calculation of the two-loop corrections to the three-jet production rate and to event shapes in electron--positron annihilation requires the computation of a number of two-loop four-point master integrals with one off-shell and three on-shell legs. Up to now, only those master integrals corresponding to planar topologies were known. In this paper, we compute the yet outstanding non-planar master integrals by solving differential equations in the external invariants which are fulfilled by these master integrals. We obtain the master integrals as expansions in $\\e=(4-d)/2$, where $d$ is the space-time dimension. The fully analytic results are expressed in terms of the two-dimensional harmonic polylogarithms already introduced in the evaluation of the planar topologies.
[Master course in biomedical engineering].
Jobbágy, Akos; Benyó, Zoltán; Monos, Emil
2009-11-22
The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.
Master classes - What do they offer?
Hanken, Ingrid Maria; Long, Marion
2012-01-01
Master classes are a common way to teach music performance, but how useful are they in helping young musicians in their musical development? Based on his experiences of master classes Lali (2003:24) states that “For better or for worse, master classes can be life-changing events.” Anecdotal evidence confirm that master classes can provide vital learning opportunities, but also that they can be of little use to the student, or worse, detrimental. Since master classes are a common component in ...
Multi-scenario modelling of uncertainty in stochastic chemical systems
International Nuclear Information System (INIS)
Evans, R. David; Ricardez-Sandoval, Luis A.
2014-01-01
Uncertainty analysis has not been well studied at the molecular scale, despite extensive knowledge of uncertainty in macroscale systems. The ability to predict the effect of uncertainty allows for robust control of small scale systems such as nanoreactors, surface reactions, and gene toggle switches. However, it is difficult to model uncertainty in such chemical systems as they are stochastic in nature, and require a large computational cost. To address this issue, a new model of uncertainty propagation in stochastic chemical systems, based on the Chemical Master Equation, is proposed in the present study. The uncertain solution is approximated by a composite state comprised of the averaged effect of samples from the uncertain parameter distributions. This model is then used to study the effect of uncertainty on an isomerization system and a two gene regulation network called a repressilator. The results of this model show that uncertainty in stochastic systems is dependent on both the uncertain distribution, and the system under investigation. -- Highlights: •A method to model uncertainty on stochastic systems was developed. •The method is based on the Chemical Master Equation. •Uncertainty in an isomerization reaction and a gene regulation network was modelled. •Effects were significant and dependent on the uncertain input and reaction system. •The model was computationally more efficient than Kinetic Monte Carlo
Comparison of Space Debris Environment Models: ORDEM2000, MASTER-2001, MASTER-2005 and MASTER-2009
Kanemitsu, Yuki; 赤星, 保浩; Akahoshi, Yasuhiro; 鳴海, 智博; Narumi, Tomohiro; Faure, Pauline; 松本, 晴久; Matsumoto, Haruhisa; 北澤, 幸人; Kitazawa, Yukihito
2012-01-01
Hypervelocity impact by space debris on spacecraft is one of the most important issues for space development and operation, especially considering the growing amount of space debris in recent years. It is therefore important for spacecraft design to evaluate the impact risk by using environment models. In this paper, the authors compared the results of the debris impact flux in low Earth orbit, as calculated by four debris environment engineering models -NASA's ORDEM2000 and ESA's MASTER-2001...
Directory of Open Access Journals (Sweden)
Reyes Zotelo, Yunuem
2017-12-01
Full Text Available En este trabajo se propone un modelo de programación lineal entera para planificar la producción de un conjunto de artículos finales con demanda independiente. El modelo para la planificación maestra de producción (PMP está diseñado considerando los costes de producción e inventario, así como las restricciones definidas por el mismo proceso productivo en cuanto a instalaciones y tiempos de producción. El objetivo del modelo propuesto es la minimización de los costes implicados; concretamente, el tiempo ocioso y extra de los recursos, así como la consideración de un nivel mínimo de servicio ligado a la demanda diferida. La validación del modelo considera datos pertenecientes a la demanda de cada producto en un horizonte de 12 semanas y compara cinco escenarios en los que se modifican algunos aspectos del sistema y diferentes niveles de servicio. Por último, los resultados obtenidos para cada uno de los escenarios exponen la mejora obtenida por el modelo propuesto respecto al procedimiento actual en la empresa objeto de estudio. || In this work, we propose an integer linear programming model for production scheduling of a group of finished products with independent demand. The model for the master production scheduling (MPS is designed by considering production and inventory costs, as well as the productive process constraints regarding installations and production times. The aim of the proposed model is the minimization of the costs involved; specifically, undertime and overtime costs of resources, as well as the consideration of a minimum service level related to the deferred demand. The validation of the model considers data belonging to the demand of each product in a 12-week planning horizon and compares five scenarios in which some characteristics of the system and different service levels are modified. Finally, the results obtained for each one of the scenarios expose the improvement obtained by the proposed model with
Dynamics of chemical equilibrium of hadronic matter close to Tc
International Nuclear Information System (INIS)
Noronha-Hostler, J.; Beitel, M.; Greiner, C.; Shovkovy, I.
2010-01-01
Quick chemical equilibration times of hadrons (specifically, pp-bar, KK-bar, ΛΛ-bar, and ΩΩ-bar pairs) within a hadron gas are explained dynamically using Hagedorn states, which drive particles into equilibrium close to the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. We compare our model to recent lattice results and find that for both T c =176 MeV and T c =196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states. Furthermore, the ratios p/π, K/π, Λ/π, and Ω/π match experimental values well in our dynamical scenario.
Mansfield, Richard
2010-01-01
A comprehensive guide to the language used to customize Microsoft Office. Visual Basic for Applications (VBA) is the language used for writing macros, automating Office applications, and creating custom applications in Word, Excel, PowerPoint, Outlook, and Access. This complete guide shows both IT professionals and novice developers how to master VBA in order to customize the entire Office suite for specific business needs.: Office 2010 is the leading productivity suite, and the VBA language enables customizations of all the Office programs; this complete guide gives both novice and experience
Mastering Microsoft Azure infrastructure services
Savill, John
2015-01-01
Understand, create, deploy, and maintain a public cloud using Microsoft Azure Mastering Microsoft Azure Infrastructure Services guides you through the process of creating and managing a public cloud and virtual network using Microsoft Azure. With step-by-step instruction and clear explanation, this book equips you with the skills required to provide services both on-premises and off-premises through full virtualization, providing a deeper understanding of Azure's capabilities as an infrastructure service. Each chapter includes online videos that visualize and enhance the concepts presented i
Nonadiabatic quantum Vlasov equation for Schwinger pair production
International Nuclear Information System (INIS)
Kim, Sang Pyo; Schubert, Christian
2011-01-01
Using Lewis-Riesenfeld theory, we derive an exact nonadiabatic master equation describing the time evolution of the QED Schwinger pair-production rate for a general time-varying electric field. This equation can be written equivalently as a first-order matrix equation, as a Vlasov-type integral equation, or as a third-order differential equation. In the last version it relates to the Korteweg-de Vries equation, which allows us to construct an exact solution using the well-known one-soliton solution to that equation. The case of timelike delta function pulse fields is also briefly considered.
Moiseiwitsch, B L
2005-01-01
Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco
Chaos synchronization of nonlinear Bloch equations
International Nuclear Information System (INIS)
Park, Ju H.
2006-01-01
In this paper, the problem of chaos synchronization of Bloch equations is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived
International Nuclear Information System (INIS)
Mazaheri, G.
1991-11-01
In conjunction with the development of a Beam Size Monitor (BSM) for the Final Focus Test Beam (FFTB) at SLAC, we have built a general purpose timing device with capabilities useful for many different applications. The Time Master consists of a fast clock, a large memory loaded via a PC, and a time vernier (analog) with 8-bit resolution. The Time Master generates an arbitrary pattern of pulses on 16 different channels (up to 256), with a resolution of 1/2 8 times the clock period. The clock content is stored in another memory to measure the time of up to 16 channels, with a resolution of 1/2 8 times the clock period (frequency is set at 50 Mhz), using a time-to-amplitude vernier. The data stored in the memory is accessed via a PC. The depth of the memory for pattern generation is 15 bits (32767), equal to the depth of the time measuring part. The device is self-calibrating, simply by prescribing a pattern on the output channels, and reading it into the time measuring section. The total clock length is 24 bits, equivalent to 334 ms of time at 50 Mhz frequency. Therefore, the resolution is of the order of 32 bits (i.e., 24 bits of clock plus 8 bits of vernier). 2 refs., 2 figs
REVIEW: DOG, MASTER, AND RELATIVES
Directory of Open Access Journals (Sweden)
Reviewed by Caihua Dorji (Tshe dpal rdo rje ཚེ་དཔལ་རྡོ་རྗེ། Caihuan Duojie 才还多杰
2018-05-01
Full Text Available Stag 'bum rgyal (b. 1966 is from a herding family in Mang ra (Guinan County, Mtsho lho (Hainan Tibetan Autonomous Prefecture, Mtsho sngon (Qinghai Province. A member of the China Writers' Association and the Standing Committee of Mtsho lho Writers' Association, Stag 'bum rgyal teaches the Tibetan language at Mang ra Nationalities Middle School. He graduated from Mtsho lho Nationalities Normal School in 1986 and began his teaching career in the same year. Later in 1988, he attended a training program at Northwest Nationalities University and earned a graduation certificate. Stag 'bum rgyal has published more than sixty short stories, novellas, and novels since 1980s. Among his novellas, Sgo khyi 'The Watch Dog', Khyi rgan 'The Old Dog', h+'a pa gsos pa'i zin bris 'The Story of Dog Adoption', Mi tshe'i glu dbyangs 'The Song of Life', and khyi dang bdag po/ da dung gnyen tshan dag 'Dog, Master, and Relatives' have been translated into Chinese and published in such magazines as Xizang Wenxue 'Tibet Literature', Minzu Wenxue 'Nationalities Literature', and Qinghai Hu 'Qinghai Lake'. Rnam shes 'The Soul', Rgud 'Degeneration', and khyi dang bdag po/ da dung gnyen tshan dag 'Dog, Master, and Relatives', won the Sbrang char Literature Prize in 1999, 2003, and 2006, respectively. ..........
Chemical Continuous Time Random Walks
Aquino, T.; Dentz, M.
2017-12-01
Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.
EVALUATION OF THE MASTER MARKETER NEWSLETTER
McCorkle, Dean A.; Waller, Mark L.; Amosson, Stephen H.; Smith, Jackie; Bevers, Stanley J.; Borchardt, Robert
2001-01-01
Several support programs have been developed to help support, reinforce, enhance, and improve the effectiveness of the educational experience of Master Marketer graduates and other marketing club participants. One of those products, the Master Marketer Newsletter, is currently mailed to over 700 Master Marketer graduates and Extension faculty on a quarterly basis. In the June 2000 newsletter, a questionnaire was sent to newsletter recipients asking them to evaluate the various sections of the...
SOLUTION OF HARMONIC OSCILLATOR OF NONLINEAR MASTER SCHRÃ–DINGER
Directory of Open Access Journals (Sweden)
T B Prayitno
2012-02-01
Full Text Available We have computed the solution of a nonrelativistic particle motion in a harmonic oscillator potential of the nonlinear master SchrÃ¶dinger equation. The equation itself is based on two classical conservation laws, the Hamilton-Jacobi and the continuity equations. Those two equations give each contribution for the definition of quantum particle. We also prove that the solution canâ€™t be normalized. Â Keywords : harmonic oscillator, nonlinear SchrÃ¶dinger.
United States Shipbuilding Standards Master Plan
National Research Council Canada - National Science Library
Horsmon, Jr, Albert W
1992-01-01
This Shipbuilding Standards Master Plan was developed using extensive surveys, interviews, and an iterative editing process to include the views and opinions of key persons and organizations involved...
Nuclear safety research master plan
Energy Technology Data Exchange (ETDEWEB)
Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others
2001-06-01
The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.
Tricomi, FG
2013-01-01
Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff
Ding, Hai-Yan; Li, Gai-Ru; Yu, Ying-Ge; Guo, Wei; Zhi, Ling; Li, Xin-Xia
2014-04-01
A method for on-line monitoring the dissolution of Valsartan and hydrochlorothiazide tablets assisted by mathematical separation model of linear equations was established. UV spectrums of valsartan and hydrochlorothiazide were overlapping completely at the maximum absorption wavelength respectively. According to the Beer-Lambert principle of absorbance additivity, the absorptivity of Valsartan and hydrochlorothiazide was determined at the maximum absorption wavelength, and the dissolubility of Valsartan and hydrochlorothiazide tablets was detected by fiber-optic dissolution test (FODT) assisted by the mathematical separation model of linear equations and compared with the HPLC method. Results show that two ingredients were real-time determined simultaneously in given medium. There was no significant difference for FODT compared with HPLC (p > 0.05). Due to the dissolution behavior consistency, the preparation process of different batches was stable and with good uniformity. The dissolution curves of valsartan were faster and higher than hydrochlorothiazide. The dissolutions at 30 min of Valsartan and hydrochlorothiazide were concordant with US Pharmacopoeia. It was concluded that fiber-optic dissolution test system assisted by the mathematical separation model of linear equations that can detect the dissolubility of Valsartan and hydrochlorothiazide simultaneously, and get dissolution profiles and overall data, which can directly reflect the dissolution speed at each time. It can provide the basis for establishing standards of the drug. Compared to HPLC method with one-point data, there are obvious advantages to evaluate and analyze quality of sampling drug by FODT.
Barbu, Viorel
2016-01-01
This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.
Valuing Initial Teacher Education at Master's Level
Brooks, Clare; Brant, Jacek; Abrahams, Ian; Yandell, John
2012-01-01
The future of Master's-level work in initial teacher education (ITE) in England seems uncertain. Whilst the coalition government has expressed support for Master's-level work, its recent White Paper focuses on teaching skills as the dominant form of professional development. This training discourse is in tension with the view of professional…
Presentation master thesis at EAPRIL 2015 Conference
Iris Sutherland; Richard Kragten; Zac Woolfitt
2015-01-01
Three graduates of the Inholland Master Leren en Innoveren (Zac Woolfitt, Iris Sutherland and Richard Kragten) each presented their master thesis in an interactive 'flipped' session which involved providing content in advance via a video for those attending the session. The session was well attended
A way to the Photo Master Expert
Inagaki, Toshihiko
After the author presided over the photographer's group for 15 years or more, the author met with the Photo Master certificate examination. And the author took the certificate examination, and was authorized as a Photo Master Expert in 2005. In this report, the outline how photographic technology has been mastered in order to adapt the photographer's group to the great change of photography from film to digital and how the contents of the activity of a photographer's group have changed is described. And the progress which took the Photo Master certificate examination as a good opportunity to prove the achievement level of those activities is described. And as a photographic activity after Photo Master Expert authorization, the shooting method of mural painting in the royal tomb of Amenophis III is described.
Hernlund, J. W.; Matsui, H.
2017-12-01
Ultralow-velocity zones (ULVZ) are increasingly illuminated by seismology, revealing surprising diversity in size, shape, and physical characteristics. The only viable hypotheses are that ULVZs are a compositionally distinct FeO-enriched dense material, which could have formed by fractional crystallization of a basal magma ocean, segregation of subducted banded iron formations, precipitation of solids from the outer core, partial melting and segregation of iron-rich melts from subducted basalts, or most likely a combination of many different processes. But many questions remain: Are ULVZ partially molten in some places, and not in others? Are ULVZ simply the thicker portions of an otherwise global thin layer, covering the entire CMB and thus blocking or moderating chemical interactions between the core and overlying mantle? Is such a layer inter-connected and able to conduct electrical currents that allow electro-magnetic coupling of core and mantle angular momentum? Are they being eroded and shrinking in size due to viscous entrainment, or is more material being added to ULVZ over time? Here we derive an advection-diffusion-like equation that governs the dynamical evolution of a chemically distinct ULVZ. Analysis of this equation shows that ULVZ should become readily swept aside by viscous mantle flows at the CMB, exposing "ordinary mantle" to the top of the core, thus inducing chemical heterogeneity that drives lateral CMB chemical reactions. These reactions are correlated with heat flux, thus maintaining large-scale pressure variations atop the core that induce cyclone-like flows centered around ULVZ and ponded subducted slabs. We suggest that turbulent diffusion across adjacent cyclone streams inside a stratified region atop the core readily accommodates lateral transport and re-distribution of components such as O and Si, in addition to heat. Our model implies that the deeper core is at least partly shielded from the influence of strong heat flux variations at
PROFESSIONAL MASTER AND ITS CHALLENGES.
Ferreira, Lydia Masako
2015-01-01
To describe the history, origin, objectives, characteristics, implications, the questions of the evaluation form and some examples of the Professional Masters (MP), to differentiate the Academic Master, and identify the challenges for the next quadrennial assessment. The CAPES site on Professional Masters and documents and meeting area of reports from 2004 to 2013 of Medicine III were read as well as the reports and the sub-page of the area in Capes site. The data relating to the evaluation process and the Scoreboard of the other areas were computed and analyzed. From these data it was detected the challenges of Medicine III for the next four years (2013-2016). The creation of the Professional Master is very recent in Medicine III and no Professional Master of Medicine III course was evaluated yet. Were described the objectives, assumptions, characteristics, motivations, the possibilities, the feasibility, the profile of the students, the faculty, the curriculum, funding, intellectual production, social inclusion, the general requirements of Ordinance No. 193/2011 CAPES and some examples of proposals, technological lines of scientific activities, partnerships and counterparties. The evaluation form of the MP was discussed, the need for social, economic and political intellectual production and the differences with the MA. It was also reported the global importance of the MP and its evolution in Brazil. From the understanding of the MP, Medicine III outlined some challenges and goals to be developed in the 2013-2016 quadrennium. Medicine III understood the MP as a new technological scientific horizon within the strict sensu post-graduate and full consistency with the area. Descrever o histórico, a origem, os objetivos, as características, as implicações, os quesitos da ficha de avaliação e alguns exemplos do Mestrado Profissional (MP), sua diferenciação com o Mestrado Acadêmico, e detectar os desafios para o próximo quadriênio de avaliação. O site
Energy Technology Data Exchange (ETDEWEB)
Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A [Department of Chemistry, Physicochemistry of Carbon Materials Research Group, N Copernicus University, Gagarin Street 7, 87-100 Torun (Poland); Kowalczyk, Piotr [Nanochemistry Research Institute, Curtin University, PO Box U1987, Perth, WA 6845 (Australia); Harris, Peter J F, E-mail: aterzyk@chem.uni.torun.pl [Centre for Advanced Microscopy, University of Reading, Whiteknights, Reading RG6 6AF (United Kingdom)
2011-10-05
Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF{sub 6} adsorption isotherm data cannot be used for characterization of the porosity. (paper)
木内, 正光
2010-01-01
The function of master scheduling is to plan the flow of order from its arrival to its completion. In this study, the problem of bucket size for master scheduling is taken up. The bucket size for master scheduling has much influence on the lead time of the order. However, to date there is no clear method for how to set the optimum bucket size. The purpose of this study is to propose a method to set the optimum bucket size. In this paper, an equation to estimate the optimum bucket size is prop...
Development and verification of a coupled code system RETRAN-MASTER-TORC
International Nuclear Information System (INIS)
Cho, J.Y.; Song, J.S.; Joo, H.G.; Zee, S.Q.
2004-01-01
Recently, coupled thermal-hydraulics (T-H) and three-dimensional kinetics codes have been widely used for the best-estimate simulations such as the main steam line break (MSLB) and locked rotor problems. This work is to develop and verify one of such codes by coupling the system T-H code RETRAN, the 3-D kinetics code MASTER and sub-channel analysis code TORC. The MASTER code has already been applied to such simulations after coupling with the MARS or RETRAN-3D multi-dimensional system T-H codes. The MASTER code contains a sub-channel analysis code COBRA-III C/P, and the coupled systems MARSMASTER-COBRA and RETRAN-MASTER-COBRA had been already developed and verified. With these previous studies, a new coupled system of RETRAN-MASTER-TORC is to be developed and verified for the standard best-estimate simulation code package in Korea. The TORC code has already been applied to the thermal hydraulics design of the several ABB/CE type plants and Korean Standard Nuclear Power Plants (KSNP). This justifies the choice of TORC rather than COBRA. Because the coupling between RETRAN and MASTER codes are already established and verified, this work is simplified to couple the TORC sub-channel T-H code with the MASTER neutronics code. The TORC code is a standalone code that solves the T-H equations for a given core problem from reading the input file and finally printing the converged solutions. However, in the coupled system, because TORC receives the pin power distributions from the neutronics code MASTER and transfers the T-H results to MASTER iteratively, TORC needs to be controlled by the MASTER code and does not need to solve the given problem completely at each iteration step. By this reason, the coupling of the TORC code with the MASTER code requires several modifications in the I/O treatment, flow iteration and calculation logics. The next section of this paper describes the modifications in the TORC code. The TORC control logic of the MASTER code is then followed. The
Singularly perturbed Burger-Huxley equation: Analytical solution ...
African Journals Online (AJOL)
user
numbers, Navier-Stokes flows with large Reynolds numbers, chemical reactor ... It is to observe the layer behavior of the solution for smaller values of ε leading to singular ...... Burger equation, momentum gas equation and heat equation.
Hypertension in master endurance athletes.
Hernelahti, M; Kujala, U M; Kaprio, J; Karjalainen, J; Sarna, S
1998-11-01
To determine whether long-term very vigorous endurance training prevents hypertension. Cohort study of master orienteering runners and controls. Finland. In 1995, a health questionnaire was completed by 264 male orienteering runners (response rate 90.4%) who had been top-ranked in competitions among men aged 35-59 years in 1984, and by 388 similarly aged male controls (response rate 87.1%) who were healthy at the age of 20 years and free of overt ischemic heart disease in 1985. Self-report of medication for hypertension. In the endurance athlete group, the crude prevalence (8.7%) of subjects who had used medication for hypertension was less than a third of that in the control group (27.8%). Even after adjusting for age and body mass index, the difference between the groups was still significant (odds ratio for athletes 0.43, 95% confidence interval 0.25-0.76). Long-term vigorous endurance training is associated with a low prevalence of hypertension. Some of the effect can be explained by a lower body mass, but exercise seems to induce a lower rate of hypertension by other mechanisms than by decreasing body weight
Second Line of Defense Master Spares Catalog
Energy Technology Data Exchange (ETDEWEB)
Henderson, Dale L.; Muller, George; Mercier, Theresa M.; Brigantic, Robert T.; Perkins, Casey J.; Cooley, Scott K.
2012-11-20
This catalog is intended to be a comprehensive listing of repair parts, components, kits, and consumable items used on the equipment deployed at SLD sites worldwide. The catalog covers detection, CAS, network, ancillary equipment, and tools. The catalog is backed by a Master Parts Database which is used to generate the standard report views of the catalog. The master parts database is a relational database containing a record for every part in the master parts catalog along with supporting tables for normalizing fields in the records. The database also includes supporting queries, database maintenance forms, and reports.
Development of a hybrid haptic master system without using a force sensor
International Nuclear Information System (INIS)
Bae, Byung Hoon; Park, Kyi Hwan
2001-01-01
A hybrid type master system is proposed to take the advantage of the link mechanism and magnetic levitation mechanism without using a force sensor. Two different types of electromagnetic actuators, moving coil type and moving magnet types are used to drive the master system which is capable of 4-DOF actuation. It is designed that the rotation motions about x-y axis are decoupled and the whole system is represented by simple dynamic equations. The force reflection is achieved by using the simple relation between the force and applied current and position. The simulation and experimental results are presented to show its performance
Development of a hybrid haptic master system without using a force sensor
Energy Technology Data Exchange (ETDEWEB)
Bae, Byung Hoon; Park, Kyi Hwan [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)
2001-08-01
A hybrid type master system is proposed to take the advantage of the link mechanism and magnetic levitation mechanism without using a force sensor. Two different types of electromagnetic actuators, moving coil type and moving magnet types are used to drive the master system which is capable of 4-DOF actuation. It is designed that the rotation motions about x-y axis are decoupled and the whole system is represented by simple dynamic equations. The force reflection is achieved by using the simple relation between the force and applied current and position. The simulation and experimental results are presented to show its performance.
A systematic and efficient method to compute multi-loop master integrals
Directory of Open Access Journals (Sweden)
Xiao Liu
2018-04-01
Full Text Available We propose a novel method to compute multi-loop master integrals by constructing and numerically solving a system of ordinary differential equations, with almost trivial boundary conditions. Thus it can be systematically applied to problems with arbitrary kinematic configurations. Numerical tests show that our method can not only achieve results with high precision, but also be much faster than the only existing systematic method sector decomposition. As a by product, we find a new strategy to compute scalar one-loop integrals without reducing them to master integrals.
The master T-operator for the Gaudin model and the KP hierarchy
International Nuclear Information System (INIS)
Alexandrov, Alexander; Leurent, Sebastien; Tsuboi, Zengo; Zabrodin, Anton
2014-01-01
Following the approach of [1], we construct the master T-operator for the quantum Gaudin model with twisted boundary conditions and show that it satisfies the bilinear identity and Hirota equations for the classical KP hierarchy. We also characterize the class of solutions to the KP hierarchy that correspond to eigenvalues of the master T-operator and study dynamics of their zeros as functions of the spectral parameter. This implies a remarkable connection between the quantum Gaudin model and the classical Calogero–Moser system of particles
A systematic and efficient method to compute multi-loop master integrals
Liu, Xiao; Ma, Yan-Qing; Wang, Chen-Yu
2018-04-01
We propose a novel method to compute multi-loop master integrals by constructing and numerically solving a system of ordinary differential equations, with almost trivial boundary conditions. Thus it can be systematically applied to problems with arbitrary kinematic configurations. Numerical tests show that our method can not only achieve results with high precision, but also be much faster than the only existing systematic method sector decomposition. As a by product, we find a new strategy to compute scalar one-loop integrals without reducing them to master integrals.
epsilon : A tool to find a canonical basis of master integrals
Prausa, Mario
2017-10-01
In 2013, Henn proposed a special basis for a certain class of master integrals, which are expressible in terms of iterated integrals. In this basis, the master integrals obey a differential equation, where the right hand side is proportional to ɛ in d = 4 - 2 ɛ space-time dimensions. An algorithmic approach to find such a basis was found by Lee. We present the tool epsilon, an efficient implementation of Lee's algorithm based on the Fermat computer algebra system as computational back end.
Indian Academy of Sciences (India)
regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.
International Nuclear Information System (INIS)
Gross, F.
1986-01-01
Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs
International Nuclear Information System (INIS)
Creighton, J.R.
1975-01-01
Waveforms and population distributions have been calculated by a numerical model and compared with experiment for an electric-discharge-initiated, pulsed NF 3 + H 2 chemical laser. The model treats each vibrational-rotational state separately, allowing rotational relaxation between adjacent states as well as vibrational relaxation and lasing according to P-branch selection rules. Calculated waveforms agree with experiment and show several features not seen when rotational equilibrium is assumed: simultaneous lasing on many transitions, cascade behavior, spikes due to laser relaxation oscillations, non-Boltzmann rotational distributions, and ''hole burning'' in the population distributions. The calculations give insight into the physical phenomena governing the shape and duration of the waveforms. The effect of varying certain parameters, relaxation rates, temperature, pressure, and diluents, is studied. Best fit to experimental waveforms is obtained when the rotational relaxation rate and collisional line broadening rate are approximately equal at about 10 times the hard sphere collision rate. The IXION computer code, developed for these calculations, is described in detail. In addition, an analytic model is presented which accounts for major features of the total (all transitions) output waveform of the laser assuming rotational equilibrium, a steady state laser model, and constant temperature. A second computer code, MINOTAR, was developed as a general purpose chemical kinetics code. It verifies the analytic model and extends the results to adiabatic reactions where the temperature varies, and can yield waveforms using the assumptions of rotational equilibrium and a steady state laser. The MINOTAR code, being general, can also be used for chemical kinetics problems such as air pollution and combustion
Sun, Ningyu; Wei, Wei; Han, Shunjie; Song, Junhao; Li, Xinyang; Duan, Yunfei; Prakapenka, Vitali B.; Mao, Zhu
2018-05-01
In this study, we have determined the phase boundary between Mg0.735Fe0.21Al0.07Si0.965O3-Bm and PPv and the thermal equations of state of both phases up to 202 GPa and 2600 K using synchrotron X-ray diffraction in laser heated diamond anvil cells. Our experimental results have shown that the combined effect of Fe and Al produces a wide two-phase coexistence region with a thickness of 26 GPa (410 km) at 2200 K, and addition of Fe lowers the onset transition pressure to 98 GPa at 2000 K, consistent with previous experimental results. Furthermore, addition of Fe was noted to reduce the density (ρ) and bulk sound velocity (VΦ) contrasts across the Bm-PPv phase transition, which is in contrast to the effect of Al. Using the obtained phase diagram and thermal equations of state of Bm and PPv, we have also examined the effect of composition variations on the ρ and VΦ profiles of the lowermost mantle. Our modeling results have shown that the pyrolitic lowermost mantle should be highly heterogeneous in composition and temperature laterally to match the observed variations in the depth and seismic signatures of the D″ discontinuity. Normal mantle in a pyrolitic composition with ∼10% Fe and Al in Bm and PPv will lack clear seismic signature of the D″ discontinuity because the broad phase boundary could smooth the velocity contrast between Bm and PPv. On the other hand, Fe-enriched regions close to the cold slabs may show a seismic signature with a change in the velocity slope of the D″ discontinuity, consistent with recent seismic observations beneath the eastern Alaska. Only regions depleted in Fe and Al near the cold slabs would show a sharp change in velocity. Fe in such regions could be removed to the outer core by strong core-mantle interactions or partitions together with Al to the high-pressure phases in the subduction mid ocean ridge basalts. Our results thus have profound implication for the composition of the lowermost mantle.
AUA Program Master Plan. Volume 1: Overview
1997-03-01
The Office of Air Traffic Systems Development (AUA) Program Master Plan : summarizes the management, development approach, and status of products and : services provided by the AUA organization to fulfill its role in supporting : National Airspace Sy...
Masterful care of the aging triathlete.
Wright, Vonda J
2012-12-01
Current endurance champions are turning in winning performances in their late 30s and 40s. These masters-age athletes present a special challenge to Sport Medicine practitioners who in previous decades have simply advised masters-aged athletes to stop competing to prevent or treat injury. The fact is, many of the physical changes commonly attributed to aging alone are actually due to the rages of sedentary aging. Recently a body of literature emerged which begins to define what we are capable of with chronic high-level exercise and guides masters-age athletes to train and rehab smarter to stay competitive. The factors influencing the relative declines in overall performance in the various sports include both physiological and lifestyle changes. The following review summarizes age and sex-related changes in triathlon performance, the biology of aging as it relates to endurance sport and factors that affect performance in the masters athletes.
Master Console System Monitoring and Control Development
Brooks, Russell A.
2013-01-01
The Master Console internship during the spring of 2013 involved the development of firing room displays at the John F. Kennedy Space Center (KSC). This position was with the Master Console Product Group (MCPG) on the Launch Control System (LCS) project. This project is responsible for the System Monitoring and Control (SMC) and Record and Retrieval (R&R) of launch operations data. The Master Console is responsible for: loading the correct software into each of the remaining consoles in the firing room, connecting the proper data paths to and from the launch vehicle and all ground support equipment, and initializing the entire firing room system to begin processing. During my internship, I developed a system health and status display for use by Master Console Operators (MCO) to monitor and verify the integrity of the servers, gateways, network switches, and firewalls used in the firing room.
Another Look at Administrators: Dodgers to Masters.
Ludewig, Larry M.
1983-01-01
Presents a tongue-in-cheek system for classifying educational administrators into four categories (Artful Dodger, Commander in Chief, Leader of the Pack, and Facilitating Master) according to leadership style and administrator characteristics. A brief sampler survey is included. (JAC)
Molecular finite-size effects in stochastic models of equilibrium chemical systems.
Cianci, Claudia; Smith, Stephen; Grima, Ramon
2016-02-28
The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.
Master-slave-manipulator 'EMSM I'
International Nuclear Information System (INIS)
Koehler, G.W.; Salaske, M.
1976-01-01
A master-slave manipulator with electric force transmission and reflection was developed for the first time in the German Federal Republic. The apparatus belongs to the class of 200 N carrying capacity. It is intended mainly for nuclear purposes and especially for use in large hot cells and also for medium and heavy manipulator vehicles. The most innovations compared with previously known foreign electric master-slave manipulators are two additional possibilities of movement and the electric dead weight compensation. (orig.) [de
Master-slave-manipulator EMSM I
International Nuclear Information System (INIS)
Koehler, G.W.; Salaske, M.
1976-01-01
A master-slave manipulator with electric force transmission and reflection was developed for the first time in the German Federal Republic. The aparatus belongs to the class of 200 N carrying capacity. It is intended mainly for nuclear purposes and especially for use in large hot cells and also for medium and heavy manipulator vehicles. The most obvious innovations compared with previously known foreign electric master-slave manipulators are two additional possibilities of movement and the electric dead weightcompensation. (orig.) [de
Counterweight system for master-slave manipulator
International Nuclear Information System (INIS)
Haaker, L.W.; Jelatis, D.G.
1981-01-01
A counterweight system is described for use in a remote control master-slave manipulator. The manipulator consists of a rotatable horizontal support adapted to extend through the wall and two longitudinally extensible arms, a master and a slave, pivotally connected one to each end of the support. Within the support there is a means of translating linear motion to rotary motion for transfer through the barrier wall and retranslating to linear motion. (U.K.)
Inspirational Catalogue of Master Thesis Proposals 2015
DEFF Research Database (Denmark)
Thorndahl, Søren
2015-01-01
This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....
MASTER-OAFA discovery: dwarf nova outburst
Shumkov, V.; Lipunov, V.; Podesta, R.; Levato, H.; Buckley, D.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Gorbovskoy, E.; Kornilov, V.; Chazov, V.; Vlasenko, D.; Vladimirov, V.; Gress, O.; Ivanov, K.; Lopez, C.; Podesta, F.; Saffe, C.; Pogrosheva, T.
2016-10-01
MASTER-OAFA (Argentina, San Juan National Univeristy's Observatorio Astronomico Felix Aguilar) auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 02h 19m 51.96s -69d 26m 59.6s on 2016-10-18.23277 UT. The OT magnitude in unfiltered is 17.2m (limit 18.3m).
Evaluation of the Navy Master Planning Program
1976-05-01
Navy planning directives, interviews with Navy planning personnel, researc " of applicable literature on planning and program evaluation, and the...master planning has absorbed the additional roles of program management and public relations marketing . The Navy planner is now deeply involved in...master planning 62conducted by NAVFAC headquarters in 1972, various Navy planning directives, a " Market Survey" of NAVFAC services and customer 63
Seed and soliton solutions for Adler's lattice equation
International Nuclear Information System (INIS)
Atkinson, James; Hietarinta, Jarmo; Nijhoff, Frank
2007-01-01
Adler's lattice equation has acquired the status of a master equation among 2D discrete integrable systems. In this paper we derive what we believe are the first explicit solutions of this equation. In particular it turns out to be necessary to establish a non-trivial seed solution from which soliton solutions can subsequently be constructed using the Baecklund transformation. As a corollary we find the corresponding solutions of the Krichever-Novikov equation which is obtained from Adler's equation in a continuum limit. (fast track communication)
MASTER-ICATE constraints on the outburst time of OGLE-2012-NOVA-002
Levato, H.; Saffe, C.; Mallamaci, C.; Lopez, C.; Denisenko, F. Podest D.; Gorbovskoy, E.; Lipunov, V.; Balanutsa, P.; Tiurina, N.; Kornilov, V.; Belinski, A.; Shatskiy, N.; Chazov, V.; Kuznetsov, A.; Zimnukhov, D.; Krushinsky, V.; Zalozhnih, I.; Popov, A.; Bourdanov, A.; Punanova, A.; Ivanov, K.; Yazev, S.; Budnev, N.; Konstantinov, E.; Chuvalaev, O.; Poleshchuk, V.; Gress, O.; Parkhomenko, A.; Tlatov, A.; Dormidontov, D.; Senik, V.; Yurkov, V.; Sergienko, Y.; Varda, D.; Sinyakov, E.; Shumkov, V.; Shurpakov, S.; Podvorotny, P.
2012-10-01
MASTER-ICATE very wide field camera (72-mm f/1.2 lens + 11 Mpx CCD) located at Observatorio Astronomico Felix Aguilar (OAFA) near San Juan, Argentina, has observed the position of possible Nova OGLE-2012-NOVA-002 reported by L. Wyrzykowski et al. (ATel #4483) several times before 2012 May 20 and then again after 2012 July 03. MASTER-WFC is continuously imaging the areas of sky (24x16 sq. deg. field of view) with 5-sec unfiltered exposures.
Non-isospectral flows of noncommutative differential-difference KP equation
International Nuclear Information System (INIS)
Huang, Lin; Ilangovane, R.; Tamizhmani, K.M.; Zhang, Da-jun
2013-01-01
We present master symmetries of noncommutative differential-difference KP equation by considering Sato approach, where the field variables are defined over associative algebras. The Lie algebraic structures of generalized and master symmetries are given. They form a Virasoro Lie algebraic structure
MASTER OF THE SHIP, MANAGER AND INSTRUCTOR
Directory of Open Access Journals (Sweden)
Florin IORDANOAIA
2010-01-01
Full Text Available The master of the ship is the person on the board who has the qualification and the necessary certificate of competency for running a maritime transport ship. He is the one who takes the ship into administration from the ship-owner, he is the only leader, the legal and direct chief of the entire crew, being invested with authority upon all the members of the crew. The master fulfils the attributes and displays his activity according to the legal laws of his flag, of the marine regulations and of the international conventions. In all the relationships which he establishes with physical or juridical people, the master represents the ship-owner, in a double condition, as an officer and as a commercial manager. In this paper, it is analysed the situation of the ship masters, the relationships which these masters have with the crew and the problems which appear during their voyage. At the end of the paper there are proposed measures to increase the quality of the training of the ship masters, to solve the situations connected with the members of the crew.
The Consolidated Human Activity Database — Master Version (CHAD-Master) Technical Memorandum
This technical memorandum contains information about the Consolidated Human Activity Database -- Master version, including CHAD contents, inventory of variables: Questionnaire files and Event files, CHAD codes, and references.
Perspective: Reaches of chemical physics in biology
Gruebele, Martin; Thirumalai, D.
2013-01-01
Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry. PMID:24089712
Perspective: Reaches of chemical physics in biology.
Gruebele, Martin; Thirumalai, D
2013-09-28
Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.
Dual arm master controller for a bilateral servo-manipulator
Kuban, Daniel P.; Perkins, Gerald S.
1989-01-01
A master controller for a mechanically dissimilar bilateral slave servo-manipulator is disclosed. The master controller includes a plurality of drive trains comprising a plurality of sheave arrangements and cables for controlling upper and lower degrees of master movement. The cables and sheaves of the master controller are arranged to effect kinematic duplication of the slave servo-manipulator, despite mechanical differences therebetween. A method for kinematically matching a master controller to a slave servo-manipulator is also disclosed.
Differential Equations Compatible with KZ Equations
International Nuclear Information System (INIS)
Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.
2000-01-01
We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions
BOOK REVIEW: Mastering Physics (4th edn) Macmillan Master Series
Sugden, Chris
2000-01-01
The preface to the first edition of this book, in 1982, stated the aim as `presenting ideas with a directness and simplicity that will enable students to achieve maximum comprehension in the shortest possible time'. The fourth edition remains true to this aim, whilst paying some attention to the possibility of using the book alongside classroom work as well as a revision aid. However, it is as a clear concise summary of GCSE level physics (and a little bit beyond) that this book excels. I would recommend it to students as a revision aid at the end of the course and as a reference book during it. There should certainly be a few copies in the school library. Since I see the book's main role as being for the individual use of students it seemed sensible to ask one for his impression of the book having completed GCSE Physics a few months ago, and this is appended below. Philip Britton The book is split into many small, precise subsections and so allows easy reference to the topic you want to know about. The major equations are all included and explained well. The text is quite detailed and includes helpful examples. Concepts are explained in simple stages and in a way that is easy to understand; for example, the phases of the moon and ray diagrams. Resistors, which had been a little difficult for me, are very well explained. A simple detail like putting the names of the circuit symbols beside them on diagrams helps a lot. Throughout the book there are plenty of diagrams used to assist understanding rather than just illustrate the book. Overall I think that it would be best used as a revision aid. It reads very much like a syllabus with added explanation and examples. Perhaps it would be possible for a class to read a section before a lesson so less basic explanation is required during the lesson and other work can be done. The sections are brief enough to allow even the apathetic to complete such a homework assignment.
The Composition of the Master Schedule
Thomas, Cynthia C.; Behrend, Dirk; MacMillan, Daniel S.
2010-01-01
Over a period of about four months, the IVS Coordinating Center (IVSCC) each year composes the Master Schedule for the IVS observing program of the next calendar year. The process begins in early July when the IVSCC contacts the IVS Network Stations to request information about available station time as well as holiday and maintenance schedules for the upcoming year. Going through various planning stages and a review process with the IVS Observing Program Committee (OPC), the final version of the Master Schedule is posted by early November. We describe the general steps of the composition and illustrate them with the example of the planning for the Master Schedule of the 2010 observing year.
MASTER OF THE SHIP, MANAGER AND INSTRUCTOR
Florin IORDANOAIA
2010-01-01
The master of the ship is the person on the board who has the qualification and the necessary certificate of competency for running a maritime transport ship. He is the one who takes the ship into administration from the ship-owner, he is the only leader, the legal and direct chief of the entire crew, being invested with authority upon all the members of the crew. The master fulfils the attributes and displays his activity according to the legal laws of his flag, of the marine regulations and...
Mastering Adobe Premiere Pro CS6
Ekert, Paul
2013-01-01
Designed to be practical and engaging, Mastering Adobe Premiere Pro CS6 is a project-based book to help you truly augment your skills and become a film editing hotshot.If you're just starting out or even migrating from existing video editing software, then this book is for you. With rapid progression through practical examples constructed to be both engaging and useful, Mastering Adobe Premiere Pro CS6 is ideal for learning the sometimes complex workflows of this powerful application.
Lowe, Scott
2011-01-01
A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the
A master identity for homotopy Gerstenhaber algebras
International Nuclear Information System (INIS)
Akman, F.
2000-01-01
We produce a master identity {m}{m,m,..}=0 for a certain type of homotopy Gerstenhaber algebras, in particular suitable for the prototype, namely the Hochschild complex of an associative algebra. This algebraic master identity was inspired by the work of Getzler-Jones and Kimura-Voronov-Zuckerman in the context of topological conformal field theories. To this end, we introduce the notion of a ''partitioned multilinear map'' and explain the mechanics of composing such maps. In addition, many new examples of pre-Lie algebras and homotopy Gerstenhaber algebras are given. (orig.)
DEFF Research Database (Denmark)
Tybjerg, Casper
2014-01-01
In this interview, produced by the Criterion Collection in 2014, Danish film historian Casper Tybjerg discusses how Master of the House went from being a popular stage play to a film, one that was a major stepping-stone in director Carl Theodor Dreyer's career.......In this interview, produced by the Criterion Collection in 2014, Danish film historian Casper Tybjerg discusses how Master of the House went from being a popular stage play to a film, one that was a major stepping-stone in director Carl Theodor Dreyer's career....
Caffo, Michele; Czyz, Henryk; Gunia, Michal; Remiddi, Ettore
2008-01-01
We present the program BOKASUN for fast and precise evaluation of the Master Integrals of the two-loop self-mass sunrise diagram for arbitrary values of the internal masses and the external four-momentum. We use a combination of two methods: a Bernoulli accelerated series expansion and a Runge-Kutta numerical solution of a system of linear differential equations.
an aid to mastering fundamental calculus concepts
African Journals Online (AJOL)
Erna Kinsey
Department of Educational Psychology, University of Pretoria, Pretoria, 0002 South Africa ... according to a well thought-out didactical approach is necessary in order to incorporate technology ... developing new hypotheses instead of testing hypotheses. ... mastering fundamental concepts of two-dimensional functions.
Latin square three dimensional gage master
Jones, Lynn L.
1982-01-01
A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.
Colorado Academic Library Master Plan, Spring 1982.
Breivik, Patricia Senn; And Others
Based on a need to assess current library strengths and weaknesses and to project potential library roles in supporting higher education, this master plan makes a series of recommendations to Colorado's academic libraries. It is noted that the plan was endorsed by both the Colorado Commission on Higher Education and the Colorado State Department…
Mastering Technologies in Design-Driven Innovation
DEFF Research Database (Denmark)
Dell'era, Claudio; Marchesi, Alessio; Verganti, Roberto
2010-01-01
Only a few companies have mastered the design-driven approach to innovation. This paper examines what it means to make design a central part of the business process, able to add value to products and create new markets. More specifically, it focuses on the interplay between the functional and sem...
Hunter College Dance Therapy Masters Program.
Schmais, Claire; White, Elissa Q.
Described is development of the Hunter College dance therapy 18-month 30-credit masters program involving 33 adult students, (in two classes beginning in 1971 and 1972), an educational model, internship in psychiatric institutions, and preparation of instructional materials. The dance therapist is said to incorporate the psychiatric patient's…
Toward the Ideal Professional Master's Degree Program.
Russell, Maria P.
1999-01-01
Outlines work accomplished at the 1998 National Communication Association Summer Conference, presenting a model for a professional master's-degree program in public relations that integrates outcomes, assessment, curriculum, and pedagogy. Outlines program outcomes, curriculum, essential curriculum-content areas, pedagogical approaches, and…
Inspirational catalogue of Master Thesis proposals 2014
DEFF Research Database (Denmark)
This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project. If you have an idea for a project which...
Accountability: Papers from master theses 2009
C.D. Knoops (Chris); J. Noeverman (Jan)
2010-01-01
textabstractLast year, we presented the book “Accountability 2008: papers from master theses”. The book contained eleven papers. Each paper was based on a thesis in the field of Accounting, Auditing and Control, on which these students received a Master’s degree in Economics & Business from the
Master Console System Monitoring and Control Development
Brooks, Russell A.
2013-01-01
The Master Console internship during the summer of 2013 involved the development of firing room displays and support applications at the John F. Kennedy Space Center (KSC). This position was with the Master Console Product Group (MCPG) on the Launch Control System (LCS) project. This project is responsible for the System Monitoring and Control (SMC) and Record and Retrieval (R&R) of launch operations data. The Master Console is responsible for: loading the correct software into each of the remaining consoles in the firing room, connecting the proper data paths to and from the launch vehicle and all ground support equipment, and initializing the entire firing room system to begin processing. During my internship, I created control scripts using the Application Control Language (ACL) to analyze the health and status of Kennedy Ground Control System (KGCS) programmable logic controllers (PLCs). This application provides a system health and status display I created with summarized data for use by Master Console Operators (MCO) to monitor and verify the integrity of KGCS subsystems.
Alum expands master's research, presents in UK
2015-01-01
Center for Homeland Defense and Security News and Stories CATEGORY: STORIES Dr. William Pilkington was interested in developing a more analytical approach to allocating resources as he wrote his CHDS master's degree thesis, “Risk, Politics, and Money: Need for A Value-Based Model
The Master's Thesis in Applied Psychology Training.
Shultz, Kenneth S.; Kottke, Janet L.
1996-01-01
Recommends the inclusion of a master's thesis in industrial and organizational psychology programs. Argues that the thesis serves several critical educational purposes and is relevant to applied psychology. Offers suggestions for increasing the relationship between the educational requirement and the professional tasks. (MJP)
"The Ancient Master Painted like Me"
Chiu, Son-Mey
2009-01-01
By following their wonderful ideas or critical exploration, three eighth graders learned how to do traditional Chinese painting, which is taught by copying old masters' work from the Ming Dynasty in the 17th century. The standard manual, which most learners have been using for these three hundred years, is the "Mustard Seed Garden Manual of…
Mastering SQL Server 2014 data mining
Bassan, Amarpreet Singh
2014-01-01
If you are a developer who is working on data mining for large companies and would like to enhance your knowledge of SQL Server Data Mining Suite, this book is for you. Whether you are brand new to data mining or are a seasoned expert, you will be able to master the skills needed to build a data mining solution.
Implementing the enterprise master patient index.
Adragna, L
1998-10-01
In implementing a cross-facility initiative, the importance of planning and understanding the implications for all facilities can't be overlooked. Here's how one integrated delivery network navigated the challenges of implementing a cross-facility enterprise master patient index.
Weighted particle method for solving the Boltzmann equation
International Nuclear Information System (INIS)
Tohyama, M.; Suraud, E.
1990-01-01
We propose a new, deterministic, method of solution of the nuclear Boltzmann equation. In this Weighted Particle Method two-body collisions are treated by a Master equation for an occupation probability of each numerical particle. We apply the method to the quadrupole motion of 12 C. A comparison with usual stochastic methods is made. Advantages and disadvantages of the Weighted Particle Method are discussed
MOECSW trains master trainers and supervisors.
1995-01-01
The Ministry of Education, Culture and Social Welfare (MOECSW), as part of the Population Education Programs (formal and informal), undertook a series of training programs to upgrade the knowledge and skills of master trainers, supervisors, and resource persons. As part of the Population Education in the Formal School Sector Project (NEP/93/P01), under the Curriculum Development Centre five training courses were organized to train 220 master trainers. Under the "Three Steps Training Strategy," these 220 master trainers would teach 825 secondary school headmasters who would reach 2025 secondary school teachers. The training courses were held in Dhangadi, April 23-27, 1995; in Pokhara, April 2-7; and in Biratnagar, February 20-24. The areas covered included: 1) the pedagogical aspect of population education (content, scope, objectives, nature, teaching methodologies); 2) demography and population dynamics (composition, distribution and density, sources of population data, demographic transition, consequences and determinants of population growth); 3) family life and adolescence and human sexuality education, including acquired immunodeficiency syndrome (AIDS) education; 4) maternal and child health, and family planning; 5) environment; and 6) population policy and programs. As part of the Population Education Programme (NEP/93/P08), a Master Trainers Training Workshop was held in Makwanpur, March 26-28, 1995. These master trainers would train trainers who would train the facilitators and teachers at learning centers for adult learners under the literacy and post literacy programs. This course focused on the approaches and strategies for integrating population education in development programs, and non-formal education, adult literacy, post literacy, and out-of-school children programs. Dr. D. de Rebello and Mr. S. Hutabarat, CST Advisors on Population Education, organized the training courses and served as resource persons.
Solutions of hyperbolic equations with the CIP-BS method
International Nuclear Information System (INIS)
Utsumi, Takayuki; Koga, James; Yamagiwa, Mitsuru; Yabe, Takashi; Aoki, Takayuki
2004-01-01
In this paper, we show that a new numerical method, the Constrained Interpolation Profile - Basis Set (CIP-BS) method, can solve general hyperbolic equations efficiently. This method uses a simple polynomial basis set that is easily extendable to any desired higher-order accuracy. The interpolating profile is chosen so that the subgrid scale solution approaches the local real solution owing to the constraints from the spatial derivatives of the master equations. Then, introducing scalar products, the linear and nonlinear partial differential equations are uniquely reduced to the ordinary differential equations for values and spatial derivatives at the grid points. The method gives stable, less diffusive, and accurate results. It is successfully applied to the continuity equation, the Burgers equation, the Korteweg-de Vries equation, and one-dimensional shock tube problems. (author)
International Nuclear Information System (INIS)
Shore, B.W.
1981-01-01
The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence
46 CFR 169.817 - Master to instruct ship's company.
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Master to instruct ship's company. 169.817 Section 169.817 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations § 169.817 Master to instruct ship's company. The master shall conduct drills and give instructions as necessary to insure that al...
Prospects and Challenges in the Deliverance of Executive Masters ...
African Journals Online (AJOL)
In the recent decade Executive Masters degree programmes have become very popular deliverance in the Tanzanian higher learning institutions. ... Using The Open University of Tanzania as a case study, this article will focus on two programmes, namely; Executive Masters in Business Administration (EMBA) and Masters ...
21 CFR 314.420 - Drug master files.
2010-04-01
... the context of an application under part 312 or this part. A drug master file may contain information... incorporate by reference all or part of the contents of any drug master file in support of the submission if... information in a drug master file (except the list required under paragraph (d) of this section) is required...
48 CFR 217.7103 - Master agreements and job orders.
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Master agreements and job... SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Master Agreement for Repair and Alteration of Vessels 217.7103 Master agreements and job orders. ...
Optimal control problem for the extended Fisher–Kolmogorov equation
Indian Academy of Sciences (India)
by methods of optimal control, such as chemical engineering and vehicle ... ern optimal control theories and applied models are not only represented by .... Obviously, equation (2.5) is an ordinary differential equation and according to ODE.
Qualification of McCARD/MASTER Code System for Yonggwang Unit 4
International Nuclear Information System (INIS)
Park, Ho Jin; Shim, Hyung Jin; Joo, Han Gyu; Kim, Chang Hyo
2011-01-01
Recently, we have developed the new two-step procedure based on the Monte Carlo (MC) methods. In this procedure, one can generate the few group constants including the few-group diffusion constants by the MC method augmented by the critical spectrum, which is provided by the solution to the homogeneous 0-dimensional B1 equation. In order to examine the qualification of the few-group constants generated by MC method, we combine MASTER with McCARD to form McCARD/MASTER code system for two-step core neutronics calculations. In the fictitious PWR system problems, the core design parameters calculated by the two-step McCARD/MASTER analysis agree well with those from the direct MC calculations. In this paper, a neutronic design analysis for the initial core of Yonggwang Nuclear Unit 4 (YGN4) is conducted using McCARD/MASTER two-step procedure to examine the qualification of two group constants from McCARD in terms of a real PWR core problem. To compare with the results, the nuclear design report and measured data are chosen as the reference solutions
Sport commitment and participation in masters swimmers: the influence of coach and teammates.
Santi, Giampaolo; Bruton, Adam; Pietrantoni, Luca; Mellalieu, Stephen
2014-01-01
This study investigated how coach and teammates influence masters athletes' sport commitment, and the effect of functional and obligatory commitments on participation in masters swimming. The sample consisted of 523 masters swimmers (330 males and 193 females) aged between 22 and 83 years (M = 39.00, SD = 10.42). A bi-dimensional commitment scale was used to measure commitment dimensions and perceived influence from social agents. Structural equation modelling analysis was conducted to evaluate the influence of social agents on functional and obligatory commitments, and the predictive capabilities of the two types of commitment towards sport participation. Support provided by coach and teammates increased functional commitment, constraints from these social agents determined higher obligatory commitment, and coach constraints negatively impacted functional commitment. In addition, both commitment types predicted training participation, with functional commitment increasing participation in team training sessions, and obligatory commitment increasing the hours of individual training. The findings suggest that in order to increase participation in masters swimming teams and reduce non-supervised training, coach and teammates should exhibit a supportive attitude and avoid over expectation.
Mastering Emotions: The Emotional Politics of Slavery
Dwyer, Erin
2012-01-01
Mastering Emotions: The Emotional Politics of Slavery explores how the emotions and affective norms of the Antebellum South were conditioned upon and constructed through the institution of slavery. Though slavery is a subject wrought with emotion, there has been no focus in recent historical scholarship on the affective dimensions of slavery. Studies in the history of emotion have also largely ignored slavery. My intervention in these fields reveals the ways that both slaveholders and slaves ...
Marketing the Masters of Executive Management program
Barrera, Mark A.; Karriker, Timothy W.
2007-01-01
MBA Professional Report The purpose of this MBA project was to review the current Masters of Executive Management education curriculum at NPS. An internal analysis of the current program was conducted to fully understand the strategic goals of the program and the existing curriculum. An environmental scan of current and potential military customers was conducted to assess requirements for junior executive education and determine whether the MEM program corresponds with these requiremen...
Structural master plan of flood mitigation measures
A. Heidari
2009-01-01
Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possi...
Database Tool for Master Console Operators
Ferrell, Sean
2018-01-01
The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires highly trained and knowledgeable personnel. Master Console Operators (MCO) are currently working on familiarizing themselves with any possible scenario that they may encounter. An intern was recruited to help assist them with creating a tool to use for the process.
Tao Masters: tradition, experience and ethnography
Directory of Open Access Journals (Sweden)
José Bizerril Neto
Full Text Available In this article I analyse the performative dimension that constitutes the transmission of tradition in taoist lineage located in Brazil, from the perspective of the anthropology of experience. The idea of knowing in taoism is based on a practical notion: one knows the legacy of tradition through personal embodied experience. The very possibility of knowing is based upon a personal relation between master and apprentice, inserted on a dialogical and genealogical.
Mastering cloud computing foundations and applications programming
Buyya, Rajkumar; Selvi, SThamarai
2013-01-01
Mastering Cloud Computing is designed for undergraduate students learning to develop cloud computing applications. Tomorrow's applications won't live on a single computer but will be deployed from and reside on a virtual server, accessible anywhere, any time. Tomorrow's application developers need to understand the requirements of building apps for these virtual systems, including concurrent programming, high-performance computing, and data-intensive systems. The book introduces the principles of distributed and parallel computing underlying cloud architectures and specifical
CORPORATE STANDARD OF ICT COMPETENCE OF MASTERS
Directory of Open Access Journals (Sweden)
N. Morze
2014-06-01
Full Text Available Current labor market demand determines the modification of the system of higher education, including the transfer of emphasis on the educational process in its final qualitative result, a paradigm shift from knowledge education to competency. Student should must possess ICT competence that today has become a part of professional competence of professionals of any type. The purpose of the study is to develop standards in the ICT competence of all members of the educational process to ensure the quality of university education and the creation and subsequent implementation of educational policies of the University. The paper highlights the need to develop a corporate standard of ICT competence of masters based on UNESCO scientific approaches. It describes model, the level of ICT competence and tools for monitoring its formation in the future for today's professionals. For each of the selected three levels of ICT competence (basic, advanced and professional determined necessary knowledge and skills, talents and ideas to master. The necessary and sufficient conditions are determined for the formation of the ICT competence of masters in modern university, proffered examples of tasks and competency requirements for the personal educational electronic space for student and educational electronic space of university. Developed and approved corporate standard provides appropriate expertise contemporary specialist who meets the requirements of the labor market and will allow the graduate to be successful in today's information society.
Double degree master program: Optical Design
Bakholdin, Alexey; Kujawinska, Malgorzata; Livshits, Irina; Styk, Adam; Voznesenskaya, Anna; Ezhova, Kseniia; Ermolayeva, Elena; Ivanova, Tatiana; Romanova, Galina; Tolstoba, Nadezhda
2015-10-01
Modern tendencies of higher education require development of master programs providing achievement of learning outcomes corresponding to quickly variable job market needs. ITMO University represented by Applied and Computer Optics Department and Optical Design and Testing Laboratory jointly with Warsaw University of Technology represented by the Institute of Micromechanics and Photonics at The Faculty of Mechatronics have developed a novel international master double-degree program "Optical Design" accumulating the expertise of both universities including experienced teaching staff, educational technologies, and experimental resources. The program presents studies targeting research and professional activities in high-tech fields connected with optical and optoelectronics devices, optical engineering, numerical methods and computer technologies. This master program deals with the design of optical systems of various types, assemblies and layouts using computer modeling means; investigation of light distribution phenomena; image modeling and formation; development of optical methods for image analysis and optical metrology including optical testing, materials characterization, NDT and industrial control and monitoring. The goal of this program is training a graduate capable to solve a wide range of research and engineering tasks in optical design and metrology leading to modern manufacturing and innovation. Variability of the program structure provides its flexibility and adoption according to current job market demands and personal learning paths for each student. In addition considerable proportion of internship and research expands practical skills. Some special features of the "Optical Design" program which implements the best practices of both Universities, the challenges and lessons learnt during its realization are presented in the paper.
Stochastic analysis of complex reaction networks using binomial moment equations.
Barzel, Baruch; Biham, Ofer
2012-09-01
The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic states in such systems increases exponentially with the number of reactive species. Direct integration of the master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-based method for the analysis of stochastic reaction networks. The method is based on the recently introduced binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments are linear combinations of the ordinary moments of the probability distribution function of the population sizes of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of the binomial moment equations; to demonstrate the applicability of the moment equations for a representative set of example networks, in which stochastic effects play an important role.
Stochastic differential equations for quantum dynamics of spin-boson networks
International Nuclear Information System (INIS)
Mandt, Stephan; Sadri, Darius; Houck, Andrew A; Türeci, Hakan E
2015-01-01
A popular approach in quantum optics is to map a master equation to a stochastic differential equation, where quantum effects manifest themselves through noise terms. We generalize this approach based on the positive-P representation to systems involving spin, in particular networks or lattices of interacting spins and bosons. We test our approach on a driven dimer of spins and photons, compare it to the master equation, and predict a novel dynamic phase transition in this system. Our numerical approach has scaling advantages over existing methods, but typically requires regularization in terms of drive and dissipation. (paper)
Chemical memory reactions induced bursting dynamics in gene expression.
Tian, Tianhai
2013-01-01
Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.
Dual arm master controller for a bilateral servo-manipulator
International Nuclear Information System (INIS)
Kuban, D.P.; Perkins, G.S.
1989-01-01
A master controller for a mechanically dissimilar bilateral slave servo-manipulator is disclosed. The master controller includes a plurality of drive trains comprising a plurality of sheave arrangements and cables for controlling upper and lower degrees of master movement. The cables and sheaves of the master controller are arranged to effect kinematic duplication of the slave servo-manipulator, despite mechanical differences there between. A method for kinematically matching a master controller to a slave servo-manipulator is also disclosed. 13 figs
Model-Based Power Plant Master Control
Energy Technology Data Exchange (ETDEWEB)
Boman, Katarina; Thomas, Jean; Funkquist, Jonas
2010-08-15
The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are
Energy Technology Data Exchange (ETDEWEB)
Oro, Raquel, E-mail: raqueld@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden); Campos, Mónica, E-mail: campos@ing.uc3m.es [Department of Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés, Madrid (Spain); Hryha, Eduard, E-mail: hryha@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden); Torralba, José Manuel, E-mail: torralba@ing.uc3m.es [Department of Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés, Madrid (Spain); IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid (Spain); Nyborg, Lars, E-mail: lars.nyborg@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden)
2013-12-15
The characteristics of the metallic powder surface play a critical role in the development of strong bonds between particles during sintering, especially when introducing elements with a high affinity for oxygen. In this study, Mn and Si have been combined in a Fe–Mn–Si–C master alloy powder in order to reduce their chemical activity and prevent oxidation during the heating stage of the sintering process. However, when this master alloy powder is mixed with an iron base powder, differences in chemical activity between both components can lead to an oxygen transfer from the iron base powder to the surface of the master alloy particles. The present research is focused on studying the evolution of the master alloy particle surface during the early stages of sintering. Surface characterization by X-ray Photoelectron Spectroscopy (XPS) shows that the master alloy powder surface is mostly covered by a thin easily reducible iron oxide layer (∼ 1 nm). Mn–Si particulate oxides are found as inclusions in specific areas of the surface. Evolution of oxides during sintering was studied on green compacts containing iron powder, graphite and Fe–Mn–Si–C master alloy powder that were heat treated in vacuum (10{sup −6} mbar) at different temperatures (from 400, 600, 800 to 1000 °C) and analyzed by means of XPS. Vacuum sintering provides the necessary conditions to remove manganese and silicon oxides from the powder surface in the range of temperatures between 600 °C and 1000 °C. When sintering in vacuum, since the gaseous products from reduction processes are continuously eliminated, oxidation of master alloy particles due to oxygen transfer through the atmosphere is minimized. - Highlights: • Mn and Si were introduced in sintered steels using a master alloy powder. • Surface of the master alloy is mainly covered by an easily reducible iron oxide. • Temperature ranges for oxidation/reduction are identified. • Vacuum conditions avoid oxygen transfer to
Partial Differential Equations
1988-01-01
The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.
Equating error in observed-score equating
van der Linden, Willem J.
2006-01-01
Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of
Students’ difficulties in solving linear equation problems
Wati, S.; Fitriana, L.; Mardiyana
2018-03-01
A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.
Boundary value problems and partial differential equations
Powers, David L
2005-01-01
Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples
Setting the stage for master's level success
Roberts, Donna
Comprehensive reading, writing, research, and study skills play a critical role in a graduate student's success and ability to contribute to a field of study effectively. The literature indicated a need to support graduate student success in the areas of mentoring, navigation, as well as research and writing. The purpose of this two-phased mixed methods explanatory study was to examine factors that characterize student success at the Master's level in the fields of education, sociology and social work. The study was grounded in a transformational learning framework which focused on three levels of learning: technical knowledge, practical or communicative knowledge, and emancipatory knowledge. The study included two data collection points. Phase one consisted of a Master's Level Success questionnaire that was sent via Qualtrics to graduate level students at three colleges and universities in the Central Valley of California: a California State University campus, a University of California campus, and a private college campus. The results of the chi-square indicated that seven questionnaire items were significant with p values less than .05. Phase two in the data collection included semi-structured interview questions that resulted in three themes emerged using Dedoose software: (1) the need for more language and writing support at the Master's level, (2) the need for mentoring, especially for second-language learners, and (3) utilizing the strong influence of faculty in student success. It is recommended that institutions continually assess and strengthen their programs to meet the full range of learners and to support students to degree completion.
Mastering Microsoft Windows Small Business Server 2008
Johnson, Steven
2010-01-01
A complete, winning approach to the number one small business solution. Do you have 75 or fewer users or devices on your small-business network? Find out how to integrate everything you need for your mini-enterprise with Microsoft's new Windows Server 2008 Small Business Server, a custom collection of server and management technologies designed to help small operations run smoothly without a giant IT department. This comprehensive guide shows you how to master all SBS components as well as handle integration with other Microsoft technologies.: Focuses on Windows Server 2008 Small Business Serv
Ivan Landek, Master of Technical Sciences
Directory of Open Access Journals (Sweden)
Miljenko Lapaine
2011-06-01
Full Text Available Ivan Landek defended his master's thesis Development of Topographic Map Production at the Scale of 1:25 000 in Croatia between 1990 and 2010 at the Faculty of Geodesy, University of Zagreb on April 20, 2011. His mentor was Prof. Stanislav Frangeš, PhD. The Master’s thesis Committee for Evaluation consisted of Prof. Miljenko Lapaine, PhD, Prof. Stanislav Frangeš, PhD and Assist. Prof. Dubravko Gajski, PhD. The Committee for Defence consisted of the same members.
Mastering Windows Server 2008 Networking Foundations
Minasi, Mark; Mueller, John Paul
2011-01-01
Find in-depth coverage of general networking concepts and basic instruction on Windows Server 2008 installation and management including active directory, DNS, Windows storage, and TCP/IP and IPv4 networking basics in Mastering Windows Server 2008 Networking Foundations. One of three new books by best-selling author Mark Minasi, this guide explains what servers do, how basic networking works (IP basics and DNS/WINS basics), and the fundamentals of the under-the-hood technologies that support staff must understand. Learn how to install Windows Server 2008 and build a simple network, security co
SAS essentials mastering SAS for data analytics
Elliott, Alan C
2015-01-01
A step-by-step introduction to using SAS® statistical software as a foundational approach to data analysis and interpretation Presenting a straightforward introduction from the ground up, SAS® Essentials: Mastering SAS for Data Analytics, Second Edition illustrates SAS using hands-on learning techniques and numerous real-world examples. Keeping different experience levels in mind, the highly-qualified author team has developed the book over 20 years of teaching introductory SAS courses. Divided into two sections, the first part of the book provides an introduction to data manipulation, st
Gabor fusion master slave optical coherence tomography
DEFF Research Database (Denmark)
Cernat, Ramona; Bradu, Adrian; Israelsen, Niels Møller
2017-01-01
This paper describes the application of the Gabor filtering protocol to a Master/Slave (MS) swept source optical coherence tomography (SS)-OCT system at 1300 nm. The MS-OCT system delivers information from selected depths, a property that allows operation similar to that of a time domain OCT system......, where dynamic focusing is possible. The Gabor filtering processing following collection of multiple data from different focus positions is different from that utilized by a conventional swept source OCT system using a Fast Fourier transform (FFT) to produce an A-scan. Instead of selecting the bright...
The antioxidant master glutathione and periodontal health
Directory of Open Access Journals (Sweden)
Vivek Kumar Bains
2015-01-01
Full Text Available Glutathione, considered to be the master antioxidant (AO, is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials.
Winkelmann, Stefanie; Schütte, Christof
2017-09-01
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
Winkelmann, Stefanie; Schütte, Christof
2017-09-21
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
The master degree: A critical transition in STEM doctoral education
Lange, Sheila Edwards
The need to broaden participation in the nation's science, technology, engineering, and mathematics (STEM) undergraduate and graduate programs is currently a matter of national urgency. The small number of women and underrepresented minorities (URM) earning doctoral degrees in STEM is particularly troubling given significant increases in the number of students earning master's degrees since 1990. In the decade between 1990 and 2000, the total number of master's recipients increased by 42%. During this same time period, the number of women earning master's degrees increased by 56%, African Americans increased by 132%, American Indians by 101%, Hispanics by 146%, and Asian Americans by 117% (Syverson, 2003). Growth in underrepresented group education at the master's level raises questions about the relationship between master's and doctoral education. Secondary data analysis of the Survey of Earned Doctorates (SED) was used to examine institutional pathways to the doctorate in STEM disciplines and transitions from master's to doctoral programs by race and gender. While the study revealed no significant gender differences in pathways, compared to White and Asian American students, URM students take significantly different pathways to the doctorate. URM students are significantly more likely to earn the bachelor's, master's, and doctoral degrees at three different institutions. Their path is significantly more likely to include earning a master's degree en route to the doctorate. Further, URM students are more likely to experience transition between the master's and doctoral degrees, and the transitions are not limited to those who earn master's degrees at master's-only institutions. These findings suggest that earning a master's degree is more often a stepping stone to the doctorate for URM students. Master's degree programs, therefore, have the potential to be a valuable resource for policymakers and graduate programs seeking to increase the diversity of URM students
Implementation of a Gamification Platform in a Master Degree (Master in Economics
Directory of Open Access Journals (Sweden)
Juan Carlos Fernández-Zamora
2017-06-01
An experiment has been carried out for this reason, in which an educational platform, created in a personalized way for the students of the Master in Economics of the University of Granada, becomes the day to day of these students, yielding results and Statistics on how to improve student motivation.
Master in nuclear engineering from the UPC (Master UPC-ENDESA)
International Nuclear Information System (INIS)
Batet, L.; Duch, M. A.; Calvino, F.; Val, L. del; Fernandez-Olano, P.
2011-01-01
The new Masters in Nuclear Engineering offers the UPC is the result of the confluence of wills and synergies between different units of the Universitat Politecnica de Catalunya (UPC) and Endesa. The paper describes the objectives of the proposal along with the program and the learning methodology.
A master plan for the radwaste management
International Nuclear Information System (INIS)
Kim, Y.E.; Lee, S.H.; Lee, C.K.; Moon, S.H.; Sung, R.J.; Sung, K.W.
1983-01-01
The accumulated total amount of low-level radioactive wastes to be produced from operating power reactors and nuclear installations up until the year 2007 is estimated to 900,000 drum(approximately 200,000M 3 ). An effective master plan for the safe disposal of the wastes is necessary. Among many different disposal methods available for low-and medium-level radwastes, the engineered trench approach was chosen by an extensive feasibility study as the optimum method for Korea. Site selection, construction and commissioning of such a disposal facility are presumed to take two and a half years, beginning in July 1983. The total cost in opening the site and the unit disposal cost per drum were estimated to be 11 billion won and 40,000 won, respectively. An agency(KORDA) managing the operation of the disposal site is recommended to be established by 1987, assuming that the agency's economic feasibility can be justified by that time. When the disposal site is commissioned, a regulatory guide for ground disposal will be available, and supporting R and D work on the disposal site will be complete. Studies on the technology of radwaste treatment will continue through this period. For the longer term, staff training and future planning have been undertaken to ensure that a master plan, which can be expected to be used as a guideline for disposal of all radioactive waste arising, is fully adequate. (Author)
Experimental testing of an ABB Master application
International Nuclear Information System (INIS)
Haapanen, P.; Maskuniitty, M.; Korhonen, J.; Tuulari, E.
1995-10-01
A prototype dynamic testing harness for programmable automation systems has been specified and implemented at the Technical Research Centre of Finland (VTT). In order to get experience on the methodology and equipment for the testing of systems important to the safety of nuclear power plants, where the safety and reliability requirements often are very high, two different pilot systems have been tested. One system was an ABB Master application, which was loaned for testing from ABB Atom by Teollisuuden Voima Oy (TVO). Another system, loaned from Siemens AG (SAG) by IVO International Oy (IVO), was an application realized with SAG's digital SILT technology. The report describes the experiences gained in testing an APRM pilot system realized with ABB Master technology. The testing of the pilot application took place in the VTT Automation laboratory in Otaniemi in September-October 1994. The purpose of the testing was not to assess the quality of the pilot system, but to get experience in the testing methodology and find out the further development needs and potentials of the test methodology and equipment. (7 refs., 14 figs., 9 tabs.)
Creating a Masters in Numeracy Program
Directory of Open Access Journals (Sweden)
Eric Gaze
2010-07-01
Full Text Available The Master of Science in Numeracy program at Alfred University received full approval from the New York State Education Department (NYSED in May of 2007. This first-of-its-kind program seeks to provide teachers at all levels, from across the curriculum, the skills, and more importantly the confidence, to introduce relevant quantitative concepts in their own disciplines. Created to be a complement of the MS Ed. in Literacy, the 30-hour MS in Numeracy program consists of four required core courses (Teaching Numeracy, Teaching with Data, Assessment and Learning Theories in Numeracy, and Doing Science and Numeracy, five electives from a list of numeracy and literacy courses, and a Masters project. The program graduated its first student in May 2008 and three more since then. Major challenges for the program have included the uncertain (i.e., by-application connection between an MS and licensure (in contrast to the automatic professional certification for MS Ed. degrees and the small number of faculty involved in teaching the numeracy courses. The current status of the program is questionable as the person (the author who taught the first three core courses has left the University and has not yet been replaced. Even so, I believe this MS in Numeracy program offers a potentially useful example of a strategy to enhance the spread of QL through teacher preparation.
Master Narratives of Ukrainian Political Culture
Directory of Open Access Journals (Sweden)
Charles McGrath
2018-04-01
Full Text Available As fighting between Russian backed rebels and government forces is taking place in eastern Ukraine, it is all the more apparent the existing political divide that exists in the country. The complex history of being subjugated by surrounding countries and major resettlements of Ukrainians is testing the country in a major way. Historically, emphasis on understanding the Soviet Union was focused on the Soviet perspective — the Soviet narratives, and most recently on reemerging Russia. As a result, little attention is placed on Ukraine’s history. In order to understand the Ukrainian identity, it’s necessary to know the narratives that encompass Ukraine’s history. As freedom and liberty exemplifies American identity and ideology, the history of Ukraine also contains a system of stories that support Ukrainian culture. This paper, the first chapter of my dissertation, details the sources I’ve used to develop my methodology for understanding and analyzing narratives. As I began my research I soon realized the complexity of narratives leading me to explore the elements contained in narratives such as story, plot, character, archetypes, and the Hero’s Journey or Monomyth. I will explain how I understand the meaning of narrative and master narrative, supported by relevant sources, and conclude with the methodology I will use for analysis of the master narratives that envelope the major historical events of Ukraine
Vitamin supplementation benefits in master athletes.
Brisswalter, Jeanick; Louis, Julien
2014-03-01
Master athletes are more than 35 years of age and continue to train as hard as their young counterparts despite the aging process. All life long, they are capable of accomplishing exceptional sporting performances. For these participants in endurance events, matching energy intake and expenditure is critical to maintain health and performance. The proportions of carbohydrate, fat, and protein must be optimized to provide enough calories to sustain the energy requirements of competition or training, and for recovery. In addition, endurance athletes must include adequate vitamins and minerals in their diets to maintain healthy immune function. Vitamins and minerals may be sufficient in the diets of endurance athletes, who have a high energy intake. This would make it unnecessary to use vitamin and mineral supplements. Furthermore, one major limitation for these athletes is the management of oxidative stress, which, when in excess, can be deleterious for the organism. For individuals exposed to oxidative stress, micronutritional supplementations rich in vitamins and minerals can be also an alternative strategy. Although these supplementations are increasingly used by master athletes, very few data are available on their effects on oxidative stress, muscle recovery, and physical performance. The potential benefits of supplement use in athletes are thus questionable. Some studies indicate no benefits, while others highlight potential negative side effects of vitamin supplementation. Additional studies are warranted in order to design adapted prescriptions in antioxidant vitamins and minerals.
NASA directives master list and index
1995-01-01
This handbook sets forth in two parts, Master List of Management Directives and Index to NASA Management Directives, the following information for the guidance of users of the NASA Management Directives System. Chapter 1 contains introductory information material on how to use this handbook. Chapter 2 is a complete master list of agencywide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office or center to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA regulations published in the Code of Federal Regulations. Chapter 7 is a consolidated list of NASA regulations published in Title 14 of the Code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 8. The second part contains an in depth alphabetical index to all NASA management directives other than handbooks, most of which are indexed by titles only.
Strategies for Pursuing a Master's Degree.
Thomas, Cynthia M; McIntosh, Constance E; Mensik, Jennifer S
2016-01-01
Health care has become very complex and is in a constant state of change. As a result of the evolving change and increasing complexity, a more educated nursing workforce is needed (Dracup K. Master's nursing programs. American Association of Colleges of Nursing. 2015; Institute of Medicine. The Future of Nursing: Leading Change, Advancing Health. 2010). It is now becoming necessary for registered nurses to earn an advanced degree to work at the highest level of their practice authority (Dracup K. Master's nursing programs. American Association of Colleges of Nursing. 2015; Institute of Medicine. The Future of Nursing: Leading Change, Advancing Health. 2010.). Preparing to reenter college may be an overwhelming prospect for some registered nurses seeking an advanced degree. However, there are some simple strategies that may help sort out the many degree options, financial obligations, decisions about brick and mortar versus online learning, commitment to degree completion, and changing career paths. This article will provide the registered nurse valuable information that will assist in the exciting process of returning to college.
Dissecting microregulation of a master regulatory network
Directory of Open Access Journals (Sweden)
Kaimal Vivek
2008-02-01
Full Text Available Abstract Background The master regulator p53 tumor-suppressor protein through coordination of several downstream target genes and upstream transcription factors controls many pathways important for tumor suppression. While it has been reported that some of the p53's functions are microRNA-mediated, it is not known as to how many other microRNAs might contribute to the p53-mediated tumorigenesis. Results Here, we use bioinformatics-based integrative approach to identify and prioritize putative p53-regulated miRNAs, and unravel the miRNA-based microregulation of the p53 master regulatory network. Specifically, we identify putative microRNA regulators of a transcription factors that are upstream or downstream to p53 and b p53 interactants. The putative p53-miRs and their targets are prioritized using current knowledge of cancer biology and literature-reported cancer-miRNAs. Conclusion Our predicted p53-miRNA-gene networks strongly suggest that coordinated transcriptional and p53-miR mediated networks could be integral to tumorigenesis and the underlying processes and pathways.
Two-loop master integrals for the mixed EW-QCD virtual corrections to Drell-Yan scattering
Energy Technology Data Exchange (ETDEWEB)
Bonciani, Roberto [' ' La Sapienza' ' Univ., Rome (Italy). Dipt. di Fisica; INFN Sezione Roma (Italy); Di Vita, Stefano [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Mastrolia, Pierpaolo [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padova Univ. (Italy). Dipt. di Fisica e Astronomia; INFN Sezione di Padova (Italy); Schubert, Ulrich [Max-Planck-Institut fuer Physik, Muenchen (Germany)
2016-04-15
We present the calculation of the master integrals needed for the two-loop QCD x EW corrections to q+ anti q → l{sup -}+l{sup +} and q+ anti q{sup '} → l{sup -}+ anti ν, for massless external particles. We treat W and Z bosons as degenerate in mass. We identify three types of diagrams, according to the presence of massive internal lines: the no-mass type, the one-mass type, and the two-mass type, where all massive propagators, when occurring, contain the same mass value. We find a basis of 49 master integrals and evaluate them with the method of the differential equations. The Magnus exponential is employed to choose a set of master integrals that obeys a canonical system of differential equations. Boundary conditions are found either by matching the solutions onto simpler integrals in special kinematic configurations, or by requiring the regularity of the solution at pseudo-thresholds. The canonical master integrals are finally given as Taylor series around d=4 space-time dimensions, up to order four, with coefficients given in terms of iterated integrals, respectively up to weight four.
International Nuclear Information System (INIS)
Iimori, Yuki; Torii, Shingo
2015-01-01
Developing the analysis in http://dx.doi.org/10.1007/JHEP03(2014)044 [http://arxiv.org/abs/1312.1677] by the present authors et al., we clarify the relation between the Witten formulation and the Berkovits formulation of open superstring field theory at the level of the master action, namely the solution to the classical master equation in the Batalin-Vilkovisky formalism, which is the key for the path-integral quantization. We first scrutinize the reducibility structure, a detailed gauge structure containing the information about ghost string fields. Then, extending the condition for partial gauge fixing introduced in the above-mentioned paper to the sector of ghost string fields, we investigate the master action. We show that the reducibility structure and the master action under partial gauge fixing of the Berkovits formulation can be regarded as the regularized versions of those in the Witten formulation.
Handbook of integral equations
Polyanin, Andrei D
2008-01-01
This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.
Equations of macrotransport in reactor fuel assemblies
International Nuclear Information System (INIS)
Sorokin, A.P.; Zhukov, A.V.; Kornienko, Yu.N.; Ushakov, P.A.
1986-01-01
The rigorous statement of equations of macrotransport is obtained. These equations are bases for channel-by-channel methods of thermohydraulic calculations of reactor fuel assemblies within the scope of the model of discontinuous multiphase coolant flow (including chemical reactions); they also describe a wide range of problems on thermo-physical reactor fuel assembly justification. It has been carried out by smoothing equations of mass, momentum and enthalpy transfer in cross section of each phase of the elementary fuel assembly subchannel. The equation for cross section flows is obtaind by smoothing the equation of momentum transfer on the interphase. Interaction of phases on the channel boundary is described using the Stanton number. The conclusion is performed using the generalized equation of substance transfer. The statement of channel-by-channel method without the scope of homogeneous flow model is given
Perturbation theory for continuous stochastic equations
International Nuclear Information System (INIS)
Chechetkin, V.R.; Lutovinov, V.S.
1987-01-01
The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)
Leadership Profiling of Ocean Going Ship Masters1
Directory of Open Access Journals (Sweden)
Ioannis Theotokas
2014-12-01
This paper focuses on the ocean going ship Masters and aims at identifying their leadership profiles and understanding their attitudes and reactions in given circumstances. It analyses and discusses the results of a field study of ship officers of different nationalities employed as Masters on board ships of a leading international maritime group. Results of the research reveal that the characteristics and the competencies of ship Masters as identified using the specially developed questionnaire, are compatible with those proposed by situational leadership theories. Ship Masters seem to give priority to the people on board and their needs and try to be supportive in their decisions.
The formation of AlB2 in an Al-B master alloy
International Nuclear Information System (INIS)
Wang Xiaoming
2005-01-01
The formation of borides in an Al-3 wt.%B master alloy, produced via chemical reactions of KBF 4 and aluminium has been investigated. The chemical reactions produce boron, which dissolves into molten aluminium and subsequently forms aluminium borides. Backscattered electron imaging (BEI) of the Al-3 wt.%B master alloy under a scanning electron microscope (SEM) revealed the presence of two types of phases that contain different levels of boron. Combined with X-ray diffraction (XRD) results, the two types of phases are identified as AlB 2 on AlB 12 . This gives a direct evidence for a peritectic reaction of AlB 12 and aluminium, which produces AlB 2 . The thermodynamic properties of the reactions that may be involved are examined, and the presence of AlB 12 phase in the master alloy explained. The observed microstructure is explained according to the peritectic reaction in an Al-B phase diagram. The stability of AlB 2 and AlB 12 at lower temperature than 975 deg. C is clarified
Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations
Energy Technology Data Exchange (ETDEWEB)
Eden, Burkhard [Institut für Mathematik und Physik, Humboldt-Universität zu Berlin,Zum großen Windkanal 6, 12489 Berlin (Germany); Smirnov, Vladimir A. [Skobeltsyn Institute of Nuclear Physics, Moscow State University,119992 Moscow (Russian Federation)
2016-10-21
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.
Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations
Eden, Burkhard; Smirnov, Vladimir A.
2016-10-01
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.
Directory of Open Access Journals (Sweden)
Olaniyi Samuel Iyiola
2014-09-01
Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.
Notes on the Lumped Backward Master Equation for the Neutron Extinction/Survival Probability
Energy Technology Data Exchange (ETDEWEB)
Prinja, Anil K [Los Alamos National Laboratory
2012-07-02
The expected or mean neutron number (or density) provides an adequate characterization of the neutron population and its dynamical excursions in most neutronic applications, in particular power reactors. Fluctuations in the neutron number, originating from the inherent randomness of neutron interactions and fission neutron multiplicities, are relatively small and ignorable for operational purposes, although measurements of the variance and time correlations provide valuable diagnostic information on fundamental reactor physics parameters. However, it is well known that there exist situations of great interest and importance in which a strictly deterministic description, or even one supplemented with a knowledge of low order statistical averages (variance, correlation), provides an incomplete and very unsatisfactory description of the state of the neutron population. These situations are marked by persistent large fluctuations in the neutron number where the emergence of a deterministic phase is suppressed. Such situations are strongly stochastic and therefore unpredictable (i.e., the mean is not representative of the actual population), and can arise either by design or by accident. Examples where the stochastic behavior of neutron populations must be taken into account include: nuclear weapon single-point safety assessment; criticality excursions in spent fuel storage and in the handling of fissile solutions in fuel fabrication and reprocessing; approach to critical under suboptimal reactor start-up conditions; preinitiation in fast burst research reactors; and weak nuclear signatures in the passive detection of nuclear materials. What distinguishes strongly stochastic neutronic systems from strongly deterministic systems is that, in the former, neutron multiplication occurs in the presence of weak neutron sources, such as spontaneous fission and background (cosmic) radiation. Weak sources (in a sense that can be made quite precise) lead to well separated fission chains (a fission chain is defined as the initial source neutron and all its subsequent progeny) in which some chains are short lived while others propagate for unusually long times. Under these conditions, fission chains do not overlap strongly and this precludes the cancellation of neutron number fluctuations necessary for the mean to become established as the dominant measure of the neutron population. The fate of individual chains then plays a defining role in the evolution of the neutron population in strongly stochastic systems, and of particular interest and importance in supercritical systems is the extinction probability, defined as the probability that the neutron chain (initiating neutron and its progeny) will be extinguished at a particular time, or its complement, the time-dependent survival probability. The time-asymptotic limit of the latter, the probability of divergence, gives the probability that the neutron population will grow without bound, and is more commonly known as the probability of initiation or just POI. The ability to numerically compute these probabilities, with high accuracy and without overly restricting the underlying physics (e.g., fission neutron multiplicity, reactivity variation) is clearly essential in developing an understanding of the behavior of strongly stochastic systems.
Master environmental plan for Fort Devens, Massachusetts
Energy Technology Data Exchange (ETDEWEB)
Biang, C.A.; Peters, R.W.; Pearl, R.H.; Tsai, S.Y. (Argonne National Lab., IL (United States). Energy Systems Div.)
1991-11-01
Argonne National Laboratory has prepared a master environmental plan (MEP) for Fort Devens, Massachusetts, for the US Army Toxic and Hazardous Materials Agency. The MEP is an assessment based on environmental laws and regulations of both the federal government and the Commonwealth of Massachusetts. The MEP assess the physical and environmental status of 58 potential hazardous waste sites, including 54 study areas (SAs) that pose a potential for releasing contamination into the environment and 4 areas of concern (AOCs) that are known to have substantial contamination. For each SA or AOC, this MEP describes the known history and environment, identifies additional data needs, and proposes possible response actions. Most recommended response actions consist of environmental sampling and monitoring and other characterization studies. 74 refs., 63 figs., 50 tabs.
Anion channels: master switches of stress responses.
Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar
2012-04-01
During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.
European Master of Science in Nuclear Engineering
International Nuclear Information System (INIS)
Moons, F.; Safieh, J.; Giot, M.; Mavko, B.; Sehgal, B.R.; Schaefer, A.; Goethem, G. van; D'haeseleer, W.
2004-01-01
The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognised since a couple of years. It appears that within the European university education and training network, nuclear engineering is presently sufficiently covered, although somewhat fragmented. To take up the challenges of offering top quality, new, attractive and relevant curricula, higher education institutions should cooperate with industry, regulatory bodies and research centres, and more appropriate funding a.o. from public and private is to be re-established. More, European nuclear education and training should benefit from links with international organisations like IAEA, OECD-NEA and others, and should include world-wide cooperation with academic institutions and research centres. The European master in nuclear engineering guarantees a high quality nuclear education in Europe by means of stimulating student and instructor exchange, through mutual checks of the quality of the programmes offered, by close collaboration with renowned nuclear-research groups at universities and laboratories. The concept for a nuclear master programme consists of a solid basket of recommended basic nuclear science and engineering courses, but also contains advanced courses as well as practical training. Some of the advanced courses also serve as part of the curricula for doctoral programmes. A second important issue identified is Continued Professional Development. In order to achieve the objectives and practical goals described above, the ENEN association was formed. This international, non-profit association is be considered as a step towards a virtual European Nuclear University symbolising the active collaboration between various national institutions pursuing nuclear education. (author)
MASTER-2.0: Multi-purpose analyzer for static and transient effects of reactors
Energy Technology Data Exchange (ETDEWEB)
Cho, Byung Oh; Song, Jae Seung; Joo, Han Gyu [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-01-01
MASTER-2.0 (Multi-purpose Analyzer for Static and Transient Effects of Reactors) is a nuclear design code based on the two group diffusion theory to calculate the steady-state and transient pressurized water reactor core in a 3-dimensional Cartesian or hexagonal geometry. Its neutronics model solves the space-time dependent neutron diffusion equations with NIM(Nodal Integration Method), NEM (Nodal Expansion Method), AFEN (Analytic Function Expansion Nodal Method)/NEM Hybrid Method, NNEM (Non-linear Nodal Expansion Method) or NANM (Non-linear Analytic Nodal Method) for a Cartesian geometry and with AFEN/NEM Hybrid Method or NLFM (Non-linear Local Fine-Mesh Method) for a hexagonal one. Coarse mesh rebalancing, Krylov Subspace method and asymptotic extrapolation method are implemented to accelerate the convergence of iteration process. Master-2.0 performs microscopic depletion calculations using microscopic cross sections provided by CASMO-3 or HELIOS and also has the reconstruction capability of pin information by use of MSS-IAS (Method of Successive Smoothing with Improved Analytic Solution). For the thermal-hydraulic calculation, fuel temperature table or COBRA3-C/P model can be used selectively. In addition, MASTER-2.0 is designed to cover various PWRs including SMART as well as WH-and CE-type reactors, providing all data required in their design procedures. (author). 39 refs., 12 figs., 4 tabs.
Master-3.0: multi-purpose analyzer for static and transient effects of reactors
International Nuclear Information System (INIS)
Cho, Byung Oh; Joo, Han Gyu; Cho, Jin Young; Song, Jae Seung; Zee, Sung Quun
2002-03-01
MASTER-3.0 (Multi-purpose Analyzer for Static and Transient Effects of Reactors) is a nuclear design code based on the multi-group diffusion theory to calculate the steady-state and transient pressurized water reactor core in a 3-dimensional Cartesian or hexagonal geometry. Its neutronics model solves the space-time dependent neutron diffusion equations with NIM (Nodal Integration Method), NEM (Nodal Expansion Method), AFEN (Analytic Function Expansion Nodal Method)/NEM Hybrid Method, NNEM (Non-linear Nodal Expansion Method) or NANM (Non-linear Analytic Nodal Method) for a Cartesian geometry and with NTPEN (Non-linear Triangle-based Polynomial Expansion Nodal Method), AFEN (Analytic Function Expansion Nodal)/NEM Hybrid Method or NLFM (Non-linear Local Fine-Mesh Method) for a hexagonal one. Coarse mesh rebalancing, Krylov Subspace method, energy group restriction/prolongation method and asymptotic extrapolation method are implemented to accelerate the convergence of iteration process. MASTER-3.0 performs microscopic depletion calculations using microscopic cross sections provided by CASMO-3 or HELIOS and also has the reconstruction capability of pin information by use of MSS-IAS (Method of Successive Smoothing with Improved Analytic Solution). For the thermal-hydraulic calculation, fuel temperature table or COBRA3-C/P or MATRA model can be used selectively. In addition, MASTER-3.0 is designed to cover various PWRs including SMART as well as WH- and CE-type reactors, providing all data required in their design procedures
Energy Technology Data Exchange (ETDEWEB)
Angstmann, C.N.; Donnelly, I.C. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Henry, B.I., E-mail: B.Henry@unsw.edu.au [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Jacobs, B.A. [School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050 (South Africa); DST–NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (South Africa); Langlands, T.A.M. [Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350 (Australia); Nichols, J.A. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia)
2016-02-15
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.
Introduction to differential equations
Taylor, Michael E
2011-01-01
The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen
Uraltseva, N N
1995-01-01
This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p
Stochastic wave-function unravelling of the generalized Lindblad equation using correlated states
International Nuclear Information System (INIS)
Moodley, Mervlyn; Nsio Nzundu, T; Paul, S
2012-01-01
We perform a stochastic wave-function unravelling of the generalized Lindblad master equation using correlated states, a combination of the system state vectors and the environment population. The time-convolutionless projection operator method using correlated projection superoperators is applied to a two-state system, a qubit, that is coupled to an environment consisting of two energy bands which are both populated. These results are compared to the data obtained from Monte Carlo wave-function simulations based on the unravelling of the master equation. We also show a typical quantum trajectory and the average time evolution of the state vector on the Bloch sphere. (paper)
MD3M: The Master Data Management Maturity Model
Spruit, Marco|info:eu-repo/dai/nl/297391879; Pietzka, Katharina
2015-01-01
This research aims to assess the master data maturity of an organization. It is based on thorough literature study to derive the main concepts and best practices in master data maturity assessment. A maturity matrix relating 13 focus areas and 65 capabilities was designed and validated. Furthermore,
Aspirations for a Master's-Level Teaching Profession in England
Thomas, Lorraine
2016-01-01
This research investigates aspirations for a master's-level teaching profession in England, providing key stakeholder perceptions in one densely populated region within a multiple case study. Although this intended move to a master's-level profession represented a major shift in teachers' professional development in England, only limited…
Student Assessment of the Master of Philosophy in Information ...
African Journals Online (AJOL)
The aim of the study was to determine student assessment of the Master of Philosophy (Mphil) and Master of Science (MSc) in Information Sciences Records and Archives Management (RAM) programmes and propose recommendations to enhance the course content and structure to meet the education and market needs ...
Training Master's Thesis Supervisors within a Professional Learning Community
Fossøy, Ingrid; Haara, Frode Olav
2016-01-01
Completion of a master's degree has changed significantly from being the specific responsibility of the candidate and his/her supervisor to being the responsibility of the whole educational institution. As a consequence, we have initiated an internal training course for professional development related to the supervision of master's theses. In…
Trends in Distance Education: A Content Analysis of Master's Thesis
Durak, Gürhan; Çankaya, Serkan; Yunkul, Eyup; Urfa, Mehmet; Toprakliklioglu, Kivanç; Arda, Yagmur; Inam, Nazmiye
2017-01-01
The present study aimed at presenting the results of content analysis on Master's Theses carried out in the field of distance education at higher education level in Turkey between 1986 and 2015. A total of 285 Master's Theses were examined to determine the key words, academic disciplines, research areas, theoretical frameworks, research designs…
Denmark's Master of Public Governance Program: Assessment and Lessons Learned
Greve, Carsten; Pedersen, Anne Reff
2017-01-01
This paper focuses on Denmark's Master of Public Governance and its assessments and lessons learned. Denmark is seen to have an efficient economy and public sector, a digitalized public service delivery system, and an advanced work-life balance. The Danish government invested substantial resources into developing a Master of Public Governance…
The UK Postgraduate Masters Dissertation: An "Elusive Chameleon"?
Pilcher, Nick
2011-01-01
Many studies into the process of producing and supervising dissertations exist, yet little research into the "product" of the Masters dissertation, or into how Masters supervision changes over time exist. Drawing on 62 semi-structured interviews with 31 Maths and Computer Science supervisors over a two-year period, this paper explores…
Comparative Analysis of Master of Industrial Design Education in Turkey
Erkarslan, Onder; Imamogullari, Beril
2010-01-01
This research focused on the masters degree programme in industrial design (ID), which is research and practice oriented in the light of current themes and design principles. It argued that a masters degree in industrial design would help graduates specialise in the related field and improve their skills. Therefore, institutional and academic…
Verification and application of MASTER for load follow operation
International Nuclear Information System (INIS)
Park, Yong Soo; Cho, Byung Oh; Lee, Chang Ho; Jung, Yil Sup; Park, Chan Oh
1996-01-01
The xenon dynamics module in the nuclear design code MASTER was verified through a simulation calculation. The simulation result shows that the xenon dynamics module in MASTER can trace and predict xenon behavior with accuracy under any core transient state and therefore can simulate load follow operations
Trends in Exiting Physics Master's. Focus On
Mulvey, Patrick J.; Nicholson, Starr
2014-01-01
A physics master's degree provides the recipient with a variety of career options. Some master's recipients will continue their education at the graduate level in physics or another field, where others enter the workforce pursuing a wide range of employment opportunities. This "Focus On" provides an in-depth analysis of physics…
Counting master integrals: Integration by parts vs. differential reduction
International Nuclear Information System (INIS)
Kalmykov, Mikhail Yu.; Kniehl, Bernd A.
2011-01-01
The techniques of integration by parts and differential reduction differ in the counting of master integrals. This is illustrated using as an example the two-loop sunset diagram with on-shell kinematics. A new algebraic relation between the master integrals of the two-loop sunset diagram that does not follow from the standard integration-by-parts technique is found.
Measures for Management of Land Use Master Plan Released
Institute of Scientific and Technical Information of China (English)
Qian Fang; Li Caige
2017-01-01
On May 8,2017,the Measures for Management of Land Use Master Plan was released for enforcement by the Ministry of Land and Resources.The Measures clearly points out that a land use master plan is an essential part of the national spatial planning system and an important basis for implementing land use modes control and management,
48 CFR 217.7103-6 - Modification of master agreements.
2010-10-01
... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS... only by modifying the master agreement itself. It shall not be changed through a job order. (c) A modification to a master agreement shall not affect job orders issued before the effective date of the...
Counting master integrals. Integration by parts vs. differential reduction
International Nuclear Information System (INIS)
Kalmykov, Mikhail Yu; Kniehl, Bernd A.
2011-05-01
The techniques of integration by parts and differential reduction differ in the counting of master integrals. This is illustrated using as an example the two- loop sunset diagram with on-shell kinematics. A new algebraic relation between the master integrals of the two-loop sunset diagram that does not follow from the integration-by-parts technique is found. (orig.)
International Nuclear Information System (INIS)
Lebedev, D.R.
1979-01-01
Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown
Fractional Schroedinger equation
International Nuclear Information System (INIS)
Laskin, Nick
2002-01-01
Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations
Ordinary differential equations
Greenberg, Michael D
2014-01-01
Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps
Beginning partial differential equations
O'Neil, Peter V
2014-01-01
A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or
International Nuclear Information System (INIS)
Ichiguchi, Katsuji
1998-01-01
A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)
European Master of Science in Nuclear Engineering
International Nuclear Information System (INIS)
Moons, Frans; Safieh, Joseph; Giot, Michel; Mavko, Borut; Sehgal, Bal Raj; Schaefer, Anselm; Goethem, Georges van; D'Haeseleer, William
2005-01-01
The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognised since a couple of years. Among others, 'networking to maintain nuclear competence through education and training', was recommended in 2001 by an expert panel to the European Commission [EUR, 19150 EN, Strategic issues related to a 6th Euratom Framework Programme (2002-2006). Scientific and Technical Committee Euratom, pp. 14]. It appears that within the European University education and training framework, nuclear engineering is presently still sufficiently covered, although somewhat fragmented. However, it has been observed that several areas are at risk in the very near future including safety relevant fields such as reactor physics and nuclear thermal-hydraulics. Furthermore, in some countries deficiencies have been identified in areas such as the back-end of the nuclear fuel cycle, waste management and decommissioning. To overcome these risks and deficiencies, it is of very high importance that European countries work more closely together. Harmonisation and improvement of the nuclear education and training have to take place at an international level in order to maintain the knowledge properly and to transfer it throughout Europe for the safe and economic design, operation and dismantling of present and future nuclear systems. To take up the challenges of offering top quality, new, attractive and relevant curricula, higher education institutions should cooperate with industry, regulatory bodies and research centres, and more appropriate funding from public and private sources. In addition, European nuclear education and training should benefit from links with international organisations like IAEA, OECD-NEA and others, and should include worldwide cooperation with academic institutions and research centres. The first and central issue is to establish a European Master of Science in Nuclear Engineering. The concept envisaged is compatible with the projected harmonised European
General particle transport equation. Final report
International Nuclear Information System (INIS)
Lafi, A.Y.; Reyes, J.N. Jr.
1994-12-01
The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence
Singular stochastic differential equations
Cherny, Alexander S
2005-01-01
The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.
Chemical thermodynamics. An introduction
Energy Technology Data Exchange (ETDEWEB)
Keszei, Ernoe [Budapest Univ. (Hungary). Dept. of Physical Chemistry
2012-07-01
Eminently suitable as a required textbook comprising complete material for or an undergraduate chemistry major course in chemical thermodynamics. Clearly explains details of formal derivations that students can easily follow and so master applied mathematical operations. Offers problems and solutions at the end of each chapter for self-test and self- or group study. This course-derived undergraduate textbook provides a concise explanation of the key concepts and calculations of chemical thermodynamics. Instead of the usual 'classical' introduction, this text adopts a straightforward postulatory approach that introduces thermodynamic potentials such as entropy and energy more directly and transparently. Structured around several features to assist students' understanding, Chemical Thermodynamics: - Develops applications and methods for the ready treatment of equilibria on a sound quantitative basis. - Requires minimal background in calculus to understand the text and presents formal derivations to the student in a detailed but understandable way. - Offers end-of-chapter problems (and answers) for self-testing and review and reinforcement, of use for self- or group study. This book is suitable as essential reading for courses in a bachelor and master chemistry program and is also valuable as a reference or textbook for students of physics, biochemistry and materials science.
European master degree in nuclear engineering
International Nuclear Information System (INIS)
Ghitescu, Petre; Prisecaru, Ilie
2003-01-01
In order to preserve and to improve the quality of nuclear engineering education and training in Europe, as well to ensure the safe and economic operation of nuclear power plants, the European Nuclear Engineering Network Program (ENEN) started in 2002. It is a program aiming to establish and maintain a set of criteria for specific curricula of nuclear engineering education, in particular, for an European Master Degree in Nuclear Engineering (EMNE). The ENEN program is financed by the FP5 and has the wide support of IAEA, OECD and EU Commission departments dealing with the nuclear engineering knowledge management. The promising results up to now determined the creation of the Asian Nuclear Engineering Network (ANEN) in July 2003 and of the World Nuclear University (WNU) starting in September 2003. The paper presents the future structure of EMNE which will allow the harmonization of the curricula of the universities of Europe until the Bologna Convention will be fully accepted and operational in all European countries. The ENEN program has taken into consideration the curricula of 22 universities and research centres from 15 different European countries and proposed a feasible scheme which allows the undergraduates with a weak to strong nuclear background to continue their graduate education in the nuclear engineering field towards EMNE. As one of the contractors of this program, University 'Politehnica' of Bucharest brings its contribution and actively takes part in all activities establishing the EMNE. (author)
The gamma oscillation: master or slave?
Schroeder, Charles E; Lakatos, Peter
2009-06-01
The idea that gamma enhancement reflects a state of high neuronal excitability and synchrony, critical for active brain operations, sets gamma up as a "master" or executor process that determines whether an input is effectively integrated and an effective output is generated. However, gamma amplitude is often coupled to the phase of lower frequency delta or theta oscillations, which would make gamma a "slave" to lower frequency activity. Gamma enslavement is productive and typical during rhythmic mode brain operations; when a predictable rhythm is in play, low and mid-frequency oscillations can be entrained and their excitability fluctuations of put to work in sensory and motor functions. When there is no task relevant rhythm that the system can entrain to, low frequency oscillations become detrimental to processing. Then, a continuous (vigilance) mode of operation is implemented; the system's sensitivity is maximized by suppressing lower frequency oscillations and exploiting continuous gamma band oscillations. Each mode has costs and benefits, and the brain shifts dynamically between them in accord with task demands.
Double Star project - master science operations plan
Shen, C.; Liu, Z.
2005-11-01
For Double Star Project (DSP) exploration, the scientific operations are very important and essential for achieving its scientific objectives. Two years before the launch of the DSP satellites (TC-1 and TC-2) and during the mission operating phase, the long-term and short-term master science operations plans (MSOP) were produced. MSOP is composed of the operation schedules of all the scientific instruments, the modes and timelines of the Payload Service System on TC-1 and TC-2, and the data receiving schedules of the three ground stations. The MSOP of TC-1 and TC-2 have been generated according to the scientific objectives of DSP, the orbits of DSP, the near-Earth space environments and the coordination with Cluster, etc., so as to make full use of the exploration resources provided by DSP and to acquire as much quality scientific data as possible for the scientific communities. This paper has summarized the observation resources of DSP, the states of DSP and its evolution since the launch, the strategies and rules followed for operating the payload and utilizing the ground stations, and the production of MSOP. Until now, the generation and execution of MSOP is smooth and successful, the operating of DSP is satisfactory, and most of the scientific objectives of DSP have been fulfilled.
International Nuclear Information System (INIS)
1992-05-01
In a 'hot laboratory', manipulation is concerned with mechanical devices, controlled by a human operator and used to move or manipulate radioactive objects without direct contact. Master-slave Manipulators and Tele-tongs are devices permitting a worker on one side of the shield of a 'hotcell' or a 'gloves-box', to carry out safe laboratory operations, with radioactive materials on the other side. This instrument is used mainly for remote-manipulation purposes, that is, to handle elements, substances or equipment across a protective wall. A typical example of its use is the fractioning of radioisotopes (for medical and agricultural purposes), or the handling of toxic substances, the fractioning and/or mixing of noxious components constituting a health hazard for operators, etc. Mechanic-type manipulator and tongs usually operated in pairs, endowed with a high level of sensitivity which enables the operator, duly protected, to perform what would otherwise be hazardous and delicate tasks. INVAP manipulators are suitable for all king of installations with 'hot-cells' or 'gloves-box'. INVAP manipulators were developed to meet the problem of introducing it through the shielding wall of the 'hotcells' or 'gloves-box', without violating shielding integrity. To prevent any possibility of contamination, the telemanipulator has been lined with an airtight sheath or booting, also especially developed by INVAP for this instrument. Moreover, it has developed a special set of tools for booting- changing under perfectly safe conditions
MIDAS [Master Information and Data Acquisition System
International Nuclear Information System (INIS)
Ball, D.L.
1986-01-01
The Master Information and Data Acquisition System (MIDAS) is a computerized work control system that provides 24-hour, real-time access to plant equipment information and work package status. It is used in the 400 Area of the Department of Energy (DOE) Hanford Site in Richland, Washington. MIDAS was originally created to aid in the release and control of work at the Fast Flux Test Facility (FFTF), which is operated by the Westinghouse Hanford Company for the DOE. After MIDAS performed that function at FFTF successfully for over two years, its role was expanded to provide similar functions for other facilities supporting the LMR mission. Through its ability to provide online, accurate information on plant components, safety criteria, and work package status, MIDAS reinforces Operations functions and the control and authorization of maintenance activities in the FFTF plant and in other related facilities. Thus, MIDAS enhances the operational safety, as well as the planning and scheduling process for these facilities. MIDAS consists of three parts: The Plant Tracking System (PTS), the Work Control Log (WCL), and the MIDAS Component Indices
Structural master plan of flood mitigation measures
Directory of Open Access Journals (Sweden)
A. Heidari
2009-01-01
Full Text Available Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possibility of flood overtopping. Different flood mitigation alternatives are investigated from various aspects in the Dez and Karun river floodplain areas as a case study in south west of IRAN. The results show that detention dam and flood diversion are the best alternatives of flood mitigation methods as well as enforcing the flood control purpose of upstream multipurpose reservoirs. Dyke and levees are not mostly justifiable because of negative impact on down stream by enhancing routed flood peak discharge magnitude and flood damages as well.
NASA directives: Master list and index
1994-01-01
This Handbook sets forth in two parts the following information for the guidance of users of the NASA Management Directives System. Chapter 1 contains introductory information material on how to use this Handbook. Chapter 2 is a complete master list of Agency-wide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office of Installation to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA Handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA management directives published in the code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 7. Part B contains an in-depth alphabetical index to all NASA management directives other than Handbooks.
Coho Salmon Master Plan, Clearwater River Basin.
Energy Technology Data Exchange (ETDEWEB)
Nez Perce Tribe; FishPro
2004-10-01
The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these
Double Star project - master science operations plan
Directory of Open Access Journals (Sweden)
C. Shen
2005-11-01
Full Text Available For Double Star Project (DSP exploration, the scientific operations are very important and essential for achieving its scientific objectives. Two years before the launch of the DSP satellites (TC-1 and TC-2 and during the mission operating phase, the long-term and short-term master science operations plans (MSOP were produced. MSOP is composed of the operation schedules of all the scientific instruments, the modes and timelines of the Payload Service System on TC-1 and TC-2, and the data receiving schedules of the three ground stations. The MSOP of TC-1 and TC-2 have been generated according to the scientific objectives of DSP, the orbits of DSP, the near-Earth space environments and the coordination with Cluster, etc., so as to make full use of the exploration resources provided by DSP and to acquire as much quality scientific data as possible for the scientific communities. This paper has summarized the observation resources of DSP, the states of DSP and its evolution since the launch, the strategies and rules followed for operating the payload and utilizing the ground stations, and the production of MSOP. Until now, the generation and execution of MSOP is smooth and successful, the operating of DSP is satisfactory, and most of the scientific objectives of DSP have been fulfilled.
Shapero, Kayle; Deluca, James; Contursi, Miranda; Wasfy, Meagan; Weiner, Rory B; Lewis, Gregory D; Hutter, Adolph; Baggish, Aaron L
2016-12-01
Masters athletes (MAs), people over the age of 35 that participate in competitive sports, are a rapidly growing population that may be uniquely at risk for cardiovascular (CV) disease. The objective of this study was to develop a comprehensive clinical CV profile of MA. An electronic Internet-based survey (survey response rate = 66 %) was used to characterize a community cohort of MAs residing in Eastern Massachusetts, USA. Clinical and lifestyle factors associated with prevalent CV disease were determined using logistic regression. Among 591 MAs (66 % men, age = 50 ± 9 years) with 21.3 ± 5.5 years of competitive endurance sport exposure, at least one CV risk factor was present in 64 % including the following: family history of premature atherosclerosis (32 %), prior/current tobacco exposure (23 %), hypertension (12.0 %), and dyslipidemia (7.4 %). There was a 9 % (54/591) prevalence of established CV disease which was accounted for largely by atrial fibrillation (AF) and coronary atherosclerosis (CAD). Prevalent AF was associated with years of exercise exposure [adjusted odds ratio, OR (95 % confidence intervals); OR = 1.10 (1.06, 1.21)] and hypertension [OR = 1.05 (1.01, 1.10)] while CAD was associated with dyslipidemia [OR = 9.09 (2.40, 34.39)] and tobacco use [OR = 1.78 (1.34, 3.10)] but was independent of exercise exposure. Among MAs, AF is associated with prior exercise exposure whereas CAD is associated with typical risk factors including dyslipidemia and prior tobacco use. These findings suggest that there are numerous opportunities to improve disease prevention and clinical care in this population.
A kinetic model for chemical neurotransmission
Ramirez-Santiago, Guillermo; Martinez-Valencia, Alejandro; Fernandez de Miguel, Francisco
Recent experimental observations in presynaptic terminals at the neuromuscular junction indicate that there are stereotyped patterns of cooperativeness in the fusion of adjacent vesicles. That is, a vesicle in hemifusion process appears on the side of a fused vesicle and which is followed by another vesicle in a priming state while the next one is in a docking state. In this talk we present a kinetic model for this morphological pattern in which each vesicle state previous to the exocytosis is represented by a kinetic state. This chain states kinetic model can be analyzed by means of a Master equation whose solution is simulated with the stochastic Gillespie algorithm. With this approach we have reproduced the responses to the basal release in the absence of stimulation evoked by the electrical activity and the phenomena of facilitation and depression of neuromuscular synapses. This model offers new perspectives to understand the underlying phenomena in chemical neurotransmission based on molecular interactions that result in the cooperativity between vesicles during neurotransmitter release. DGAPA Grants IN118410 and IN200914 and Conacyt Grant 130031.
International Nuclear Information System (INIS)
Coffey, W T; Kalmykov, Yu P; Titov, S V; Mulligan, B P
2007-01-01
The quantum Brownian motion of a particle in an external potential V(x) is treated using the master equation for the Wigner distribution function W(x, p, t) in phase space (x, p). A heuristic method of determination of diffusion coefficients in the master equation is proposed. The time evolution equation so obtained contains explicit quantum correction terms up to o(ℎ 4 ) and in the classical limit, ℎ → 0, reduces to the Klein-Kramers equation. For a quantum oscillator, the method yields an evolution equation for W(x, p, t) coinciding with that of Agarwal (1971 Phys. Rev. A 4 739). In the non-inertial regime, by applying the Brinkman expansion of the momentum distribution in Weber functions (Brinkman 1956 Physica 22 29), the corresponding semiclassical Smoluchowski equation is derived. (fast track communication)
Directory of Open Access Journals (Sweden)
Chengdong Yang
2015-01-01
Full Text Available This paper addresses the exponential synchronization problem of a class of master-slave distributed parameter systems (DPSs with spatially variable coefficients and spatiotemporally variable nonlinear perturbation, modeled by a couple of semilinear parabolic partial differential equations (PDEs. With a locally Lipschitz constraint, the perturbation is a continuous function of time, space, and system state. Firstly, a sufficient condition for the robust exponential synchronization of the unforced semilinear master-slave PDE systems is investigated for all admissible nonlinear perturbations. Secondly, a robust distributed proportional-spatial derivative (P-sD state feedback controller is desired such that the closed-loop master-slave PDE systems achieve exponential synchronization. Using Lyapunov’s direct method and the technique of integration by parts, the main results of this paper are presented in terms of spatial differential linear matrix inequalities (SDLMIs. Finally, two numerical examples are provided to show the effectiveness of the proposed methods applied to the robust exponential synchronization problem of master-slave PDE systems with nonlinear perturbation.
Experience of final examination for master's degree in optical engineering
Ivanova, Tatiana; Ezhova, Kseniia; Bakholdin, Alexey; Tolstoba, Nadezhda; Romanova, Galina
2015-10-01
At the end of master program it is necessary to measure students' knowledge and competences. Master thesis is the one way, but it measure deep knowledge in quite narrow area. Another way of measure is additional final examination that includes topics from the most important courses. In Applied and Computer Optics Department of ITMO University such examination includes theoretical questions and practical tasks from several courses in one examination. Theoretical section of examination is written and second section is practical. Practical section takes place in laboratory with real equipment or with computer simulation. In the paper examples of tasks for master programs, and results of examination are presented.
Master sintering curves of two different alumina powder compacts
Directory of Open Access Journals (Sweden)
Vaclav Pouchly
2009-12-01
Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.
Data Quality- and Master Data Management - A Hospital Case.
Arthofer, Klaus; Girardi, Dominic
2017-01-01
Poor data quality prevents the analysis of data for decisions which are critical for business. It also has a negative impact on business processes. Nevertheless the maturity level of data quality- and master data management is still insufficient in many organizations nowadays. This article discusses the corresponding maturity of companies and a management cycle integrating data quality- and master data management in a case dealing with benchmarking in hospitals. In conclusion if data quality and master data are not properly managed, structured data should not be acquired in the first place due to the added expense and complexity.
International Nuclear Information System (INIS)
Zhalij, Alexander
2002-01-01
We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field
Functional equations with causal operators
Corduneanu, C
2003-01-01
Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.
Vitronectin--master controller or micromanager?
Leavesley, David I; Kashyap, Abhishek S; Croll, Tristan; Sivaramakrishnan, Manaswini; Shokoohmand, Ali; Hollier, Brett G; Upton, Zee
2013-10-01
The concept that the mammalian glycoprotein vitronectin acts as a biological 'glue' and key controller of mammalian tissue repair and remodelling activity is emerging from nearly 50 years of experimental in vitro and in vivo data. Unexpectedly, the vitronectin-knockout (VN-KO) mouse was found to be viable and to have largely normal phenotype. However, diligent observation revealed that the VN-KO animal exhibits delayed coagulation and poor wound healing. This is interpreted to indicate that VN occupies a role in the earliest events of thrombogenesis and tissue repair. VN is the foundation upon which the thrombus grows in an organised structure. In addition to sealing the wound, the thrombus also serves to protect the underlying tissue from oxidation, is a reservoir of mitogens and tissue repair mediators, and provides a provisional scaffold for the repairing tissue. In the absence of VN (e.g., VN-KO animal), this cascade is disrupted before it begins. A wide variety of biologically active species associate with VN. Although initial studies were focused on mitogens, other classes of bioactives (e.g., glycosaminoglycans and metalloproteinases) are now also known to specifically interact with VN. Although some interactions are transient, others are long-lived and often result in multi-protein complexes. Multi-protein complexes provide several advantages: prolonging molecular interactions, sustaining local concentrations, facilitating co-stimulation of cell surface receptors and thereby enhancing cellular/biological responses. We contend that these, or equivalent, multi-protein complexes facilitate VN polyfunctionality in vivo. It is also likely that many of the species demonstrated to associate with VN in vitro, also associate with VN in vivo in similar multi-protein complexes. Thus, the predominant biological function of VN is that of a master controller of the extracellular environment; informing, and possibly instructing cells 'where' to behave, 'when' to behave
Multi-diffusive nonlinear Fokker–Planck equation
International Nuclear Information System (INIS)
Ribeiro, Mauricio S; Casas, Gabriela A; Nobre, Fernando D
2017-01-01
Nonlinear Fokker–Planck equations, characterized by more than one diffusion term, have appeared recently in literature. Here, it is shown that these equations may be derived either from approximations in a master equation, or from a Langevin-type approach. An H-theorem is proven, relating these Fokker–Planck equations to an entropy composed by a sum of contributions, each of them associated with a given diffusion term. Moreover, the stationary state of the Fokker–Planck equation is shown to coincide with the equilibrium state, obtained by extremization of the entropy, in the sense that both procedures yield precisely the same equation. Due to the nonlinear character of this equation, the equilibrium probability may be obtained, in most cases, only by means of numerical approaches. Some examples are worked out, where the equilibrium probability distribution is computed for nonlinear Fokker–Planck equations presenting two diffusion terms, corresponding to an entropy characterized by a sum of two contributions. It is shown that the resulting equilibrium distribution, in general, presents a form that differs from a sum of the equilibrium distributions that maximizes each entropic contribution separately, although in some cases one may construct such a linear combination as a good approximation for the equilibrium distribution. (paper)
Partial differential equations
Evans, Lawrence C
2010-01-01
This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Differential equations for dummies
Holzner, Steven
2008-01-01
The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Directory of Open Access Journals (Sweden)
K. Banoo
1998-01-01
equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.
Solving Ordinary Differential Equations
Krogh, F. T.
1987-01-01
Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.
Reactimeter dispersion equation
A.G. Yuferov
2016-01-01
The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...
Differential equations I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.
From master slave interferometry to complex master slave interferometry: theoretical work
Rivet, Sylvain; Bradu, Adrian; Maria, Michael; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian
2018-03-01
A general theoretical framework is described to obtain the advantages and the drawbacks of two novel Fourier Domain Optical Coherence Tomography (OCT) methods denoted as Master/Slave Interferometry (MSI) and its extension denoted as Complex Master/Slave Interferometry (CMSI). Instead of linearizing the digital data representing the channeled spectrum before a Fourier transform can be applied to it (as in OCT standard methods), channeled spectrum is decomposed on the basis of local oscillations. This replaces the need for linearization, generally time consuming, before any calculation of the depth profile in the range of interest. In this model two functions, g and h, are introduced. The function g describes the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time. The function h describes the dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MSI method. The paper details the steps to obtain the functions g and h, and represents the CMSI in a matrix formulation that enables to implement easily this method in LabVIEW by using parallel programming with multi-cores.
International Nuclear Information System (INIS)
Laenen, E.
1995-01-01
We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)
Compact 2050 nm Semiconductor Diode Laser Master Oscillator, Phase I
National Aeronautics and Space Administration — This Phase I effort seeks to develop DFB laser master oscillators at the novel wavelength of 12050 nm. Two prototypes will be built, tested, and delivered ....
21 CFR 820.181 - Device master record.
2010-04-01
..., component specifications, and software specifications; (b) Production process specifications including the... DEVICES QUALITY SYSTEM REGULATION Records § 820.181 Device master record. Each manufacturer shall maintain... specifications; (c) Quality assurance procedures and specifications including acceptance criteria and the quality...
Map of important transactions and master data in SAP ERP
Schermann, Michael
2015-01-01
This image represents the most important transactions and master data in SAP ERP as a tube map. As such, it covers most of the content of Magal & Word (2012) Integrated Business Processes with ERP Systems. Wiley, Hoboken, NJ, USA.
Developing Scientific Index System of Urban Master Planning
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>Master plan is the fundamental basis for urban construction and administration, an important public policy of the govern-ments, as well as an overall, comprehen-sive, and strategic task related to politics, economy,
Master Training in Radiological Protection Facilities Radioactive and Nuclear
International Nuclear Information System (INIS)
Verdu, G.; Mayo, P.; Campayo, J. M.
2011-01-01
The master includes general aspects of radiation protection in nuclear facilities. also an advanced module to acquire a high level training highlights as nuclear decommissioning, shielding calculation using advanced codes, particle accelerators, international law, etc.
Remote Excavation of Heavily Contaminated UXO Sites. The Range Master
National Research Council Canada - National Science Library
Crandall, Alan L
2007-01-01
USA Environmental, Inc., and Timberline Environmental Services, Inc., developed the Range Master, a remote controlled scraper with an integrated power screen, to excavate and sift the top 12 inches of heavily contaminated UXO sites...
"Master i Margarita" - teatralnõi roman? / Susanna Witt
Witt, Susanna
1998-01-01
Bibl. lk. 316. Kokkuvõte inglise k. "Master and Margarita - a theatrical novel?". ""Meister ja Margarita" - teatriromaan?". Mihhail Bulgakovi romaani "Meister ja Margarita" kahene struktuur ja ukraina rahvuslik nukuteater vertep
Master-slave robotic system for needle indentation and insertion.
Shin, Jaehyun; Zhong, Yongmin; Gu, Chengfan
2017-12-01
Bilateral control of a master-slave robotic system is a challenging issue in robotic-assisted minimally invasive surgery. It requires the knowledge on contact interaction between a surgical (slave) robot and soft tissues. This paper presents a master-slave robotic system for needle indentation and insertion. This master-slave robotic system is able to characterize the contact interaction between the robotic needle and soft tissues. A bilateral controller is implemented using a linear motor for robotic needle indentation and insertion. A new nonlinear state observer is developed to online monitor the contact interaction with soft tissues. Experimental results demonstrate the efficacy of the proposed master-slave robotic system for robotic needle indentation and needle insertion.
Development of copper bromide laser master oscillator power ...
Indian Academy of Sciences (India)
2014-02-09
Feb 9, 2014 ... Development of master oscillator power amplifier (MOPA) system of copper bromide laser (CBL) operating at ... The spectral distribution of power at .... It is evident from the voltage waveforms that the breakdown voltage drops.
[MODERN EDUCATIONAL TECHNOLOGY MASTERING PRACTICAL SKILLS OF GENERAL PRACTITIONERS].
Kovalchuk, L I; Prokopchuk, Y V; Naydyonova, O V
2015-01-01
The article presents the experience of postgraduate training of general practitioners--family medicine. Identified current trends, forms and methods of pedagogical innovations that enhance the quality of learning and mastering the practical skills of primary professionals providing care.
International Nuclear Information System (INIS)
Kalmykov, Mikhail Yu.; Kniehl, Bernd A.
2012-05-01
We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.
ON PARTIAL DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH SYMMETRIES DEPENDING ON ARBITRARY FUNCTIONS
Directory of Open Access Journals (Sweden)
Giorgio Gubbiotti
2016-06-01
Full Text Available In this note we present some ideas on when Lie symmetries, both point and generalized, can depend on arbitrary functions. We show a few examples, both in partial differential and partial difference equations where this happens. Moreover we show that the infinitesimal generators of generalized symmetries depending on arbitrary functions, both for continuous and discrete equations, effectively play the role of master symmetries.
Relevance Evaluation of a Master's Degree in Engineering in Peru
Miñán Ubillús, Erick Alexander; Díaz Puente, José
2012-01-01
A good engineering education has a direct impact on competitiveness and the development of a country. In the context of the increase and diversification of higher education, it is necessary to ensure not only the quality, but also the relevance of master?s programs in engineering; that is, to say the appropriateness of objectives and results to the needs and interests (national and regional) of program beneficiaries. After a literature review and interviews with experts, one should propose a ...
The revision of the master's curiculm at Osaka Kyoiku University
赤松, 喜久; 伊藤, 敏雄
2007-01-01
The background covering the revision of the master's curriculum and a point concerning this revision in a teacher-training program at Osaka Kyoiku University are explained in this paper. Furthermore, future problems are organized and evaluated. The paper will help us to consider the revision of the curriculum expected as part of the master's course in a teacher's program. The number of required subjects is minimal so that a student may take more optional subjects to meet various needs. New su...
Control of 4-DOF MR haptic master for medical application
Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok
2014-03-01
In this work, magnetorheological (MR) based haptic master for robot-assisted minimally invasive surgery (RMIS) is proposed and analyzed. Using a controllable MR fluid, the masters can generate a reflection force with the 4-DOF motion. The proposed master consists of two actuators: MR clutch featuring gimbal mechanism for 2-DOF rotational motion (X and Y axes) and MR clutch attached at gripper of gimbal structures for 1-DOF rotational motion (Z axis) and 1-DOF translational motion. After analyzing the dynamic motion by integrating mechanical and physical properties of the actuators, torque model of the proposed haptic master is derived. For realization of master-slave system, an encoder which can measure position information is integrated with the MR haptic master. In the RMIS system, the measured position is converted as a command signal and sent to the slave robot. In this work, slave and organ of patient are modeled in virtual space. In order to embody a human organ into virtual space, a volumetric deformable object is mathematically formulated by a shape retaining chain linked (S-chain) model. Accordingly, the haptic architecture is established by incorporating the virtual slave with the master device in which the reflection force and desired position originated from the object of the virtual slave and operator of the master, respectively, are transferred to each other. In order to achieve the desired force trajectories, a proportional-integral-derivative (PID) controller is designed and implemented. It has been demonstrated that the effective tracking control performance for the desired motion of reflection force is well presented in time domain.
Society of Archaeological Masters Students Annual Conference V
Directory of Open Access Journals (Sweden)
Nicole Barber
2017-10-01
Full Text Available The Society of Archaeological Masters Students Conference is an opportunity for UCL Institute of Archaeology masters students to present their research. This year’s conference included papers from MA Cultural Heritage Studies, MSc Bioarchaeology and Forensic Anthropology, MSc Archaeological Science: Technology and Materials, and MSc Palaeoanthropology and Palaeolithic Archaeology students. The event sparked discussion between students from all areas of the department, and showcased the impressive range of research currently undertaken at the Institute of Archaeology.
Oil and gas field code master list, 1993
Energy Technology Data Exchange (ETDEWEB)
1993-12-16
This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.
Misterchef? Cooks, Chefs and Gender in MasterChef Australia
Herkes Ellen; Redden Guy
2017-01-01
MasterChef Australia is the most popular television series in Australian history. It gives a wide range of ordinary people the chance to show they can master culinary arts to a professional standard. Through content and textual analysis of seven seasons of the show this article examines gendered patterns in its representation of participants and culinary professionals. Women are often depicted as home cooks by inclination while the figure of the professional chef remains almost exclusively ma...
Master Clock and Time-Signal-Distribution System
Tjoelker, Robert; Calhoun, Malcolm; Kuhnle, Paul; Sydnor, Richard; Lauf, John
2007-01-01
A timing system comprising an electronic master clock and a subsystem for distributing time signals from the master clock to end users is undergoing development to satisfy anticipated timing requirements of NASA s Deep Space Network (DSN) for the next 20 to 30 years. This system has a modular, flexible, expandable architecture that is easier to operate and maintain than the present frequency and timing subsystem (FTS).
Dual arm master controller concept: consolidated fuel reprocessing program
International Nuclear Information System (INIS)
Kuban, D.P.; Perkins, G.S.
1984-04-01
The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features result in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures
MASTER: bright PSN in 2MASS galaxy or AGN flare
Tiurina, N.; Lipunov, V.; Buckley, D.; Kornilov, V.; Gorbovskov, E.; Vladimirov, V.; Kuznetsov, A.
2018-03-01
MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net",Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 15h 08m 03.15s -27d 01m 55.0s on 2018-03-18 01:43:02.836 UT. The OT unfiltered magnitude is 17.1m (limit 20.1m).
Revisiting the Master-Signifier, or, Mandela and Repression.
Hook, Derek; Vanheule, Stijn
2015-01-01
The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or "empty") signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents.
Surgical bedside master console for neurosurgical robotic system.
Arata, Jumpei; Kenmotsu, Hajime; Takagi, Motoki; Hori, Tatsuya; Miyagi, Takahiro; Fujimoto, Hideo; Kajita, Yasukazu; Hayashi, Yuichiro; Chinzei, Kiyoyuki; Hashizume, Makoto
2013-01-01
We are currently developing a neurosurgical robotic system that facilitates access to residual tumors and improves brain tumor removal surgical outcomes. The system combines conventional and robotic surgery allowing for a quick conversion between the procedures. This concept requires a new master console that can be positioned at the surgical bedside and be sterilized. The master console was developed using new technologies, such as a parallel mechanism and pneumatic sensors. The parallel mechanism is a purely passive 5-DOF (degrees of freedom) joystick based on the author's haptic research. The parallel mechanism enables motion input of conventional brain tumor removal surgery with a compact, intuitive interface that can be used in a conventional surgical environment. In addition, the pneumatic sensors implemented on the mechanism provide an intuitive interface and electrically isolate the tool parts from the mechanism so they can be easily sterilized. The 5-DOF parallel mechanism is compact (17 cm width, 19cm depth, and 15cm height), provides a 505,050 mm and 90° workspace and is highly backdrivable (0.27N of resistance force representing the surgical motion). The evaluation tests revealed that the pneumatic sensors can properly measure the suction strength, grasping force, and hand contact. In addition, an installability test showed that the master console can be used in a conventional surgical environment. The proposed master console design was shown to be feasible for operative neurosurgery based on comprehensive testing. This master console is currently being tested for master-slave control with a surgical robotic system.
Revisiting the master-signifier, or, Mandela and repression
Directory of Open Access Journals (Sweden)
Derek eHook
2016-01-01
Full Text Available The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual psychical economy. The popularity of the concept of the master (or ‘empty’ signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is as much the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents.
... care Kids’ zone Video library Find a dermatologist Chemical peels Overview Chemical peels: Overview Also called chemexfoliation , derma peeling Do ... Overview Chemical peels: FAQs Chemical peels: Preparation FAQs Chemical peels: FAQs To help you decide whether this ...
Whole system chemical geothermometry
International Nuclear Information System (INIS)
Pang Zhonghe
1999-01-01
Chemical and isotopic geothermometers are equations or models based on temperature dependent chemical reactions or isotope equilibrium fractionation reactions from which equilibrium temperatures of these reactions can be calculated. The major drawback of all the conventional geothermometry methods lies in their incapability on making a judgement on the equilibrium status of the studied systems. This review will focus on two of recent approaches in this field. Zhangzhou Geothermal Field in SE China will be used as an example to demonstrate the applications
Entropy methods for diffusive partial differential equations
Jüngel, Ansgar
2016-01-01
This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
TWRS Privatization Phase 1 Master Site Plan
International Nuclear Information System (INIS)
PARAZIN, R.J.
1999-01-01
The U.S. Department of Energy (DOE) has chosen to accomplish the Tank Waste Remediation System disposal mission via privatization. The disposal mission has been divided into two privatization phases. Phase I, a 'proof of concept' phase, will establish and demonstrate the technical, commercial, and procurement capabilities necessary far privatization to proceed. Once established, privatization will be expanded in the form of a second phase (Phase II) to dispose of the remainder of the tank waste. In conjunction with preparation of the Tank Waste Remediation System (TWRS) Privatization Request for Proposals (RFP)(RL, 1996), a location was selected for the Phase I demonstration facilities (Shord, 1996). The location selected was the area previously developed and characterized for the Grout Disposal Site, adjoining the 200 East Area. The site is of sufficient size for a Private Contractor (PC) to carry out pretreatment, immobilization, and vitrification operations and possesses the required characteristics (e.g., close to feed tanks) to best facilitate the Phase I operations. This overall long-range Master Site Plan (MSP) has been developed to establish a ''baseline'' for the (TWRS) Privatization Phase I (TPPI) PC Site. The MSP depicts the planned layout for the PC Site along with various interfaces between the site and other Hanford utilities and functions. The complete integration of TPPl MSP with overall Hanford Site planning process will assist in establishing the PC site and the necessary priorities to meet the Hanford cleanup mission. The MSP has been developed systematically into a comprehensive, safe, flexible, logical and cost-effective plan. The general philosophy behind the preparation of a MSP for the TPPl program is that it will serve as a single source documentation of the planning for the development of the TPPl complex. The effort will plan temporary and permanent land use, utilities, and traffic flow for the overall program. It will identify needs
European Master Programs in Nanoelectronics and Microsystems
DEFF Research Database (Denmark)
Bruun, Erik; Demarchi, Danilo; Nielsen, Ivan Ring
2014-01-01
and non-electronic devices (such as bio-devices or chemical devices), and possibilities for developing fundamentally new nanoscale electronic devices. This development is often described in terms of technology roadmaps related to Moore's law. Engineering curricula taking this development into account have...... been around for a number of years. This paper presents an overview of present European programs in nanoelectronics and Microsystems. Also, the services provided for universities by the EuroTraining program1 are described....
National Research Council Canada - National Science Library
Grubb, G
2001-01-01
...) program to develop a master plan of continuous improvement. Research source materials included policies, training courseware, evaluation guides, research papers and reports, and assessment summaries of operational trend data...
Manca, V.; Salibra, A.; Scollo, Giuseppe
1990-01-01
Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either
Alternative equations of gravitation
International Nuclear Information System (INIS)
Pinto Neto, N.
1983-01-01
It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt
Energy Technology Data Exchange (ETDEWEB)
Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies
1993-11-01
A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.
International Nuclear Information System (INIS)
Yagi, M.; Horton, W.
1993-11-01
A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0
International Nuclear Information System (INIS)
Yagi, M.; Horton, W.
1994-01-01
A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation
African Journals Online (AJOL)
The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...
M. Hazewinkel (Michiel)
1995-01-01
textabstractDedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an
The generalized Fermat equation
Beukers, F.
2006-01-01
This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would happen if the exponents in the three term equation would be chosen differently. Or if coefficients other than 1 would
Applied partial differential equations
Logan, J David
2004-01-01
This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...
Lessons learned from a great master!
Directory of Open Access Journals (Sweden)
Wagner Seixas da Silva
2015-06-01
critical thinking as early as the their first semester was something revolutionary and very attractive. This teaching strategy was so well accepted that was common to find either students who had already approved the course of Biochemistry or students attending advanced semesters returning to attend the class and to see the beloved teacher once again! In class it was possible to both discuss biochemistry and learn history! To have the classroom invaded by "actors" playing the judgment and beheading of Antoine-Laurent Lavoisier over 100 years after his death while discussing his experiments caused a whirlwind of emotions in the students. This was important to sensitize them to the challenges experienced by renowned scientists who paid with their lives to defend their ideas. Thus, students became protagonists of story and the biochemistry classes more interesting and challenging. This challenge was shared by the "actors", who actually were students of the Biological Chemistry program sharing the classroom with the great master. For these graduate students, it was an experience where they raised awareness of the importance of dedication to the teaching of Sciences.Prof. de Meis’ speech where he stated no one owns the truth or all knowledge was another point closing the relationship with the undergraduate students. In the modern world it is nearly impossible to keep yourself up to date, so we ended up specializing in something. De Meis used to cause some perplexity among the students by showing a picture with all copies of a single reputable scientific journal in the biochemistry field published over a year. Surprisingly, this stack of magazines was 1.5 meters tall! Could you imagine that all recent knowledge in biochemistry is compiled in few pages of a textbook? de Meis, then, revealed that we do not know everything, but we do need to learn how to interpret new facts, a new experiment, a new concept, a new technique, a new discovery. We need to develop critical thinking to
40 CFR 710.26 - Chemical substances for which information is not required.
2010-07-01
... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS 2002 Inventory Update Reporting... Inventory or in the Master Inventory File, where the asterisk (*) indicates that any sets of characters may... 1985 edition of the Inventory or the Master Inventory File as siloxane and silicone, silsesquioxane, a...
Acuff, Joni Boyd; Hirak, Brent; Nangah, Mary
2012-01-01
The consequence of narratives becoming stagnant or controlled is that they become a Master Narrative. The Master Narrative is an "ideological script that is being imposed by the people in authority on everybody else: The Master Fiction... history" (Moyers, 1990, para. 4). Master Narratives use myths and ideologies to sustain a sanitized version of…
21 CFR 225.102 - Master record file and production records.
2010-04-01
... or production run of medicated feed to which it pertains. The Master Record File or card shall... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Master record file and production records. 225.102....102 Master record file and production records. (a) The Master Record File provides the complete...
Mixtures Equation Pilot Program to Reduce Animal Testing
EPA is announcing the start of a pilot program to evaluate the usefulness and acceptability of a mathematical tool (the GHS Mixtures Equation), which is used in the Globally Harmonized System of Classification and Labeling of Chemicals (GHS).
Hyperbolic partial differential equations
Witten, Matthew
1986-01-01
Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M
Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning
2001-01-01
Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which
Differential equations problem solver
Arterburn, David R
2012-01-01
REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and
Supersymmetric quasipotential equations
International Nuclear Information System (INIS)
Zaikov, R.P.
1981-01-01
A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru