WorldWideScience

Sample records for chemical manufacturing facility

  1. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  2. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  3. Performance optimization of biological waste treatment by flotation clarification at a chemical manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Kerecz, B.J. [Air Products and Chemicals, Inc., Allentown, PA (United States); Miller, D.R. [Komline-Sanderson, Peapack, NJ (United States)

    1995-12-31

    Air Products and Chemicals, Inc., utilizes a deep-tank activated sludge wastewater treatment system with a dissolved air flotation clarifier (DAF) to effectively treat amine wastes containing residual organics, ammonia-nitrogen and organic nitrogen. The bio-system, a deep tank aeration system, produces a high quality final effluent low in biochemical oxygen demand (BOD), ammonia and organic nitrogen, turbidity and total suspended solids. Prior to installing the DAF, treatment performance was at risk with a gravity clarifier. Waste treatment performance was jeopardized by poor settling bio-flocs and uncontrollable solids-liquid separation problems within the gravity clarifier. The solids settleability problems resulted primarily from mixed liquor nitrogen supersaturation degassing in the clarifier. As a result of the degassing, biomass floated on the gravity clarifier or overflowed the effluent weir. As a result of biomass loss periodically organic carbon and total Kjeldahl nitrogen loadings had to be reduced in order to maintain optimal food-to-mass ratios. As biomass levels dropped within the aeration basin, waste treatment performance was at risk and waste loads had to be decreased causing waste inventories to increase in storage tanks.

  4. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  5. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  6. Tier II Chemical Storage Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities that store hazardous chemicals above certain quantities must submit an annual emergency and hazardous chemical inventory on a Tier II form. This is a...

  7. A modern depleted uranium manufacturing facility

    International Nuclear Information System (INIS)

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980's, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality

  8. Dispatching capacity in manufacturing facility offshoring

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Knudsen, Mette Præst

    2010-01-01

    This paper investigates how a dispatching capacity of motivation, relational dynamics and structures seen from the sending context influence the entire knowledge transfer process in manufacturing facility offshoring. An inductive and qualitative approach is taken and five main themes are derived...

  9. Chemical Manufacturers, Importers, and Exporters: Frequent Questions

    Science.gov (United States)

    Chemical manufacturers, importers, and exporters are required to operate within a system of allowances. This information will help those in the chemical industry understand their role in the phaseout of HCFCs in the United States.

  10. Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.

    Science.gov (United States)

    Garcia, Fernando A; Vandiver, Michael W

    2017-01-01

    In order to operate profitably under different product demand scenarios, biopharmaceutical companies must design their facilities with mass output flexibility in mind. Traditional biologics manufacturing technologies pose operational challenges in this regard due to their high costs and slow equipment turnaround times, restricting the types of products and mass quantities that can be processed. Modern plant design, however, has facilitated the development of lean and efficient bioprocessing facilities through footprint reduction and adoption of disposable and continuous manufacturing technologies. These development efforts have proven to be crucial in seeking to drastically reduce the high costs typically associated with the manufacturing of recombinant proteins. In this work, mathematical modeling is used to optimize annual production schedules for a single-product commercial facility operating with a continuous upstream and discrete batch downstream platform. Utilizing cell culture duration and volumetric productivity as process variables in the model, and annual plant throughput as the optimization objective, 3-D surface plots are created to understand the effect of process and facility design on expected mass output. The model shows that once a plant has been fully debottlenecked it is capable of processing well over a metric ton of product per year. Moreover, the analysis helped to uncover a major limiting constraint on plant performance, the stability of the neutralized viral inactivated pool, which may indicate that this should be a focus of attention during future process development efforts. LAY ABSTRACT: Biopharmaceutical process modeling can be used to design and optimize manufacturing facilities and help companies achieve a predetermined set of goals. One way to perform optimization is by making the most efficient use of process equipment in order to minimize the expenditure of capital, labor and plant resources. To that end, this paper introduces a

  11. Dispatching capacity in manufacturing facility offshoring

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Knudsen, Mette Præst

    2010-01-01

    This paper investigates how a dispatching capacity of motivation, relational dynamics and structures seen from the sending context influence the entire knowledge transfer process in manufacturing facility offshoring. An inductive and qualitative approach is taken and five main themes are derived...... from the four empirical cases. In the discussion, the five themes i.e. extra tasks, previous experiences, involvement of all groups of employees, teaching skills and organizational support in the dispatching context are linked with a theoretical model leading to the identification of seven testable...

  12. Nonterrestrial utilization of materials: Automated space manufacturing facility

    Science.gov (United States)

    1982-01-01

    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility.

  13. 77 FR 48992 - Tobacco Product Manufacturing Facility Visits

    Science.gov (United States)

    2012-08-15

    ... Manufacturing Facility Visits to submit requests to CTP. DATES: Submit either an electronic or written request... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0853] Tobacco Product Manufacturing Facility Visits AGENCY: Food and Drug Administration, HHS. ACTION: Notice...

  14. Establishing a LEU MTR fuel manufacturing facility in South Africa

    International Nuclear Information System (INIS)

    Jamie, R.W.; Kocher, A.

    2010-01-01

    The South African MTR Fuel Manufacturing Facility was established in the 1970's to supply SAFARI-1 with Fuel Elements and Control Rods. South African capability was developed in parallel with the uranium enrichment program to meet the needs of the Reactor. Further to the July 2005 decision by the South African Governmnent to convert both SAFARI-1 and the Fuel Plant to LEU, the SAFARI-1 phase has been successfully completed and Necsa has commenced with the conversion of the MTR Fuel Manufacturing Facility. In order to establish, validate and qualify the facility, Necsa has entered into a co-operation and technology transfer agreement with AREVA CERCA, the French manufacturer of Research Reactor fuel elements. Past experiences, conversion challenges and the status of the MTR Fuel Facility Project are discussed. On-going co-operation with AREVA CERCA to implement the local manufacture of LEU fuel is explained and elaborated on. (author)

  15. 77 FR 4522 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Science.gov (United States)

    2012-01-30

    ... Pesticides Manufacturing, Cyclic Crude and Intermediate Production, Industrial Inorganic Chemical Manufacturing, Industrial Organic Chemical Manufacturing, Inorganic Pigments Manufacturing, Miscellaneous Organic Chemical Manufacturing, Plastic Materials and Resins Manufacturing, Pharmaceutical Production and...

  16. Chemical Transfer (Single Small-Scale) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Chemical Transfer Facility (CTF)  is the only U.S. single small-scale  facility, a single repository for the Army’s...

  17. Carbon Fiber Manufacturing Facility Siting and Policy Considerations: International Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Samuel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-21

    Carbon fiber is increasingly used in a wide variety of applications due largely to its superior material properties such as high strength-to-weight ratio. The current global carbon fiber manufacturing industry is predominately located in China, Europe, Japan, and the United States. The carbon fiber market is expected to expand significantly through 2024 and to require additional manufacturing capacity to meet demand. Carbon fiber manufacturing facilities can offer significant economic development and employment opportunities as exemplified by the $1 billion investment and 500 jobs expected at a new Toray plant in Moore, South Carolina. Though the market is expected to expand, it is unclear where new manufacturing facilities will locate to meet demand. This uncertainty stems from the lack of research evaluating how different nations with significant carbon fiber manufacturing capacity compare as it relates to certain manufacturing facility siting factors such as costs of labor and energy as well as policy directed at supporting carbon fiber development, domestic deployment, and exports. This report fills these gaps by evaluating the top carbon fiber manufacturing countries, including China, European Union countries, Japan, Mexico, South Korea, Taiwan, and the United States. The report documents how the United States compares to these countries based on a range of manufacturing siting considerations and existing policies related to carbon fiber. It concludes with a discussion of various policy options the United States could adopt to both (1) increase the competitiveness of the United States as it relates to attracting new carbon fiber manufacturing and (2) foster broader end-use markets for deployment.

  18. Vulnerability assessment of chemical industry facilities in South Korea based on the chemical accident history

    Science.gov (United States)

    Heo, S.; Lee, W. K.; Jong-Ryeul, S.; Kim, M. I.

    2016-12-01

    The use of chemical compounds are keep increasing because of their use in manufacturing industry. Chemical accident is growing as the consequence of the chemical use increment. Devastating damages from chemical accidents are far enough to aware people's cautious about the risk of the chemical accident. In South Korea, Gumi Hydrofluoric acid leaking accident triggered the importance of risk management and emphasized the preventing the accident over the damage reducing process after the accident occurs. Gumi accident encouraged the government data base construction relate to the chemical accident. As the result of this effort Chemical Safety-Clearing-house (CSC) have started to record the chemical accident information and damages according to the Harmful Chemical Substance Control Act (HCSC). CSC provide details information about the chemical accidents from 2002 to present. The detail informations are including title of company, address, business type, accident dates, accident types, accident chemical compounds, human damages inside of the chemical industry facilities, human damage outside of the chemical industry facilities, financial damages inside of the chemical industry facilities, and financial damages outside of the chemical industry facilities, environmental damages and response to the chemical accident. Collected the chemical accident history of South Korea from 2002 to 2015 and provide the spatial information to the each accident records based on their address. With the spatial information, compute the data on ArcGIS for the spatial-temporal analysis. The spatial-temporal information of chemical accident is organized by the chemical accident types, damages, and damages on environment and conduct the spatial proximity with local community and environmental receptors. Find the chemical accident vulnerable area of South Korea from 2002 to 2015 and add the vulnerable area of total period to examine the historically vulnerable area from the chemical accident in

  19. TSCA Chemical Data Reporting Fact Sheet: Toll Manufacturing

    Science.gov (United States)

    This fact sheet provides information on existing Chemical Data Reporting (CDR) regulations to persons who are involved in toll manufacturing of chemical substances which may be subject to the CDR rule.

  20. A Summary of the Manufacture of Important Inorganic Chemicals.

    Science.gov (United States)

    Chenier, Philip J.

    1983-01-01

    Manufacture, properties, uses, and economic aspects of inorganic chemicals are discussed in an industrial chemistry course. Provided and discussed is a flowchart used in the course. The flowchart is a logical method of presenting the important features of inorganic chemicals and a summarizing their method of manufacture. (JN)

  1. News: Good chemical manufacturing process criteria

    Science.gov (United States)

    This news column covers topics relating to manufacturing criteria, machine to machine technology, novel process windows, green chemistry indices, business resilience, immobilized enzymes, and Bt crops.

  2. Biological and Chemical Impact to Educational Facilities.

    Science.gov (United States)

    Manicone, Santo

    2002-01-01

    Discusses preparing an educational facility to address the threat of biological or chemical terrorism, including understanding the potential impact, implementing information and communication systems, and improving medical surveillance and awareness. (EV)

  3. 78 FR 16698 - Chemical Facility Anti-Terrorism Standards (CFATS) Chemical-Terrorism Vulnerability Information...

    Science.gov (United States)

    2013-03-18

    ... SECURITY Chemical Facility Anti-Terrorism Standards (CFATS) Chemical- Terrorism Vulnerability Information... Collection Request, Chemical Facility Anti- Terrorism Standards (CFATS) Chemical-terrorism Vulnerability... chemical facilities. On April 9, 2007, the Department issued an Interim Final Rule (IFR), implementing this...

  4. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  5. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  6. Dissolved air flotation primary clarifier improves performance of biological waste treatment at a latex manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.R.; Kerecz, B.J.; Davis, M.N.

    1996-12-31

    Air Products and Chemicals, Inc. operates a chemical manufacturing facility in Piedmont, SC which generates a high strength COD emulsion wastewater from latex manufacturing. The on-site wastewater treatment facility consisted of flow equalization, activated sludge treatment and gravity clarification. The inability of the biological system to assimilate the high strength emulsion wastwater loadings led to incomplete conversion within the activated sludge process and poor settling waste sludge with turbid final effluent high in COD, BOD and TSS. The facility installed a dissolved air flotation (DAF) clarifier to effectively remove greater than 99 percent of the wastewater emulsion solids ahead of the activated sludge system. An organic coagulant is used for emulsion destabilization instead of iron or aluminum metal coagulants, improving DAF clarifier performance and minimizing operational cost and system complexity. An innovative DAF float solids collection and handling system produces disposal solids concentrations of 50 - 60% total solids resulting in further waste disposal cost savings. By removing more than 99 percent of the emulsion solids with the DAF clarifier ahead of the activated sludge process, the waste-water treatment facility now consistently produces a high quality effluent low in COD, BOD, TSS and turbidity. Wastewater treatment performance improved dramatically, as evident by the facility receiving the Western Carolina Regional Sewer Authority`s {open_quotes}Best Pollution Prevention Program{close_quotes} award. In addition, the wastewater treatment facility can now process three times the pre-DAF waste loads.

  7. Chemicals manufacture via biotechnology - the prospects for western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C.; Kristiansen, B.

    1985-09-02

    The trend of European chemical and biotechnological companies to move away from low value, high volume bulk chemicals towards the manufacture of high value, low volume, fine and speciality chemicals will continue into the 21st century. The manufacture of fine chemicals (principally antibiotics, biopesticides, enzymes and organic acids) and commodity chemicals (principally butanol and industrial ethanol) necessitates 1.5Mt and 2-3 Mt of carbohydrate feedstocks for their production. Thus it is vital that the Common Agricultural Policy does not interfere with the progress of the biotechnology industry by maintaining carbohydrate feedstock prices at their present high levels.

  8. Installation of Tc-99m generator manufacturing facilities

    International Nuclear Information System (INIS)

    Shin, B. C.; Choung, W. M.; Park, J. H.; Park, S. H.; Kim, S. J.; Park, K. B.

    2004-01-01

    For the characteristics of radiopharmaceuticals, the manufacturing facility should be complied with the radiation safety standards for operators as well as GMP (Good Manufacturing Practice) cleanness standards for production. We intensively modified the existing Radioisotope production facilities, which were installed only in radiation safety points of view, to meet cleanness criteria. And the concept of multi-barrier buffer zones was introduced to apply negative air pressure for hot cell with first priority and to continue relative positive air pressure for clean room. The manufacturing area for Tc-99m Generator can be entered only through a second change. The doors of each change area are interlocked to maintain air pressure differentials. The pass box for material transfer are also interlocked so that only one side may be opened at any one time to keep cleanness. Two door-type autoclave was installed crossing the wall between preparing room and aseptic room to keep cleanness after sterilization. Three lead hot cells were installed and final inspection including gamma survey test were performed. The clean room was installed and TAB for this facility was performed in order to acquire the necessary air flow. The filter bank for filtration of exhausted radiation air was installed and its efficiency test was performed. In this facility, radiation shielding utilities and manufacturing instruments were set up and their operating manuals were documented. Efficiency tests for every utilities and instruments were satisfied and the approval for use of the facilities was achieved from MOST (Ministry of Science and Technology). The Sam Young Unitech, the lessee of the facilities set up the equipment in the hot cell, which is needed to produce Tc-99m Generator, supported by IPPE in Russia. They are composing the systems complied with the guidelines and the regulations, and keep in contact to KFDA for acquiring its approval. It is expected to produce Tc-99m Generator within

  9. Computer integrated manufacturing in the chemical industry : Theory & practice

    NARCIS (Netherlands)

    Ashayeri, J.; Teelen, A.; Selen, W.J.

    1995-01-01

    This paper addresses the possibilities of implementing Computer Integrated Manufacturing in the process industry, and the chemical industry in particular. After presenting some distinct differences of the process industry in relation to discrete manufacturing, a number of focal points are discussed.

  10. Elimination of Porcine Epidemic Diarrhea Virus in an Animal Feed Manufacturing Facility.

    Directory of Open Access Journals (Sweden)

    Anne R Huss

    Full Text Available Porcine Epidemic Diarrhea Virus (PEDV was the first virus of wide scale concern to be linked to possible transmission by livestock feed or ingredients. Measures to exclude pathogens, prevent cross-contamination, and actively reduce the pathogenic load of feed and ingredients are being developed. However, research thus far has focused on the role of chemicals or thermal treatment to reduce the RNA in the actual feedstuffs, and has not addressed potential residual contamination within the manufacturing facility that may lead to continuous contamination of finished feeds. The purpose of this experiment was to evaluate the use of a standardized protocol to sanitize an animal feed manufacturing facility contaminated with PEDV. Environmental swabs were collected throughout the facility during the manufacturing of a swine diet inoculated with PEDV. To monitor facility contamination of the virus, swabs were collected at: 1 baseline prior to inoculation, 2 after production of the inoculated feed, 3 after application of a quaternary ammonium-glutaraldehyde blend cleaner, 4 after application of a sodium hypochlorite sanitizing solution, and 5 after facility heat-up to 60°C for 48 hours. Decontamination step, surface, type, zone and their interactions were all found to impact the quantity of detectable PEDV RNA (P < 0.05. As expected, all samples collected from equipment surfaces contained PEDV RNA after production of the contaminated feed. Additionally, the majority of samples collected from non-direct feed contact surfaces were also positive for PEDV RNA after the production of the contaminated feed, emphasizing the potential role dust plays in cross-contamination of pathogen throughout a manufacturing facility. Application of the cleaner, sanitizer, and heat were effective at reducing PEDV genomic material (P < 0.05, but did not completely eliminate it.

  11. Specifying and manufacturing piping for the fast flux test facility

    International Nuclear Information System (INIS)

    Moen, R.A.; O'Keefe, D.P.; Irvin, J.E.; Tobin, J.C.

    1974-01-01

    Specification of materials for liquid metal reactor coolant piping, at service temperatures up to 1200 0 F, involves a number of considerations unique to these systems. The mechanical property/design allowable stress considerations which led to the selection and specification of specific materials for the Fast Flux Test Facility piping are discussed. Additional considerations are described indicating allowances made for material changes anticipated in service. These measures primarily involved raising the minimum carbon content to a value that would insure the strength of the material always remains above that assumed in the initial design, although other considerations are discussed. The processes by which this piping was manufactured, its resulting characteristics and methods of subsequent handling/assembly are briefly discussed. (U.S.)

  12. Synchrotron radiation facilities for chemical applications

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    1995-01-01

    Synchrotron radiation (SR) research is of great importance in understanding radiation chemistry, physics, and biology. It is also clearly recognized in the international chemical community that chemical applications of SR are greatly advanced and divided into 1) Molecular Spectroscopy and Dynamics Studies-Gases, Surfaces, and Condensed Matter- , 2) Radiation Chemistry and Photochemistry, 3) X-ray Structural and XAFS Studies-Crystals, Surfaces, and Liquids- , 4) Analytical Chemistry, and 5) Synthesis or R and D of New Materials. In this paper, a survey is given of recent advances in the application of SR to the chemistry of excitation and ionization of molecules, i.e., SR chemistry, in the wavelength region between near-ultraviolet and hard X-rays. The topics will be chosen from those obtained at some leading SR facilities. (J.P.N.)

  13. Capacity optimization and scheduling of a multiproduct manufacturing facility for biotech products.

    Science.gov (United States)

    Shaik, Munawar A; Dhakre, Ankita; Rathore, Anurag S; Patil, Nitin

    2014-01-01

    A general mathematical framework has been proposed in this work for scheduling of a multiproduct and multipurpose facility involving manufacturing of biotech products. The specific problem involves several batch operations occurring in multiple units involving fixed processing time, unlimited storage policy, transition times, shared units, and deterministic and fixed data in the given time horizon. The different batch operations are modeled using state-task network representation. Two different mathematical formulations are proposed based on discrete- and continuous-time representations leading to a mixed-integer linear programming model which is solved using General Algebraic Modeling System software. A case study based on a real facility is presented to illustrate the potential and applicability of the proposed models. The continuous-time model required less number of events and has a smaller problem size compared to the discrete-time model. © 2014 American Institute of Chemical Engineers.

  14. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    Science.gov (United States)

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  15. CASE STUDY PROJECT: THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    Science.gov (United States)

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  16. POLLUTION PREVENTION AND THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    Science.gov (United States)

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  17. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Paul [State University of New York Research Foundation, Albany, NY (United States)

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  18. 78 FR 48029 - Improving Chemical Facility Safety and Security

    Science.gov (United States)

    2013-08-07

    ... Improving Chemical Facility Safety and Security By the authority vested in me as President by the... at reducing the safety risks and security risks associated with hazardous chemicals. However... to further improve chemical facility safety and security in coordination with owners and operators...

  19. 77 FR 24988 - Manufacturer of Controlled Substances; Notice of Registration; ISP Freetown Fine Chemicals

    Science.gov (United States)

    2012-04-26

    ... Enforcement Administration Manufacturer of Controlled Substances; Notice of Registration; ISP Freetown Fine... 64746, ISP Freetown Fine Chemicals, 238 South Main Street, Assonet, Massachusetts 02702, made...) and determined that the registration of ISP Freetown Fine Chemicals, to manufacture the listed basic...

  20. Chemical Facility Security: Regulation and Issues for Congress

    National Research Council Canada - National Science Library

    Shea, Dana A; Tatelman, Todd B

    2007-01-01

    The Department of Homeland Security (DHS) has proposed security regulations for chemical facilities, implementing the statutory authority granted in the Homeland Security Appropriations Act, 2007 (P.L...

  1. Process Optimization Guide for Military Manufacturing and Maintenance Facilities

    National Research Council Canada - National Science Library

    Lin, Mike

    1999-01-01

    ... and their potential for improvements. Through process optimization (PO), energy and environmental performance can be improved by analyzing and changing the manufacturing and maintenance processes themselves to increase productivity...

  2. ISS Additive Manufacturing Facility for On-Demand Fabrication in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Made in Space has completed a preliminary design review of the Additive Manufacturing Facility. During the first half of Phase 1, the design went through conceptual...

  3. Aerospace Manufacturing and Rework Facilities: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Science.gov (United States)

    Find regulatory information regarding the NESHAP for Aerospace manufacturing and rework facilities. This page contains the rule summary, rule history, and related rules and additional resources for this standard.

  4. 77 FR 74685 - Chemical Facility Anti-Terrorism Standards (CFATS) Chemical-Terrorism Vulnerability Information...

    Science.gov (United States)

    2012-12-17

    ... SECURITY Chemical Facility Anti-Terrorism Standards (CFATS) Chemical- Terrorism Vulnerability Information... financial information, Chemical-terrorism Vulnerability Information (CVI), Sensitive Security Information... security of high-risk chemical facilities. On April 9, 2007, the Department issued an Interim Final Rule...

  5. 77 FR 74677 - Chemical Facility Anti-Terrorism Standards (CFATS)

    Science.gov (United States)

    2012-12-17

    ... Burden Cost (operating/maintaining): $3,977. Instrument: Notification of a New Top Screen. Frequency: On... authority to regulate the security of high-risk chemical facilities. On April 9, 2007, the Department issued... Department's regulations under Section 550 governing security at high-risk chemical facilities. See 6 CFR...

  6. Space Facility for Orbital Remote Manufacturing (SPACEFORM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA need in continued cost efficient International Space Station (ISS) exploration FOMS Inc. proposes to develop and deploy Space Facility for Orbital...

  7. Coordination in International Manufacturing: The Role of Competitive Priorities and the Focus of Globally Dispersed Facilities

    Directory of Open Access Journals (Sweden)

    Ahmed Sayem

    2018-04-01

    Full Text Available In this era of globalization, network integration has received great attention, as it certainly has implications for the competitiveness in international manufacturing. A key issue in integration is to coordinate activities of dispersed facilities in a way to align the target of locating abroad and the priorities to be competitive. This study explores and clarifies the effect of competitive priority and focus of dispersed facilities on coordinating the activities in intra-firm network manufacturing. Based on a multiple case study involving four different companies manufacturing in globally dispersed facilities, the results confirm that both competitive priorities and specific focus of global manufacturing are important for selecting mechanisms to coordinate overseas facilities, with the competitive priorities ‘quality’ and ‘flexibility’ being the more important. Furthermore, the findings reveal that companies place emphasis on informal mechanisms to coordinate the low-cost focused facilities. In turn, the importance of formal mechanisms seems equal for coordinating both low-cost focused facilities and those focused on capturing a local market. Finally, the findings of this paper suggest that elements of competitive priority, as well as the focus of dispersed facilities, should be considered towards making the choice for mechanisms of coordination. The findings bear important implications for the effective coordination of activities in international manufacturing.

  8. Development and manufacture of a Nb3Sn superconductor for the high-field test facility

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Cornish, D.N.; Spencer, C.R.; Gregory, E.; Adam, E.

    1981-01-01

    The High-Field Test Facility (HFTF) project has two primary goals. The first is to establish manufacturing capability for a Nb 3 Sn conductor suitable for use in a mirror fusion coil. The second is to provide a test facility for evaluating other fusion conductor designs at high fields. This paper describes some of the problems encountered and the solutions devised in working toward the first goal. Construction of the test facility coils will be described in a subsequent paper

  9. Qualification of academic facilities for small-scale automated manufacture of autologous cell-based products.

    Science.gov (United States)

    Hourd, Paul; Chandra, Amit; Alvey, David; Ginty, Patrick; McCall, Mark; Ratcliffe, Elizabeth; Rayment, Erin; Williams, David J

    2014-01-01

    Academic centers, hospitals and small companies, as typical development settings for UK regenerative medicine assets, are significant contributors to the development of autologous cell-based therapies. Often lacking the appropriate funding, quality assurance heritage or specialist regulatory expertise, qualifying aseptic cell processing facilities for GMP compliance is a significant challenge. The qualification of a new Cell Therapy Manufacturing Facility with automated processing capability, the first of its kind in a UK academic setting, provides a unique demonstrator for the qualification of small-scale, automated facilities for GMP-compliant manufacture of autologous cell-based products in these settings. This paper shares our experiences in qualifying the Cell Therapy Manufacturing Facility, focusing on our approach to streamlining the qualification effort, the challenges, project delays and inefficiencies we encountered, and the subsequent lessons learned.

  10. Good Manufacturing Practices (GMP) / Good Laboratory Practices (GLP) Review and Applicability for Chemical Security Enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Iveson, Steven W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). International Chemical Security Threat Reduction

    2014-11-01

    Global chemical security has been enhanced through the determined use and integration of both voluntary and legislated standards. Many popular standards contain components that specifically detail requirements for the security of materials, facilities and other vital assets. In this document we examine the roll of quality management standards and how they affect the security culture within the institutions that adopt these standards in order to conduct business within the international market place. Good manufacturing practices and good laboratory practices are two of a number of quality management systems that have been adopted as law in many nations. These standards are designed to protect the quality of drugs, medicines, foods and analytical test results in order to provide the world-wide consumer with safe and affective products for consumption. These standards provide no established security protocols and yet manage to increase the security of chemicals, materials, facilities and the supply chain via the effective and complete control over the manufacturing, the global supply chains and testing processes. We discuss the means through which these systems enhance security and how nations can further improve these systems with additional regulations that deal specifically with security in the realm of these management systems. We conclude with a discussion of new technologies that may cause disruption within the industries covered by these standards and how these issues might be addressed in order to maintain or increase the level of security within the industries and nations that have adopted these standards.

  11. Design of good manufacturing facility for sterile radioactive pharmaceuticals

    International Nuclear Information System (INIS)

    Shin, B.C.; Choung, W.M.; Park, S.H.; Lee, K.I.; Park, J.H.; Park, K.B.

    2002-01-01

    Based on the GMP codes for radiopharmaceuticals in U.K. and some advanced countries, suitable guidelines for the production facility have been established and followed them up. The facility designs were fairly modified to maintain cleanliness criteria for installation in the existing radioisotope production facilities which are installed only in radiation safety points of view. Detailed design brief was drawn up by the Hyundai Engineering staffs, on the basis of initial planning and conceptual design was carried out by authors. Hot cells were installed in preparation room for radioactive handling. As hot cells under negative air pressure are not properly airtight, the surrounding environment was designed to keep less than class 10,000. Hot cells were designed to maintain less than class 1 0,000 and partially less than class 1 00 for production of sterile products. Final products will be autoclaved for sterilization after filling. To avoid contamination by microorganisms and particles of surrounding area, air curtain with vertical laminar flow will be installed between anteroom and corridor. In a pharmaceutical environment, the main consideration is the protection of the product. Thus, work station is held above ambient pressure. However, when handling radioactive materials, air pressure for work station should be lower than in surrounding areas to protect the operators and the remainder of the facility from airborne radioactive contamination. As Radiopharmaceuticals are radioactive materials for medical use, changing room could be held higher pressure than any other zones. It is expected that the facility will be effectively used for both routine preparation and research for sterile radiopharmaceuticals. (Author)

  12. Surrogate Plant Data Base : Volume 3. Appendix D : Facilities Planning Data ; Operating Manpower, Manufacturing Budgets and Pre-Production Launch ...

    Science.gov (United States)

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  13. 78 FR 69433 - Executive Order 13650 Improving Chemical Facility Safety and Security Listening Sessions

    Science.gov (United States)

    2013-11-19

    ... Chemical Facility Safety and Security Listening Sessions AGENCY: National Protection and Programs... from stakeholders on issues pertaining to Improving Chemical Facility Safety and Security (Executive... regulations, guidance, and policies; and identifying best practices in chemical facility safety and security...

  14. 78 FR 16692 - Chemical Facility Anti-Terrorism Standards (CFATS)

    Science.gov (United States)

    2013-03-18

    ... Burden Cost (operating/maintaining): $3,977. Instrument: Notification of a New Top Screen. Frequency: On..., Public Law 109-295, provides DHS with the authority to regulate the security of high-risk chemical... at high-risk chemical facilities. See 6 CFR part 27. CFATS represents a national-level effort to...

  15. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1993-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  16. EVALUATION OF STYRENE EMISSIONS FROM A SHOWER STALL/BATHTUB MANUFACTURING FACILITY

    Science.gov (United States)

    The report gives results of emissions measurements carried out at a representative facility (Eljer Plumbingware in Wilson, NC) that manufactures polyester-resin-reinforced shower stalls and bathtubs by spraying styrene-based resins onto molds in vented, open, spray booths. Styren...

  17. Manufacturing cost study on the ion sources for the Mirror Fusion Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A study of the cost of manufacturing 48 ion sources for the Mirror Fusion Test Facility is described. The estimate is built up from individual part costs and assembly operation times for the 80 kV prototype source constructed by LLL and described by LLL drawings furnished during December 1978. Recommendations for cost reduction are made.

  18. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  19. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  20. The Impact of Pollution Prevention on Toxic Environmental Releases from U.S. Manufacturing Facilities.

    Science.gov (United States)

    Ranson, Matthew; Cox, Brendan; Keenan, Cheryl; Teitelbaum, Daniel

    2015-11-03

    Between 1991 and 2012, the facilities that reported to the U.S. Environmental Protection Agency's Toxic Release Inventory (TRI) Program conducted 370,000 source reduction projects. We use this data set to conduct the first quasi-experimental retrospective evaluation of how implementing a source reduction (pollution prevention) project affects the quantity of toxic chemicals released to the environment by an average industrial facility. We use a differences-in-differences methodology, which measures how implementing a source reduction project affects a facility's releases of targeted chemicals, relative to releases of (a) other untargeted chemicals from the same facility, or (b) the same chemical from other facilities in the same industry. We find that the average source reduction project causes a 9-16% decrease in releases of targeted chemicals in the year of implementation. Source reduction techniques vary in effectiveness: for example, raw material modification causes a large decrease in releases, while inventory control has no detectable effect. Our analysis suggests that in aggregate, the source reduction projects carried out in the U.S. since 1991 have prevented between 5 and 14 billion pounds of toxic releases.

  1. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration

    Science.gov (United States)

    2011-01-01

    Background Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Results Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. Conclusions By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full

  2. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration.

    Science.gov (United States)

    Chepelev, Leonid L; Dumontier, Michel

    2011-05-19

    Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data

  3. Implementation of high-dose chemical dosimetry for industrial facilities

    International Nuclear Information System (INIS)

    Conceicao, Cirilo Cezar Sant'Anna da

    2006-01-01

    The purpose of this work is the implementation of methodology for high dose measurements using chemical dosimeters in liquid phase, traceable to the international metrology system, and make available in the country, the standard of high-dose to industrial irradiation facilities and research irradiators, trough the quality program with comparative measurements and direct use of the standard dosimeters in routine. The use of these low cost dosimetry systems in industrial irradiation facilities, assists to the certification requirements and it can reduce the costs with dosimetry for approximately 20% of the total dosimetry costs, using these systems in routine measurements and validation process, largely substituting the imported PMMA dosimeters, among others. (author)

  4. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  5. An economic comparison of battery energy storage to conventional energy efficiency technologies in Colorado manufacturing facilities

    International Nuclear Information System (INIS)

    Nataf, Kalen; Bradley, Thomas H.

    2016-01-01

    Highlights: • Energy storage’s and efficiency technologies’ economic payback is compared. • Conventional efficiency technologies have shorter payback for the customers studied. • Hypothetical incentives can lower the payback periods of battery energy storage. - Abstract: Battery energy storage (BES) is one of a set of technologies that can be considered to reduce electrical loads, and to realize economic value for industrial customers. To directly compare the energy savings and economic effectiveness of BES to more conventional energy efficiency technologies, this study collected detailed information regarding the electrical loads associated with four Colorado manufacturing facilities. These datasets were used to generate a set of three scenarios for each manufacturer: implementation of a BES system, implementation of a set of conventional energy efficiency recommendations, and the implementation of both BES and conventional energy efficiency technologies. Evaluating these scenarios’ economic payback period allows for a direct comparison between the cost-effectiveness of energy efficiency technologies and that of BES, demonstrates the costs and benefits of implementing both BES and energy efficiency technologies, and characterizes the effectiveness of potential incentives in improving economic payback. For all of the manufacturing facilities modeled, results demonstrate that BES is the least cost-effective among the energy efficiency technologies considered, but that simultaneous implementation of both BES and energy efficiency technologies has a negligible effect on the BES payback period. Incentives are demonstrated to be required for BES to achieve near-term payback period parity with more conventional energy efficiency technologies.

  6. Research on Dynamic Facility Layout Problem of Manufacturing Unit Considering Human Factors

    Directory of Open Access Journals (Sweden)

    Jinying Li

    2018-01-01

    Full Text Available As many said, industry 4.0 is an epoch-making revolution which brought the manufacturing market much faster changes and severer competitions. As an important part of the manufacturing system, facility layout has direct impact on business benefit; at the same time, despite the intelligent factory, intelligent production has its own characteristics. However, there is one point on which industry and academia have basically formed a consensus: it is not true that industry 4.0 does not need human beings; on the contrary, human initiative plays an unabated role in the development of industry 4.0. This paper will focus on the dynamic facility layout of the manufacturing unit. Based on the system above and the traditional optimization model, a mathematic model is built to find the best solution combining safety, sustainability, high efficiency, and low cost. And penalty function with adaptive penalty factor and advanced artificial bee colony algorithm is used to solve the constrained model. In the end, by studying few cases, the model is proved to be effective in both efficiency improvement and the implementation of safe and comfort human-machine interaction.

  7. A novel microgrid demand-side management system for manufacturing facilities

    Science.gov (United States)

    Harper, Terance J.

    Thirty-one percent of annual energy consumption in the United States occurs within the industrial sector, where manufacturing processes account for the largest amount of energy consumption and carbon emissions. For this reason, energy efficiency in manufacturing facilities is increasingly important for reducing operating costs and improving profits. Using microgrids to generate local sustainable power should reduce energy consumption from the main utility grid along with energy costs and carbon emissions. Also, microgrids have the potential to serve as reliable energy generators in international locations where the utility grid is often unstable. For this research, a manufacturing process that had approximately 20 kW of peak demand was matched with a solar photovoltaic array that had a peak output of approximately 3 KW. An innovative Demand-Side Management (DSM) strategy was developed to manage the process loads as part of this smart microgrid system. The DSM algorithm managed the intermittent nature of the microgrid and the instantaneous demand of the manufacturing process. The control algorithm required three input signals; one from the microgrid indicating the availability of renewable energy, another from the manufacturing process indicating energy use as a percent of peak production, and historical data for renewable sources and facility demand. Based on these inputs the algorithm had three modes of operation: normal (business as usual), curtailment (shutting off non-critical loads), and energy storage. The results show that a real-time management of a manufacturing process with a microgrid will reduce electrical consumption and peak demand. The renewable energy system for this research was rated to provide up to 13% of the total manufacturing capacity. With actively managing the process loads with the DSM program alone, electrical consumption from the utility grid was reduced by 17% on average. An additional 24% reduction was accomplished when the microgrid

  8. 77 FR 43863 - Manufacturer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals Inc.

    Science.gov (United States)

    2012-07-26

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals Inc. Pursuant to Sec. 1301.33(a), Title 21 of the Code of Federal Regulations (CFR), this is notice that on June 8, 2012, Boehringer Ingelheim Chemicals...

  9. 78 FR 39340 - Manufacturer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals, Inc.

    Science.gov (United States)

    2013-07-01

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals, Inc. Pursuant to Sec. 1301.33(a), Title 21 of the Code of Federal Regulations (CFR), this is notice that on May 31, 2013, Boehringer Ingelheim Chemicals...

  10. Use of the LITEE Lorn Manufacturing Case Study in a Senior Chemical Engineering Unit Operations Laboratory

    Science.gov (United States)

    Abraham, Nithin Susan; Abulencia, James Patrick

    2011-01-01

    This study focuses on the effectiveness of incorporating the Laboratory for Innovative Technology and Engineering Education (LITEE) Lorn Manufacturing case into a senior level chemical engineering unit operations course at Manhattan College. The purpose of using the case study is to demonstrate the relevance of ethics to chemical engineering…

  11. Reducing shingle waste at a manufacturing facility: 1990 MNTAP summer intern report

    Energy Technology Data Exchange (ETDEWEB)

    Menke, D.

    1990-12-31

    CertainTeed manufactures roofing shingles at it`s Shakopee, MN facility. Two process coating lines, and one assembly line, produce fifteen shingle types in fifteen different colors. The wastes generated by this process were the result of planned and unplanned variations in the continuous production process. Planned variations included changes in color, while felt breaks were common unplanned variations. Five options were identified that could reduce the amount of waste generated: Using a standard procedure for recovering from felt breaks, Creating a process cushion to maintain continuous production in the event of temporary shutdowns, An automated color change process, Manufacture of a new product from waste material, Minor process changes to reduce the frequency of breaks.

  12. [Occupational exposure to chemicals in the manufacture of rubber tires].

    Science.gov (United States)

    Szadkowska-Stańczyk, I; Wilczyńska, U; Sobala, W; Szeszenia-Dabrowska, N

    2001-01-01

    The work environment of the rubber industry company, producing various types of tires, was assessed and the workers of the plant were included in a cohort study of mortality. Concentrations of twenty chemical substances at 137 workposts were measured by employees of the plant laboratory and the sanitary and epidemiological station in 1981-1996. The mean values and concentration ranges were determined by departments and workposts. The excess of threshold limit values was analyzed. The workposts with exposure to agents possibly carcinogenic to humans were identified. The analysis performed will render it possible to calculate doses of cumulative exposure to given compounds among workers covered by the epidemiological study.

  13. Identification of goat milk powder by manufacturer using multiple chemical parameters.

    Science.gov (United States)

    McLeod, Rebecca J; Prosser, Colin G; Wakefield, Joshua W

    2016-02-01

    Concentrations of multiple elements and ratios of stable isotopes of carbon and nitrogen were measured and combined to create a chemical fingerprint of production batches of goat whole milk powder (WMP) produced by different manufacturers. Our objectives were to determine whether or not differences exist in the chemical fingerprint among samples of goat WMP produced at different sites, and assess temporal changes in the chemical fingerprint in product manufactured at one site. In total, 58 samples of goat WMP were analyzed by inductively coupled plasma-mass spectrometry as well as isotope ratio mass spectrometry and a suite of 13 elements (Li, Na, Mg, K, Ca, Mn, Cu, Zn, Rb, Sr, Mo, Cs, and Ba), δ(13)C, and δ(15)N selected to create the chemical fingerprint. Differences in the chemical fingerprint of samples between sites and over time were assessed using principal components analysis and canonical analysis of principal coordinates. Differences in the chemical fingerprints of samples between production sites provided a classification success rate (leave-one-out classification) of 98.1%, providing a basis for using the approach to test the authenticity of product manufactured at a site. Within one site, the chemical fingerprint of samples produced at the beginning of the production season differed from those produced in the middle and late season, driven predominantly by lower concentrations of Na, Mg, K, Mn, and Rb, and higher concentrations of Ba and Cu. This observed temporal variability highlights the importance of obtaining samples from throughout the season to ensure a representative chemical fingerprint is obtained for goat WMP from a single manufacturing site. The reconstitution and spray drying of samples from one manufacturer by the other manufacturer enabled the relative influence of the manufacturing process on the chemical fingerprint to be examined. It was found that such reprocessing altered the chemical fingerprint, although the degree of alteration

  14. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Michael

    2013-09-30

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  15. LASTRON - Second generation accelerators and chemical reactors for EBFGT facilities

    International Nuclear Information System (INIS)

    Edinger, R.

    2011-01-01

    Commercializing reliable affordable electron beam flue gas treatment technology requires both, the optimization of accelerator technology and chemical reaction chambers. Moreover, this engineering process involves the integration of beam specific characteristics, such as dosage distribution and penetration of electrons into the flue gas stream. In consideration of the treatment economy, it might be required to calculate the overall process performance without merely limiting the evaluation to accelerator efficiency. For example, a higher energy beam, 1MeV to 2 MeV, reduces the losses in the beam window and penetrates further into the gas stream and, therefore, increases the overall process economy. The energy distribution should be optimized with respect to the configuration of the chemical reaction chamber in order to treat the flue gas uniformly. All these measures are required to achieve high removal rates in large flue gas streams. Today removal rates of more than 99% SO x and more than 80% SO x are required to be compliant with future emission legislations. It is planed to establish a 100,000m³ electron beam flue gas treatment facility that can achieve constant removal rates of higher than 99.4% SO x and more than 80% NO x . The high removal rates would allow us to place CO 2 capture technologies down stream of the EBFGT facility. (author)

  16. Do provisions to advance chemical facility safety also advance chemical facility security? An analysis of possible synergies

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2012-01-01

    The European Commission has launched a study on the applicability of existing chemical industry safety provisions to enhancing security of chemical facilities covering the situation in 18 EU Member States. This paper reports some preliminary analytical findings regarding the extent to which...... existing provisions that have been put into existence to advance safety objectives due to synergy effects could be expected advance security objectives as well. The paper provides a conceptual definition of safety and security and presents a framework of their essential components. Key differences...... are presented. A safety framework is examined with the intent to identify security elements potentially covered. Vice versa, a security framework is examined with the intent to identify safety elements potentially covered. It is concluded that synergies are largely absent at the preventive level. Synergies...

  17. Chemical Hygiene Plan for Onsite Measurement and Sample Shipping Facility Activities

    International Nuclear Information System (INIS)

    Price, W.H.

    1998-01-01

    This chemical hygiene plan presents the requirements established to ensure the protection of employee health while performing work in mobile laboratories, the sample shipping facility, and at the onsite radiological counting facility. This document presents the measures to be taken to promote safe work practices and to minimize worker exposure to hazardous chemicals. Specific hazardous chemicals present in the mobile laboratories, the sample shipping facility, and in the radiological counting facility are presented in Appendices A through G

  18. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    International Nuclear Information System (INIS)

    Ritschel, A.J.; White, W.L.

    1985-05-01

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices

  19. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Ritschel, A.J.; White, W.L.

    1985-05-01

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices.

  20. 77 FR 7613 - Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108

    Science.gov (United States)

    2012-02-13

    ... Chemical TRIGA Research Reactor; Facility Operating License No. R-108 AGENCY: Nuclear Regulatory Commission... Facility Operating License No. R-108 (``Application''), which currently authorizes the Dow Chemical Company... License No. R-108 for the DTRR. The application contains SUNSI. Based on its initial review of the...

  1. Applicability of chemical vapour polishing of additive manufactured parts to meet production-quality

    DEFF Research Database (Denmark)

    Pedersen, D. B.; Hansen, H. N.; Nielsen, J. S.

    2014-01-01

    The Fused Deposition Modelling (FDM) method is the most rapidly growing Additive Manufacturing (AM) method[1]. FDM employs a 2.5D deposition scheme which induce a step-ladder shaped surface definition [2], with seams of the individual layers clearly visible[3]. This paper investigate to which...... extend chemical vapour polishing can be applied to eliminate the layered surfaces from FDM, so that a polished surface quality is obtained. It is quantified to what extend parts can be vapour polished and how geometrical and mechanical properties alter. The fundamental question is whether the surfaces...... of FDM manufactured parts can be taken from their current quality into the precision engineering domain....

  2. 40 CFR 63.149 - Control requirements for certain liquid streams in open systems within a chemical manufacturing...

    Science.gov (United States)

    2010-07-01

    ... FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage... streams in open systems within a chemical manufacturing process unit. 63.149 Section 63.149 Protection of...

  3. 40 CFR 723.175 - Chemical substances used in or for the manufacture or processing of instant photographic and peel...

    Science.gov (United States)

    2010-07-01

    ... chemical substance included in the article. (16) Wet mixture means a water or organic solvent-based... possessing comparable physical-chemical properties under similar manufacturing and processing conditions. (ii... physical-chemical and toxicological properties of the chemical substances handled in the area; procedures...

  4. Controlling organic chemical hazards in food manufacturing: a hazard analysis critical control points (HACCP) approach.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-08-01

    Hazard analysis by critical control points (HACCP) is a systematic approach to the identification, assessment and control of hazards. Effective HACCP requires the consideration of all hazards, i.e., chemical, microbiological and physical. However, to-date most 'in-place' HACCP procedures have tended to focus on the control of microbiological and physical food hazards. In general, the chemical component of HACCP procedures is either ignored or limited to applied chemicals, e.g., food additives and pesticides. In this paper we discuss the application of HACCP to a broader range of chemical hazards, using organic chemical contaminants as examples, and the problems that are likely to arise in the food manufacturing sector. Chemical HACCP procedures are likely to result in many of the advantages previously identified for microbiological HACCP procedures: more effective, efficient and economical than conventional end-point-testing methods. However, the high costs of analytical monitoring of chemical contaminants and a limited understanding of formulation and process optimisation as means of controlling chemical contamination of foods are likely to prevent chemical HACCP becoming as effective as microbiological HACCP.

  5. Pharmaceutical manufacturing facility discharges can substantially increase the pharmaceutical load to U.S. wastewaters

    Science.gov (United States)

    Scott, Tia-Marie; Phillips, Patrick J.; Kolpin, Dana W.; Colella, Kaitlyn M.; Furlong, Edward T.; Foreman, William T.; Gray, James L.

    2018-01-01

    Discharges from pharmaceutical manufacturing facilities (PMFs) previously have been identified as important sources of pharmaceuticals to the environment. Yet few studies are available to establish the influence of PMFs on the pharmaceutical source contribution to wastewater treatment plants (WWTPs) and waterways at the national scale. Consequently, a national network of 13 WWTPs receiving PMF discharges, six WWTPs with no PMF input, and one WWTP that transitioned through a PMF closure were selected from across the United States to assess the influence of PMF inputs on pharmaceutical loading to WWTPs. Effluent samples were analyzed for 120 pharmaceuticals and pharmaceutical degradates. Of these, 33 pharmaceuticals had concentrations substantially higher in PMF-influenced effluent (maximum 555,000 ng/L) compared to effluent from control sites (maximum 175 ng/L). Concentrations in WWTP receiving PMF input are variable, as discharges from PMFs are episodic, indicating that production activities can vary substantially over relatively short (several months) periods and have the potential to rapidly transition to other pharmaceutical products. Results show that PMFs are an important, national-scale source of pharmaceuticals to the environment.

  6. ISS Additive Manufacturing Facility for On-Demand Fabrication in Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to manufacture on the International Space Station will enable on-demand repair and production capability, as well as essential research for manufacturing...

  7. Simulation of a Start-Up Manufacturing Facility for Nanopore Arrays

    Science.gov (United States)

    Field, Dennis W.

    2009-01-01

    Simulation is a powerful tool in developing and troubleshooting manufacturing processes, particularly when considering process flows for manufacturing systems that do not yet exist. Simulation can bridge the gap in terms of setting up full-scale manufacturing for nanotechnology products if limited production experience is an issue. An effective…

  8. Personal Chemical Exposure informatics

    Science.gov (United States)

    Chemical Exposure science is the study of human contact with chemicals (from manufacturing facilities, everyday products, waste) occurring in their environments and advances knowledge of the mechanisms and dynamics of events that cause or prevent adverse health outcomes. (adapted...

  9. Snap-lock bags with red band: A study of manufacturing characteristics, thermal and chemical properties.

    Science.gov (United States)

    Sim, Yvonne Hui Ying; Koh, Alaric C W; Lim, Shing Min; Yew, Sok Yee

    2015-10-01

    Drug packaging is commonly submitted to the Forensic Chemistry and Physics Laboratory of the Health Sciences Authority, Singapore, for examination. The drugs seized are often packaged in plastic bags. These bags are examined for linkages to provide law enforcement with useful associations between the traffickers and drug abusers. The plastic bags submitted may include snap-lock bags, some with a red band located above the snap-lock closure and some without. Current techniques for examination involve looking at the physical characteristics (dimensions, thickness and polarising patterns) and manufacturing marks of these bags. In cases where manufacturing marks on the main body of the bags are poor or absent, the manufacturing characteristics present on the red band can be examined. A study involving approximately 1000 bags was conducted to better understand the variations in the manufacturing characteristics of the red band. This understanding is crucial in helping to determine associations/eliminations between bags. Two instrumental techniques, namely differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were explored to evaluate the effectiveness of examining the chemical composition to discriminate the bags. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event

    International Nuclear Information System (INIS)

    Totemeier, T.C.

    1999-01-01

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO 2 and U 3 O 7 . The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated

  11. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T.C.

    1999-04-26

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO{sub 2} and U{sub 3}O{sub 7}. The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated.

  12. EPA Facility Registry Service (FRS): ER_CHEMICALS

    Data.gov (United States)

    U.S. Environmental Protection Agency — To improve public health and the environment, the United States Environmental Protection Agency (USEPA) collects information about facilities, sites, or places...

  13. 40 CFR 723.50 - Chemical substances manufactured in quantities of 10,000 kilograms or less per year, and chemical...

    Science.gov (United States)

    2010-07-01

    ... unit. Property divided only by a public right-of-way is one site. There may be more than one... ascertainable, manufacture, manufacturer, new chemical substance, person, possession or control, and test data...-provided e-PMN reporting software in the manner set forth in this paragraph. Support documents related to...

  14. Enhanced anti-counterfeiting measures for additive manufacturing: coupling lanthanide nanomaterial chemical signatures with blockchain technology

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Zachary C.; Stephenson, David E.; Christ, Josef F.; Pope, Timothy R.; Arey, Bruce W.; Barrett, Christopher A.; Warner, Marvin G.

    2017-08-18

    The significant rise of additive manufacturing (AM) in recent years is in part due to the open sourced nature of the printing processes and reduced cost and capital barriers relative to traditional manufacturing. However, this democratization of manufacturing spurs an increased demand for producers and end-users to verify the authenticity and quality of individual parts. To this end, we introduce an anti-counterfeiting method composed of first embedding engineered nanomaterials into features of a 3D-printed part followed by non-destructive interrogation of these features to quantify a chemical signature profile. The part specific chemical signature data is then linked to a securitized, distributed, and time-stamped blockchain ledger entry. To demonstrate the utility of this approach, lanthanide-aspartic acid nanoscale coordination polymers (Ln3+- Asp NCs) / poly(lactic) acid (PLA) composites were formulated and transformed into a filament feedstock for fused deposition modeling (FDM) 3D printing. In the present case, a quick-response (QR) code containing the doped Ln3+-Asp NCs was printed using a dual-extruder FDM printer into pure PLA parts. The QR code provides a searchable reference to an Ethereum-based blockchain entry. The QR code physical features also serve as defined areas to probe the signatures arising from the embedded Ln3+-Asp NCs. Visible fluorescence emission with UV-excitation was quantified in terms of color using a smartphone camera and incorporated into blockchain entries. Ultimately, linking unique chemical signature data to blockchain databases is anticipated to make the costs of counterfeiting AM materials significantly more prohibitive and transactions between those in the supply chain more trustworthy.

  15. Combined physical-chemical and aerobic biological treatments of wastewater derived from sauce manufacturing.

    Science.gov (United States)

    Martín, M A; González, I; Siles, J A; Berrios, M; Martín, A

    2013-04-01

    The viability of an integrated coagulation-flocculation and aerobic treatment for purifying wastewater derived from a sauce manufacturing industry was evaluated. The best coagulation-flocculation results were obtained at alkaline pH, showing the greatest turbidity removal efficiency (greater than 90%) and a total chemical oxygen demand (COD) removal of approximately 80%, Additionally, experiments at alkaline pH reduce the reagent requirements (coagulant concentration of 0.4 mL/L and flocculant concentration of 4.0 mL/L) providing a consequent economic benefit as compared to experiments at neutral and acidic pH. Another set of experiments was conducted in a sequencing batch reactor to evaluate the aerobic biodegradability of the remnant dissolved organic matter. The effluent from the physical-chemical pre-treatment at alkaline pH again showed the highest biodegradability (76%), with a global COD total removal of 98%. The results showed that the combination of both techniques could be a viable alternative to efficiently treat wastewater derived from sauce manufacturing.

  16. E3 Success Story - Examining Inefficiencies Facility-wide: Triad Manufacturing

    Science.gov (United States)

    Missouri Enterprise, a NIST Manufacturing Extension Partnership, approached Triad about participating in the Green Suppliers Network since they were aware that Triad routinely looked for opportunities to improve its operations.

  17. An evaluation of the effectiveness of the EPA comply code to demonstrate compliance with radionuclide emission standards at three manufacturing facilities

    International Nuclear Information System (INIS)

    Smith, L.R.; Laferriere, J.R.; Nagy, J.W.

    1991-01-01

    Measurements of airborne radionuclide emissions and associated environmental concentrations were made at, and in the vicinity of, two urban and one suburban facility where radiolabeled chemicals for biomedical research and radiopharmaceuticals are manufactured. Emission, environmental and meteorological measurements were used in the EPA COMPLY code and in environmental assessment models developed specifically for these sites to compare their ability to predict off-site measurements. The models and code were then used to determine potential dose to hypothetical maximally exposed receptors and the ability of these methods to demonstrate whether these facilities comply with proposed radionuclide emission standards assessed. In no case did the models and code seriously underestimate off-site impacts. However, for certain radionuclides and chemical forms, the EPA COMPLY code was found to overestimate off-site impacts by such a large factor as to render its value questionable for determining regulatory compliance. Recommendations are offered for changing the code to enable it to be more serviceable to radionuclide users and regulators

  18. 78 FR 29759 - Chemical Facility Anti-Terrorism Standards Personnel Surety Program

    Science.gov (United States)

    2013-05-21

    ... CVI see 6 CFR 27.400 and the CVI Procedural Manual at http://www.dhs.gov/xlibrary/assets/chemsec_cvi... hours), and the estimated burden cost necessary to implement the Chemical Facility Anti-Terrorism...

  19. Chemical and physical characteristics of tar samples from selected Manufactured Gas Plant (MGP) sites

    International Nuclear Information System (INIS)

    Ripp, J.; Taylor, B.; Mauro, D.; Young, M.

    1993-05-01

    A multiyear, multidisciplinary project concerning the toxicity of former Manufactured Gas Plant (MGP) tarry residues was initiated by EPRI under the Environmental Behavior of Organic Substances (EBOS) Program. This report concerns one portion of that work -- the collection and chemical characterization of tar samples from several former MGP sites. META Environmental, Inc. and Atlantic Environmental Services, Inc. were contracted by EPRI to collect several samples of tarry residues from former MGP sites with varied historical gas production processes and from several parts of the country. The eight tars collected during this program were physically very different. Some tars were fluid and easily pumped from existing wells, while other tars were thicker, semi-solid, or solid. Although care was taken to collect only tar, the nature of the residues at several sites made it impossible not to collect other material, such as soil, gravel, and plant matter. After the samples were collected, they were analyzed for 37 organic compounds, 8 metals, and cyanide. In addition, elemental analysis was performed on the tar samples for carbon, hydrogen, oxygen, sulfur and nitrogen content and several physical/chemical properties were determined for each tar. The tars were mixed together in different batches and distributed to researchers for use in animal toxicity studies. The results of this work show that, although the tars were produced from different processes and stored in different manners, they had some chemical similarities. All of the tars, with the exception of one unusual solid tar, contained similar relative abundances of polycyclic aromatic hydrocarbons (PAHs)

  20. Regulation of chemical safety at fuel cycle facilities by the United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Ramsey, Kevin M.

    2013-01-01

    When the U.S. Nuclear Regulatory Commission (NRC) was established in 1975, its regulations were based on radiation dose limits. Chemical hazards rarely influenced NRC regulations. After the Three Mile Island reactor accident in 1979, the NRC staff was directed to address emergency planning at non-reactor facilities. Several fuel cycle facilities were ordered to submit emergency plans consistent with reactor emergency plans because no other guidance was available. NRC published a notice that it was writing regulations to codify the requirements in the Orders and upgrade the emergency plans to address all hazards, including chemical hazards. The legal authority of NRC to regulate chemical safety was questioned. In 1986, an overfilled uranium hexafluoride cylinder ruptured and killed a worker. The NRC staff was directed to address emergency planning for hazardous chemicals in its regulations. The final rule included a requirement for fuel cycle facilities to certify compliance with legislation requiring local authorities to establish emergency plans for hazardous chemicals. As with emergency planning, NRC's authority to regulate chemical safety during routine operations was limited. NRC established memoranda of understanding (MOUs) with other regulatory agencies to encourage exchange of information between the agencies regarding occupational hazards. In 2000, NRC published new, performance-based, regulations for fuel cycle facilities. The new regulations required an integrated safety analysis (ISA) which used quantitative standards to assess chemical exposures. Some unique chemical exposure cases were addressed while implementing the new regulations. In addition, some gaps remain in the regulation of hazardous chemicals at fuel cycle facilities. The status of ongoing efforts to improve regulation of chemical safety at fuel cycle facilities is discussed. (authors)

  1. Chemical constitution, physical properties, and biocompatibility of experimentally manufactured Portland cement.

    Science.gov (United States)

    Hwang, Yun-Chan; Kim, Do-Hee; Hwang, In-Nam; Song, Sun-Ju; Park, Yeong-Joon; Koh, Jeong-Tae; Son, Ho-Hyun; Oh, Won-Mann

    2011-01-01

    An experimental Portland cement was manufactured with pure raw materials under controlled laboratory conditions. The aim of this study was to compare the chemical constitution, physical properties, and biocompatibility of experimentally manufactured Portland cement with those of mineral trioxide aggregate (MTA) and Portland cement. The composition of the cements was determined by scanning electron microscopy (SEM) and energy-dispersive x-ray analysis (EDAX). The setting time and compressive strength were tested. The biocompatibility was evaluated by using SEM and XTT assay. SEM and EDAX revealed the experimental Portland cement to have a similar composition to Portland cement. The setting time of the experimental Portland cement was significantly shorter than that of MTA and Portland cement. The compressive strength of the experimental Portland cement was lower than that of MTA and Portland cement. The experimental Portland cement showed a similar biocompatibility to MTA. The experimental Portland cement might be considered as a possible substitute for MTA in clinical usage after further testing. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Web-Based Implementation of E-Marketing to Support Product Marketing of Chemical Manufacturing Company

    Directory of Open Access Journals (Sweden)

    Riswan Efendi Tarigan

    2015-10-01

    Full Text Available Currently, many company’s marketing strategies are limited only to face-to-face communication, telephone, facsimile, company portfolio, and product brochures. However, those marketing strategies are well- known to have limited impacts. Therefore, the presence of e-marketing as one of the marketing strategies would be appropriate to cover the weaknesses and to solve a number of the marketing problems. The purpose of this study is to discuss matters related to marketing, such    as, proposing a marketing plan using website, expanding marketing segment, and introducing existing  products for a chemical manufacturing company. The adopted research method is a descriptive method where the study is directly performed on the research object to acquire necessary data. The collected data are further analyzed using the Porter’s Five Force and SWOT analysis. Fi- nally, the work provides a number of recommendations for implementing e-marketing strategies to support the company business.

  3. Public concerns and the public role in siting nuclear and chemical waste facilities

    Science.gov (United States)

    Johnson, Branden B.

    1987-09-01

    Nuclear and chemical waste facilities can be successfully sited, despite nimby responses, if siting programs account for the sources of public concern. Irrational fear is not the main source; instead, waste managers must deal with perceived inequities in the distribution of benefits and costs, and concern about facility safety. Benefit-cost inequities may be dealt with in part by keeping wastes where they are generated, through political restrictions, or by providing economic compensation and political incentives (for example, a local veto). Assuring people of facility safety includes allowing local control (monitoring, health assessment, regulation), and enhancing trust of facility managers through such means as rectifying past mistakes, individual-oriented education campaigns, and negotiation of compensation packages with local residents. These means should reduce —without eliminating—public opposition to local siting of nuclear and chemical waste facilities.

  4. Hybrid and Disposable Facilities for Manufacturing of Biopharmaceuticals: Pros and Cons

    Science.gov (United States)

    Ravisé, Aline; Cameau, Emmanuelle; de Abreu, Georges; Pralong, Alain

    Modern biotechnology has grown over the last 35 years to a maturing industry producing and delivering high-value biopharmaceuticals that yield important medical and economical benefits. The constantly increasing need for biopharmaceuticals and significant costs related to time-consuming R&D work makes this industry risky and highly competitive. This trend is confirmed by the important number of biopharmaceuticals that are actually under development at all stages by all major pharmaceutical industry companies. A consequence of this evolution is an increasing need for development and manufacturing capacity. The build up of traditional - stainless steel - technology is complicated, time consuming and very expensive. The decision for such a major investment needs to be taken early in the development cycle of a promising drug to cope with future demands for clinical trials and product launch. Possibilities for the reduction of R&D and manufacturing costs are therefore of significant interest in order to be competitive.

  5. Clays for brick manufacturing in Actopan, Hidalgo: physical, chemical and mineralogical characterization

    International Nuclear Information System (INIS)

    Moreno-Tovar, Raul; Yañez-Hernández, Osiris Annel; Pérez-Moreno, Fidel; Rodríguez-Lugo, Ventura; Rivera, José de Jesús Cruz; Rivera, Ana Leonor

    2017-01-01

    Samples of clays from Actopan, Hidalgo employed in brick manufacturing are physical, chemical and mineralogical characterized. Transmitted polarized light microscopy showed a uniform particle size with grain morphology characteristic of euhedral crystals with quartz, feldspars, nontronite, and iron oxides particles. Scanning Electron Microscopy revealed 75 μm to 90 μm wide subhedral structures formed by particles from 2.0 μm to 5.0 μm; and rombohedrales forms 40 μm wide, 70 µm long, constituted of silicon, aluminum, iron, titanium, calcium, minor amounts of potassium, magnesium, and sodium. Minerals such as quartz, albite, cristobalite, calcium and Hematite phases were recognized by X-Ray Diffraction technique. Chemical analysis by atomic emission spectrometry with Inductively Coupled Plasma confirmed this mineralogy composition while laser granulometry method found the same particle size. Grain size analysis determined submicrometric dimensions, and multimodal type curves, that can be interpreted as the mixing of two or more different mineral phases in each sample. (author)

  6. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals.

    Science.gov (United States)

    Tolonen, Emma-Tuulia; Sarpola, Arja; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2014-12-01

    The aim of this research was to investigate whether by-products from quicklime manufacturing could be used instead of commercial quicklime (CaO) or hydrated lime (Ca(OH)2), which are traditionally used as neutralization chemicals in acid mine drainage treatment. Four by-products were studied and the results were compared with quicklime and hydrated lime. The studied by-products were partly burnt lime stored outdoors, partly burnt lime stored in a silo, kiln dust and a mixture of partly burnt lime stored outdoors and dolomite. Present application options for these by-products are limited and they are largely considered waste. Chemical precipitation experiments were performed with the jar test. All the studied by-products removed over 99% of Al, As, Cd, Co, Cu, Fe, Mn, Ni, Zn and approximately 60% of sulphate from acid mine drainage. However, the neutralization capacity of the by-products and thus the amount of by-product needed as well as the amount of sludge produced varied. The results indicated that two out of the four studied by-products could be used as an alternative to quicklime or hydrated lime for acid mine drainage treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Investigation of reports of sexual dysfunction among male chemical workers manufacturing stilbene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, M.M.; Wegman, D.H.; Greaves, I.A.; Hammond, S.K.; Ellenbecker, M.J.; Spark, R.F.; Smith, E.R. (Univ. of Massachusetts Medical School, Worcester (USA))

    1990-01-01

    A Health Hazard Evaluation was conducted by the National Institute for Occupational Safety and Health in an area of a large chemical plant that manufactured the stilbene derivative 4,4'-diaminostilbene-2,2'-disulfonic acid, an intermediate used for the production of optical brightening agents. Men employed in the area reported problems with impotence. The study population consisted of 44 men aged 20-57 years (mean age 37) employed in the area at the time of the evaluation. An industrial hygiene investigation, health and work history questionnaire survey, physical examinations, and blood chemistry and serum hormone evaluation were conducted. Fourteen percent of the men reported symptoms of impotence over the preceding 6 or more months, 7% had potency problems of shorter duration, and 7% were not currently impotent but had experienced impotence for 6 or more months in the past; 36% experienced decreased libido, all since beginning work in the production area. Low levels of serum testosterone (less than 350 ng/dl) were observed in 37% of the men. The low serum testosterone concentrations were not accounted for fully by diurnal variation or an effect of rotating shift work. It is suggested that exposures to chemicals possessing estrogenic activity may be related to the observed health effects in these workers.

  8. Clays for brick manufacturing in Actopan, Hidalgo: physical, chemical and mineralogical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Tovar, Raul; Yañez-Hernández, Osiris Annel; Pérez-Moreno, Fidel; Rodríguez-Lugo, Ventura [Área de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo (Mexico); Rivera, José de Jesús Cruz [Universidad Autónoma de San Luis Potosí (Mexico); Rivera, Ana Leonor, E-mail: analeonor.ventura.2016@gmail.com [Universidad Nacional Autónoma de México, DF (Mexico)

    2017-10-15

    Samples of clays from Actopan, Hidalgo employed in brick manufacturing are physical, chemical and mineralogical characterized. Transmitted polarized light microscopy showed a uniform particle size with grain morphology characteristic of euhedral crystals with quartz, feldspars, nontronite, and iron oxides particles. Scanning Electron Microscopy revealed 75 μm to 90 μm wide subhedral structures formed by particles from 2.0 μm to 5.0 μm; and rombohedrales forms 40 μm wide, 70 µm long, constituted of silicon, aluminum, iron, titanium, calcium, minor amounts of potassium, magnesium, and sodium. Minerals such as quartz, albite, cristobalite, calcium and Hematite phases were recognized by X-Ray Diffraction technique. Chemical analysis by atomic emission spectrometry with Inductively Coupled Plasma confirmed this mineralogy composition while laser granulometry method found the same particle size. Grain size analysis determined submicrometric dimensions, and multimodal type curves, that can be interpreted as the mixing of two or more different mineral phases in each sample. (author)

  9. Manufacturing and supply of a mercury cooled rotary uranium target for the GELINA accelerator facility of IRMM

    International Nuclear Information System (INIS)

    Febvre, M.

    2009-01-01

    AREVA CERCA is a manufacturer of Uranium fuel elements for Research Reactors, Mechanical Components for nuclear industry and Radioactive Reference Sources for nuclear industry and medicine. The GELINA high-resolution neutron time-of-flight measurements facility of IRMM (Institute for Reference Materials and Measurements) operates with a very special Uranium target. There is no other neutron production target in the world that has the same or even similar characteristics. Over more than two decades, AREVA CERCA developed and manufactured the rotary Uranium targets for the GELINA facility of IRMM. The use of Uranium and the induced activation during operation in GELINA ask for extremely reliable equipment, responding to very high safety demands. For the fabrication of the target, the very high quality control standards applicable for the fabrication of nuclear equipment must be applied. The material of the Uranium-molybdenum disk must fulfill very restrictive conditions. The target core of the target is cooled by a stream of Mercury, pumped by an electromagnetic pump manufactured by AREVA CERCA. Temperatures in the Uranium disk must be measured with thermocouples distributed inside the Uranium core, at the Uranium/cladding interface and at the inlet and outlet of the Mercury. The target has to rotate between an upper and a lower neutron moderator with very severe geometrical tolerances. The very small gap between the Uranium and the cladding must be filled with Helium before sealing. Preparation and installation of the Target at the GELINA linear Accelerator is presented. Performances and reliability of the targets are reported combined with major experiences and results gained by IRMM. (author)

  10. Automatic chemical determination facility for plutonium and uranium

    International Nuclear Information System (INIS)

    Benhamou, A.

    1980-01-01

    A proposal for a fully automated chemical determination system for uranium and plutonium in (U, Pu)O 2 mixed oxide fuel, from the solid sample weighing operation to the final result is described. The steps completed to data are described. These include: test sample preparation by weighing, potentiometer titration system, cleaning and drying of glassware after titration. The process uses a Mettler SR 10 Titrator System in conjunction with others automatized equipment in corse of realization. Precision may reach 0.02% and is generally better than 0.1%. Accuracy in within +-0.1% of manual determination results or titration standards [fr

  11. Design, development, manufacturing, testing and commissioning of instrumentation for critical facility

    International Nuclear Information System (INIS)

    Dutta, P.K.; Gadgil, Kautubh; Punekar, Parag; Ramkumar, N.; Gohel, Nilesh; Darbhe, M.D.; Bharathan, R.; Bharadhwaj, G.

    2006-01-01

    The Critical Facility (CF) is a low power research reactor. Neutronic and Process Instrumentation are important systems those ensure safety and control of the reactor. The Control and Instrumentation systems for the Critical facility have been designed, developed and commissioned by RRMD. Most of the nuclear instrumentation used here is originally designed and developed jointly by Electronics Division and RRMD during ZAC project for conversion of the earlier vacuum tube based instrumentation to the solid state circuits during 1984-85 for Zerlina, Apsara and Cirus and are in operation at Cirus and Apsara since commissioning in 1984-85. The Process Instrumentation is provided for monitoring important process parameters such as level, flow, temperature and pressure and generating trips, alarms and interlocks necessary for smooth operation of the systems and safety of personnel and equipment. The paper will provide technical information on the reactor instrumentation for both nuclear and process systems, used in Critical Facility, the associated trip and alarms logics, and their integration into the reactor monitoring control and protection system, information systems developed for Critical Facility. (author)

  12. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.

    Science.gov (United States)

    Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-04-15

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.

  13. 219-S chemical compatibility

    Energy Technology Data Exchange (ETDEWEB)

    GOODWIN, L.D.

    1999-08-31

    This document consists of tables of the materials that make up the ''wetted'' parts of the 219-S waste handling facility and a combination of manufacturer lists of chemicals that are not recommended.

  14. Green manufacturing of metallic nanoparticles: A facile and universal approach to scaling up

    NARCIS (Netherlands)

    Feng, J.; Guo, Xiaoai; Ramlawi, N.; Pfeiffer, T.V.; Geutjens, R.; Basak, S.; Nirschl, Hermann; Biskos, G.; Zandbergen, H.W.; Schmidt-Ott, A.

    2016-01-01

    High-yield and continuous synthesis of ultrapure inorganic nanoparticles (NPs) of well-defined size and composition has invariably been one of the major challenges in nanotechnology. Employing green techniques that avoid the use of poisonous and expensive chemicals has been realized as a necessity

  15. Shell Chemical LP To Install $10 Million In Pollution Monitoring And Control Equipment At Norco Chemical Facility In Louisiana To Resolve Alleged Federal And State Clean Air Violations

    Science.gov (United States)

    EPA News Release: Shell Chemical LP To Install $10 Million In Pollution Monitoring And Control Equipment At Norco Chemical Facility In Louisiana To Resolve Alleged Federal And State Clean Air Violations

  16. Chemical Manufacturing and Refining Industry Legitimacy: Reflective Management, Trust, Precrisis Communication to Achieve Community Efficacy.

    Science.gov (United States)

    Heath, Robert L; Lee, Jaesub

    2016-06-01

    Calls for emergency right-to-know in the 1980s, and, in the 1990s, risk management planning, motivated U.S. chemical manufacturing and refining industries to operationalize a three-pronged approach to risk minimization and communication: reflective management to increase legitimacy, operational safety programs to raise trust, and community engagement designed to facilitate citizens' emergency response efficacy. To assess these management, operational, and communication initiatives, communities (often through Local Emergency Planning Committees) monitored the impact of such programs. In 2012, the fourth phase of a quasi-longitudinal study was conducted to assess the effectiveness of operational change and community outreach in one bellwether community. This study focuses on legitimacy, trust, and response efficacy to suggest that an industry can earn legitimacy credits by raising its safety and environmental impact standards, by building trust via that change, and by communicating emergency response messages to near residents to raise their response efficacy. As part of its campaign to demonstrate its concern for community safety through research, planning, and implementation of safe operations and viable emergency response systems, this industry uses a simple narrative of risk/emergency response-shelter-in-place-communicated by a spokes-character: Wally Wise Guy. © 2015 Society for Risk Analysis.

  17. Analysis of adverse events with Essure hysteroscopic sterilization reported to the Manufacturer and User Facility Device Experience database.

    Science.gov (United States)

    Al-Safi, Zain A; Shavell, Valerie I; Hobson, Deslyn T G; Berman, Jay M; Diamond, Michael P

    2013-01-01

    The Manufacturer and User Facility Device Experience database may be useful for clinicians using a Food and Drug Administration-approved medical device to identify the occurrence of adverse events and complications. We sought to analyze and investigate reports associated with the Essure hysteroscopic sterilization system (Conceptus Inc., Mountain View, CA) using this database. Retrospective review of the Manufacturer and User Facility Device Experience database for events related to Essure hysteroscopic sterilization from November 2002 to February 2012 (Canadian Task Force Classification III). Online retrospective review. Online reports of patients who underwent Essure tubal sterilization. Essure tubal sterilization. Four hundred fifty-seven adverse events were reported in the study period. Pain was the most frequently reported event (217 events [47.5%]) followed by delivery catheter malfunction (121 events [26.4%]). Poststerilization pregnancy was reported in 61 events (13.3%), of which 29 were ectopic pregnancies. Other reported events included perforation (90 events [19.7%]), abnormal bleeding (44 events [9.6%]), and microinsert malposition (33 events [7.2%]). The evaluation and management of these events resulted in an additional surgical procedure in 270 cases (59.1%), of which 44 were hysterectomies. Sixty-one unintended poststerilization pregnancies were reported in the study period, of which 29 (47.5%) were ectopic gestations. Thus, ectopic pregnancy must be considered if a woman becomes pregnant after Essure hysteroscopic sterilization. Additionally, 44 women underwent hysterectomy after an adverse event reported to be associated with the use of the device. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights reserved.

  18. Complications in cosmetic laser surgery: a review of 494 Food and Drug Administration Manufacturer and User Facility Device Experience Reports.

    Science.gov (United States)

    Zelickson, Zachary; Schram, Sarah; Zelickson, Brian

    2014-04-01

    Complications in cosmetic laser and energy based surgery affect a number of patients every year and may cause scars, burns, blisters, and pigmentation damage. To evaluate documented complications in cosmetic laser- and energy-based surgeries, determine the most common errors, and recommend a simple procedural sequence to reduce patient complications. U.S. Food and Drug Administration Manufacturer and User Facility Device Experience Adverse Event Reports after cosmetic laser- and energy-based procedures with varied devices were reviewed (N = 494). The laser manufacturer, device used, event type, injury type, cause, operator, and indication for treatment for each case were identified. In the 494 cases reviewed between 2006 and 2011, the most common complications were burns, scarring, blistering, pigmentation damage, and infection. The most common cause of these complications was user error by a healthcare provider (30%), followed by laser device malfunction (20%) and patient error (4%). Indications for treatment were unknown for 69% of cases, and 38% of the cases were an unknown cause of complication. User error was a major factor in laser surgery complications. To improve safety and reduce errors, we propose the implementation of a procedural sequence for cosmetic laser surgery. © 2014 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  19. Real time and accelerated stability studies of Tetanus toxoid manufactured in public sector facilities of Pakistan.

    Science.gov (United States)

    Parveen, Ghazala; Hussain, Shahzad; Malik, Farnaz; Begum, Anwar; Mahmood, Sidra; Raza, Naeem

    2013-11-01

    Tetanus is an acute illness represented by comprehensive increased inflexibility and spastic spasms of skeletal muscles. The poor quality tetanus toxoid vaccine can raise the prevalence of neonatal tetanus. WHO has taken numerous steps to assist national regulatory authorities and vaccine manufacturers to ensure its quality and efficacy. It has formulated international principles for stability evaluation of each vaccine, which are available in the form of recommendations and guidelines. The aim of present study was to ensure the stability of tetanus vaccines produced by National Institute of Health, Islamabad, Pakistan by employing standardized methods to ensure constancy of tetanus toxoid at elevated temperature, if during storage/transportation cold chain may not be maintained in hot weather. A total of three batches filled during full-scale production were tested. All Stability studies determination were performed on final products stored at 2-8°C and elevated temperatures in conformance with the ICH Guideline of Stability Testing of Biological Products. These studies gave comparison between real time shelf-life stability and accelerated stability studies. The findings indicate long﷓term thermo stability and prove that this tetanus vaccine can remain efficient under setting of routine use when suggested measures for storage and handling are followed in true spirit.

  20. 77 FR 55505 - Manufacturer of Controlled Substances; Notice of Registration; AMPAC Fine Chemicals LLC

    Science.gov (United States)

    2012-09-10

    ... Schedule Thebaine (9333) II Poppy Straw Concentrate (9670) II The company is a contract manufacturer. In reference to Poppy Straw Concentrate the company will manufacture Thebaine intermediates for sale to its..., verification of the company's compliance with state and local laws, and a review of the company's background...

  1. 77 FR 47115 - Manufacturer of Controlled Substances; Notice of Application; Cayman Chemical Company

    Science.gov (United States)

    2012-08-07

    ...)-propylthiophenethylamine I (7348). Marihuana (7360) I Tetrahydrocannabinols (7370) I Mescaline (7381) I 3,4,5... (1205) II The company plans to manufacture small quantities of marihuana derivatives for research purposes. In reference to drug code 7360 (Marihuana), the company plans to bulk manufacture cannabidiol. In...

  2. Idaho Chemical Processing Plant Liquid Effluent Treatment and Disposal Facility hot test report

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, R.L.

    1993-09-01

    Prior to initial operation with radioactive feed or ``hot`` operation, the Liquid Effluent Treatment and Disposal (LET&D) Facility underwent extensive testing. This report provides a detailed description and analysis of this testing. Testing has determined that LET&D is capable of processing radioactive solutions between the design flowrates of 275 gph to 550 gph. Modifications made to prevent condensation on the off-gas HEPA filters, to the process vacuum control, bottoms cooler rupture disks, and feed control system operation were successful. Unfortunately, two mixers failed prior to ``hot`` testing due to manufacturer`s error which limited operation of the PEW Evaporator System and sampling was not able to prove that design removal efficiencies for Mercury, Cadmium, Plutonium, and Non-Volatile Radionuclides.

  3. 77 FR 70189 - Manufacturer of Controlled Substances; Notice of Registration; Cayman Chemical Company

    Science.gov (United States)

    2012-11-23

    ... manufacture small quantities of marihuana derivatives for research purposes. In reference to drug code 7360... company's compliance with state and local laws, and a review of the company's background and history...

  4. Applicability of chemical vapour polishing of additive manufactured parts to meet production-quality

    DEFF Research Database (Denmark)

    Pedersen, D. B.; Hansen, H. N.; Nielsen, J. S.

    2014-01-01

    The Fused Deposition Modelling (FDM) method is the most rapidly growing Additive Manufacturing (AM) method[1]. FDM employs a 2.5D deposition scheme which induce a step-ladder shaped surface definition [2], with seams of the individual layers clearly visible[3]. This paper investigate to which...... of FDM manufactured parts can be taken from their current quality into the precision engineering domain....

  5. Toxic chemical hazard classification and risk acceptance guidelines for use in DOE facilities. Revision 2

    International Nuclear Information System (INIS)

    Craig, D.K.; Davis, J.S.; Prowse, J.; Hoffman, P.W.

    1995-01-01

    The concentration-limit guidelines presented in this document apply to airborne releases of chemicals evaluated with respect to human health effects for the purposes of hazard classification and categorization, risk assessment and safety analysis. They apply to all DOE facilities and operations involving the use of potentially hazardous chemicals. The guidelines do not address other nonradiological hazards such as fire, pressure releases (including explosions), and chemical reactivity, but the guidelines are applicable to hazardous chemical releases resulting from these events. This report presents the subcommittee's evaluation and recommendations regarding analyses of accidentally released toxic chemicals. The premise upon which these recommendations are based is that the mechanism of action of toxic chemicals is fundamentally different from that associated with radionuclides, with the exception of carcinogens. The recommendations reported herein are restricted to the airborne pathway because in an accident scenario this typically represents the most immediately significant route of public exposure. However, the subcommittee recognizes that exposure to chemicals through other pathways, in particular waterborne, can have significant impacts on human health and the environment. Although there are a number of chemicals for which absorption through the skin can contribute measurably to the total dose in chronic (e.g., occupational) exposure situations, this pathway has not been considered for the acute exposure scenarios considered in this report. Later studies. will address these issues if it appears desirable

  6. Strategy of Construction and Demolition Waste Management after Chemical Industry Facilities Removal

    Science.gov (United States)

    Tashkinova, I. N.; Batrakova, G. M.; Vaisman, Ya I.

    2017-06-01

    Mixed waste products are generated in the process of irrelevant industrial projects’ removal if conventional techniques of their demolition and dismantling are applied. In Russia the number of unused chemical industry facilities including structures with high rate of wear is growing. In removing industrial buildings and production shops it is used conventional techniques of demolition and dismantling in the process of which mixed waste products are generated. The presence of hazardous chemicals in these wastes makes difficulties for their use and leads to the increasing volume of unutilized residues. In the process of chemical industry facilities’ removal this fact takes on special significance as a high level of hazardous chemicals in the waste composition demands for the realization of unprofitable measures aimed at ensuring environmental and industrial safety. The proposed strategy of managing waste originated from the demolition and dismantling of chemical industry facilities is based on the methodology of industrial metabolism which allows identifying separate material flows of recycled, harmful and ballast components, performing separate collection of components during removal and taking necessary preventive measures. This strategy has been tested on the aniline synthesis plant being in the process of removal. As a result, a flow of 10 wt. %, subjected to decontamination, was isolated from the total volume of construction and demolition waste (C&D waste). The considered approach allowed using the resource potential of more than 80wt. % of waste and minimizing the disposed waste volume.

  7. Physico-chemical examination of materials used for manufacturing radiation sterilized medical equipment

    International Nuclear Information System (INIS)

    Robalewski, A.; Zalewski, W.

    1973-01-01

    The usefulness of chemical investigations in the selection of plastics for medical purpose was discussed. Changes of chemical properties correspond to biochemical and biological ones as proved in some instances. (author)

  8. 78 FR 64018 - Manufacturer of Controlled Substances; Notice of Registration; Boehringer Ingelheim Chemicals, Inc.

    Science.gov (United States)

    2013-10-25

    ...; Notice of Registration; Boehringer Ingelheim Chemicals, Inc. By Notice dated June 18, 2013, and published in the Federal Register on July 1, 2013, 78 FR 39340, Boehringer Ingelheim Chemicals, Inc., 2820 N... 21 U.S.C. 823(a) and determined that the registration of Boehringer Ingelheim Chemicals, Inc., to...

  9. Worker exposures to chemical agents in the manufacture of rubber tires: solvent vapor studies.

    Science.gov (United States)

    Van Ert, M D; Arp, E W; Harris, R L; Symons, M J; Williams, T M

    1980-03-01

    Environmental sampling surveys have been conducted in ten large tire manufacturing plants across the U.S. to characterize the nature and intensity of current exposure to solvent vapors. These plants were chosen to represent a cross-section of the industry and include both old and new plants, plants of four different companies and plants with wide geographic distributions. A variety of organic solvents is used in the manufacture of tires and tubes; accordingly solvent vapors comprise one category of exposure for workers in specific Occupational Title Groups (OTGs). Approximately 1000 determinations of various solvent vapor components in air samples have been made with special emphasis on pentane, hexane, heptane, benzene and toluene vapor levels. Exposures stem from the widespread use of bulk materials including petroleum naphthas, gasoline and aliphatic and rubber solvents in various tire manufacturing operations.

  10. Manufacturing Planning Guide

    Science.gov (United States)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  11. Chemical Characterization and Behavior of Respirable Fractions of Indoor Dusts Collected Near a Landfill Facility

    Directory of Open Access Journals (Sweden)

    Rheo B. Lamorena-Lim

    2016-06-01

    Full Text Available The study aims to determine the inorganic and organic phases in airborne particulate matter (PM collected near a landf ill facility. The establishments within the vicinity of the landfill considered in the study were a junk shop, a school, and a money changer shop. From the elemental analysis using inductively-coupled plasma mass spectrometry (ICP-MS, lead and cadmium were discovered to be more abundant in the total suspended particulate (TSP fraction, whereas copper was more abundant in the smaller PM2.5. Manganese, arsenic, strontium, cadmium, and lead were more abundant in the PM10 fraction than in PM2.5. The results of the chemical characterization were compiled and evaluated in a geochemical modelling code (PHREEQC to determine the potential speciation of these chemical constituents. Solution complexes of As, Pb, Cd and phthalates, and metal species, such as H2AsO3- , Cd2OH3+, Pb(OH3-, were predicted to form by the PHREEQC simulation runs once the endmember components interact with water. The results contribute to the background information on the potential impacts from exposure to airborne PM at workplaces around landfill facilities. Moreover, the data gathered provide a baseline for the chemical characterization and behavior of chemical constituents of PM possibly present in this specific type of environment.

  12. 78 FR 69134 - Manufacturer of Controlled Substances; Notice of Registration: AMPAC Fine Chemicals, LLC.

    Science.gov (United States)

    2013-11-18

    ... Schedule Methylphenidate (1724) II Thebaine (9333) II Poppy Straw Concentrate (9670) II Tapentadol (9780) II The company is a contract manufacturer. In reference to Poppy Straw Concentrate the company will... with state and local laws, and a review of the company's background and history. Therefore, pursuant to...

  13. 40 CFR 455.20 - Applicability; description of the organic pesticide chemicals manufacturing subcategory.

    Science.gov (United States)

    2010-07-01

    ..., Neubron, Propham, Swep, 2,4-D, Dicamba, Silvex, 2,4,5-T, Siduron, Perthane, and Dicofol. (c) The... Rotenone are also excluded from BPT coverage in this subpart. (d) A plant that manufactures a pesticide... source performance and pretreatment standards for that pesticide active ingredient listed in table 2 (BAT...

  14. Device-Related Adverse Events During Percutaneous Nephrolithotomy: Review of the Manufacturer and User Facility Device Experience Database.

    Science.gov (United States)

    Patel, Neel H; Schulman, Ariel A; Bloom, Jonathan B; Uppaluri, Nikil; Phillips, John L; Konno, Sensuke; Choudhury, Muhammad; Eshghi, Majid

    2017-10-01

    Percutaneous nephrolithotomy (PCNL) is an established technique for removal of large stones from the upper urinary tract. It is a complex multistep procedure requiring several classes of instruments that are subject to operator misuse and device malfunction. We report device-related adverse events during PCNL from the Manufacturer and User Facility Device Experience (MAUDE) database using a recently developed standardized classification system. The MAUDE database was queried for "percutaneous nephrolithotomy" from 2006 to 2016. The circumstances and patient complications associated with classes of devices used during PCNL were identified. We then utilized a novel MAUDE classification system to categorize clinical events. Logistic regression analysis was performed to identify associations between device classes and severe adverse events. A total of 218 device-related events were reported. The most common classes included: lithotripter 53 (24.3%), wires 43 (19.7%), balloon dilators 30 (13.8%), and occlusion balloons 28 (12.8%). Reported patient complications included need for a second procedure 12 (28.6%), bleeding 8 (19.0%), retained fragments 7 (16.7%), prolonged procedure 4 (9.5%), ureteral injury 2 (4.8%), and conversion to an open procedure 3 (7.1%). Using a MAUDE classification system, 176 complications (81%) were Level I (mild/none), 26 (12%) were Level II (moderate), 15 (7%) were Level III (severe), and 1 (0.5%) was Level IV (life threatening). On univariate analysis, balloon dilators had the highest risk of Level II-IV complications compared with the other device classes [odds ratio: 4.33, confidence interval: 1.978, 9.493, p < 0.001]. The device was evaluated by the manufacturer in 93 (42.7%) cases, with 54.8% of reviewed cases listing the source of malfunction as misuse by the operator. PCNL is subject to a wide range of device-related adverse events. A MAUDE classification system is useful for standardized, clinically-relevant reporting of events. Our

  15. Chemical inventory control program for mixed and hazardous waste facilities at SRS

    International Nuclear Information System (INIS)

    Ades, M.J.; Vincent, A.M. III.

    1997-01-01

    Mixed Waste (MW) and Hazardous Waste (HW) are being stored at the Savannah River Site (SRS) pending onsite and/or offsite treatment and disposal. The inventory control for these wastes has recently been brought under Technical Safety Requirements (TSR) in accordance with DOE Order 5480.22. With the TSRs was the question of the degree of rigor with which the inventory is to be tracked, considering that the variety of chemicals present, or that could be present, numbers in the hundreds. This paper describes the graded approach program to track Solid Waste (SW) inventories relative to TSRs. The approach uses a ratio of the maximum anticipated chemical inventory to the permissible inventory in accordance with Emergency Response Planning Guideline (ERPG) limits for on- and off-site receptors. A specific threshold ratio can then be determined. The chemicals above this threshold ratio are to be included in the chemical inventory control program. The chemicals that fall below the threshold ratio are managed in accordance with existing practice per State and RCRA hazardous materials requirements. Additionally, the facilities are managed in accordance with process safety management principles, specifically using process hazards analyses, which provides safety assurance for even the small quantities that may be excluded from the formal inventory control program. The method yields a practical approach to chemical inventory control, while maintaining appropriate chemical safety margins. The resulting number of specific chemicals that require inclusion in a rigorous inventory control program is greatly reduced by about 80%, thereby resulting in significant reduction in chemical data management while preserving appropriate safety margins

  16. Assessment of local wood species used for the manufacture of cookware and the perception of chemical benefits and chemical hazards associated with their use in Kumasi, Ghana

    Directory of Open Access Journals (Sweden)

    Mensah John Kenneth

    2012-12-01

    Full Text Available Abstract Background Historical proven wood species have no reported adverse health effect associated with its past use. Different historical proven species have traditionally been used to manufacture different wooden food contact items. This study uses survey questionnaires to assess suppliers’, manufacturers’, retailers’ and consumers’ (end-users’ preferences for specific wood species, to examine the considerations that inform these preferences and to investigate the extent of awareness of the chemical benefits and chemical hazards associated with wooden food contact material use. Methods Through the combined use of a cross sectional approach and a case study design, 25 suppliers, 25 manufacturers, 25 retailers and 125 consumers (end-users of wooden food contact materials in four suburbs in Kumasi Metropolitan Area (Anloga junction, Ahinsan Bus Stop, Ahwia-Pankrono and Race Course and Ashanti Akyim Agogo in the Ashanti Akyim North District of the Ashanti Region were administered with closed ended questionnaires. The questionnaires were prepared in English, but local language, Twi, was used to translate and communicate the content of the questionnaire where necessary. Results Suppliers’, manufacturers’ and retailers’ preferences for specific wood species for most wooden cookware differed from that of consumers (end-users. But all respondent groups failed to indicate any awareness of chemical benefits or chemical hazards associated with either the choice of specific wood species for specific wooden cookware or with the general use of wooden food contact materials. The lack of appreciation of chemical benefits or hazards associated with active principles of wooden cookware led to heavy reliance of consumers (end-users on the wood density, price, attractive grain pattern and colour or on the judgement of retailers in their choice of specific species for a wooden cookware. Conclusion This study contributes some practical suggestions

  17. 77 FR 70188 - Manufacturer of Controlled Substances; Notice of Registration; Boehringer Ingelheim Chemicals, Inc.

    Science.gov (United States)

    2012-11-23

    ...; Notice of Registration; Boehringer Ingelheim Chemicals, Inc. By Notice dated July 17, 2012, and published in the Federal Register on July 26, 2012, 77 FR 43863, Boehringer Ingelheim Chemicals, Inc., 2820 N... has considered the factors in 21 U.S.C. 823(a) and determined that the registration of Boehringer...

  18. KEFIRS MANUFACTURED FROM CAMEL (CAMELUS DRAMEDARIUS) MILK AND COW MILK: COMPARISON OF SOME CHEMICAL AND MICROBIAL PROPERTIES

    OpenAIRE

    G. Kavas

    2015-01-01

    This study examined the production possibilities of kefir from fresh camel milk fermented with grain. The findings were then compared with kefir manufactured from cow’s milk. Cow’s milk was fermented with 2.5% grains. The 1% (v/w) glucose enriched camel’s milk was fermented with 10% grains and left in an incubator at 25°C. Physical-chemical and sensorial analyses of the kefir sampleswere measured on day one (18 hours) of storage and microbiological analyses were measured on days one, three an...

  19. Desktop Systems for Manufacturing Carbon Nanotube Films by Chemical Vapor Deposition

    Science.gov (United States)

    2007-06-01

    SabreTube, the steel blocks were thinned to minimize thermal mass by replacing the top steel piece with .125” thick AISI 304 stainless steel Page...56 of 147 and the bottom steel piece with .03” thick AISI 304 mirror polished stainless steel. The full surface area of the mirrored side of the...the Testing of Continuous Manufacturing of Carbon Nanotubes 72 2.3.1 System Requirements and Constraints

  20. The strategy on rehabilitation of the former uranium facilities at the 'Pridneprovsky chemical plant' in Ukraine

    International Nuclear Information System (INIS)

    Voitsekhovich, O.; Lavrova, T.; Skalskiy, A.S.; Ryazantsev, V.F.

    2007-01-01

    This paper describes current status of the former Uranium Facilities at the Pridneprovsky Chemical Plant in Ukraine, which are currently under development of action plan for its territory rehabilitation. The monitoring data carried out during recent several years show its impact to the Environment and gives a basis for justification of the number of measures aiming to reduce radiological and ecological risks of the Uranium tailings situated at the territory of PChP. The monitoring data and strategy for its remediation are considered in the presentation. Uranium mining has been intensively conducted in Ukraine since the end of the 40-s. Most of the uranium deposits have been explored in the Dnieper river basin, while some smaller deposits can be found within the basins of the Southern Bug and Severskiy Donets rivers. There also several large Uranium Milling facilities were in operation since the end of the 40-s till 1991, when due to disintegration of the former Soviet Union system the own uranium production has been significantly declined. The Milling Plant and Uranium extraction Facilities in ZhevtiVody is still in operation with UkrAtomprom Industrial Consortium. Therefore rehabilitation programme for all Uranium facilities in this site are in duty of the East Mining Combine and the Consortium. The most difficult case is to provide rehabilitation Action Plan for Uranium tailings and number of other facilities situated in Dnieprodzerzhinsk town and which were in operation by the former State Industrial Enterprise Pridneprovskiy Chemical Plant (PChP). In past PChP was one of the largest Uranium Milling facilities of the Former Soviet Union and has been in operation since 1948 till 1991. During Soviet time the Uranium extraction at this legacy site has been carried out using the ore raw products delivered also from Central Asia, Germany and Checz Republic. After extraction the uranium residue has been putting to the nearest landscape depressions at the vicinity of

  1. Utilisation of fly ash for the management of heavy metal containing primary chemical sludge generated in a leather manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G.; Rao, B.P.; Ghanamani, A.; Rajamani, S. [Central Leather Research Institute, Chennai (India). Dept. of Environmental Technology

    2003-07-01

    The present study aims at disposal of primary chemical sludge generated in the tanning industry by solidification and stabilization process using flyash generated from thermal power plant along with binders and also on evaluating the leachability of heavy metal from the solidified product. The primary chemical sludge containing heavy metals iron and chromium were obtained from a garment leather manufacturing company at Chennai in India. The sludge was dried in open environment and it was powdered to fine size in a grinder. Binding increases stabilization of heavy metal in calcined sludge with refractory binders such as clay, fly ash, lime and ordinary Portland cement. Fly ash can be considered as the additional binder for producing stronger bricks, with high metal fixation efficiency, and minimum rate of removal of heavy metal and minimum diffusion co-efficient. 15 refs., 5 figs., 5 tabs.

  2. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  3. Releases of PCDD/F from U.S. Chemical Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dyke, P. (PD Consulting, Brobury); Amendola, G. [Amendola Engineering, Westlake, OH (United States); Abel, T. [CCC, Arlington, VA (United States)

    2004-09-15

    There is continuing concern over the exposure of humans and ecosystems to trace levels of highly toxic organic compounds, in particular chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF). The U.S. Environmental Protection Agency (EPA) is developing inventories of releases of PCDD/F. As a contribution to this effort the Chlorine Chemistry Council (CCC is a business council of the American Chemistry Council) worked with EPA to develop estimates of releases of PCDD/F to the environment and off-site transfers from selected chemical production facilities in the U.S. that produce or use large quantities of chlorine.

  4. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron.

    Science.gov (United States)

    Cong, Xin; Xue, Nandong; Wang, Shijie; Li, Keji; Li, Fasheng

    2010-07-15

    Several experiments and a model were constructed using conventional granular zero-valent iron (ZVI) particles as the reducing agent to study the reductive dechlorination characteristics of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in soils from a former pesticide-manufacturing site. The results showed that ZVI had good ability for the reductive dechlorination for both HCHs and DDTs. The reductive dechlorination of HCHs and DDTs proceeded at different rates. The pseudo first-order constants of HCHs were greater than those of DDTs. The reductive dechlorination rates in a descending order were gamma-HCH>delta-HCH>beta-HCH>alpha-HCH>o,p'-DDT>p,p'-DDT>p,p'-DDE. To discuss the major influential factors over the reductive dechlorination rates of HCHs and DDTs by ZVI, 22 quantum chemical descriptors were computed with the density functional theory at B3LYP/6-31G() level, which characterizes different molecular structures and physicochemical properties of HCHs and DDTs. A polyparameter linear free energy relationship (LFER) model was established, which correlates the reductive dechlorination properties of pollutants with their structural descriptors. Using the partial least squares (PLS) analysis, an optimal two-parameter LFER model was established. q(+) and q(Cl)(-) were more important factors in determining the dechlorination rate of OCPs in the chemical reductive reaction. This optimal model was stable and had good predictability. The model study also showed that the coefficient value of q(+) was 0.511, which positively correlated with the reductive dechlorination rate constant, whereas q(Cl)(-) was negatively correlated with it. The reductive dechlorination rate of pollutants appears to be limited mainly by the rate of dissolution in the aqueous phase. This model can be used to explain the degradation potential of organochlorine pesticides (OCPs) and the trend of residues changing during the soil remediation. Therefore, the study is of

  5. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron

    International Nuclear Information System (INIS)

    Cong, Xin; Xue, Nandong; Wang, Shijie; Li, Keji; Li, Fasheng

    2010-01-01

    Several experiments and a model were constructed using conventional granular zero-valent iron (ZVI) particles as the reducing agent to study the reductive dechlorination characteristics of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in soils from a former pesticide-manufacturing site. The results showed that ZVI had good ability for the reductive dechlorination for both HCHs and DDTs. The reductive dechlorination of HCHs and DDTs proceeded at different rates. The pseudo first-order constants of HCHs were greater than those of DDTs. The reductive dechlorination rates in a descending order were γ-HCH > δ-HCH > β-HCH > α-HCH > o,p'-DDT > p,p'-DDT > p,p'-DDE. To discuss the major influential factors over the reductive dechlorination rates of HCHs and DDTs by ZVI, 22 quantum chemical descriptors were computed with the density functional theory at B3LYP/6-31G * level, which characterizes different molecular structures and physicochemical properties of HCHs and DDTs. A polyparameter linear free energy relationship (LFER) model was established, which correlates the reductive dechlorination properties of pollutants with their structural descriptors. Using the partial least squares (PLS) analysis, an optimal two-parameter LFER model was established. q + and q Cl - were more important factors in determining the dechlorination rate of OCPs in the chemical reductive reaction. This optimal model was stable and had good predictability. The model study also showed that the coefficient value of q + was 0.511, which positively correlated with the reductive dechlorination rate constant, whereas q Cl - was negatively correlated with it. The reductive dechlorination rate of pollutants appears to be limited mainly by the rate of dissolution in the aqueous phase. This model can be used to explain the degradation potential of organochlorine pesticides (OCPs) and the trend of residues changing during the soil remediation. Therefore, the study is of

  6. Lot-to-lot consistency of live attenuated SA 14-14-2 Japanese encephalitis vaccine manufactured in a good manufacturing practice facility and non-inferiority with respect to an earlier product.

    Science.gov (United States)

    Zaman, K; Naser, Abu Mohd; Power, Maureen; Yaich, Mansour; Zhang, Lei; Ginsburg, Amy Sarah; Luby, Stephen P; Rahman, Mahmudur; Hills, Susan; Bhardwaj, Mukesh; Flores, Jorge

    2014-10-21

    We conducted a four-arm, double-blind, randomized controlled trial among 818 Bangladeshi infants between 10 and 12 months of age to establish equivalence among three lots of live attenuated SA 14-14-2 JE vaccine manufactured by the China National Biotec Group's Chengdu Institute of Biological Products (CDIBP) in a new Good Manufacturing Practice (GMP) facility and to evaluate non-inferiority of the product with a lot of the same vaccine manufactured in CDIBP's original facility. The study took place in two sites in Bangladesh, rural Matlab and Mirpur in urban Dhaka. We collected pre-vaccination (Day 0) and post-vaccination Day 28 (-4 to +14 days) blood samples to assess neutralizing anti-JE virus antibody titers in serum by plaque reduction neutralization tests (PRNT). Seroprotection following vaccination was defined as a PRNT titer ≥1:10 at Day 28 in participants non-immune at baseline. Follow-up for reactogenicity and safety was conducted through home visits at Day 7 and monitoring for serious adverse events through Day 28. Seroprotection rates ranged from 80.2% to 86.3% for all four lots of vaccine. Equivalence of the seroprotection rates between pairs of vaccine lots produced in the new GMP facility was satisfied at the pre-specified 10% margin of the 95% confidence interval (CI) for two of the three pairwise comparisons, but not for the third (-4.3% observed difference with 95% CI of -11.9 to 3.3%). Nevertheless, the aggregate seroprotection rate for all three vaccine lots manufactured in the GMP facility was calculated and found to be within the non-inferiority margin (within 10%) to the vaccine lot produced in the original facility. All four lots of vaccine were safe and well tolerated. These study results should facilitate the use of SA 14-14-2 JE vaccine as a routine component of immunization programs in Asian countries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Chemical characteristics of organic aerosols in Algiers city area: influence of a fat manufacture plant

    Science.gov (United States)

    Yassaa, Noureddine; Meklati, Brahim Youcef; Cecinato, Angelo

    Total concentrations and homologue distributions of organic fraction constituents have been determined in particulate matter emitted from different units of a fat manufacturer (i.e. oils refining and conditioning plants, and production and conditioning units of a soap industry) located in Algiers area, as well as in atmospheric aerosols. In particular n-alkanes, n-alkanoic and n-alkenoic acids, n-alkan-2-ones and polycyclic aromatic hydrocarbons (PAH) were investigated. Organic aerosol contents varied broadly among the plant units, depending upon nature of the manufactured products. The percent composition of all classes of compounds investigated in ambient atmosphere was similar to those observed indoor at industrial plant units. Organic acids, n-alkanoic as well as n-alkenoic, appeared by far the most abundant organic constituents of aerosols, both indoor and outdoor, ranging from 7.7 to 19.8 and from 12.7 to 17.1 μg m -3, respectively. The huge occurrence of acids and n-alkanes in ambient aerosols was consistent with their high levels present in oil and fat materials. Among minor components of aerosols, n-alkan-2-ones and PAH, seemed to be related to thermally induced ageing and direct combustion of raw organic material used for oil and soap production.

  8. Design of chemical treatment unit for radioactive liquid wastes in Serpong nuclear facilities

    International Nuclear Information System (INIS)

    Salimin, Z.; Walman, E.; Santoso, P.; Purnomo, S.; Sugito; Suwardiyono; Wintono

    1996-01-01

    The chemical treatment unit for radioactive liquid wastes arising from nuclear fuel fabrication, radioisotopes production and radiometallurgy facility has been designed. The design of chemical processing unit is based on the characteristics of liquid wastes containing fluors from uranium fluoride conversion process to ammonium uranyl carbonate on the fuel fabrication. The chemical treatment has the following process steps: coagulation-precipitation of fluoride ion by calcium hydroxide coagulant, separation of supernatant solution from sludge, coagulation of remaining fluoride on the supernatant solution by alum, separation of supernatant from sludge, and than precipitation of fluors on the supernatant by polymer resin WWS 116. The processing unit is composed of 3 storage tanks for raw liquid wastes (capacity 1 m 3 per tank), 5 storage tanks for chemicals (capacity 0.5 m 3 per tank), 2 mixing reactors (capacity 0.5 m 3 per reactor), 1 storage tank for supernatant solution (capacity 1 m 3 ), and 1 storage tank for sludge (capacity 1 m 3 )

  9. Accident simulation in a chemical process facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Hope, E.P.

    1993-01-01

    The US Department of Energy requires Westinghouse Savannah River Company to safely operate the chemical separations facilities at the Savannah River Site (SRS). As part of the safety analysis program, simulation of a proposed frame waste recovery (FWR) system is needed to determine the possible accident consequences that may affect public safety. This paper details the simulation process for the proposed frame waste recovery process and describes the analytical tools used in order to make estimates of accident consequences. Since the process in question has been operated, historical data and statistics about its operation are available. Software tools have been developed to allow analysis of the frame waste recovery system, including the generation of system specific dose conversion factors for a number of unique situations. Accident scenarios involving spilled liquid material are analyzed and account for the specific floor geometry of the facility. Confinement and filtration systems are considered. Analysis of source terms is a limiting factor which affects the entire evaluation process. In the past, facility source terms were generally constant with occasional variations from established patterns. As new site missions unfold, significant variations in source terms can be expected. The impact of these variations on the safety analysis is discussed

  10. Worker exposure to chemical agents in the manufacture of rubber tires and tubes: particulates.

    Science.gov (United States)

    Williams, T M; Harris, R L; Arp, E W; Symons, M J; Van Ert, M D

    1980-03-01

    The Occupational Health Studies Group industrial hygiene studies at a group of 14 tire and tube manufacturing plants chosen to represent a cross-section of the industry include numerous evaluations of potential exposure to airborne particulate matter. Results of these environmental particulate sampling studies are reported by plant and by occupational groups within plants. High volume, open face and cyclone samplers were employed to evaluate both personnel and area particulate concentrations. The concentrations of particulates yielded by high volume and open face total particulate samplers are compared with those of comparison samples of respirable material. Personnel samples of particulates are compared with general air samples taken in the same work areas. An overall review and comparison is given of particulate exposures to workers in various occupational title groups where particulate materials are released to the air from processes or operations.

  11. Argonne's performance assessment of major facility systems to support semiconductor manufacturing by the National Security Agency/R Group, Ft. Meade, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Miller, G.M.

    1990-12-01

    The National Security Agency (NSA) was authorized in 1983 to construct a semiconductor and circuit-board manufacturing plant at its Ft. Meade, Maryland, facility. This facility was to become known as the Special Process Laboratories (SPL) building. Phase I construction was managed by the US Army Corps of Engineers, Baltimore District (USACE/BD) and commenced in January 1986. Phase I construction provided the basic building and support systems, such as the heating, ventilating, and air-conditioning system, the deionized-water and wastewater-treatment systems, and the high-purity-gas piping system. Phase II construction involved fitting the semiconductor manufacturing side of the building with manufacturing tools and enhancing various aspects of the Phase I construction. Phase II construction was managed by NSA and commenced in April 1989. Argonne National Laboratory (ANL) was contracted by USACE/BD midway through the Phase I construction period to provide quality-assured performance reviews of major facility systems in the SPL. Following completion of the Phase I construction, ANL continued its performance reviews under NSA sponsorship, focusing its attention on the enhancements to the various manufacturing support systems of interest. The purpose of this document is to provide a guide to the files that were generated by ANL during its term of technical assistance to USACE/BD and NSA and to explain the quality assurance program that was implemented when ANL conducted its performance reviews of the SPL building's systems. One set of the ANL project files is located at NSA, Ft. Meade, and two sets are at Argonne, Illinois. The ANL sets will be maintained until the year 2000, or for the 10-year estimated life of the project. 1 fig.

  12. Microbiological, chemical, and sensory characteristics of Swiss cheese manufactured with adjunct Lactobacillus strains using a low cooking temperature.

    Science.gov (United States)

    Kocaoglu-Vurma, N A; Harper, W J; Drake, M A; Courtney, P D

    2008-08-01

    The effect of nonstarter Lactobacillus adjunct cultures on the microbial, chemical, and sensory characteristics of Swiss cheese manufactured using the "kosher make procedure" was investigated. The kosher make procedure, which uses a lower cooking temperature than traditional Swiss cheese making, is used by many American cheese manufacturers to allow for kosher-certified whey. Cheeses were manufactured using a commercial starter culture combination and 1 of 3 non-starter Lactobacillus strains previously isolated from Swiss cheeses, Lactobacillus casei A26, L. casei B21, and Lactobacillus rhamnosus H2, as an adjunct. Control cheeses lacked the adjunct culture. Cheeses were analyzed during ripening for microbial and chemical composition. Adjunct strain L. casei A26, which utilized citrate most readily in laboratory medium, dominated the Lactobacillus population within 30 d, faster than the other adjunct cultures. There were no significant differences in Propionibacterium counts, Streptococcus thermophilus counts, protein, fat, moisture, salt, and pH among the cheeses. Free amino acid concentration ranged from 5 to 7 mmol/100 g of cheese at 90 d of ripening and was adjunct strain dependent. Lactic, acetic, and propionic acid concentrations were not significantly different among the cheeses after a 90-d ripening period; however differences in propionic acid concentrations were apparent at 60 d, with the cheeses made with L. casei adjuncts containing less propionic acid. Citric acid was depleted by the end of warm room ripening in cheeses manufactured with adjunct L. casei strains, but not with adjunct L. rhamnosus. Cheeses made with L. casei A26 were most similar to the control cheeses in diacetyl and butyric/isobutyric acid abundance as evaluated by electronic nose during the first 3 mo of ripening. The 4 cheese types differed in their descriptive sensory profiles at 8 mo of age, indicating an adjunct strain-dependent effect on particular flavor attributes. Adjunct

  13. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts...... for subsequent polymer replication by injection moulding was analyzed. New tooling solutions to produce nano structured mould surfaces were investigated. Experiments based on three different chemical-based-batch techniques to establish surface nano (i.e. sub-μm) structures on large areas were performed. Three...... approaches were selected: (1) using Ø500 nm nano beads deposition for direct patterning of a 4” silicon wafer; (2) using Ø500 nm nano beads deposition as mask for 4” silicon wafer etching and subsequent nickel electroplating; (3) using the anodizing process to produce Ø500 nm structures on a 30x80 mm2...

  14. Animal use in the chemical and product manufacturing sectors - can the downtrend continue?

    Science.gov (United States)

    Curren, Rodger

    2009-12-01

    During the 1990s and early 2000s, a number of manufacturing companies in the cosmetic, personal care and household product industries were able to substantially reduce their use of animals for testing (or to not use animals in the first place). These reductions were almost always the result of significant financial contributions to either direct, in-house alternatives research, or to support personnel whose duties were to understand and apply the current state-of-the-art for in vitro testing. They occurred almost exclusively in non-regulatory areas, and primarily involved acute topical toxicities. Over the last few years, the reduction in animal use has been much less dramatic, because some companies are still reluctant to change from the traditional animal studies, because systemic, repeat-dose toxicity is more difficult to model in vitro, and because many products still require animal testing for regulatory approval. Encouragingly, we are now observing an increased acceptance of non-animal methods by regulatory agencies. This is due to mounting scientific evidence from larger databases, agreement by companies to share data and testing strategies with regulatory agencies, and a focus on smaller domains of applicability. These changes, along with new emphasis and financial support for addressing systemic toxicities, promise to provide additional possibilities for industry to replace animals with in vitro methods, alone or in combination with in silico methods. However, the largest advance will not occur until more companies commit to using the non-animal test strategies that are currently available. 2009 FRAME.

  15. Chemical characteristics of organic aerosol in Bab-Ezzouar (Algiers). Contribution of bituminous product manufacture.

    Science.gov (United States)

    Yassaa, N; Meklati, B Y; Cecinato, A; Marino, F

    2001-10-01

    The organic compositions of atmospheric particulate matter from Bab-Ezzouar (Algiers) have been investigated to assess the air pollution levels suspected to be caused by asphalt product and yeast manufactures. After a medium-volume air sampling, soxhlet extraction, alumina elution and HPLC separation, the extracts were analysed by high-resolution gas chromatography (HRGC) and gas chromatography coupled to mass spectrometry (GC-MS). The composition of n-alkane and polycyclic aromatic hydrocarbons (PAH) fractions reflected the petrogenic origin from the emission of asphalt materials production in addition to vascular plant wax emissions. In contrast, microbial activities seemed to play the main role for the presence of n-alkanoic acids at Bab-Ezzouar. The sole nitrated polycyclic aromatic hydrocarbons (NPAH) observed, i.e., 2-nitrofluoranthene (2NFA), was very likely to arise from gas-phase photochemical reaction of parent PAH in the atmosphere. The total aerial levels ranged from 75 to 206 ng m(-3) for n-alkanes, from 153 to 345 ng m(-3) for n-alkanoic acids and from 44 to 100 ng m(-3) for PAH and NPAH. Although the samples were collected during the hot season, the levels of these pollutants seemed to be important and of environmental concern, especially for PAH species.

  16. Assessment of a chemical pollutant on workers’ health in a vehicle manufacturing factory

    Directory of Open Access Journals (Sweden)

    M. Asadi-Lari

    2008-10-01

    Full Text Available Background and aims   Occupational diseases impose considerable burden on public health, wherein chemical pollutants in working places play an important role. One of chemical pollutants  in vehicle's lock & key assembly factories is cyanoacrylate used in" loctite glue", which is assumed harmful to workers' eyes, respiratory tract and skin. This study investigates the side effects of loctite adhesive on workers' health.   Methods   Across sectional study was conducted on all of workers of the vehicle's lock & key  assembly factory (100 workers. A health check list was completed for demographic   characteristics, and physical examination for all of workers and then all data were analysed using  statistical tests.   Results   Mean age of workers was 30± 8. In physical exam, the most common dermatologic  disease was dermatitis (prevalence: 25% , in pulmonary exam the most common sign was airway hyper-responsiveness, which presented as cough and dispnea (prevalence: 10% and there was a significant relationship between workers' eye itching & burning , airway hyper-responsiveness  and loctite adhesive exposure (P<0.01.   Conclusion   Eye itching & burning and airway hyper-responsiveness are side effects of loctite  glue. In this study we observed a relationship between the glue and disorders, hence due to the influence of this chemical material on workers' health. Results indicated that a health promotion   plan and relevant interventions should be designed to reduce exposure to loctite adhesive.

  17. School Siting Near Industrial Chemical Facilities: Findings from the U.S. Chemical Safety Board’s Investigation of the West Fertilizer Explosion

    Science.gov (United States)

    Tinney, Veronica A.; Denton, Jerad M.; Sciallo-Tyler, Lucy; Paulson, Jerome A.

    2016-01-01

    Background: The U.S. Chemical Safety and Hazard Investigation Board (CSB) investigated the 17 April 2013 explosion at the West Fertilizer Company (WFC) that resulted in 15 fatalities, more than 260 injuries, and damage to more than 150 buildings. Among these structures were four nearby school buildings cumulatively housing children in grades kindergarten–12, a nursing care facility, and an apartment complex. The incident occurred during the evening when school was not in session, which reduced the number of injuries. Objectives: The goal of this commentary is to illustrate the consequences of siting schools near facilities that store or use hazardous chemicals, and highlight the need for additional regulations to prevent future siting of schools near these facilities. Discussion: We summarize the findings of the CSB’s investigation related to the damaged school buildings and the lack of regulation surrounding the siting of schools near facilities that store hazardous chemicals. Conclusions: In light of the current lack of federal authority for oversight of land use near educational institutions, state and local governments should take a proactive role in promulgating state regulations that prohibit the siting of public receptors, such as buildings occupied by children, near facilities that store hazardous chemicals. Citation: Tinney VA, Denton JM, Sciallo-Tyler L, Paulson JA. 2016. School siting near industrial chemical facilities: findings from the U.S. Chemical Safety Board’s investigation of the West Fertilizer Explosion. Environ Health Perspect 124:1493–1496; http://dx.doi.org/10.1289/EHP132 PMID:27483496

  18. A study on the chemical characteristics changes throughout the manufacture and ripening of Lighvan cheese

    Directory of Open Access Journals (Sweden)

    H Mirzae

    2011-08-01

    Full Text Available Lighvan cheese is one of the traditional cheeses which have the most high quantity of use in Iran. It is produced in South East of Tabriz in North West of Iran. The raw milk of ewe together with 20% -30% of goat's milk, without yeast, are used for its production. Its taste is mild salty and its scent is pleasant. The purpose of this study was to investigate the chemical indexes changes including salt percentage, the degree of acidity, pH, dry mater, ashes, and protein during the production and ripening. For this purpose, after coordinating with 10 local cheese producers, one batch from each producer and from each batch 20 tins, weighing 1 kg, which in total was 200 newly packaged cheese were purchased randomly. The tins were kept in special caves for 30 days in the region and then 60 days in refrigerator. In each batch sample of the raw milk, clot after rising and before salting, the cheese during the package time in tin and the cheese sample on 15th, 30th, 60th, and 90th days of ripining was analyzed chemically. The results of the study from the initial days of production to the end of the ripening period indicated the following changes: the rate of fat from 6.8 ± 0.25 in milk to 24.55±0.95 in samples, pH from 5.94± 0.06 in milk to 4.4±0.11 in samples, acidity from 39.4 ± 5.99 D° in milk to 119.4±5.38 in samples, rate of ash from 1.77±0.23 in milk to 8.09±2.32 in samples, the percentage of dry mater from 16.52±0.74 in milk to 43.57±1.34 in samples, and finally the percentage of protein from 4.45±1/12 in milk to 14.2±1.4 in samples. This result suggests that Lighvan cheese has unique characteristics in terms of its alteration procedure and chemical characteristics and based on the standard criterion in Iran, 2344-1, it is white cheese ripened brine in terms of chemical characteristics and fatty cheese in terms of the percentage of fat.

  19. Chemical Processing Department monthly report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    Young, J. F.; Johnson, W. E.; Reinker, P. H.; Warren, J. H.; McCullugh, R. W.; Harmon, M. K.; Gartin, W. J.; LaFollette, T. G.; Shaw, H. P.; Frank, W. S.; Grim, K. G.; Warren, J. H.

    1963-11-21

    This report, for October 1963 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  20. Toxic chemicals: risk prevention through use reduction

    National Research Council Canada - National Science Library

    Higgins, Thomas E; Sachdev, Jayanti A; Engleman, Stephen A

    2011-01-01

    "Catastrophic events such as the Bhopal, India tragedy and rising incidences of cancer in areas neighboring industrial facilities have heightened concern over the use of toxic chemicals in manufacturing and industry...

  1. Optimization of chemical composition in the manufacturing process of flotation balls based on intelligent soft sensing

    Directory of Open Access Journals (Sweden)

    Dučić Nedeljko

    2016-01-01

    Full Text Available This paper presents an application of computational intelligence in modeling and optimization of parameters of two related production processes - ore flotation and production of balls for ore flotation. It is proposed that desired chemical composition of flotation balls (Mn=0.69%; Cr=2.247%; C=3.79%; Si=0.5%, which ensures minimum wear rate (0.47 g/kg during copper milling is determined by combining artificial neural network (ANN and genetic algorithm (GA. Based on the results provided by neuro-genetic combination, a second neural network was derived as an ‘intelligent soft sensor’ in the process of white cast iron production. The proposed ANN 12-16-12-4 model demonstrated favourable prediction capacity, and can be recommended as a ‘intelligent soft sensor’ in the alloying process intended for obtaining favourable chemical composition of white cast iron for production of flotation balls. In the development of intelligent soft sensor data from the two real production processes was used. [Projekat Ministarstva nauke Republike Srbije, br. TR35037 i br. TR35015

  2. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  3. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Douglas C. [National Academy of Sciences, Washington, DC (United States)

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  4. Chemical characterization of detector grade materials: facilities and expertise at CCCM

    International Nuclear Information System (INIS)

    Kumar, Sunil Jai.

    2009-01-01

    High purity materials at present being analysed at CCCM are Ga, Ge, Te, In, Sb, Cd at ultra trace analysis and SiO 2 , As 2 O 3 at bulk analysis facilities. The methods adopted use clean lab technology with wet chemical processing. Detection limits obtained in these methods are in parts per billion which is suitable for analysis of 99.9999 (6N) to 99.99999 (7N) pure materials. Analysis of detector grade single crystals places new challenges as the purity levels are an order or more than the above materials. The conventional methods may not work. Therefore newer methods preferably without any sample preparation with very high sensitivity has to be explored and applied. (author)

  5. Chemical and microstructural evolution on ODS Fe-14CrWTi steel during manufacturing stages

    Energy Technology Data Exchange (ETDEWEB)

    Olier, P., E-mail: patrick.olier@cea.fr [Nuclear Materials Department, CEA Saclay, 91191 Gif-sur-Yvette (France); Malaplate, J., E-mail: joel.malaplate@cea.fr [Nuclear Materials Department, CEA Saclay, 91191 Gif-sur-Yvette (France); Mathon, M.H., E-mail: marie-helene.mathon@cea.fr [Science of Matter Direction, IRAMIS, CEA Saclay, 91191 Gif-sur-Yvette (France); Nunes, D., E-mail: daniel.nunes@cea.fr [Nuclear Materials Department, CEA Saclay, 91191 Gif-sur-Yvette (France); Hamon, D., E-mail: didier.hamon@cea.fr [Nuclear Materials Department, CEA Saclay, 91191 Gif-sur-Yvette (France); Toualbi, L., E-mail: louise.toualbi@cea.fr [Nuclear Materials Department, CEA Saclay, 91191 Gif-sur-Yvette (France); Carlan, Y. de, E-mail: yann.decarlan@cea.fr [Nuclear Materials Department, CEA Saclay, 91191 Gif-sur-Yvette (France); Chaffron, L., E-mail: laurent.chaffron@cea.fr [Nuclear Materials Department, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2012-09-15

    Oxide Dispersion Strengthened (ODS) steels are promising candidate materials for fission and fusion applications thanks to their improved properties related to both their fine grained microstructure and high density of Y-Ti-O nanoscale clusters (NCs). The Fe-14Cr-1 W-0.3Ti-0.3Y{sub 2}O{sub 3} ODS ferritic steel was produced by powder metallurgy: Iron-base gas atomized powders were mechanically alloyed with 0.3% Y{sub 2}O{sub 3} particles in an attritor. Then, the ODS powders were encapsulated in a soft steel can, consolidated by hot extrusion and cold rolled under the shape of tube cladding. The present work investigates the evolution of the chemical composition and the microstructure after each stage of the fabrication route (i.e. mechanical alloying, extrusion and cold rolling). Chemical analysis indicates a significant increase of the carbon content and a moderate increase of oxygen and nitrogen after mechanical alloying compared to initial atomized powders. After extrusion, the measured oxygen content corresponds mainly to the oxygen coming from yttria addition during MA process. In addition, electron microprobe analyses are performed after hot extrusion to determine the concentration and the distribution of the constitutive elements (Cr, Ti, W, Y, O). The microstructure was investigated by transmission electron microscopy (TEM) and small angle neutron scattering (SANS) in order to characterize the size distribution of Y-Ti-O particles. TEM results reveal a fine microstructure (average grain size of 600 nm in the transverse direction) including Y-Ti-O NCs with a mean diameter close to 3 nm after extrusion. A slight coarsening of Y-Ti-O NCs is evidenced by SANS after cold rolling and heat treatments.

  6. Human health risk assessment of occupational and residential exposures to dechlorane plus in the manufacturing facility area in China and comparison with e-waste recycling site.

    Science.gov (United States)

    Wang, De-Gao; Alaee, Mehran; Byer, Jonathan D; Brimble, Samantha; Pacepavicius, Grazina

    2013-02-15

    A screening level human health risk assessment based on the worst-case scenario was conducted on the occupational and residential exposures to dechlorane plus (DP) in the manufacturing facility region and an electronic-waste (e-waste) recycling site in China, which are two of the most polluted areas of DP in the world. Total estimated exposure doses (EEDs) via dietary intake, dermal contact, and inhalation was approximately 0.01 mg kg(-1) d(-1) for people living in the manufacturing facility region. In comparison, total EEDs (approximate 0.03 μg kg(-1), d(-1)) were 300-fold lower in people living near an e-waste recycling site in China. Chronic oral, dermal, and inhalation reference doses (RfDs) were estimated to be 5.0, 2.0, and 0.01 mg kg(-1)d (-1), respectively. The oral RfD was markedly greater than Mirex (2×10(-4) mg kg(-1) d(-1)) and decabromodiphenyl ether (BDE-209; 7×10(-3) mg kg(-1) d(-1)), which have been or might be replaced by DP as a flame retardant with less toxicity. Monte Carlo simulation was used to generate the probability densities and functions for the hazard index which was calculated from the EEDs and RfDs to assess the human health risk. The hazard index was three orders of magnitude lower than 1, suggesting that occupational and residential exposures were relatively safe in the manufacturing facility region and e-waste recycling site. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Comparison of the geometric accuracy of radiotherapy facilities by various manufacturers, performed within the programme of quality audits

    International Nuclear Information System (INIS)

    Pridal, I.; Klaclova, T.; Gremlica, D.; Zackova, H.; Snobr, J.

    1998-01-01

    The evaluation of geometric parameters of radiotherapy facilities is discussed, these parameters being of importance for focusing the target volume and for achieving the required standard of treatment. During quality audits at radiotherapy systems various shortcomings were found as regards the accuracy of irradiation. A part of the shortcomings was due to inadequate setting of the facility parameters; another, however, was related to the mechanical design of the treatment units. The latter problems cannot be easily eliminated and have to be taken into account when using the respective facilities

  8. Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Hu, Jia [Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu (China); Wang, Jinqi; Chen, Xuerong; Yao, Na [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Tao, Jing, E-mail: jingtao1982@126.com [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhou, Yi-Kai, E-mail: zhouyk@mails.tjmu.edu.cn [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China)

    2015-03-01

    Here, a novel technique is described for the extraction and quantitative determination of six phthalate esters (PAEs) from soils by gas purge microsyringe extraction and gas chromatography. Recovery of PAEs ranged from 81.4% to 120.3%, and the relative standard deviation (n = 6) ranged from 5.3% to 10.5%. Soil samples were collected from roadsides, farmlands, residential areas, and non-cultivated areas in a non-industrialized region, and from the same land-use types within 1 km of an electronics manufacturing facility (n = 142). Total PAEs varied from 2.21 to 157.62 mg kg{sup −1} in non-industrialized areas and from 8.63 to 171.64 mg kg{sup −1} in the electronics manufacturing area. PAE concentrations in the non-industrialized area were highest in farmland, followed (in decreasing order) by roadsides, residential areas, and non-cultivated soil. In the electronics manufacturing area, PAE concentrations were highest in roadside soils, followed by residential areas, farmland, and non-cultivated soils. Concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP) differed significantly (P < 0.01) between the industrial and non-industrialized areas. Principal component analysis indicated that the strongest explanatory factor was related to DMP and DnBP in non-industrialized soils and to butyl benzyl phthalate (BBP) and DMP in soils near the electronics manufacturing facility. Congener-specific analysis confirmed that diethylhexyl phthalate (DEHP) was a predictive indication both in the non-industrialized area (r{sup 2} = 0.944, P < 0.01) and the industrialized area (r{sup 2} = 0.860, P < 0.01). The higher PAE contents in soils near the electronics manufacturing facility are of concern, considering the large quantities of electronic wastes generated with ongoing industrialization. - Highlights: • A new method for determining phthalate esters in soil samples was developed. • Investigate six phthalates near an industry and a

  9. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-06

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.

  10. Hazardous air pollutant emissions from process units in the synthetic organic chemical manufacturing industry: Background information for proposed standards. Volume 1A. National impacts assessment. Draft report

    International Nuclear Information System (INIS)

    1992-11-01

    A draft rule for the regulation of emissions of organic hazardous air pollutants (HAP's) from chemical processes of the synthetic organic chemical manufacturing industry (SOCMI) is being proposed under the authority of Sections 112, 114, 116, and 301 of the Clean Air Act, as amended in 1990. The volume of the Background Information Document presents the results of the national impacts assessment for the proposed rule

  11. Hazardous air pollutant emissions from process units in the synthetic organic chemical manufacturing industry: Background information for proposed standards. Volume 1B. Control technologies. Draft report

    International Nuclear Information System (INIS)

    1992-11-01

    A draft rule for the regulation of emissions of organic hazardous air pollutants (HAP's) from chemical processes of the synthetic organic chemical manufacturing industry (SOCMI) is being proposed under the authority of Sections 112, 114, 116, and 301 of the Clean Air Act, as amended in 1990. The volume of the Background Information Document presents discussions of control technologies used in the industry and the costs of those technologies

  12. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  13. KEFIRS MANUFACTURED FROM CAMEL (CAMELUS DRAMEDARIUS MILK AND COW MILK: COMPARISON OF SOME CHEMICAL AND MICROBIAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    G. Kavas

    2015-09-01

    Full Text Available This study examined the production possibilities of kefir from fresh camel milk fermented with grain. The findings were then compared with kefir manufactured from cow’s milk. Cow’s milk was fermented with 2.5% grains. The 1% (v/w glucose enriched camel’s milk was fermented with 10% grains and left in an incubator at 25°C. Physical-chemical and sensorial analyses of the kefir sampleswere measured on day one (18 hours of storage and microbiological analyses were measured on days one, three and five. Some physical-chemical parameters were found to be higherin camel milk and its kefir than in cow milk and its kefir, some were found to be close and some were found to be lower. Addition of 1% glucose and 10% grains to the camel milk affected the titrationacidity and viscosity of kefir to significant levels. The kefir produced from camel milk was perceived as sourer, whereas its other properties were found to be close to those of cow milk. Thecholesterol levels of camel milk and its kefir were detected to be higher when compared to those of cow milk and its kefir, but the cholesterol level decreased in both examples after the productionof kefir. In terms of the composition of fatty acids, it was determined that SFA and the small, medium chain fatty acids ratio was low in camel milk and its kefir, but MUFA and the long chainfatty acids ratio was high. PUFA ratio was high in camel milk but low in its kefir. In microbiological analysis, yeast levels increased in kefir samples with the Lactobacillus ssp. strains, and theincrease in the number of yeasts was higher than in the cow milk kefir. In kefir samples, Lactobacillus ssp. strains increased on day one and three of storage, but diminished after day three.

  14. Energy and chemical efficient nitrogen removal at a full-scale MBR water reuse facility

    Directory of Open Access Journals (Sweden)

    Jianfeng Wen

    2015-02-01

    Full Text Available With stringent wastewater discharge limits on nitrogen and phosphorus, membrane bioreactor (MBR technology is gaining popularity for advanced wastewater treatment due to higher effluent quality and smaller footprint. However, higher energy intensity required for MBR plants and increased operational costs for nutrient removal limit wide application of the MBR technology. Conventional nitrogen removal requires intensive energy inputs and chemical addition. There are drivers to search for new technology and process control strategies to treat wastewater with lower energy and chemical demand while still producing high quality effluent. The NPXpress is a patented technology developed by American Water engineers. This technology is an ultra-low dissolved oxygen (DO operation for wastewater treatment and is able to remove nitrogen with less oxygen requirements and reduced supplemental carbon addition in MBR plants. Jefferson Peaks Water Reuse Facility in New Jersey employs MBR technology to treat municipal wastewater and was selected for the implementation of the NPXpress technology. The technology has been proved to consistently produce a high quality reuse effluent while reducing energy consumption and supplemental carbon addition by 59% and 100%, respectively. Lab-scale kinetic studies suggested that NPXpress promoted microorganisms with higher oxygen affinity. Process modelling was used to simulate treatment performance under NPXpress conditions and develop ammonia-based aeration control strategy. The application of the ammonia-based aeration control at the plant further reduced energy consumption by additional 9% and improved treatment performance with 35% reduction in effluent total nitrogen. The overall energy savings for Jefferson Peaks was $210,000 in four years since the implementation of NPXpress. This study provided an insight in design and operation of MBR plants with NPXpress technology and ultra-low DO operations.

  15. The restoration project : decontamination of facilities from chemical, biological and radiological contamination after terrorist action

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div; Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Payette, P.; Duncan, L.; Best, M.; Krishnan; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada)

    2005-07-01

    Bioterrorism poses a real threat to the public health and national security, and the restoration of affected facilities after a chemical, biological or radiological attack is a major concern. This paper reviewed aspects of a project conducted to collect information, test and validate procedures for site restoration after a terrorist attack. The project began with a review of existing technology and then examined new technologies. Restoration included pickup, neutralization, decontamination, removal and final destruction and deposition of contaminants as well as cleaning and neutralization of material and contaminated waste from decontamination. The project was also intended to test existing concepts and develop new ideas. Laboratory scale experiments consisted of testing, using standard laboratory techniques. Radiation decontamination consisted of removal and concentration of the radioisotopes from removal fluid. General restoration guidelines were provided, as well as details of factors considered important in specific applications, including growth conditions and phases of microorganisms in biological decontamination, or the presence of inhibitors or scavengers in chemical decontamination. Various agents were proposed that were considered to have broad spectrum capability. Test surrogates for anthrax were discussed. The feasibility of enhanced oxidation processes was examined in relation to the destruction of organophosphorus, organochlorine and carbamate pesticides. The goal was to identify a process for the treatment of surfaces contaminated with pesticides. Tests included removal from carpet, porous ceiling tile, steel plates, and floor tiles. General radiation contamination procedures and techniques were reviewed, as well as radiological decontamination waste treatment. It was concluded that there is no single decontamination technique applicable for all contaminants, and decontamination methods depend on economic, social and health factors. The amount of

  16. Identification of the chemical inventory of different paint types applied in nuclear facilities

    International Nuclear Information System (INIS)

    Sabrina Tietze; Foreman, M.R.St.J.; Ekberg, CH.H.; Chalmers University of Technology, Chemical and Biological Engineering, Goeteborg; Dongen van, B.E.

    2013-01-01

    The floors, concrete walls and many of the metal surfaces in nuclear power plant containments are coated with zinc primers or paint films to preserve the metal surfaces and simplify decontamination in the containment after the occurrence of a severe nuclear incident or accident. A chemical examination of paint films from different nuclear installations out of operation, as well as current operating ones, reveals that different types of paints are used whose composition can vary significantly. Results obtained for one type of paint at a certain nuclear site are in most cases unlikely to be comparable with sites painted with another type of paint. During normal operation and particularly during nuclear accidents, the paints will degrade under the high temperature, steam and irradiation influence. As paint and its degradation products can act as sources and depots for volatile iodine compounds, the type and aging conditions of the paint films will have a significant impact on the source term of the volatile fission product iodine. Thus, great care should be taken when extrapolating any results obtained for the interaction of radioactive iodine with one paint product to a different paint product. The main focus of the study is a comparison of the chemical profile of paint films applied in Swedish nuclear power plants. Teknopox Aqua V A, an epoxy paint recently used at Ringhals 2, and an emulsion paint used in the scrubber buildings of Ringhals 1-4 are compared with a paint film from Barsebaeck nuclear power plant unit 1 that had been aged under real reactor conditions for 20 years. In addition, two paint films, an emulsion and a gloss paint, used in an international nuclear fuel reprocessing facility, are compared with the paints from the Swedish nuclear power plants. (author)

  17. An Facile High-Density Polyethylene - Exfoliated Graphite - Aluminium Hydroxide Composite: Manufacture, Morphology, Structure, Antistatic and Fireproof Properties

    Directory of Open Access Journals (Sweden)

    Jihui LI

    2014-09-01

    Full Text Available Graphite intercalation compounds (GIC and exfoliated graphite (EG as raw materials were prepared with flake graphite, concentrated sulphuric acid (H2SO4, potassium bichromate (K2Cr2O7 and peracetic acid (CH3CO3H and characterized. Then, high-density polyethylene-exfoliated graphite (HDPE-EG composites were fabricated with HDPE and EG via in situ synthesis technique in the different mass ratio, and their resistivity values (ohms/sq were measured. Based on the resistivity values, it was discovered that HDPE-EG composite with the antistatic property could be fabricated while the mass ratio was 5.00 : 0.30. Last, HDPE-EG-aluminium hydroxide (HDPE-EG-Al(OH3 composites were manufactured with HDPE, GIC and Al(OH3 via the in situ synthesis-thermal expansion technique, and their resistivity values and limiting oxygen index (LOI values were measured. Based on the resistivity values and LOI values, it was discovered that HDPE-EG-Al(OH3 composite with the antistatic and fireproof property could be manufactured while HDPE, GICs and Al(OH3 of mass ratio was 5.00 : 0.30 : 1.00. Otherwise, the petal-like morphology and structure of HDPE-EG-Al(OH3 composite were characterized, which consisted of EG, HDPE and Al(OH3. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4275

  18. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China.

    Science.gov (United States)

    Zheng, Junyu; Yu, Yufan; Mo, Ziwei; Zhang, Zhou; Wang, Xinming; Yin, Shasha; Peng, Kang; Yang, Yang; Feng, Xiaoqiong; Cai, Huihua

    2013-07-01

    Industrial sector-based VOC source profiles are reported for the Pearl River Delta (PRD) region, China, based source samples (stack emissions and fugitive emissions) analyzed from sources operating under normal conditions. The industrial sectors considered are printing (letterpress, offset and gravure printing processes), wood furniture coating, shoemaking, paint manufacturing and metal surface coating. More than 250 VOC species were detected following US EPA methods TO-14 and TO-15. The results indicated that benzene and toluene were the major species associated with letterpress printing, while ethyl acetate and isopropyl alcohol were the most abundant compounds of other two printing processes. Acetone and 2-butanone were the major species observed in the shoemaking sector. The source profile patterns were found to be similar for the paint manufacturing, wood furniture coating, and metal surface coating sectors, with aromatics being the most abundant group and oxygenated VOCs (OVOCs) as the second largest contributor in the profiles. While OVOCs were one of the most significant VOC groups detected in these five industrial sectors in the PRD region, they have not been reported in most other source profile studies. Such comparisons with other studies show that there are differences in source profiles for different regions or countries, indicating the importance of developing local source profiles. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  19. Initiated chemical vapor deposited nanoadhesive for bonding National Ignition Facility's targets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tom [Univ. of California, Berkeley, CA (United States)

    2016-05-19

    Currently, the target fabrication scientists in National Ignition Facility Directorate at Lawrence Livermore National Laboratory (LLNL) is studying the propagation force resulted from laser impulses impacting a target. To best study this, they would like the adhesive used to glue the target substrates to be as thin as possible. The main objective of this research project is to create adhesive glue bonds for NIF’s targets that are ≤ 1 μm thick. Polyglycidylmethacrylate (PGMA) thin films were coated on various substrates using initiated chemical vapor deposition (iCVD). Film quality studies using white light interferometry reveal that the iCVD PGMA films were smooth. The coated substrates were bonded at 150 °C under vacuum, with low inflow of Nitrogen. Success in bonding most of NIF’s mock targets at thicknesses ≤ 1 μm indicates that our process is feasible in bonding the real targets. Key parameters that are required for successful bonding were concluded from the bonding results. They include inert bonding atmosphere, sufficient contact between the PGMA films, and smooth substrates. Average bond strength of 0.60 MPa was obtained from mechanical shearing tests. The bonding failure mode of the sheared interfaces was observed to be cohesive. Future work on this project will include reattempt to bond silica aerogel to iCVD PGMA coated substrates, stabilize carbon nanotube forests with iCVD PGMA coating, and kinetics study of PGMA thermal crosslinking.

  20. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  1. School Siting Near Industrial Chemical Facilities: Findings from the U.S. Chemical Safety Board?s Investigation of the West Fertilizer Explosion

    OpenAIRE

    Tinney, Veronica A.; Denton, Jerad M.; Sciallo-Tyler, Lucy; Paulson, Jerome A.

    2016-01-01

    Background: The U.S. Chemical Safety and Hazard Investigation Board (CSB) investigated the 17 April 2013 explosion at the West Fertilizer Company (WFC) that resulted in 15 fatalities, more than 260 injuries, and damage to more than 150 buildings. Among these structures were four nearby school buildings cumulatively housing children in grades kindergarten?12, a nursing care facility, and an apartment complex. The incident occurred during the evening when school was not in session, which reduce...

  2. Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing.

    Science.gov (United States)

    Cashman, Sarah A; Meyer, David E; Edelen, Ashley N; Ingwersen, Wesley W; Abraham, John P; Barrett, William M; Gonzalez, Michael A; Randall, Paul M; Ruiz-Mercado, Gerardo; Smith, Raymond L

    2016-09-06

    Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically applied to LCIs on a case-by-case basis. As linked open data becomes more prevalent, it may be possible to automate LCI using data mining by establishing a reproducible approach for identifying, extracting, and processing the data. This work proposes a method for standardizing and eventually automating the discovery and use of publicly available data at the United States Environmental Protection Agency for chemical-manufacturing LCI. The method is developed using a case study of acetic acid. The data quality and gap analyses for the generated inventory found that the selected data sources can provide information with equal or better reliability and representativeness on air, water, hazardous waste, on-site energy usage, and production volumes but with key data gaps including material inputs, water usage, purchased electricity, and transportation requirements. A comparison of the generated LCI with existing data revealed that the data mining inventory is in reasonable agreement with existing data and may provide a more-comprehensive inventory of air emissions and water discharges. The case study highlighted challenges for current data management practices that must be overcome to successfully automate the method using semantic technology. Benefits of the method are that the openly available data can be compiled in a standardized and transparent approach that supports potential automation with flexibility to incorporate new data sources as needed.

  3. An evaluation of the Manufacturer And User Facility Device Experience database that inspired the United States Food and Drug Administration's Reclassification of transvaginal mesh.

    Science.gov (United States)

    Sandberg, Jason M; Gray, Ian; Pearlman, Amy; Terlecki, Ryan P

    2018-03-01

    To assess the utility of the Manufacturer And User Facility Device Experience (MAUDE) database in objectively capturing adverse events for transvaginal mesh in the United States. We reviewed 1,103 individual medical device reports submitted to the MAUDE database that inspired the United States (US) Food and Drug Administration's 2008 Public Health Notification. Entries were compiled into a categorical database that reported manufacturer, brand, reporter type, report source, and type of adverse event. There were numerous examples of missing, duplicated, and non-standardized entries. Analysis revealed 64 reports with duplicated information, and six reports representing multiple patients. Forty-seven percent of medical device reports did not identify a reporter source. At least 28% of reported devices are no longer on the US market. There was wide variability in the quality and completeness of submitted reports and true adverse event rates could not be accurately calculated because the number of total cases was unknown. The MAUDE database was limited in its ability to collect, quantify, and standardize real-life adverse events related to transvaginal mesh. While it functions to collect information related to isolated adverse events, systematic limitations of the MAUDE database, that no doubt extend to other medical devices, necessitate the development of new reporting systems. Alternatives are under development, which may allow regulators to more accurately scrutinize the safety profiles of specific medical devices.

  4. The nature, magnitude, and reporting compliance of device-related events for intravenous patient-controlled analgesia in the FDA Manufacturer and User Facility Device Experience (MAUDE) database.

    Science.gov (United States)

    Lawal, Oluwadolapo D; Mohanty, Maitreyee; Elder, Harrison; Skeer, Margie; Erpelding, Nathalie; Lanier, Ryan; Katz, Nathaniel

    2018-04-01

    The aim of this study is to determine the characteristics, magnitude, and the quality of reporting of mandated events involving intravenous patient-controlled analgesia (IV-PCA) devices in the Food and Drug Administration (FDA) Manufacturer and User Facility Device Experience (MAUDE) database; a postmarket surveillance system. We utilized a mixed-methods approach to systematically characterize structured data and text narratives associated with IV-PCA events submitted to MAUDE between 1 January 2011 and 12 September 2016. Of 1,430 IV-PCA events reported during the study period, 6.4% were adverse events (AEs) as identified via structured data fields in the MEDWATCH forms. Upon qualitative review of the narrative texts, 11.0% of events were associated with an unfavorable clinical outcome, which was 71% higher than the incidence of the adverse outcomes reported using the structured data fields. Device-related issues, which were mostly preventable, accounted for 86.9% of events. Of 65 reportable events submitted by manufacturers, 18.5% did not comply with reporting requirements as mandated by law. Patients on IV-PCA continue to experience serious complications as a result of preventable errors. Multi-modal interventions including educational training and the development and adoption of PCA devices with improved safety features are needed to improve safety.

  5. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  6. Effect of wastewater treatment facility closure on endocrine disrupting chemicals in a Coastal Plain stream

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste; Clark, Jimmy M.

    2016-01-01

    Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insight into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The U.S. Geological Survey assessed the fate of select endocrine disrupting chemicals (EDC) in surface water and streambed sediment one year before and one year after closure of a long-term WWTF located within the Spirit Creek watershed at Fort Gordon, Georgia. Sample sites included a WWTF-effluent control located upstream from the outfall, three downstream effluent-impacted sites located between the outfall and Spirit Lake, and one downstream from the lake's outfall. Prior to closure, the 2.2-km stream segment downstream from the WWTF outfall was characterized by EDC concentrations significantly higher (α = 0.05) than at the control site; indicating substantial downstream transport and limited in-stream attenuation of EDC, including pharmaceuticals, estrogens, alkylphenol ethoxylate (APE) metabolites, and organophosphate flame retardants (OPFR). Wastewater-derived pharmaceutical, APE metabolites, and OPFR compounds were also detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon under effluent discharge conditions. After the WWTF closure, no significant differences in concentrations or numbers of detected EDC compounds were observed between control and downstream locations. The results indicated EDC pseudo-persistence under preclosure, continuous supply conditions, with rapid attenuation following WWTF closure. Low concentrations of EDC at the control site throughout the study and comparable concentrations in downstream locations after WWTF closure indicated additional, continuing, upstream contaminant sources within the Spirit Creek watershed. 

  7. Manufacturing a Porous Structure According to the Process Parameters of Functional 3D Porous Polymer Printing Technology Based on a Chemical Blowing Agent

    Science.gov (United States)

    Yoo, C. J.; Shin, B. S.; Kang, B. S.; Yun, D. H.; You, D. B.; Hong, S. M.

    2017-09-01

    In this paper, we propose a new porous polymer printing technology based on CBA(chemical blowing agent), and describe the optimization process according to the process parameters. By mixing polypropylene (PP) and CBA, a hybrid CBA filament was manufactured; the diameter of the filament ranged between 1.60 mm and 1.75 mm. A porous polymer structure was manufactured based on the traditional fused deposition modelling (FDM) method. The process parameters of the three-dimensional (3D) porous polymer printing (PPP) process included nozzle temperature, printing speed, and CBA density. Porosity increase with an increase in nozzle temperature and CBA density. On the contrary, porosity increase with a decrease in the printing speed. For porous structures, it has excellent mechanical properties. We manufactured a simple shape in 3D using 3D PPP technology. In the future, we will study the excellent mechanical properties of 3D PPP technology and apply them to various safety fields.

  8. Control of Discrete Event Systems by Means of Discrete Optimization and Disjunctive Colored PNs: Application to Manufacturing Facilities

    Directory of Open Access Journals (Sweden)

    Juan-Ignacio Latorre-Biel

    2014-01-01

    Full Text Available Artificial intelligence methodologies, as the core of discrete control and decision support systems, have been extensively applied in the industrial production sector. The resulting tools produce excellent results in certain cases; however, the NP-hard nature of many discrete control or decision making problems in the manufacturing area may require unaffordable computational resources, constrained by the limited available time required to obtain a solution. With the purpose of improving the efficiency of a control methodology for discrete systems, based on a simulation-based optimization and the Petri net (PN model of the real discrete event dynamic system (DEDS, this paper presents a strategy, where a transformation applied to the model allows removing the redundant information to obtain a smaller model containing the same useful information. As a result, faster discrete optimizations can be implemented. This methodology is based on the use of a formalism belonging to the paradigm of the PN for describing DEDS, the disjunctive colored PN. Furthermore, the metaheuristic of genetic algorithms is applied to the search of the best solutions in the solution space. As an illustration of the methodology proposal, its performance is compared with the classic approach on a case study, obtaining faster the optimal solution.

  9. Sol-gel based TiO2 thin film deposition on frustules towards facile and scalable manufacturing

    Science.gov (United States)

    Li, A.; Wang, J.; Zhang, W.; McNaughton, R.; Anderson, S.; Zhang, X.

    2016-11-01

    Diatom frustules have drawn a lot of attention from engineering researchers in the past decades. As a type of biomaterial, diatom frustules have been applied in a variety of areas such as biosensors and solar cells due to their excellent material and optical properties. Titanium dioxide (TiO2), on the other hand, is also semiconductor material and photocatalyst, micro and nanoparticles of which can be found in applications such as dye sensitised solar cells (DSSC). It has been demonstrated that by using diatom frustule-TiO2 composite particles in DSSCs, the performance of the solar cells could be increased. In this paper, we introduce a sol- gel based method to deposit TiO2 layers on the surface of diatom frustules. TiO2 nanoparticles were deposited on the surface of the frustules. After a subsequent annealing process, TiO2 crystal grains were formed. The method in this paper has the potential for scalable manufacturing of frustule-TiO2 composite materials for future solar cell applications.

  10. Chemical Processing Department monthly report for September 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-10-21

    This report, from the Chemical Processing Department at HAPO for September 1963, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations, facilities engineering; research; employee relations; weapons manufacturing operation; and power and crafts operation.

  11. Chemical Processing Department monthly report for July 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-08-22

    This report, from the Chemical Processing Department at HAPO for July 1963, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and power and crafts operation.

  12. Chemical Emergency Preparedness and Prevention Advisory: Hydrogen Fluoride

    Science.gov (United States)

    This advisory recommends ways Local Emergency Planning Committees (LEPCs) and chemical facilities can reduce risks posed by the presence of hydrogen fluoride (HF), a strong inorganic acid used to manufacture CFCs, in their communities.

  13. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme.

    NARCIS (Netherlands)

    Rasmussen, Kirsten; Rauscher, Hubert; Mech, Agnieszka; Riego Sintes, Juan; Gilliland, Douglas; González, Mar; Kearns, Peter; Moss, Kenneth; Visser, Maaike; Groenewold, Monique; Bleeker, Eric A J

    Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be

  14. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-08

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components, antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).

  15. Factors determining the concentration and chemical composition of particulate matter in the air of selected service facilities

    Directory of Open Access Journals (Sweden)

    Rogula-Kopiec Patrycja

    2018-01-01

    Full Text Available The link between increased morbidity and mortality and increasing concentrations of particulate matter (PM resulted in great attention being paid to the presence and physicochemical properties of PM in closed rooms, where people spends most of their time. The least recognized group of such indoor environments are small service facilities. The aim of this study was to identify factors which determine the concentration, chemical composition and sources of PM in the air of different service facilities: restaurant kitchen, printing office and beauty salon. The average PM concentration measured in the kitchen was 5-fold (PM4, particle fraction ≥ 4 μm and 5.3-fold (TSP, total PM greater than the average concentration of these PM fractions over the same period. During the same measurement period in the printing office and in the beauty salon, the mean PM concentration was 10- and 4-fold (PM4 and 8- and 3-fold (TSP respectively greater than the mean concentration of these PM fractions in outdoor air. In both facilities the main source of PM macro-components, especially organic carbon, were chemicals, which are normally used in such places - solvents, varnishes, paints, etc. The influence of some metals inflow from the outdoor air into indoor environment of those facilities was also recognized.

  16. Factors determining the concentration and chemical composition of particulate matter in the air of selected service facilities

    Science.gov (United States)

    Rogula-Kopiec, Patrycja; Pastuszka, Józef; Mathews, Barbara; Widziewicz, Kamila

    2018-01-01

    The link between increased morbidity and mortality and increasing concentrations of particulate matter (PM) resulted in great attention being paid to the presence and physicochemical properties of PM in closed rooms, where people spends most of their time. The least recognized group of such indoor environments are small service facilities. The aim of this study was to identify factors which determine the concentration, chemical composition and sources of PM in the air of different service facilities: restaurant kitchen, printing office and beauty salon. The average PM concentration measured in the kitchen was 5-fold (PM4, particle fraction ≥ 4 μm) and 5.3-fold (TSP, total PM) greater than the average concentration of these PM fractions over the same period. During the same measurement period in the printing office and in the beauty salon, the mean PM concentration was 10- and 4-fold (PM4) and 8- and 3-fold (TSP) respectively greater than the mean concentration of these PM fractions in outdoor air. In both facilities the main source of PM macro-components, especially organic carbon, were chemicals, which are normally used in such places - solvents, varnishes, paints, etc. The influence of some metals inflow from the outdoor air into indoor environment of those facilities was also recognized.

  17. Analysis of adverse events with use of orthodontic sequential aligners as reported in the manufacturer and user facility device experience database.

    Science.gov (United States)

    Thavarajah, Rooban; Thennukonda, Rajagopal Athmarao

    2015-01-01

    Sequential aligners (SAs) introduced about a decade ago, changed the practice of orthodontics as we knew it but the adverse events and reactions (AER) associated with SA is not known. The Food and Drug Administration's Manufacturer and User Facility Device Experience (MAUDE) database is a reliable database that has AERs reported. The manuscript attempts to review the AER associated with SA using the MAUDE database. The authors downloaded and reviewed the SA-related AER from MAUDE for a period of 5 years. In-depth analysis of the site and nature of intraoral and extraoral AERs were performed. We attempted to calculate the probability of pathologies being directly related to SA use, using Bayes' theorem. In the study period of 5 years, 175 cases of AER registered with MAUDE database owing to use of SA. Of the 175 cases, 129 (73.71%) instances were mandatory reports filed by the manufacturer. Of all AERs, 32 (18.29%) cases had been diagnosed/suspected to have an allergic reaction, 20 (11.43%) of them with anaphylactic reaction and 4 (2.29%) of them with angioedema. Lesions involving tongue, throat, and lip such as soreness, inflammation, and hives were more commonly reported. In addition, 12 cases (6.86%) reported of nausea, 11 (6.29%) of gastrointestinal issues (stomach upset, diarrhea, and vomiting), 13 (7.43%) of neuromuscular issues (muscle cramps, spasm, and pain), 13 (7.43%) of cough, 10 (5.71%) of persistent headache, 3 (1.71%) of fever, and 12 (6.86%) of cardiac-related issues were identified. The AERs associated with SA has been described. Though the MAUDE database is not an exact, wholesome and reliable source to identify the potential AER, currently, it is the only available source of AERs associated with SA use. The nature of AERs with the use of SA and its potential pathogenesis and implications has been discussed.

  18. Review on chemical processes around the facilities in deep underground and study on numerical approach to evaluate them

    International Nuclear Information System (INIS)

    Sawada, Masataka

    2003-01-01

    The facilities for radioactive waste repositories are constructed in deep underground. Various chemical reactions including microbial activities may affect the long-term performance of the barrier system. An advancement of the evaluation method for the long-term behavior of barrier materials is desired. One of the efficient approaches is numerical simulation based on modeling of chemical processes. In the first part of this report, chemical processes and microbial reactions that can affect the performance of facilities in deep underground are reviewed. For example, dissolution and precipitation of minerals composing bentonite and rock are caused by highly alkaline water from cementitious materials. Numerical approaches to the chemical processes are also studied. Most chemical processes are reactions between groundwater (or solutes in it) and minerals composing barrier materials. So they can be simulated by coupled reaction rate transport analyses. Some analysis codes are developed and applied to problems in radioactive waste disposal. Microbial reaction rate can be modeled using the growth equation of microorganisms. In order to evaluate the performance of the barrier system after altered by chemical processes, not only the change in composition but also properties of altered materials is required to be obtained as output of numerical simulation. If the relationships between reaction rate and material properties are obtained, time history and spatial distribution of material properties can also be obtained by the coupled reaction rate transport analysis. At present, modeling study on the relationships between them is not sufficient, and obtaining such relationships using both theoretical and experimental approaches are also an important research target. (author)

  19. Drug development and manufacturing

    Science.gov (United States)

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  20. The impact of two fluoropolymer manufacturing facilities on downstream contamination of a river and drinking water resources with per- and polyfluoroalkyl substances.

    Science.gov (United States)

    Bach, Cristina; Dauchy, Xavier; Boiteux, Virginie; Colin, Adeline; Hemard, Jessica; Sagres, Véronique; Rosin, Christophe; Munoz, Jean-François

    2017-02-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota, and humans. Drinking water is a route of exposure for populations consuming water contaminated by PFAS discharges. This research study reports environmental measurement concentrations, mass flows, and the fate of dozens of PFASs in a river receiving effluents from two fluoropolymer manufacturing facilities. In addition to quantified levels of PFASs using LC- and GC-MS analytical methods, the total amount of unidentified PFASs and precursors was assessed using two complementary analytical methods, absorbable organic fluorine (AOF) determination and oxidative conversion of perfluoroalkyl carboxylic acid (PFCA) precursors. Several dozen samples were collected in the river (water and sediment) during four sampling campaigns. In addition, samples were collected in two well fields and from the outlet of the drinking water treatment plants after chlorination. We estimated that 4295 kg PFHxA, 1487 kg 6:2FTSA, 965 kg PFNA, 307 kg PFUnDA, and 14 kg PFOA were discharged in the river by the two facilities in 2013. High concentrations (up to 176 ng/g dw) of odd long-chain PFASs (PFUnDA and PFTrDA) were found in sediment samples. PFASs were detected in all 15 wells, with concentrations varying based on the location of the well in the field. Additionally, the presence of previously discharged PFASs was still measurable. Significant discrepancies between PFAS concentration profiles in the wells and in the river suggest an accumulation and transformation of PFCA precursors in the aquifer. Chlorination had no removal efficiency and no unidentified PFASs were detected in the treated water with either complementary analytical method. Although the total PFAS concentrations were high in the treated water, ranging from 86 to 169 ng/L, they did not exceed the currently available guideline values.

  1. Chemical Risk Evaluation: A Case Study in an Automotive Air Conditioner Production Facility

    Directory of Open Access Journals (Sweden)

    Tengku Hanidza T.I.

    2010-01-01

    Full Text Available There has been limited knowledge on worker’s exposure to chemicals used in the automotive industries. The purpose of this study is to assess chemical risk and to determine the adequacy of the existing control measures to reduce chemical exposure. A cross sectional survey was conducted in a factory involving installation and servicing of automotive air conditioner units. Qualitative exposure assessment was carried out following the Malaysian Chemical Health Risk Assessment Manual (CHRA. There were 180 employees, 156 workers worked in the production line, which constitutes six work units Tube fin pressed, Brazing, Welding, Final assembly, Piping and Kit II. From the chemical risk evaluation for each work unit, 26 chemical compounds were used. Most of the chemicals were irritants (eye and skin and some were asphyxiants and sensitizers. Based on the work assignment, 93 out of 180 (51.67% of the workers were exposed to chemicals. The highest numbers of workers exposed to chemicals were from the Brazing section (22.22% while the Final Assembly section was the lowest (1.67%. Health survey among the workers showed occurrence of eye irritation, skin irritation, and respiratory irritation, symptoms usually associated with chemical exposure. Using a risk rating matrix, several work process were identified as having ‘significant risk’. For these areas, the workers are at risk of adverse health effects since chemical exposure is not adequately controlled. This study recommends corrective actions be taken in order to control the level of exposure and to provide a safe work environment for workers.

  2. Solving a mathematical model integrating unequal-area facilities layout and part scheduling in a cellular manufacturing system by a genetic algorithm.

    Science.gov (United States)

    Ebrahimi, Ahmad; Kia, Reza; Komijan, Alireza Rashidi

    2016-01-01

    In this article, a novel integrated mixed-integer nonlinear programming model is presented for designing a cellular manufacturing system (CMS) considering machine layout and part scheduling problems simultaneously as interrelated decisions. The integrated CMS model is formulated to incorporate several design features including part due date, material handling time, operation sequence, processing time, an intra-cell layout of unequal-area facilities, and part scheduling. The objective function is to minimize makespan, tardiness penalties, and material handling costs of inter-cell and intra-cell movements. Two numerical examples are solved by the Lingo software to illustrate the results obtained by the incorporated features. In order to assess the effects and importance of integration of machine layout and part scheduling in designing a CMS, two approaches, sequentially and concurrent are investigated and the improvement resulted from a concurrent approach is revealed. Also, due to the NP-hardness of the integrated model, an efficient genetic algorithm is designed. As a consequence, computational results of this study indicate that the best solutions found by GA are better than the solutions found by B&B in much less time for both sequential and concurrent approaches. Moreover, the comparisons between the objective function values (OFVs) obtained by sequential and concurrent approaches demonstrate that the OFV improvement is averagely around 17 % by GA and 14 % by B&B.

  3. EFFECTS OF SOME CHEMICAL PRE-TREATMENTS ON SOME PHYSICAL AND MECHANICAL PROPERTIES OF PARTICLEBOARD MANUFACTURED FROM VINE PRUNING

    Directory of Open Access Journals (Sweden)

    Ergün GÜNTEKİN, Samim YAŞAR, Beyhan KARAKUŞ, Mustafa Burak ARSLAN

    2009-01-01

    Full Text Available This study examined the effects of some pre-treatments on some physical and mechanical properties of particleboard manufactured from vine pruning. Chips that were produced from vine pruning were subjected to some pre-treatments namely cold water, 1 % sodium hydroxide, and 1 % acetic acid in order to improve their performance in particleboard manufacturing. One-layer experimental particleboards with density of 0.5 g/cm3 were manufactured from vine pruning using 6,8,10 % percent of urea formaldehyde (UF adhesive. Modulus of elasticity (MOE, modulus of rupture (MOR, internal bond strength (IB, thickness swelling (TS and water absorption properties of the boards were evaluated, and a statistical analysis was performed in order to evaluate effects of pre-treatments on physical and mechanical properties. The results have shown that pre-treatments increase bending and internal bond strength of the boards while no significant effects has been observed on modulus of elasticity. The results also indicate that pre-treatments have significant effects on water absorption values of the boards but not on thickness swelling of the boards. This study demonstrates that vine pruning can be more efficiently used in particleboard manufacturing.

  4. Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) to more..

    Science.gov (United States)

    Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) more...

  5. Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

    Science.gov (United States)

    Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

  6. Coordinated safeguards for materials management in chemical separation, conversion, and fuel fabrication facilities

    International Nuclear Information System (INIS)

    Dayem, H.A.; Cobb, D.; Dietz, R.J.; Hakkila, E.A.; Shipley, J.P.; Smith, D.B.

    1978-01-01

    The benefits of dynamic materials accounting are demonstrated by comparing the timeliness, spatial specificity, and sensitivity with that of current materials accounting requirements. Examples of conceptual dynamic accountability systems are given for proposed domestic fuel-cycle facilities. Modeling and simulation results indicate that such systems can detect diversion in hours or days with improved diversion sensitivity and can localize diversion to a single unit process area. 17 refs

  7. STG-CT: High-vacuum plume test facility for chemical thrusters

    Directory of Open Access Journals (Sweden)

    Martin Grabe

    2016-08-01

    Full Text Available The STG-CT, operated by the DLR Institute for Aerodynamics and Flow Technology in Göttingen, is a vacuum facility specically designed to provide and maintain a space-like vacuum environment for researching plume flow and plume impingement from satellite reaction control thrusters. Its unique liquid-helium driven cryopump of 30m2 allows maintaining a background pressure <10^-5 mbar even when molecular hydrogen is a plume constituent.

  8. Analysis of the application of selected physico-chemical methods in eliminating odor nuisance of municipal facilities

    Science.gov (United States)

    Miller, Urszula; Grzelka, Agnieszka; Romanik, Elżbieta; Kuriata, Magdalena

    2018-01-01

    Operation of municipal management facilities is inseparable from the problem of malodorous compounds emissions to the atmospheric air. In that case odor nuisance is related to the chemical composition of waste, sewage and sludge as well as to the activity of microorganisms whose products of life processes can be those odorous compounds. Significant reduction of odorant emission from many sources can be achieved by optimizing parameters and conditions of processes. However, it is not always possible to limit the formation of odorants. In such cases it is best to use appropriate deodorizing methods. The choice of the appropriate method is based on in terms of physical parameters, emission intensity of polluted gases and their composition, if it is possible to determine. Among the solutions used in municipal economy, there can be distinguished physico-chemical methods such as sorption and oxidation. In cases where the source of the emission is not encapsulated, odor masking techniques are used, which consists of spraying preparations that neutralize unpleasant odors. The paper presents the characteristics of selected methods of eliminating odor nuisance and evaluation of their applicability in municipal management facilities.

  9. Analysis of the application of selected physico-chemical methods in eliminating odor nuisance of municipal facilities

    Directory of Open Access Journals (Sweden)

    Miller Urszula

    2018-01-01

    Full Text Available Operation of municipal management facilities is inseparable from the problem of malodorous compounds emissions to the atmospheric air. In that case odor nuisance is related to the chemical composition of waste, sewage and sludge as well as to the activity of microorganisms whose products of life processes can be those odorous compounds. Significant reduction of odorant emission from many sources can be achieved by optimizing parameters and conditions of processes. However, it is not always possible to limit the formation of odorants. In such cases it is best to use appropriate deodorizing methods. The choice of the appropriate method is based on in terms of physical parameters, emission intensity of polluted gases and their composition, if it is possible to determine. Among the solutions used in municipal economy, there can be distinguished physico-chemical methods such as sorption and oxidation. In cases where the source of the emission is not encapsulated, odor masking techniques are used, which consists of spraying preparations that neutralize unpleasant odors. The paper presents the characteristics of selected methods of eliminating odor nuisance and evaluation of their applicability in municipal management facilities.

  10. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report

    Energy Technology Data Exchange (ETDEWEB)

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  11. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  12. Technical Means and Methods of Environmental Protection in Case of Accident at Chemically Hazardous Industrial Facility

    Science.gov (United States)

    Zherlykina, M. N.; Vorob’eva, Y. A.; Jaremenko, S. A.

    2017-11-01

    Various solutions to the application of the methods for cleaning emissions of harmful substances (explosives) in the event of accident at an industrial facility are considered. It has been established that the rational cleaning of significant emissions by the absorption, thermal, thermocatalytic method is not ensured. In case of accident, the most effective way for purifying the emissions of explosives from the ecological and economic point of view is the adsorption method. The methodical approach and the basis for determination of the characteristics to select the necessary ventilation equipment are presented.

  13. INCREASING EFFICIENCY OF REPAIRING, MANUFACTURING AND OPERATION OF THE TPP FACILITIES BY TECHNOLOGY OF GAS-THERMAL COATING AND LASER SURFACE MELTING

    Directory of Open Access Journals (Sweden)

    O. E. Grachev

    2015-01-01

    Full Text Available The article considers effectiveness increase of the TPP heat-mechanical equipment repair, manufacturing and maintenance as exemplified by gas-thermal technique for hardening laststages rotor blades of the steam turbines. The rotor blades work under conditions of intense power loading, their airfoil being erosion-corrosion destructed by the action of the moist-steam flow. Repairing companies employ quite a number of technologies to restore some of erosion-worn rotor blades. Inter alia, argon-arc, plasma and gas-powder weld deposition of the original material with subsequent machining, stellite protection recovery, electrical spark alloying the entry edge mat surface, spraying ion-plasma coating on the blade airfoil surface. In domestic turbine building, rotor blades of the steam turbines last stages are manufactured of martensitic class stainless steel. The key condition for successful blade restoration is thermal effect minimizing on the base material for excluding the slag areas possible forming. The laser surface coating technology provides these conditions. They coat the surface of an item being processed by way of melting the base and the adding material. In as much the base melts smallest, the coating characteristics depend mainly on the properties of adding material. The procedure of laser coating passes through several stages including physical contact creation, chemical interaction (laser radiation absorption, volumetrical processes resulting in formation of stable bonds in volume of the materials that have reacted. For the low-pressure cylinder rotor blades supplementary protection against erosion destruction, LLC ‘Technological Systems of Protective Coating’ developed technology of the blade airfoil protective finish by method of high-speed gas-flame sputter. The company realized this technology in 2012 during K-200-12,8 turbine (of the Leningrad Metallurgical Works – LMZ repairing in Zainsk SDPP by JSC ‘Tatenergo’. The

  14. Thermal and chemical analysis of carbon dioxide reforming of methane using the out-of-pile test facility

    International Nuclear Information System (INIS)

    Huang Ziyong; Ohashi, Hirofumi; Inagaki, Yoshiyuki

    2000-03-01

    In the Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of steam reforming of natural gas (its main composition is methane(CH 4 )) using nuclear heat (10 MW, 1178 K) supplied by the High Temperature Engineering Test Reactor (HTTR). Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the prototype. The out-of-pile test facility simulates key components downstream to an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 : 30 and has a hydrogen production capacity of 110 Nm 3 /h using an electric heater as a reactor substitute. The test facility is presently under construction. Reforming of natural gas with carbon dioxide CO 2 (CO 2 reforming) using the out-of-pile test facility is also being considered. In recent years, catalytic reforming of natural gas with CO 2 to synthesis gas (CO and H 2 ) has been proposed as one of the most promising technologies for utilization of those two greenhouse gases. Numerical analysis on heat and mass balance has practical significance in CO 2 reforming when the steam reforming process is adopted in the out-of-pile test. Numerical analysis of CO 2 reforming and reforming of natural gas with CO 2 and steam (CO 2 +H 2 O reforming) have been carried out using the mathematical model. Results such as the methane conversion rate, product gas composition, and the components temperature distribution considering the effects of helium gas temperature, reforming pressure, molar ratio of process gases and so on have been obtained in the numerical analysis. Heat and mass balance of the out-of-pile test facility considering chemical reactions are evaluated well. The methane conversation rates are about 0.36 and 0.35 which correspond to the equilibrium at 1085 and 1100 K for

  15. Mound Facility activities in chemical and physical research: July-December 1979

    International Nuclear Information System (INIS)

    1980-01-01

    Research is reported in the following fields: isotope separation (Ar, C, He, Kr, Ne, O, Xe), low-temperature research (H intermolecular potential functions, gas analysis in trennschaukel), separation chemistry ( 229 Th, 231 Pa, 230 Th, 234 U), separation research (liquid thermal diffusion, Ca isotope separation, molecular beam scattering, mutual diffusion of noble gas mixtures, lithium chemical exchange with cryptands), and calculations in plutonium chemistry (algorithms, valence in natural water)

  16. Chemical, sensory, and functional properties of whey-based popsicles manufactured with watermelon juice concentrated at different temperatures.

    Science.gov (United States)

    Martins, Carolina P C; Ferreira, Marcus Vinicius S; Esmerino, Erick A; Moraes, Jeremias; Pimentel, Tatiana C; Rocha, Ramon S; Freitas, Mônica Q; Santos, Jânio S; Ranadheera, C Senaka; Rosa, Lana S; Teodoro, Anderson J; Mathias, Simone P; Silva, Márcia C; Raices, Renata S L; Couto, Silvia R M; Granato, Daniel; Cruz, Adriano G

    2018-07-30

    The effects of the concentration of watermelon juice at different temperatures (45, 55, or 65 °C) on the physicochemical and sensory characteristics, antioxidant capacity, and volatile organic compounds (VOCs) of whey-based popsicles were investigated. Total phenolic content, lycopene, citrulline, VOCs, melting rate, instrumental colour, antioxidant capacity, and the sensory characteristics (hedonic test and free listing) were determined. The temperature led to a significant decrease in bioactive compounds (total phenolics, lycopene, and citrulline). The popsicle manufactured with reconstituted watermelon juice concentrated to 60 °Brix at 65 °C presented higher antioxidant capacity and was characterized by the presence of alcohols, aldehydes and ketones and presented a similar acceptance to the untreated popsicle (except for flavour). It is possible to combine whey and concentrated watermelon juice for the manufacture of bioactive-rich popsicles, using the concentration temperature of 65 °C as a suitable processing condition for potential industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Physico-chemical characteristic of aluminum alloy castings manufactured with cores containing fly ash as a base material

    Directory of Open Access Journals (Sweden)

    A. Baliński

    2008-07-01

    Full Text Available Castings were poured from PA9 aluminum alloy. Cores in the form of standard cylindrical specimens were made from the core mixture based on fly ash of the identified chemical and granular composition. The binder for the fly ash-based core mixture was chemically modified, hydrated sodium silicate. From the ready test castings, specimens were cut out for metallographic examinations and evaluation of morphology in the examined microregions. The structure was examined under a NEOPHOT 32 metallographic microscope using metallographic polished sections etched and unetched. For the specimen surface morphology evaluation a STEREOSCAN 420 scanning electron microscope and SE1 detector were used. The X-ray microanalysis was made on an EDS LINK ISIS 300 microanalyser. The fly ash was observed to have no major effect on the structure and chemical composition of castings.

  18. Facile and template-free method toward chemical synthesis of polyaniline film/nanotube structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei [Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh Pennsylvania 15261; Zhu, Yisi [Materials Science Division, Argonne National Lab, Lemont Illinois 60439; Torres, Jorge [Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh Pennsylvania 15261; Lee, Seung Hee [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-786 Korea; Yun, Minhee [Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh Pennsylvania 15261

    2017-09-05

    A facile and template-free method is reported to synthesize a new thin film structure: polyaniline (PANI) film/nanotubes (F/N) structure. The PANI F/N is a 100-nm thick PANI film embedded with PANI nanotubes. This well-controlled method requires no surfactant or organic acid as well as relatively low concentration of reagents. Synthesis condition studies reveal that aniline oligomers with certain structures are responsible for guiding the growth of the nanotubes. Electrical characterization also indicates that the PANI F/N possesses similar field-effect transistor characteristics to bare PANI film. With its 20% increased surface-area-to-volume (S/V) ratio contributed by surface embedded nanotubes and the excellent p-type semiconducting characteristic, PANI F/N shows clear superiority compared with bare PANI film. Such advantages guarantee the PANI F/N a promising future toward the development of ultra-high sensitivity and low-cost biosensors.

  19. The Effects of Environmental Exposure on the Optical, Physical, and Chemical Properties of Manufactured Fibers of Natural Origin.

    Science.gov (United States)

    Brinsko, Kelly M; Sparenga, Sebastian; King, Meggan

    2016-09-01

    Manufactured fibers derived from natural origins include viscose rayon, azlon, and polylactic acid (PLA). A 2-year study was conducted to document any changes these fibers undergo as a result of exposure to various environmental conditions. Fabric swatches representing each fiber type were exposed to freshwater, saltwater, heat, cold, ultraviolet light, or composter conditions. Fibers from the swatches were periodically analyzed using polarized light microscopy and Fourier transform infrared microspectroscopy. Fiber solubility and melting-point behavior were measured every 6 months. Except for the complete degradation of viscose rayon in the composter, saltwater, and freshwater environs, no changes in the optical properties, infrared spectra, solubility, or melting points of the remaining fibers in any of the environments were observed. However, microscopic morphological changes were observed in fibers from two azlon swatches submerged in freshwater and saltwater, two PLA swatches exposed to ultraviolet light, and two viscose rayon swatches exposed to ultraviolet light. © 2016 American Academy of Forensic Sciences.

  20. CoCr F75 scaffolds produced by additive manufacturing: Influence of chemical etching on powder removal and mechanical performance.

    Science.gov (United States)

    Hooreweder, Brecht Van; Lietaert, Karel; Neirinck, Bram; Lippiatt, Nicholas; Wevers, Martine

    2017-06-01

    Additive manufacturing techniques such as Selective Laser Melting (SLM) allow carefully controlled production of complex porous structures such as scaffolds. These advanced structures can offer many interesting advantages over conventionally produced products in terms of biological response and patient specific design. The surface finish of AM parts is often poor because of the layer wise nature of the process and adhering particles. Loosening of these particles after implantation should be avoided, as this could put the patient's health at risk. In this study the use of hydrochloric acid and hydrogen peroxide mixtures for surface treatment of cobalt-chromium F75 scaffolds produced by SLM is investigated. A 27% HCl and 8% H 2 O 2 etchant proved effective in removing adhering particles while retaining the quasi-static and fatigue performance of the scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  2. Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method

    Directory of Open Access Journals (Sweden)

    Sini Kuriakose

    2013-11-01

    Full Text Available Flower-like ZnO nanostructures were synthesized by a facile wet chemical method. Structural, optical and photocatalytic properties of these nanostructures have been studied by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, photoluminescence (PL and UV–vis absorption spectroscopy. SEM and TEM studies revealed flower-like structures consisting of nanosheets, formed due to oriented attachment of ZnO nanoparticles. Flower-like ZnO structures showed enhanced photocatalytic activity towards sun-light driven photodegradation of methylene blue dye (MB as compared to ZnO nanoparticles. XRD, UV–vis absorption, PL, FTIR and TEM studies revealed the formation of Zn(OH2 surface layer on ZnO nanostructures upon ageing. We demonstrate that the formation of a passivating Zn(OH2 surface layer on the ZnO nanostructures upon ageing deteriorates their efficiency to photocatalytically degrade of MB.

  3. Chemical and biological agent incident response and decision process for civilian and public sector facilities.

    Science.gov (United States)

    Raber, Ellen; Hirabayashi, Joy M; Mancieri, Saverio P; Jin, Alfred L; Folks, Karen J; Carlsen, Tina M; Estacio, Pete

    2002-04-01

    In the event of a terrorist attack or catastrophic release involving potential chemical and/or biological warfare agents, decisionmakers will need to make timely and informed choices about whether, or how, to respond. The objective of this article is to provide a decision framework to specify initial and follow-up actions, including possible decontamination, and to address long-term health and environmental issues. This decision framework consists of four phases, beginning with the identification of an incident and ending with verification that cleanup and remediation criteria have been met. The flowchart takes into account both differences and similarities among potential agents or toxins at key points in the decision-making process. Risk evaluation and communication of information to the public must be done throughout the process to ensure a successful effort.

  4. Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility

    CERN Document Server

    Fassbender, M; Heaton, R C; Jamriska, D J; Kitten, J J; Nortier, F M; Peterson, E J; Phillips, D R; Pitt, L R; Salazar, L L; Valdez, F O; 10.1524/ract.92.4.237.35596

    2004-01-01

    Generator nuclides constitute a convenient tool for applications in nuclear medicine. In this paper, some radiochemical aspects of generator nuclide parents regularly processed at Los Alamos are introduced. The bulk production of the parent nuclides /sup 68/Ge, /sup 82/Sr, /sup 109/Cd and /sup 88/Zr using charged particle beams is discussed. Production nuclear reactions for these radioisotopes, and chemical separation procedures are presented. Experimental processing yields correspond to 80%-98% of the theoretical thick target yield. Reaction cross sections are modeled using the code ALICE-IPPE; it is observed that the model largely disagrees with experimental values for the nuclear processes treated. Radionuclide production batches are prepared 1-6 times yearly for sales. Batch activities range from 40MBq to 75 GBq.

  5. Technology assessment for the determination of chemical agent vapors in demilitarization facilities: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Wise, M.B.; Buchanan, M.V.

    1987-01-01

    A survey of analytical methods for the determination of chemical agents GB, VX, and HD was made. HD, or mustard, is bis-2-chloroethyl sulfide, and is classified as a blishtering agent. GB, or Sarin, is isopropyl methyl phosphonofluoridate. VX is O-ethyl-S-(2-diisopropylaminoethyl)methylphosphonothioate. Both GB and VX are nerve agents. Included were methods capable of providing for monitoring requirements at the time weighted average (TWA) and allowable stack concentration (ASC) levels in near real time. A review of the currently used automatic continuous air monitoring system (ACAMS) was made as well as a review of the recently developed atmospheric pressure ionization mass spectrometry (APIMS). This report recommends a strategy for research and development for near term and medium term improvement of the overall monitoring program. 12 refs., 1 tab.

  6. Corporate crisis management managing a major crisis in a chemical facility.

    Science.gov (United States)

    Marwitz, Steve; Maxson, Neil; Koch, Bill; Aukerman, Todd; Cassidy, Jim; Belonger, David

    2008-11-15

    Chemical sites should have well trained and organized emergency response plans to manage an incident within the plant or during transport. The implementation of an incident command system utilizing either internal resources or external response through mutual aid agreements is generally sufficient to address the direct impact of an event on the site. When the site resources become overwhelmed in addressing resulting issues such as press releases, medical advice/support, employees and family support, Agency notifications, etc, Corporate should be ready and able to respond. This paper, taken from an in-depth CCPS workshop led by the author, describes an outline for corporate assistance in the event of a major incident at a site or during transportation.

  7. Auditable safety analysis: High Radiation Level Chemical Development Facility (Buildings 4507 and 4556), Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Platfoot, J.H.

    1998-07-01

    The High-Radiation-Level Chemical Development Facility includes Buildings 4507 and 4556. Building 4507, located immediately to the west of Building 4500N and to the south of Building 4505, is a doubly contained three-level structure constructed in 1957. The most recent use of the facility was for recovery of multi-gram quantities of 244 Cm during the early 1970s and for Liquid Metal Fast Breeder Reactor (LMFBR) fuel studies in the late 1970s. It has remained in safe standby since 1980. Building 4556 is a below-grade filter pit located to the southwest of Building 4507 and was constructed in 1972. Ventilation from the cells in Building 4507 is passed through high-efficiency particulate air (HEPA) filtration in this building prior to being exhausted to the Building 3039 stack system. This building remains in operation to support ventilation requirements for Building 4507. This Auditable Safety Analysis (ASA) was developed in accordance with the requirements in Energy Systems Program Description FS-103PD, Safety Documentation, Revision 1. This ASA identifies and screens all hazards associated with Buildings 4507 and 4556. The only hazard not screened out and requiring further analysis following the initial screening process is radioactive material in the form of surface contamination. The results of this ASA indicate that the hazards associated with Buildings 4507 and 4556 do not pose a significant threat to workers, the public, or the environment

  8. Manufacturing Initiative

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Manufacturing Technologies (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of...

  9. Mobile Geochemistry Instrument Package Facility (MGIPF) for In Situ Mineralogical and Chemical Analysis of Planetary Surface Material

    Science.gov (United States)

    Klingelhöfer, G.; Romstedt, J.; Henkel, H.; Michaelis, H.; Brückner, J.; D'Uston, C.

    A first order requirement for any spacecraft mission to land on a solid planetary or moon surface is instrumentation for in-situ mineralogical and chemical analysis 2 Such analysis provide data needed for primary classification and characterization of surface materials present We will discuss a mobile instrument package we have developed for in-situ investigations under harsh environmental conditions like on Mercury or Mars This Geochemistry Instrument Package Facility is a compact box also called payload cab containing three small advanced geochemistry mineralogy instruments the chemical spectrometer APXS the mineralogical M o ssbauer spectrometer MIMOS II 3 and a textural imager close-up camera The payload cab is equipped with two actuating arms with two degrees of freedom permitting precision placement of all instruments at a chosen sample This payload cab is the central part of the small rover Nanokhod which has the size of a shoebox 1 The Nanokhod rover is a tethered system with a typical operational range of sim 100 m Of course the payload cab itself can be attached by means of its arms to any deployment device of any other rover or deployment device 1 Andre Schiele Jens Romstedt Chris Lee Sabine Klinkner Rudi Rieder Ralf Gellert G o star Klingelh o fer Bodo Bernhardt Harald Michaelis The new NANOKHOD Engineeering model for extreme cold environments 8th International symposium on Artificial Intelligence Robotics and Automation in Space 5 - 9 September 2005

  10. Facile multi-dimensional profiling of chemical gradients at the millimetre scale.

    Science.gov (United States)

    Chen, Chih-Lin; Hsieh, Kai-Ta; Hsu, Ching-Fong; Urban, Pawel L

    2016-01-07

    A vast number of conventional physicochemical methods are suitable for the analysis of homogeneous samples. However, in various cases, the samples exhibit intrinsic heterogeneity. Tomography allows one to record approximate distributions of chemical species in the three-dimensional space. Here we develop a simple optical tomography system which enables performing scans of non-homogeneous samples at different wavelengths. It takes advantage of inexpensive open-source electronics and simple algorithms. The analysed samples are illuminated by a miniature LCD/LED screen which emits light at three wavelengths (598, 547 and 455 nm, corresponding to the R, G, and B channels, respectively). On presentation of every wavelength, the sample vial is rotated by ∼180°, and videoed at 30 frames per s. The RGB values of pixels in the obtained digital snapshots are subsequently collated, and processed to produce sinograms. Following the inverse Radon transform, approximate quasi-three-dimensional images are reconstructed for each wavelength. Sample components with distinct visible light absorption spectra (myoglobin, methylene blue) can be resolved. The system was used to follow dynamic changes in non-homogeneous samples in real time, to visualize binary mixtures, to reconstruct reaction-diffusion fronts formed during the reduction of 2,6-dichlorophenolindophenol by ascorbic acid, and to visualize the distribution of fungal mycelium grown in a semi-solid medium.

  11. National Emission Standards for Aerospace Manufacturing and Rework Facilities: Summary of Requirements for Implementing the National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Science.gov (United States)

    This summary of implementation requirements document for the Aerospace Manufacturing and Rework facilties NESHAP was originally prepared in August 1997, but it was updated in January 2001 with a new amendments update.

  12. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a

  13. Microbiological and physico-chemical changes during manufacture of an Italian goat cheese made from raw milk

    Directory of Open Access Journals (Sweden)

    Elena Dalzini

    2014-12-01

    Full Text Available The aim of this work was to study the microbiological and physico-chemical changes throughout three cheesemaking replicates of Italian Formaggelle di capra cheese made from raw goat milk. Therefore, during the process, three samples of milk, curd and cheese at 3, 7, 11, 14, 21 and 30 days of ripening old cheese were taken from three cheesemaking replicates. The average of total mesophilic bacteria and Enterobacteriaceae count in raw milk was 5.27±0.57 and 3.8±1.02 Log cfu/mL, respectively. Lactic acid bacteria was the predominant bacterial group during the process, and they developed in different ways in each of the media used (M17 and MRS agar. Variability of microbial concentrations was observed between three cheesemaking replicates. A correlation between the presence of higher levels of Enterobacteriaceae in milk and the presence of other contaminants bacteria such as Escherichia coli β-glucuronidase-positive and coagulase-positive staphylococci was observed. In cheesemaking replicate n. 2, E. coli level was 5.07±0.03 Log cfu/mL and increased by about 1 log until the last week of ripening, when the level decreased to 5.69±0.2 Log cfu/mL. The milk used for the cheesemaking replicate n. 2 was found to be contaminated also by coagulase-positive staphylococci (3.18±0.06 Log cfu/mL, but the behaviour of this group appeared to be very variable. In this study a first step of process control and microbial groups study was performed and the cheesemaking process was registered in the website www.ars-alimentaria.it, the Italian site supported by the Italian Board of Health.

  14. Novel active driven drop tower facility for microgravity experiments investigating production technologies on the example of substrate-free additive manufacturing

    Science.gov (United States)

    Lotz, Christoph; Wessarges, Yvonne; Hermsdorf, Jörg; Ertmer, Wolfgang; Overmeyer, Ludger

    2018-04-01

    Through the striving of humanity into space, new production processes and technologies for the use under microgravity will be essential in the future. Production of objects in space demands for new processes, like additive manufacturing. This paper presents the concept and the realization for a new machine to investigate microgravity production processes on earth. The machine is based on linear long stator drives and a vacuum chamber carrying up to 1000 kg. For the first time high repetition rate and associated low experimental costs can provide basic research. The paper also introduces the substrate-free additive manufacturing as a future research topic and one of our primary application.

  15. 304 Concretion Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with Zircaloy-2 and copper silicon allo , uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets (7.5-gal containers) in the 304 Concretion Facility (304 Facility), located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA) and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040 (Ecology 1991). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Facility. The strategy for closure of the 304 Facility is presented in Section 6.0

  16. Acquisition of equipment for composite manufacturing laboratory.

    Science.gov (United States)

    2009-12-01

    An interdisciplinary team of faculty was formed to upgrade the Composite Manufacturing and Testing Facilities at Missouri S&T. The Metering Unit is useful to manufacture composite pultruded parts using two part polyurethane resin system. Prior to the...

  17. Improved properties of chemically modified graphene/poly(methyl methacrylate nanocomposites via a facile in-situ bulk polymerization

    Directory of Open Access Journals (Sweden)

    X. Y. Yuan

    2012-10-01

    Full Text Available The nanosheet of graphene was chemically modified by long alkyl chain for enhanced compatibility with polymer matrix and graphene/poly(methyl methacrylate (PMMA nanocomposites with homogeneous dispersion of the nanosheets and enhanced nanofiller-matrix interfacial interaction were fabricated via a facile in-situ bulk polymerization. The nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy and thermogravimetry. The results showed that the graphene nanosheets were fully exfoliated in PMMA matrix and the thermal and mechanical properties of the nanocomposites were significantly improved at low graphene loadings. Large shifts of 15°C in the glass transition temperature and 27°C improvement of onset thermal degradation temperature were achieved with graphene loading as low as 0.07 wt%. A 67% increase in tensile strength was also observed by the addition of only 0.5 wt% graphene. The method used in this study provided a novel route to other graphene-based polymers.

  18. Manufacturing Interfaces

    NARCIS (Netherlands)

    van Houten, Frederikus J.A.M.

    1992-01-01

    The paper identifies the changing needs and requirements with respect to the interfacing of manufacturing functions. It considers the manufacturing system, its components and their relationships from the technological and logistic point of view, against the background of concurrent engineering.

  19. Chemical Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Uses state-of-the-art instrumentation for qualitative and quantitative analysis of organic and inorganic compounds, and biomolecules from gas, liquid, and...

  20. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  1. Solar array manufacturing industry simulation

    Science.gov (United States)

    Chamberlain, R. G.; Firnett, P. J.; Kleine, B.

    1980-01-01

    Solar Array Manufacturing Industry Simulation (SAMIS) program is a standardized model of industry to manufacture silicon solar modules for use in electricity generation. Model is used to develop financial reports that detail requirements, including amounts and prices for materials, labor, facilities, and equipment required by companies.

  2. Pellet to Part Manufacturing System for CNCs

    Energy Technology Data Exchange (ETDEWEB)

    Roschli, Alex C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chesser, Phillip C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lloyd, Peter D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bandari, Yashwanth Kumar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jones, Jason [Hybrid Manufacturing Technologies, Swadlincote (United Kingdom); Gaul, Katherine T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2018-03-14

    Oak Ridge National Laboratory’s Manufacturing Demonstration Facility worked with Hybrid Manufacturing Technologies to develop a compact prototype composite additive manufacturing head that can effectively extrude injection molding pellets. The head interfaces with conventional CNC machine tools enabling rapid conversion of conventional machine tools to additive manufacturing tools. The intent was to enable wider adoption of Big Area Additive Manufacturing (BAAM) technology and combine BAAM technology with conventional machining systems.

  3. Leuconostoc bacteriophages from blue cheese manufacture: long-term survival, resistance to thermal treatments, high pressure homogenization and chemical biocides of industrial application.

    Science.gov (United States)

    Pujato, Silvina A; Guglielmotti, Daniela M; Ackermann, Hans-W; Patrignani, Francesca; Lanciotti, Rosalba; Reinheimer, Jorge A; Quiberoni, Andrea

    2014-05-02

    Nine Leuconostoc mesenteroides phages were isolated during blue cheese manufacture yielding faulty products with reduced eye formation. Their morphologies, restriction profiles, host ranges and long-term survival rates (25°C, 8°C, -20°C and -80°C) were analysed. Based on restriction analysis, six of them were further examined regarding resistance to physical (heat and high pressure homogenization, HPH) and chemical treatments (ethanol, sodium hypochlorite, peracetic acid, biocides A, C, E and F). According to their morphology, L. mesenteroides phages studied in the present work belonged to the Caudovirales order and Siphoviridae family. Six distinct restriction patterns were obtained with EcoRV, HindIII, ClaI and XhoI enzymes, revealing interesting phage diversity in the dairy environment. No significant reductions in phage counts were observed after ten months of storage at -20°C and -80°C, while slightly and moderate decrease in phage numbers were noticed at 8°C and 25°C, respectively. The phages subjected to heat treatments generally showed high resistance at 63°C and moderate resistance at 72°C. However, 80°C for 30 min and 90°C for 2 min led to complete inactivation of viral particles. In general, the best ethanol concentration tested was 75%, as complete inactivation for most Leuconostoc phages within 30 min of incubation was achieved. Peracetic acid, and biocides A, C, E and F were highly effective when used at the same or at a moderately lower concentration as recommended by the producer. Usually, moderate or high concentrations (600-1,600 ppm) of sodium hypochlorite were necessary to completely inactivate phage particles. Leuconostoc phages were partially inactivated by HPH treatments as remaining viral particles were found even after 8 passes at 100 MPa. This is the first report of L. mesenteroides phages isolated from an Argentinean dairy cheese plant. The results of this work could be useful for establishing the most effective physical and

  4. Iraqi Security Forces Facilities: Environmental Chemical Corporation Projects Achieved Results, but with Significant Cost Increases and Schedule Delays

    Science.gov (United States)

    2009-10-22

    from the Iraqi Army’s refusal to vacate buildings to be renovated at Al Kindi Military Base. 14 Consequently, MNSTC-I removed the buildings from...Military Base, Phase I, Part B 34.39 57.41 67% 11 Southern School Repair 29.19 29.18 0% 16 Brigade Facility at Kirkuk 38.24 43.67 14% 17 Al Kut Police...Academy Facilities 7.52 26.12 247% 18 Camp India Facilities at Fallujah 48.62 84.70 74% 19 Repair/Replace Iraq Schools 3.10 6.90 123% 20 Harman Al

  5. Additive manufacturing.

    Science.gov (United States)

    Mumith, A; Thomas, M; Shah, Z; Coathup, M; Blunn, G

    2018-04-01

    Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research. This review describes the current position in the use of additive manufacturing in orthopaedic surgery. Cite this article: Bone Joint J 2018;100-B:455-60.

  6. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  7. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  8. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  9. WAR DSS: A DECISION SUPPORT SYSTEM FOR ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN

    Science.gov (United States)

    The second generation of the Waste Reduction (WAR) Algorithm is constructed as a decision support system (DSS) in the design of chemical manufacturing facilities. The WAR DSS is a software tool that can help reduce the potential environmental impacts (PEIs) of industrial chemical...

  10. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...

  11. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  12. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  13. Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-11-17

    International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

  14. Power electronic modules design and manufacture

    CERN Document Server

    Sheng, William W

    2004-01-01

    IntroductionSelection ProcedureMaterialsInsulating Substrate and MetallizationBase PlateBonding MaterialPower Interconnection and TerminalEncapsulantPlastic Case and Cover Manufacturing of Power IGBT ModulesManufacturing Process Process Control/Long-Term ReliabilityManufacturing FacilitiesManufacturing Flow Charts DesignThermal ManagementCircuit PartitioningDesign Guidelines and ConsiderationsThermal Results of Different Samples

  15. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  16. Tools to prevent process safety events at university research facility - chemical risk assessment and experimental set-up risk assessment

    DEFF Research Database (Denmark)

    Jensen, Niels; Jørgensen, Sten Bay

    2014-01-01

    The article discusses the two forms developed to examine the hazards of the chemicals to be used in the experiments in the experimental setup in the Department of Chemical and Biochemical Engineering of the Technical University of Denmark. A system for the safety assessment of new experimental se...... setups in university research and teaching laboratories is presented. The significance of the forms for the effort of researchers in improving work with significant hazards is described....

  17. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - summary report

    Energy Technology Data Exchange (ETDEWEB)

    Gerton, R.E.

    1997-08-07

    This report is a summary of the Accident Investigation Board Report on the May 14, 1997, Chemical Explosion at the Plutonium Reclamation Facility, Hanford Site, Richland, Washington (DOE/RL-97-59). The referenced report provides a greater level of detail and includes a complete discussion of the facts identified, analysis of those facts, conclusions derived from the analysis, identification of the accident`s causal factors, and recommendations that should be addressed through follow-up action by the U.S. Department of Energy and its contractors. This companion document provides a concise summary of that report, with emphasis on management issues. Evaluation of emergency and occupational health response to, and radiological and chemical releases from, this accident was not within the scope of this investigation, but is the subject of a separate investigation and report (see DOE/RL-97-62).

  18. Production planning of biopharmaceutical manufacture.

    OpenAIRE

    Lakhdar, K.

    2006-01-01

    Multiproduct manufacturing facilities running on a campaign basis are increasingly becoming the norm for biopharmaceuticals, owing to high risks of clinical failure, regulatory pressures and the increasing number of therapeutics in clinical evaluation. The need for such flexible plants and cost-effective manufacture pose significant challenges for planning and scheduling, which are compounded by long production lead times, intermediate product stability issues and the high cost - low volume n...

  19. Manufacturing consumption of energy 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  20. Safety profiles of percutaneous left atrial appendage closure devices: An analysis of the Food and Drug Administration Manufacturer and User Facility Device Experience (MAUDE) database from 2009 to 2016.

    Science.gov (United States)

    Jazayeri, Mohammad-Ali; Vuddanda, Venkat; Turagam, Mohit K; Parikh, Valay; Lavu, Madhav; Atkins, Donita; Earnest, Matthew; Di Biase, Luigi; Natale, Andrea; Wilber, David; Reddy, Yeruva Madhu; Lakkireddy, Dhanunjaya R

    2018-01-01

    Percutaneous left atrial appendage closure (LAAC) is a viable option for AF patients who are unable to tolerate long-term oral anticoagulation (OAC). We sought to assess the safety of two commonly used percutaneous devices for LAA closure in the United States by analysis of surveillance data from the FDA Manufacturer and User Facility Device Experience (MAUDE) database. The MAUDE database was queried between May 1, 2006 and May 1, 2016 for LARIAT ® (SentreHEART Inc., Redwood City, CA, USA) and WATCHMAN™ (Boston Scientific Corp., Marlborough, MA, USA) devices. Among 622 retrieved medical device reports, 356 unique and relevant reports were analyzed. The cumulative incidence of safety events was calculated over the study period and compared between the two devices. LAAC was performed with LARIAT in 4,889 cases. WATCHMAN was implanted in 2,027 patients prior to FDA approval in March 2015 and 3,822 patients postapproval. The composite outcome of stroke/TIA, pericardiocentesis, cardiac surgery, and death occurred more frequently with WATCHMAN (cumulative incidence, 1.93% vs. 1.15%; P = 0.001). The same phenomenon was observed when comparing the WATCHMAN pre- and postapproval experiences for the composite outcome, as well as device embolization, cardiac surgery, and myocardial infarction. MAUDE-reported data show that postapproval, new technology adoption is fraught with increased complications. Improved collaboration between operators, device manufacturers, and regulators can better serve patients through increased transparency and practical postmarket training and monitoring mechanisms. © 2017 Wiley Periodicals, Inc.

  1. FY 2000 report on the results of the project for measures for rationalization of the international energy utilization - the model project for the heightening of efficiency of the international energy consumption. 1/2. Model project for facilities for effective utilization of by-producing exhaust gases from chemical plant, etc.; 2000 nendo kokusai energy shohi koritsuka tou moderu jigyo seika hokokusho. Kagaku kojo fukusei haigasu tou yuko riyo setsubi moderu jigyo (1/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of contributing to the reduction in the energy consumption in China and the stable energy supply in Japan by heightening efficiency of the energy utilization in the petrochemical industry which is an industry of much energy consumption in China, a model project for facilities for effective utilization of by-producing gases from chemical plant, etc. was carried out, and the FY 2000 results were reported. Concretely, the combustion incinerator and combustion exhaust gas recovery facilities for waste water and gas were to be installed at acrylonitrile plant of petrochemical plant in China to recover the combustion exhaust gas as process gas used in plant for effective utilization. The plant at installation site has been run since 1995, having a production capacity of 50,000-60,000 tons. In this fiscal year, the detailed design and supply of electric instrumentation equipment and manufacture of boiler facilities were carried out according to the basic design made in the previous fiscal year. Further, the equipment manufactured in the previous year and this fiscal year were transported and inspected. The paper also reviewed drawings of the design of the facilities for part of which China takes responsibility. (NEDO)

  2. FY 2000 report on the results of the project for measures for rationalization of the international energy utilization - the model project for the heightening of efficiency of the international energy consumption. 2/2. Model project for facilities for effective utilization of by-producing exhaust gases from chemical plant, etc.; 2000 nendo kokusai energy shohi koritsuka tou moderu jigyo seika hokokusho. Kagaku kojo fukusei haigasu tou yuko riyo setsubi moderu jigyo (2/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of contributing to the reduction in the energy consumption in China and the stable energy supply in Japan by heightening efficiency of the energy utilization in the petrochemical industry which is an industry of much energy consumption in China, a model project for facilities for effective utilization of by-producing gases from chemical plant, etc. was carried out, and the FY 2000 results were reported. Concretely, the combustion incinerator and combustion exhaust gas recovery facilities for waste water and gas were to be installed at acrylonitrile plant of petrochemical plant in China to recover the combustion exhaust gas as process gas used in plant for effective utilization. In this fiscal year, the detailed design and supply of electric instrumentation equipment and manufacture of boiler facilities were carried out according to the basic design made in the previous fiscal year. Further, the equipment manufactured in the previous year and this fiscal year were transported and inspected. The paper also reviewed drawings of the design of the facilities for part of which China takes responsibility. The separate volume (2/2) included drawings of valve, fire detector, orifice, thermocouple, motor control equipment, etc. (NEDO)

  3. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - final report

    International Nuclear Information System (INIS)

    Gerton, R.E.

    1997-01-01

    On May 14, 1997, at 7:53 p.m. (PDT), a chemical explosion occur-red in Tank A- 109 in Room 40 of the Plutonium Reclamation Facility (Facility) located in the 200 West Area of the Hanford Site, approximately 30 miles north of Richland, Washington. The inactive processing Facility is part of the Plutonium Finishing Plant (PFP). On May 16, 1997, Lloyd L. Piper, Deputy Manager, acting for John D. Wagoner, Manager, U.S. Department of Energy (DOE), Richland Operations Office (RL), formally established an Accident Investigation Board (Board) to investigate the explosion in accordance with DOE Order 225. 1, Accident Investigations. The Board commenced its investigation on May 15, 1997, completed the investigation on July 2, 1997, and submitted its findings to the RL Manager on July 26, 1997. The scope of the Board's investigation was to review and analyze the circumstances of the events that led to the explosion; to analyze facts and to determine the causes of the accident; and to develop conclusions and judgments of need that may help prevent a recurrence of the accident. The scope also included the application of lessons learned from similar accidents within DOE. In addition to this detailed report, a companion document has also been prepared that provides a concise summary of the facts and conclusions of this report, with an emphasis on management issues (DOE/RL-97-63)

  4. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerton, R.E.

    1997-07-25

    On May 14, 1997, at 7:53 p.m. (PDT), a chemical explosion occur-red in Tank A- 109 in Room 40 of the Plutonium Reclamation Facility (Facility) located in the 200 West Area of the Hanford Site, approximately 30 miles north of Richland, Washington. The inactive processing Facility is part of the Plutonium Finishing Plant (PFP). On May 16, 1997, Lloyd L. Piper, Deputy Manager, acting for John D. Wagoner, Manager, U.S. Department of Energy (DOE), Richland Operations Office (RL), formally established an Accident Investigation Board (Board) to investigate the explosion in accordance with DOE Order 225. 1, Accident Investigations. The Board commenced its investigation on May 15, 1997, completed the investigation on July 2, 1997, and submitted its findings to the RL Manager on July 26, 1997. The scope of the Board`s investigation was to review and analyze the circumstances of the events that led to the explosion; to analyze facts and to determine the causes of the accident; and to develop conclusions and judgments of need that may help prevent a recurrence of the accident. The scope also included the application of lessons learned from similar accidents within DOE. In addition to this detailed report, a companion document has also been prepared that provides a concise summary of the facts and conclusions of this report, with an emphasis on management issues (DOE/RL-97-63).

  5. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  6. Decontamination of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    Thirty-seven papers were presented at this conference in five sessions. Topics covered include regulation, control and consequences of decontamination; decontamination of components and facilities; chemical and non-chemical methods of decontamination; and TMI decontamination experience

  7. 303-K Radioactive Mixed-Waste Storage Facility closure plan

    International Nuclear Information System (INIS)

    1991-11-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors chemical-separation systems, and related facilities used for the production o special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 303-K Radioactive Mixed-Waste Storage Facility (303-K Facility) has been used since 1943 to store various radioactive,and dangerous process materials and wastes generated by the fuel manufacturing processes in the 300 Area. The mixed wastes are stored in US Department of Transportation (DOT)-specification containers (DOT 1988). The north end of the building was used for storage of containers of liquid waste and the outside storage areas were used for containers of solid waste. Because only the north end of the building was used, this plan does not include the southern end of the building. This closure plan presents a description of the facility, the history of materials and wastes managed, and a description of the procedures that will be followed to chose the 303-K Facility as a greater than 90-day storage facility. The strategy for closure of the 303-K Facility is presented in Chapter 6.0

  8. Thermal and chemical analysis on steam reforming in an out-of-pile test facility (Contract research)

    International Nuclear Information System (INIS)

    Haga, Katsuhiro; Suyama, Kazumasa; Inagaki, Yoshiyuki; Hayashi, Kohji; Ogawa, Masuro

    1999-08-01

    An out-of-pile test facility of a hydrogen production system whose scale is 1/30th of the HTTR hydrogen production system is presently under construction at the Oarai Establishment of the Japan Atomic Energy Research Institute. In this system, a steam generator works as a thermal buffer for mitigating the heat consumption fluctuation in a steam reformer so as not to affect an operation of the reactor system. To control the thermal buffer system properly, it is important to evaluate the effect of the steam reforming parameters on the heat fluctuation in advance. So, using the mass and thermal balance analysis code developed for a simulation of the out-of-pile test facility, the heat consumption fluctuation in the steam reformer was analyzed by various changes of the process gas flow rate, the process gas inlet temperature, the process gas composition etc. From the analytical results, it was found that the heat transfer augmentation of the reformer tube by using repeated fins was effective in increasing the hydrogen production rate of up to 12.5%. Also, the fluctuation of the process gas flow rate tended to greatly affect the heat consumption rate for the steam reforming reaction, so that the helium gas temperature increased from 586degC to 718degC. (author)

  9. Facile high-throughput forward chemical genetic screening by in situ monitoring of glucuronidase-based reporter gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vivek eHalder

    2015-01-01

    Full Text Available The use of biologically active small molecules to perturb biological functions holds enormous potential for investigating complex signaling networks. However, in contrast to animal systems, the search for and application of chemical tools for basic discovery in the plant sciences, generally referred to as ‘chemical genetics’, has only recently gained momentum. In addition to cultured cells, the well-characterized, small-sized model plant Arabidopsis thaliana is suitable for cultivation in microplates, which allows employing diverse cell- or phenotype-based chemical screens. In such screens, a chemical’s bioactivity is typically assessed either through scoring its impact on morphological traits or quantifying molecular attributes such as enzyme or reporter activities. Here, we describe a facile forward chemical screening methodology for intact Arabidopsis seedlings harboring the β-glucuronidase (GUS reporter by directly quantifying GUS activity in situ with 4-methylumbelliferyl-β-D-glucuronide (4-MUG as substrate. The quantitative nature of this screening assay has an obvious advantage over the also convenient histochemical GUS staining method, as it allows application of statistical procedures and unbiased hit selection based on threshold values as well as distinction between compounds with strong or weak bioactivity. At the same time, the in situ bioassay is very convenient requiring less effort and time for sample handling in comparison to the conventional quantitative in vitro GUS assay using 4-MUG, as validated with several Arabidopsis lines harboring different GUS reporter constructs. To demonstrate that the developed assays is particularly suitable for large-scale screening projects, we performed a pilot screen for chemical activators or inhibitors of salicylic acid-mediated defense signaling using the Arabidopsis PR1p::GUS line. Importantly, the screening methodology provided here can be adopted for any inducible GUS reporter line.

  10. The manufacturers' viewpoint

    International Nuclear Information System (INIS)

    Davis, D.A.

    1986-01-01

    This paper describes the approach by six separate manufacturers to the problem of availability from their particular view point. This presentation demonstrates basic strategy: attention to high reliability at the design phase, based on positive and detailed feedback from existing plant; quality assurance at the production stage which has been planned into the production process in the form of a Q.A. manual in design; sophisticated test procedures and facilities; simplicity of design with high accuracy in production; provision of a clear operational maintenance manual, etc. The manufacturers agreed on the need to make a conscious commitment to design for high availability, taking into account both initial and ongoing operating costs in life cycle cost assessment. Predictability, reliability, maintainability, efficiency, market acceptability and maintenance support based on high quality feedback between operator and supplier were all stressed on the grounds that prevention is always better than cure

  11. Apparel Manufacture

    Science.gov (United States)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  12. A facile one-step hydrothermal synthesis of HfO2/graphene nanocomposite and its physio-chemical properties

    Science.gov (United States)

    Sagadevan, Suresh; Zaman Chowdhury, Zaira; Johan, Mohd. Rafie Bin; Rafique, Rahman F.

    2018-03-01

    A facile one-step hydrothermal synthesis of Hafnium oxide/Graphene (HfO2/Gr) Nanocomposite was successfully synthesized. The crystallinity index and the overall phase transformation process during the synthesis process was observed using x-ray diffraction (XRD) pattern. The surface morphology of the prepared composite was analyzed using Scanning electron microscopy (SEM). Transmission electron microscopy studies (HR-TEM) were conducted to measure the particle sizes. The presence of different types of functional groups was confirmed using FT Raman spectroscopy. UV–Visible spectrum analysis with optical ingestion was conducted to observe the optical properties of the prepared sample. The dielectric properties and conductivity of the prepared sample were investigated whereby the frequencies and the temperatures were altered. The results showed that both the phenomenon of the dielectric consistent and the dielectric loss were frequency and temperature dependent. The thermal conductivity behavior of the prepared samples was checked by calculating AC conductivity values at various temperatures.

  13. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  14. Good manufacturing practice

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    2001-01-01

    In this presentation author deals with the Implementation of good manufacturing practice for radiopharmaceuticals. The presentation is divided into next parts: Batch size; Expiration date; QC Testing; Environmental concerns; Personnel aspects; Radiation concerns; Theoretical yields; Sterilizing filters; Control and reconciliation of materials and components; Product strength; In process sampling and testing; Holding and distribution; Drug product inspection; Buildings and facilities; Renovations at BNL for GMP; Aseptic processing and sterility assurance; Process validation and control; Quality control and drug product stability; Documentation and other GMP topics; Building design considerations; Equipment; and Summary

  15. Factors Associated With the Trend of Physical and Chemical Restraint Use Among Long-Term Care Facility Residents in Hong Kong: Data From an 11-Year Observational Study.

    Science.gov (United States)

    Lam, Kuen; Kwan, Joseph S K; Wai Kwan, Chi; Chong, Alice M L; Lai, Claudia K Y; Lou, Vivian W Q; Leung, Angela Y M; Liu, Justina Y W; Bai, Xue; Chi, Iris

    2017-12-01

    Negative effects of restraint use have been well-documented. However, the prevalence of restraints use has been high in long-term care facilities in Hong Kong compared with other countries and this goes against the basic principles of ethical and compassionate care for older people. The present study aimed to review the change in the prevalence of physical and chemical restraint use in long-term care facilities (LTCFs) over a period of 11 years in Hong Kong and to identify the major factors associated with their use. This is an observational study with data obtained from the Hong Kong Longitudinal Study on LTCF Residents between 2005 and 2015. Trained assessors (nurses, social workers, and therapists) used the Minimum Data Set Resident Assessment Instrument to collect the data from 10 residential LTCFs. Physical restraint was defined as the use of any of the following: full bedside rails on all open sides of bed, other types of bedside rails used, trunk restraint, limb restraint, or the use of chair to prevent rising during the past 7 days. Chemical restraint was defined as the use of any of the following medications: antipsychotic, antianxiety, or hypnotic agents during past 7 days, excluding elder residents with a diagnosis of psychiatric illness. Annual prevalence of restraint use over 11 years and factors that were associated with the use of physical and chemical restraints. We analyzed the data for 2896 older people (978 male individuals, mean age = 83.3 years). Between 2005 and 2015, the prevalence of restraint use was as follows: physical restraint use increased from 52.7% to 70.2%; chemical restraint use increased from 15.9% to 21.78%; and either physical or chemical restraint use increased from 57.9% to 75.7%. Physical restraint use was independently associated with older age, impaired activities of daily living or cognitive function, bowel and bladder incontinence, dementia, and negative mood. Chemical restraint use was independently associated

  16. Stereospecific growth of densely populated rutile mesoporous TiO2 nanoplate films: a facile low temperature chemical synthesis approach

    Science.gov (United States)

    Lee, Go-Woon; Ambade, Swapnil B.; Cho, Young-Jin; Mane, Rajaram S.; Shashikala, V.; Yadav, Jyotiprakash; Gaikwad, Rajendra S.; Lee, Soo-Hyoung; Jung, Kwang-Deog; Han, Sung-Hwan; Joo, Oh-Shim

    2010-03-01

    We report for the first time, using a simple and environmentally benign chemical method, the low temperature synthesis of densely populated upright-standing rutile TiO2 nanoplate films onto a glass substrate from a mixture of titanium trichloride, hydrogen peroxide and thiourea in triply distilled water. The rutile TiO2 nanoplate films (the phase is confirmed from x-ray diffraction analysis, selected area electron diffraction, energy-dispersive x-ray analysis, and Raman shift) are 20-35 nm wide and 100-120 nm long. The chemical reaction kinetics for the growth of these upright-standing TiO2 nanoplate films is also interpreted. Films of TiO2 nanoplates are optically transparent in the visible region with a sharp absorption edge close to 350 nm, confirming an indirect band gap energy of 3.12 eV. The Brunauer-Emmet-Teller surface area, Barret-Joyner-Halenda pore volume and pore diameter, obtained from N2 physisorption studies, are 82 m2 g - 1, 0.0964 cm3 g - 1 and 3.5 nm, respectively, confirming the mesoporosity of scratched rutile TiO2 nanoplate powder that would be ideal for the direct fabrication of nanoscaled devices including upcoming dye-sensitized solar cells and gas sensors.

  17. Draft environmental statement related to the decommissioning of the Rare Earths Facility, West Chicago, Illinois. Docket No. 40-2061. Kerr-McGee Chemical Corporation

    International Nuclear Information System (INIS)

    1982-05-01

    This Draft Environmental Impact Statement is issued by the US Nuclear Regulatory Commission in response to the plan proposed by Kerr-McGee Chemical Corporation for the decommissioning of their Rare Earths Facility located in West Chicago, Illinois. The statement considers the Kerr-McGee preferred plan and various alternatives to that plan. The action proposed by the Commission is the renewal of the Kerr-McGee license to allow safe storage of the radioactive wastes onsite for a period of 5 years. At the end of this period, the following alternatives will be evaluated: (1) Renewal of the license for an additional period of 5 years and the possible imposition of additional conditions or remedial actions; (2) Removal of the material to a licensed low-level waste disposal site; and (3) Termination of the license and transfer of the property to federal or state ownership

  18. A Facile Large-Scale Synthesis of Porous SnO2 by Bronze for Superior Lithium Storage and Gas Sensing Properties Through a Wet Chemical Reaction Strategy

    Science.gov (United States)

    Yue, Lu; Ge, Jingjing; Luo, Gaixia; Bian, Kaiting; Yin, Chao; Guan, Rongfeng; Zhang, Wenhui; Zhou, Zheng; Wang, Kaixin; Guo, Xiufeng

    2018-03-01

    A facile approach to prepare porous SnO2 and SnO2/C composite with Cu-Sn alloy as raw material by wet chemical reaction strategy has been developed. The prepared porous SnO2 and its carbon composite showed homogeneous mesoporous structure and high surface area, displayed superior rate performance and high reversible capacity of 625 mAh g-1 and 1185 mAh g-1 over 800 cycles at 0.4 A g-1, respectively. Compared with commercial SnO2, porous SnO2 sensor presented higher response, faster response/recovery capability, good selectivity and repeatability to ethanol at 180°C.

  19. Facile preparation of Ni{sub 2}P/ZnO core/shell composites by a chemical method and its photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuling, E-mail: shulingliu@aliyun.com [Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi’an, Shaanxi 710021 (China); College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi’an, Shaanxi 710021 (China); Ma, Lanbing; Zhang, Hongzhe; Ma, Chenlu [Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi’an, Shaanxi 710021 (China); College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi’an, Shaanxi 710021 (China)

    2016-05-15

    Graphical abstract: The typical SEM images and the schematic illustration of photocatalytic mechanism of as-prepared Ni{sub 2}P/ZnO core/shell composites. - Highlights: • Ni{sub 2}P/ZnO composites have been synthesized via a facile chemical precipitation method. • The effect of the amount of Zn{sup 2+} has been discussed. • Ni{sub 2}P/ZnO composite exhibits an enhanced photocatalytic degradation activity. • A mechanism about the enhanced photocatalytic activity is proposed. - Abstract: Ni{sub 2}P/ZnO core/shell composites were fabricated basing on combining hydrothermal route with a facile chemical precipitation method. The characterization results show that the composites are comprised of the hexagonal Ni{sub 2}P microspheres and hexagonal ZnO nanoparticles. In which, ZnO nanoparticles coat on the surfaces of Ni{sub 2}P microspheres and some of them even assemble to worm-like structure. During the coating process, Zn{sup 2+} was absorbed on the surface of Ni{sub 2}P microspheres by electrostatic interaction and then formed ZnO shell. But excessive Zn{sup 2+} can affect the crystalline and formation of core-shell structure of Ni{sub 2}P/ZnO composites, so it is necessary to control the amount of Zn{sup 2+}. Choosing Methylene Blue (MB) as a typical organic dye, the as-prepared Ni{sub 2}P/ZnO core/shell composites show the enhanced photocatalytic degradation activity, which may be due to its better adsorption ability and the effective separation of photogenerated electron–hole pairs.

  20. Facile Fabrication of Boron-Doped Titania Nanopowders by Atmospheric Pressure Chemical Vapor Synthesis Route and its Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    K. Saberyan

    2014-04-01

    Full Text Available The Atmospheric Pressure Chemical Vapor Synthesis (APCVS route is a process that can be used for the synthesis of doped-nanocrystalline powders with very small crystallite sizes having a narrow particle size distribution and high purity. In this study, APCVS technique was used to prepare boron-doped titania nanopowders. The effects of temperature, borate flow rate and water flow rate on the amount of doped boron were studied. The resultant powders were characterized by inductively coupled plasma (ICP, X-ray diffraction (XRD, nitrogen adsorption technique (BET, UV-visible DRS spectroscopy, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The optimum boron precursor flow rate was 80 sccm. The highest amount of doped boron was attained when water flow rate was 900 sccm. In comparison to the pristine TiO2, the boron-doped TiO2 nanoparticles showed blue-shift in band-gap energy of the samples.

  1. Development of biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is just now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.

  2. LEAN Manufacturing

    DEFF Research Database (Denmark)

    Bilberg, Arne

      As part of an employment as Technology Architect at the company Linak in combination with research at the University of Southern Denmark, this paper will present results from a strategy process where Lean has been pointed out as being a very strategic element in the Linak Production System......, organizational and management improvements in the company to what is named the Linak Production System.  ....... The mission with the strategy is to obtain competitive production in Denmark and in Western Europe based on the right combination of manufacturing principles, motivated and trained employees, level of automation, and cooperation with suppliers and customers worldwide. The strategy has resulted in technical...

  3. 21 CFR 200.10 - Contract facilities (including consulting laboratories) utilized as extramural facilities by...

    Science.gov (United States)

    2010-04-01

    ... laboratories) utilized as extramural facilities by pharmaceutical manufacturers. 200.10 Section 200.10 Food and... extramural facilities by pharmaceutical manufacturers. (a) Section 704(a) of the Federal Food, Drug, and..., warehouse, or establishment in which prescription drugs are manufactured, processed, packed, or held. (b...

  4. Improvement in high-voltage and high rate cycling performance of nickel-rich layered cathode materials via facile chemical vapor deposition with methane

    International Nuclear Information System (INIS)

    Hyuk Son, In; Park, Kwangjin; Hwan Park, Jong

    2017-01-01

    Nickel-rich layered-oxide materials are considered promising candidates for application as cathode material in high-energy lithium ion batteries. However, their cycling performance at high voltages and rate conditions require further improvement for the purpose of commercialization. Here, we report on the facile surface modification of nickel-rich layered oxide by chemical vapor deposition with methane which yields a conductive and protective artificial solid electrolyte interphase layer consisting of amorphous carbon, alkyl lithium carbonate, and lithium carbonate. We examine the mechanism of the protective layer formation and structural deformation of the nickel-rich layered oxide during chemical vapor deposition with methane. Via optimizing the reaction conditions, we improve the electrical conductivity as well as the interfacial stability of the nickel-rich layered oxide without inducing structural deformation. The surface-modified nickel-rich layered oxide exhibits an improved performance due to the resulting enhanced rate capability, high initial efficiency, and long cycle life at high voltage (>4.5 V).

  5. Facile synthesis of superhydrophobic surface of ZnO nanoflakes: chemical coating and UV-induced wettability conversion

    Science.gov (United States)

    Yao, Lujun; Zheng, Maojun; Li, Changli; Ma, Li; Shen, Wenzhong

    2012-04-01

    This work reports an oriented growth process of two-dimensional (2D) ZnO nanoflakes on aluminum substrate through a low temperature hydrothermal technique and proposes the preliminary growth mechanism. A bionic superhydrophobic surface with excellent corrosion protection over a wide pH range in both acidic and alkaline solutions was constructed by a chemical coating treatment with stearic acid (SA) molecules on ZnO nanoflakes. It is found that the superhydrophobic surface of ZnO nanoflake arrays shows a maximum water contact angle (CA) of 157° and a low sliding angle of 8°, and it can be reversibly switched to its initial superhydrophilic state under ultraviolet (UV) irradiation, which is due to the UV-induced decomposition of the coated SA molecules. This study is significant for simple and inexpensive building of large-scale 2D ZnO nanoflake arrays with special wettability which can extend the applications of ZnO films to many other important fields.

  6. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing

    Directory of Open Access Journals (Sweden)

    Anne-Gaëlle Sicaire

    2015-04-01

    Full Text Available The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop’s byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil and non-food (bio fuel applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols. Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF as alternative solvent compared to hexane as petroleum solvent.

  7. Chemical and biological sensing applications of integrated photonics with an introduction to the American Institute for Manufacturing Integrated Photonics (AIM Photonics)

    Science.gov (United States)

    Bickford, Justin; Guicheteau, Jason

    2016-05-01

    Integrated photonics affords an opportunity to explore novel sensing and lab-on-a-chip concepts. It offers a route to high sensitivity, high selectivity, and low SWaP-C test systems that can be operated autonomously or by minimallytrained field personnel. We'll introduce the topic, discuss possible sensing modalities, and highlight the advantages and limitations of this technology. We'll also introduce the recent American Institute for Manufacturing Integrated Photonics (AIM Photonics), give an overview of its vision and capabilities, how to utilize its Electronic-Photonic Design Automation (EPDA) tools and its Multi-Project Wafer and Assembly (MPWA) services, how to engage in its road mapping efforts, and how to become a contributing member.

  8. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM...

  9. Detection of component segregation in granules manufactured by high shear granulation with over-granulation conditions using near-infrared chemical imaging.

    Science.gov (United States)

    Koide, Tatsuo; Nagato, Takuya; Kanou, Yoshiyuki; Matsui, Kou; Natsuyama, Susumu; Kawanishi, Toru; Hiyama, Yukio

    2013-01-30

    The objective of this study was to evaluate the high shear granulation process using near-infrared (NIR) chemical imaging technique and to make the findings available for pharmaceutical development. We prepared granules and tablets made under appropriate- and over-granulation conditions with high shear granulation and observed these granules and tablets using NIR chemical imaging system. We found an interesting phenomenon: lactose agglomeration and segregation of ingredients occurred in experimental tablets when over-granulation conditions, including greater impeller rotation speeds and longer granulation times, were employed. Granules prepared using over-granulation conditions were larger and had progressed to the consolidation stage; segregation between ethenzamide and lactose occurred within larger granules. The segregation observed here is not detectable using conventional analytical technologies such as high pressure liquid chromatography (HPLC) because the content of the granules remained uniform despite the segregation. Therefore, granule visualization using NIR chemical imaging is an effective method for investigating and evaluating the granulation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Development and evaluation of a tool for retrospective exposure assessment of selected endocrine disrupting chemicals and EMF in the car manufacturing industry.

    Science.gov (United States)

    Mester, Birte; Schmeisser, Nils; Lünzmann, Hauke; Pohlabeln, Hermann; Langner, Ingo; Behrens, Thomas; Ahrens, Wolfgang

    2011-08-01

    A system for retrospective occupational exposure assessment combining the efficiency of a job exposure matrix (JEM) and the precision of a subsequent individual expert exposure assessment (IEEA) was developed. All steps of the exposure assessment were performed by an interdisciplinary expert panel in the context of a case-control study on male germ cell cancer nested in the car manufacturing industries. An industry-specific JEM was developed and automatic exposure estimation was performed based on this JEM. A subsample of exposure ratings was done by IEEA to identify determinants of disagreement between the JEM and the individual review. Possible determinants were analyzed by calculating odds ratios (ORs) of disagreement between ratings with regard to different dimensions (e.g. high versus low intensity of exposure). Disagreement in ≥20% of the sampled exposure ratings with a statistically significant OR was chosen as a threshold for inclusion of the exposure ratings into a final IEEA. The most important determinants of disagreement between JEM and individual review were working outside of the production line (disagreement 80%), low probability of exposure (disagreement 25%), and exposure depending on specific activities like usage of specific lacquers (disagreement 32%) for jobs within the production line. These determinants were the selection criteria of exposure ratings for the subsequent final IEEA. Combining a JEM and a subsequent final IEEA for a selected subset of exposure ratings is a feasible and labor-saving approach for exposure assessment in large occupational epidemiological studies.

  11. The Effect of Combination Carrot Juice (Daucus carota L. and Hunkwee Flour in Manufacturing Kefir Ice Cream on Physical and Chemical Quality of Kefir Ice Cream

    Directory of Open Access Journals (Sweden)

    Ilma Mahdiana

    2017-03-01

    Full Text Available The purpose of this research was to determine the best combination of carrot juice (CJ and hunkwee flour (HF on manufacturing of kefir ice cream. The method of this research was experiment with Completely Randomized Design, 4 treatments and 4 replication, the treatments were without carrot juice + HF 5% (P0, CJ 1.5% + HF 3.5% (P1, CJ 3% + HF 2% (P2, CJ 4.5% + HF 0.5% (P3, the presentage based on Ice Cream Mix (ICM. The variables measured were antioxidant activity, viscosity, total solid and organoleptic (textur, taste and aroma. The data was analized by using Analysis Of Variance (ANOVA continued by Honestly Significance Difference (HSD test. The result of this research showed that the combination of carrot juice and hunkwee flour gave highly significant difference effect (P0.05 on aroma. Conclusion: the combination of carrot juice 1.5% + hunkwee flour 3.5% (P1 in kefir ice cream gave the best result.

  12. Safe food manufacturing.

    Science.gov (United States)

    Shapiro, A; Mercier, C

    1994-03-31

    Food safety is a growing preoccupation of the health authorities and the major food companies in any European country. All the aspects of food manufacturing, from the raw materials until the product is consumed have to insure they are innoxious to human health, eliminate any harmful effects related either to food handling or consumption in domestic or common eating places, as well as protect, as much as possible, our environment. Thus, the food manufacturer has to examine step-by-step the security of the agro-cultures, their composition, but also the possible residues of pollutants and contaminants, or chemicals used to protect them against various pests and determine the possible loss or retention of these substances during technological processes. Animal raw materials should not contain veterinary drug residues or an abnormal amount of some components that result from inadequate feeding. Care should be taken to ensure the security of foods manufactured by biotechnology processes. The organisms and the whole processes used in food biotechnologies should eliminate any impurities. Any minor food ingredients, such as food additives, are under a permanent revision from the point of view of their safety. The industry reacts immediately if any justification requires that a particular food additive should not be used. In other words all the raw materials must conform to their specifications. Technological processes must create a food with an adequate microbiological quality, e.g. free of pathogens and their toxic metabolites. Any danger of microbiological contamination or accidental pollution, such as mechanical particles, chemical substances, etc. should be eliminated. The particular role of food packaging is crucial, since this is a barrier to protect the food against further parasites or microbial contamination and preserve the food from alterations due to enzymatic reactions that require particular oxygen and water activity conditions. The packaging should also

  13. Auditing radiation sterilization facilities

    Science.gov (United States)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  14. Toxics release inventory: List of toxic chemicals within the polychlorinated alkanes category and guidance for reporting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Section 313 of the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) requires certain facilities manufacturing, processing, or otherwise using listed toxic chemicals to report their environmental releases of such chemicals annually. On November 30, 1994 EPA added 286 chemicals and chemical categories. Six chemical categories (nicotine and salts, strychnine and salts, polycyclic aromatic compounds, water dissociable nitrate compounds, diisocyanates, and polychlorinated alkanes) are included in these additions. At the time of the addition, EPA indicated that the Agency would develop, as appropriate, interpretations and guidance that the Agency determines are necessary to facilitate accurate reporting for these categories. This document constitutes such guidance for the polychlorinated alkanes category.

  15. The design and Manufacturing of the equipment for 'Monju' by Ube Industries, Ltd

    International Nuclear Information System (INIS)

    Nishiide, Tsutomu; Furuse, Haruo; Matsuda, Shinnji

    1994-01-01

    In the manufacture of the various facilities for the prototype FBR 'Monju', as compared with the case of the experimental FBR 'Joyo', much advanced welding and manufacturing technologies and jigs, tools and equipments for the manufacture have been applied. The main equipments of the various facilities are constructed with stainless steel materials, and the jigs and tools have been exclusively used, besides, the manufacture has been performed in exclusively used clean rooms to prevent the mixing of impurities. As to the welding technology, that for nickel steel and nickel alloy steel, which has many results in chemical plants under high temperature, high pressure and corrosive environment, has been adopted entirely. To the prevention of thermal deformation accompanying welding, attention has been paid most. In the design aspect, finite element analysis was carried out to avoid excessive local stress in the equipment. Ube Industries was in charge of the common maintenance equipment, washing equipment, nuclear fuel washing equipment, and carriages and cranes for the prototype FBR 'Monju'. Those facilities are explained on their main equipments and systems and the design. (K.I.)

  16. Chemical Industry Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  17. Simulating the Composite Propellant Manufacturing Process

    Science.gov (United States)

    Williamson, Suzanne; Love, Gregory

    2000-01-01

    There is a strategic interest in understanding how the propellant manufacturing process contributes to military capabilities outside the United States. The paper will discuss how system dynamics (SD) has been applied to rapidly assess the capabilities and vulnerabilities of a specific composite propellant production complex. These facilities produce a commonly used solid propellant with military applications. The authors will explain how an SD model can be configured to match a specific production facility followed by a series of scenarios designed to analyze operational vulnerabilities. By using the simulation model to rapidly analyze operational risks, the analyst gains a better understanding of production complexities. There are several benefits of developing SD models to simulate chemical production. SD is an effective tool for characterizing complex problems, especially the production process where the cascading effect of outages quickly taxes common understanding. By programming expert knowledge into an SD application, these tools are transformed into a knowledge management resource that facilitates rapid learning without requiring years of experience in production operations. It also permits the analyst to rapidly respond to crisis situations and other time-sensitive missions. Most importantly, the quantitative understanding gained from applying the SD model lends itself to strategic analysis and planning.

  18. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, Matthew S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Luther, Michelle C. [Auburn Univ., AL (United States); Brandenburg, Clayton H. [Univ.of South Carolina, Columbia, SC (United States)

    2016-09-27

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammable gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.

  19. The impact of fit manufacturing on green manufacturing: A review

    Science.gov (United States)

    Qi, Ang Nian; Sin, Tan Chan; Fathullah, M.; Lee, C. C.

    2017-09-01

    Fit manufacturing and Green manufacturing are a new trend principle and concept. They are getting popular in industrial. This paper is identifying the impact between Fit manufacturing and Green manufacturing. Besides Fit manufacturing, Lean manufacturing, Agile manufacturing and Sustainable manufacturing gives big impacts to Green Manufacturing. On top of that, this paper also discuss the benefits of applying Fit manufacturing and Green manufacturing in industrial as well as environment. Hence, applications of Fit manufacturing and Green Manufacturing are increasing year by year.

  20. 10 CFR 611.207 - Small automobile and component manufacturers.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Small automobile and component manufacturers. 611.207... VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.207 Small automobile and component... individuals; and (2) Manufactures automobiles or components of automobiles. (b) Set Aside—Of the amount of...

  1. Safety practices in Jordanian manufacturing enterprises within industrial estates.

    Science.gov (United States)

    Khrais, Samir; Al-Araidah, Omar; Aweisi, Assaf Mohammad; Elias, Fadia; Al-Ayyoub, Enas

    2013-01-01

    This paper investigates occupational health and safety practices in manufacturing enterprises within Jordanian industrial estates. Response rates were 21.9%, 58.6% and 70.8% for small, medium and large sized enterprises, respectively. Survey results show that most companies comply with state regulations, provide necessary facilities to enhance safety and provide several measures to limit and control hazards. On the negative side, little attention is given to safety training that might be due to the lack of related regulations and follow-up, financial limitations or lack of awareness on the importance of safety training. In addition, results show that ergonomic hazards, noise and hazardous chemicals are largely present. Accident statistics show that medium enterprises have the highest accident cases per enterprise, and chemical industries reported highest total number of accidents per enterprise. The outcomes of this study establish a base for appropriate safety recommendations to enhance the awareness and commitment of companies to appropriate safety rules.

  2. Physico-chemical properties of quartz from industrial manufacturing and its cytotoxic effects on alveolar macrophages: The case of green sand mould casting for iron production.

    Science.gov (United States)

    Di Benedetto, Francesco; Gazzano, Elena; Tomatis, Maura; Turci, Francesco; Pardi, Luca A; Bronco, Simona; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Muniz Miranda, Maurizio; Zoleo, Alfonso; Capacci, Fabio; Fubini, Bice; Ghigo, Dario; Romanelli, Maurizio

    2016-07-15

    Industrial processing of materials containing quartz induces physico-chemical modifications that contribute to the variability of quartz hazard in different plants. Here, modifications affecting a quartz-rich sand during cast iron production, have been investigated. Composition, morphology, presence of radicals associated to quartz and reactivity in free radical generation were studied on a raw sand and on a dust recovered after mould dismantling. Additionally, cytotoxicity of the processed dust and ROS and NO generation were evaluated on MH-S macrophages. Particle morphology and size were marginally affected by casting processing, which caused only a slight increase of the amount of respirable fraction. The raw sand was able to catalyze OH and CO2(-) generation in cell-free test, even if in a lesser extent than the reference quartz (Min-U-Sil), and shows hAl radicals, conventionally found in any quartz-bearing raw materials. Enrichment in iron and extensive coverage with amorphous carbon were observed during processing. They likely contributed, respectively, to increasing the ability of processed dust to release CO2- and to suppressing OH generation respect to the raw sand. Carbon coverage and repeated thermal treatments during industrial processing also caused annealing of radiogenic hAl defects. Finally, no cellular responses were observed with the respirable fraction of the processed powder. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Review of the impact of the Ukraine-EU free trade agreement on manufacturing industries (mechanical engineering, chemical and light industry

    Directory of Open Access Journals (Sweden)

    Olga Usenko

    2007-03-01

    Full Text Available The article gives a definition to the concept of ‘deep integration’ taken by the Ukrainian Government as a framework concept for the establishment of a Ukraine-EU free trade area. The paper uses the term ‘deep free trade’ or ‘free trade area +’. It offers a review of the Ukrainian economy and its readiness to open such industries as mechanical engineering, chemical and light industry to free trade with the EU. It examines which cooperative steps might be taken in the sectors in question in the framework of a free trade area by identifying specific features of those sectors in Ukraine and the EU through SWOT analysis and review of certain provisions in relevant agreements between the EU and other countries. It proposes to forecast the possible impact of a free trade area on stakeholders’ position regarding the agreement by using the ‘stakeholder approach’ (identifying and classifying interest groups and the European Commission’s method of ‘impact assessment’. Based on the results of this research, conclusions are made concerning the fundamental negotiation principles for talks between Ukraine and the EU as to the economic and trade component of the new ‘enhanced agreement.

  4. Comparative studies on the chemical and cell-based antioxidant activities and antitumor cell proliferation properties of soy milk manufactured by conventional and commercial UHT methods.

    Science.gov (United States)

    Xu, Baojun; Chang, Sam K C; Liu, Zhisheng; Yuan, Shaohong; Zou, Yanping; Tan, Yingying

    2010-03-24

    The aims of this work were to compare antiproliferation, antioxidant activities and total phytochemicals and individual isoflavone profiles in soy milk processed by various methods including traditional stove cooking, direct steam injection, direct ultrahigh temperature (UHT), indirect UHT, and a two-stage simulated industry method, and a selected commercial soy milk product. Various processing methods significantly affected total saponin, phytic acid, and total phenolic content and individual isoflavone distribution. The laboratory UHT and the two-stage processed soy milk exhibited relatively higher total phenolic content, total flavonoid content, saponin and phytic acid than those processed by the traditional and steam processed methods. Thermal processing caused obvious intertransformation but did not cause severe degradation except for breaking down of aglycons. Thermal processing significantly increased antioxidant capacities of soy milk determined by chemical analyses, but decreased cellular antioxidant capacities as compared to the raw soy milk. The raw and all processed soy milk exhibited antipoliferative activities against human HL-60 leukemia cells, AGS gastric tumor cells, and DU145 prostate cancer cells in a dose-dependent manner. The raw soy milk, but not the processed soy milk, exhibited a dose-dependent antiproliferative effect against colorectal adenocarcinoma Caco-2 cells. Taken together, these results indicate that various thermal processing methods change not only phytochemcials but also potential health-promoting effects of soy milk.

  5. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  6. Advanced Microanalysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Microanalysis Facility fully integrates capabilities for chemical and structural analysis of electronic materials and devices for the U.S. Army and DoD....

  7. Report of National Research Institute for Pollution and Resources for fiscal 1979. Research on conversion of coal to petroleum, research on coal liquefaction, high pressure liquid phase hydrogenation of coal by continuous test equipment, and manufacture of coal chemicals; 1979 nendo sekitan no yuka no kenkyu / sekitan no ekika no kenkyu / renzoku shiken sochi ni yoru sekitan no koatsu ekiso suisoka bunkai / coal chemicals no seizo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    Research was conducted on conversion of coal to petroleum for the purpose of securing substitute liquid fuel. Recovery of hydrogen from the waste gas from the conversion process was explained, as were the conversion results from various coals produced in Japan. In coal liquefaction researches with the aim of manufacturing artificial petroleum, a report was made on each of the researches, i.e., the experiment results of coal liquefaction using various catalysts, manufacture of hydrogen by water gas reaction, catalytic action against coal paste, action of mixed oil and pressure against coal paste, result of hydrogen adding test for coal paste using an intermediate scale device, test result of secondary hydrogen addition for coal liquefied oil, and the test result of continuous secondary hydrogen addition for the liquefied oil. In the manufacture of fuel oil by hydro-cracking of coal or tar, a report was made on high pressure liquid phase hydrogenation of coal using a continuous testing device. Aromatic chemicals useful as chemical materials are supposed to be obtained by cutting inter-polymerized-unit bonding to make low molecules from the chemical structure of coal, removing surrounding radicals and simplifying it. A report was also made on the experiment of manufacturing coal chemicals by combination of high pressure liquid phase hydrogenation and hydro-dealkylation. (NEDO)

  8. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J [ORNL

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  9. Metabolic engineering: the ultimate paradigm for continuous pharmaceutical manufacturing.

    Science.gov (United States)

    Yadav, Vikramaditya G; Stephanopoulos, Gregory

    2014-07-01

    Research and development (R&D) expenditures by pharmaceutical companies doubled over the past decade, yet candidate attrition rates and development times rose markedly during this period. Understandably, companies have begun downsizing their pipelines and diverting investments away from R&D in favor of manufacturing. It is estimated that transitioning to continuous manufacturing could enable companies to compete for a share in emerging markets. Accordingly, the model for continuous manufacturing that has emerged commences with the conversion of late-stage intermediates into the active pharmaceutical ingredient (API) in a series of continuous flow reactors, followed by continuous solid processing to form finished tablets. The use of flow reactions for API synthesis will certainly generate purer products at higher yields in shorter times compared to equivalent batch reactions. However, transitioning from batch to flow configuration simply alleviates transport limitations within the reaction milieu. As the catalogue of reactions used in flow syntheses is a subset of batch-based chemistries, molecules such as natural products will continue to evade drug prospectors. Also, it is uncertain whether flow synthesis can deliver improvements in the atom and energy economies of API production at the scales that would achieve the levels of revenue growth targeted by companies. Instead, it is argued that implementing metabolic engineering for the production of oxidized scaffolds as gateway molecules for flow-based addition of electrophiles is a more effective and scalable strategy for accessing natural product chemical space. This new paradigm for manufacturing, with metabolic engineering as its engine, would also permit rapid optimization of production variables and allow facile scale-up from gram to ton scale to meet material requirements for clinical trials, thus recasting manufacturing as a tool for discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  11. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  12. Physical‐chemical and microbiological characterization, and mutagenic activity of airborne PM sampled in a biomass‐fueled electrical production facility

    DEFF Research Database (Denmark)

    Cohn, Corey A.; Lemieux, Christine L.; Long, Alexandra S.

    2011-01-01

    Biomass combustion is used in heating and electric power generation in many areas of the world. Airborne particulate matter (PM) is released when biomass is brought to a facility, stored, and combusted. Occupational exposure to airborne PM within biomass‐fueled facilities may lead to health...

  13. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed......, the complex phenomenon of a manufacturing network evolution is observed by combining the analysis of a manufacturing plant and network level. The historical trajectories of manufacturing networks that are presented in the case studies are examined in order to understand and determine the future shape...

  14. Identification of New Compounds from Sage Flowers (Salvia officinalis L.) as Markers for Quality Control and the Influence of the Manufacturing Technology on the Chemical Composition and Antibacterial Activity of Sage Flower Extracts.

    Science.gov (United States)

    Gericke, Sebastian; Lübken, Tilo; Wolf, Diana; Kaiser, Martin; Hannig, Christian; Speer, Karl

    2018-02-28

    Parts of Salvia species such as its flowers and leaves are currently used as a culinary herb and for some medicinal applications. To distinguish the different sage extracts it is necessary to analyze their individual chemical compositions. Their characteristic compounds might be established as markers to differentiate between sage flowers and leaf extracts or to determine the manufacturing technology and storage conditions. Tri-p-coumaroylspermidine can be detected only in flowers and has been described here for Salvia and Lavandula species for the first time. Markers for oxidation processes are the novel compounds salviquinone A and B, which were generated from carnosol by exposure to oxygen. Caffeic acid ethyl ester was established as an indirect marker for the usage of ethanol as extraction solvent. The compounds were identified by LC-QTOF-HRESIMS, LC-MS, NMR, IR, and single-crystal X-ray diffraction after isolation by semipreparative HPLC. Furthermore, sage flower resin showed interesting antibacterial in vitro activities against Gram-positive and Gram-negative bacteria.

  15. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Tingey, Joel M.; Jones, Susan A.

    2005-01-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at

  16. Neutron Characterization for Additive Manufacturing

    Science.gov (United States)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Manufacturing Demonstration Facility (MDF) sponsored by the DOE's Advanced Manufacturing Office. The MDF is focusing on R&D of both metal and polymer AM pertaining to in-situ process monitoring and closed-loop controls; implementation of advanced materials in AM technologies; and demonstration, characterization, and optimization of next-generation technologies. ORNL is working directly with industry partners to leverage world-leading facilities in fields such as high performance computing, advanced materials characterization, and neutron sciences to solve fundamental challenges in advanced manufacturing. Specifically, MDF is leveraging two of the world's most advanced neutron facilities, the HFIR and SNS, to characterize additive manufactured components.

  17. Technological assessment of local manufacturers for wind turbine blade manufacturing in Pakistan

    Science.gov (United States)

    Mahmood, Khurram; Haroon, General

    2012-11-01

    Composite materials manufacturing industry is one of the world's hi-tech industry. Manufacturing of wind turbine blades is one of the specialized fields requiring high degree of precision and composite manufacturing techniques. This paper identifies the industries specializing in the composite manufacturing and is able to manufacture wind turbines blades in Pakistan. In the second phase, their technology readiness level is determined, based on some factors and then a readiness level are assigned to them. The assigned technology readiness level will depict the absorptive capacity of each manufacturing unit and its capability to take on such projects. The individual readiness level of manufacturing unit will then be used to establish combined technology readiness level of Pakistan particularly for wind turbine blades manufacturing. The composite manufacturing industry provides many spin offs and a diverse range of products can be manufactured using this facility. This research will be helpful to categorize the strong points and flaws of local industry for the gap analysis. It can also be used as a prerequisite study before the evaluation of technologies and specialties to improve the industry of the country for the most favorable results. This will form a basic data base which can be used for the decision making related to transfer of technology, training of local skilled workers and general up-gradation of the local manufacturing units.

  18. Flavoring exposure in food manufacturing.

    Science.gov (United States)

    Curwin, Brian D; Deddens, Jim A; McKernan, Lauralynn T

    2015-05-01

    Flavorings are substances that alter or enhance the taste of food. Workers in the food-manufacturing industry, where flavorings are added to many products, may be exposed to any number of flavoring compounds. Although thousands of flavoring substances are in use, little is known about most of these in terms of worker health effects, and few have occupational exposure guidelines. Exposure assessment surveys were conducted at nine food production facilities and one flavor manufacturer where a total of 105 area and 74 personal samples were collected for 13 flavoring compounds including five ketones, five aldehydes, and three acids. The majority of the samples were below the limit of detection (LOD) for most compounds. Diacetyl had eight area and four personal samples above the LOD, whereas 2,3-pentanedione had three area samples above the LOD. The detectable values ranged from 25-3124 ppb and 15-172 ppb for diacetyl and 2,3-pentanedione respectively. These values exceed the proposed National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit for these compounds. The aldehydes had the most detectable samples, with each of them having >50% of the samples above the LOD. Acetaldehyde had all but two samples above the LOD, however, these samples were below the OSHA PEL. It appears that in the food-manufacturing facilities surveyed here, exposure to the ketones occurs infrequently, however levels above the proposed NIOSH REL were found. Conversely, aldehyde exposure appears to be ubiquitous.

  19. Reactive polymer fused deposition manufacturing

    Science.gov (United States)

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  20. Strategic Roles of Manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng

    Addressing three development trends of manufacturing, this thesis aims to explore: (1) facing challenges on manufacturing (globalisation, knowledge-based manufacturing and servitisation of manufacturing), what kinds of roles does manufacturing play within industrial companies; (2) along with the ......Addressing three development trends of manufacturing, this thesis aims to explore: (1) facing challenges on manufacturing (globalisation, knowledge-based manufacturing and servitisation of manufacturing), what kinds of roles does manufacturing play within industrial companies; (2) along...... with the trend of globalisation, how do industrial companies develop their global manufacturing networks? These two questions are actually interlinked. On the one hand, facing increasing offshoring and outsourcing of production activities, industrial companies have to understand how to develop their global...... manufacturing networks. On the other hand, ongoing globalisation also brings tremendous impacts to post-industrial economies (e.g. Denmark). A dilemma therefore arises, i.e. whether it is still necessary to keep manufacturing in these post-industrial economies; if yes, what kinds of roles manufacturing should...

  1. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  2. Surrogate Plant Data Base : Volume 4. Appendix E : Medium and Heavy Truck Manufacturing

    Science.gov (United States)

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  3. Design of chemical plant

    International Nuclear Information System (INIS)

    Lee, Dong Il; Kim, Seung Jae; Yang, Jae Ho; Ryu, Hwa Won

    1993-01-01

    This book describes design of chemical plant, which includes chemical engineer and plan for chemical plant, development of chemical process, cost engineering pattern, design and process development, general plant construction plan, project engineering, foundation for economy on assets and depreciation, estimation for cost on capital investment and manufacturing cost, design with computers optimal design and method like fluid mechanics design chemical device and estimation for cost, such as dispatch of material and device writing on design report and appendixes.

  4. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  5. Additive Manufacturing of Catalytically Active Living Materials.

    Science.gov (United States)

    Saha, Abhijit; Johnston, Trevor G; Shafranek, Ryan T; Goodman, Cassandra J; Zalatan, Jesse G; Storti, Duane W; Ganter, Mark A; Nelson, Alshakim

    2018-04-10

    Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (∼90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process.

  6. Chemicals Reported for the 2012 Chemical Data Reporting (CDR) in Alphabetical Order

    Science.gov (United States)

    For the 2012 CDR, 7,674 unique chemicals were reported by manufacturers (including importers).Chemicals are listed in alphabetical order by CA Index Name (for non-confidential chemicals) or by generic chemical name.

  7. Workplace Air Quality at Explosive Material Manufacturing and Handling Units

    OpenAIRE

    G. K. Kannan; J. C. Kapoor

    2006-01-01

    Worldwide, large quantities of explosives are manufactured for use in various types ofammunitions, arms, and mines. Toxic pollutants in the workplaces of three major activities, viz.,explosive and solid propellant preparation facility, solid propellant shell assembling facility, andsolid propellant shell proof firing facility, were studied. The suspended particulate matter (SPM)concentration in grinding room (13.9 mg/m3) and sieving room (19.3 mg/m3) of solid propellantpreparation facility wa...

  8. Appraising manufacturing location

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2002-01-01

    International location of manufacturing activities is an issue for managers of manufacturing companies as well as public policy makers. For managers, the issue is relevant because international locations offer opportunities for lowering costs due to productivity improvements. For governments the

  9. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  10. Manufacturing in Denmark

    DEFF Research Database (Denmark)

    Hansen, Johannes; Boer, Henrike Engele Elisabeth; Boer, Harry

    This report compares the manufacturing strategies, practices, performances and improvement activities of 39 companies that are representative for the Danish assembly industry with those of 804 companies from 19 other countries. The data supporting this report were collected in 2013 and concern......: • Manufacturing strategies pursued and implemented between 2010 and 2012. • Performance improvements achieved during that period. • Actual manufacturing practices and performances as well as competitive priorities in 2012. • Manufacturing strategies pursued for the years 2010-2012....

  11. Manufacturing tolerant topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole

    2009-01-01

    (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization...

  12. Advanced Manufacturing Technologies (AMT): Manufacturing Initiative Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA supports the Advanced Manufacturing National Program Office (AMNPO). Hosted by the National Institute of Standards and Technology (NIST) the AMNPO is...

  13. 75 FR 56985 - Foreign-Trade Zone 104-Savannah, GA Application for Manufacturing Authority Mitsubishi Power...

    Science.gov (United States)

    2010-09-17

    .... The facility (approximately 500 employees), currently under construction, will be used to manufacture... steam turbine components (rotors, valves, blades, gears, couplings, airfoils, hubs and stationaries) and...

  14. 78 FR 22553 - Generic Drug Facilities, Sites, and Organizations

    Science.gov (United States)

    2013-04-16

    ...] Generic Drug Facilities, Sites, and Organizations AGENCY: Food and Drug Administration, HHS. ACTION.... Generic drug facilities, certain sites, and organizations identified in a generic drug submission are... active pharmaceutical ingredients and certain other sites and organizations that support the manufacture...

  15. Chemical Data Reporting Fact Sheet: Chemicals Snapshot

    Science.gov (United States)

    This fact sheet provides a brief overview of the chemical manufacturing, processing, and use information collected for the 2012 Chemical Data Reporting (CDR) rule. Users do not have access to the complete CDR data set and should draw conclusions with care.

  16. ACE - Manufacturer Identification Code (MID)

    Data.gov (United States)

    Department of Homeland Security — The ACE Manufacturer Identification Code (MID) application is used to track and control identifications codes for manufacturers. A manufacturer is identified on an...

  17. Chemical Data Access Tool

    Data.gov (United States)

    U.S. Environmental Protection Agency — This tool is intended to aid individuals interested in learning more about chemicals that are manufactured or imported into the United States. Health and safety...

  18. PWR heavy equipments manufacture for nuclear power plants

    International Nuclear Information System (INIS)

    Boury, C.; Terrien, J.F.

    1983-10-01

    The manufacture of boilers has been imported by the French nuclear program to the societe FRAMATOME. FRAMATOME, because of the size of this market, has constructed two special plants for manufacturing of nuclear components (vapor generators, reactor tanks, pressurizers); these two high technical facilities are presented: production, staff training, technical overseas assistance, and technical and economical repercussions on the industrial vicinity [fr

  19. Bio-Manufacturing to market pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Dressen, Tiffaney [Univ. of California, Berkeley, CA (United States)

    2017-09-25

    The Bio-Manufacturing to Market pilot project was a part of the AMJIAC, the Advanced Manufacturing Jobs and Innovation Accelerator Challenge grant. This internship program set out to further define and enhance the talent pipeline from the University and local Community Colleges to startup culture in East Bay Area, provide undergraduate STEM students with opportunities outside academia, and provide startup companies with much needed talent. Over the 4 year period of performance, the Bio-Manufacturing to Market internship program sponsored 75 undergraduate STEM students who were able to spend anywhere from one to six semesters working with local Bay Area startup companies and DOE sponsored facilities/programs in the biotech, bio-manufacturing, and biomedical device fields.

  20. Physical-chemical and microbiological characterization, and mutagenic activity of airborne PM sampled in a biomass-fueled electrical production facility.

    Science.gov (United States)

    Cohn, Corey A; Lemieux, Christine L; Long, Alexandra S; Kystol, Jørgen; Vogel, Ulla; White, Paul A; Madsen, Anne Mette

    2011-05-01

    Biomass combustion is used in heating and electric power generation in many areas of the world. Airborne particulate matter (PM) is released when biomass is brought to a facility, stored, and combusted. Occupational exposure to airborne PM within biomass-fueled facilities may lead to health problems. In March and August of 2006, airborne PM was collected from a biomass-fueled facility located in Denmark. In addition, source-specific PM was generated from straw and wood pellets using a rotating drum. The PM was analyzed for polycyclic aromatic hydrocarbons (PAHs), metals, microbial components, mutagenic activity, and ability to generate highly reactive oxygen species (hROS) in cell-free aqueous suspensions. PM collected from the boiler room and the biomass storage hall had higher levels of mutagenic activity, PAHs and metals, and a higher hROS generating potential than the source specific PM. The mutagenic activity was generally more potent without S9 activation, and on the metabolically enhanced strain YG1041, relative to TA98. Significant correlations were found between mutagenicity on YG1041 (without S9) and PAH concentration and mutagenicity on YG1041 (with S9) and hROS generating ability. PM collected in March was more toxic than PM collected in August. Overall, airborne PM collected from the facility, especially that from the boiler room, were more toxic than PM generated from straw and wood chips. The results suggest that exposure to combustion PM in a biomass-fueled facility, which likely includes PM from biomass combustion as well as internal combustion vehicles, may contribute to an elevated risk of adverse health effects. 2010 Wiley-Liss, Inc.

  1. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  2. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  3. The relationships between Lean manufacturing, management accounting and firm performance

    DEFF Research Database (Denmark)

    Kristensen, Thomas Borup; Nielsen, Henrik; Grasso, Lawrency

    2016-01-01

    Lean manufacturing has been adopted by numerous western companies as an answer to an increasing competitive environment. Lean manufacturing is seen as an enterprise-wide strategy encompassing a transformation of manufacturing practices, affecting companies’ management accounting practices and......, likewise, Lean manufacturing affects employee’s mindsets. The extent of which such a transformation can occur is constrained in time as it requires employees and management to unlearn old principles and practices before new ones can be fine-tuned and put fruitfully into use. This study investigates...... the relationship between Lean manufacturing, management accounting practices, Lean thinking and firm performance. Using survey data from 368 different manufacturing facilities, we construct a structural equation model and we develop hypotheses predicting relationships between Lean manufacturing, management...

  4. Photovoltaic industry manufacturing technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  5. Manufacturing ontology through templates

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available The manufacturing industry contains a high volume of knowhow and of high value, much of it being held by key persons in the company. The passing of this know-how is the basis of manufacturing ontology. Among other methods like advanced filtering and algorithm based decision making, one way of handling the manufacturing ontology is via templates. The current paper tackles this approach and highlights the advantages concluding with some recommendations.

  6. Manufacturing tolerant topology optimization

    OpenAIRE

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining an...

  7. Measuring Manufacturing Innovativeness

    DEFF Research Database (Denmark)

    Blichfeldt, Henrik; Knudsen, Mette Præst

    2017-01-01

    Globalization and customization increases the pressure on manufacturing companies, and the ability to provide innovativeness is a potential source of competitive advantage. This paper positions the manufacturing entity in the innovation process, and investigates the relation between innovation vers...... technology and organizational concepts. Based on Danish survey data from the European Manufacturing Survey (EMS-2015) this paper finds that there is a relation between innovative companies, and their level of technology and use of organizational concepts. Technology and organizational concepts act...

  8. Mechanical Prototyping and Manufacturing Internship

    Science.gov (United States)

    Grenfell, Peter

    2016-01-01

    The internship was located at the Johnson Space Center (JSC) Innovation Design Center (IDC), which is a facility where the JSC workforce can meet and conduct hands-on innovative design, fabrication, evaluation, and testing of ideas and concepts relevant to NASA's mission. The tasks of the internship included mechanical prototyping design and manufacturing projects in service of research and development as well as assisting the users of the IDC in completing their manufacturing projects. The first project was to manufacture hatch mechanisms for a team in the Systems Engineering and Project Advancement Program (SETMAP) hexacopter competition. These mechanisms were intended to improve the performance of the servomotors and offer an access point that would also seal to prevent cross-contamination. I also assisted other teams as they were constructing and modifying their hexacopters. The success of this competition demonstrated a proof of concept for aerial reconnaissance and sample return to be potentially used in future NASA missions. I also worked with Dr. Kumar Krishen to prototype an improved thermos and a novel, portable solar array. Computer-aided design (CAD) software was used to model the parts for both of these projects. Then, 3D printing as well as conventional techniques were used to produce the parts. These prototypes were then subjected to trials to determine the success of the designs. The solar array is intended to work in a cluster that is easy to set up and take down and doesn't require powered servomechanisms. It could be used terrestrially in areas not serviced by power grids. Both projects improve planetary exploration capabilities to future astronauts. Other projects included manufacturing custom rail brackets for EG-2, assisting engineers working on underwater instrument and tool cases for the NEEMO project, and helping to create mock-up parts for Space Center Houston. The use of the IDC enabled efficient completion of these projects at

  9. 76 FR 39128 - Manufacturer of Controlled Substances; Notice of Registration

    Science.gov (United States)

    2011-07-05

    ... February 23, 2011, 76 FR 10068, Johnson Matthey Pharmaceutical Materials Inc., Pharmaceutical Service, 25...) II Sufentanil (9740) II Hydrocodone (9193) II The company plans to utilize this facility to... support of the company's primary manufacturing facility in West Deptford, New Jersey. The controlled...

  10. 76 FR 51402 - Manufacturer of Controlled Substances; Notice of Registration

    Science.gov (United States)

    2011-08-18

    ..., 2011, 76 FR 25376, Johnson Matthey Pharma Services, 70 Flagship Drive, North Andover, Massachusetts... (1100) II Methylphenidate (1724) II Hydrocodone (9193) II The company plans to utilize this facility to... support of the company's primary manufacturing facility in West Deptford, New Jersey. The controlled...

  11. QA engineering for the LCP USA magnet manufacturers

    International Nuclear Information System (INIS)

    Childress, C.E.; Batey, J.E.; Burn, P.B.

    1981-01-01

    This paper describes the QA and QC efforts and results used in fabricating the superconducting magnets of competing designs being developed by American Manufacturers for testing in the ORNL Large Coil Test Facility. Control of the design, materials and processes to assure proper functioning of the magnets in the test facility as well as the content of archival data being compiled is discussed

  12. A Guide for Developing Standard Operating Job Procedures for the Tertiary Chemical Treatment - Lime Precipitation Process Wastewater Treatment Facility. SOJP No. 6.

    Science.gov (United States)

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary chemical treatment - lime precipitation process of wastewater treatment plants. Step-by-step instructions are given for pre-start up, start-up, continuous operation, and shut-down procedures. In addition, some theoretical material is presented along with some relevant…

  13. Manufacturing of Sample Transfer of Rabbit System

    International Nuclear Information System (INIS)

    Hasibuan, Djaruddin

    2004-01-01

    The samples transfer of rabbit system, has been built in the Reactor Serba Guna G.A. Siwabessy building. The erection of the samples transfer of rabbit system, doing by started of preparation the Manufacturing procedure refer to Final design of the facility of rabbit system transfer. Manufacturing process and erection doing refer to procedures makes. By providing of the Samples transfer of rabbit system can be concluded that the research activity and users services in P2TRR well meet to be done. (author)

  14. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  15. Achievement report (edition B) for fiscal 1999 on development of technology to manufacture coal gas for fuel cells. Studies by using pilot test facilities (Volumes for equipment fabrication and constructions, and trial run design); 1999 nendo seika hokokusho (B ban). Nenryo denchi you sekitan gas seizo gijutsu kaihatsu - Pilot setsubi ni yoru kenkyu (kisokoji kiki seisaku hen shiunten sekkei hen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective to develop a coal gas manufacturing system for fuel cells, research and development has been performed on a oxygen-blown coal gasifier and researches on a technology to purify gases for fuel cells. This paper summarizes the achievements in fiscal 1999. The current fiscal year has performed, among other the pilot plant construction works, execution of the above-the-ground constructions for the operation center and compressor room building, construction of the cooling water tanks, and partial improvement of roads in the plant site. In the gasifier facilities, items of equipment were fabricated, some of the outsourced articles were procured, and the installations thereof were carried out. For the gas purifying equipment, installation of the gas analyzer room was executed. In the trial run design, discussions were given on the systematic improvements in the test items, the gas sampling procedures, the unit protecting interlock, and the facility protecting logic. For the trial run design, establishment has been implemented on the efficient and functional test plans by establishing priority on the tests to be executed, so that the development items demanded in the pilot test and research can be achieved within the limited test processes. (NEDO)

  16. Benchmarks of Global Clean Energy Manufacturing: Summary of Findings

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Benchmarks of Global Clean Energy Manufacturing will help policymakers and industry gain deeper understanding of global manufacturing of clean energy technologies. Increased knowledge of the product supply chains can inform decisions related to manufacturing facilities for extracting and processing raw materials, making the array of required subcomponents, and assembling and shipping the final product. This brochure summarized key findings from the analysis and includes important figures from the report. The report was prepared by the Clean Energy Manufacturing Analysis Center (CEMAC) analysts at the U.S. Department of Energy's National Renewable Energy Laboratory.

  17. Improving Project Manufacturing Coordination

    Directory of Open Access Journals (Sweden)

    Korpivaara Ville

    2014-09-01

    Full Text Available The objective of this research is to develop firms’ project manufacturing coordination. The development will be made by centralizing the manufacturing information flows in one system. To be able to centralize information, a deep user need assessment is required. After user needs have been identified, the existing system will be developed to match these needs. The theoretical background is achieved through exploring the literature of project manufacturing, development project success factors and different frameworks and tools for development project execution. The focus of this research is rather in customer need assessment than in system’s technical expertise. To ensure the deep understanding of customer needs this study is executed by action research method. As a result of this research the information system for project manufacturing coordination was developed to respond revealed needs of the stakeholders. The new system improves the quality of the manufacturing information, eliminates waste in manufacturing coordination processes and offers a better visibility to the project manufacturing. Hence it provides a solid base for the further development of project manufacturing.

  18. Modern manufacturing engineering

    CERN Document Server

    2015-01-01

    This book covers recent research and trends in Manufacturing Engineering. The chapters emphasize different aspects of the transformation from materials to products. It provides the reader with fundamental materials treatments and the integration of processes. Concepts such as green and lean manufacturing are also covered in this book.

  19. Emerging Global Trends in Advanced Manufacturing

    Science.gov (United States)

    2012-03-01

    models to predict structural responses of Toyota automobile frames to impacts, noise, wind, and other factors to assess the resistance levels of its...This minimized cell or chassis would be stripped of unnecessary DNA before manufacturing, thus simplifying the engineering problem of producing...chemicals, pharmaceuticals, and biofuels. Developments in programs to develop synthetic biology chassis , artificial cell factories, or “living

  20. 76 FR 72976 - Manufacturer of Controlled Substances; Notice of Registration

    Science.gov (United States)

    2011-11-28

    ..., 2011, 76 FR 36577, Boehringer Ingelheim Chemicals, Inc., 2820 N. Normandy Drive, Petersburg, Virginia... Boehringer Ingelheim Chemicals, Inc., to manufacture the listed basic classes of controlled substances is consistent with the public interest at this time. DEA has investigated Boehringer Ingelheim Chemicals, Inc...

  1. 75 FR 38986 - Grant of Authority for Subzone Status; Schwarz Pharma Manufacturing, Inc. (Pharmaceutical...

    Science.gov (United States)

    2010-07-07

    .... (Pharmaceutical Products); Seymour, IN Pursuant to its authority under the Foreign-Trade Zones Act of June 18... special- purpose subzone at the pharmaceutical manufacturing and distribution facility of Schwarz Pharma... and distribution of pharmaceutical products at the facility of Schwarz Pharma Manufacturing, Inc...

  2. Operational experiences and upgradation of waste management facilities Trombay, India

    International Nuclear Information System (INIS)

    Chander, Mahesh; Bodke, S.B.; Bansal, N.K.

    2001-01-01

    Full text: Waste Management Facilities Trombay provide services for the safe management of radioactive wastes generated from the operation of non power sources at Bhabha Atomic Research Centre, India. The paper describes in detail the current operational experience and facility upgradation by way of revamping of existing processes equipment and systems and augmentation of the facility by way of introducing latest processes and technologies to enhance the safety. Radioactive wastes are generated from the operation of research reactors, fuel fabrication, spent fuel reprocessing, research labs. manufacture of sealed sources and labeled compounds. Use of radiation sources in the field of medical, agriculture and industry also leads to generation of assorted solid waste and spent sealed radiation sources which require proper waste management. Waste Management Facilities Trombay comprise of Effluent Treatment Plant (ETP), Decontamination Centre (DC) and Radioactive Solid Waste Management Site (RSMS). Low level radioactive liquid effluents are received at ETP. Plant has 100 M 3 /day treatment capacity. Decontamination of liquid effluents is effected by chemical treatment method using co- precipitation as a process. Plant has 1800 M 3 of storage capacity. Chemical treatment system comprises of clarifloculator, static mixer and chemical feed tanks. Plant has concentrate management facility where chemical sludge is centrifuged to effect volume reduction of more that 15. Thickened sludge is immobilized in cement matrix. Decontamination Centre caters to the need of equipment decontamination from research reactors. Process used is ultrasonic chemical decontamination. Besides this DC provides services for decontamination of protective wears. Radioactive Solid Waste Management Site is responsible for the safe management of solid waste generated at various research reactors, plants, laboratories in Bhabha Atomic Research Centre. Spent sealed radiation sources are also stored

  3. Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kheswa, N.Y., E-mail: kheswa@tlabs.ac.z [iThemba Laboratory for Accelerator Based Science, P.O. Box 722, Somerset West 7129, Western Cape (South Africa); Papka, P.; Buthelezi, E.Z.; Lieder, R.M.; Neveling, R.; Newman, R.T. [iThemba Laboratory for Accelerator Based Science, P.O. Box 722, Somerset West 7129, Western Cape (South Africa)

    2010-02-11

    This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ({sup nat}Ca), lithium-6 ({sup 6}Li) and molybdenum-97 ({sup 97}Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.

  4. Evaluation of advanced polymers for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morrison, Crystal [PPG Industries, Pittsburgh, PA (United States)

    2015-09-01

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and is inherently low-cost.

  5. New achievements in RF cavity manufacturing

    International Nuclear Information System (INIS)

    Lippmann, G.; Pimiskern, K.; Kaiser, H.

    1993-01-01

    Dornier has been engaged in development, manufacturing and testing of Cu-, Cu/Nb- and Nb-cavities for many years. Recently, several different types of RF cavities were manufactured. A prototype superconducting (s.c.) B-Factory accelerating cavity (1-cell, 500 MHz) was delivered to Cornell University, Laboratory of Nuclear Studies. A second lot of 6 s.c. cavities (20-cell, 3000 MHz) was fabricated on contract from Technical University of Darmstadt for the S-DALINAC facility. Finally, the first copper RF structures (9-cell, 1300 MHz) for TESLA were finished and delivered to DESY, two s.c. niobium structures of the same design are in production. Highlights from the manufacturing processes of these cavities are described and first performance results will be reported

  6. Evaluation of Advanced Polymers for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carter, William G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kutchko, Cindy [PPG Industries, Pittsburgh, PA (United States); Fenn, David [PPG Industries, Pittsburgh, PA (United States); Olson, Kurt [PPG Industries, Pittsburgh, PA (United States)

    2017-09-08

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. (PPG) was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition, and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and inherently low-cost.

  7. Chalon/Saint-Marcel manufacturing plant

    International Nuclear Information System (INIS)

    2008-01-01

    AREVA is the world leader in the design and construction of nuclear power plants, the manufacture of heavy components, and the supply of nuclear fuel and nuclear services such as maintenance and inspection. The Equipment Division provides the widest range of nuclear components and equipment, manufactured at its two facilities in Jeumont, northern France, and St. Marcel, in Burgundy. The St. Marcel plant, set on 35 ha (87.5 acres) near Chalon-sur-Saone, was established in 1973 in a region with a long history of specialized metalworking and mechanical activities to meet the demand for non-military nuclear requirements in France. The site offers two advantages: - excellent facilities for loading and transporting heavy components on the Saone river, - it's proximity to other group sites. Since its completion in 1975, the Chalon/St. Marcel facility has manufactured all the heavy components for French pressurized water reactors (PWRs) ranging from 900 MW to 1500 MW. It has also completed a significant number of export contracts that have made AREVA world leader. Nearly 600 heavy components (reactor vessels, steam generators, pressurizers and closure heads) have been manufactured or are currently being manufactured since the plant opened in 1975. The plant is at the heart of the manufacturing chain for nuclear steam supply systems (NSSS) supplied by AREVA. On the basis of engineering data, the plant manufactures reactor vessels, reactor vessel internals, steam generators, pressurizers and related components such as accumulators, auxiliary heat exchangers and supporting elements. Vessel upper internals Other similar components such as reactor vessels for boiling water reactors (BWR) or high temperature reactors (HTR) and other types of steam generators can also be manufactured in the plant (for example Once Through Steam Generators - OTSG). The basic activities performed at Chalon/St. Marcel are metalworking and heavy machining. These activities are carried out in strict

  8. New strategic roles of manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng; Johansen, John; Boer, Harry

    2008-01-01

    of manufacturing playing new strategic roles. Backward, forward and lateral interactive support are suggested to explicate how manufacturing can realize its new strategic roles. Finally, four new strategic roles of manufacturing are suggested. They are: innovation manufacturing, ramp-up manufacturing, primary...

  9. Micro/Nano manufacturing

    DEFF Research Database (Denmark)

    Tosello, Guido

    2017-01-01

    Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro......-scale dimensions and accuracies. Furthermore, these fundamentally different technology ecosystems are currently combined in order to exploit strengths of both platforms. One example is the use of lithography-based technologies to establish nanostructures that are subsequently transferred to 3D geometries via...

  10. Competitive Manufacturing Dynamics

    DEFF Research Database (Denmark)

    Rymaszewska, Anna; Christensen, Irene; Karlsson, Christer

    to constantly improve this process in terms of time to volume, according to predefined cost and quality measures. The importance of the success of this process can lead to a significant creation of competitive advantage. This paper addresses the challenges of the manufacturing ramp-up process in the context......The increasing complexity of business environments and the pressure for organizations on delivering new products faster while maintaining the superior quality of their products, has forced manufacturing organizations to rethink their operations. Managers responsible for manufacturing ramp-up need...

  11. Systems engineering management process maturity of South African manufacturing organisations

    CSIR Research Space (South Africa)

    Lemberger, ID

    2014-07-01

    Full Text Available to integrate people, processes and technologies to deliver innovative complex systems. The investigation set out to improve the understanding of systems engineering (SE) with focus on organisations in manufacturing of coke, petroleum, chemical products, rubber...

  12. 2008 Toxic Chemical Release Inventory 2008 Toxic Chemical Release Inventory Community Right-to-Know Act of 1986, Title III, Section 313

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group

    2009-10-01

    For reporting year 2008, Los Alamos National Laboratory (LANL) submitted a Form R report for lead as required under the Emergency Planning and Community Right-to- Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2008 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2008, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.

  13. Chemical and Radiochemical Constituents in Water from Wells in the Vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho, 1997-98

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay; L. L. Knobel; B. J. Tucker; B. V. Twining (USGS)

    2000-06-01

    The US Geological Survey, in response to a request from the U.S Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled water from 13 wells during 1997-98 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho. Water samples were analyzed for naturally occurring constituents and man-made contaminants. A total of 91 samples were collected from the 13 monitoring wells. The routine samples contained detectable concentrations of total cations and dissolved anions, and nitrite plus nitrate as nitrogen. Most of the samples also had detectable concentrations of gross alpha- and gross beta-particle radioactivity and tritium. Fourteen quality-assurance samples were also collected and analyzed; seven were field-blank samples, and seven were replicate samples. Most of the field blank samples contained less than detectable concentrations of target constituents; however some blank samples did contain detectable concentrations of calcium, magnesium, barium, copper, manganese, nickel, zinc, nitrite plus nitrate, total organic halogens, tritium, and selected volatile organic compounds.

  14. Chemical and radiochemical constituents in water from wells in the vicinity of the naval reactors facility, Idaho National Engineering and Environmental Laboratory, Idaho, 1997-98

    Science.gov (United States)

    Bartholomay, Roy C.; Knobel, LeRoy L.; Tucker, Betty J.; Twining, Brian V.

    2000-01-01

    The U.S. Geological Survey, in response to a request from the U.S. Department of Energy?s Phtsburgh Naval Reactors Ofilce, Idaho Branch Office, sampled water from 13 wells during 1997?98 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho. Water samples were analyzed for naturally occurring constituents and man-made contaminants. A totalof91 samples were collected from the 13 monitoring wells. The routine samples contained detectable concentrations of total cations and dissolved anions, and nitrite plus nitrate as nitrogen. Most of the samples also had detectable concentrations of gross alpha- and gross beta-particle radioactivity and tritium. Fourteen qualityassurance samples also were collected and analyze~ seven were field-blank samples, and seven were replicate samples. Most of the field blank samples contained less than detectable concentrations of target constituents; however, some blank samples did contain detectable concentrations of calcium, magnesium, barium, copper, manganese, nickel, zinc, nitrite plus nitrate, total organic halogens, tritium, and selected volatile organic compounds.

  15. Absorber manufacturing made easy

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2010-07-01

    Whether by means of a laser source or an ultrasound head - automation technology is making progress in the solar thermal sector. S and WE presents news developments in welding technology in absorber manufacture. (orig.)

  16. Many Manufactured Nanosats Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To achieve the capability to affordably produce scores of nano-spacecraft for envisioned constellation missions, a new manufacturing process is needed to reduce the...

  17. The Manufacturing Industry

    National Research Council Canada - National Science Library

    Calahan, Janet; Grohoski, David C; Halevi, Herzi; Kett, Steven L; Klotsko, Jr., John A; Lett, Steven; Noyes, Julieta V; Oslund, Dawson S; Rackers, Kenneth J; Shindelar, Timothy V

    2005-01-01

    The United States (US) is the world's largest producer of manufactured goods, enabling the military and other government agencies to meet national security requirements while employing millions of Americans...

  18. Manufacturing parabolic mirrors

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)

  19. MEDICAL MANUFACTURING INNOVATIONS

    Directory of Open Access Journals (Sweden)

    Cosma Sorin Cosmin

    2015-02-01

    Full Text Available The purpose of these studies was to improve the design and manufacturing process by selective laser melting, of new medical implants. After manufacturing process, the implants were measured, microscopically and mechanical analyzed. Implants manufactured by AM can be an attractive option for surface coatings to improve the osseointegration process. The main advantages of customized implants made by AM process are: the precise adaptation to the region of implantation, better cosmesis, reduced surgical times and better performance over their generic counterparts. These medical manufacturing changes the way that the surgeons are planning surgeries and engineers are designing custom implant. AM process has eliminated the constraints of shape, size, internal structure and mechanical properties making it possible for fabrication of implants that conform to the physical and mechanical requirements of implantation according to CT images. This article will review some custom implants fabricated in DME using biocompatible titanium.

  20. A Medical Research and Evaluation Facility Defense and Studies Supporting the Medical Chemical Defense Program. Task 95-38: Evaluation of the Vesicating Properties of Neutralized Chemical Agent Identification Set (CAIS) Components.

    Science.gov (United States)

    1997-06-01

    Animals , Am J Pathol 24(1): pp 1-47 (1948). Guido, J. and Martins, M.A. Skin and Eye Irritation Tests on Chloroform, J Am Coll Toxicol 11(6):723 (1992...individually in polycarbonate cages prior to exposure to " test article". Following treatment, animals were housed individually within a chemical fume hood...of the Draize method ( Draize , et al. 1944), the extent of erythema and edema was graded and 7 lesion size was measured at each site. The animals were

  1. Facilities Programming.

    Science.gov (United States)

    Bullis, Robert V.

    1992-01-01

    A procedure for physical facilities management written 17 years ago is still worth following today. Each of the steps outlined for planning, organizing, directing, controlling, and evaluating must be accomplished if school facilities are to be properly planned and constructed. However, lessons have been learned about energy consumption and proper…

  2. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.

    Science.gov (United States)

    Li, Jian; Jing, Zhijiao; Zha, Fei; Yang, Yaoxia; Wang, Qingtao; Lei, Ziqiang

    2014-06-11

    In this paper, tunable adhesive superhydrophobic ZnO surfaces have been fabricated successfully by spraying ZnO nanoparticle (NP) suspensions onto desired substrates. We regulate the spray-coating process by changing the mass percentage of hydrophobic ZnO NPs (which were achieved by modifying hydrophilic ZnO NPs with stearic acid) in the hydrophobic/hydrophilic ZnO NP mixtures to control heterogeneous chemical composition of the ZnO surfaces. Thus, the water adhesion on the same superhydrophobic ZnO surface could be effectively tuned by controlling the surface chemical composition without altering the surface morphology. Compared with the conventional tunable adhesive superhydrophobic surfaces, on which there were only three different water sliding angle values: lower than 10°, 90° (the water droplet is firmly pinned on the surface at any tilted angles), and the value between the two ones, the water adhesion on the superhydrophobic ZnO surfaces has been tuned effectively, on which the sliding angle is controlled from 2 ± 1° to 9 ± 1°, 21 ± 2°, 39 ± 3°, and 90°. Accordingly, the adhesive force can be adjusted from extremely low (∼2.5 μN) to very high (∼111.6 μN). On the basis of the different adhesive forces of the tunable adhesive superhydrophobic surfaces, the selective transportation of microdroplets with different volumes was achieved, which has never been reported before. In addition, we demonstrated a proof of selective transportation of microdroplets with different volumes for application in the droplet-based microreactors via our tunable adhesive superhydrophobic surfaces for the quantitative detection of AgNO3 and NaOH. The results reported herein realize the selective transportation of microdroplets with different volumes and we believe that this method would potentially be used in many important applications, such as selective water droplet transportation, biomolecular quantitative detection and droplet-based biodetection.

  3. Holonic Manufacturing Paint Shop

    Science.gov (United States)

    Lind, Morten; Roulet-Dubonnet, Olivier; Nyen, Per Åge; Gellein, Lars Tore; Lien, Terje; Skavhaug, Amund

    In pursuit of flexibility and agility within discrete manufacturing, the surrounding logistics and handling processes of a paint shop is under construction as a laboratory prototype application. Holonic Manufacturing seems to be a promising strategic paradigm and architecture to use for a system characterised by production logistics and control. This paper describes the physical devices to be used; the desired functionality; and the basic logic control designed. Additionally, the ideas for holonification based on the already designed logic control is presented.

  4. Additive manufactured serialization

    Science.gov (United States)

    Bobbitt, III, John T.

    2017-04-18

    Methods for forming an identifying mark in a structure are described. The method is used in conjunction with an additive manufacturing method and includes the alteration of a process parameter during the manufacturing process. The method can form in a unique identifying mark within or on the surface of a structure that is virtually impossible to be replicated. Methods can provide a high level of confidence that the identifying mark will remain unaltered on the formed structure.

  5. LCA of Chemicals and Chemical Products

    DEFF Research Database (Denmark)

    Fantke, Peter; Ernstoff, Alexi

    2017-01-01

    including risk assessment , green and sustainable chemistry , and chemical alternatives assessment. A large number of LCA studies focus on contrasting different feedstocks or chemical synthesis processes, thereby often conducting a cradle to (factory) gate assessment. While typically a large share......This chapter focuses on the application of Life Cycle Assessment (LCA) to evaluate the environmental performance of chemicals as well as of products and processes where chemicals play a key role. The life cycle stages of chemical products, such as pharmaceuticals drugs or plant protection products......, are discussed and differentiated into extraction of abiotic and biotic raw materials, chemical synthesis and processing, material processing, product manufacturing, professional or consumer product use, and finally end-of-life . LCA is discussed in relation to other chemicals management frameworks and concepts...

  6. PERANCANGAN ULANG TATA LETAK FASILITAS DENGAN PENDEKATAN LEAN MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Alexander Prasetya

    2016-01-01

    Full Text Available One of the big investment in a business is facility design. It is a long-term investment due to great value. In its development, PT. Dwi Putra Sakti faced some problems related to facility layout. Problems that can be identified, such as work in process that has accumulated on the production floor, as well as the anorganizad facility layout. Therefore, it is necessary to redesign the layout for the production process more effective and efficient. This study uses a lean manufacturing approach to redesign facility layout. It used value stream mapping, seven waste, cellular manufacturing and 5S principle. Analysis of the implementation result is used to design the layout of the new facility. Level layout that will be examined are the macro-and micro-layout layout. Results of macro-layout design is decreasing production cycle time of trousers. While the micro-layout design is decreasing in material handling displacement.

  7. Chemical Safety: Emergency Response Community Views on the Adequacy of Federally Required Chemical Information

    National Research Council Canada - National Science Library

    2002-01-01

    .... To help protect communities from incidents involving hazardous chemicals, local emergency responders need information such as the types of chemicals used or stored at facilities in their communities...

  8. Tip-Based Nanofabrication for Scalable Manufacturing

    Directory of Open Access Journals (Sweden)

    Huan Hu

    2017-03-01

    Full Text Available Tip-based nanofabrication (TBN is a family of emerging nanofabrication techniques that use a nanometer scale tip to fabricate nanostructures. In this review, we first introduce the history of the TBN and the technology development. We then briefly review various TBN techniques that use different physical or chemical mechanisms to fabricate features and discuss some of the state-of-the-art techniques. Subsequently, we focus on those TBN methods that have demonstrated potential to scale up the manufacturing throughput. Finally, we discuss several research directions that are essential for making TBN a scalable nano-manufacturing technology.

  9. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  10. A facile chemical-mechanical polishing lift-off transfer process toward large scale Cu(In,Ga)Se2 thin-film solar cells on arbitrary substrates

    Science.gov (United States)

    Tseng, Kuan-Chun; Yen, Yu-Ting; Thomas, Stuart R.; Tsai, Hung-Wei; Hsu, Cheng-Hung; Tsai, Wen-Chi; Shen, Chang-Hong; Shieh, Jia-Min; Wang, Zhiming M.; Chueh, Yu-Lun

    2016-02-01

    The fabrication of Cu(In,Ga)Se2 (CIGS) solar cells on flexible substrates is a non-trivial task due to thermal and ion diffusion related issues. In order to circumvent these issues, we have developed a chemical-mechanical polishing lift-off (CMPL) transfer process, enabling the direct transfer of CIGS solar cells from conventional soda-lime glass (SLG) onto arbitrary flexible substrates up to 4 cm2 in size. The structural and compositional nature of the pre- and post-transferred films is examined using electron microscopy, X-ray diffraction analysis, Raman and photoluminescence spectroscopy. We demonstrate the fabrication of solar cells on a range of flexible substrates while being able to maintain 75% cell efficiency (η) when compared to pre-transferred solar cells. The results obtained in this work suggest that our transfer process offers a highly promising approach toward large scale fabrication of CIGS-based solar cells on a wide variety of flexible substrates, suitable for use in the large scale CIGS photovoltaic industry.The fabrication of Cu(In,Ga)Se2 (CIGS) solar cells on flexible substrates is a non-trivial task due to thermal and ion diffusion related issues. In order to circumvent these issues, we have developed a chemical-mechanical polishing lift-off (CMPL) transfer process, enabling the direct transfer of CIGS solar cells from conventional soda-lime glass (SLG) onto arbitrary flexible substrates up to 4 cm2 in size. The structural and compositional nature of the pre- and post-transferred films is examined using electron microscopy, X-ray diffraction analysis, Raman and photoluminescence spectroscopy. We demonstrate the fabrication of solar cells on a range of flexible substrates while being able to maintain 75% cell efficiency (η) when compared to pre-transferred solar cells. The results obtained in this work suggest that our transfer process offers a highly promising approach toward large scale fabrication of CIGS-based solar cells on a wide

  11. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME III: LABEL MANUFACTURING CASE STUDY: NASHUA CORPORATION

    Science.gov (United States)

    This volume discusses Nashua Corporation's Omaha facility, a label and label stock manufacturing facility that no longer uses solvent-based adhesives. Information obtained includes issues related to the technical, economic, and environmental barriers and opportunities associated ...

  12. Acetal Resins, Acrylic & Modacrylic Fibers, Carbon Black, Hydrogen Fluoride, Polycarbonate, Ethylene, Spandex & Cyanide Chemical Manufacturing: NESHAP for Source Categories, Generic Maximum Achievable Control Technology Standards (40 CFR 63, Subpart YY)

    Science.gov (United States)

    Learn about the NESHAP for GMACT for acetal resins, hydrogen fluoride, polycarbonate, ethylene production and cyanide chemicals. Find the rule history information, federal register citations, legal authority, rule summary, and additional resources

  13. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – a facile method for encapsulation of diverse cell types in silica matrices

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Robert [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials Engineering Dept.; Rogelj, Snezna [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Biology Dept.; Harper, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Bioenergy and Biodefense Technologies Dept.; Tartis, Michaelann [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Materials and Chemical Engineering Dept.

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  14. Surrogate Plant Data Base : Volume 2. Appendix C : Facilities Planning Baseline Data

    Science.gov (United States)

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  15. [Stress management in manufacturing industries].

    Science.gov (United States)

    Watanabe, Misuzu

    2003-01-01

    Job strain factors and stress management for workers in the manufacturing industries were reviewed in this article. Major job stress factors included high job demands, low job control, low social support, role ambiguity and conflict, the physical, chemical and ergonomics of the work environment, work patterns with work schedule and shift work, and job insecurity regarding future employment. In considering effective stress management plans which counteract the job stress factors mentioned above, it is essential to use an organizational approach in the work environment. For workers in the manufacturing industry, through this approach, it is important to promote more autonomy and activities with increasing job control, to give more clarified roles and responsibilities, to provide a more mutually supportive system with better ways to communicate and to introduce a system giving additional rewards, such as paid holidays for refreshment. Plans are also needed for individuals and groups, such as workers, managers, supervisors and workgroups, regarding education, skill training and mutual training according to the personnel characteristics of each target. In order to make these stress management plans successful in the long term, an actual system for stress management is required, with recognition and support by top management. It is also important to assess the effectiveness and method of each stress management plan with proper measurements.

  16. 2001 Toxic Chemical Release Inventory Emergency Planning and Community Right to Know Act SEC 313

    International Nuclear Information System (INIS)

    ZALOUDEK, D.E.

    2002-01-01

    Pursuant to section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (EPCRA), and Executive Order 13148, Greening the Government Through Leadership in Environmental Management, the US Department of Energy has prepared and submitted a Toxic Chemical Release Inventory for the Hanford Site covering activities performed during calendar year 2001. EPCRA Section 313 requires facilities that manufacture, process, or otherwise use listed toxic chemicals in quantities exceeding established threshold levels to report total annual releases of those chemicals. During calendar year 2001, Hanford Site activities resulted in one chemical used in amounts exceeding an activity threshold. Accordingly, the Hanford Site 2001 Toxic Chemical Release Inventory, DOE/RL-2002-37, includes total annual amount of lead released to the environment, transferred to offsite locations, and otherwise managed as waste

  17. [Manufactured baby food: safety expectations].

    Science.gov (United States)

    Davin, L; Van Egroo, L-D; Galesne, N

    2010-12-01

    Food safety is a concern for parents of infants, and healthcare professionals are often questioned by them about this topic. Baby food European regulation ensures high levels of safety and is more rigorous than common food regulation. Maximal limit for pesticides in baby food demonstrates the high level of requirements. This limit must be below the 10 ppb detection threshold, whatever the chemical used. Other contaminants such as nitrates are also the subject of greater expectations in baby food. Food safety risks control needs a specific know-how that baby food manufacturers have acquired and experienced, more particularly by working with producers of high quality raw material. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  18. USCAR LEP ESST Advanced Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  19. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  20. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  1. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  2. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible

  3. Evaluation of Additive Manufacturing for Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Tru Design, LLC, Knoxville, TN (United States)

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  4. Manufacture and Performance of the LHC Main Dipole Final Prototypes

    CERN Document Server

    Modena, M; Bajko, M; Bottura, L; Buzio, M; Fessia, P; Pagano, O; Perini, D; Savary, F; Scandale, Walter; Siemko, A; Spigo, G; Todesco, Ezio; Vanenkov, I; Vlogaert, J; Wyss, C

    2000-01-01

    This paper reports about the program of six LHC main dipole final prototypes. This program, launched in summer 1998, relies on industrially manufactured collared coils and cold masses assembled at the CERN Magnet Assembly Facility. The magnet design for series manufacture features a "6-block" coil and austenitic steel collars, following design, stability and robustness studies. Results of mechanical and magnetic measurements are given and discussed, as well as the performances of the prototypes measured so far.

  5. Total Quality Management in Space Shuttle Main Engine manufacturing

    Science.gov (United States)

    Ding, J.

    1992-01-01

    The Total Quality Management (TQM) philosophy developed in the Marshall Space Flight Center (MSFC) is briefly reviewed and the ongoing TQM implementation effort which is being pursued through the continuous improvement (CI) process is discussed. TQM is based on organizational excellence which integrates the new supportive culture with the technical tools necessary to identify, assess, and correct manufacturing processes. Particular attention is given to the prime contractor's change to the organizational excellence management philosophy in SSME manufacturing facilities.

  6. Robust Manufacturing Control

    CERN Document Server

    2013-01-01

    This contributed volume collects research papers, presented at the CIRP Sponsored Conference Robust Manufacturing Control: Innovative and Interdisciplinary Approaches for Global Networks (RoMaC 2012, Jacobs University, Bremen, Germany, June 18th-20th 2012). These research papers present the latest developments and new ideas focusing on robust manufacturing control for global networks. Today, Global Production Networks (i.e. the nexus of interconnected material and information flows through which products and services are manufactured, assembled and distributed) are confronted with and expected to adapt to: sudden and unpredictable large-scale changes of important parameters which are occurring more and more frequently, event propagation in networks with high degree of interconnectivity which leads to unforeseen fluctuations, and non-equilibrium states which increasingly characterize daily business. These multi-scale changes deeply influence logistic target achievement and call for robust planning and control ...

  7. Rapid Chemical Exposure and Dose Research

    Science.gov (United States)

    EPA evaluates the potential risks of the manufacture and use of thousands of chemicals. To assist with this evaluation, EPA scientists developed a rapid, automated model using off the shelf technology that predicts exposures for thousands of chemicals.

  8. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong

    2015-01-01

    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  9. Dosimetry and operation of irradiation facilities

    International Nuclear Information System (INIS)

    Vidal, P.E.

    1985-01-01

    The industrial use of ionizing radiation has required, from the very first, the measurement of delivered and absorbed doses; hence the necessity of providing dosimetric systems. Laboratories, scientists, industries and potential equipment manufacturers have all collaborated in this new field of activity. Dosimetric intercomparisons have been made by each industry at their own facilities and in collaboration with specialists, national organizations and the IAEA. Dosimetry has become a way of ensuring that treatment by irradiation has been carried out in accordance with the rules. It has become in effect assurance of quality. Routine dosimetry should determine a maximum and minimum dose. Numerous factors play a part in dosimetry. Industry is currently in possession of routine dosimetric systems that are sufficiently accurate, fairly easy to handle and reasonable in cost, thereby satisfying all the requirements of industry and the need for control. Dosimetry is important in the process of marketing irradiated products. The operator of an industrial irradiation facility bases his dosimetry on comparison with reference systems. Research aimed at simplifying the practice of routine dosimetry should be continued. New physical and chemical techniques will be incorporated into systems already in use. The introduction of microcomputers into the operation of radiation facilities has increased the value of dosimetry and made the conditions of treatment more widespread. Stress should be placed on research in several areas apart from reference systems, for example: dosimetric systems at temperatures from +8 deg. C to -45 deg. C, over the dose range 100 krad to a little more than 1 Mrad, liquids and fluidized solids carried at high speed through ducts, thin-film liquids circulating at a high flow rate, and various other problems. (author)

  10. Laser in manufacturing

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Generally a laser (light amplification by stimulated emission of radiation) is defined as "a device which uses a quantum mechanical effect, stimulated emission, to generate a coherent beam of light from a lasing medium of controlled purity, size, and shape". Laser material processing represents a great number of methods, which are rapidly growing in current and different industrial applications as new alternatives to traditional manufacturing processes. Nowadays, the use of lasers in manufacturing is an emerging area with a wide variety of applications, for example, in electronics, molds an

  11. An analysis of buildings-related energy use in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  12. Hazard Baseline Downgrade Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility

  13. Some tooling for manufacturing research reactor fuel plates

    International Nuclear Information System (INIS)

    Knight, R.W.

    1999-01-01

    This paper will discuss some of the tooling necessary to manufacture aluminum-based research reactor fuel plates. Most of this tooling is intended for use in a high-production facility. Some of the tools shown have manufactured more than 150,000 pieces. The only maintenance has been sharpening. With careful design, tools can be made to accommodate the manufacture of several different fuel elements, thus, reducing tooling costs and maintaining tools that the operators are trained to use. An important feature is to design the tools using materials with good lasting quality. Good tools can increase return on investment. (author)

  14. Some Tooling for Manufacturing Research Reactor Fuel Plates

    International Nuclear Information System (INIS)

    Knight, R.W.

    1999-01-01

    This paper will discuss some of the tooling necessary to manufacture aluminum-based research reactor fuel plates. Most of this tooling is intended for use in a high-production facility. Some of the tools shown have manufactured more than 150,000 pieces. The only maintenance has been sharpening. With careful design, tools can be made to accommodate the manufacture of several different fuel elements, thus, reducing tooling costs and maintaining tools that the operators are trained to use. An important feature is to design the tools using materials with good lasting quality. Good tools can increase return on investment

  15. Manufacturing and Merchandising Careers

    Science.gov (United States)

    Ryan, Peter J.; And Others

    1977-01-01

    Anyone with a flair for business, product development, or promotion might consider a manufacturing or merchandising occupation. The music industry offers many career opportunities for administrators, salespersons, marketing specialists--the record industry offers positions from promotion manager to rack jobber. Describes instrument company…

  16. Advances in Additive Manufacturing

    Science.gov (United States)

    2016-07-14

    State University, Applied Research Laboratory • Rich Martukanitz • Ken Meinert • Ted Reutzel • Jay Keist • Griffin Jones • Jay Tressler...Directorate. In this talk we highlight a few projects in additively manufactured electronics (e.g., batteries, capacitors, antennas) that span bench

  17. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Costello, J.M.

    1980-09-01

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  18. Rapid response manufacturing (RRM)

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

    1997-02-18

    US industry is fighting to maintain its competitive edge in the global market place. Today markets fluctuate rapidly. Companies, to survive, have to be able to respond with quick-to-market, improved, high quality, cost efficient products. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies. The RRM project was established to leverage the expertise and resources of US private industries and federal agencies to develop, integrate, and deploy new technologies that meet critical needs for effective product realization. The RRM program addressed a needed change in the US Manufacturing infrastructure that will ensure US competitiveness in world market typified by mass customization. This project provided the effort needed to define, develop and establish a customizable infrastructure for rapid response product development design and manufacturing. A major project achievement was the development of a broad-based framework for automating and integrating the product and process design and manufacturing activities involved with machined parts. This was accomplished by coordinating and extending the application of feature-based product modeling, knowledge-based systems, integrated data management, and direct manufacturing technologies in a cooperative integrated computing environment. Key technological advancements include a product model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering environment, knowledge-based software aids for design and process planning, and new production technologies to make products directly from design application software.

  19. Manufacturing Enterprise in Asia

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-12-13

    Dec 13, 2017 ... The book goes on to investigate the problem of the peculiar dual size structure of manufacturing in India, with its two modes at the low and high end of the ...... Foreign investment was welcomed in the period since the early 1960s, first, as Taiwan sought replacement for US foreign aid, and second, after the ...

  20. Precursor Additive Manufacturing Inventions

    Science.gov (United States)

    Roberts, C.; Bourell, D.

    2018-03-01

    Most modern Additive Manufacturing (AM) processes were invented and commercialized in a short period of time spanning 1984-2000. This paper reports on AM processes invented in the 1974-1987 time period, known as precursor AM processes. The critical difference between the two periods is public knowledge and utilization of distributed computing.

  1. Reusing Old Manufacturing Buildings

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    This article presents an interesting design challenge for students, one that will certainly let them integrate subject matter and get a sense of pride for doing something useful in their own community. The author would be willing to bet that the average town or city has some old red brick manufacturing building(s) that have seen much better days.…

  2. Chemical Reactivity Test (CRT)

    Energy Technology Data Exchange (ETDEWEB)

    Zaka, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-13

    The Chemical Reactivity Test (CRT) is used to determine the thermal stability of High Explosives (HEs) and chemical compatibility between (HEs) and alien materials. The CRT is one of the small-scale safety tests performed on HE at the High Explosives Applications Facility (HEAF).

  3. Lunar materials for construction of space manufacturing facilities

    Science.gov (United States)

    Criswell, D. R.

    1977-01-01

    Development of industrial operations in deep space would be prohibitively expensive if most of the construction and expendable masses had to be transported from earth. Use of lunar materials reduces the needed investments by a factor of 15 to 20. It is shown in this paper that judicious selection of lunar materials will allow one to obtain hydrogen, nitrogen, carbon, helium and other specific elements critical to the support of life in large space habitats at relatively low costs and lower total investment even further. Necessary selection techniques and extraction schemes are outlined. In addition, tables are presented of the oxide and elemental abundances characteristic of the mare and highland regions of the moon which should be useful in evaluating what can be extracted from the lunar soils.

  4. Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new air quality facility and PTR-MS: high surface ozone and strong influence of biomass burning

    Science.gov (United States)

    Sinha, V.; Kumar, V.; Sarkar, C.

    2014-06-01

    One seventh of the world's population lives in the Indo-Gangetic Plain (IGP) and the fertile region sustains agricultural food crop production for much of South Asia, yet it remains one of the most under-studied regions of the world in terms of atmospheric composition and chemistry. In particular, the emissions and chemistry of volatile organic compounds (VOCs) that form surface ozone and secondary organic aerosol through photochemical reactions involving nitrogen oxides are not well understood. In this study, ambient levels of VOCs such as methanol, acetone, acetaldehyde, acetonitrile and isoprene were measured for the first time in the IGP. A new atmospheric chemistry facility that combines India's first high-sensitivity proton transfer reaction mass spectrometer, an ambient air quality station and a meteorological station, was used to quantify in situ levels of several VOCs and air pollutants in May 2012 at a suburban site in Mohali (northwest IGP). Westerly winds arriving at high wind speeds (5-20 m s-1) in the pre-monsoon season at the site were conducive for chemical characterization of regional emission signatures. Average levels of VOCs and air pollutants in May~2012 ranged from 1.2 to 2.7 nmol mol-1 for aromatic VOCs, 5.9 to 37.5 nmol mol-1 for the oxygenated VOCs, 1.4 nmol mol-1 for acetonitrile, 1.9 nmol mol-1 for isoprene, 567 nmol mol-1 for carbon monoxide, 57.8 nmol mol-1 for ozone, 11.5 nmol mol-1 for nitrogen oxides, 7.3 nmol mol-1 for sulfur dioxide, 104 μg m-3 for PM2.5 and 276 μg m-3 for PM10. By analyzing the one-minute in situ data with meteorological parameters and applying chemical tracers (e.g., acetonitrile for biomass burning) and inter-VOC correlations, we were able to constrain major emission source activities on both temporal and diel scales. Wheat residue burning caused massive increases (> 3 times the baseline values) for all the measured VOCs and primary pollutants. Other forms of biomass burning at night were also a significant

  5. Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new PTR-MS and air quality facility: high surface ozone and strong influence of biomass burning

    Science.gov (United States)

    Sinha, V.; Kumar, V.; Sarkar, C.

    2013-12-01

    One seventh of the world population lives in the Indo-Gangetic Plain (IGP) and the fertile region sustains agricultural food crop production for much of South Asia. Yet it remains one of the most under-studied regions of the world in terms of atmospheric composition and chemistry. In particular, the emissions and chemistry of volatile organic compounds (VOCs) that form surface ozone and secondary organic aerosol through photochemical reactions involving nitrogen oxides is not well understood. In this study, ambient levels of VOCs such as methanol, acetone, acetaldehyde, acetonitrile and isoprene were measured for the first time in the IGP. A new atmospheric chemistry facility that combines India's first high sensitivity proton transfer reaction mass spectrometer, an ambient air quality station and meteorological station, was used to quantify in-situ levels of several VOCs and air pollutants in May 2012 at a suburban site in Mohali (N. W. IGP). Westerly winds arriving at high wind speeds (5-20 m s-1) in the pre-monsoon season at the site, were conducive for chemical characterization of regional emission signatures. Average levels of VOCs and air pollutants in May 2012 ranged from 1.2-1.7 nmol mol-1 for aromatic VOCs, 5.9-37.4 nmol mol-1 for the oxygenated VOCs, 1.4 nmol mol-1 for acetonitrile, 1.9 nmol mol-1 for isoprene, 567 nmol mol-1 for carbon monoxide, 57.8 nmol mol-1 for ozone, 11.5 nmol mol-1 for nitrogen oxides, 7.3 nmol mol-1 for sulphur dioxide, 104 μg m-3 for PM2.5 and 276 μg m-3 for PM10. By analyzing the one minute in-situ data with meteorological parameters and applying chemical tracers (e.g. acetonitrile for biomass burning) and inter-VOC correlations, we were able to constrain major emission source activities on both temporal and diel scales. Wheat residue burning activity caused massive increases (> 3 times of baseline values) for all the measured VOCs and primary pollutants. Other forms of biomass burning at night were also a significant source

  6. Australian manufacture of QuadrametTM (Samarium-153 EDTMP)

    International Nuclear Information System (INIS)

    Wood, N.R.; Whitwell, J.

    1997-01-01

    Quadramet T (Samarium-153 EDTMP) has been shown overseas to be potentially useful in the palliation of painful osteoblastic skeletal metastases and has been approved this year for general marketing in the USA. Australian Radioisotopes (ARI) has licensed this product from the Australian patent holders, Dow Chemical. Within the facilities of ARI, a hot cell has been dedicated to this product and fitted out to manufacture it weekly on a cycle related to the operating cycle of the Australian reactor HIFAR. Due to neutron flux limitations of HIFAR, the local formulation has an elemental Samarium content up to 200μg/mL whereas the overseas formulation has a level of 20-46μg/mL. All other specifications of the two products are essentially the same. In 1995 and 1996 a small clinical trial with 19 patients was held which demonstrated that the pharmacokinetic behaviour was also essentially the same by measuring blood clearance rates and skeletal uptake dynamics. Soft tissue uptake was also qualitatively determined. The ARI version is now the subject of an application for general marketing within Australia. Some useful characteristics of this agent are: almost complete excretion or fixation in the skeleton within 6 hours, rapid onset of clinical effect, applicability in most cases where an abnormal diagnostic bone scan correlates with painful sites, dosage can be tailored to individual patient uptake due to easy dose measurement and retreatment is quite possible. The use of this class of agents in pain palliation continues to increase. Australian manufacture of Quadramet TM provides a further option in the management of these difficult cases

  7. Manufacturing of neutral beam sources at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Baird, E.D.; Duffy, T.J.; Harter, G.A.; Holland, E.D.; Kloos, W.A.; Pastrone, J.A.

    1979-01-01

    Over 50 neutral beam sources (NBS) of the joint Lawrence Berkeley Laboratory (LBL)/Lawrence Livermore Laboratory (LLL) design have been manufactured, since 1973, in the LLL Neutral Beam Source Facility. These sources have been used to provide start-up and sustaining neutral beams for LLL mirror fusion experiments, including 2XIIB, TMX, and Beta II. Experimental prototype 20-kV and 80-kV NBS have also been designed, built, and tested for the Mirror Fusion Test Facility (MFTF)

  8. Fundamentals of Digital Manufacturing Science

    CERN Document Server

    Zhou, Zude; Chen, Dejun

    2012-01-01

    The manufacturing industry will reap significant benefits from encouraging the development of digital manufacturing science and technology. Digital Manufacturing Science uses theorems, illustrations and tables to introduce the definition, theory architecture, main content, and key technologies of digital manufacturing science. Readers will be able to develop an in-depth understanding of the emergence and the development, the theoretical background, and the techniques and methods of digital manufacturing science. Furthermore, they will also be able to use the basic theories and key technologies described in Digital Manufacturing Science to solve practical engineering problems in modern manufacturing processes. Digital Manufacturing Science is aimed at advanced undergraduate and postgraduate students, academic researchers and researchers in the manufacturing industry. It allows readers to integrate the theories and technologies described with their own research works, and to propose new ideas and new methods to...

  9. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  10. 76 FR 51349 - Foreign-Trade Zone 72-Indianapolis, IN; Application for Manufacturing Authority, Brevini Wind USA...

    Science.gov (United States)

    2011-08-18

    ..., Brevini Wind USA, Inc., (Wind Turbine Gear Boxes), Yorktown, IN A request has been submitted to the... manufacturing authority on behalf of Brevini Wind USA, Inc. (Brevini), to manufacture wind turbine gear boxes... Yorktown, Indiana. The facility is used to manufacture and repair wind turbine gear boxes and related...

  11. Manufacturing Optimization Based on Agile Manufacturing and Big Data

    OpenAIRE

    Khan, Md Ashikul Alam; Mebrahtu, Habtom; Shirvani, Hassan; Butt, Javaid

    2017-01-01

    This paper investigates Agile Manufacturing (AM) supported by Big Data for manufacturing optimization. The paper aims to identify the limitations of current manufacturing approaches such as just in time (JIT) and lean manufacturing and to map a process based on these limitations.The process works through a process re-engineering (PR) by eliminating and redesigning the steps that affect productions. The process will identify the key enablers that will assist in the design of an effective AM fr...

  12. Robot skills for manufacturing

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath; Nalpantidis, Lazaros; Andersen, Rasmus Skovgaard

    2016-01-01

    Due to a general shift in manufacturing paradigm from mass production towards mass customization, reconfigurable automation technologies, such as robots, are required. However, current industrial robot solutions are notoriously difficult to program, leading to high changeover times when new......-asserting robot skills for manufacturing. We show how a relatively small set of skills are derived from current factory worker instructions, and how these can be transferred to industrial mobile manipulators. General robot skills can not only be implemented on these robots, but also be intuitively concatenated...... to program the robots to perform a variety of tasks, through the use of simple task-level programming methods. We demonstrate various approaches to this, extensively tested with several people inexperienced in robotics. We validate our findings through several deployments of the complete robot system...

  13. 75 FR 78715 - Small Entity Compliance Guide: Current Good Manufacturing Practice in Manufacturing, Packaging...

    Science.gov (United States)

    2010-12-16

    ...] Small Entity Compliance Guide: Current Good Manufacturing Practice in Manufacturing, Packaging, Labeling... guidance entitled ``Current Good Manufacturing Practice in Manufacturing, Packaging, Labeling, or Holding... Good Manufacturing Practice in Manufacturing, Packaging, Labeling, or Holding Operations for Dietary...

  14. Optimization of space manufacturing systems

    Science.gov (United States)

    Akin, D. L.

    1979-01-01

    Four separate analyses are detailed: transportation to low earth orbit, orbit-to-orbit optimization, parametric analysis of SPS logistics based on earth and lunar source locations, and an overall program option optimization implemented with linear programming. It is found that smaller vehicles are favored for earth launch, with the current Space Shuttle being right at optimum payload size. Fully reusable launch vehicles represent a savings of 50% over the Space Shuttle; increased reliability with less maintenance could further double the savings. An optimization of orbit-to-orbit propulsion systems using lunar oxygen for propellants shows that ion propulsion is preferable by a 3:1 cost margin over a mass driver reaction engine at optimum values; however, ion engines cannot yet operate in the lower exhaust velocity range where the optimum lies, and total program costs between the two systems are ambiguous. Heavier payloads favor the use of a MDRE. A parametric model of a space manufacturing facility is proposed, and used to analyze recurring costs, total costs, and net present value discounted cash flows. Parameters studied include productivity, effects of discounting, materials source tradeoffs, economic viability of closed-cycle habitats, and effects of varying degrees of nonterrestrial SPS materials needed from earth. Finally, candidate optimal scenarios are chosen, and implemented in a linear program with external constraints in order to arrive at an optimum blend of SPS production strategies in order to maximize returns.

  15. Manufacturing and testing VLPC hybrids

    Science.gov (United States)

    Adkins, L. R.; Ingram, C. M.; Anderson, E. J.

    1998-11-01

    To insure that the manufacture of VLPC devices is a reliable, cost-effective technology, hybrid assembly procedures and testing methods suitable for large scale production have been developed. This technology has been developed under a contract from Fermilab as part of the D-Zero upgrade program. Each assembled hybrid consists of a VLPC chip mounted on an AlN substrate. The VLPC chip is provided with bonding pads (one connected to each pixel) which are wire bonded to gold traces on the substrate. The VLPC/AlN hybrids are mated in a vacuum sealer using solder preforms and a specially designed carbon boat. After mating, the VLPC pads are bonded to the substrate with an automatic wire bonder. Using this equipment we have achieved a thickness tolerance of ±0.0007 inches and a production rate of 100 parts per hour. After assembly the VLPCs are tested for optical response at an operating temperature of 7K. The parts are tested in a custom designed continuous-flow dewar with a capacity 15 hybrids, and one Lake Shore DT470-SD-11 calibrated temperature sensor mounted to an AlN substrate. Our facility includes five of these dewars with an ultimate test capacity of 75 parts per day. During the course of the Dzero program we have assembled more than 4,000 VLPC hybrids and have tested more than 2,500 with a high yield.

  16. Connecting American Manufacturers (CAM)

    Science.gov (United States)

    2013-09-01

    to evaluate manufacturing variability as it relates to overall engine performance, whereas General Electric Aviation focused on airflow efficiency...VOICe 467 Total Number of Unique Opportunities scraped from FBO 168,674 Number of Opportunities matched to suppliers in America’s VOICe 90,534...like America’s VOICe matching service to solicitations from FBO and DIBBS as we receive this in our inbox daily which are matched to our

  17. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  18. NASA's National Center for Advanced Manufacturing

    Science.gov (United States)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University

  19. Robotic Manufacturing Science and Engineering Laboratory (RMSEL)

    International Nuclear Information System (INIS)

    1994-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Robotic Manufacturing Science and Engineering Laboratory (RMSEL) at Sandia National Laboratories/New Mexico (SNL). This facility is needed to integrate, consolidate, and enhance the robotics research and testing currently in progress at SNL. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  20. Industrial Crystallization Facility for Nonlinear Optical Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Made In Space, Inc. (MIS) proposes the development of an Industrial Crystal Facility (ICF) for microgravity product manufacturing and applied research. The ICF is...

  1. Waste encapsulation and storage facility function analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate Waste Encapsulation and Storage Facility (WESF)

  2. 300 Area fuel supply facilities deactivation function analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate the 300 Area Fuel Supply Facilities

  3. Additive Manufacturing: Unlocking the Evolution of Energy Materials.

    Science.gov (United States)

    Zhakeyev, Adilet; Wang, Panfeng; Zhang, Li; Shu, Wenmiao; Wang, Huizhi; Xuan, Jin

    2017-10-01

    The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near-complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage.

  4. 75 FR 80040 - Manufacturing Council

    Science.gov (United States)

    2010-12-21

    ..., developing and marketing programs in support of manufacturing industries, job creation in the manufacturing... relevant contact information such as mailing address, fax, e-mail, fixed and mobile phone numbers and...

  5. Manufacturing a Superconductor in School.

    Science.gov (United States)

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  6. Green Manufacturing Fundamentals and Applications

    CERN Document Server

    2013-01-01

    Green Manufacturing: Fundamentals and Applications introduces the basic definitions and issues surrounding green manufacturing at the process, machine and system (including supply chain) levels. It also shows, by way of several examples from different industry sectors, the potential for substantial improvement and the paths to achieve the improvement. Additionally, this book discusses regulatory and government motivations for green manufacturing and outlines the path for making manufacturing more green as well as making production more sustainable. This book also: • Discusses new engineering approaches for manufacturing and provides a path from traditional manufacturing to green manufacturing • Addresses regulatory and economic issues surrounding green manufacturing • Details new supply chains that need to be in place before going green • Includes state-of-the-art case studies in the areas of automotive, semiconductor and medical areas as well as in the supply chain and packaging areas Green Manufactu...

  7. Manufacturing mobility in global operations

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2002-01-01

    The globalization trend inevitably affects the organization of manufacturing by enterprises. It offers opportunities to examine manufacturing from a global perspective and consequently to produce where it is most appropriate. However, globalization has also led to an increase in competitive

  8. 76 FR 77257 - Manufacturer of Controlled Substances; Notice of Application

    Science.gov (United States)

    2011-12-12

    ...), this is notice that on September 15, 2011, Johnson Matthey Pharma Services, 70 Flagship Drive, North... Schedule Amphetamine (1100) II Methylphenidate (1724) II Hydrocodone (9193) II The company plans to utilize... conduct analytical testing in support of the company's primary manufacturing facility in West Deptford...

  9. 76 FR 25376 - Manufacturer of Controlled Substances; Notice of Application

    Science.gov (United States)

    2011-05-04

    ...), this is notice that on January 5, 2011, Johnson Matthey Pharma Services, 70 Flagship Drive, North... Schedule Amphetamine (1100) II Methylphenidate (1724) II Hydrocodone (9193) II The company plans to utilize... conduct analytical testing in support of the company's primary manufacturing facility in West Deptford...

  10. 77 FR 5849 - Manufacturer of Controlled Substances; Notice of Registration

    Science.gov (United States)

    2012-02-06

    ..., 2011, 76 FR 39127, Johnson Matthey Pharmaceutical Materials, Inc., Pharmaceuticals Service, 25 Patton... substance in schedule II. The company plans to utilize this facility to manufacture small quantities of the listed controlled substance in bulk and to conduct analytical testing in support of the company's primary...

  11. 76 FR 72974 - Manufacturer of Controlled Substances Notice of Application

    Science.gov (United States)

    2011-11-28

    ... is notice that on September 15, 2011, Johnson Matthey Pharmaceutical Materials Inc., Pharmaceutical... (9193) II Alfentanil (9737) II Remifentanil (9739) II Sufentanil (9740) II The company plans to utilize... conduct analytical testing in support of the company's primary manufacturing facility in West Deptford...

  12. 75 FR 47029 - Manufacturer of Controlled Substances; Notice of Application

    Science.gov (United States)

    2010-08-04

    ...), this is notice that on January 27, 2009, Johnson Matthey Pharma Services, 70 Flagship Drive, North... Schedule Amphetamine (1100) II Hydrocodone (9193) II Methylphenidate (1724) II The company plans to utilize... conduct analytical testing in support of the company's primary manufacturing facility in West Deptford...

  13. 76 FR 39127 - Manufacturer of Controlled Substances; Notice of Application

    Science.gov (United States)

    2011-07-05

    ...), this is notice that on April 13, 2011, Johnson Matthey Pharmaceutical Materials Inc., Pharmaceutical... substance in schedule II. The company plans to utilize this facility to manufacture small quantities of the listed controlled substances in bulk and to conduct analytical testing in support of the company's...

  14. Manufacturing Process Simulation of Large-Scale Cryotanks

    Science.gov (United States)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing

  15. Transfer of manufacturing units

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Riis, Jens Ove; Sørensen, Brian Vejrum

    2008-01-01

    The ongoing and unfolding relocation of activities is one of the major trends, that calls for attention in the domain of operations management. In particular, prescriptive models outlining: stages of the process, where to locate, and how to establish the new facilities have been studied, while th...

  16. Environmental stress-corrosion cracking of fiberglass: lessons learned from failures in the chemical industry.

    Science.gov (United States)

    Myers, T J; Kytömaa, H K; Smith, T R

    2007-04-11

    Fiberglass reinforced plastic (FRP) composite materials are often used to construct tanks, piping, scrubbers, beams, grating, and other components for use in corrosive environments. While FRP typically offers superior and cost effective corrosion resistance relative to other construction materials, the glass fibers traditionally used to provide the structural strength of the FRP can be susceptible to attack by the corrosive environment. The structural integrity of traditional FRP components in corrosive environments is usually dependent on the integrity of a corrosion-resistant barrier, such as a resin-rich layer containing corrosion resistant glass fibers. Without adequate protection, FRP components can fail under loads well below their design by an environmental stress-corrosion cracking (ESCC) mechanism when simultaneously exposed to mechanical stress and a corrosive chemical environment. Failure of these components can result in significant releases of hazardous substances into plants and the environment. In this paper, we present two case studies where fiberglass components failed due to ESCC at small chemical manufacturing facilities. As is often typical, the small chemical manufacturing facilities relied largely on FRP component suppliers to determine materials appropriate for the specific process environment and to repair damaged in-service components. We discuss the lessons learned from these incidents and precautions companies should take when interfacing with suppliers and other parties during the specification, design, construction, and repair of FRP components in order to prevent similar failures and chemical releases from occurring in the future.

  17. Exploring manufacturing solutions for SMEs

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Blichfeldt, Henrik; Bilberg, Arne

    This exploratory study provides an overview over current state of manufacturing solutions in small and medium sized enterprises (SMEs) in region of Southern Denmark. Building on manufacturing paradigms, this paper reveals relevant aspects for the development and implementation of improving SMEs...... of manufacturing solutions, which are required to increase their competitiveness and assure sustainable growth....

  18. Support facilities

    International Nuclear Information System (INIS)

    Williamson, F.S.; Blomquist, J.A.; Fox, C.A.

    1977-01-01

    Computer support is centered on the Remote Access Data Station (RADS), which is equipped with a 1000 lpm printer, 1000 cpm reader, and a 300 cps paper tape reader with 500-foot spools. The RADS is located in a data preparation room with four 029 key punches (two of which interpret), a storage vault for archival magnetic tapes, card files, and a 30 cps interactive terminal principally used for job inquiry and routing. An adjacent room provides work space for users, with a documentation library and a consultant's office, plus file storage for programs and their documentations. The facility has approximately 2,600 square feet of working laboratory space, and includes two fully equipped photographic darkrooms, sectioning and autoradiographic facilities, six microscope cubicles, and five transmission electron microscopes and one Cambridge scanning electron microscope equipped with an x-ray energy dispersive analytical system. Ancillary specimen preparative equipment includes vacuum evaporators, freeze-drying and freeze-etching equipment, ultramicrotomes, and assorted photographic and light microscopic equipment. The extensive physical plant of the animal facilities includes provisions for holding all species of laboratory animals under controlled conditions of temperature, humidity, and lighting. More than forty rooms are available for studies of the smaller species. These have a potential capacity of more than 75,000 mice, or smaller numbers of larger species and those requiring special housing arrangements. There are also six dog kennels to accommodate approximately 750 dogs housed in runs that consist of heated indoor compartments and outdoor exercise areas

  19. A Bootstrap Approach to Martian Manufacturing

    Science.gov (United States)

    Dorais, Gregory A.

    2004-01-01

    In-Situ Resource Utilization (ISRU) is an essential element of any affordable strategy for a sustained human presence on Mars. Ideally, Martian habitats would be extremely massive to allow plenty of room to comfortably live and work, as well as to protect the occupants from the environment. Moreover, transportation and power generation systems would also require significant mass if affordable. For our approach to ISRU, we use the industrialization of the U.S. as a metaphor. The 19th century started with small blacksmith shops and ended with massive steel mills primarily accomplished by blacksmiths increasing their production capacity and product size to create larger shops, which produced small mills, which produced the large steel mills that industrialized the country. Most of the mass of a steel mill is comprised of steel in simple shapes, which are produced and repaired with few pieces of equipment also mostly made of steel in basic shapes. Due to this simplicity, we expect that the 19th century manufacturing growth can be repeated on Mars in the 21st century using robots as the primary labor force. We suggest a "bootstrap" approach to manufacturing on Mars that uses a "seed" manufacturing system that uses regolith to create major structural components and spare parts. The regolith would be melted, foamed, and sintered as needed to fabricate parts using casting and solid freeform fabrication techniques. Complex components, such as electronics, would be brought from Earth and integrated as needed. These parts would be assembled to create additional manufacturing systems, which can be both more capable and higher capacity. These subsequent manufacturing systems could refine vast amounts of raw materials to create large components, as well as assemble equipment, habitats, pressure vessels, cranes, pipelines, railways, trains, power generation stations, and other facilities needed to economically maintain a sustained human presence on Mars.

  20. Burns from illegal drug manufacture: case series and management.

    Science.gov (United States)

    Porter, C J W; Armstrong, J R

    2004-01-01

    This case series presents our experience with burns sustained while manufacturing illegal drugs. All adult burn admissions in an 18-month period were retrospectively reviewed. All patients suspected of sustaining burns from illegal drug manufacture were contacted. Information regarding the burn mechanism was sought. Nine of the 64 adult burn admissions were caused by explosions during the manufacture of cannabis oil. Young males with hand and face burns were heavily represented. First-aid treatment was often ignored in favor of hiding incriminating evidence. Only two patients gave honest admission histories. Illegal drug manufacture is becoming more common as synthetic drugs become more consumer desirable. Burns sustained may be thermal and/or chemical. Dishonest patient histories negatively influence burn management. A high level of suspicion is required for diagnosing and treating burns from illegal drug manufacture. Public education is unlikely to be effective as the financial rewards outweigh the perceived risks.

  1. Chemical Safety Vulnerability Working Group report. Volume 1

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms

  2. Chemical Safety Vulnerability Working Group report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms.

  3. Energy-Saving Opportunities for Manufacturing Companies, (English/Russian Fact Sheet) (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    This English/Russian brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  4. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  5. Energy-Saving Opportunities for Manufacturing Companies, International Fact Sheet (Spanish)

    Energy Technology Data Exchange (ETDEWEB)

    2010-08-01

    This English/Spanish fact sheet describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  6. Energy-Saving Opportunities for Manufacturing Companies (English/Portuguese Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    This English/Portuguese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  7. Develop and Manufacture an airlock sliding tray

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Cindy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-26

    The goal of this project is to continue to develop an airlock sliding tray and then partner with an industrial manufacturing company for production. The sliding tray will be easily installed into and removed from most glovebox airlocks in a few minutes. Technical Approach: A prototype of a sliding tray has been developed and tested in the LANL cold lab and 35 trays are presently being built for the plutonium facility (PF-4). The current, recently approved design works for a 14-inch diameter round airlock and has a tray length of approximately 20 inches. The grant will take the already tested and approved round technology and design for the square airlock. These two designs will be suitable for the majority of the existing airlocks in the multitude of DOE facilities. Partnering with an external manufacturer will allow for production of the airlock trays at a much lower cost and increase the availability of the product for all DOE sites. Project duration is estimated to be 12-13 months. Benefits: The purpose of the airlock sliding trays is fourfold: 1) Mitigate risk of rotator cuff injuries, 2) Improve ALARA, 3) Reduce risk of glovebox glove breaches and glove punctures, and 4) Improve worker comfort. I have had the opportunity to visit many other DOE facilities including Savannah, Y-12, ORNL, Sandia, and Livermore for assistance with ergonomic problems and/or injuries. All of these sites would benefit from the airlock sliding tray and I can assume all other DOE facilities with gloveboxes built prior to 1985 could also use the sliding trays.

  8. Light-induced mutagenicity in Salmonella TA102 and genotoxicity/cytotoxicity in human T-cells by 3,3'-dichlorobenzidine: a chemical used in the manufacture of dyes and pigments and in tattoo inks

    International Nuclear Information System (INIS)

    Wang Lei; Yan Jian; Hardy, William; Mosley, Charity; Wang Shuguang; Yu Hongtao

    2005-01-01

    DCB, 3,3'-dichlorobenzidine, is used primarily as an intermediate in the manufacture of diarylide yellow or azo red pigments for printing ink, textile, paint, and plastics. It is also used in tattoo inks. In this article, we investigate light-induced toxicity of DCB in both bacteria and human Jurkat T-cells. DCB itself is not toxic or mutagenic to Salmonella typhimurium TA102, but is photomutagenic at concentrations as low as 2 μM and phototoxic at concentrations >100 μM when bacteria are exposed to DCB and light at the same time (1.2 J/cm 2 of UVA and 2.1 J/cm 2 of visible light). Furthermore, DCB is both photocytotoxic and photogenotoxic to human Jurkat T-cells. Under a light irradiation dose of 2.3 J/cm 2 of UVA and 4.2 J/cm 2 of visible light, it causes the Jurkat T-cells to become nonviable in a DCB dose-dependent manner and the nonviable cells reaches 60% at DCB concentrations higher than 50 μM. At the same time, DNA fragmentation is observed for cells exposed to both DCB and light, determined by single cell gel electrophoresis (alkaline comet assay). As much as 5% (average) DNA fragmentation was observed when exposed to 200 μM DCB and light irradiation. This suggests that DCB can penetrate the cell membrane and enter the cell. Upon light activation, DCB in the cells can cause various cellular damages, leading to nonviable Jurkat T-cells. It appears, the nonviable cells are not caused solely by fragmentation of cellular DNA, but by other damages such as to proteins and cell membranes, or DNA alkylation. Therefore, persons exposed to DCB through environmental contamination or through tattoo piercing using DCB-containing inks must not only concern about its toxicity without exposing to light, but also its phototoxicity

  9. The OSHA and EPA programs on preventing chemical accidents and potential applications in the photovoltaic industry

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.M.

    1996-08-01

    OSHA issued in 1992, the Process Safety Management (PSM) of Highly Hazardous Substances. This rule requires owners/operators of facilities that handle hazardous chemicals in quantities greater than the listed thresholds to establish all the elements of a PSM. EPA has issued in June 1996, the rules for a Risk Management Program which also refers to specific substances and threshold quantities. These rules are applicable to all the facilities that use or store any of 139 regulated substances at quantities ranging from 100 lb to 10,000 lb. The RMP rule covers off-site hazards, while the OSHA Process Safety Management (PSM) rule covers worker safety issues within the plant boundary. Some of the listed substances may be found in photovoltaic manufacturing facilities. This brief report presents the basic elements of these two rules and discusses their potential applicability in the photovoltaic industry.

  10. Manufacturing halal in Malaysia

    DEFF Research Database (Denmark)

    Fischer, Johan

    2016-01-01

    production, trade and consumption. Based on fieldwork in Malaysia, this article explores how manufacturing companies understand and practise halal certification, standards and technoscience. I argue that while existing studies of halal overwhelmingly explore micro-social aspects such as the everyday......In Arabic, halal literally means ‘permissible’ or ‘lawful’. Halal is no longer an expression of an esoteric form of production, trade and consumption, but part of a huge and expanding globalized market in which certification, standards and technoscience play important roles. Over the past three...

  11. Metal Additive Manufacturing: A Review

    Science.gov (United States)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  12. Manufacturing: SiC Power Electronics for Variable Frequency Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bench Reese, Samantha R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Remo, Timothy W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    This brochure, published as an annual research highlight of the Clean Energy Manufacturing Analysis Center (CEMAC), summarizes CEMAC analysis of silicon carbide (SiC) power electronics for variable frequency motor drives. The key finding presented is that variations in manufacturing expertise, yields, and access to existing facilities impact regional costs and manufacturing location decisions for SiC ingots, wafers, chips, and power modules more than do core country-specific factors such as labor and electricity costs.

  13. Benchmarking Naval Shipbuilding with 3D Laser Scanning, Additive Manufacturing, and Collaborative Product Lifecycle Management

    Science.gov (United States)

    2015-09-20

    can be developed to retrofit projects. • Asset and Facility Management/Documentation. With 3D documentation of complex factory and plant ...SPONSORED REPORT SERIES Benchmarking Naval Shipbuilding with 3D Laser Scanning, Additive Manufacturing, and Collaborative Product Lifecycle...Series Benchmarking Naval Shipbuilding with 3D Laser Scanning, Additive Manufacturing, and Collaborative Product Lifecycle Management 20 September

  14. Manufacture of the first fuel charge for the SUPER-PHENIX 1 reactor

    International Nuclear Information System (INIS)

    Pajot, J.; Beche, M.; Heyraud, J.

    1988-01-01

    After summarizing same general points on the Super Phenix core, the performances of fuel essemblies, the remainder of this discussion will deal with the manufacture by the CFCa of the first charge of fuel assemblies. The following aspects are considered in sequence - contract - production facilities - manufacturing procedures finally a few assessments will be presented

  15. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Science.gov (United States)

    2010-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities must...

  16. A product-process approach for development of the manufacturing footprint

    DEFF Research Database (Denmark)

    Farooq, Sami; Yang, Cheng; Johansen, John

    2009-01-01

    to ever changing global business environment there are certain other external factors that act as drivers for the manufacturing facility development process and therefore should be given considerable importance as they play a major role in defining the future footprint of a manufacturing organisation....

  17. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    Science.gov (United States)

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  19. Evolution of solidification texture during additive manufacturing

    Science.gov (United States)

    Wei, H. L.; Mazumder, J.; DebRoy, T.

    2015-01-01

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components. PMID:26553246

  20. Development of a quality system for a contract irradiation facility

    International Nuclear Information System (INIS)

    Siyakus, G.

    2002-01-01

    . Even, some conditions required by the primary producer may be impossible to apply because of the design parameters of the facility or economical reasons. The worst situation is, transforming the commodity to be processed into garbage, because of the any misapprehension among the customer and the organization running the facility, or any level of misleading among the internal communication chain of the organization. Therefore, every step of the process from delivery of the product by the principal manufacturer up to the release of the commodity after irradiation should be firmly defined, organized, documented, validated and certified. The purpose of the irradiation may be at variance from decontamination of a food commodity to the sterilization of a medical supply. To make things easier, the case study which will be presented in the scope of this paper is limited with the radiation sterilization of medical supplies at the Food Irradiation and Sterilization Department (FISD) of Ankara Nuclear Research Center of Agriculture and Animal Science (ANRCAAS). To meet the requirements stated by the contract, an appropriate quality management system should be implemented. Basic activities for implementing a quality management system should be: A policy for quality management, An appropriate work flow, Contract model to make certain the demand of the primary producer, Straightforward documentation of the management responsibilities, Suitable premises, equipment and materials, Well defined and documented procedures, processes to be applied on the product, Traceable batch, product and dosimetry records, Definitely the radiation, chemical and biological safety issues related to the personnel working in the quality control laboratories and irradiation facility are more essential issues than the above mentioned topics and should be included into the quality system

  1. APPLICATION OF ADDITIVELY MANUFACTURED POLYMER COMPOSITE PROTOTYPES IN FOUNDRY

    Directory of Open Access Journals (Sweden)

    Wiesław Kuczko

    2015-05-01

    Full Text Available The paper presents a method, developed by the authors, for manufacturing polymer composites with the matrix manufactured in a layered manner (via 3D printing – Fused Deposition Modeling out of a thermoplastic material. As an example of practical application of this method, functional prototypes are presented, which were used as elements of foundry tooling – patterns for sand molding. In case of manufacturing prototype castings or short series of products, foundries usually cooperate with modeling studios, which produce patterns by conventional, subtractive manufacturing technologies. If patterns have complex shapes, this results in high manufacturing costs and significantly longer time of tooling preparation. The method proposed by the authors allows manufacturing functional prototypes in a short time thanks to utilizing capabilities of additive manufacturing (3D printing technology. Thanks to using two types of materials simultaneously (ABS combined with chemically hardened resins, the produced prototypes are capable of carrying increased loads. Moreover, the method developed by the authors is characterized by manufacturing costs lower than in the basic technology of Fused Deposition Modeling. During the presented studies, the pattern was produced as a polymer composite and it was used to prepare a mold and a set of metal castings.

  2. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  3. Cloud manufacturing distributed computing technologies for global and sustainable manufacturing

    CERN Document Server

    Mehnen, Jörn

    2013-01-01

    Global networks, which are the primary pillars of the modern manufacturing industry and supply chains, can only cope with the new challenges, requirements and demands when supported by new computing and Internet-based technologies. Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing introduces a new paradigm for scalable service-oriented sustainable and globally distributed manufacturing systems.   The eleven chapters in this book provide an updated overview of the latest technological development and applications in relevant research areas.  Following an introduction to the essential features of Cloud Computing, chapters cover a range of methods and applications such as the factors that actually affect adoption of the Cloud Computing technology in manufacturing companies and new geometrical simplification method to stream 3-Dimensional design and manufacturing data via the Internet. This is further supported case studies and real life data for Waste Electrical ...

  4. Using CORBA to integrate manufacturing cells to a virtual enterprise

    Science.gov (United States)

    Pancerella, Carmen M.; Whiteside, Robert A.

    1997-01-01

    It is critical in today's enterprises that manufacturing facilities are not isolated from design, planning, and other business activities and that information flows easily and bidirectionally between these activities. It is also important and cost-effective that COTS software, databases, and corporate legacy codes are well integrated in the information architecture. Further, much of the information generated during manufacturing must be dynamically accessible to engineering and business operations both in a restricted corporate intranet and on the internet. The software integration strategy in the Sandia Agile Manufacturing Testbed supports these enterprise requirements. We are developing a CORBA-based distributed object software system for manufacturing. Each physical machining device is a CORBA object and exports a common IDL interface to allow for rapid and dynamic insertion, deletion, and upgrading within the manufacturing cell. Cell management CORBA components access manufacturing devices without knowledge of any device-specific implementation. To support information flow from design to planning data is accessible to machinists on the shop floor. CORBA allows manufacturing components to be easily accessible to the enterprise. Dynamic clients can be created using web browsers and portable Java GUI's. A CORBA-OLE adapter allows integration to PC desktop applications. Other commercial software can access CORBA network objects in the information architecture through vendor API's.

  5. Work control in separations facilities

    International Nuclear Information System (INIS)

    Olson, L.D.

    1990-01-01

    The topic addressed in this technical review is the development and implementation of a work control program in one of the chemical separations facilities at the Savannah River Site (SRS) in Aiken, SC. This program will be used as a pilot for the Nuclear Materials Processing Division at the site. The SRS Work Control Pilot program is based on the Institute of Nuclear Power Operations (INPO) good practices and guidelines for the conduct of maintenance and complies with SRS quality assurance and DOE orders on maintenance management. The program follows a ten-step process for control of maintenance and maintenance-related activities in a chemical separations facility. The program took the existing maintenance planning and scheduling system and upgraded it to comply with all INPO work control and related guidelines for histories, post-maintenance testing and scheduling. The development process of adapting a nuclear-related- based plan to a batch/continuous chemical separations plant was a challenge. There were many opportunities to develop improvements in performance while being creative and realistic in applying reactor maintenance technology to chemical plant maintenance. This pilot program for work control in a nonreactor nuclear facility will provide valuable information for applying a controlled maintenance process to a multiphase chemical operating plant environment

  6. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  7. Shortened menstrual cycles in LCD manufacturing workers.

    Science.gov (United States)

    Lin, C-C; Huang, C-N; Hwang, Y-H; Wang, J-D; Weng, S-P; Shie, R-H; Chen, P-C

    2013-01-01

    Many chemical agents used in liquid crystal display (LCD) manufacturing have been evaluated in animal studies of female reproductive toxicity. Knowledge of their reproductive toxicity in humans is scant. To determine the effect of organic solvents on menstrual cycle characteristics of workers in LCD manufacturing. Cross-sectional study of female premenopausal workers in an LCD plant in Taiwan. Menstrual cycle characteristics were assessed from self-administered questionnaires, and chemical exposure was assessed using hand-held volatile organic compound (VOC) monitors with 24h canister sampling. There was a response rate of 94%, and the final study population after exclusions was 288. Canister sampling found many chemical compounds with potential reproductive effects in the fabrication areas of the plant. Concentrations of total VOC were higher in the panel and module fabrication areas than in other areas of the plant. The prevalence of short menstrual cycles (>24 days) was higher in panel workers (adjusted odds ratio [OR]: 7.68; 95% confidence interval [CI]: 1.51-39.15) and module workers (adjusted OR: 8.38; 95% CI: 1.72-40.95) than in array fabrication workers and office workers. We found evidence for a possible link between repeated exposure to multiple organic solvents such as ethanol and acetone and increased prevalence of short menstrual cycles in premenopausal women.

  8. 40 CFR 60.540 - Applicability and designation of affected facilities.

    Science.gov (United States)

    2010-07-01

    ... Performance for the Rubber Tire Manufacturing Industry § 60.540 Applicability and designation of affected... each of the following affected facilities in rubber tire manufacturing plants that commence... cementing operation in rubber tire manufacturing plants that commenced construction, modification, or...

  9. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  10. Maintenance in sustainable manufacturing

    Directory of Open Access Journals (Sweden)

    Vladimir Stuchly

    2014-09-01

    Full Text Available Background: Sustainable development is about reaching a balance between economic, social, and environmental goals, as well as people's participation in the planning process in order to gain their input and support. For a company, sustainable development means adoption of such business strategy and actions that contribute to satisfying present needs of company and stakeholders, as well as simultaneous protection, maintenance and strengthening of human and environmental potential which will be needed in the future. This new approach forces manufacturing companies to change their previous management paradigms. New management paradigm should include new issues and develop innovative methods, practices and technologies striving for solving problem of shortages of resources, softening environment overload and enabling development of environment-friendly lifecycle of products. Hence, its realization requires updating existing production models as they are based on previously accepted paradigm of unlimited resources and unlimited regeneration capabilities. Maintenance plays a crucial role because of its impact on availability, reliability, quality and life cycle cost, thus it should be one of the main pillars of new business running model.  Material and methods: The following paper is a result of research on the literature and observation of practices undertaken by a company within maintenance area. Results and conclusions: The main message is that considering sustainable manufacturing requires considerable expanding range of analysis and focusing on supporting processes. Maintenance offers numerous opportunities of decreasing influence of business processes on natural environment and more efficient resources utilization. The goal of maintenance processes realizing sustainable development strategy is increased profitability of exploitation and optimization of total lifecycle cost without disturbing safety and environmental issues. 

  11. 76 FR 16538 - Solid Waste Rail Transfer Facilities

    Science.gov (United States)

    2011-03-24

    ... a solid waste rail transfer facility, and, if so, why. (c) Environmental impact. The applicant shall... establishments or facilities. (5) Industrial waste means the solid waste generated by manufacturing and...), or waste generated as a result of a railroad accident, incident, or derailment. (10) Solid waste rail...

  12. Insect pest management decisions in food processing facilities

    Science.gov (United States)

    Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...

  13. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  14. Manufacturing the MFTF magnet

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Hinkle, R.E.; Hodges, A.J.

    1980-01-01

    The Mirror Fusion Test Facility (MFTF) is a large mirror program experiment for magnetic fusion energy. It will combine and extend the near-classical plasma confinement achieved in 2XIIB with advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime

  15. Effects of short-time heat treatment and subsequent chemical surface treatment on the mechanical properties, low-cycle fatigue behavior and corrosion resistance of a Ni-Ti (50.9 at.% Ni) biomedical alloy wire used for the manufacture of stents

    International Nuclear Information System (INIS)

    Vojtech, D.; Voderova, M.; Kubasek, J.; Novak, P.; Seda, P.; Michalcova, A.; Fojt, J.; Hanus, J.; Mestek, O.

    2011-01-01

    Research highlights: → Effect of short-time heat treatments on functional properties of a NiTi alloy. → Negative effect of heat treatments on corrosion resistance. → Positive effect of heat treatments on fatigue life. → Positive influence of chemical treatment on both fatigue and corrosion resistance. - Abstract: Cold-drawn and straight-annealed NiTi wires (50.9% Ni) with a tensile strength of 1650 MPa were subjected to heat treatments at 450, 510 and 600 deg. C for 10 min in air to simulate the shape-setting process in the manufacture of stents. Afterwards, the wires were chemically etched in acidic baths containing HF, HNO 3 and H 2 O, followed by boiling in water. Variations in the internal structure, surface state and chemistry and transformation behavior of the wires due to these treatments were examined in detail by scanning and transmission electron microscopy, energy dispersion spectrometry, glow discharge spectrometry, X-ray photoelectron spectroscopy and differential scanning calorimetry. Mechanical properties were determined by tensile tests, and low-cycle fatigue behavior was measured by bend-type cyclic loading tests. Corrosion behavior was assessed by immersion tests and potentiodynamic measurements. A high tensile strength of the wire was shown to be attributable to a very fine-grained structure and work hardening. Heat treatment at 450-510 deg. C/10 min did not significantly affect the tensile strength of the wire. At 600 deg. C/10 min, the strength decreased by about 600 MPa due to recrystallization. The transformation temperatures first slightly increased after heat treatment at 450 deg. C and then reduced after treatments at higher temperatures due to changes in the composition of the B2 phase. The fatigue life was observed to prolong with both heat treatment and chemical etching. In contrast, the corrosion resistance worsened with heat treatment, but it improved significantly upon chemical etching. The observed behaviors are discussed in

  16. Business models for additive manufacturing

    DEFF Research Database (Denmark)

    Hadar, Ronen; Bilberg, Arne; Bogers, Marcel

    2015-01-01

    a manufacturer-centric to a consumer-centric value logic. A major shift includes a move from centralized to decentralized supply chains, where consumer goods manufacturers can implement a “hybrid” approach with a focus on localization and accessibility or develop a fully personalized model where the consumer...... of creating and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how a consumer goods manufacturer can organize the operations of a more open business model when moving from...... effectively takes over the productive activities of the manufacturer. We discuss some of the main implications for research and practice of consumer-centric business models and the changing decoupling point in consumer goods’ manufacturing supply chains....

  17. Chemical Safety Alert: Identifying Chemical Reactivity Hazards Preliminary Screening Method

    Science.gov (United States)

    Introduces small-to-medium-sized facilities to a method developed by Center for Chemical Process Safety (CCPS), based on a series of twelve yes-or-no questions to help determine hazards in warehousing, repackaging, blending, mixing, and processing.

  18. Experience in manufacturing a disposal canister

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Lee, Min Soo

    2016-01-01

    The safety of the Swedish and Finnish geological disposal systems is based on the 50 mm copper canister, which guarantees longer than 100,000 years of lifetime but requires huge amount of copper. KAERI designed several kinds of copper-cast iron canisters for the spent fuel and HLW from the pyroprocessing. KAERI has developed a cold spray coating technique for manufacturing a thinner copper outer shell. Using the cold spray coating technique, 1/10 scale disposal canister was fabricated with 10 mm copper layer. KAERI plans to install a medium scale in-situ demonstration facility at KURT called In-DEBS (In-situ Demonstration of EBS performance at KURT). For this purpose, a cold spray coating machine was scaled up, and one 1/3 scale disposal canister was manufactured with 8 mm copper layer. In parallel with the scale-up, the long-term corrosion tests at KURT continue, and a COMSOL-based numerical model for the corrosion test is developed. The main purpose of this paper is to introduce the progress in the development of a medium-size copper canister manufactured by the cold spray technique and corrosion study. A full scale canister should be manufactured to demonstrate and test the performance of the canister. Also, the long-term corrosion tests should be carried out under the reducing conditions even though the corrosion tests at KURT under the oxidizing conditions were in progress. The reliable numerical modeling based on COMSOL should be developed further and validated using the experimental results.

  19. Indigenous Manufacturing realization of TWIN Source

    Science.gov (United States)

    Pandey, R.; Bandyopadhyay, M.; Parmar, D.; Yadav, R.; Tyagi, H.; Soni, J.; Shishangiya, H.; Sudhir Kumar, D.; Shah, S.; Bansal, G.; Pandya, K.; Parmar, K.; Vuppugalla, M.; Gahlaut, A.; Chakraborty, A.

    2017-04-01

    TWIN source is two RF driver based negative ion source that has been planned to bridge the gap between single driver based ROBIN source (currently operational) and eight river based DNB source (to be operated under IN-TF test facility). TWIN source experiments have been planned at IPR keeping the objective of long term domestic fusion programme to gain operational experiences on vacuum immersed multi driver RF based negative ion source. High vacuum compatible components of twin source are designed at IPR keeping an aim on indigenous built in attempt. These components of TWIN source are mainly stainless steel and OFC-Cu. Being high heat flux receiving components, one of the major functional requirements is continuous heat removal via water as cooling medium. Hence for the purpose stainless steel parts are provided with externally milled cooling lines and that shall be covered with a layer of OFC-cu which would be on the receiving side of high heat flux. Manufacturability of twin source components requires joining of these dissimilar materials via process like electrode position, electron beam welding and vacuum brazing. Any of these manufacturing processes shall give a vacuum tight joint having proper joint strength at operating temperature and pressure. Taking the indigenous development effort vacuum brazing (in non-nuclear environment) has been opted for joining of dissimilar materials of twin source being one of the most reliable joining techniques and commercially feasible across the suppliers of country. Manufacturing design improvisation for the components has been done to suit the vacuum brazing process requirement and to ease some of the machining without comprising over the functional and operational requirements. This paper illustrates the details on the indigenous development effort, design improvisation to suits manufacturability, vacuum brazing basics and its procedures for twin source components.

  20. Wide and High Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roschli, Alex C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The goal of this project is to develop and demonstrate the enabling technologies for Wide and High Additive Manufacturing (WHAM). WHAM will open up new areas of U.S. manufacturing for very large tooling in support of the transportation and energy industries, significantly reducing cost and lead time. As with Big Area Additive Manufacturing (BAAM), the initial focus is on the deposition of composite materials.