WorldWideScience

Sample records for chemical liquid phase

  1. Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films

    OpenAIRE

    Sun, Jie; Sun, Yingchun

    2007-01-01

    Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system pH value played an important role in this experiment. The growth rate is 12 nm/h at room temperature. Post-growth annealing not only densifies and purifies the films, but results in film crystallization a...

  2. Liquid-phase chemical sensing using lateral mode resonant cantilevers.

    Science.gov (United States)

    Beardslee, L A; Demirci, K S; Luzinova, Y; Mizaikoff, B; Heinrich, S M; Josse, F; Brand, O

    2010-09-15

    Liquid-phase operation of resonant cantilevers vibrating in an out-of-plane flexural mode has to date been limited by the considerable fluid damping and the resulting low quality factors (Q factors). To reduce fluid damping in liquids and to improve the detection limit for liquid-phase sensing applications, resonant cantilever transducers vibrating in their in-plane rather than their out-of-plane flexural resonant mode have been fabricated and shown to have Q factors up to 67 in water (up to 4300 in air). In the present work, resonant cantilevers, thermally excited in an in-plane flexural mode, are investigated and applied as sensors for volatile organic compounds in water. The cantilevers are fabricated using a complementary metal oxide semiconductor (CMOS) compatible fabrication process based on bulk micromachining. The devices were coated with chemically sensitive polymers allowing for analyte sorption into the polymer. Poly(isobutylene) (PIB) and poly(ethylene-co-propylene) (EPCO) were investigated as sensitive layers with seven different analytes screened with PIB and 12 analytes tested with EPCO. Analyte concentrations in the range of 1-100 ppm have been measured in the present experiments, and detection limits in the parts per billion concentration range have been estimated for the polymer-coated cantilevers exposed to volatile organics in water. These results demonstrate significantly improved sensing properties in liquids and indicate the potential of cantilever-type mass-sensitive chemical sensors operating in their in-plane rather than out-of-plane flexural modes. PMID:20715842

  3. Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films

    Institute of Scientific and Technical Information of China (English)

    SUN,Jie(孙捷); SUN,Ying-Chun(孙迎春)

    2004-01-01

    Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system's pH value played an important role in this experiment. The growth rate is 12 nm/h with the deposition at [Al2(SO4)3]=0.0837 mol·L-1, [NaHCO3]=0.214 mol·L-1, 15 ℃. Post-growth annealing not only densifies and purifies the films, but results in film crystallization as well, Excellent quality of A12O3 films in this work is supported by electron dispersion spectroscopy,Fourier transform infrared spectrum, X-ray diffraction spectrum and scanning electron microscopy photograph.

  4. LIGHT NONAQUEOUS PHASE LIQUIDS

    Science.gov (United States)

    Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...

  5. Laser-assisted chemical liquid-phase deposition of metals for micro- and optoelectronics

    OpenAIRE

    Kordás, K. (Krisztián)

    2002-01-01

    Abstract The demands toward the development of simple and cost-effective fabrication methods of metallic structures with high lateral resolution on different substrates - applied in many fields of technology, such as in microelectronics, optoelectronics, micromechanics as well as in sensor and actuator applications - gave the idea to perform this research. Due to its simplicity, laser-assisted chemical liquid-phase deposition (LCLD) has been investigated and applied for the metallization o...

  6. Calculation of liquid-liquid equilibrium of aqueous two-phase systems using a chemical-theory-based excess Gibbs energy model

    Directory of Open Access Journals (Sweden)

    Pessôa Filho P. A.

    2004-01-01

    Full Text Available Mixtures containing compounds that undergo hydrogen bonding show large deviations from ideal behavior. These deviations can be accounted for through chemical theory, according to which the formation of a hydrogen bond can be treated as a chemical reaction. This chemical equilibrium needs to be taken into account when applying stability criteria and carrying out phase equilibrium calculations. In this work, we illustrate the application of the stability criteria to establish the conditions under which a liquid-phase split may occur and the subsequent calculation of liquid-liquid equilibrium using a chemical-theory-modified Flory-Huggins equation to describe the non ideality of aqueous two-phase systems composed of poly(ethylene glycol and dextran. The model was found to be able to correlate ternary liquid-liquid diagrams reasonably well by simple adjustment of the polymer-polymer binary interaction parameter.

  7. Standard Specification for Sampling Single-Phase Geothermal Liquid or Steam for Purposes of Chemical Analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This specification covers the basic requirements for equipment to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Geopressured liquids are included. See Fig 1.

  8. Separation of selected stable isotopes by liquid-phase thermal diffusion and by chemical exchange

    International Nuclear Information System (INIS)

    Useful applications of enriched stable nuclides are unduly restricted by high cost and limited availability. Recent research on liquid phase thermal diffusion (LTD) has resulted in practical processes for separating 34S, 35Cl, and 37Cl in significant quantities (100 to 500 g/yr) at costs much lower than those associated with the electromagnetic (Calutron) process. The separation of the isotopes of bromine by LTD is now in progress and 79Br is being produced in relatively simple equivalent at a rate on the order of 0.5 g/day. The results of recent measurements show that the isotopes of Zn can be separated by LTD of zinc alkyls. The isotopes of calcium can be separated by LTD and by chemical exchange. The LTD process is based on the use of aqueous Ca(NO3)2 as a working fluid. The chemical exchange method involves isotopically selective exchange between an aqueous phase containing a calcium salt and an organic phase containing calcium in the form of a complex with a macrocyclic ligand. The LTD method is suitable for high enrichments at low through-puts; whereas, the chemical exchange techniques is appropriate for lower enrichments at much higher production rates. Current research is directed toward reducing these concepts to practical processes

  9. Chemically driven growth of tungsten grains during liquid phase sintering of W-Ni-Fe alloys

    International Nuclear Information System (INIS)

    In the alloys where the solid grains immersed in liquid matrix grow by Ostwald ripening process, the growth rate can be suddenly altered by changing the matrix composition. In this study, W-Ni-(Fe) specimens have been sintered and annealed at the temperatures around 15000C until the grains have coarsened, and then annealed further after adding Fe or Ni. After adding Fe or Ni and further annealing treatments, strong etching has revealed that a new solid phase in equilibrium with the changed matrix composition has been deposited preferentially on the larger grains. The smaller grains, which would be dissolving continuously, have maintained the old composition. This composition difference between the new solid phase on the larger grains and the old solid phase on the smaller ones can provide a driving force for grain coarsening in addition to that arising from the size difference. When Fe is added to sintered W-Ni, the grain coarsening rate during further annealing momentarily increases. The calculation shows that the molar free energy of the new solid phase should be lower than that of the old solid phase. Therefore, the solution reprecipitation process is ascelerated by this chemical free energy difference. If, on the other hand, Ni is added to sintered W-Ni-Fe, the coarsening rate decreases during further annealing. The calculation shows indeed that in this case the new solid phase should have higher molar free energy than the old. It is therefore demonstrated that if the matrix composition is altered during Ostwald ripening, the grain coarsening can be accelerated or retarded because of the chemical composition difference between the old grains and the newly precipitated solid phase on the larger grains. (author)

  10. Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase.

    Science.gov (United States)

    Wu, Kejing; Wu, Yulong; Chen, Yu; Chen, Hao; Wang, Jianlong; Yang, Mingde

    2016-06-22

    Different biobased chemicals are produced during the conversion of biomass into fuels through various feasible technologies (e.g., hydrolysis, hydrothermal liquefaction, and pyrolysis). The challenge of transforming these biobased chemicals with high hydrophilicity is ascribed to the high water content of the feedstock and the inevitable formation of water. Therefore, aqueous-phase processing is an interesting technology for the heterogeneous catalytic conversion of biobased chemicals. Different reactions, such as dehydration, isomerization, aldol condensation, ketonization, and hydrogenation, are applied for the conversion of sugars, furfural/hydroxymethylfurfural, acids, phenolics, and so on over heterogeneous catalysts. The activity, stability, and reusability of the heterogeneous catalysts in water are summarized, and deactivation processes and several strategies are introduced to improve the stability of heterogeneous catalysts in the aqueous phase. PMID:27158985

  11. Ultrasound promoted catalytic liquid-phase dehydrogenation of isopropanol for Isopropanol-Acetone-Hydrogen chemical heat pump.

    Science.gov (United States)

    Xu, Min; Xin, Fang; Li, Xunfeng; Huai, Xiulan; Liu, Hui

    2015-03-01

    The apparent kinetic of the ultrasound assisted liquid-phase dehydrogenation of isopropanol over Raney nickel catalyst was determined in the temperature range of 346-353 K. Comparison of the effects of ultrasound and mechanical agitation on the isopropanol dehydrogenation was investigated. The ultrasound assisted dehydrogenation rate was significantly improved when relatively high power density was used. Moreover, the Isopropanol-Acetone-Hydrogen chemical heat pump (IAH-CHP) with ultrasound irradiation, in which the endothermic reaction is exposure to ultrasound, was proposed. A mathematical model was established to evaluate its energy performance in term of the coefficient of performance (COP) and the exergy efficiency, into which the apparent kinetic obtained in this work was incorporated. The operating performances between IAH-CHP with ultrasound and mechanical agitation were compared. The results indicated that the superiority of the IAH-CHP system with ultrasound was present even if more than 50% of the power of the ultrasound equipment was lost.

  12. Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field.

    Science.gov (United States)

    Saba, T; Illangasekare, T H; Ewing, J

    2001-09-01

    Because of their low solubility, waste chemicals in the form of nonaqueous phase liquids (NAPLs) that are entrapped in subsurface formations act as long-term sources of groundwater contamination. In the design of remediation schemes that use surfactants, it is necessary to estimate the mass transfer rate coefficients under multi-dimensional flow fields that exit at field sites. In this study, we investigate mass transfer under a two-dimensional flow field to obtain an understanding of the basic mechanisms of surfactant-enhanced dissolution and to quantify the mass transfer rates. Enhanced dissolution experiments in a two-dimensional test cell were conducted to measure rates of mass depletion from entrapped NAPLs to a flowing aqueous phase containing a surfactant. In situ measurement of transient saturation changes using a gamma attenuation system revealed dissolution patterns that are affected by the dimensionality of the groundwater flow field. Numerical modeling of local flow fields that changed with time, due to depletion of NAPL sources, enabled the examination of the basic mechanisms of NAPL dissolution in complex groundwater systems. Through nonlinear regression analysis, mass transfer rates were correlated to porous media properties, NAPL saturation and aqueous phase velocity. Results from the experiments and numerical analyses were used to identify deficiencies in existing methods of analysis that uses assumptions of one-dimensional flow, homogeneity of aquifer properties, local equilibrium and idealized transient mass transfer. PMID:11530927

  13. Chemical studies on the treatment of hazardous liquid wastes by Two-phase transfer

    International Nuclear Information System (INIS)

    Phosphate fertilizers produced from phosphate industries are one of the main sources of cadmium and other heavy metals in agricultural soils. Wastewater produced from phosphate industries and released in the water streams is highly acidic and contaminated with heavy metals which have severe environmental impacts. Phosphoric acid produced from phosphate ores by wet process contains small amounts of uranium together with some heavy metals. The presence of heavy metals represent a nuclear poison for using uranium as nuclear fuel. Therefore, the extraction of these elements from phosphoric acid produced by this process is necessary for the recovery of high purity uranium. The extraction of these elements from phosphate medium is of major importance where phosphate solution is a common species in radioactive waste solutions. The main trends to remove these elements are to use precipitation, ion exchange and liquid-liquid extraction. 9 tabs., 64 figs., 113 refs

  14. Positronium in a Liquid Phase: Formation, Bubble State and Chemical Reactions

    Directory of Open Access Journals (Sweden)

    Sergey V. Stepanov

    2012-01-01

    Full Text Available The present approach describes the e+ fate since its injection into a liquid until its annihilation. Several stages of the e+ evolution are discussed: (1 energy deposition and track structure of fast positrons: ionization slowing down, number of ion-electron pairs, typical sizes, thermalization, electrostatic interaction between e+ and the constituents of its blob, and effect of local heating; (2 positronium formation in condensed media: the Ore model, quasifree Ps state, intratrack mechanism of Ps formation; (3 fast intratrack diffusion-controlled reactions: Ps oxidation and ortho-paraconversion by radiolytic products, reaction rate constants, and interpretation of the PAL spectra in water at different temperatures; (4 Ps bubble models. Inner structure of positronium (wave function, energy contributions, relationship between the pick-off annihilation rate and the bubble radius.

  15. Retention behavior of polycyclic aromatic hydrocarbons in supercritical fluid chromatography on a chemically bonded stationary phases based upon liquid-crystalline polymer

    Energy Technology Data Exchange (ETDEWEB)

    Gritti [Bordeaux I Univ., Pessac (France). INSCPB; Bordeaux I Univ., Pessac (France). CRPP; Felix, G. [Bordeaux I Univ., Pessac (France). INSCPB; Achard, M.F.; Hardouin, F. [Bordeaux I Univ., Pessac (France). CRPP

    2001-02-01

    The retention behavior of a set of polycyclic hydrocarbons in supercritical fluid chromatography have been studied on a chemically bonded stationary phase based upon a side chain liquid crystalline polymer (LCP) with carbon dioxide-based mobile phase. The effects of the mobile phase pressure, column temperature and amount of mobile phase organic modifier have been investigated in order to detect a possible structural change in the liquid crystal polymer linked to the silica support. The influence of these factors on the selectivity coefficients has also been studied. Two distinctive behaviors with temperature are noted at low pressure on the one hand and at higher pressure on the other. This change in behavior is based on the density of the supercritical CO{sub 2} and the PAH volatility rather than on any specific stationary phase structural change. Both lower mobile phase pressure and amount of mobile phase modifier are required to obtain better selectivities. Better planarity recognition is observed in SFC than in HPLC with these new bonded liquid crystal stationary phases. The bonded liquid crystal phase is only weakly affected by the addition of organic modifier in the supercritical CO{sub 2}. (orig.)

  16. Analysis of chemical warfare agents in organic liquid samples with magnetic dispersive solid phase extraction and gas chromatography mass spectrometry for verification of the chemical weapons convention.

    Science.gov (United States)

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud, Raghavender D; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-05-27

    A simple, sensitive and low temperature sample preparation method is developed for detection and identification of Chemical Warfare Agents (CWAs) and scheduled esters in organic liquid using magnetic dispersive solid phase extraction (MDSPE) followed by gas chromatography-mass spectrometry analysis. The method utilizes Iron oxide@Poly(methacrylic acid-co-ethylene glycol dimethacrylate) resin (Fe2O3@Poly(MAA-co-EGDMA)) as sorbent. Variants of these sorbents were prepared by precipitation polymerization of methacrylic acid-co-ethylene glycol dimethacrylate (MAA-co-EGDMA) onto Fe2O3 nanoparticles. Fe2O3@poly(MAA-co-EGDMA) with 20% MAA showed highest recovery of analytes. Extractions were performed with magnetic microspheres by MDSPE. Parameters affecting the extraction efficiency were studied and optimized. Under the optimized conditions, method showed linearity in the range of 0.1-3.0μgmL(-1) (r(2)=0.9966-0.9987). The repeatability and reproducibility (relative standard deviations (RSDs) %) were in the range of 4.5-7.6% and 3.4-6.2% respectively for organophosphorous esters in dodecane. Limits of detection (S/N=3/1) and limit of quantification (S/N=10/1) were found to be in the range of 0.05-0.1μgmL(-1) and 0.1-0.12μgmL(-1) respectively in SIM mode for selected analytes. The method was successfully validated and applied to the extraction and identification of targeted analytes from three different organic liquids i.e. n-hexane, dodecane and silicon oil. Recoveries ranged from 58.7 to 97.3% and 53.8 to 95.5% at 3μgmL(-1) and 1μgmL(-1) spiking concentrations. Detection of diethyl methylphosphonate (DEMP) and O-Ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) in samples provided by the Organization for Prohibition of Chemical Weapons Proficiency Test (OPCW-PT) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. PMID:27113675

  17. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    Directory of Open Access Journals (Sweden)

    Malik Anushree

    2010-11-01

    Full Text Available Abstract Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM/Atomic force microscopy (AFM and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita and eucalyptus (Eucalyptus globulus essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l was significantly higher than that in the vapour phase (32.7 mg/l and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%; α-citral or geranial (36.2% and β-citral or neral (26.5%, monoterpene hydrocarbons (7.9% and sesquiterpene hydrocarbons (3.8%. Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious

  18. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling...... but utilise in the case of fast chemical reactions only a small amount of expensive ionic liquid and catalyst. The novel Supported Ionic Liquid Phase (SILP) catalysis concept overcomes these drawbacks and allows the use of fixed-bed reactors for continuous reactions. In this Microreview the SILP catalysis...

  19. Advances in liquid phase technology

    Energy Technology Data Exchange (ETDEWEB)

    Jijin, P.J.A. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1997-12-31

    The liquid phase methanol (LPMEOH) process uses a slurry reactor to convert synthesis gas (primarily a mixture of hydrogen and carbon monoxide) to methanol. Through its superior heat management, the process is ultimately suitable to handle synthesis gas generated through gasification of natural gas and other materials, such as coal, petroleum coke, residual oil, wastes and other environmentally disadvantaged hydrocarbon feedstocks. Apart from production of chemical grade methanol, the process provides economic advantages in the Integrated Gasification Combined Cycle (IGCC) power generation application. Coproduction of power and methanol via the IGCC and the LPMEOH process provides opportunities for energy storage for peak-shaving of electrical demand and/or clean fuel for export. The LPMEOH technology has been developed since the 1980`s, extensively proven in a process development unit in LaPorte, Texas and elected for demonstration under The Clean Coal Technology Program. The slurry reactor being demonstrated is also suitable for other exothermic synthesis gas conversion reactions, like synthesis of Dimethyl Ether and other alcohols/oxygenates. This paper presents an overview of LPMEOH and other liquid phase technology aspects and highlights the demonstration project at Eastman Chemical Company`s coal gasification facility in Kingsport, Tennessee. Commercial aspects of the LPMEOH process are also discussed.

  20. Liquid phase chromatography on microchips.

    Science.gov (United States)

    Kutter, Jörg P

    2012-01-20

    Over the past twenty years, the field of microfluidics has emerged providing one of the main enabling technologies to realize miniaturized chemical analysis systems, often referred to as micro-Total Analysis Systems (uTAS), or, more generally, Lab-on-a-Chip Systems (LOC) [1,2]. While microfluidics was driven forward a lot from the engineering side, especially with respect to ink jet and dispensing technology, the initial push and interest from the analytical chemistry community was through the desire to develop miniaturized sensors, detectors, and, very early on, separation systems. The initial almost explosive development of, in particular, chromatographic separation systems on microchips, has, however, slowed down in recent years. This review takes a closer, critical look at how liquid phase chromatography has been implemented in miniaturized formats over the past several years, what is important to keep in mind when developing or working with separations in a miniaturized format, and what challenges and pitfalls remain.

  1. Advances in Liquid Phase{trademark} technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.R.; Heydorn, E.C.; Moore, R.B.; Tijm, P.J.A.

    1998-04-01

    The {open_quotes}Liquid Phase{trademark} Technology{close_quotes} builds on the successful development by Air Products and Chemicals, Inc. of the slurry phase bubble column technology. Air Products and Chemicals Liquid Phase{trademark} technology embodies several chemical processes including Liquid Phase Methanol{trademark} (LPMEOH{trademark}) and the Liquid Phase DiMethyl Ether{trademark} (LPDME{trademark}) and other alcohols/oxygenates. The LPMEOH{trademark} technology was developed during the 1980`s with the financial support of the U.S. Department of Energy (DOE). The concept was proven in over 7,400 hours of test operation in a DOE-owned, 3,200 gallons (U.S.) of methanol per day process development unit located at LaPorte, Texas. The first commercial-scale demonstration plant for the technology has been constructed, commissioned, and is now being operated at Eastman Chemical Company`s coal gasification facility in Kingsport, Tennessee under the DOE`s Clean Coal Technology Program. Construction began in October of 1995 and was completed in January of 1997. After commissioning and startup activities were completed, operation began in April of 1997. Currently, the LPMEOH{trademark} plant is producing 80,000 gallons of methanol per day. Over the next four years, a program of operation will demonstrate the commercial advantages of the technology to include simulations of the integrated gasification combined cycle (IGCC) coproduction of power and methanol application. Air Products and Eastman formed the {open_quotes}Air Products Liquid Phase Conversion Co., L.P.{close_quotes} partnership to execute the commercial-scale demonstration project. Most of the product methanol is refined to chemical-grade quality (99.85 wt% purity via distillation) and used by Eastman as chemical feedstock in the commercial facility. A portion of the product methanol will be withdrawn prior to purification (about 98 wt% purity) and used in off-site product-use tests.

  2. Advances in Liquid Phase{trademark} technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.R.; Heydorn, E.C.; Moore, R.B.; Tijm, P.J.A.

    1998-07-01

    The Liquid Phase{trademark} Technology builds on the successful development by Air Products and Chemicals, Inc. of the slurry phase bubble column technology. Air Products and Chemicals Liquid Phase{trademark} technology embodies several chemical processes including Liquid Phase Methanol{trademark} (LPMEOH{trademark}) and the Liquid Phase DiMethyl Ether{trademark} (LPDME{trademark}) and other alcohols/oxygenates. The LPMEOH{trademark} technology was developed during the 1980's with the financial support of the US department of Energy (DOE). The concept was proven in over 7,400 hours of test operation in a DOE-owned, 3,200 gallons (US) of methanol per day process development unit located at LaPorte, Texas. The first commercial-scale demonstration plant for the technology has been constructed, commissioned, and is now being operated at Eastman Chemical Company's coal gasification facility in Kingsport, Tennessee under the DOE's Clean Coal Technology Program. Construction began in October of 1995 and was completed in January of 1997. After commissioning and startup activities were completed, operation began in April of 1997. Currently, the LPMEOH{trademark} plant is producing 80,000 gallons of methanol per day. Over the next four years, a program of operation will demonstrate the commercial advantages of the technology to include simulations of the integrated gasification combined cycle (IGCC) coproduction of power and methanol application. This paper reviews the: Commercial Application for the LPMEOH{trademark} process technology; Operational Plans to demonstrate the commercial advantages of the plant; LPMEOH{trademark} Plant-Status, highlighting the integration of the LPMEOH{trademark} plant at Kingsport, and the accomplishments during the initial operating period; and Highlights of other Liquid Phase{trademark} Technology Developments.

  3. Liquid phase chromatography on microchips

    DEFF Research Database (Denmark)

    Kutter, Jörg Peter

    2012-01-01

    explosive development of, in particular, chromatographic separation systems on microchips, has, however, slowed down in recent years. This review takes a closer, critical look at how liquid phase chromatography has been implemented in miniaturized formats over the past several years, what is important...

  4. Liquid-Phase Adsorption Fundamentals.

    Science.gov (United States)

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  5. The influence of a non-aqueous phase liquid (NAPL) and chemical oxidant application on perfluoroalkyl acid (PFAA) fate and transport.

    Science.gov (United States)

    McKenzie, Erica R; Siegrist, Robert L; McCray, John E; Higgins, Christopher P

    2016-04-01

    One dimensional column experiments were conducted using saturated porous media containing residual trichloroethylene (TCE) to understand the effects of non-aqueous phase liquids (NAPLs) and chemical oxidation on perfluoroalkyl acid (PFAA) fate and transport. Observed retardation factors and data from supporting batch studies suggested that TCE provides additional sorption capacity that can increase PFAA retardation (i.e., decreased mobility), though the mechanisms remain unclear. Treatment with persulfate activated with FeCl2 and citric acid, catalyzed hydrogen peroxide (CHP), or permanganate did not result in oxidative transformations of PFAAs. However, impacts on PFAA sorption were apparent, and enhanced sorption was substantial in the persulfate-treated columns. In contrast, PFAA transport was accelerated in permanganate- and CHP-treated columns. Ultimately, PFAA transport in NAPL contaminated groundwater is likely influenced by porous media properties, NAPL characteristics, and water quality properties, each of which can change due to chemical oxidant treatment. For contaminated sites for which ISCO is a viable treatment option, changes to PFAA transport and the implications thereof should be included as a component of the remediation evaluation and selection process. PMID:26854608

  6. Chemical Corrosion of Liquid-Phase Sintered SiC in Acidic/Alkaline Solutions Part 1. Corrosion in HNO3 Solution

    Science.gov (United States)

    Zhang, Lei; Zhang, Ming; He, Xinnong; Tang, Wenming

    2016-03-01

    The corrosion behavior of the liquid-phase sintered SiC (LPS-SiC) was studied by dipping in 3.53 mol/L HNO3 aqueous solution at room temperature and 70 °C, respectively. The weight loss, strength reduction and morphology evolution of the SiC specimens during corroding were revealed and also the chemical corrosion process and mechanism of the SiC specimens in the acidic solution were clarified. The results show that the corrosion of the LPS-SiC specimens in the HNO3 solution is selective. The SiC particles are almost free from corrosion, but the secondary phases of BaAl2Si2O8 (BAS) and Y2Si2O7 are corroded via an acid-alkali neutralization reaction. BAS has a higher corrosion rate than Y2Si2O7, resulting in the formation of the bamboo-leaf-like corrosion pits. As the SiC specimens etched in the HNO3 solution at room temperature for 75 days, about 80 μm thickness corrosion layer forms. The weight loss and bending strength reduction of the etched SiC specimens are 2.6 mg/cm2 and 52%, respectively. The corrosion of the SiC specimens is accelerated in the 70 °C HNO3 solution with a rate about five times bigger than that in the same corrosion medium at room temperature.

  7. Cholesteric bonded stationary phases for high performance liquid chromatography II: synthesis, physico-chemical characterization and chromatographic behavior of a phospho-cholesteric bonded support. A new way to mimic drug/membrane interactions?

    OpenAIRE

    Courtois, Cédric; Allais, Christophe; Constantieux, Thierry; Rodriguez, Jean; Caldarelli, Stefano; Delaurent, Corinne

    2008-01-01

    International audience Among the various methods exploitable to deter- mine the bioavailability of drugs, reversed-phase liquid chromatography (RPLC) appears to be suited to creation of patterns of prediction. In this context a new stationary phase was designed in this work to reproduce, in terms of chemical structure, as accurately as possible, the main elements of cellular membranes; which include phospholipids and cho- lesterol molecules. An efficient synthetic pathway was developed to ...

  8. Mixed Stationary Liquid Phases for Gas-Liquid Chromatography.

    Science.gov (United States)

    Koury, Albert M.; Parcher, Jon F.

    1979-01-01

    Describes a laboratory technique for use in an undergraduate instrumental analysis course that, using the interpretation of window diagrams, prepares a mixed liquid phase column for gas-liquid chromatography. A detailed procedure is provided. (BT)

  9. Phase-field simulation of liquid phase migration in the WC-Co system during liquid phase sintering

    International Nuclear Information System (INIS)

    Liquid phase sintering is a process for forming high performance, multiple-phase components from powders. The process includes very complex interactions between various mass transportation phenomena, among which the liquid phase migration represents an important one in the aspect of forming a gradient structure in cemented carbide. In the present work, phase-field simulation of the liquid phase migration phenomenon during liquid phase sintering is performed in the WC-Co based cemented carbide. The simulation results are analyzed and compared with the experimentally determined key factors of microstructural evolution, such as contiguity and liquid phase migration rate. The diffusion-controlled solution-precipitation mechanism of the liquid phase migration process in the cemented carbide system is confirmed from the current simulation result, which provides deeper understanding of the microstructural evolution during the liquid phase migration process. These simulations can offer guidance in preventing the liquid phase migration process during liquid phase sintering of cellular cemented carbide.

  10. Phase-field simulation of liquid phase migration in the WC-Co system during liquid phase sintering

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kaiming; Zhang, Lijun; Du, Yong [Central South Univ., Changsha (China). State Key Lab. of Powder Metallurgy; Schwarze, Christian; Steinbach, Ingo [Bochum Univ. (Germany). Interdisciplinary Centre for Advanced Materials Simulation

    2016-04-15

    Liquid phase sintering is a process for forming high performance, multiple-phase components from powders. The process includes very complex interactions between various mass transportation phenomena, among which the liquid phase migration represents an important one in the aspect of forming a gradient structure in cemented carbide. In the present work, phase-field simulation of the liquid phase migration phenomenon during liquid phase sintering is performed in the WC-Co based cemented carbide. The simulation results are analyzed and compared with the experimentally determined key factors of microstructural evolution, such as contiguity and liquid phase migration rate. The diffusion-controlled solution-precipitation mechanism of the liquid phase migration process in the cemented carbide system is confirmed from the current simulation result, which provides deeper understanding of the microstructural evolution during the liquid phase migration process. These simulations can offer guidance in preventing the liquid phase migration process during liquid phase sintering of cellular cemented carbide.

  11. Ionic Liquids as Mobile Phase Additives for Separation of Nucleotides in High-Performance Liquid Chromatography

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Wen-Zhu(张文珠); HE,Li-Jun(何丽君); LIU,Xia(刘霞); JIANG,Sheng-Xiang(蒋生祥)

    2004-01-01

    Ionic liquids are a type of salts that are liquid at low temperature (< 100 ℃). Because of their some special properties, they have been widely used as new "green solvents" for many chemical reactions and liquid-liquid extraction in the past several years. In this paper, a new method for the separation of nucleotides is developed and the essential feature of the method is that 1-alkyl-3-methylimidazolium salts are used as mobile phase additives, resulting in a baseline separation of nucleotides without need of gradient elution and need of organic solvent addition as currently used in RP-HPLC. This study shows the potential application of ionic liquids as mobile phase additives in reversed-phase liquid chromatography.

  12. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.;

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  13. Randomized Grain Boundary Liquid Crystal Phase

    Science.gov (United States)

    Chen, D.; Wang, H.; Li, M.; Glaser, M.; Maclennan, J.; Clark, N.

    2012-02-01

    The formation of macroscopic, chiral domains, in the B4 and dark conglomerate phases, for example, is a feature of bent-core liquid crystals resulting from the interplay of chirality, molecular bend and molecular tilt. We report a new, chiral phase observed in a hockey stick-like liquid crystal molecule. This phase appears below a smectic A phase and cools to a crystal phase. TEM images of the free surface of the chiral phase show hundreds of randomly oriented smectic blocks several hundred nanometers in size, similar to those seen in the twist grain boundary (TGB) phase. However, in contrast to the TGB phase, these blocks are randomly oriented. The characteristic defects in this phase are revealed by freeze-fracture TEM images. We will show how these defects mediate the randomized orientation and discuss the intrinsic mechanism driving the formation of this phase. This work is supported by NSF MRSEC Grant DMR0820579 and NSF Grant DMR0606528.

  14. Evaluation of hydrodynamic factors on flow accelerated corrosion in gas-liquid two phase flow and construction of equation for mass transfer coefficient. Part 4. Effect of hydrodynamic and water chemical factors on flow accelerated corrosion in two phase flow

    International Nuclear Information System (INIS)

    Flow accelerated corrosion (FAC) experiments under water-steam two phase flow are performed to understand the effects of liquid film thickness and temperature, pH on thinning rate. The effects of temperature and pH on the thinning rates are almost the same as that of the prediction model of thinning rate of FAC under two phase flow. However, the effect of film thickness is different from the prediction model, so that it is suggested that the prediction model should improve the effect of film thickness. And then, these experimental results are compared with prediction thinning rates. These prediction thinning rates are higher than that of experiment rates when the water is alkali by ammonia and liquid film thickness is thin. It is suggested that the prediction model is improved and the accuracy of pH in liquid film is improved. (author)

  15. Liquid-Liquid Phase Transition in Nanoconfined Silicon Carbide.

    Science.gov (United States)

    Wu, Weikang; Zhang, Leining; Liu, Sida; Ren, Hongru; Zhou, Xuyan; Li, Hui

    2016-03-01

    We report theoretical evidence of a liquid-liquid phase transition (LLPT) in liquid silicon carbide under nanoslit confinement. The LLPT is characterized by layering transitions induced by confinement and pressure, accompanying the rapid change in density. During the layering transition, the proportional distribution of tetracoordinated and pentacoordinated structures exhibits remarkable change. The tricoordinated structures lead to the microphase separation between silicon (with the dominant tricoordinated, tetracoordinated, and pentacoordinated structures) and carbon (with the dominant tricoordinated structures) in the layer close to the walls. A strong layer separation between silicon atoms and carbon atoms is induced by strong wall-liquid forces. Importantly, the pressure confinement phase diagram with negative slopes for LLPT lines indicates that, under high pressure, the LLPT is mainly confinement-induced, but under low pressure, it becomes dominantly pressure-induced.

  16. Measurement of vapor-liquid-liquid phase equilibrium-Equipment and results

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; von Solms, Nicolas; Richon, Dominique;

    2015-01-01

    There exists a need for new accurate and reliable experimental data, preferably with full characterization of all the phases present in equilibrium. The need for high-quality experimental phase equilibrium data is the case for the chemical industry in general. All areas deal with processes whose...... optimization is dependent on phase equilibrium data.The objective of this work is to provide experimental data for hydrocarbon systems with polar chemicals such as alcohols, glycols and water. A new experimental equipment was designed and constructed for measurement of multi-phase equilibrium in hydrocarbon......-water-gas hydrate inhibitor systems, at temperatures ranging from 283 to 353 K and at pressures up to 40 MPa. The core of the equipment is an equilibrium cell, equipped with sapphire windows and connected to an analytical system by capillary samplers.New vapor-liquid-liquid equilibrium data are reported for methane...

  17. Energy partitioning in polyatomic chemical reactions: Quantum state resolved studies of highly exothermic atom abstraction reactions from molecules in the gas phase and at the gas-liquid interface

    Science.gov (United States)

    Zolot, Alexander M.

    This thesis recounts a series of experiments that interrogate the dynamics of elementary chemical reactions using quantum state resolved measurements of gas-phase products. The gas-phase reactions F + HCl → HF + Cl and F + H2O → HF + OH are studied using crossed supersonic jets under single collision conditions. Infrared (IR) laser absorption probes HF product with near shot-noise limited sensitivity and high resolution, capable of resolving rovibrational states and Doppler lineshapes. Both reactions yield inverted vibrational populations. For the HCl reaction, strongly bimodal rotational distributions are observed, suggesting microscopic branching of the reaction mechanism. Alternatively, such structure may result from a quantum-resonance mediated reaction similar to those found in the well-characterized F + HD system. For the H2O reaction, a small, but significant, branching into v = 2 is particularly remarkable because this manifold is accessible only via the additional center of mass collision energy in the crossed jets. Rotationally hyperthermal HF is also observed. Ab initio calculations of the transition state geometry suggest mechanisms for both rotational and vibrational excitation. Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic jet of F atoms with liquid squalane (C30H62), a low vapor pressure hydrocarbon compatible with the high vacuum environment. IR spectroscopy provides absolute HF( v,J) product densities and Doppler resolved velocity component distributions perpendicular to the surface normal. Compared to analogous gas-phase F + hydrocarbon reactions, the liquid surface is a more effective "heat sink," yet vibrationally excited populations reveal incomplete thermal accommodation with the surface. Non-Boltzmann J-state populations and hot Doppler lineshapes that broaden with HF excitation indicate two competing scattering mechanisms: (i) a direct reactive scattering channel

  18. Application of Ionic Liquids in High Performance Reversed-Phase Chromatography

    Directory of Open Access Journals (Sweden)

    Wentao Bi

    2009-06-01

    Full Text Available Ionic liquids, considered “green” chemicals, are widely used in many areas of analytical chemistry due to their unique properties. Recently, ionic liquids have been used as a kind of novel additive in separation and combined with silica to synthesize new stationary phase as separation media. This review will focus on the properties and mechanisms of ionic liquids and their potential applications as mobile phase modifier and surface-bonded stationary phase in reversed-phase high performance liquid chromatography (RP-HPLC. Ionic liquids demonstrate advantages and potential in chromatographic field.

  19. Phase separation in transparent liquid-liquid miscibility gap systems

    International Nuclear Information System (INIS)

    A program to be carried out on transparent liquid-phase miscibility gap materials was developed for the purpose of acquiring additional insight into the separation process occurring in these systems. The transparency feature allows the reaction to be viewed directly through light scattering and holographic methods

  20. Phase separation in transparent liquid-liquid miscibility gap systems

    Science.gov (United States)

    Gelles, S. H.; Bhat, B. N.; Laub, R. J.

    1979-01-01

    A program to be carried out on transparent liquid-phase miscibility gap materials was developed for the purpose of acquiring additional insight into the separation process occurring in these systems. The transparency feature allows the reaction to be viewed directly through light scattering and holographic methods.

  1. Phase separation kinetics in immiscible liquids

    Science.gov (United States)

    Ng, Lee H.; Sadoway, Donald R.

    1987-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by iamging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  2. The Instanton-Dyon Liquid Model III: Finite Chemical Potential

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2016-01-01

    We discuss an extension of the instanton-dyon liquid model that includes light quarks at finite chemical potential in the center symmetric phase. We develop the model in details for the case of SU_c(2)\\times SU_f(2) by mapping the theory on a 3-dimensional quantum effective theory. We analyze the different phases in the mean-field approximation. We extend this analysis to the general case of SU_c(N_c)\\times SU_f(N_f) and note that the chiral and diquark pairings are always comparable.

  3. Liquid gas phase transition in hypernuclei

    CERN Document Server

    Mallik, S

    2016-01-01

    The fragmentation of excited hypernuclear system formed in heavy ion collisions has been described by the canonical thermodynamical model extended to three component systems. The multiplicity distribution of the fragments has been analyzed in detail and it has been observed that the hyperons have the tendency to get attached to the heavier fragments. Another important observation is the phase coexistence of the hyperons, a phenomenon which is linked to liquid gas phase transition in strange matter.

  4. Rapid Chemical Ordering in Supercooled Liquid Cu46Zr54

    Energy Technology Data Exchange (ETDEWEB)

    Wessels, Victor [ETH Zurich, Switzerland; Gangopadhyay, Anup [Washington University, St. Louis; Sahu, K. K. [Washington University, St. Louis; Hyers, R. W. [University of Massachusetts, Amherst; Canepari, S. M. [University of Massachusetts, Amherst; Rogers, J. R. [NASA Marshall Space Flight Center, Huntsville, AL; Kramer, Matthew J. [Ames Laboratory; Goldman, Alan [Ames Laboratory and Iowa State University; Robinson, D. [Ames Laboratory and Iowa State University; Lee, Jae W [ORNL; Morris, James R [ORNL; Kelton, K. F. [Washington University, St. Louis

    2011-01-01

    Evidence for abrupt chemical ordering in a supercooled Cu46Zr54 liquid, obtained from high energy x-ray diffraction in a containerless processing environment, is presented. Relatively sudden changes were observed in the topological and chemical short-range order near 850oC, a temperature significantly below the liquidus and above the glass transition temperatures. A peak in the specific heat was observed with supercooling, with an onset near 850oC, the same temperature as the onset of chemical ordering, and a maximum near 700oC, consistent with the prediction of a molecular dynamics calculation using embedded atom potentials. The dominant short-range order below 850oC is incompatible with that of the primary crystallizing phases. This, and the possible development of strongly bonded, chemically ordered clustersmay explain unlikely bulk metallic glass formation in Cu-Zr and other binary alloys.

  5. Identification of chemical compounds in a liquid-liquid extraction system

    International Nuclear Information System (INIS)

    The objective of the present work is to identify the chemical compounds that are distributed in a liquid-liquid extraction system in which the third phase is observed; for this purpose the FeCl3 (0.12M) - HCl (8.43M) - Diisopropilic ether - system was used, for the quantitative determination of the chemical compounds, FeCl3 solutions labelled with 59Fe or witH 38Cl were used; the Karl Fischer method for the determination of the water concentration at the organic phases was used, the obtained data was used for the calculations of the H+ distribution in each phase. The results are that when the distribution equilibrium is reached, the aqueous phase is a 7.5M HCl solution; the light organic phase contains 2 H[FeCl4].6H2O and the dense organic phase contains 2 H[FeCl4].6H2O.3HCl.12H2O. The differences between these compounds are due to a high concentration of water and the HCl in the organic solvent. This causes a heterogeneous physic field, and then the third phase formation. (author)

  6. Liquid-liquid phase separation in aerosol particles: imaging at the nanometer scale.

    Science.gov (United States)

    O'Brien, Rachel E; Wang, Bingbing; Kelly, Stephen T; Lundt, Nils; You, Yuan; Bertram, Allan K; Leone, Stephen R; Laskin, Alexander; Gilles, Mary K

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission X-ray microscopy (STXM) to investigate the LLPS of micrometer-sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), α, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH's above the deliquescence point and that the majority of the organic component was located in the outer phase. The outer phase composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 70:30% organic to inorganic mix in the outer phase. These two chemical imaging techniques are well suited for in situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  7. Quasi-chemical Theories of Associated Liquids

    CERN Document Server

    Pratt, L R; Pratt, Lawrence R.; Violette, Randall A. La

    1998-01-01

    It is shown how traditional development of theories of fluids based upon the concept of physical clustering can be adapted to an alternative local clustering definition. The alternative definition can preserve a detailed valence description of the interactions between a solution species and its near-neighbors, i.e., cooperativity and saturation of coordination for strong association. These clusters remain finite even for condensed phases. The simplest theory to which these developments lead is analogous to quasi-chemical theories of cooperative phenomena. The present quasi-chemical theories require additional consideration of packing issues because they don't impose lattice discretizations on the continuous problem. These quasi-chemical theories do not require pair decomposable interaction potential energy models. Since calculations may be required only for moderately sized clusters, we suggest that these quasi-chemical theories could be implemented with computational tools of current electronic structure the...

  8. Centrifugal Liquid/Gas Separator With Phase Detectors

    Science.gov (United States)

    Schneider, Steven J.

    1994-01-01

    Centrifugal liquid/gas separator that includes phase (liquid or gas) detectors helps ensure exclusiveness of each phase at its assigned outlet. Acoustic sensors in centrifugal liquid/gas separator measure speeds of sound in nominally pure liquid and nominally pure gas at liquid and gas outlets respectively. When speed of sound is that of pure liquid or gas, valve opens to let liquid or gas flow out.

  9. On the phase-field modelling of a miscible liquid/liquid boundary.

    Science.gov (United States)

    Xie, Ruilin; Vorobev, Anatoliy

    2016-02-15

    Mixing of miscible liquids is essential for numerous processes in industry and nature. Mixing, i.e. interpenetration of molecules through the liquid/liquid boundary, occurs via interfacial diffusion. Mixing can also involve externally or internally driven hydrodynamic flows, and can lead to deformation or disintegration of the liquid/liquid boundary. At the moment, the mixing dynamics remains poorly understood. The classical Fick's law, generally accepted for description of the diffusion process, does not explain the experimental observations, in particular, the recent experiments with dissolution of a liquid solute by a liquid solvent within a horizontal capillary (Stevar and Vorobev, 2012). We present the results of the numerical study aimed at development of an advanced model for the dissolution dynamics of liquid/liquid binary mixtures. The model is based on the phase-field (Cahn-Hilliard) approach that is used as a physics-based model for the thermo- and hydrodynamic evolution of binary mixtures. Within this approach, the diffusion flux is defined through the gradient of chemical potential, and, in particular, includes the effect of barodiffusion. The dynamic interfacial stresses at the miscible interface are also taken into account. The simulations showed that such an approach can accurately reproduce the shape of the solute/solvent boundary, and some aspects of the diffusion dynamics. Nevertheless, all experimentally-observed features of the diffusion motion of the solute/solvent boundary, were not reproduced. PMID:26609922

  10. Solid drop based liquid-phase microextraction.

    Science.gov (United States)

    Ganjali, Mohammad Reza; Sobhi, Hamid Reza; Farahani, Hadi; Norouzi, Parviz; Dinarvand, Rassoul; Kashtiaray, Amir

    2010-04-16

    Solid drop based liquid-phase microextraction (SDLPME) is a novel sample preparation technique possessing obvious advantages of simple operation with a high pre-concentration factor, low cost and low consumption of organic solvent. SDLPME coupled with gas chromatography (GC), high-performance liquid chromatography (HPLC), and atomic absorption spectrometry (AAS) has been widely applied to the analyses of a different variety of samples. The basic principles, parameters affecting the extraction efficiency, and the latest applications of SDLPME are reviewed in this article. PMID:19962710

  11. Gas-phase chemical dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  12. Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Charles J Werth; Albert J Valocchi, Hongkyu Yoon

    2011-05-21

    Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

  13. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, Mark Jay [University of Michigan

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  14. Phase transformation and liquid density redistribution during solidification of Ni-based superalloy Inconel 718

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2012-08-01

    Full Text Available The influences of chemical segregation and phase transformation on liquid density variation during solidification of Ni-based supperalloy Inconel 718 were investigated using SEM and EDS. It was found that significant segregation in liquid prompts high Nb phase to precipitate directly from liquid, which results in the redistribution of alloy elements and liquid density in their vicinity. The term “inter-precipitate liquid density” is therefore proposed and this concept should be applied to determine the solidification behavior of superalloy Inconel 718.

  15. LIQUID PHASE FLOW ESTIMATION IN GAS-LIQUID TWO-PHASE FLOW USING INVERSE ANALYSIS AND PARTICLE TRACKING VELOCIMETRY

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen; MURAI Yuichi; SASAKI Toshio; YAMAMOTO Fujio

    2004-01-01

    An inverse analysis algorithm is proposed for estimating liquid phase flow field from measurement data of bubble motion. This kind of technology will be applied in future for various estimation of fluid flow in rivers, lakes, sea surface flow, and also microscopic channel flow as the problem-handling in civil, mechanical, electronic, and chemical engineering. The relationship between the dispersion motion and the carrier phase flow is governed and expressed by the translational motion equation of spherical dispersion. The equation consists of all the force components including inertia, added inertia, drag, lift, pressure gradient force and gravity force. Using this equation enables us to estimate the carrier phase flow structure using only the data of the dispersion motion. Whole field liquid flow structure is also estimated using spatial or temporal interpolation method. In order to verify this principle, the Taylor-Green vortex flow, and the Karman vortex shedding from a square cylinder have been chosen. The results show that the combination of the inverse analysis and Particle Tracking Velocimetry (PTV) with the spatio-temporal post-processing algorithm could reconstruct well the carrier phase flow of the gas-liquid two-phase flow.

  16. Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions.

    Science.gov (United States)

    Cech, Jiří; Přibyl, Michal; Snita, Dalimil

    2013-01-01

    Here, we introduce a solution to low stability of a two-phase slug flow with a chemical reaction occurring at the phase interface in a microfluidic reactor where substantial merging of individual reacting slugs results in the loss of uniformity of the flow. We create a three-phase slug flow by introducing a third fluid phase into the originally two-phase liquid-liquid slug flow, which generates small two-phase liquid slugs separated by gas phase. Introduction of the third phase into our system efficiently prevents merging of slugs and provides beneficial reaction conditions, such as uniform flow pattern along the whole reaction capillary, interfacial area with good reproducibility, and intensive water-oil interface renewal. We tested the three-phase flow on an enzyme hydrolysis of soybean oil and compared the reaction conversion with those from unstable two-phase slug flows. We experimentally confirmed that the three-phase slug flow arrangement provides conversions and pressure drops comparable or even better with two-phase liquid-liquid arrangements.

  17. Distribution of Pb and its chemical fractions in liquid and solid phases of digested pig and dairy slurries%猪、奶牛粪厌氧发酵中Pb的形态转化及其分布特征

    Institute of Scientific and Technical Information of China (English)

    靳红梅; 付广青; 常志州; 叶小梅

    2013-01-01

    Anaerobic digestion treatment effectively degrades the organic matter and causes obvious variations in physical and chemical properties of digested slurries, such as water content, pH, oxidation reduction potential and microbial activities. These changes may influence the chemical fraction of Pb, which is a critical factor in predicting its toxicity, environmental mobility, bioavailability and optimum removal methods. The speciation and phytotoxic effects of lead from sewage sludge and composted manure have been widely studied. There has been no study about the transfer and distribution of Pb during anaerobic digestion of manure slurries. The aim of the present work was to analyze the distribution of Pb in both liquid and solid phase after anaerobic digestion of pig slurries and dairy slurries, and their chemical speciation in solid fraction of digested residuals. The continuous stirred tank reactor (CSTR) at condition of medium temperature [(37 ± 2)℃] was operated for 130 d. Lead in liquid and solid phases of raw materials and digested slurries was analyzed by first passing through a 0.45 µm filter paper. The chemical fractions in digested slurry solids were extracted by BCR method. Results showed that total amount of Pb was decreased 70% and 19% in digested pig slurries (DPS) and dairy slurries (DDS), respectively, , compared with raw slurries. The percentages of Pb in liquid fractions of DPS and DDS were 29%and 17%, which decreased by 17%and 58%. The decrease of Pb in DDS was significantly lower than that in DPS. One reason is that 90%of solids in DDS were discharged during the anaerobic digestion. Another reason is that Pb in digested slurries mainly exists as the solid form. Thus the amount of Pb left in the reactor for dairy manure digestion was significantly lower than that for pig manure digest. Due to the high removal efficiency, easy operation and low treatment cost of heavy metals in solid phase, transformation of liquid phase of heavy metals to the

  18. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  19. Advanced gas-to-liquids processes for syngas and liquid-phase conversion

    Energy Technology Data Exchange (ETDEWEB)

    Foster, E.P.; Tijm, P.J.A.; Bennett, D.L. [Air Products and Chemicals, Inc., Allentown (United States)

    1998-12-31

    Conventional technology options may lead to commercially viable gas-to-liquids (GTL) projects which are very large, have favorable site specific factors or very low natural gas costs. New and lower cost technology will be required to enable GTL, to be broadly useful for remote gas monetization as a liquid fuel. Air Products and Chemicals, Inc. is currently developing two separate technologies which would result in a significant reduction in the capital investment required for GTL, product plants. ITM Syngas is one of Air Products proprietary syngas technologies. It is in the early stages of development, but has the potential for very significant reductions in the cost of syngas, an important intermediate for GTL production. Air Products, along with its partners, have recently been selected by the U.S. Department of Energy (DOE) for an $85MM, three phase program to develop this ITM Syngas technology. The program will take eight years and culminate in a 15,000,000 SCFD pre-commercial syngas demonstration plant. In addition to ITM Syngas, in April 1997 Air Products started up a commercial scale Liquid Phase Methanol (LPMEOH) plant which converts coal derived syngas to methanol using a slurry bubble column reactor. This technology is expected to reduce the cost of liquid synthesis. It also produces an environmentally superior alternative fuel and/or chemical feedstocks. 7 refs.

  20. Production of biofuels and chemicals with ionic liquids

    CERN Document Server

    Fang, Zhen; Qi, Xinhua

    2013-01-01

    This book explores the application of ionic liquids to biomass for producing biofuels and chemicals. Covers pretreatment, fermentation, cellulose transformation, reaction kinetics and more, as well as subsequent production of biofuels and platform chemicals.

  1. Chemical treatment of radioactive liquid wastes from medical applications

    International Nuclear Information System (INIS)

    This work is a study about the treatment of the most important radioactive liquid wastes from medical usages, generated in medical institutions with nuclear medicine services. The radionuclides take in account are 32 P, 35 S, 125 I. The treatments developed and improved were specific chemical precipitations for each one of the radionuclides. This work involve to precipitate the radionuclide from the liquid waste, making a chemical compound insoluble in the aqueous phase, for this process the radionuclide stay in the precipitate, lifting the aqueous phase with a very low activity than the begin. The 32 P precipitated in form of Ca332 P O4 and Ca2 H 32 P O4 with a value for Decontamination Factor (DF) at the end of the treatment of 32. The 35 S was precipitated in form of Ba35 SO4 with a DF of 26. The 125 I was precipitated in Cu 125 I to obtain a DF of 24. The results of the treatments are between the limits given for the International Atomic Energy Agency and the 10 Code of Federal Regulation 20, for the safety release at the environment. (Author)

  2. Liquid-Liquid-Liquid Three Phase Extraction Apparatus: Operation Strategy and Influences on Mass Transfer Efficiency

    Institute of Scientific and Technical Information of China (English)

    何秀琼; 黄昆; 于品华; 张超; 谢铿; 李鹏飞; 王娟; 安震涛; 刘会洲

    2012-01-01

    Abstract A new mixer-settler-mixer three chamber integrated extractor is proposed in this work for liquid-liquid- liquid three phase countercurrent and continuous extraction. Experiments revealed the influences of the structural design of the three-liquid-phase extractor and some key operational parameters on three-phase partition of two phenolic isomers, p-nitrophenol (p-NP) and o-nitrophenol (o-NP). The model three-liquid-phase extraction system used here is nonane (organic top-plaase)-polyethylene glycol (PEG 20UU) (polymer mlddle-phase)-(NH4)2SO4 aqueous solution (aqueous bottom-phase). It is indicated that agitating speed and retention time in three-phase mixer are key parameters to extraction fraction of nitrophenol. Dispersion band behavior is related to agitating intensity, and its occurrence does not affect the extraction fraction of target compounds. The present work highlights the possibility of a feasible approach of scaling up of the proposed three-phase extraction apparatus for future in- dustrial-aimed applications.

  3. Investigating materials formation with liquid-phase and cryogenic TEM

    Science.gov (United States)

    de Yoreo, J. J.; N. A. J. M., Sommerdijk

    2016-08-01

    The recent advent of liquid-phase transmission electron microscopy (TEM) and advances in cryogenic TEM are transforming our understanding of the physical and chemical mechanisms underlying the formation of materials in synthetic, biological and geochemical systems. These techniques have been applied to study the dynamic processes of nucleation, self-assembly, crystal growth and coarsening for metallic and semiconductor nanoparticles, (bio)minerals, electrochemical systems, macromolecular complexes, and organic and inorganic self-assembling systems. New instrumentation and methodologies that are currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  4. Part-per-trillion level determination of antifouling pesticides and their byproducts in seawater samples by off-line solid-phase extraction followed by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Martínez, K; Ferrer, I; Barceló, D

    2000-05-19

    A new method for the simultaneous determination of antifouling pesticides and some of their byproducts such as dichlofluanid, diuron and its byproducts [demethyldiuron and 1-(3,4-dichlorophenyl)urea], (2-thiocyanomethylthio)ben: zothiazole, chlorothalonil, Sea-nine 211, Irgarol 1051 and one of its byproducts (2-methylthio-4-tert.-butylamino-s-triazine) in seawater was developed. The extraction of these compounds from the filtered seawater samples was performed off-line with different solid-phase extraction sorbents using (I) a 500 mg graphitized carbon black cartridge (ENVI-Carb) and (II) 200 mg polymeric cartridges (LiChrolut EN and Isolute ENV+) and passing 500 ml of the sample through these cartridges. The detection was carried out by reversed-phase high-performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry both in the negative and positive ion modes. The recovery ranged from 76 to 96% for the whole antifouling group with the ENVI-Carb cartridges and the detection limit was at the part-per-trillion level except for TCMTB. The method utilizing the polymeric cartridge proved to be very useful, time saving and with good recoveries when only Irgarol and its byproduct, Sea-nine 211 and diuron and its byproducts, have to be analyzed. The different cartridges were applied to the analysis of these pesticides in different marinas of the Catalan coast; diuron, dichlofluanid, Sea-nine 211, Irgarol as well as demethyldiuron and the Irgarol byproduct being the must ubiquitous pollutants. Maximum concentration levels were 2-3.5 microg/l of diuron and Sea-nine 211, respectively. PMID:10870693

  5. Receptors useful for gas phase chemical sensing

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, Justyn W; Lee, Seung-Wuk; Majumdar, Arunava; Raorane, Digvijay A

    2015-02-17

    The invention provides for a receptor, capable of binding to a target molecule, linked to a hygroscopic polymer or hydrogel; and the use of this receptor in a device for detecting the target molecule in a gaseous and/or liquid phase. The invention also provides for a method for detecting the presence of a target molecule in the gas phase using the device. In particular, the receptor can be a peptide capable of binding a 2,4,6-trinitrotoluene (TNT) or 2,4,-dinitrotoluene (DNT).

  6. The status of research on CFD-PBM simulation of liquid-liquid two-phase flow in extraction columns

    International Nuclear Information System (INIS)

    Computational fluid dynamics (CFD) simulation has gained more and more interest in the chemical engineering researchers and is becoming a useful tool for the chemical engineering research. The research on liquid-liquid two-phase flow CFD simulation in extraction columns is now in its initial stage. There is much work to do for the developing of this research field. The purpose of this article is to review the CFD simulation methods for two-phase flow in extraction column. The population balance model (PBM) is detailedly described in this article because it is the main method used in the two-phase flow CFD simulation currently. Then some examples for the two-phase flow simulation in extraction columns are briefly introduced. The strategy for the research on CFD simulation of two-phase flow in extraction columns is suggested at last. (authors)

  7. Distribution of Pb and its chemical fractions in liquid and solid phases of digested pig and dairy slurries%猪、奶牛粪厌氧发酵中Pb的形态转化及其分布特征

    Institute of Scientific and Technical Information of China (English)

    靳红梅; 付广青; 常志州; 叶小梅

    2013-01-01

    Anaerobic digestion treatment effectively degrades the organic matter and causes obvious variations in physical and chemical properties of digested slurries, such as water content, pH, oxidation reduction potential and microbial activities. These changes may influence the chemical fraction of Pb, which is a critical factor in predicting its toxicity, environmental mobility, bioavailability and optimum removal methods. The speciation and phytotoxic effects of lead from sewage sludge and composted manure have been widely studied. There has been no study about the transfer and distribution of Pb during anaerobic digestion of manure slurries. The aim of the present work was to analyze the distribution of Pb in both liquid and solid phase after anaerobic digestion of pig slurries and dairy slurries, and their chemical speciation in solid fraction of digested residuals. The continuous stirred tank reactor (CSTR) at condition of medium temperature [(37 ± 2)℃] was operated for 130 d. Lead in liquid and solid phases of raw materials and digested slurries was analyzed by first passing through a 0.45 µm filter paper. The chemical fractions in digested slurry solids were extracted by BCR method. Results showed that total amount of Pb was decreased 70% and 19% in digested pig slurries (DPS) and dairy slurries (DDS), respectively, , compared with raw slurries. The percentages of Pb in liquid fractions of DPS and DDS were 29%and 17%, which decreased by 17%and 58%. The decrease of Pb in DDS was significantly lower than that in DPS. One reason is that 90%of solids in DDS were discharged during the anaerobic digestion. Another reason is that Pb in digested slurries mainly exists as the solid form. Thus the amount of Pb left in the reactor for dairy manure digestion was significantly lower than that for pig manure digest. Due to the high removal efficiency, easy operation and low treatment cost of heavy metals in solid phase, transformation of liquid phase of heavy metals to the

  8. Thermomorphic phase separation in ionic liquid-organic liquid systems - conductivity and spectroscopic characterization

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Berg, Rolf W.;

    2005-01-01

    Electrical conductivity, FT-Raman and NMR measurements are demonstrated as useful tools to probe and determine phase behavior of thermomorphic ionic liquid-organic liquid systems. To illustrate the methods, consecutive conductivity measurements of a thermomorphic methoxyethoxyethyl-imidazolium io...... of the components in the system, the liquid-liquid equilibrium phase diagram of the binary mixture, and signify the importance of hydrogen bonding between the ionic liquid and the hydroxyl group of the alcohol....

  9. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Site (SRS), Aiken, SC (United States); Occhipinti, J. [Savannah River Site (SRS), Aiken, SC (United States); Shah, H. [Savannah River Site (SRS), Aiken, SC (United States); Wilmarth, B. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, R. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  10. Evaluation of mercury in liquid waste processing facilities - Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Site (SRS), Aiken, SC (United States); Occhipinti, J. E. [Savannah River Site (SRS), Aiken, SC (United States); Shah, H. [Savannah River Site (SRS), Aiken, SC (United States); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, R. E. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  11. Study on Liquid-Phase Axial Dispersion in Converging Taper Liquid-Solid Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fiuidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.

  12. Dynamics of transient metastable states in mixtures under coupled phase ordering and chemical demixing

    OpenAIRE

    Soulé, Ezequiel R.; Rey, Alejandro D.

    2013-01-01

    We present theory and simulation of simultaneous chemical demixing and phase ordering in a polymer-liquid crystal mixture in conditions where isotropic-isotropic phase separation is metastable with respect to isotropic-nematic phase transition. In the case the mechanism is nucleation and growth, it is found that mesophase growth proceeds by a transient metastable phase that surround the ordered phase, and whose lifetime is a function of the ratio of diffusional to orientational mobilities. In...

  13. RESEARCH ON METHOD TO CALCULATE VELOCITIES OF SOLID PHASE AND LIQUID PHASE IN DEBRIS FLOW

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction,then general equations of velocities of solid phase and liquid phase were founded in twophase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.

  14. Simulation of phase separation in quiescent and sheared liquids

    NARCIS (Netherlands)

    Thakre, Amol Kumar

    2008-01-01

    In this thesis we report on molecular dynamics simulations of phase separation of simple and complex binary liquids in sheared and non-sheared systems. The separation of milk into liquid whey and solid curd is a very common example of phase separation observed in daily life. The phenomenon finds its

  15. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...

  16. Preliminary investigation of liquid phase sintering in ferrous systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.

    1975-04-01

    Liquid phase sintering was utilized to achieve, by a simple compaction and sintering procedure involving short times and moderate temperatures, a virtually full dense high carbon Fe:C alloy and high boron Fe:B alloy. Parameters such as powder characteristics and mixing, compacting pressure, heating program and the liquid phase fraction were found to influence the sintered density. The response of the Fe:C alloy to a heat treatment is reported along with preliminary experiments in the iron base ternary system Fe:W:C. Residual porosities observed in microstructures of certain liquid phase sintered compacts were accounted for by a proposed capillary flow of the liquid phase and a local densification competing against an overall densification. Some general recommendations are made for liquid phase sintering of powder aggregates. 15 fig., 7 tables.

  17. Retention mechanism for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography with monomeric stationary phases.

    Science.gov (United States)

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2011-12-23

    Reversed-phase liquid chromatography (RPLC) is the foremost technique for the separation of analytes that have very similar chemical functionalities, but differ only in their molecular shape. This ability is crucial in the analysis of various mixtures with environmental and biological importance including polycyclic aromatic hydrocarbons (PAHs) and steroids. A large amount of effort has been devoted to studying this phenomenon experimentally, but a detailed molecular-level description remains lacking. To provide some insight on the mechanism of shape selectivity in RPLC, particle-based simulations were carried out for stationary phases and chromatographic parameters that closely mimic those in an experimental study by Sentell and Dorsey [J. Chromatogr. 461 (1989) 193]. The retention of aromatic hydrocarbons ranging in size from benzene to the isomeric PAHs of the formula C(18)H(12) was examined for model RPLC systems consisting of monomeric dimethyl octadecylsilane (ODS) stationary phases with surface coverages ranging from 1.6 to 4.2 μmol/m(2) (i.e., stationary phases yielding low to intermediate shape selectivity) in contact with a 67/33 mol% acetonitrile/water mobile phase. The simulations show that the stationary phase acts as a very heterogeneous environment where analytes with different shapes prefer different spatial regions with specific local bonding environments of the ODS chains. However, these favorable retentive regions cannot be described as pre-existing cavities because the chain conformation in these local stationary phase regions adapts to accommodate the analytes.

  18. Advances in chemical physics advances in liquid crystals

    CERN Document Server

    Prigogine, Ilya; Vij, Jagdish K

    2009-01-01

    Prigogine and Rice's highly acclaimed series, Advances in Chemical Physics, provides a forum for critical, authoritative reviews of current topics in every area of chemical physics. Edited by J.K. Vij, this volume focuses on recent advances in liquid crystals with significant, up-to-date chapters authored by internationally recognized researchers in the field.

  19. Improvement for the steering performance of liquid crystal phased array

    Institute of Scientific and Technical Information of China (English)

    SONG Yan; KONG Ling-jiang; CHEN Jun; ZHU Ying; YANG Jian-yu

    2009-01-01

    Optical phased array technology is introduced and the steering performances of liquid crystal phased array are discussed, several factors affecting the beam steering performances arc analyzed completely, also simple models for some typical factors are developed. Then, a new method based on iterating and modifying the output phase pattern of liquid crystal phase shifters is proposed. Using this method, the modified voltages applied on electrodes of liquid crystal phase shifters can be obtained, after applying the voltages, the influence of factors can be compensated to some extent; the steering angle accu-racy and efficiency with liquid crystal phased array can be improved. Through the simulation for the angle range from 0° to -1°, the error of steering angle can be reduced three orders of magnitude, and the efficiency can be increased almost 30% after several iterations.

  20. A Robust Computational Method for Coupled Liquid-liquid Phase Separation and Gas-particle Partitioning Predictions of Multicomponent Aerosols

    Science.gov (United States)

    Zuend, A.; Di Stefano, A.

    2014-12-01

    Providing efficient and reliable model predictions for the partitioning of atmospheric aerosol components between different phases (gas, liquids, solids) is a challenging problem. The partitioning of water, various semivolatile organic components, inorganic acids, bases, and salts, depends simultaneously on the chemical properties and interaction effects among all constituents of a gas + aerosol system. The effects of hygroscopic particle growth on the water contents and physical states of potentially two or more liquid and/or solid aerosol phases in turn may significantly affect multiphase chemistry, the direct effect of aerosols on climate, and the ability of specific particles to act as cloud condensation or ice nuclei. Considering the presence of a liquid-liquid phase separation in aerosol particles, which typically leads to one phase being enriched in rather hydrophobic compounds and the other phase enriched in water and dissolved electrolytes, adds a high degree of complexity to the goal of predicting the gas-particle partitioning of all components. Coupled gas-particle partitioning and phase separation methods are required to correctly account for the phase behaviour of aerosols exposed to varying environmental conditions, such as changes to relative humidity. We present new theoretical insights and a substantially improved algorithm for the reliable prediction of gas-particle partitioning at thermodynamic equilibrium based on the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. We introduce a new approach for the accurate prediction of the phase distribution of multiple inorganic ions between two liquid phases, constrained by charge balance, and the coupling of the liquid-liquid equilibrium model to a robust gas-particle partitioning algorithm. Such coupled models are useful for exploring the range of environmental conditions leading to complete or incomplete miscibility of aerosol constituents which will affect

  1. Effect of counter current gas phase on liquid film

    Institute of Scientific and Technical Information of China (English)

    Shujuan LUO; Huaizhi LI; Weiyang FEI; Yundong WANG

    2009-01-01

    Liquid film flow is very important in many industrial applications. However, there are few reports about its characteristics on structured packings. Therefore, in this paper, liquid film phenomena were investigated experimentally to exploit new approaches for intensifying the performance of the structured packings. All experiments were performed at room temperature. Water and air were the working fluids. The effect of counter current gas phase on the liquid film was taken into consideration. A high speed camera, a non-intrusive measurement technique, was used. It is shown that both liquid and gas phases have strong effects on film characteristics. In the present work, liquid film width increased by 57% because of increasing liquid flow rate, while it decreased by 25% resulting from the counter current gas phase.

  2. Biaxial phases in mineral liquid crystals

    NARCIS (Netherlands)

    Vroege, G.J.

    2013-01-01

    A review is given of liquid crystals formed in colloidal dispersions, in particular those consisting of mineral particles. Starting with the historical development and early theory, the characteristic properties related to the colloidal nature of this type of liquid crystals are discussed. The possi

  3. Analysis of solid-liquid phase change heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    张寅平; 王馨

    2002-01-01

    Solid-liquid phase change processes have two important features: the process is an approximately isothermal process and the heat of fusion of phase change material tends to be much greater than its specific heat. Therefore, if any phase change material adjacent to a hot or cold surface undergoes phase change, the heat transfer rate on the surface will be noticeably enhanced. This paper presents a novel insight into the mechanisms of heat transfer enhancement induced by solid-liquid phase change based on the analogy analysis for heat conduction with an internal heat source and solid-liquid phase change heat transfer. Three degrees of surface heat transfer enhancement for different conditions are explored, and corresponding formulae are written to describe them. The factors influencing the degrees of heat transfer enhancement are clarified and their effects quantitatively analyzed. Both the novel insight and the analysis contribute to effective application of phase change heat transfer enhancement technique.

  4. Liquid-Gas Phase Transition in Nuclear Equation of State

    CERN Document Server

    Lee, S J

    1997-01-01

    A canonical ensemble model is used to describe a caloric curve of nuclear liquid-gas phase transition. Allowing a discontinuity in the freeze out density from one spinodal density to another for a given initial temperature, the nuclear liquid-gas phase transition can be described as first order. Averaging over various freeze out densities of all the possible initial temperatures for a given total reaction energy, the first order characteristics of liquid-gas phase transition is smeared out to a smooth transition. Two experiments, one at low beam energy and one at high beam energy show different caloric behaviors and are discussed.

  5. Transient-Liquid-Phase and Liquid-Film-Assisted Joining ofCeramics

    Energy Technology Data Exchange (ETDEWEB)

    Sugar, Joshua D.; McKeown, Joseph T.; Akashi, Takaya; Hong, SungM.; Nakashima, Kunihiko; Glaeser, Andreas M.

    2005-02-09

    Two joining methods, transient-liquid-phase (TLP) joining and liquid-film-assisted joining (LFAJ), have been used to bond alumina ceramics. Both methods rely on multilayer metallic interlayers designed to form thin liquid films at reduced temperatures. The liquid films either disappear by interdiffusion (TLP) or promote ceramic/metal interface formation and concurrent dewetting of the liquid film (LFAJ). Progress on extending the TLP method to lower temperatures by combining low-melting-point (<450 C) liquids and commercial reactive-metal brazes is described. Recent LFAJ work on joining alumina to niobium using copper films is presented.

  6. Blending ionic liquids: how physico-chemical properties change.

    Science.gov (United States)

    Castiglione, Franca; Raos, Guido; Appetecchi, Giovanni Battista; Montanino, Maria; Passerini, Stefano; Moreno, Margherita; Famulari, Antonino; Mele, Andrea

    2010-02-28

    Ionic liquids offer the opportunity of tailoring their properties by changing the chemical structure of the cation and anion. Blending of two or more liquids adds a further dimension to this "chemical space". Here we present the results of a study of three binary and one ternary mixture of the ionic liquids formed by the N-butyl-N-methylpyrrolidinium cation with bis(trifluoromethanesulfonyl) imide, bis(pentafluoroethanesulfonyl) imide and (trifluoromethanesulfonyl)(nonafluorobutanesulfonyl) imide. We have collected viscosity and NMR-based data on ionxion correlations (NOE) and diffusion (DOSY). We also attempt to establish a quantitative correlation between mixture and the corresponding pure liquid properties. We find that the binary mixture containing the two very different anions has an intriguing and somewhat anomalous behaviour. PMID:20145843

  7. Quasi-chemical Theories of Associated Liquids

    OpenAIRE

    Pratt, Lawrence R.; LaViolette, Randall A.

    1998-01-01

    It is shown how traditional development of theories of fluids based upon the concept of physical clustering can be adapted to an alternative local clustering definition. The alternative definition can preserve a detailed valence description of the interactions between a solution species and its near-neighbors, i.e., cooperativity and saturation of coordination for strong association. These clusters remain finite even for condensed phases. The simplest theory to which these developments lead i...

  8. Radiation chemical effects of X-rays on liquids

    Energy Technology Data Exchange (ETDEWEB)

    Holroyd, R.A.; Preses, J.M.

    1998-11-01

    This review describes some of the chemical changes induced by photoelectrons which are released in liquids when X-rays are absorbed. Both experimental studies and theory are discussed. In part 1, the basic processes occurring upon absorption of X-rays are described. Parts 2 and 3 deal with hydrocarbon liquids; in part 2 the ion yields, including effects at K-edges, and in part 3, the yields of excited states. Part 4 discusses chemical effects of X-rays in aqueous solutions. The authors end with a summary of future needs and directions.

  9. Electron-solid and electron-liquid phases in graphene

    Science.gov (United States)

    Knoester, M. E.; Papić, Z.; Morais Smith, C.

    2016-04-01

    We investigate the competition between electron-solid and quantum-liquid phases in graphene, which arise in partially filled Landau levels. The differences in the wave function describing the electrons in the presence of a perpendicular magnetic field in graphene with respect to the conventional semiconductors, such as GaAs, can be captured in a form factor which carries the Landau-level index. This leads to a quantitative difference in the electron-solid and -liquid energies. For the lowest Landau level, there is no difference in the wave function of relativistic and nonrelativistic systems. We compute the cohesive energy of the solid phase analytically using a Hartree-Fock Hamiltonian. The liquid energies are computed analytically as well as numerically, using exact diagonalization. We find that the liquid phase dominates in the n =1 Landau level, whereas the Wigner crystal and electron-bubble phases become more prominent in the n =2 and 3 Landau level.

  10. Calculation of Liquid Water-Hydrate-Methane Vapor Phase Equilibria from Molecular Simulations

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas;

    2010-01-01

    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled...... using the TIP4P/ice potential and a united-atom Lennard-Jones potential. respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials. (ii) calculation of the chemical...... potential of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state, and (iii) thermodynamic integration to obtain the water and guest molecules' chemical potentials as a function of the hydrate occupancy. The three-phase equilibrium curve is calculated...

  11. Simulation of phase separation in quiescent and sheared liquids

    OpenAIRE

    Thakre, Amol Kumar

    2008-01-01

    In this thesis we report on molecular dynamics simulations of phase separation of simple and complex binary liquids in sheared and non-sheared systems. The separation of milk into liquid whey and solid curd is a very common example of phase separation observed in daily life. The phenomenon finds its application in various fields of science and technology, ranging from metals, semiconductors, superconductors to simple and complex fluids such as polymers, surfactants, colloids, emulsions and bi...

  12. Solid–Liquid Phase Change Driven by Internal Heat Generation

    Energy Technology Data Exchange (ETDEWEB)

    John Crepeau; Ali s. Siahpush

    2012-07-01

    This article presents results of solid-liquid phase change, the Stefan Problem, where melting is driven internal heat generation, in a cylindrical geometry. The comparison between a quasi-static analytical solution for Stefan numbers less than one and numerical solutions shows good agreement. The computational results of phase change with internal heat generation show how convection cells form in the liquid region. A scale analysis of the same problem shows four distinct regions of the melting process.

  13. Gas-Liquid Flows and Phase Separation

    Science.gov (United States)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  14. Determination of Human-Health Pharmaceuticals in Filtered Water by Chemically Modified Styrene-Divinylbenzene Resin-Based Solid-Phase Extraction and High-Performance Liquid Chromatography/Mass Spectrometry

    Science.gov (United States)

    Furlong, Edward T.; Werner, Stephen L.; Anderson, Bruce D.; Cahill, Jeffery D.

    2008-01-01

    In 1999, the Methods Research and Development Program of the U.S. Geological Survey National Water Quality Laboratory began the process of developing a method designed to identify and quantify human-health pharmaceuticals in four filtered water-sample types: reagent water, ground water, surface water minimally affected by human contributions, and surface water that contains a substantial fraction of treated wastewater. Compounds derived from human pharmaceutical and personal-care product use, which enter the environment through wastewater discharge, are a newly emerging area of concern; this method was intended to fulfill the need for a highly sensitive and highly selective means to identify and quantify 14 commonly used human pharmaceuticals in filtered-water samples. The concentrations of 12 pharmaceuticals are reported without qualification; the concentrations of two pharmaceuticals are reported as estimates because long-term reagent-spike sample recoveries fall below acceptance criteria for reporting concentrations without qualification. The method uses a chemically modified styrene-divinylbenzene resin-based solid-phase extraction (SPE) cartridge for analyte isolation and concentration. For analyte detection and quantitation, an instrumental method was developed that used a high-performance liquid chromatography/mass spectrometry (HPLC/MS) system to separate the pharmaceuticals of interest from each other and coextracted material. Immediately following separation, the pharmaceuticals are ionized by electrospray ionization operated in the positive mode, and the positive ions produced are detected, identified, and quantified using a quadrupole mass spectrometer. In this method, 1-liter water samples are first filtered, either in the field or in the laboratory, using a 0.7-micrometer (um) nominal pore size glass-fiber filter to remove suspended solids. The filtered samples then are passed through cleaned and conditioned SPE cartridges at a rate of about 15

  15. Chemical and colour quenching in liquid scintillation counting

    International Nuclear Information System (INIS)

    Chemical and colour quenching for H-3 and C-14 was studied. The method includes spectral analysis of colouring agents; methyl red, (4'-dimethylamine-azobenzene 2-carboxylic acid) dimethyl yellow (4'-dimethylamine-azobenzene) and malachite green (methane, bis .(4-dimethyl aminophenyl) - (phenyl)). External standard channels ratio was applied for the liquid scintillation counting of samples. The introduction of an isolated external standard seems to be a strong tool for the correction of chemical and colour quenching curves. (Author) 12 refs

  16. Design and Inspection of Liquid Cargo Piping of Chemical Tanker

    Institute of Scientific and Technical Information of China (English)

    Ying Sheng; Jiang Chengsong

    2012-01-01

    There is a great variety of liquid chemicals, and many shipowners are not clear about the cargos their ships will carry at the early stage of the design and construction of chemical tankers. In addition, because of the inclination to choose low cost construction material due to cost concern, the sources of cargos that ships can carry are greatly limited and the operation efficiency will be influenced. What should we do to avoid such situations?

  17. The liquid to vapor phase transition in excited nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  18. Liquid-phase alkylation of Assam (Baragolai) coal

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, R.L.; Choudhury, R.; Sarkar, M.K.

    1982-12-01

    Liquid paraffin which consists of a large number of alkylated aliphatics and aromatics seems to be acting as an alkyl group transfer medium to receptive complexes like coal. The alkyl group receptive spots could be created in the coal complex by treatment with molten alkalis like sodium or potassium hydroxide. By repeating extractions of fresh coal with the same volume of liquid paraffin on a laboratory scale it was found that a stage was reached when liquid paraffin became rich enough in alkyl groups to become an alkyl group donor. This suggests a method for liquid phase alkylation of coal. (3 refs.)

  19. Progress in the research and development of p-xylene liquid phase oxidation process

    Institute of Scientific and Technical Information of China (English)

    WANG Lijun; CHENG Youwei; WANG Qinbo; LI Xi

    2007-01-01

    The process of p-xylene liquid phase oxidation to produce purified terephthalic acid (PTA) involves a series of liquid phase radical reactions,chemical absorption,reactive crystallization,and evaporation.A commercial PTA production flow sheet includes a number of unit operations,which construct a complex process system.In this paper,a review of research and development (R & D) works on PTA process carried out in Zhejiang University during recent years is introduced.The works cover the oxidation and crystallization kinetics,gas-liquid mass transfer and evaporation,reactor modeling,database development,novel reactor design,process modeling,simulation,and optimization.The author emphasizes the viewpoint through this case study that chemical reaction engineering should be developed to process system engineering to extend its scope,and particular attention should be paid on reactor and process modeling.

  20. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition

    Science.gov (United States)

    Lan, S.; Blodgett, M.; Kelton, K. F.; Ma, J. L.; Fan, J.; Wang, X.-L.

    2016-05-01

    Time-resolved synchrotron measurements were carried out to capture the structure evolution of an electrostatically levitated metallic-glass-forming liquid during free cooling. The experimental data shows a crossover in the liquid structure at ˜1000 K, about 115 K below the melting temperature and 150 K above the crystallization temperature. The structure change is characterized by a dramatic growth in the extended-range order below the crossover temperature. Molecular dynamics simulations have identified that the growth of the extended-range order was due to an increased correlation between solute atoms. These results provide structural evidence for a liquid-to-liquid-phase-transition in the supercooled metallic liquid.

  1. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    Directory of Open Access Journals (Sweden)

    Nicolas Giovambattista

    2010-12-01

    Full Text Available We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  2. Nuclear Liquid-Gas Phase Transition: Experimental Signals

    Science.gov (United States)

    D'Agostino, M.; Bruno, M.; Gulminelli, F.; Cannata, F.; Chomaz, Ph.; Casini, G.; Geraci, E.; Gramegna, F.; Moroni, A.; Vannini, G.

    2005-03-01

    The connection between the thermodynamics of charged finite nuclear systems and the asymptotically measured partitions in heavy ion collisions is discussed. Different independent signals compatible with a liquid-to-gas-like phase transition are reported. In particular abnormally large fluctuations in the measured observables are presented as a strong evidence of a first order phase transition with negative heat capacity.

  3. Nuclear liquid-gas phase transition: Experimental signals

    Energy Technology Data Exchange (ETDEWEB)

    D' Agostino, M. [Dipartimento di Fisica and INFN, Bologna (Italy); Bruno, M. [Dipartimento di Fisica and INFN, Bologna (Italy); Gulminelli, F. [LPC Caen (IN2P3-CNRS/ISMRA et Universite), F-14050 Caen Cedex (France); Cannata, F. [Dipartimento di Fisica and INFN, Bologna (Italy); Chomaz, Ph. [GANIL, DSM-CEA/IN2P3-CNRS (France); Casini, G. [INFN Sezione di Firenze (Italy); Geraci, E. [Dipartimento di Fisica and INFN, Bologna (Italy); Gramegna, F. [INFN Laboratorio Nazionale di Legnaro (Italy); Moroni, A. [Dipartimento di Fisica and INFN, Milano (Italy); Vannini, G. [Dipartimento di Fisica and INFN, Bologna (Italy)

    2005-03-07

    The connection between the thermodynamics of charged finite nuclear systems and the asymptotically measured partitions in heavy ion collisions is discussed. Different independent signals compatible with a liquid-to-gas-like phase transition are reported. In particular abnormally large fluctuations in the measured observables are presented as a strong evidence of a first order phase transition with negative heat capacity.

  4. Low voltage blue phase liquid crystal for spatial light modulators.

    Science.gov (United States)

    Peng, Fenglin; Lee, Yun-Han; Luo, Zhenyue; Wu, Shin-Tson

    2015-11-01

    We demonstrated a low-voltage polymer-stabilized blue phase liquid crystal (BPLC) for phase-only modulation with a liquid-crystal-on-silicon (LCoS). A new device configuration was developed, which allows the incident laser beam to traverse the BPLC layer four times before exiting the LCoS. As a result, the 2π phase change voltage is reduced to below 24 V in the visible region. The response time remains relatively fast (∼3  ms). The proposed device configuration enables widespread applications of BPLC spatial light modulators. PMID:26512528

  5. Liquid-liquid phase separation in highly undercooled Ni-Pb hypermonotectic alloys

    Institute of Scientific and Technical Information of China (English)

    YANG Gen-cang; XIE Hui; HAO Wei-xin; ZHANG Zhong-ming; GUO Xue-feng

    2006-01-01

    Liquid-liquid phase separation in the undercooled Ni-20%Pb(mole fraction, the same below if not mentioned)hypermonotectic melts was investigated by the observation of the water-quenched structure and DTA analysis. The results indicate that the number of spherical cells in the water-quenched microstructure increases with dropping temperature, and the cells gather and grow up obviously. The spherical cell origins from L1 phase separated from homogeneous melt, and is the product of monotectic reaction. Both results of the water-quenched structures and DTA analysis prove that liquid phase separation still occurs in the highly undercooled Ni-Pb hypermonotectic alloy melts, and liquid phase separation in the immiscible gap can not be fully inhibited by high undercooling and rapid solidification.

  6. Solid-Liquid and Liquid-Liquid Mixing Laboratory for Chemical Engineering Undergraduates

    Science.gov (United States)

    Pour, Sanaz Barar; Norca, Gregory Benoit; Fradette, Louis; Legros, Robert; Tanguy, Philippe A.

    2007-01-01

    Solid-liquid and liquid-liquid mixing experiments have been developed to provide students with a practical experience on suspension and emulsification processes. The laboratory focuses on the characterization of the process efficiency, specifically the influence of the main operating parameters and the effect of the impeller type. (Contains 2…

  7. Copyrolysis of wood biomass and synthetic polymers mixtures. Part 2. Characterisation of the liquid phases

    Energy Technology Data Exchange (ETDEWEB)

    Marin, N.; Collura, S.; Weber, J.V. [Laboratoire de Chimie et Applications, Universite de Metz, IUT, rue Victor Demange, 57500 Saint Avold (France); Sharypov, V.I.; Beregovtsova, N.G.; Baryshnikov, S.V.; Kutnetzov, B.N. [Institute of Chemistry and Chemical Technology SB RAS, Academgorodok, 660049 Krasnoyarsk (Russia); Cebolla, V. [Instituto de Carboquimica, CSIC, Zaragoza (Spain)

    2002-10-01

    The copyrolysis of wood biomass-polyolefins was carried out in a rotating autoclave. At 400C, more than 50% (in mass) of final products are found in the liquid phase for a 1:1 (in mass) mixture. The obtained liquids are separated in a distillable liquids fraction and in an extracted liquids fraction. The first fraction can be fully characterised by gas chromatography/mass spectrometry. Only olefins, paraffins and some aromatics (benzene, toluene and xylene), issued from the polymers, are found in this fraction. The origin of the polymer plays the most important role in the chemical composition of this fraction. Some interactions with the solid issued from thermal degradation of the biomass are evidenced, for example by the presence of 2-alkenes with 3n carbon atoms. In the heavy liquids fraction, more than 80% (in mass) of the products are heavy olefins or paraffins. Schematically, we can explain the results of the copyrolysis experiments by: the biomass, whatever its origin, leads to solid, water and gas; polymer leads to liquid and gaseous olefins and paraffins; at a temperature lower than 400C, the biomass reacts and during the pyrolysis at 400C the formed solid evolves to act as a radical donor; assisted by radicals from biomass, polymer chain scission leads to the production of the light liquids; if the presence of biomass has an influence on the chemical composition of final products (particularly the light liquids fraction) their origin has, in general, only a limited effect.

  8. Recent development of supported monometallic gold as heterogeneous catalyst for selective liquid phase hydrogenation reactions

    Institute of Scientific and Technical Information of China (English)

    Thushara Kandaramath Hari; Zahira Yaakob

    2015-01-01

    The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research. Gold nanoparticles supported by metal oxides with high surface area have been recognized as highly efficient and effective green heterogeneous catalyst even at room temperature under normal reaction conditions, in gas and liquid phase reactions. In the present review, we dis-cuss the recent development of heterogeneous, supported monometal ic gold catalysts for organic transforma-tions emphasizing mainly liquid phase hydrogenation reactions. Discussions on the catalytic synthesis procedures and the promoting effect of other noble metals are omitted since they are already worked out. Appli-cations of heterogeneous, supported monometal ic catalysts for chemoselective hydrogenations in liquid phase are studied including potential articles during the period 2000–2013.

  9. Laser-induced separation of hydrogen isotopes in the liquid phase

    International Nuclear Information System (INIS)

    A process for separating hydrogen isotopes which comprises (A) forming a liquid phase of hydrogen-bearing feedstock compound at a temperature at which the spectral features of the feedstock compound are narrow enough or the absorption edges sharp enough to permit spectral features corresponding to the different hydrogen isotopes to be separated to be distinguished, (B) irradiating the liquid phase at said temperature with monochromatic radiation of a first wavelength which selectively or at least preferentially excites those molecules of said feedstock compound containing a first hydrogen isotope, and (C) subjecting the excited molecules to physical or chemical processes or a combination thereof whereby said first hydrogen isotope contained in said excited molecules is separated from other hydrogen isotopes contained in the unexcited molecules in said liquid phase

  10. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    Science.gov (United States)

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  11. Dielectric properties and molecular motions of liquid crystal molecules in 4-(2-methylbytylphenyl 4-(4-octylphenylbenzoate liquid crystal having blue phase (CE8

    Directory of Open Access Journals (Sweden)

    Otowski W.

    2015-06-01

    Full Text Available Blue phase liquid crystals exhibit unique properties which are used in the new type of display. A blue-phase liquid crystal display was first presented commercially by Samsung in 2007. The blue-phase-three-color pixel display eliminates the need for color filters. This type of display uses blue-phase multi-component liquid crystal. Considering the one-component systems, it turns out that they are stable only in a very narrow range of temperatures between the isotropic and the chiral nematic phase (about 1 K. In 2005, a wide temperature range BP multi-component system was reported by researchers from the University of Cambridge. There are still several unsolved problems left. One of them is chemical stability and reliability. Therefore, the knowledge of molecular dynamics of blue phase liquid crystal is a prerequisite for understanding of blue-phase multi-component system. Understanding the molecular dynamics of a single component liquid-crystalline blue phase system can facilitate the solution of these problems. We present the molecular dynamics investigation of 4-(2-methylbytylphenyl 4-(4-octylphenylbenzoate (CE8, which may be a good candidate to form materials suitable for blue-phase liquid crystal displays.

  12. Discontinuous structural phase transition of liquid metal and alloys (2)

    International Nuclear Information System (INIS)

    The diameter (df) of diffusion fluid cluster before and after phase transition has been calculated in terms of the paper ''Discontinuous structural phase transition of liquid metal and alloy (1)'' Physics Letters. A 326 (2004) 429-435, to verify quantitatively the discontinuity of structural phase transition; the phenomena of thermal contraction and thermal expansion during the phase transition, together with the evolution model of discontinuous structural phase transition are also discussed in this Letter to explore further the nature of structural transition; In addition, based on the viscosity experimental result mentioned in paper [Y. Waseda, The Structure of Non-Crystalline Materials--Liquids and Amorphous Solids, McGraw-Hill, New York, 1980], we present an approach to draw an embryo of the liquid-liquid (L-L) phase diagram for binary alloys above liquidus in the paper, expecting to guide metallurgy process so as to improve the properties of alloys. The idea that controls amorphous structure and its properties by means of the L-L phase diagram for alloys and by the rapid cooling technique to form the amorphous alloy has been brought forward in the end

  13. Self-aggregation of vapor-liquid phase transition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. Based on molecular self-aggregation theory a concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of the nuclei in the process of vapor-liquid phase transition. All active molecules exist in the form of the monomer when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with the aggregation number N smaller than 5 can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state in the process of vapor-liquid phase transition. With the aggregate property, the interfacial tension between the bulk phase and the tiny new phase is predicted and a correction is made for the classical nucleation rate in a quite good agreement with experimental results.

  14. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Mahesh K. Potdar

    2015-09-01

    Full Text Available Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment.

  15. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids.

    Science.gov (United States)

    Potdar, Mahesh K; Kelso, Geoffrey F; Schwarz, Lachlan; Zhang, Chunfang; Hearn, Milton T W

    2015-09-15

    Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment.

  16. Liquid precursor films spreading on chemically patterned substrates

    Science.gov (United States)

    Checco, Antonio

    2008-03-01

    We study the spreading of nonvolatile liquid squalane on chemically patterned nanostripes by using non-contact Atomic Force Microscopy (NC-AFM). The substrates are octadecylthrichlorosilane(OTS)-coated silicon wafers chemically patterned on multiple length-scales using a combination of UV and AFM oxidative lithographies. This process allows us to locally convert the terminal methyl groups of the OTS surface (non-wettable) into carboxylic acid groups (wettable) without affecting considerably the substrate roughness (squalane spreads across this ``microfluidic network'' starting from the large lines eventually reaching the nanolines (50 to 500 nm-wide). NC-AFM is used to image the morphology of the liquid as it spreads across the nanolines. We find that the liquid thickness on the nanolines grows with time (up to ˜10 nm) according to a power-law with exponent ˜1. These preliminary results suggest that the spreading dynamics of laterally-confined liquids slightly differs, as expected, from the one of laterally homogeneous precursor films. We compare our findings to recent theoretical predictions of confined liquid flow and also discuss its relevance to nanofluidics.

  17. Formation of radical and active chemical species in electrical discharge plasma in the presence of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Locke, B.R.; Shih, K.Y.; Burlica, R. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemical and Biomedical Engineering

    2010-07-01

    This study investigated the interactions of plasma with liquid water using a combination of emission spectroscopy of radical and atomic species and direct measurements of more stable chemical compounds. The study focused on electrical discharge plasma formed directly in liquid water and on discharges formed in the gas phase above liquid water, in bubbles in liquid water, and in the gas phase with water droplet spray that result in a variety of active chemical species that can be used for pollution control as well as other applications in biomedical and materials engineering. The purpose was to improve the design and operation of plasma reactors for a variety of applications. This presentation also reviewed the mechanisms for the formation of active chemical species such as hydroxyl and other radicals, hydrogen peroxide and molecular hydrogen, in electrical discharge plasma formed in the presence of water.

  18. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    Science.gov (United States)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR

  19. Two-Phase Slug Flow Experiments with Viscous Liquids

    OpenAIRE

    Diaz, Mariana J.C.

    2016-01-01

    The challenges behind the multiphase transport of oil and gas mixtures are increasing as the oil and gas industry is moving towards production from non-conventional reservoirs and in remote locations. Transport of high viscosity fluids in long multiphase pipelines is a particular challenge. Previous experiments have shown that gas-liquid slug flow is a frequent two-phase flow pattern at high liquid viscosities. The slug flow regime is an unstable flow, which may lead to operati...

  20. Thermodynamic modeling of chemical equilibria in liquid-liquid extraction of lutetium

    International Nuclear Information System (INIS)

    The extraction equilibrium data of lutetium from sodium succinate solution with Aliquat 336 in benzene is systematically investigated. The aqueous phase metal complexation and polymerization in the organic phase are taken into account in obtaining extraction coefficients, stability constants, hydrolysis constants, solubility product, and extraction constants. A thermodynamic model of the above equilibrium extraction data is developed for use in computer simulation of the extraction process. The correlations are based on chemical mass action principles in which the metal complexation in the aqueous phase, polymerization in the organic phase, precipitation in the aqueous phase, and aqueous phase activity coefficients are considered. Extraction behavior of other lanthanides from a succinate medium is also discussed

  1. The Molecular Structure of the Liquid Ordered Phase

    Science.gov (United States)

    Lyman, Edward

    2014-03-01

    Molecular dynamics simulations reveal substructures within the liquid-ordered phase of lipid bilayers. These substructures, identified in a 10 μsec all-atom trajectory of liquid-ordered/liquid-disordered coexistence (Lo/Ld) , are composed of saturated hydrocarbon chains packed with local hexagonal order, and separated by interstitial regions enriched in cholesterol and unsaturated chains. Lipid hydrocarbon chain order parameters calculated from the Lo phase are in excellent agreement with 2H NMR measurements; the local hexagonal packing is also consistent with 1H-MAS NMR spectra of the Lo phase, NMR diffusion experiments, and small angle X-ray- and neutron scattering. The balance of cholesterol-rich to local hexagonal order is proposed to control the partitioning of membrane components into the Lo regions. The latter have been frequently associated with formation of so-called rafts, platforms in the plasma membranes of cells that facilitate interaction between components of signaling pathways.

  2. Characterisation of GERDA Phase-I detectors in liquid argon

    International Nuclear Information System (INIS)

    GERDA will search for neutrinoless double beta decay in 76Ge by submerging bare enriched HPGe detectors in liquid argon. In GERDA Phase-I, reprocessed enriched-Ge detectors, which were previously operated by the Heidelberg-Moscow and IGEX collaborations, and reprocessed natural-Ge detectors from Genius-TF, will be redeployed. We have tested the operation and performance of bare HPGe detectors in liquid nitrogen and in liquid argon over more than three years with three non-enriched p-type prototype detectors. The detector handling and mounting procedures have been defined and the Phase-I detector technology, the low-mass assembly and the long-term stability in liquid argon have been tested successfully. The Phase-I detectors were reprocessed by Canberra Semiconductor NV, Olen, according to their standard technology but without the evaporation of a passivation layer. After their reprocessing, the detectors have been mounted in their low-mass holders and their characterisation in liquid argon performed. The leakage current, the counting characteristics and the efficiency of the detectors have been measured. The testing of the detectors was carried out in the liquid argon test stand of the GERDA underground Detector Laboratory (GDL) at LNGS. The detectors are now stored underground under vacuum until their operation in GERDA.

  3. Going full circle: phase-transition thermodynamics of ionic liquids.

    Science.gov (United States)

    Preiss, Ulrich; Verevkin, Sergey P; Koslowski, Thorsten; Krossing, Ingo

    2011-05-27

    We present the full enthalpic phase transition cycle for ionic liquids (ILs) as examples of non-classical salts. The cycle was closed for the lattice, solvation, dissociation, and vaporization enthalpies of 30 different ILs, relying on as much experimental data as was available. High-quality dissociation enthalpies were calculated at the G3 MP2 level. From the cycle, we could establish, for the first time, the lattice and solvation enthalpies of ILs with imidazolium ions. For vaporization, lattice, and dissociation enthalpies, we also developed new prediction methods in the course of our investigations. Here, as only single-ion values need to be calculated and the tedious optimization of an ion pair can be circumvented, the computational time is short. For the vaporization enthalpy, a very simple approach was found, using a surface term and the calculated enthalpic correction to the total gas-phase energy. For the lattice enthalpy, the most important constituent proved to be the calculated conductor-like screening model (COSMO) solvation enthalpy in the ideal electric conductor. A similar model was developed for the dissociation enthalpy. According to our assessment, the typical error of the lattice enthalpy would be 9.4 kJ mol(-1), which is less than half the deviation we get when using the (optimized) Kapustinskii equation or the recent volume-based thermodynamics (VBT) theory. In contrast, the non-optimized VBT formula gives lattice enthalpies 20 to 140 kJ mol(-1) lower than the ones we assessed in the cycle, because of the insufficient description of dispersive interactions. Our findings show that quantum-chemical calculations can greatly improve the VBT approaches, which were parameterized for simple, inorganic salts with ideally point-shaped charges. In conclusion, we suggest the term "augmented VBT", or "aVBT", to describe this kind of theoretical approach.

  4. Liquid-Liquid Phase Separation in Supersaturated Lysozyme Solutions and Associated Precipitate Formation/Crystallization

    Science.gov (United States)

    Muschol, Martin; Rosenberger, Franz

    1997-01-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (wlv) NaCl at pH= 4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  5. Chemical effects associated to (n, γ) nuclear reactions in diluted aqueous solutions of liquid or frozen organic halogenides

    International Nuclear Information System (INIS)

    Chemical effects associated to nuclear transformation 37Cl (n, γ) 38Cl or 127I (n, γ) 128I in solid or liquid aqueous solutions of ethyl iodide, trichloro-ethylene, thyroxine or DDT irradiated in a nuclear reactor are studied. The retention of radiohalogen under its initial chemical shape decrease with solute concentration in liquid phase but is almost constant with solute dilution in the solid phase. Potential applications in neutron activation analysis evidencing halogenated molecules in irradiated media are discussed. 57 refs

  6. Influence of chemical liquids on the fatigue crack growth of the AZ31 magnesium alloy

    Science.gov (United States)

    Wang, Zhang-Zhong; He, Xian-Cong; Bai, Yun-Qiang; Ba, Zhi-Xin; Dai, Yu-Ming; Zhou, Heng-Zhi

    2012-03-01

    The fatigue crack growth behavior of an AZ31 magnesium alloy was investigated by comparing the effect of zirconate and phosphate chemical liquids. The morphology, components, and phase compositions of the chemical depositions at the fatigue crack tip were analyzed by employing scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), respectively. For samples with and without the chemical liquids, their stress-intensity factor values at the fatigue crack tip were compared by using a stress-strain gauge. The results demonstrated that a zirconate film (Zr x O y ·Zn x O y ) and a phosphate film (Zn3(PO4)2·4H2O and MgZnP2O7) could be formed on the fatigue crack-surface at the fatigue crack tip. The stress distribution was changed because of the chemical depositions and the causticity of the chemical liquids. This could decrease the stress-intensity factor value and thus effectively cause fatigue crack closure, which reduces the fatigue crack growth rate. Moreover, it was found that the fatigue crack closure effect of zirconates was more positive than that of phosphates.

  7. Three-Dimensional Graphene-Based Microbarriers for Controlling Release and Reactivity in Colloidal Liquid Phases.

    Science.gov (United States)

    Creighton, Megan A; Zhu, Wenpeng; van Krieken, Finn; Petteruti, Robert A; Gao, Huajian; Hurt, Robert H

    2016-02-23

    Two-dimensional materials are of great interest as high-performance molecular barriers. Graphene in particular is atomically thin, is impermeable to all molecules, and in some forms can be easily deposited over large areas into planar multilayer films that have been shown to suppress molecular transport. Graphene and graphene oxide sheets are also known to spontaneously self-assemble at liquid-liquid interfaces on the surfaces of dispersed droplets, but much less is known about the barrier properties of these ultrathin films in 3D curved microgeometries. This article demonstrates that 3D films self-assembled from graphene oxide or reduced graphene oxide sheets can be exploited to control the release of small molecules from dispersed liquid phase droplets by evaporation. The release rate and containment time can be tuned by addition of multivalent cations that recruit additional sheets from the bulk liquid to the interface, which is shown by molecular dynamics to occur by an electrostatic bridging mechanism. 3D graphene-based films on droplet surfaces can also be used to control the release and transport of soluble molecules from the droplet to surrounding bulk solvent phases. In some cases, the release can be effectively stopped to produce unique kinetically trapped emulsion phases consisting of two fully miscible but segregated liquids. Finally, interfacial graphene-based films are also shown to control interfacial chemical reaction processes by serving as transport barriers between the phases or by intercepting reactive cross-phase molecular collisions. This reaction control is demonstrated by using 3D graphene-based microbarriers to protect oxidation-sensitive oils from attack by aqueous-phase reactive oxygen species, which is an undesirable pathway implicated in many chemical product degradation and spoilage processes. PMID:26775824

  8. Liquid-liquid phase separation in mixed organic/inorganic single aqueous aerosol droplets

    OpenAIRE

    Stewart, D J; Cai, C.; Nayler, J.; Preston, T. C.; J. P. Reid; Krieger, U. K.; Marcolli, C.; Zhang, Y H

    2015-01-01

    Direct measurements of the phase separation relative humidity (RH) and morphology of aerosol particles consisting of liquid organic and aqueous inorganic domains are presented. Single droplets of mixed phase composition are captured in a gradient force optical trap, and the evolving size, refractive index (RI), and morphology are characterized by cavity-enhanced Raman spectroscopy. Starting at a RH above the phase separation RH, the trapped particle is dried to lower RH and the transition to ...

  9. Determination of sulfonamides in butter samples by ionic liquid magnetic bar liquid-phase microextraction high-performance liquid chromatography.

    Science.gov (United States)

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-01-01

    A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.

  10. Aspects of two-phase gas--liquid flow

    International Nuclear Information System (INIS)

    A wide range of topics related to current research on liquid-gas flow is reviewed, and the relevance of these topics to the design of heat exchangers is discussed. Information is included on flow patterns; system variables; mathematical models for parallel flow and non-parallel flow; critical two-phase flow; unsteady flow; and types of two-phase flow equipment used in industry. (U.S.)

  11. Recent progress of nuclear liquid gas phase transition

    Institute of Scientific and Technical Information of China (English)

    MA Yu-Gang; SHEN Wen-Qing

    2004-01-01

    Recent progress on nuclear liquid gas phase transition (LGPT) has been reviewed, especially for the signals of LGPT in heavy ion collisions. These signals include the power-law charge distribution, cluster emission rate, nuclear Zipf law, bimodality, the largest fluctuation of the fragments, △ -scaling, caloric curve, phase coexistence diagram, critical temperature, critical exponent analysis, negative specific heat capacity and spinodal instability etc. The systematic works of the authors on experimental and theoretical LGPT are also introduced.

  12. Microchip device for liquid phase analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, j.m.

    2000-05-01

    The lab-on-a-chip concept has enabled miniature instruments to be developed that allow the rapid execution and automation of fluidic operations such as valving, separation, dilution, mixing, and flow splitting upon the proper application of a motive (driving) force. The integration of these simple operations to perform complete, multiple-step chemical assays is rapidly becoming a reality. Such compact, monolithic devices potentially enjoy advantages in speed, cost, automation, reagent consumption, and waste generation compared to existing laboratory-scale instruments. Initial reports of these microfluidic devices focused on combining various electrokinetically driven separation methods including microchip electrophoresis, gel electrophoresis, micellar electrokinetic chromatography (MEKC) and open channel electrochromatography (OCEC) with fluidic valving to introduce sample plugs into the separation channel. Other operations have quickly been integrated with the separations and fluidic valving on these microchips. For example, integrated devices with mixers/diluters for precolumn and postcolumn analyte derivatization, deoxyribonucleic acid (DNA) restriction digests, enzyme assays, and polymerase chain reaction (PCR) amplification have been added to the basic design. Integrated mixers that can perform solvent programming for both MEKC and OCEC have also been demonstrated. These examples are simple, yet powerful, demonstrations of the potential for lab-on-a-chip devices. In this report, three key areas for improved performance of these devices are described: on-chip calibration techniques, enhanced separative performance, and enhanced detection capabilities.

  13. Computer simulations on the gas-liquid phase diagram of Stockmayer fluids

    Institute of Scientific and Technical Information of China (English)

    L(U) Zhongyuan; OUYANG Wenze; SUN Zhaoyan; LI Zesheng; AN Lijia

    2005-01-01

    Particle exchange molecular dynamics (PEMD) simulation technique is proposed to study the gas-liquid phase diagram of fluids. In the simulations, the fluid particles can be transferred between the two coupled boxes, which possess constant total number of particles and volume. The particle transfer is controlled by the difference of chemical potential in the respective simulation box. After equilibrium the two boxes have the same pressure, temperature and chemical potential. The method is further used to study the gas-liquid phase diagram of Stockmayer fluid. Increasing the dipole strength will enhance the critical temperature. The predicted critical points are in agreement with those from Gibbs ensemble Monte Carlo simulations, while the small systematic difference is attributed to the system size effects and the thermostat methods.

  14. QCD Phase Transitions and Bag Constants at Finite Chemical Potential

    Institute of Scientific and Technical Information of China (English)

    YANG Shu; GUO Hua; ZHAO En-Guang; L(U) Xiao-Fu

    2007-01-01

    The global colour model at finite temperature is further extended to study the systems at finite chemical potential. The deconfinement and chiral phase transition at finite chemical potential and at temperature T=0K are studied simultaneously. Meanwhile the evolution of the bag constants at finite chemical potential is calculated. The dependences of results on the model parameters are discussed in detail.

  15. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    Science.gov (United States)

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity.

  16. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    Science.gov (United States)

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity. PMID:24616203

  17. Effect of Marangoni Convection on Mass Transfer in Liquid Phase

    Institute of Scientific and Technical Information of China (English)

    YU Liming; ZENG Aiwu; YU Kuo Tsung

    2006-01-01

    Marangoni convection and its influence on the mass transfer in the liquid phase were investigated.Marangoni convection was visualized using laser Schlieren technique.Orderly polygonal convection patterns and random interfacial turbulence were observed.The effect of Marangoni convection on the mass transfer rate was studied by desorbing ethanol from aqueous solution in the falling film.The experimental results show that Marangoni convection can speed up the surface renewal and enhance the mass transfer rate in the liquid phase.The liquid mass transfer coefficient can be enhanced by as much as 3 folds.The corresponding empirical correlations are given in terms of the mass transfer enhancement factor.Furthermore,in considering the Marangoni effect,the conventional mass transfer correlation was modified.The differences between the values predicted by the correlation and the experimental data are within ± 8.2% and the average difference is 4.2%.

  18. Speckle decorrelation study of phase heterogeneous liquid medium

    Science.gov (United States)

    Pobiedina, Valentyna; Yakunov, Andrey

    2016-04-01

    In the paper de-correlation method was applied to study the dynamics of the laser-speckle pattern caused with the ground glass and layer of transparent liquid. According to the percolation model H-bonded liquids are characterized with nano-sized structural heterogeneities that cause the phase ones for the light wave. The temporary changing phase heterogeneities modulate the speckle field produced with the ground glass. The modifying of the speckle pattern causes the slow decaying of the central peak amplitude of the cross-correlation between the first images and each subsequent one. Proposed method likely could be a foundation of new methods for contactless exploring structural dynamics of liquid systems.

  19. Monitoring aged reversed-phase high performance liquid chromatography columns

    NARCIS (Netherlands)

    Bolck, A; Smilde, AK; Bruins, CHP

    1999-01-01

    In this paper, a new approach for the quality assessment of routinely used reversed-phase high performance liquid chromatography columns is presented. A used column is not directly considered deteriorated when changes in retention occur. If attention is paid to the type and magnitude of the changes,

  20. Predicting the Liquid Phase Mass Transfer Resistance of Structured Packings

    NARCIS (Netherlands)

    Olujic, Z.; Seibert, A.F.

    2014-01-01

    Published correlations for estimating the liquid phase mass transfer coefficients of structured packings are compared using experimental evidence on the efficiency of Montz-Pak B1–250MN and B1–500MN structured packings as measured in total reflux distillation tests using the chlorobenzene/ethylbenze

  1. Separation of Chlorella vulgaris from liquid phase using bioflocculants

    Directory of Open Access Journals (Sweden)

    Gizem Günay

    2014-12-01

    results showed that C. vulgaris was partially separated from the liquid phase. However, the experiments will continue for the purpose of increasing the flocculating activity. Getting successfully experimental results with kaolin showed that bioflocculant has a potential use in wastewater treatment. For this reason, it also is thought to analyze the effect of bioflocculant on the wastewater treatment with further studies.[¤

  2. Improving Heterogeneous Catalyst Stability for Liquid-phase Biomass Conversion and Reforming

    OpenAIRE

    Héroguel, Florent Emmanuel; Rozmysłowicz, Bartosz; Luterbacher, Jeremy

    2015-01-01

    Biomass is a possible renewable alternative to fossil carbon sources. Today, many bio-resources can be converted to direct substitutes or suitable alternatives to fossil-based fuels and chemicals. However, catalyst deactivation under the harsh, often liquid-phase reaction conditions required for biomass treatment is a major obstacle to developing processes that can compete with the petrochemical industry. This review presents recently developed strategies to limit reversible and irreversible ...

  3. Preparation of Hydroxyapatite/Polylactide Bicomposites by Absorption Process in Liquid Phase

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The hydroxyapatite/polylactide biocomposites were prepared by absorption process in liquid phase. The method avoided many disadvantages, such as interfusion of chemical impurity substances, nonuniformity dispersal of HA in PLA, low molecular weight of PLA. HA particles were uniformly dispersed in PlA matrix,and shawed well adhesion with PLA matrix. The biocomposites have the higher mechanical properties and suitable decomposable capability.

  4. Phase equilibria in stratified thin liquid films stabilized by colloidal particles

    OpenAIRE

    Blawzdziewicz, J.; Wajnryb, E.

    2005-01-01

    Phase equilibria between regions of different thickness in thin liquid films stabilized by colloidal particles are investigated using a quasi-two-dimensional thermodynamic formalism. Appropriate equilibrium conditions for the film tension, normal pressure, and chemical potential of the particles in the film are formulated, and it is shown that the relaxation of these parameters occurs consecutively on three distinct time scales. Film stratification is described quantitatively for a hard-spher...

  5. Liquid Missile Fuels as Means of Chemical Terrorist Attack

    International Nuclear Information System (INIS)

    Modern world is faced with numerous terrorist attacks whose goals, methods and means of the conduct are various. It seems that we have entered the era when terrorism, one's own little terrorism, is the easiest and the most painless way of achieving a goal. That is why that such a situation has contributed to the necessity for strengthening individual and collective protection and safety, import and export control, control of the production and illegal sale of the potential means for delivering terrorist act. It has also contributed to the necessity for devising means of the delivery. For more than 10 years, a series of congresses on CB MTS Industry has pointed at chemicals and chemical industry as potential means and targets of terrorism. The specialization and experience of different authors in the field of the missile technology and missile fuels, especially those of Eastern origin, and the threat that was the reality of the war conflicts in 1990s was the reason for making a scientific and expert analysis of the liquid missile fuels as means of terrorism. There are not many experts in the field of NBC protection who are familiar with the toxicity and reaction of liquid missile fuels still lying discarded and unprotected in abandoned barracks all over Europe and Asia. The purpose of this paper is to draw public attention to possible different abuses of liquid missile fuels for a terrorist purpose, as well as to possible consequences and prevention measures against such abuses. (author)

  6. Numerical simulation of three-dimensional gas/liquid two-phase flow in a proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Weilin; ZHANG Yangjun; MING Pingwen; LAO Xingsheng; CHEN Xiao

    2007-01-01

    Investigation into the formation and transport of liquid water in proton exchange membrane fuel cells (PEMFCs) is the key to fuel cell water management.A threedimensional gas/liquid two-phase flow and heat transfer model is developed based on the multiphase mixture theory.The reactant gas flow,diffusion,and chemical reaction as well as the liquid water transport and phase change process are modeled.Numerical simulations on liquid water distribution and its effects on the performance of a PEMFC are conducted.Results show that liquid water distributes mostly in the cathode,and predicted cell performance decreases quickly at high current density due to the obstruction of liquid water to oxygen diffusion.The simulation results agree well with experimental data.

  7. Crystal growth in a three-phase system: diffusion and liquid-liquid phase separation in lysozyme crystal growth.

    Science.gov (United States)

    Heijna, M C R; van Enckevort, W J P; Vlieg, E

    2007-07-01

    In the phase diagram of the protein hen egg-white lysozyme, a region is present in which the lysozyme solution demixes and forms two liquid phases. In situ observations by optical microscopy show that the dense liquid droplets dissolve when crystals grow in this system. During this process the demixed liquid region retracts from the crystal surface. The spatial distribution of the dense phase droplets present special boundary conditions for Fick's second law for diffusion. In combination with the cylindrical symmetry provided by the kinetically roughened crystals, this system allows for a full numerical analysis. Using experimental data for setting the boundary conditions, a quasi-steady-state solution for the time-dependent concentration profile was shown to be valid. Comparison of kinetically rough growth in a phase separated system and in a nonseparated system shows that the growth kinetics for a three-phase system differs from a two-phase system, in that crystals grow more slowly but the duration of growth is prolonged.

  8. Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Hager, V.; Geburtig, D.; Kohr, C.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Chemische Reaktionstechnik; Haumann, M. [Chemical Reaction Engineering, FAU Busan Campus, Korea (Korea, Republic of)

    2011-07-01

    Highly acidic ionic liquid (IL) catalysts offer the opportunity to convert n-alkanes at very low reaction temperatures. The results of IL catalyzed isomerization and cracking reactions of pure n-octane are presented. Influence of IL composition, [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / H{sub 2}SO{sub 4} and [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / 1-chlorooctane, on catalyst activity and selectivities to branched alkanes was investigated. Acidic chloroaluminate IL catalysts form liquid-liquid biphasic systems with unpolar organic product mixtures. Thus, recycling of the acidic IL is enabled by simple phase separation in the liquid-liquid biphasic reaction mode or the IL can be immobilized on an inorganic support with a large specific surface area. These supported ionic liquid phase (SILP) catalysts offer the advantage to get a macroscopically heterogeneous system while still preserving all benefits of the homogeneous catalyst which can be used for the slurry-phase n-alkane isomerization. The interaction of the solid support and acidic IL influences strongly the catalytic activity. (orig.)

  9. Density functional theory of gas-liquid phase separation in dilute binary mixtures.

    Science.gov (United States)

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-22

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas [Formula: see text] (the Gibbs energy of transfer) is considerably larger than the thermal energy [Formula: see text] for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by [Formula: see text], where [Formula: see text] is the solute density added in liquid. For [Formula: see text], phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.

  10. Phase distribution in horizontal gas-liquid two-phase bubbly flow

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An investigation on phase distribution in air-water two-phaseflow in horizontal circular channel was conducted by using the double-sensor resistivity probe. The variations of phase distribution with variations ofgas and liquid volumetric fluxes were analyzed and the present data werecompared with some of other researcher's data and existing models. It wasfound there exists more complicated phase distribution pattern in horizontalflow system than in vertical flow. The radial local void fraction profilesare similar at the same measurement angle with various gas and liquid flowrates. However, an asymmetric profile can be observed at a given slice ofthe pipe cross-section.

  11. Superfluid helium 2 liquid-vapor phase separation: Technology assessment

    Science.gov (United States)

    Lee, J. M.

    1984-01-01

    A literature survey of helium 2 liquid vapor phase separation is presented. Currently, two types of He 2 phase separators are being investigated: porous, sintered metal plugs and the active phase separator. The permeability K(P) shows consistency in porous plug geometric characterization. Both the heat and mass fluxes increase with K(P). Downstream pressure regulation to adjust for varying heat loads and both temperatures is possible. For large dynamic heat loads, the active phase separator shows a maximum heat rejection rate of up to 2 W and bath temperature stability of 0.1 mK. Porous plug phase separation performance should be investigated for application to SIRTF and, in particular, that plugs of from 10 to the minus ninth square centimeters to 10 to the minus eighth square centimeters in conjunction with downstream pressure regulation be studied.

  12. String theory, quantum phase transitions, and the emergent Fermi liquid.

    Science.gov (United States)

    Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2009-07-24

    A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid.

  13. Liquid phase separating mechanism and preparation techniques of immiscible alloys

    Institute of Scientific and Technical Information of China (English)

    刘源; 李言祥; 郭景杰; 贾均; 苏彦庆; 丁宏升

    2002-01-01

    Immiscible alloys have attracted growing interest for their valuable physical and mechanical properties. However, their production is difficult because of metallurgical problems in which there is a serious tendency for gravity separation in the region of the miscibility gap. So far the study on the liquid separation mechanism is still one of the important projects in the spatial materials science and the spatial fluid science. The studied results about the liquid phase separating mechanism of immiscible alloys are presented, at the same time the preparation techniques of homogeneous immiscible alloys are summarized, and the existing problems and the related researching areas in the future are also pointed out.

  14. 4He glass phase: A model for liquid elements

    Science.gov (United States)

    Tournier, Robert F.; Bossy, Jacques

    2016-08-01

    The specific heat of liquid helium confined under pressure in nanoporous material and the formation, in these conditions, of a glass phase accompanied by latent heat are known. These properties are in good agreement with a recent model predicting, in liquid elements, the formation of ultrastable glass having universal thermodynamic properties. The third law of thermodynamics involves that the specific heat decreases at low temperatures and consequently the effective transition temperature of the glass increases up to the temperature where the frozen enthalpy becomes equal to the predicted value. The glass residual entropy is about 23.6% of the melting entropy.

  15. KINETICS OF CHEMICAL TRANSFORMATIONS OF HYDROCARBONS WORKING LIQUID FH-51 AT OPERATING AIRCRAFT

    OpenAIRE

    Кузнєцова, О.; Національний авіаційний університет; Нетреба, Ж.; Національний авіаційний університет

    2013-01-01

    Today the French hydraulic liquid «Hydronicoil» FH-51 is used in aircraft hydrosystems of Ukraine airlines.During aircraft exploitation under the action of external factors there are chemical transformations in molecules of liquid hydrocarbons. Research on kinetics of chemical transformations of hydrocarbons of working liquidFH-51 is carried out. The model of the noted chemical transformations, which provide achievement of necessary quality level of the liquid and aircraft reliability, is fou...

  16. μ-'Diving suit' for liquid-phase high-Q resonant detection.

    Science.gov (United States)

    Yu, Haitao; Chen, Ying; Xu, Pengcheng; Xu, Tiegang; Bao, Yuyang; Li, Xinxin

    2016-03-01

    A resonant cantilever sensor is, for the first time, dressed in a water-proof 'diving suit' for real-time bio/chemical detection in liquid. The μ-'diving suit' technology can effectively avoid not only unsustainable resonance due to heavy liquid-damping, but also inevitable nonspecific adsorption on the cantilever body. Such a novel technology ensures long-time high-Q resonance of the cantilever in solution environment for real-time trace-concentration bio/chemical detection and analysis. After the formation of the integrated resonant micro-cantilever, a patterned photoresist and hydrophobic parylene thin-film are sequentially formed on top of the cantilever as sacrificial layer and water-proof coat, respectively. After sacrificial-layer release, an air gap is formed between the parylene coat and the cantilever to protect the resonant cantilever from heavy liquid damping effect. Only a small sensing-pool area, located at the cantilever free-end and locally coated with specific sensing-material, is exposed to the liquid analyte for gravimetric detection. The specifically adsorbed analyte mass can be real-time detected by recording the frequency-shift signal. In order to secure vibration movement of the cantilever and, simultaneously, reject liquid leakage from the sensing-pool region, a hydrophobic parylene made narrow slit structure is designed surrounding the sensing-pool. The anti-leakage effect of the narrow slit and damping limited resonance Q-factor are modelled and optimally designed. Integrated with electro-thermal resonance excitation and piezoresistive frequency readout, the cantilever is embedded in a micro-fluidic chip to form a lab-chip micro-system for liquid-phase bio/chemical detection. Experimental results show the Q-factor of 23 in water and longer than 20 hours liquid-phase continuous working time. Loaded with two kinds of sensing-materials at the sensing-pools, two types of sensing chips successfully show real-time liquid-phase detection to ppb

  17. Glass and liquid phase diagram of a polyamorphic monatomic system.

    Science.gov (United States)

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-14

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, P(LDA-HDA)(T) and P(HDA-LDA)(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, P(LPC-HDA)(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)] simulations suggest that the P(LDA-HDA)(T) and P(HDA-LDA)(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the P(LPC-HDA)(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the P(LDA-HDA)(T), P(HDA-LDA)(T), P(LPC-HDA)(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the glass

  18. Evidence of a liquid-liquid phase transition in hot dense hydrogen.

    Science.gov (United States)

    Dzyabura, Vasily; Zaghoo, Mohamed; Silvera, Isaac F

    2013-05-14

    We use pulsed-laser heating of hydrogen at static pressures in the megabar pressure region to search for the plasma phase transition to liquid atomic metallic hydrogen. We heat our samples substantially above the melting line and observe a plateau in a temperature vs. laser power curve that otherwise increases with power. This anomaly in the heating curve appears correlated with theoretical predictions for the plasma phase transition. PMID:23630287

  19. Determination of kava lactones in food supplements by liquid chromatography-atmospheric pressure chemical ionisation tandem mass spectrometry

    NARCIS (Netherlands)

    Bobeldijk, I.; Boonzaaijer, G.; Spies-Faber, E.J.; Vaes, W.H.J.

    2005-01-01

    Reversed-phase liquid chromatography and detection with atmospheric pressure chemical ionisation tandem mass spectrometry was used for the determination of kava extracts in herbal mixtures. One percent of kava extract can be detected, corresponding to approximately 0.05-0.2 mg/g of the individual ka

  20. Indication of liquid-liquid phase transition in CuZr-based melts

    DEFF Research Database (Denmark)

    Zhou, C.; Hu, L.N.; Sun, Q.J.;

    2013-01-01

    We study the dynamic behavior of CuZr-based melts well above the liquidus temperature. The results show a discontinuous change in viscosity during cooling, which is attributed to an underlying liquid-liquid phase transition (LLPT) in these melts. The LLPT is further verified by thermodynamic resp...... liquids to the weakly ordered low-density liquids upon cooling.......We study the dynamic behavior of CuZr-based melts well above the liquidus temperature. The results show a discontinuous change in viscosity during cooling, which is attributed to an underlying liquid-liquid phase transition (LLPT) in these melts. The LLPT is further verified by thermodynamic...... response in the same superheated region. We find that the LLPT in the Cu46Zr46Al8 melt is reversible above 1350 K upon repeated heating and cooling. Based on the concept of fluid clustering in metallic melts, the reversible LLPT is attributed to the structural transition from the strongly ordered high-density...

  1. MHD Generators Operating with Two-Phase Liquid Metal Flows

    International Nuclear Information System (INIS)

    A simplified one- component liquid metal MHD cycle which utilizes two-phase mixtures passing directly through the generator has been proposed and is being studied. Analysis indicates that a nuclear dual-cycle power system utilizing the proposed liquid metal conversion scheme as a topping cycle has overall efficiencies that are comparable to a plasma dual-cycle system at much lower,temperatures. The key to the potential of this cycle is the performance of the MHD generator operating with two-phase mixtures. A large NaK-N2 loop capable of accommodating both d.c. conduction or a.c. induction generators operating with either single-phase or two-phase flows has been built and recently put into operation. Recirculating NaK flow rates up to 200 gal/min and gas flows of 750 ft3/min can be obtained. The efficiency of a generator operating with two-phase flow will depend upon the nature of the flow and the degree to which the total entering liquid flow.interacts with the magnetic field. Because the flow pattern of a two-phase mixture changes from a dispersion of gas in liquid to a dispersion of liquid in gas as the mixture quality is increased, two different types of generators are proposed and are being studied. In the first generator, referred to as a film generator, the two-phase mixture enters at a slight angle to the lower surface of the generator. The liquid is separated by impingement. The high-velocity free surface liquid film that is formed interacts with a transverse magnetic film. The efficiency of this type of generator is a function of the separation ratio, skin friction and momentum losses. A 2 kW version of the generator has been built and is currently being run. Initial tests up to 250 W have been made, which have shown that the generator concept is feasible and that the flow is stable. This generator has run with inlet qualities to 0.05 and magnetic fields up to 12 kG. Measured voltages and amperages have ranged to 0.60 V and 60 A. It is planned to continue

  2. Preconcentration in gas or liquid phases using adsorbent thin films

    Directory of Open Access Journals (Sweden)

    Antonio Pereira Nascimento Filho

    2006-03-01

    Full Text Available The possibility of preconcentration on microchannels for organic compounds in gas or liquid phases was evaluated. Microstructures with different geometries were mechanically machined using poly(methyl methacrylate - PMMA as substrates and some cavities were covered with cellulose. The surfaces of the microchannels were modified by plasma deposition of hydrophilic or hydrophobic films using 2-propanol and hexamethyldisilazane (HMDS, respectively. Double layers of HMDS + 2-propanol were also used. Adsorption characterization was made by Quartz Crystal Measurements (QCM technique using reactants in a large polarity range that showed the adsorption ability of the structures depends more on the films used than on the capillary phenomena. Cellulose modified by double layer film showed a high retention capacity for all gaseous compounds tested. However, structures without plasma deposition showed low retention capacity. Microchannels modified with double layers or 2-propanol plasma films showed higher retention than non-modified ones on gas or liquid phase.

  3. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  4. Modeling Non-aqueous Phase Liquid Displacement Process

    Institute of Scientific and Technical Information of China (English)

    Yang Zhenqing; Shao Changjin; Zhou Guanggang; Qiu Chao

    2007-01-01

    A pore-network model physically based on pore level multiphase flow was used to study the water-non-aqueous phase liquid (NAPL) displacement process, especially the effects of wettability, water-NAPL interfacial tension, the fraction of NAPL-wet pores, and initial water saturation on the displacement. The computed data show that with the wettability of the mineral surfaces changing from strongly water-wet to NAPL-wet, capillary pressure and the NAPL relative permeability gradually decrease, while water-NAPL interfacial tension has little effect on water relative permeability, but initial water saturation has a strong effect on water and NAPL relative permeabilities. The analytical results may help to understand the micro-structure displacement process of non-aqueous phase liquid and to provide the theoretical basis for controlling NAPL migration.

  5. Entransy dissipation minimization for liquid-solid phase change processes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The liquid-solid phase change process of a simple one-dimensional slab is studied in this paper.By taking entransy dissipation minimization as optimization objective,the optimal external reservoir temperature profiles are derived by using optimal control theory under the condition of a fixed freezing or melting time.The entransy dissipation corresponding to the optimal heat exchange strategies of minimum entransy dissipation is 8/9 of that corresponding to constant reservoir temperature operations,which is independent of all system parameters.The obtained results for entransy dissipation minimization are also compared with those obtained for the optimal heat exchange strategies of minimum entropy generation and constant reservoir temperature operations by numerical examples.The obtained results can provide some theoretical guidelines for the choice of optimal cooling or heating strategy in practical liquid-solid phase change processes.

  6. Processes of microstructure coarsening at liquid phase sintering.

    Science.gov (United States)

    Anestiev, L; Froyen, L

    2000-06-01

    A different approach to the theoretical description of the classical theory of Ostwald ripening at liquid phase sintering has been proposed. The model developed in the present approach is based on an equation describing the growth kinetics of the particles, which is different from those used until now. The model developed here accounts automatically for the influence of the initial volume fraction and predicts correctly: the time dependence of rho; at t-->infinity-rho;(3)(t)-rho;(3)(0)=Kt; the form of the distribution function after considerable coarsening time; the experimentally observed values for the relation rho(max)/rho;; and the phenomena of "abnormal growth" at liquid phase sintering.

  7. Liquid-phase microextraction in a microfluidic-chip

    DEFF Research Database (Denmark)

    Payán, María D. Ramos; Jensen, Henrik; Petersen, Nickolaj J.;

    2012-01-01

    In this work, a microfluidic-chip based system for liquid-phase microextraction (LPME-chip) was developed. Sample solutions were pumped into the LPME-chip with a micro-syringe pump at a flow rate of 3-4µLmin(-1). Inside the LPME chip, the sample was in direct contact with a supported liquid...... electrophoresis for exact quantification, or on-line by UV detection or electrospray ionization mass spectrometry for time profiling of concentrations. The LPME-chip was found to be highly effective, and extraction efficiencies were in the range of 52-91%. When the flow of acceptor phase was turned off during...... that the LPME-chip has great potentials for very efficient analyte enrichments from limited sample volumes in the future....

  8. Design criteria for extraction with chemical reaction and liquid membrane permeation

    Science.gov (United States)

    Bart, H. J.; Bauer, A.; Lorbach, D.; Marr, R.

    1988-01-01

    The design criteria for heterogeneous chemical reactions in liquid/liquid systems formally correspond to those of classical physical extraction. More complex models are presented which describe the material exchange at the individual droplets in an extraction with chemical reaction and in liquid membrane permeation.

  9. Non-aqueous phase liquid spreading during soil vapor extraction

    OpenAIRE

    Kneafsey, Timothy J.; HUNT, JAMES R.

    2004-01-01

    Many non-aqueous phase liquids (NAPLs) are expected to spread at the air – water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enha...

  10. Water Phase Diagram Is Significantly Altered by Imidazolium Ionic Liquid

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    We report unusually large changes in the boiling temperature, saturated vapor pressure, and structure of the liquid-vapor interface for a range of 1-butyl-3-methyl tetrafluoroborate, [C4C1IM][BF4]-water mixtures. Even modest molar fractions of [C4C1IM][BF4] significantly affect the phase behavior...... vapor pressures are discussed at the atomistic resolution. The reported results guide the search for novel scientific and technological applications of ion-molecular systems....

  11. Neutron Radiography Analysis of a Transient Liquid Phase Joint

    OpenAIRE

    Ballhausen, H.; Abele, H.; Eccleston, R. S.; Gaehler, R.; Smith, A. J.; A. Steuwer; Van Overberghe, A.

    2006-01-01

    Neutron radiography in many cases is the only non-destructive technique available for the analysis of a wide range of samples from metallurgy, materials engineering and materials testing. In this paper the potential of the technique is illustrated for a transient liquid phase (TLP) joint. TLP bonding produces interface free and stress free joints. The quality and properties of the joint depend on the diffusion of an interlayer into the base material. A TLP joint is visualised and the diffusio...

  12. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  13. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-09-30

    The Liquid Phase Methanol (LPMEOH) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Ak Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOITM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this reporting period, DOE accepted the recommendation to continue with dimethyl ether (DME) design verification testing (DVT). DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stzibility is being developed. Planning for a proof-of-concept test run at the LaPorte Alternative Fuels Development Unit (AFDU) was recommended. DOE issued a letter dated 31 July 1997 accepting the recommendation to continue design verification testing. In order to allow for scale-up of the manufacturing technique for the dehydration catalyst from the pilot plant to the commercial scale, the time required to produce the catalyst to the AFDU has slipped. The new estimated delivery date is 01 June 1998.

  14. Inclusion Complexes of Ionic Liquids and Cyclodextrins: Are They Formed in the Gas Phase?

    Science.gov (United States)

    Fernandes, Ana M.; Schröder, Bernd; Barata, Tânia; Freire, Mara G.; Coutinho, João A. P.

    2014-05-01

    The interaction of imidazolium-based ionic liquids with α- and β-cyclodextrins was investigated by electrospray ionization mass spectrometry with variable collision induced dissociation energy and quantum chemical gas-phase calculations. The center-of-mass energy at which 50 % of a precursor ion decomposes (Ecm,1/2) was determined for the isolated [cyclodextrin + cation]+ or [cyclodextrin + anion]- adduct ions of imidazolium-based ionic liquids with different alkyl chain lengths combined with a large set of anions, such as chloride, bromide, bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, methanesulfonate, dicyanamide, and hydrogensulfate. Moreover, both symmetric and asymmetric imidazolium cationic cores were evaluated. The relative interaction energies in the adduct ions were interpreted in terms of the influence of cation/anion structures and their inherent properties, such as hydrophobicity and hydrogen bond accepting ability, in the complexation process with the cyclodextrins. The trends observed in the mass spectral data together with quantum-chemical calculations suggest that in the gas phase, cations and anions will preferentially interact with the lower or upper rim of the cyclodextrin, respectively, as opposed to what has been reported in condensed phase where the formation of an inclusion complex between ionic liquid and cyclodextrin is assumed.

  15. Transparent nematic phase in a liquid-crystal-based microemulsion.

    Science.gov (United States)

    Yamamoto, J; Tanaka, H

    2001-01-18

    Complex fluids are usually produced by mixing together several distinct components, the interactions between which can give rise to unusual optical and rheological properties of the system as a whole. For example, the properties of microemulsions (composed of water, oil and surfactants) are determined by the microscopic structural organization of the fluid that occurs owing to phase separation of the component elements. Here we investigate the effect of introducing an additional organizing factor into such a fluid system, by replacing the oil component of a conventional water-in-oil microemulsion with an intrinsically anisotropic fluid--a nematic liquid crystal. As with the conventional case, the fluid phase-separates into an emulsion of water microdroplets (stabilized by the surfactant as inverse micelles) dispersed in the 'oil' phase. But the properties are further influenced by a significant directional coupling between the liquid-crystal molecules and the surfactant tails that emerge (essentially radially) from the micelles. The result is a modified bulk-liquid crystal that is an ordered nematic at the mesoscopic level, but which does not exhibit the strong light scattering generally associated with bulk nematic order: the bulk material here is essentially isotropic and thus transparent.

  16. Vibrational relaxation in liquids: Comparisons between gas phase and liquid phase theories

    International Nuclear Information System (INIS)

    The vibrational relaxation of iodine in liquid xenon was studied to understand what processes are important in determining the density dependence of the vibrational relaxation. This examination will be accomplished by taking simple models and comparing the results to both experimental outcomes and the predictions of molecular dynamics simulations. The vibration relaxation of iodine is extremely sensitive to the iodine potential. The anharmonicity of iodine causes vibrational relaxation to be much faster at the top of the iodine well compared to the vibrational relaxation at the bottom. A number of models are used in order to test the ability of the Isolated Binary Collision theory's ability to predict the density dependence of the vibrational relaxation of iodine in liquid xenon. The models tested vary from the simplest incorporating only the fact that the solvent occupies volume to models that incorporate the short range structure of the liquid in the radial distribution function. None of the models tested do a good job of predicting the actual relaxation rate for a given density. This may be due to a possible error in the choice of potentials to model the system

  17. Influence of microwave heating on liquid-liquid phase inversion and temperature rates for immiscible mixtures.

    Science.gov (United States)

    Kennedy, Alvin; Tadesse, Solomon; Nunes, Janine; Reznik, Aron

    2011-01-01

    Time dependencies of component temperatures for mixtures of immiscible liquids during microwave heating were studied for acetonitrile-cyclohexane and water-toluene. For the first time, we report microwave induced liquid-liquid phase inversion for acetonitrile-cyclohexane mixture: acetonitrile layer was initially at the bottom of the mixture, after 10 sec of microwave heating its density decreased and it inverted to the top of the mixture for the remainder of the microwave heating. This phase inversion could not be achieved by conventional radiant heating. The maximum rate of temperature growth for the polar component of the mixtures was 2 - 5 times larger than for the non-polar component. This suggests that microwave energy is absorbed by polar liquids (water or acetonitrile) and heat is transferred into the non-polar liquid (toluene or cyclohexane) in the mixture by conduction (in case of cyclohexane) or conduction and convection (in case of toluene). Comparison between experimental data and semi-empirical mathematical models, proposed in [Kennedy et at., 2009] showed good correlation. Average relative error between theoretical and experimental results did not exceed 7%. These results can be used to model the temperature kinetics of components for other multiphase mixtures.

  18. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    Science.gov (United States)

    Rustan, Gustav Errol

    been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.

  19. Josephson coupling, phase correlations, and Josephson plasma resonance in vortex liquid phase

    International Nuclear Information System (INIS)

    Josephson plasma resonance (JPR) has been introduced recently as a powerful tool to probe interlayer Josephson coupling in different regions of the vortex phase diagram in layered superconductors. In the liquid phase, the high-temperature expansion with respect to the Josephson coupling connects the Josephson plasma frequency with the phase correlation function. This function, in turn, is directly related to the pair distribution function of the liquid. We develop a recipe to extract the phase and density correlation functions from the dependencies of the plasma resonance frequency ωp(B) and the c-axis conductivity σc(B) on the ab component of the magnetic field at fixed c component. Using Langevin dynamic simulations of two-dimensional vortex arrays we calculate density and phase correlation functions at different temperatures. Calculated phase correlations describe very well the experimental angular dependence of the plasma resonance field. We also demonstrate that in the case of weak damping in the liquid phase, broadening of the JPR line is caused mainly by random Josephson coupling arising from the density fluctuations of pancake vortices. In this case the JPR line has a universal shape, which is determined only by parameters of the superconductors and temperature

  20. Ultrafast magnetic-resonance-imaging velocimetry of liquid-liquid systems: overcoming chemical-shift artifacts using compressed sensing.

    Science.gov (United States)

    Tayler, Alexander B; Benning, Martin; Sederman, Andrew J; Holland, Daniel J; Gladden, Lynn F

    2014-06-01

    We present simultaneous measurement of dispersed and continuous phase flow fields for liquid-liquid systems obtained using ultrafast magnetic resonance imaging. Chemical-shift artifacts, which are otherwise highly problematic for this type of measurement, are overcome using a compressed sensing based image reconstruction algorithm that accounts for off-resonant signal components. This scheme is combined with high-temporal-resolution spiral imaging (188 frames per second), which is noted for its robustness to flow. It is demonstrated that both quantitative signal intensity and phase preconditioning are preserved throughout the image reconstruction algorithm. Measurements are acquired of oil droplets of varying viscosity rising through stagnant water. From these data it is apparent that the internal droplet flow fields are heavily influenced by the droplet shape oscillations, and that the accurate modeling of droplet shape is of critical importance in the modeling of droplet-side hydrodynamics. The application of the technique to three-component systems is also demonstrated, as is the measurement of local concentration maps of a mutually soluble species (acetone in polydimethylsiloxane-water).

  1. Variational studies of exotic bose liquid, spin liquid, and magnetic phases

    Science.gov (United States)

    Tay, Tiamhock

    The strong interest in strongly correlated systems in condensed matter physics has continued unabated for the past few decades. In recent years, the number of novel, exotic quantum phases found in theoretical studies has seen a phenomenal rise. Among those interesting quantum states are bose liquids and spin liquids, where strong quantum fluctuations have prevented the systems from developing a long range order. Our work in this thesis seeks to further the understanding of frustrated systems. In the study of a hard-core boson model with ring-only exchange interactions on a square lattice, we obtain concrete numerical realization of the unconventional Exciton Bose Liquid (EBL) phase, which possesses interesting properties such as a "Bose surface'' which resembles the Fermi surface in a metal, as well as unusual thermodynamic properties such as a T log T dependence for specific heat. An equally important result from this work is the demonstration that the widely used Gutzwiller projection on slave-particle wave functions may generally fail to capture the correct long wavelength physics in the respective systems. For the Heisenberg antiferromagnet on the kagome lattice, which is a promising candidate for realizing a spin-disordered ground state, our variational study shows that the projected Schwinger boson wave function is energetically better than the Dirac spin liquid wave function when a small antiferromagnetic second-neighbor spin coupling is added to the nearest-neighbor model. We also study the anisotropic triangular Heisenberg antiferromagnetic in magnetic field, and find simple, yet accurate wave functions for various regions of the surprisingly rich phase diagram, thus providing insights into the energetics of the competing phases in this interesting model. Finally, our work also highlights permanent-type wave functions as potentially useful constructions in variational studies of systems with short-ranged correlations, e.g., a Mott insulator and a gapped

  2. Single-reactor process for producing liquid-phase organic compounds from biomass

    Science.gov (United States)

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2011-12-13

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  3. Single-reactor process for producing liquid-phase organic compounds from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2015-12-08

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  4. Commercial-Scale Demonstration of the Liquid Phase methanol (LPMEOH) Process A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-10-27

    The U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Program seeks to offer the energy marketplace more efficient and environmentally benign coal utilization technology options by demonstrating them in industrial settings. This document is a DOE post-project assessment (PPA) of one of the projects selected in Round III of the CCT Program, the commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process, initially described in a Report to Congress by DOE in 1992. Methanol is an important, large-volume chemical with many uses. The desire to demonstrate a new process for the production of methanol from coal, prompted Air Products and Chemicals, Inc. (Air Products) to submit a proposal to DOE. In October 1992, DOE awarded a cooperative agreement to Air Products to conduct this project. In March 1995, this cooperative agreement was transferred to Air Products Liquid Phase Conversion Company, L.P. (the Partnership), a partnership between Air Products and Eastman Chemical Company (Eastman). DOE provided 43 percent of the total project funding of $213.7 million. Operation of the LPMEOH Demonstration Unit, which is sited at Eastman's chemicals-from-coal complex in Kingsport, Tennessee, commenced in April 1997. Although operation of the CCT project was completed in December 2002, Eastman continues to operate the LPMEOH Demonstration Unit for the production of methanol. The independent evaluation contained herein is based primarily on information from Volume 2 of the project's Final Report (Air Products Liquid Phase Conversion Co., L.P. 2003), as well as other references cited.

  5. Statistical thermodynamics of liquid-liquid phase separation in ternary systems during complex coacervation

    Science.gov (United States)

    Pawar, Nisha; Bohidar, H. B.

    2010-09-01

    Liquid-liquid phase separation leading to complex coacervation in a ternary system (oppositely charged polyion and macroion in a solvent) is discussed within the framework of a statistical thermodynamics model. The polyion and the macroion in the ternary system interact to form soluble aggregates (complexes) in the solvent, which undergoes liquid-liquid phase separation. Four necessary conditions are shown to drive the phase separation: (i) (σ23)3r/Φ23c≥((64)/(9α2))(χ23Φ3)2 , (ii) r≥[(64(χ23Φ3)2)/(9α2σ233)]1/2 , (iii) χ23≥((2χ231-1))/(Φ23cΦ3) , and (iv) (σ23)2/I≥(8)/(3α)(2χ231-1) (where σ23 is the surface charge on the complex formed due to binding of the polyelectrolyte and macroion, Φ23c is the critical volume fraction of the complex, χ23 is the Flory interaction parameter between polyelectrolyte and macroion, χ231 is the same between solvent and the complex, Φ3 is the volume fraction of the macroions, I is the ionic strength of the solution, α is electrostatic interaction parameter and r is typically of the order of molecular weight of the polyions). It has been shown that coacervation always requires a hydrated medium. In the case of a colloidal macroion and polyelectrolyte coacervation, molecular weight of polyelectrolyte must satisfy the condition r≥103Da to exhibit liquid-liquid phase separation. This model has been successfully applied to study the coacervation phenomenon observed in aqueous Laponite (macroion)-gelatin (polyion) system where it was found that the coacervate volume fraction, δΦ23˜χ2312 (where δΦ23 is the volume fraction of coacervates formed during phase separation). The free energy and entropy of this process have been evaluated, and a free-energy landscape has been drawn for this system that maps the pathway leading to phase separation.

  6. Asymmetric dynamic phase holographic grating in nematic liquid crystal

    Science.gov (United States)

    Ren, Chang-Yu; Shi, Hong-Xin; Ai, Yan-Bao; Yin, Xiang-Bao; Wang, Feng; Ding, Hong-Wei

    2016-09-01

    A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal (NLC) was presented. An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating. The diffraction efficiency we achieved is more than 40%, exceeding the theoretical limit for symmetric profile gratings. Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC. Finally, physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented, based on the photo-refractive-like (PR-like) effect. Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province, China (Grant No. 12541730) and the National Natural Science Foundation of China (Grant No. 61405057).

  7. Luttinger liquid with complex forward scattering: Robustness and Berry phase

    Science.gov (United States)

    Dóra, Balázs; Moessner, Roderich

    2016-02-01

    Luttinger liquids (LLs) are one-dimensional systems with well-understood instabilities due to Umklapp or backscattering. We study a generalization of the Luttinger model, which incorporates a time reversal symmetry breaking interaction producing a complex forward scattering amplitude (g2 process). The resulting low energy state is still a LL and belongs to the family of interacting Schulz-Shastry models. Remarkably, it becomes increasingly robust against additional perturbations—for purely imaginary g2, both Umklapp and local backscattering are always irrelevant. Changing the phase of the interaction generates a nontrivial Berry phase, with a universal geometric phase difference between ground and a one boson excited state depending only on the LL parameter.

  8. Printing nanoparticles from the liquid and gas phases using nanoxerography

    Science.gov (United States)

    Barry, Chad R.; Steward, Michael G.; Lwin, Nyein Z.; Jacobs, Heiko O.

    2003-10-01

    This paper reports on the directed self-assembly of nanoparticles onto charged surface areas with a resolution of 200 nm from the liquid phase and 100 nm from the gas phase. The charged areas required for this type of nanoxerographic printing were fabricated using a parallel method that employs a flexible, electrically conductive, electrode to charge a thin-film electret. As electrodes, we used metal-coated polymeric stamps and 10 µm thick doped silicon wafers carrying a pattern in topography. Each electrode was brought in contact with a thin-film electret on an n-doped silicon substrate. The charge pattern was transferred into the thin-film electret by applying a voltage pulse between the conductive electrode and the silicon substrate. Areas as large as 1 cm2 were patterned with charge with 100 nm scale resolution in 10 s. These charge patterns attract nanoparticles. A liquid-phase assembly process where electrostatic forces compete with disordering forces due to ultrasonication has been developed to assemble nanoparticles onto charged based receptors in 10 s from a liquid suspension. A gas-phase assembly process was developed that uses a transparent particle assembly module to direct particles towards the charged surface while monitoring the total charge of assembled particles. Nanoparticles were generated using a tube furnace by evaporation and condensation at the outlet. The electrostatically directed assembly of 10-100 nm sized metal (gold, silver) and 30 nm sized carbon particles was accomplished with a resolution 500-1000 times greater than the resolution of existing xerographic printers.

  9. CELLULOSE EXTRACTION FROM PALM KERNEL CAKE USING LIQUID PHASE OXIDATION

    Directory of Open Access Journals (Sweden)

    FARM YAN YAN

    2009-03-01

    Full Text Available Cellulose is widely used in many aspect and industries such as food industry, pharmaceutical, paint, polymers, and many more. Due to the increasing demand in the market, studies and work to produce cellulose are still rapidly developing. In this work, liquid phase oxidation was used to extract cellulose from palm kernel cake to separate hemicellulose, cellulose and lignin. The method is basically a two-step process. Palm kernel cake was pretreated in hot water at 180°C and followed by liquid oxidation process with 30% H2O2 at 60°C at atmospheric pressure. The process parameters are hot water treatment time, ratio of palm kernel cake to H2O2, liquid oxidation reaction temperature and time. Analysis of the process parameters on production cellulose from palm kernel cake was performed by using Response Surface Methodology. The recovered cellulose was further characterized by Fourier Transform Infrared (FTIR. Through the hot water treatment, hemicellulose in the palm kernel cake was successfully recovered as saccharides and thus leaving lignin and cellulose. Lignin was converted to water soluble compounds in liquid oxidation step which contains small molecular weight fatty acid as HCOOH and CH3COOH and almost pure cellulose was recovered.

  10. Chemical dehumidification by liquid desiccants: theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Gasparella, A.; Longo, G.A. [Universita di Padova, Dip. di Tecnica e Gestione dei Sistemi Industriale, Vicenza (Italy)

    1999-06-01

    Chemical dehumidification of air by a liquid desiccant in a packed tower has been investigated both theoretically and experimentally for air conditioning and industrial applications. A computer model of a packed tower, able to determine heat and mass transfer between air and desiccant, has been developed and a parametrical study was carried out considering the solutions H{sub 2}O/LiBr and H{sub 2}O/CaCl{sub 2} to determine the optimum operative conditions. An experimental apparatus including a packed tower and a desiccant regenerator has been described together with experimental results: a set of 70 experimental runs with H{sub 2}O/LiBr. Data have been reported and compared against the results of the computer code simulations. (Author)

  11. Chemical dehumidification by liquid desiccants. Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Gasparella, A. [Instituto di Ingegneria Gestionale dell`Universita di Padova, Padova (Italy); Longo, G.A. [Instituto di Fisica Tecnica dell`Universita di Padova, Padova (Italy)

    1997-06-01

    Chemical dehumidification of air by a liquid desiccant in packed tower has been investigated both theoretically and experimentally for air conditioning and industrial applications. A computer model of a packed tower, able to determine the heat and mass transfer between air and desiccant, has been developed and a parametrical study was carried out considering the solutions H2O/LiBr and H2O/CaCl2 to determine the optimum operative conditions. An experimental apparatus including a packed tower and a desiccant regenerator has been describe together with experimental results: a set of 70 experimental runs with H2O/LiBr. Dat have been reported and compared against the results of the computer code simulations. 16 refs.

  12. Extraction of Phthalic Acid from Aqueous Solution by Using Ionic Liquids: A Quantum Chemical Approach

    OpenAIRE

    Pilli, S; Mohanty, Kaustubha; Banerjee, Tamal

    2014-01-01

    Phthalic acid is an industrial chemical and it comes under the domain of endocrine disrupting chemicals (EDCs). Green solvents such as ionic liquids (ILs) posses good extractable capabilities for EDCs. COSMO–RS methodology is a widely accepted method for the design or selection of ionic liquids. COSMO–RS is a quantum chemical based method based on COSMO polarization charge densities. In this work the model has been used to screen the potential ionic liquids for the removal of phthalic acid fr...

  13. Effect of dimensionality on vapor-liquid phase transition

    Science.gov (United States)

    Singh, Sudhir Kumar

    2014-04-01

    Dimensionality play significant role on `phase transitions'. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions `phase transition' properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor-liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  14. Crystallization and phase changes in paracetamol from the amorphous solid to the liquid phase.

    Science.gov (United States)

    Sibik, Juraj; Sargent, Michael J; Franklin, Miriam; Zeitler, J Axel

    2014-04-01

    For the case of paracetamol, we show how terahertz time-domain spectroscopy can be used to characterize the solid and liquid phase dynamics. Heating of supercooled amorphous paracetamol from 295 K in a covered sample under vacuum leads to its crystallization at 330 K. First, form III is formed followed by the transformation of form III to form II at 375 K, to form I at 405 K, and finally melting is observed around 455 K. We discuss the difference between the featureless spectra of the supercooled liquid and its liquid melt. Lastly, we studied the onset of crystallization from the supercooled liquid in detail and quantified its kinetics based on the Avrami-Erofeev model. We determined an effective rate constant of k = 0.056 min(-1) with a corresponding onset of crystallization at T = 329.5 K for a heating rate of 0.4 K min(-1). PMID:24579729

  15. Impact of reversed phase column pairs in comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Allen, Robert C; Barnes, Brian B; Haidar Ahmad, Imad A; Filgueira, Marcelo R; Carr, Peter W

    2014-09-26

    A major issue in optimizing the resolving power of two-dimensional chromatographic separations is the choice of the two phases so as to maximize the distribution of the analytes over the separation space. In this work, we studied the choice of appropriate reversed phases to use in on-line comprehensive two-dimensional liquid chromatography (LC×LC). A set of four chemically different conventional bonded reversed phases was used in the first dimension. The second dimension column was either a conventional bonded C18 phase or a carbon-clad phase (CCP). The LC×LC chromatograms and contour plots were all rather similar indicating that the selectivities of the two phases were also similar regardless of the reverse phase column used in the first dimension. Further, the spatial coverage seen with all four first dimension stationary phases when paired with a second dimension C18 phase were low and the retention times were strongly correlated. However, when the C18 column was replaced with the CCP column much improved separations were observed with higher spatial coverages, greater orthogonalities and significant increases in the number of observed peaks.

  16. Ecotoxicology of heavy metals: Liquid-phase extraction by nanosorbents

    Science.gov (United States)

    Burakov, A.; Romantsova, I.; Babkin, A.; Neskoromnaya, E.; Kucherova, A.; Kashevich, Z.

    2015-11-01

    The paper considers the problem of extreme toxicity heavy metal compounds dissolved in wastewater and liquid emissions of industrial enterprises to living organisms and environment as a whole. The possibility of increasing extraction efficiency of heavy metal ions by sorption materials was demonstrated. The porous space of the latter was modified by carbon nanotubes (CNTs) during process of the chemical vapour deposition (CVD) of carbon on metal oxide catalysts. The increasing of the sorption capacity (10-30%) and the sorption rate of nanomodified activated carbons in comparison with standard materials in the example of absorption of Co2+ and Ni2+ ions from aqueous solutions was proven.

  17. A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals

    Science.gov (United States)

    Lin, Yi-Hsin; Tsou, Yu-Shih

    2011-12-01

    A polarization-independent liquid crystal (LC) phase modulation using the surface pinning effect of polymer dispersed liquid crystals (SP-PDLC) is demonstrated. In the bulk region of the SP-PDLC, the orientations of LC directors are randomly dispersed; thus, any polarization of incident light experiences the same averaged refractive index. In the regions near glass substrates, the LC droplets are pinned. The orientations of top and bottom droplets are orthogonal. Two eigen-polarizations of an incident light experience the same phase shift. As a result, the SP-PDLC is polarization independent. Polarizer-free microlens arrays of SP-PDLC are also demonstrated. The SP-PDLC has potential for application in spatial light modulators, laser beam steering, and electrically tunable microprisms.

  18. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    Science.gov (United States)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-11-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  19. Supersolidus Liquid Phase Sintering Modeling of Inconel 718 Superalloy

    Science.gov (United States)

    Levasseur, David; Brochu, Mathieu

    2016-02-01

    Powder metallurgy of Inconel 718 superalloy is advantageous as a near-net shape process for complex parts to reduce the buy-to-fly ratio and machining cost. However, sintering Inconel 718 requires the assistance of supersolidus liquid formation to achieve near full density and involves the risk of distortion at high temperatures. The present work is focused on modeling the onset of sintering and distortion as a function of temperature, grain size, and part geometry for Inconel 718. Using experimental sintering results and data available in the literature, the supersolidus liquid phase sintering of Inconel 718 was modeled. The model was used to define a processing window where part distortion would be avoided.

  20. Activity of Catalyst for Liquid Phase Methanol Synthesis

    Institute of Scientific and Technical Information of China (English)

    WANGYuefa; JanezLevec

    2002-01-01

    The effects of reduction procedure, reaction temperature and composition of feed gas on the activity of a CuO-ZnO-Al2O3 catalyst for liquid phase methanol synthesis were studied. An optimized procedure different from conventional ones was developed to obtain higher activity and better stability of the catalyst. Both CO and CO2 in the feed gas were found to be necessary to maintain the activity of catalyst in the synthesis process. Reaction temperature was limited up to 523K, otherwise the catalyst will be deactivated rapidly. Experimental results show that the catalyst deactivation is caused by sintering and fouling, and the effects of CO and CO2 on the catalyst activity are also investigated. The experimental results indicate that the formation of water in the methanol synthesis is negligible when the feed gas contains both CO and CO2. The mechanism for liquid-phase methanol synthesis was discussed and it differed slightly from that for gas-phase synthesis.

  1. Investigations on the liquid crystalline phases of cation-induced condensed DNA

    Science.gov (United States)

    Pillai, C. K. S.; Sundaresan, Neethu; Radhakrishnan Pillai, M.; Thomas, T.; Thomas, T. J.

    2005-10-01

    Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physico-chemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminary to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li--DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA.

  2. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    KAUST Repository

    Hellmann, Christoph

    2014-12-17

    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  3. Clean coal technology: commercial-scale demonstration of the liquid phase methanol (LPMEOH{trademark}) process

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The report discusses the demonstration of Air Products and Chemical, Inc.`s Liquid Phase Methanol (LPMEOTH {trademark}) Process which is designed to convert synthesis gas derived from the gasification of coal into methanol for use as a chemical intermediate or as a low-sulfur dioxide and low-nitrogen oxides emitting alternative fuel. The project was selected for funding by the US Clean Coal Technology Program Round III in 1992. Construction of the Demonstration Project at Eastman Chemical Co`s Kingsport complex began in October 1995 and was completed in January 1997. Production rates of over 300 tons per day of methanol have been achieved and availability for the unit has exceeded 96% since startup. The LPMEOH{trademark} Process can enhance integrated gasification combined cycle (IGCC) power generation by converting part of the syngas from the gasifier to methanol which can be solid or used as a peak-sharing fuel. 50 refs., 5 figs., 7 photos.

  4. A novel procedure for phase separation in dispersive liquid-liquid microextraction based on solidification of the aqueous phase.

    Science.gov (United States)

    March, J G; Cerdà, V

    2016-08-15

    In this paper, an alternative for handling the organic phase after a dispersive liquid-liquid microextraction using organic solvents lighter than water is presented. It is based on solidification (at -18°C) of the aqueous phase obtained after centrifugation, and the decantation, collection and analysis of the liquid organic layer. The extraction of nicotine in toluene, and its determination in eggplant samples was conducted as a proof of concept. The study has been carried out using standards prepared in water and the formation of the dispersion was assisted by sonication. The organic extract was analysed using gas chromatography coupled to mass spectrometry. Satisfactory analytical figures of merit as: limit of detection (0.4µgL(-1), 2ngg(-1) wet sample), limit of quantification (1.2µgL(-1), 6.5ngg(-1) wet sample), within-day precision (RSD=7%), and linearity interval (up to 384µgL(-1) nicotine) were achieved. It constituted a contribution to the handling of organic extracts after microextraction processes. PMID:27260454

  5. The removal of dinitrochlorobenzene from industrial residuals by liquid-liquid extraction with chemical reaction

    Directory of Open Access Journals (Sweden)

    G. C. M. Ferreira

    2007-09-01

    Full Text Available Nitrochlorobenzenes (NCBs are very important in the chemical industry since they have been used as raw material for the manufacture of crop protection products, as active ingredients in the pharmaceutical industry, as pigments and as antioxidants as well as for other uses. In industrial processes, NCBs are produced by monochlorobenzene (MCB nitration reactions and one of the main residuals formed is dinitrochlorobenzene (DNCB, which is mainly composed of the isomer 2,4DNCB. This subproduct, although of commercial interest when in its pure state, is generally incinerated due to the high costs of recovery treatment and purification. The objective of this study is to present an alternative to the treatment of industrial residuals containing DNCB. The technique consists of converting DNCB into sodium dinitrophenolate, which is very soluble in water and is also easy to reuse. For this purpose, liquid-liquid extraction with chemical reaction (alkaline hydrolysis with a rotating disc contactor (RDC is used. Experimental data on MCB nitration reactions as well as alkaline hydrolysis using a rotating disc contactor are presented.

  6. A review of liquid-phase catalytic hydrodechlorination

    Directory of Open Access Journals (Sweden)

    Alba Nelly Ardila Arias

    2010-04-01

    Full Text Available This survey was aimed at introducing the effect of light organochlorinated compound emissions on the envi-ronment, particularly on water, air, soil, biota and human beings. The characteristics and advantages of liquid phase catalytic hydrodechlorination as a technology for degrading these chlorinated compounds is also outlined and the main catalysts used in the hydrodechlorination process are described. Special emphasis is placed on palladium catalysts, their activity, the nature of active species and deactivation. The effect of several parameters is introduced, such as HCl, solvent, base addition and type of reducing agent used. The main results of kinetic studies, reactors used and the most important survey conclusions are presented.

  7. Geometrically-frustrated pseudogap phase of Coulomb liquids

    International Nuclear Information System (INIS)

    We study a class of models with long-range repulsive interactions of the generalized Coulomb form V(r)∼1/rα. We show that decreasing the interaction exponent in the regime αc in any dimension d≥2, reflecting the strong geometric frustration produced by long-range interactions. A nearly frozen Coulomb liquid then survives in a broad pseudogap phase found at T>Tc, which is characterized by an unusual temperature dependence of all quantities. In contrast, the leading critical behavior very close to the charge-ordering temperature remains identical as in models with short-range interactions.

  8. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  9. Flow Rate of He Ⅱ Liquid-Vapor Phase Separator

    Institute of Scientific and Technical Information of China (English)

    Xingen YU; Qing LI; Qiang LI; Zhengyu LI

    2005-01-01

    Experimental results are presented for superfluld (He Ⅱ) flow through porous plug liquid-vapor phase separators.Tests have been performed on seven porous plugs with different thicknesses or different permeabilities. The temperature was measured from 1.5K to 1.9K. Two flow regions were observed in small and large pressure and temperature differences regions respectively. The experimental data are compared with theoretical predictions.The performance and applicability of the basic theory are discussed. Hysteresis of the flow rate is also observed and discussed.

  10. Environmental information volume: Liquid Phase Methanol (LPMEOH trademark) project

    International Nuclear Information System (INIS)

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature

  11. Effect of temperature in reversed phase liquid chromatography.

    Science.gov (United States)

    Guillarme, D; Heinisch, S; Rocca, J L

    2004-10-15

    The high temperature liquid chromatography (HTLC) reveals interesting chromatographic properties but even now, it misses some theoretical aspects concerning the influence of high temperature on thermodynamic and kinetic aspects of chromatography: such a knowledge is very essential for method development. In this work, the effect of temperature on solute behavior has been studied using various stationary phases which are representative of the available thermally stable materials present on the market. The thermodynamic properties were evaluated by using different mobile phases: acetonitrile-water, methanol-water and pure water. The obtained results were discussed on the basis of both type of mobile phases and type of stationary phases. Type of mobile phase was found to play an important role on the retention of solutes. The kinetic aspect was studied at various temperatures ranging from ambient temperature to high temperature (typically from about 30 to 200 degrees C) by fitting the experimental data with the Knox equation and it was shown that the efficiency is improved significantly when the temperature is increased. In this paper, we also discussed the problem of temperature control for thermostating columns which may represent a significant source of peak broadening: by taking into account the three main parameters such as heat transfer, pressure drop and band broadening resulting from the preheating tube, suitable rules are set up for a judicious choice of the column internal diameter. PMID:15527119

  12. Preparation of thin film gold based catalysts for oxidation reactions in liquid and gas phases

    International Nuclear Information System (INIS)

    This work deals with the preparation of gold on titania catalysts to make catalytic films in the less than 100 nm thickness area and its comparison with usual powder catalyst in catalytic oxidation reactions in gas and liquid phases. Titania was coated on glass plates with different thicknesses, but with ultra-low surface roughness (< 5 Å). Gold deposition was performed with usual chemical method for catalysts preparation, that is deposition–precipitation with urea. Transmission electron microscopy showed that planar samples are decorated with a high quantity (> 10 wt.% with respect to TiO2) of gold nanoparticles smaller than 2.5 nm, with a narrow size distribution. Activity in CO oxidation demonstrates the catalytic behavior of the planar samples, although they are less active than powder catalyst because of the different geometries of the reactors and catalysts. In contrast, their catalytic performances in liquid phase, benzyl alcohol oxidation, are comparable. These results validate the concept that gold planar catalysts prepared by chemical methods can present similar catalytic behavior as real powder gold catalysts. Such planar catalysts could be useful for bridging the material gap between real and model catalysts in advanced techniques, such as scanning tunnelling microscopy and spectroscopy or high-pressure photoelectron spectroscopy. - Highlights: ► Preparation of thin film of TiO2 (pure anatase) on glass with a low roughness (< 5 Å) ► High density of small gold nanoparticles on planar substrates by a chemical method ► Planar catalysts active in both gas and liquid phase oxidation reactions ► Bridging of the material gap between real and model catalysts

  13. PWR steam generator chemical cleaning. Phase II. Final report

    International Nuclear Information System (INIS)

    Two techniques believed capable of chemically dissolving the corrosion products in the annuli between tubes and support plates were developed in laboratory work in Phase I of this project and were pilot tested in Indian Point Unit No. 1 steam generators. In Phase II, one of the techniques was shown to be inadequate on an actual sample taken from an Indian Point Unit No. 2 steam generator. The other technique was modified slightly, and it was demonstrated that the tube/support plate annulus could be chemically cleaned effectively

  14. The effect of the interaction between the minority phase droplets on the nucleation behavior during the liquid-liquid phase transformation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The microstructure evolution during the liquid-liquid phase transformation of Al-Pb alloy was calculated. The numerical results indicate that the interaction between the minority phase droplets has effect on the nucleation process of the droplets, and the effect increases with the cooling rate and the content of Pb.

  15. Volume phase transitions of cholesteric liquid crystalline gels

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Akihiko, E-mail: matuyama@bio.kyutech.ac.jp [Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502 (Japan)

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  16. Olefin Epoxidation in Aqueous Phase Using Ionic-Liquid Catalysts.

    Science.gov (United States)

    Cokoja, Mirza; Reich, Robert M; Wilhelm, Michael E; Kaposi, Marlene; Schäffer, Johannes; Morris, Danny S; Münchmeyer, Christian J; Anthofer, Michael H; Markovits, Iulius I E; Kühn, Fritz E; Herrmann, Wolfgang A; Jess, Andreas; Love, Jason B

    2016-07-21

    Hydrophobic imidazolium-based ionic liquids (IL) act as catalysts for the epoxidation of unfunctionalized olefins in water using hydrogen peroxide as oxidant. Although the catalysts are insoluble in both the substrate and in water, surprisingly, they are very well soluble in aqueous H2 O2 solution, owing to perrhenate-H2 O2 interactions. Even more remarkably, the presence of the catalyst also boosts the solubility of substrate in water. This effect is crucially dependent on the cation design. Hence, the imidazolium perrhenates enable both the transfer of hydrophobic substrate into the aqueous phase, and serve as actual catalysts, which is unprecedented. At the end of the reaction and in absence of H2 O2 the IL catalyst forms a third phase next to the lipophilic product and water and can easily be recycled.

  17. COMMERCIAL-SCALE DEMONSTRATION OF THE LIQUID PHASE METHANOL (LPMEOH) PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    E.C. Heydorn; B.W. Diamond; R.D. Lilly

    2003-06-01

    This project, which was sponsored by the U.S. Department of Energy (DOE) under the Clean Coal Technology Program to demonstrate the production of methanol from coal-derived synthesis gas (syngas), has completed the 69-month operating phase of the program. The purpose of this Final Report for the ''Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process'' is to provide the public with details on the performance and economics of the technology. The LPMEOH{trademark} Demonstration Project was a $213.7 million cooperative agreement between the DOE and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The DOE's cost share was $92,708,370 with the remaining funds coming from the Partnership. The LPMEOH{trademark} demonstration unit is located at the Eastman Chemical Company (Eastman) chemicals-from-coal complex in Kingsport, Tennessee. The technology was the product of a cooperative development effort by Air Products and Chemicals, Inc. (Air Products) and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} Process is ideally suited for directly processing gases produced by modern coal gasifiers. Originally tested at the Alternative Fuels Development Unit (AFDU), a small, DOE-owned process development facility in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst, and allowing the methanol synthesis reaction to proceed at higher rates. The LPMEOH{trademark} Demonstration Project accomplished the objectives set out in the Cooperative Agreement with DOE for this Clean

  18. Organic molecules modified palladium nanowires arrays prepared by high temperature liquid phase reduction

    Institute of Scientific and Technical Information of China (English)

    Shen Cheng-Min; Yang Tian-Zhong; Xiao Cong-Wen; Zhang Huai-Ruo; Tian Ji-Fa; Bao Li-Hong; Li Chen; Li Jian-Qi; Gao Hong-Jun

    2008-01-01

    This paper reports high temperature liquid phase synthesis of Pd nanowires using chemically modified porous anodic aluminium oxide as template. In this synthesis process, oleic acid is used to modify the inner wall of the pores and Pd2+ complex with oleylamine is filled into the channel of the template. The complex is then reduced to give oleylamine-capped Pd nanowires. This paper suggests that oleic acid can improve the environment of inner wall of the pores, leading to the formation of uniform Pd nanowires. The synthetic process can be extended to make other types of nanowires.

  19. Investigating Processes of Materials Formation via Liquid Phase and Cryogenic TEM

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, James J.; Sommerdijk, Nico

    2016-06-14

    The formation of materials in solutions is a widespread phenomenon in synthetic, biological and geochemical systems, occurring through dynamic processes of nucleation, self-assembly, crystal growth, and coarsening. The recent advent of liquid phase TEM and advances in cryogenic TEM are transforming our understanding of these phenomena by providing new insights into the underlying physical and chemical mechanisms. The techniques have been applied to metallic and semiconductor nanoparticles, geochemical and biological minerals, electrochemical systems, macromolecular complexes, and selfassembling systems, both organic and inorganic. New instrumentation and methodologies currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  20. Density functional theory of gas–liquid phase separation in dilute binary mixtures

    Science.gov (United States)

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-01

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas Δ {μ\\text{s}} (the Gibbs energy of transfer) is considerably larger than the thermal energy {{k}\\text{B}}T for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by {{k}\\text{B}}Tn2\\ell\\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right) , where n2\\ell is the solute density added in liquid. For \\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right)\\gg 1 , phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.

  1. Growth Kinetics of Intracellular RNA/Protein Droplets: Signature of a Liquid-Liquid Phase Transition?

    Science.gov (United States)

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Zhu, Lian; Haataja, Mikko; Brangwynne, Clifford P.

    2015-03-01

    Nonmembrane-bound organelles are functional, dynamic assemblies of RNA and/or protein that can self-assemble and disassemble within the cytoplasm or nucleoplasm. The possibility that underlying intracellular phase transitions may drive and mediate the morphological evolution of some membrane-less organelles has been supported by several recent studies. In this talk, results from a collaborative experimental-theoretical study of the growth and dissolution kinetics of nucleoli and extranucleolar droplets (ENDs) in C. elegans embryos will be presented. We have employed Flory-Huggins solution theory, reaction-diffusion kinetics, and quantitative statistical dynamic scaling analysis to characterize the specific growth mechanisms at work. Our findings indicate that both in vivo and in vitro droplet scaling and growth kinetics are consistent with those resulting from an equilibrium liquid-liquid phase transition mediated by passive nonequilibrium growth mechanisms - simultaneous Brownian coalescence and Ostwald ripening. This supports a view in which cells can employ phase transitions to drive structural organization, while utilizing active processes, such as local transcriptional activity, to fine tune the kinetics of these phase transitions in response to given conditions.

  2. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite.

    Science.gov (United States)

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-05-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box-Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process. PMID:27222748

  3. Polyethylene Glycol as Support and Phase Transfer Catalyst in Aqueous Palladium-catalyzed Liquid-phase Synthesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Excellent yields and purity were obtained in the aqueous medium Suzuki, Sonogashira, Stille and Heck reactions using palladium (Ⅱ) as catalyst in liquid phase synthesis. Polyethylene glycol (PEG) acted as soluble polymeric support and phase transfer catalyst as well.

  4. Phase diagrams and kinetics of solid-liquid phase transitions in crystalline polymer blends

    Science.gov (United States)

    Matkar, Rushikesh A.

    A free energy functional has been formulated based on an order parameter approach to describe the competition between liquid-liquid phase separation and solid-liquid phase separation. In the free energy description, the assumption of complete solvent rejection from the crystalline phase that is inherent in the Flory diluent theory was removed as solvent has been found to reside in the crystalline phase in the form of intercalates. Using this approach, we have calculated various phase diagrams in binary blends of crystalline and amorphous polymers that show upper or lower critical solution temperature. Also, the discrepancy in the chi values obtained from different experimental methods reported in the literature for the polymer blend of poly(vinylidenefluoride) and poly(methylmethacrylate) has been discussed in the context of the present model. Experimental phase diagram for the polymer blend of poly(caprolactone) and polystyrene has also been calculated. Of particular importance is that the crystalline phase concentration as a function of temperature has been calculated using free energy minimization methods instead of assuming it to be pure. In the limit of complete immiscibility of the solvent in the crystalline phase, the Flory diluent theory is recovered. The model is extended to binary crystalline blends and the formation of eutectic, peritectic and azeotrope phase diagrams has been explained on the basis of departure from ideal solid solution behavior. Experimental eutectic phase diagram from literature of a binary blend of crystalline polymer poly(caprolactone) and trioxane were recalculated using the aforementioned approach. Furthermore, simulations on the spatio temporal dynamics of crystallization in blends of crystalline and amorphous polymers were carried out using the Ginzburg-Landau approach. These simulations have provided insight into the distribution of the amorphous polymer in the blends during the crystallization process. The simulated results

  5. Static and dynamical inhomogeneity at liquid - liquid phase transition of Se-Te mixtures

    Directory of Open Access Journals (Sweden)

    Ishikawa D.

    2011-05-01

    Full Text Available We have carried out x-ray transmission and small-angle x-ray scattering (SAXS measurements of liquid Se70-Te30 mixture up to 1000 °C and 100MPa and inelastic x-ray scattering (IXS measurement of liquid Se50-Te50 mixture at SPring-8 in Japan. In this paper, we report the preliminary results. In liquid Se70Te30 at 6MPa, with increasing temperature from 400 °C, the density first normaly decreases but anomalously increases from 650 °C. This anomalous density behaviour can be interpreted that the sample exhibits continuous transition from low-density phase to high-density one in this temperature region. As a proof of that, the zero-wavenumber-limit of SAXS intensity I(0 increases and shows maximum in this region, which means that the static density inhomogeneity arises due to phase transition. When the pressure is elevated, the density and I(0 curves shift to lower temperature side. The velocity of acoustic mode in Se50-Te50 estimated by IXS data is much higher than the ultrasonic sound velocity (so-called "fast sound" state and the temperature dependences of the two velocities are totally different. But the ratio of the two velocities, the strength of "fast sound", seems to increase with approaching to the transition region and thus it seems to be a good sign of dynamical inhomogeneity.

  6. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    Energy Technology Data Exchange (ETDEWEB)

    Qazi, H. I. A.; Li, He-Ping, E-mail: liheping@tsinghua.edu.cn; Zhang, Xiao-Fei; Bao, Cheng-Yu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Nie, Qiu-Yue [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001 (China)

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  7. Liquid mixture convection during phase separation in a temperature gradient

    Science.gov (United States)

    Lamorgese, A. G.; Mauri, R.

    2011-03-01

    We simulate the phase separation of a low-viscosity binary mixture, assuming that the fluid system is confined between two walls that are cooled down to different temperatures below the critical point of the mixture, corresponding to quenches within the unstable range of its phase diagram. Spinodal decomposition patterns for off-critical mixtures are studied numerically in two dimensions in the creeping flow limit and for a large Lewis number, together with their dependence on the fluidity coefficient. Our numerical results reproduce the large-scale unidirectional migration of phase-separating droplets that was observed experimentally by Califano et al. ["Large-scale, unidirectional convection during phase separation of a density-matched liquid mixture," Phys. Fluids 17, 094109 (2005)], who measured typical speeds that are quite larger than the Marangoni velocity. To understand this finding, we then studied the temperature-gradient-induced motion of an isolated droplet of the minority phase embedded in a continuous phase, showing that when the drop is near local equilibrium, its speed is of the same order as the Marangoni velocity, i.e., it is proportional to the unperturbed temperature gradient and the fluidity coefficient. However, far from local equilibrium, i.e., for very large unperturbed temperature gradients, the drop first accelerates to a speed that is larger than the Marangoni velocity, then, later, it decelerates, exhibiting an increase-decrease behavior, as described by Yin et al. ["Thermocapillary migration of nondeformable drops," Phys. Fluids 20, 082101 (2008)]. Such behavior is due to the large nonequilibrium, Korteweg-driven convection, which at first accelerates the droplets to relatively large velocities, and then tends to induce an approximately uniform inside temperature distribution so that the drop experiences an effective temperature gradient that is much smaller than the unperturbed one and, consequently, decelerates.

  8. Chemical precipitation processes for the treatment of low and medium level liquid waste

    International Nuclear Information System (INIS)

    Chemical precipitation processes for the treatment of various radioactive low and medium level liquid waste are described. Application to waste from reprocessing plants, removal of the main gamma emitters, actinide separation, utility liquid wastes generated during pwr operation, and combination of ultrafiltration with chemical precipitation, are all discussed. (U.K.)

  9. Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2004-10-01

    Pacific Northwest National Laboratory (PNNL) hosted its first annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2004. During this period, fourteen PNNL scientists hosted sixteen young scientists from eleven different universities. Of the sixteen participants, fourteen were graduate students; one was transitioning to graduate school; and one was a university faculty member.

  10. Synthesis of chiral polyaniline films via chemical vapor phase polymerization

    DEFF Research Database (Denmark)

    Chen, J.; Winther-Jensen, B.; Pornputtkul, Y.;

    2006-01-01

    Electrically and optically active polyaniline films doped with (1)-(-)-10- camphorsulfonic acid were successfully deposited on nonconductive substrates via chemical vapor phase polymerization. The above polyaniline/ R- camphorsulfonate films were characterized by electrochemical and physical...... and Raman spectrum, but also exhibited optical activity corresponding to the polymer chains as observed by circular dichroism spectra. (c) 2005 The Electrochemical Society....

  11. Digital holographic measurement of liquid-liquid two-phase flows

    International Nuclear Information System (INIS)

    A direct application of digital in-line holography to liquid droplets dispersed in a continuous liquid phase is described. The droplet size imposes a regime of intermediate-field diffraction that has been little explored to date. Acquired diffraction patterns show that the usual opaque disk model is not valid and that good agreement is obtained with a thin lens model. Hologram focusing is nevertheless performed with a dedicated automated method that slightly outperforms Royer criteria. A literature review has been conducted to identify the sharpest auto-focus function for our application. Droplet paths are retrieved in three dimensions simultaneously with their velocity and diameter. The developed experimental setup is a first step toward implementation of the method in more complex configurations, including pulsed flows. (authors)

  12. [Isolation of chemical constituents from Ziziphora clinopodioides Lam. with recycling preparative high performance liquid chromatography].

    Science.gov (United States)

    Li, Guozhu; Meng, Qingyan; Luo, Bi; Ge, Zhenghong; Liu, Wenjie

    2015-01-01

    The combination of alternate recycling and direct recycling preparative liquid chromatography method was developed for the isolation of chemical constituents from Ziziphora clinopodioides Lam. The crude extract was obtained from Ziziphora clinopodioides Lam. by solvent extraction, column chromatography and reversed-phase (RP) flash chromatography. All the separations were performed with methanol and water as mobile phases and the developed recycling preparative method was used with twin RP columns switched by a two-position ten-way valve for the separation. The mobile phase was recycled in close loop with a two-position six-way valve. The fraction I and fraction II from reversed-phase flash chromatography were selected for the demonstration of separation power of the proposed protocol, and five compounds were obtained from Ziziphora clinopodioides Lam. The isolated five compounds were identified as pinocembrin-7-O-rutinoside, pinocembrin-7-O-rutinoside, acacetin-7-O-rutinoside, picein and protocatechuic acid with nuclear magnetic resonance (NMR). The experimental results showed that the developed preparation method exhibited higher separation efficiency with less mobile phase used than the reported methods, and could be expected as an effective method for the separation of complex natural products, especially the compounds with similar structures. PMID:25958674

  13. Method for forming single phase, single crystalline 2122 BCSCO superconductor thin films by liquid phase epitaxy

    Science.gov (United States)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal (Inventor); Solayappan, Narayanan (Inventor)

    1994-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83 K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  14. Liquid/liquid metal extraction: Phase diagram topology resulting from molecular interactions between extractant, ion, oil and water

    Science.gov (United States)

    Bauer, C.; Bauduin, P.; Dufrêche, J. F.; Zemb, T.; Diat, O.

    2012-11-01

    We consider the class of surfactants called "extractants" since they specifically interact with some cations and are used in liquid-liquid separation processes. We review here features of water-poor reverse micelles in water/oil/ extractant systems as determined by combined structural studies including small angle scattering techniques on absolute scale. Origins of instabilities, liquid-liquid separation as well as emulsification failure are detected. Phase diagrams contain the same multi-phase domains as classical microemulsions, but special unusual features appear due to the high spontaneous curvature directed towards the polar cores of aggregates as well as rigidity of the film made by extracting molecules.

  15. For Noble Gases, Energy is Positive for the Gas Phase, Negative for the Liquid Phase

    CERN Document Server

    Asanuma, Nobu-Hiko

    2016-01-01

    We found from experimental data that for noble gases and H$_2$, the energy is positive for the gas phase, and negative for the liquid, possibly except the small vicinity of the critical point, about $(1- T/T_c) \\le 0.005$. The line $E=E_c$, in the supercritical region is found to lie close to the Widom line, where $E_c$ is the critical energy.

  16. Continuous gas-phase hydroformylation of 1-butene using supported ionic liquid phase (SILP) catalysts

    DEFF Research Database (Denmark)

    Haumann, Marco; Dentler, Katharina; Joni, Joni;

    2007-01-01

    another excellent hint for truly homogeneous catalysis in the SILP system. Compared to former studies using propene, the SILP system showed significantly higher activity and selectivity with 1-butene as feedstock. These findings could be elucidated by solubility measurements using a magnetic microbalance.......The concept of supported ionic liquid phase (SILP) catalysis has been extended to 1-butene hydroformylation. A rhodium-sulfoxantphos complex was dissolved in [BMIM][n-C8H17OSO3] and this solution was highly dispersed on silica. Continuous gas-phase experiments in a fixed-bed reactor revealed...

  17. The initial phase of sudden releases of superheated liquid

    International Nuclear Information System (INIS)

    The catastrophic failure of a pressure vessel containing a liquefied substance, leading to an instantaneous release of its whole contents is considered as one of the major technological hazards. Due to the rapid depressurization caused by vessel failure, the fluid becomes superheated and unstable. Part of the fluid will evaporate using its internal energy and the two-phase mixture forming will be accelerated. This flashing process can be very violent, as experiments and incidents actually happened have shown. In the past, a number of dispersion models were developed to predict the history of an instantaneous release. In most of these models the source term is considered to be a gas volume at rest and not a rapidly expanding aerosol, as could be observed. Furthermore, it is usually assumed that all of the remaining fluid is entrained into the expanding cloud and nothing is deposited on the ground to form a pool. This work concentrates on the initial phase of the sudden release of superheated liquids with the aim to gain a better understanding of the flashing process and of the physical mechanisms involved, leading to a reliable prediction of the source term. Therefore, more than 400 experiments with propane, butane, refrigerant 12 and 114 were conducted. The experiments were initiated by shattering spherical glass flasks of different sizes. The main parameters varied were the liquid superheat and the filling level of the vessel. Using high-speed video and movie recordings and very fast responding measurement devices, it was possible to study the initial phase of such releases during which gravity plays no role. For sufficiently large released internal energy, the initial evolution of the release was always spherical with a constant radial expansion velocity during he first milliseconds until instabilities appeared at the surface of the droplet/vapor cloud that was formed. For all the experimental conditions, the fraction of the initial liquid falling on the ground

  18. The Frozen State in the Liquid Phase of Side-Chain Liquid-Crystal Polymers

    International Nuclear Information System (INIS)

    Quenched isotropic melts of side-chain liquid-crystal polymers reveal surprisingly an anisotropic polymer conformation. This small-angle neutron-scattering (SANS) result is consistent with the identification of a macroscopic, solidlike response in the isotropic phase. Both experiments (rheology and SANS) indicate that the polymer system appears frozen on millimeter length scales and at the time scales of the observation. This result implies that the flow behavior is not the terminal behavior and that cross-links or entanglements are not a necessary condition to provide elasticity in melts

  19. Surface Confined Ionic Liquid-A New Stationary Phase for the Separation of Ephedrines in High-performance Liquid Chromatography

    Institute of Scientific and Technical Information of China (English)

    Shu Juan LIU; Feng ZHOU; Xiao Hua XIAO; Liang ZHAO; Xia LIU; Sheng Xiang JIANG

    2004-01-01

    In this article, a new and effective stationary phase based on ionic liquid modified silica is first reported and used for the separation of ephedrines in high-performance liquid chromatography (HPLC). The separation results indicate the high efficiency and reproducibility of the stationary phase. The electrostatic interaction, ion-exchange interaction between the solutes and the stationary phase are considered to attribute the effective separation. Moreover, the free silanols on the surface of the silica are effectively masked by the immobilized ionic liquid, a result of which is to decrease the non-specific absorption.

  20. Oscillating Frequency Response of a Langasite Crystal Microbalance in Liquid Phase

    Institute of Scientific and Technical Information of China (English)

    Qi KANG; Huai Jin ZHANG; Xue Yong LIU; Da Zhong SHEN

    2005-01-01

    The frequency responses of a langasite crystal microbalance (LCM) in liquid phase were investigated. It was shown that the LCM possessed much stronger oscillating ability in liquid phase than that of the commonly used quartz crystal microbalance (QCM). The frequency shifts of the LCM to the changes in mass loading, as well as viscosity and density of the liquid were measured. The LCM was applied to monitor the adsorption process of an ionic liquid film to ethanol vapor.

  1. Mixing-Demixing Phase Diagram for Simple Liquids in Non-Uniform Electric Fields

    OpenAIRE

    Galanis, Jennifer; Tsori, Yoav

    2013-01-01

    We deduce the mixing-demixing phase diagram for binary liquid mixtures in an electric field for various electrode geometries and arbitrary constitutive relation for the dielectric constant. By focusing on the behavior of the liquid-liquid interface, we produce simple analytic expressions for the dependence of the interface location on experimental parameters. We also show that the phase diagram contains regions where liquid separation cannot occur under any applied field. The analytic express...

  2. Computer study of liquid phase sintering - three-dimensional time dependent rearrangement

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, Zoran S [University of Nish, Faculty of Electronic Engineering, Department of Microelectronics, 18000 Nish, PO Box 73 (Serbia); Wakai, Fumihiro, E-mail: zoran.nikolic@elfak.ni.ac.rs [Secure Materials Center, Materials and Structures Laboratory, Tokyo Institute of Technology, R3-23 4259 Nagatsuta, Midori, Yokohama, 226-8503 (Japan)

    2011-03-15

    The rearrangement process during liquid phase sintering has been generally accepted that driven by the capillary forces between solid grains embedded in liquid. This paper outlines a computer-based method for three-dimensional computer simulation of rearrangement during liquid phase sintering. The theoretical models dealing with the fundamental interaction forces that exist between grains attached by liquid bridges will be outlined and the development from these pair-wise interactions to multi-grain models will be described.

  3. Lectures on holographic non-Fermi liquids and quantum phase transitions

    CERN Document Server

    Iqbal, Nabil; Mezei, Márk

    2011-01-01

    In these lecture notes we review some recent attempts at searching for non-Fermi liquids and novel quantum phase transitions in holographic systems using gauge/gravity duality. We do this by studying the simplest finite density system arising from the duality, obtained by turning on a nonzero chemical potential for a U(1) global symmetry of a CFT, and described on the gravity side by a charged black hole. We address the following questions of such a finite density system: 1. Does the system have a Fermi surface? What are the properties of low energy excitations near the Fermi surface? 2. Does the system have an instability to condensation of scalar operators? What is the critical behavior near the corresponding quantum critical point? We find interesting parallels with those of high T_c cuprates and heavy electron systems. Playing a crucial role in our discussion is a universal intermediate-energy phase, called a "semi-local quantum liquid", which underlies the non-Fermi liquid and novel quantum critical beha...

  4. Relative hydrophobicity between the phases and partition of cytochrome-c in glycine ionic liquids aqueous two-phase systems.

    Science.gov (United States)

    Wu, Changzeng; Wang, Jianji; Li, Zhiyong; Jing, Jun; Wang, Huiyong

    2013-08-30

    In this work, glycine ionic liquids tetramethylammonium glycine ([N1111][Gly]), tetraethylammonium glycine ([N2222][Gly]), tetra-n-butylammonium glycine ([N4444][Gly]), tetra-n-butylphosphonium glycine ([P4444][Gly]) and tetra-n-pentylammonium glycine ([N5555][Gly]) were synthesized and used to prepare aqueous two-phase systems (ATPSs) in the presence of K2HPO4. Binodal curves of such ATPSs and partition coefficients of a series of dinitrophenylated (DNP) amino acids in these ATPSs were determined at 298.15K to understand the effect of cationic structure of the ionic liquids on the phase-forming ability of glycine ionic liquids, relative hydrophobicity between the phases in the ionic liquids ATPSs, and polarity of the ionic liquids-rich phases. With the attempt to correlate the relative hydrophobicity of the phases in the ATPSs with their extraction capability for proteins, partition coefficients of cytochrome-c in the ATPSs were also determined. It was shown that partition coefficients of cytochrome-c were in the range from 2.83 to 20.7 under the studied pH conditions. Then, hydrophobic interactions between cytochrome-c and the ionic liquid are suggested to be the main driving force for the preferential partition of cytochrome-c in the glycine ionic liquid-rich phases of the ATPSs. Result derived from polarity of the ionic liquids-rich phases supports this mechanism.

  5. Structure analysis of turbulent liquid phase by POD and LSE techniques

    Energy Technology Data Exchange (ETDEWEB)

    Munir, S., E-mail: shahzad-munir@comsats.edu.pk; Muthuvalu, M. S.; Siddiqui, M. I. [Department of Fundamental and Applied Science, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Heikal, M. R., E-mail: morgan.heikal@petronas.com.my; Aziz, A. Rashid A., E-mail: morgan.heikal@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energy containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields.

  6. Liquid Phase – Pulsed Laser Ablation: A route to fabricate different carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamaoy, Ahmed [Advanced Processing Technology Research Centre, Dublin City University, Dublin 9 (Ireland); Institute of Laser for Postgraduate Studies, University of Baghdad (Iraq); Mechanical Engineering Department, College of Engineering, University of Anbar (Iraq); Chikarakara, Evans [Advanced Processing Technology Research Centre, Dublin City University, Dublin 9 (Ireland); Jawad, Hussein [Institute of Laser for Postgraduate Studies, University of Baghdad (Iraq); Gupta, Kapil; Kumar, Dinesh; Rao, M.S. Ramachandra [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology (IIT) Madras, Chennai 600 036 (India); Krishnamurthy, Satheesh [Materials Engineering, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Morshed, Muhammad [Advanced Processing Technology Research Centre, Dublin City University, Dublin 9 (Ireland); Fox, Eoin; Brougham, Dermot [School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); He, Xiaoyun; Vázquez, Mercedes [Advanced Processing Technology Research Centre, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster (ISSC) National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Brabazon, Dermot, E-mail: dermot.brabazon@dcu.ie [Advanced Processing Technology Research Centre, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster (ISSC) National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland)

    2014-05-01

    Carbon nanostructures in various forms and sizes, and with different speciation properties have been prepared from graphite by Liquid Phase – Pulsed Laser Ablation (LP-PLA) using a high frequency Nd:YAG laser. High energy densities and pulse repetition frequencies of up to 10 kHz were used in this ablation process to produce carbon nanomaterials with unique chemical structures. Dynamic Light Scattering (DLS), micro-Raman and High-Resolution Transmission Electron Microscopy (HRTEM) were used to confirm the size distribution, morphology, chemical bonding, and crystallinity of these nanostructures. This article demonstrates how the fabrication process affects measured characteristics of the produced carbon nanomaterials. The obtained particle properties have potential use for various applications including biochemical speciation applications.

  7. Mass transfer mechanism in chiral reversed phase liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2014-03-01

    The mechanism of mass transfer in chiral chromatography was investigated using an experimental protocol already applied in RPLC and HILIC chromatography. The different contributions to the reduced height equivalent to a theoretical plate (HETP) include the longitudinal diffusion HETP term, the solid-liquid mass transfer resistance HETP term, the short-range eddy dispersion HETP term, and the long-range eddy dispersion HETP term. Their accurate measurement permits the determination of the adsorption rate constant kads of trans-stilbene enantiomers on a column packed with Lux 5 μm Cellulose-1 particles. The experimental results demonstrate that the number of adsorption-desorption steps per unit time of chiral compounds on polysaccharide-based chiral stationary phases is four orders of magnitude smaller than that of achiral compounds.

  8. Liquid-phase-deposited barium titanate thin films on silicon

    International Nuclear Information System (INIS)

    Using a mixture of hexafluorotitanic acid, barium nitrate and boric acid, high refractive index (1.54) barium titanate films can be deposited on silicon substrates. The deposited barium titanate films have featureless surfaces. The deposition temperature is near room temperature (800C). However, there are many fluorine and silicon incorporations in the films. The refractive index of the as-deposited film is 1.54. By current-voltage measurement, the leakage current of the as-deposited film with a thickness of 1000 A is about 9.48x10-7 A cm-2 at the electrical field intensity of 0.3 MV cm-1. By capacitance-voltage measurement, the effective oxide charge of the liquid-phase-deposited barium titanate film is 3.06x1011 cm-2 and the static dielectric constant is about 22. (author)

  9. Liquid-phase synthesized mesoporous electrochemical supercapacitors of nickel hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jinho; Park, Mira; Ham, Dukho; Mane, Rajaram S.; Han, Sung-Hwan [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea); Ogale, S.B. [Physical and Materials Chemsitry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)

    2008-06-01

    Electrochemical supercapacitive (ES) properties of liquid-phase synthesized mesoporous (pore size distribution centered {proportional_to}12 nm) and of 120 m{sup 2}/g surface area nickel hydroxide film electrodes onto tin-doped indium oxide substrate are discussed. The amounts of inner and outer charges are calculated to investigate the contribution of mesoporous structure on charge storage where relatively higher contribution of inner charge infers good ion diffusion into matrix of nickel hydroxide. Effect of different electrolytes, electrolyte concentrations, deposit mass and scan rates on the current-voltage profile in terms of the shape and enclosed area is investigated. Specific capacitance of {proportional_to}85 F/g at a constant current density of 0.03 A/g is obtained from the discharge curve. (author)

  10. Semiphenomenological model for gas-liquid phase transitions.

    Science.gov (United States)

    Benilov, E S; Benilov, M S

    2016-03-01

    We examine a rarefied gas with inter-molecular attraction. It is argued that the attraction force amplifies random density fluctuations by pulling molecules from lower-density regions into high-density regions and thus may give rise to an instability. To describe this effect, we use a kinetic equation where the attraction force is taken into account in a way similar to how electromagnetic forces in plasma are treated in the Vlasov model. It is demonstrated that the instability occurs when the temperature T is lower than a certain threshold value T(s) depending on the gas density. It is further shown that, even if T is only marginally lower than T(s), the instability generates clusters with density much higher than that of the gas. These results suggest that the instability should be interpreted as a gas-liquid phase transition, with T(s) being the temperature of saturated vapor and the high-density clusters representing liquid droplets.

  11. Analysis of two-phase liquid metal MHD induction converter

    International Nuclear Information System (INIS)

    An analysis is made on the performance characteristics of a liquid-metal MHD induction converter with liquid-gas two-phase mixture as working fluid. The equivalent electrical conductivity and the velocity vary along the generator channel in this kind of induction converter. Two important parameters which represent the variations of the equivalent electrical conductivity and the velocity respectively are defined. With these parameters the induction equation is analytically solved with the perturbation technique. Quantities representing generator performance, such as power densities and generator efficiency, are obtained from the perturbed magnetic field and the parameters mentioned above. Suitable combination of values for these parameters will tend to let the effects brought by the variations of electrical conductivity and of velocity cancel each other, and the relation between these parameters is analytically derived that assures the non-perturbation of the magnetic field and of the gross output power density. In this condition of non-perturbation, the generator efficiency approaches that for the unperturbed case when the velocity variation and the inlet slip ratio are small. (auth.)

  12. Non-Fermi liquid phase in metallic Skyrmion crystals

    Science.gov (United States)

    Watanabe, Haruki; Parameswaran, Siddharth; Raghu, Srinivas; Vishwanath, Ashvin

    2014-03-01

    Motivated by reports of a non-Fermi liquid state in MnSi, we examine the effect of coupling phonons of an incommensurate skyrmion crystal (SkX) to conduction electrons. We find that non-Fermi liquid behavior emerges in both two and three dimensions over the entire phase, due to an anomalous electron-phonon coupling that is linked to the net skyrmion density. A small parameter, the spiral wave vector in lattice units, allows us to exercise analytic control and ignore Landau damping of phonons over a wide energy range. At the lowest energy scales the problem is similar to electrons coupled to a gauge field. The best prospects for realizing these effects is in short period skyrmion lattice systems such as MnGe or epitaxial MnSi films. We also compare our results with the unusual T 3 / 2 scaling of temperature dependent resistivity seen in high pressure experiments on MnSi. We acknowledge support from the NSF via Grant DMR-0645691, the DOE Office of Basic Energy Sciences via contract DE-AC02-76SF00515, and the Simons, Templeton, and Alfred P. Sloan Foundations.

  13. Low Density Phases in a Uniformly Charged Liquid

    Science.gov (United States)

    Knüpfer, Hans; Muratov, Cyrill B.; Novaga, Matteo

    2016-07-01

    This paper is concerned with the macroscopic behavior of global energy minimizers in the three-dimensional sharp interface unscreened Ohta-Kawasaki model of diblock copolymer melts. This model is also referred to as the nuclear liquid drop model in the studies of the structure of highly compressed nuclear matter found in the crust of neutron stars, and, more broadly, is a paradigm for energy-driven pattern forming systems in which spatial order arises as a result of the competition of short-range attractive and long-range repulsive forces. Here we investigate the large volume behavior of minimizers in the low volume fraction regime, in which one expects the formation of a periodic lattice of small droplets of the minority phase in a sea of the majority phase. Under periodic boundary conditions, we prove that the considered energy {Γ}-converges to an energy functional of the limit "homogenized" measure associated with the minority phase consisting of a local linear term and a non-local quadratic term mediated by the Coulomb kernel. As a consequence, asymptotically the mass of the minority phase in a minimizer spreads uniformly across the domain. Similarly, the energy spreads uniformly across the domain as well, with the limit energy density minimizing the energy of a single droplet per unit volume. Finally, we prove that in the macroscopic limit the connected components of the minimizers have volumes and diameters that are bounded above and below by universal constants, and that most of them converge to the minimizers of the energy divided by volume for the whole space problem.

  14. Phase diagram of the Dirac spectrum at nonzero chemical potential

    International Nuclear Information System (INIS)

    The Dirac spectrum of QCD with dynamical fermions at nonzero chemical potential is characterized by three regions: a region with a constant eigenvalue density, a region where the eigenvalue density shows oscillations that grow exponentially with the volume and the remainder of the complex plane where the eigenvalue density is zero. In this paper we derive the phase diagram of the Dirac spectrum from a chiral Lagrangian. We show that the constant eigenvalue density corresponds to a pion condensed phase while the strongly oscillating region is given by a kaon condensed phase. The normal phase with nonzero chiral condensate but vanishing Bose condensates coincides with the region of the complex plane where there are no eigenvalues.

  15. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  16. Chemical recycling of municipal waste slag by using phase separation

    OpenAIRE

    Nanba, Tokuro; Kuroda, Yutaro; Sakida, Shinichi; Benino, Yasuhiko

    2009-01-01

    A chemical recycling method by using phase separation was applied to municipal waste slags. Glasses were prepared from incineration ash and ash-melted slag, where B(2)O(3) was added to promote phase separation. The glasses were heat-treated at temperatures higher than their glass transition temperatures, and they were soaked in hydrochloric acid, leaching CaO, Fe(2)O(3), K(2)O, and S. Transparent and colorless solids containing ca. 80 mass% of SiO(2) were successfully obtained as residues. It...

  17. Synthesis of silicon carbide nanowires by solid phase source chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    NI Jie; LI Zhengcao; ZHANG Zhengjun

    2007-01-01

    In this paper,we report a simple approach to synthesize silicon carbide(SiC)nanowires by solid phase source chemical vapor deposition(CVD) at relatively low temperatures.3C-SiC nanowires covered by an amorphous shell were obtained on a thin film which was first deposited on silicon substrates,and the nanowires are 20-80 am in diameter and several μm in length,with a growth direction of[200].The growth of the nanowires agrees well on vapor-liquid-solid (VLS)process and the film deposited on the substrates plays an important role in the formation of nanowires.

  18. An overview of multidimensional liquid phase separations in food analysis.

    Science.gov (United States)

    Franco, Maraíssa Silva; Padovan, Rodrigo Nogueira; Fumes, Bruno Henrique; Lanças, Fernando Mauro

    2016-07-01

    Food safety is a priority public health concern that demands analytical methods capable to detect low concentration level of contaminants (e.g. pesticides and antibiotics) in different food matrices. Due to the high complexity of these matrices, a sample preparation step is in most cases mandatory to achieve satisfactory results being usually tedious, lengthy, and prone to the introduction of errors. For this reason, many research groups have focused efforts on the development of online systems capable to do the cleanup, concentration, and separation steps at once through multidimensional separation techniques (MDS). Among several possible setups, the most popular are the multidimensional chromatographic techniques (MDC) that consist in combining more than one mobile and/or stationary phase to provide a satisfactory separation. In the present review, we selected a variety of multidimensional separation systems used for food contaminant analysis in order to discuss the instrumentation aspects, the concept of orthogonality, column approaches used in these systems, and new materials that can be used in these columns. Selected classes of contaminants present in food matrices are introduced and discussed as example of the potential applications of multidimensional liquid phase separation techniques in food safety. PMID:27030380

  19. An overview of multidimensional liquid phase separations in food analysis.

    Science.gov (United States)

    Franco, Maraíssa Silva; Padovan, Rodrigo Nogueira; Fumes, Bruno Henrique; Lanças, Fernando Mauro

    2016-07-01

    Food safety is a priority public health concern that demands analytical methods capable to detect low concentration level of contaminants (e.g. pesticides and antibiotics) in different food matrices. Due to the high complexity of these matrices, a sample preparation step is in most cases mandatory to achieve satisfactory results being usually tedious, lengthy, and prone to the introduction of errors. For this reason, many research groups have focused efforts on the development of online systems capable to do the cleanup, concentration, and separation steps at once through multidimensional separation techniques (MDS). Among several possible setups, the most popular are the multidimensional chromatographic techniques (MDC) that consist in combining more than one mobile and/or stationary phase to provide a satisfactory separation. In the present review, we selected a variety of multidimensional separation systems used for food contaminant analysis in order to discuss the instrumentation aspects, the concept of orthogonality, column approaches used in these systems, and new materials that can be used in these columns. Selected classes of contaminants present in food matrices are introduced and discussed as example of the potential applications of multidimensional liquid phase separation techniques in food safety.

  20. Synthesis of tungsten oxide thin film by liquid phase deposition

    International Nuclear Information System (INIS)

    High purity and well crystallized tungsten acid hydrates (H2WO4.H2O) thin films were prepared from H2WO4-HF(aq.) and H3BO3 as precursors by the liquid phase deposition method. The crystal structure was indexed as monoclinic with unit cell lattice constants a = 7.517 A, b = 6.907 A, c = 3.694 A and β = 89.58 deg. The monoclinic phase was transformed into orthorhombic WO3.H2O after heating at 100 deg. C. Further heating from 300 to 500 deg. C resulted in an anhydrous monoclinic WO3 films. The effects of the composition and the reaction time on the deposition and the microstructures of the deposited films were studied by the means of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The film formation showed strong dependence upon the composition, whereas the amount of deposition, the shape and the films thickness could be controlled by the reaction time. Cross-sectional TEM image of WO3 film deposited on Au wire indicated that the epitaxial growth of the film was maintained after calcination at 500 deg. C. XPS analysis also revealed the existence of W6+ ions in both the deposited and calcined films.

  1. Understanding Phase-Change Memory Alloys from a Chemical Perspective.

    Science.gov (United States)

    Kolobov, A V; Fons, P; Tominaga, J

    2015-01-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials. PMID:26323962

  2. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOTH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOI-P Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. During this quarter, initial planning and procurement work continued on the seven project sites which have been accepted for participation in the off-site, product-use test program. Approximately 12,000 gallons of fuel-grade methanol (98+ wt% methanol, 4 wt% water) produced during operation on carbon monoxide (CO)-rich syngas at the LPMEOW Demonstration Unit was loaded into trailers and shipped off-site for Mure product-use testing. At one of the projects, three buses have been tested on chemical-grade methanol and on fhel-grade methanol from the LPMEOW Demonstration Project. During the reporting period, planning for a proof-of-concept test run of the Liquid Phase Dimethyl Ether (LPDME~ Process at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX continued. The commercial catalyst manufacturer (Calsicat) has prepared the first batch of dehydration catalyst in large-scale equipment. Air Products will test a sample of this material in the laboratory autoclave. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laborato~ autoclave), was monitored for the initial extended operation at the lower initial reactor operating temperature of 235oC. At this condition, the decrease in catalyst activity with time from the period 20 December 1997 through 27 January 1998 occurred at a rate of 1.0% per

  3. Mechanism of Phase Transition from Liquid to Gas Under Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Wang, Qiuying; Li, Sen; Gu, Fan

    2010-10-01

    Liquid gasification phenomenon was observable in liquid-solid dielectric barrier discharge (DBD) experiments. Starting from classical thermodynamics, this study aimed at finding the reason of liquid gasification in the DBD experiments. Fluid statics and electrohydrodynamics were adopted to analyze the mechanism of phase transition from liquid to gas. The Sumoto effect was also employed to visually explain the change in the pressure of fluid due to the electric field. It was concluded from both theoretical analysis and experiment that the change in liquid pressure was a key factor causing liquid to gasify in DBD conditions. Furthermore, it was stressed that the liquid pressure was affected by many parameters including liquid permittivity, voltage, electric intensity, size of the discharge space and uniformity of the electric field distribution, etc. All of them affected DBD liquid gasification. The related results would provide useful theoretical evidence for multi-phase DBD applications.

  4. Preparation and Characterization of a New Quercetin-bonded Stationary Phase for High Performance Liquid Chromatography

    Institute of Scientific and Technical Information of China (English)

    李来生; 方奕珊; 陈红; 张杨

    2012-01-01

    A quercetin-bonded silica gel stationary phase (QUSP) containing natural flavonoid ligand was first prepared via γ-glycidoxypropyltrimethoxysilane (KH-560) as a coupling reagent for high-performance liquid chromatography. Its chemical structure was characterized by Fourier infrared spectroscopy, elemental analysis, thermal thermogravimetry and 13C cross polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR). The chromatographic property of QUSP was systematically evaluated by using neutral, basic and acidic aromatic com- pounds as probes. In order to clarify its retention mechanism, a comparative study of QUSP with conventional oc- tadecylsilyl-bonded stationary phase (ODS) was also carried out under the same conditions. The results showed that the new quercetin-bonded phase exhibited an excellent reversed-phase chromatographic property with relatively weak hydrophobicity. However, it has an advantage over ODS in the fast separation of polar aromatic compounds because the quercetin ligand could provide various sites besides hydrophobicity, such as hydrogen bonding, dipole-dipole, n-n staking and charge transfer interactions. QUSP was performed in the baseline separations of ion- ized polar basic or acidic compounds, including pyridines, anilines, pyrimidines, purines and phenols with symmet- ric peak shape in common mobile phases without buffer salt within relatively short time. The natural ligands from herbs are readily available and contain a variety of active sites, which facilitate the exploration of industrial chromatographic separation materials for green products.

  5. Roaming-mediated ultrafast isomerization of geminal tri-bromides in the gas and liquid phases

    Science.gov (United States)

    Mereshchenko, Andrey S.; Butaeva, Evgeniia V.; Borin, Veniamin A.; Eyzips, Anna; Tarnovsky, Alexander N.

    2015-07-01

    ‘Roaming’ is a new and unusual class of reaction mechanism that has recently been discovered in unimolecular dissociation reactions of isolated molecules in the gas phase. It is characterized by frustrated bond cleavage, after which the two incipient fragments ‘roam’ on a flat region of the potential energy surface before reacting with one another. Here, we provide evidence that supports roaming in the liquid phase. We are now able to explain previous solution-phase experiments by comparing them with new ultrafast transient absorption data showing the photoisomerization of gas-phase CHBr3. We see that, upon S0-S1 excitation, gas-phase CHBr3 isomerizes within 100 fs into the BrHCBr-Br species, which is identical to what has been observed in solution. Similar sub-100 fs isomerization is now also observed for BBr3 and PBr3 in solution upon S1 excitation. Quantum chemical simulations of XBr3 (X = B, P or CH) suggest that photochemical reactivity in all three cases studied is governed by S1/S0 conical intersections and can best be described as occurring through roaming-mediated pathways.

  6. Phase separations in mixtures of a liquid crystal and a nanocolloidal particle

    Science.gov (United States)

    Matsuyama, Akihiko

    2009-11-01

    We present a mean field theory to describe phase separations in mixtures of a liquid crystal and a nanocolloidal particle. By taking into account a nematic, a smectic A ordering of the liquid crystal, and a crystalline ordering of the nanoparticle, we calculate the phase diagrams on the temperature-concentration plane. We predict various phase separations, such as a smectic A-crystal phase separation and a smectic A-isotropic-crystal triple point, etc., depending on the interactions between the liquid crystal and the colloidal surface. Inside binodal curves, we find new unstable and metastable regions, which are important in the phase ordering dynamics. We also find a crystalline ordering of the nanoparticles dispersed in a smectic A phase and a nematic phase. The cooperative phenomena between liquid-crystalline ordering and crystalline ordering induce a variety of phase diagrams.

  7. Liquid crystal phases of two-dimensional dipolar gases and Berezinskii-Kosterlitz-Thouless melting.

    Science.gov (United States)

    Wu, Zhigang; Block, Jens K; Bruun, Georg M

    2016-01-01

    Liquid crystals are phases of matter intermediate between crystals and liquids. Whereas classical liquid crystals have been known for a long time and are used in electro-optical displays, much less is known about their quantum counterparts. There is growing evidence that quantum liquid crystals play a central role in many electron systems including high temperature superconductors, but a quantitative understanding is lacking due to disorder and other complications. Here, we analyse the quantum phase diagram of a two-dimensional dipolar gas, which exhibits stripe, nematic and supersolid phases. We calculate the stiffness constants determining the stability of the nematic and stripe phases, and the melting of the stripes set by the proliferation of topological defects is analysed microscopically. Our results for the critical temperatures of these phases demonstrate that a controlled study of the interplay between quantum liquid and superfluid phases is within experimental reach for the first time, using dipolar gases. PMID:26750156

  8. Preparation and Characterization of Silicone Liquid Core/Polymer Shell Microcapsules via Internal Phase Separation

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Kostrzewska, Malgorzata; Ma, Baoguang;

    2014-01-01

    Microcapsules with a silicone liquid core surrounded by a polymeric shell were synthesisedthrough the controlled phase separation. The dispersed silicone phase consisted of the shellpolymer PMMA, a good solvent for the PMMA (dichloromethane, DCM) and a poor solvent(methylhydrosiloxane dimethylsil......Microcapsules with a silicone liquid core surrounded by a polymeric shell were synthesisedthrough the controlled phase separation. The dispersed silicone phase consisted of the shellpolymer PMMA, a good solvent for the PMMA (dichloromethane, DCM) and a poor solvent...

  9. Evaluation of Chemical Interactions between Small Molecules in the Gas Phase Using Chemical Force Microscopy.

    Science.gov (United States)

    Lee, Jieun; Ju, Soomi; Kim, In Tae; Jung, Sun-Hwa; Min, Sun-Joon; Kim, Chulki; Sim, Sang Jun; Kim, Sang Kyung

    2015-12-04

    Chemical force microscopy analyzes the interactions between various chemical/biochemical moieties in situ. In this work we examined force-distance curves and lateral force to measure the interaction between modified AFM tips and differently functionalized molecular monolayers. Especially for the measurements in gas phase, we investigated the effect of humidity on the analysis of force-distance curves and the images in lateral force mode. Flat chemical patterns composed of different functional groups were made through micro-contact printing and lateral force mode provided more resolved analysis of the chemical patterns. From the images of 1-octadecanethiol/11-mercapto-1-undecanoic acid patterns, the amine group functionalized tip brought out higher contrast of the patterns than an intact silicon nitride tip owing to the additional chemical interaction between carboxyl and amine groups. For more complex chemical interactions, relative chemical affinities toward specific peptides were assessed on the pattern of 1-octadecanethiol/phenyl-terminated alkanethiol. The lateral image of chemical force microscopy reflected specific preference of a peptide to phenyl group as well as the hydrophobic interaction.

  10. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    Science.gov (United States)

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples.

  11. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging.

    Science.gov (United States)

    Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas

    2014-04-01

    Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system.

  12. Design and Fabrication of the First Commercial-Scale Liquid Phase Methanol (LPMEOH) Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    The Liquid Phase Methanol (LPMEOHT) process uses a slurry bubble column reactor to convert synthesis gas (syngas), primarily a mixture of carbon monoxide and hydrogen, to methanol. Because of its superior heat management the process can utilize directly the carbon monoxide (CO)-rich syngas characteristic of the gasification of coal, petroleum coke, residual oil, wastes, or other hydrocarbon feedstocks. The LPMEOHM Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P., a partnership between Air Products and Chemicals, Inc. and Eastman Chemical Company, to produce methanol from coal-derived syngas. Construction of the LPMEOH~ Process Demonstration Plant at Eastman's chemicals-from-coal complex in Kingsport was completed in January 1997. Following commissioning and shakedown activities, the fwst production of methanol from the facility occurred on April 2, 1997. Nameplate capacity of 260 short tons per day (TPD) was achieved on April 6, 1997, and production rates have exceeded 300 TPD of methanol at times. This report describes the design, fabrication, and installation of the Kingsport LPMEOEFM reactor, which is the first commercial-scale LPMEOEPM reaetor ever built. The vessel is 7.5 feet in diameter and 70 feet tall with design conditions of 1000 psig at 600 `F. These dimensions represent a significant scale-up from prior experience at the DOE-owned Alternative Fuels Development Unit in LaPorte, Texas, where 18-inch and 22-inch diameter reactors have been tested successfidly over thousands of hours. The biggest obstacles discovered during the scale- up, however, were encountered during fabrication of the vessel. The lessons learned during this process must be considered in tailoring the design for future sites, where the reactor dimensions may grow by yet another factor of two.

  13. Non-equilibrium phase transitions in a liquid crystal

    Science.gov (United States)

    Dan, K.; Roy, M.; Datta, A.

    2015-09-01

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  14. Characterization of annular two-phase gas-liquid flows in microgravity

    Science.gov (United States)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  15. The phase transport and reactions of γ-irradiated aqueous-ionic liquids

    International Nuclear Information System (INIS)

    A novel technology based on the transfer of chemical species across water/ionic liquid interfaces via specific complexation reactions is currently being considered for the separation and sequestration of metal ion contaminants from radioactive waste effluents in the nuclear fuel cycle. An ideal solvent for these applications should have a high intrinsic selectivity for a targeted metal or group of metals (e.g., trans-Pu actinides, lanthanides, or other fission products), an efficient switching mechanism (between complexation and decomplexation), and a high immiscibility with aqueous solutions. These characteristics must be maintained in the chemical, radiation, and mass transport environments present during the separation process. Ionic liquids (ILs) have an almost negligible vapour pressure and high thermal stability. Their ability to dissolve a wide range of substrate molecules and potential to be highly resilient in radiation fields make ILs particularly promising media. The separation efficiency of the biphasic system will depend on many parameters, including the aqueous oxidation state of the targeted metal ion, and the thermodynamics and kinetics of interfacial transport and metal-ligand complex formation at the water/IL interface or in the IL phase. The most uncertain and unstudied area for these applications is the effect of ionizing radiation on the stability and separation efficiency of the biphasic system. The present study investigates the effect of γ-radiation on gas/IL and water/IL interfacial stability and mass transfer with trihexyltetradecylphosphonium bis(trifluoromethyl-sulfonyl)imide, a phosphonium-based IL. The IL, in contact with either gas or water, was irradiated at a dose rate of 6.4 kGy·h-1. Gas-phase samples were analyzed by gas chromatography-mass spectrometry (GC-MS) and the changes in the IL and aqueous phases were monitored by conductivity measurements and Raman spectroscopy. In this paper we discuss these observations and their

  16. Development of multi components and multi phase numerical method with chemical reaction. Examination of multi phase numerical method

    International Nuclear Information System (INIS)

    In the steam generator using liquid sodium, Water intensely reacts with sodium when it leaked out from a heat tube. It is important to evaluate an influence of the sodium-water reaction to, such as, heat tubes surrounding a leakage and the generator. In the past, evaluations of this phenomenon have been carried out by experiments. However it is difficult to extrapolate an effect by configuration of a heat tube or change of operating condition, etc. and experiments using sodium need incredible cost. Then quantification by a numerical method is desirable. To develop a multi component and multi phase numerical method with chemical reaction, fundamental models of a multi phase numerical method are selected with organizing previous works in this paper, as follows. Fluid model : multi fluid model, Pressure model : one pressure model, Solving method : HSMAC (Highly Simplified Maker And Cell) method. Two-dimensional two-phase flow analysis technique is developed to evaluate a validity of these models. And verification analyses are carried out shown in the following. Two-dimensional square cavity flow. Two-dimensional natural convection in a square cavity. Air blow down from a pressure vessel. Dam break-down problem. Edwards pipe blow down problem. In each verification analysis, good agreements are obtained and the validity of the models to a multi phase numerical method is confirmed. (author)

  17. A binary phase field crystal study for liquid phase heteroepitaxial growth

    Science.gov (United States)

    Lu, Yanli; Peng, Yingying; Chen, Zheng

    2016-09-01

    The liquid phase heteroepitaxial growth on predefined crystalline substrate is studied with binary phase field crystal (PFC) model. The purpose of this paper focuses on changes of the morphology of epitaxial films, influences of substrate vicinal angles on epitaxial growth, characteristics of islands growth on both sides of the substrate as well. It is found that the morphology of epitaxial films undergoes the following transitions: layer-by-layer growth, islands formation, mismatch dislocations nucleation and climb towards the film-substrate interface. Meanwhile, the density of steps and islands has obviously direct ratio relations with the vicinal angles. Also, preferential regions are found when islands grow on both sides of the substrate. For thinner substrate, the arrangement of islands is more orderly and the appearance of preferential growth is more obvious than that of thicker substrate. Also, the existing of preferential regions is much more valid for small substrate vicinal angles in contrast for big substrate vicinal angles.

  18. Evidence of a Liquid-Liquid Phase Transition Hot Dense Hydrogen

    Science.gov (United States)

    Silvera, Isaac; Dzyabura, Vasily; Zaghoo, Mohamed

    2013-03-01

    We use pulsed laser heating of hydrogen at static pressures in the megabar pressure region generated in a diamond anvil cell to search for the plasma phase transition (PPT) to liquid atomic metallic hydrogen. Heating the sample substantially above the melting line we observe a plateau in a temperature vs laser power curve that otherwise increases with power. This anomaly in the heating curve is closely correlated with theoretical predictions for the PPT, falling within the theoretically predicted range and having a negative slope with increasing pressure. Details will be presented. The NSF, grant DMR-0804378 and the DOE Stockpile Stewardship Academic Alliance program, grant DE-FG52-10NA29656 supported this research.

  19. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography.

    Science.gov (United States)

    Yu, Honglian; Merib, Josias; Anderson, Jared L

    2016-03-18

    Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively. PMID:26896916

  20. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography.

    Science.gov (United States)

    Yu, Honglian; Merib, Josias; Anderson, Jared L

    2016-03-18

    Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively.

  1. Steroid monochloroacetates : Physical-chemical characteristics and use in gas-liquid chromatography

    NARCIS (Netherlands)

    Molen, H.J. van der; Groen, D.; Maas, J.H. van der

    1965-01-01

    Synthesis and physical-chemical characteristics (melting points, infrared-, visible- and ultraviolet spectra, paper-,thin-layer- and gas-liquid Chromatographie behaviour) of monochloroacetate derivatives of steroids representing the androstane-, pregnane-, estrane- and cholestane series are describe

  2. NUMERICAL SIMULATION OF CHARGED GAS-LIQUID TWO PHASE JET FLOW IN ELECTROSTATIC SPRAYING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Multi-fluid k-ε-kp two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid twophase turbulence can be well predicted by this model.

  3. Separation of gas from liquid in a two-phase flow system

    Science.gov (United States)

    Hayes, L. G.; Elliott, D. G.

    1973-01-01

    Separation system causes jets which leave two-phase nozzles to impinge on each other, so that liquid from jets tends to coalesce in center of combined jet streams while gas phase is forced to outer periphery. Thus, because liquid coalescence is achieved without resort to separation with solid surfaces, cycle efficiency is improved.

  4. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Science.gov (United States)

    2010-07-01

    ... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Liquid, suspended particulate, and solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL...

  5. Solid-solid and liquid-solid phase equilibria for the restricted primitive model

    NARCIS (Netherlands)

    Smit, B.; Esselink, K.; Frenkel, D.

    1996-01-01

    A Monte Carlo simulation study is made of the phase diagram of the restricted primitive model and of the solid-liquid and solid-solid phase coexistence curves in particular. At low temperatures, there is liquid-bcc coexistence and with increasing density there is bcc-fcc coexistence. These coexisten

  6. Liquid Crystal Phases of Colloidal Platelets and their Use as Nanocomposite Templates

    NARCIS (Netherlands)

    Mourad, M.C.D.

    2009-01-01

    This thesis explores the gelation and liquid crystal phase behavior of colloidal dispersions of platelike particles as well as the use of such dispersions for the generation of nanocomposites. We report on the sol-gel, sol-glass and liquid crystal phase transitions of positively charged colloidal gi

  7. Catalyst activity maintenance study for the liquid phase dimethyl ether process

    Energy Technology Data Exchange (ETDEWEB)

    Peng, X.D.; Toseland, B.A.; Underwood, R.P. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1995-12-31

    The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizes a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.

  8. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... are implemented, leading to an entirely predictive method for densities of mixed compressed ionic liquids. Quantitative agreement with experimental data is obtained over wide ranges of conditions. Previously, the method has been applied to solubilities of sparingly soluble gases in ionic liquids and in organic...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  9. GaSb film growth by liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cruz, M.L.; Martinez-Juarez, J.; Lopez-Salazar, P. [CIDS-ICUAP, BUAP, Av. 14 Sur y San Claudio, C.U. Edif.103C, Col. Sn Manuel, C.P. 72570, Puebla, Pue. (Mexico); Diaz, G.J. [Centro de Investigacion y Estudios Avanzados, IPN, Av. IPN 2508, Col. Sn. Pedro Zacatenco, C.P. 07360, D.F. (Mexico)

    2010-04-15

    Doped GaSb (Gallium Antimonide) films on p-GaSb substrates have been obtained by means of a low-cost and fast-growth method: the liquid phase epitaxy (LPE) technique. The growth temperature was 400 C, and the growth time was varied between1 and 5 min. Characterization of the films was performed by means of high resolution X-ray Diffraction, low temperature-photoluminescence and current-voltage curve measurements. The X-ray diffraction pattern confirms a zincblende-type crystal structure with a high-thin peak centred at 30.36 . The PL spectra at 27 K allowed to confirm the band-gap energy to be 0.8 eV and the I-V curves presented a PN junction behavior which corresponds to the obtained structured. Metal contacts of Au-Zn and Au-Ge were placed to perform electrical characterization (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. First title: Ionic liquids-useful reaction green solvents for the future Second title: ionic liquids are the replacements for environmentally damaging solvents in a wide range of chemical processes.

    Directory of Open Access Journals (Sweden)

    K.Vijaya Bhaskar

    2012-09-01

    Full Text Available Ionic liquids (IL represent fascinating new class of solvents with unusual physical and chemical properties; low melting salts (up to 1000C. The main driving force for research in this area is the need to find replacement for environmentally damaging solvents in a wide range of chemical processes. To date, most chemical reactions have been carried out in molecular solvents. For the past twenty years, most of our understanding of our chemistry has been based upon the behavior of molecules in the solution phase in molecular solvents. Recently a new class of solvents has emerged called as Ionic liquids. An ionic liquid is an organic salt in which the ions are poorly coordinated, which results in these solvents being liquid below 100°C, or even at room temperature (room temperature ionic liquids, RTIL's. At least one ion has a delocalized charge and one component is organic, which prevents the formation of a stable crystal lattice. Ionic liquids are composed entirely of ions. For example, molten sodium chloride is an ionic liquid; in contrast, a solution of sodium chloride in water (a molecular solvent is an ionic solution. The term “ionic liquids” has replaced the older phrase “molten salts” (or “melts”, which suggests that they are high-temperature, corrosive, viscous media (like molten minerals. The reality is that ionic liquids can be liquid at temperatures as low as –96°C. Furthermore, room-temperature ionic liquids are frequently colourless, fluid, and easy to handle. In the patent and academic literature, the term “ionic liquids” now refers to liquids composed entirely of ions that are fluid around or below 100°C1. Properties, such as melting point, viscosity, and solubility of starting materials and other solvents, are determined by the substituents on the organic component and by the counter ion. Many ionic liquids have even been developed for specific synthetic problems. For this reason, ionic liquids have been termed

  11. Numerical simulation for gas-liquid two-phase flow in pipe networks

    International Nuclear Information System (INIS)

    The complex pipe network characters can not directly presented in single phase flow, gas-liquid two phase flow pressure drop and void rate change model. Apply fluid network theory and computer numerical simulation technology to phase flow pipe networks carried out simulate and compute. Simulate result shows that flow resistance distribution is non-linear in two phase pipe network

  12. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystal with orthogonal alignment layers

    Science.gov (United States)

    Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin

    2012-10-01

    A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.

  13. Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri

    2001-01-01

    The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.

  14. Gas and liquid phase fuels desulphurization for hydrogen production via reforming processes

    Energy Technology Data Exchange (ETDEWEB)

    Hoguet, Jean-Christophe; Karagiannakis, George P.; Valla, Julia A.; Agrafiotis, Christos C. [Aerosol and Particle Technology Laboratory, CERTH/CPERI, P.O. Box 361, 57001 Thermi, Thessaloniki (Greece); Konstandopoulos, Athanasios G. [Aerosol and Particle Technology Laboratory, CERTH/CPERI, P.O. Box 361, 57001 Thermi, Thessaloniki (Greece); Department of Chemical Engineering, Aristotle University, P.O. Box 1517, 54006 Thessaloniki (Greece)

    2009-06-15

    The present work focuses on the development of efficient desulphurization processes for multi-fuel reformers for hydrogen production. Two processes were studied: liquid hydrocarbon desulphurization and H{sub 2}S removal from reformate gases. For each process, materials with various chemical compositions and microporous structures were synthesized and characterized with respect to their physicochemical properties and desulphurization ability. In the case of liquid phase desulphurization, the adsorption of sulphur compounds contained in diesel fuel under ambient conditions was studied employing as sorbents, zeolite-based materials, i.e. NaY, HY and metal ion-exchanged NaY and HY, as well as a high-surface area activated carbon (AC), for three different diesel fuels with sulphur content varying between 5 and 180 ppmw. Among all sorbents studied, AC showed the best desulphurization performance followed by cerium ion-exchanged HY. The gas phase desulphurization experiments involved the evaluation of zinc-based mixed oxides, synthesized by non-conventional (combustion synthesis) techniques on high steam content reformate gas mixtures. (author)

  15. A study on the two-step transient liquid phase diffusion bonding of K640 superalloy

    Institute of Scientific and Technical Information of China (English)

    Zhang Lei; Hou Jinbao; Zhang Sheng

    2007-01-01

    A new technology, the two-step transient liquid phase diffusion bonding (TLP-DB) technology for cobalt-based K640 superalloy, was investigated. The method consists of a short-time high temperature heating to melt interlayer followed by isothermal solidification of liquid phase at a lower temperature than that of the conventional TLP-DB. The result indicates that the two-step TLP-DB can reliably produce an ideal joint with uniform chemical composition, which is superior to the joint welded by conventional TLP-DB in microstructure and mechanical properties. Bonding parameters of new process are 1 250 ℃ for 0.5 h and 1 180 ℃ for 3 h. The high-temperature tensile strength of the joint by two-step TLP-DB reaches 74% of that of the base material on an equal basis, but the high-temperature tensile strength of the joint by conventional TLP-DB is only 58% of that of the base material.

  16. In-situ Liquid Phase Epitaxy: Another Strategy to Synthesize Heterostructured Core-shell Composites

    Science.gov (United States)

    Wen, Zhongsheng; Wang, Guanqin

    2016-01-01

    Core-shell Nb2O5/TiO2 composite with hierarchical heterostructure is successfully synthesized In-situ by a facile template-free and acid-free solvothermal method based on the mechanism of liquid phase epitaxy. The chemical circumstance change induced by the alcoholysis of NbCl5 is utilized tactically to trigger core-shell assembling In-situ. The tentative mechanism for the self-assembling of core-shell structure and hierarchical structure is explored. The microstructure and morphology changes during synthesis process are investigated systematically by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The dramatic alcoholysis of NbCl5 has been demonstrated to be the fundamental factor for the formation of the spherical core, which changes the acid circumstance of the solution and induces the co-precipitation of TiO2. The homogeneous co-existence of Nb2O5/TiO2 in the core and the co-existence of Nb/Ti ions in the reaction solution facilitate the In-situ nucleation and epitaxial growth of the crystalline shell with the same composition as the core. In-situ liquid phase epitaxy can offer a different strategy for the core-shell assembling for oxide materials. PMID:27121200

  17. Field test of high molecular weight alcohol flushing for subsurface nonaqueous phase liquid remediation

    Science.gov (United States)

    Falta, Ronald W.; Lee, Cindy M.; Brame, Scott E.; Roeder, Eberhard; Coates, John T.; Wright, Charles; Wood, A. Lynn; Enfield, Carl G.

    1999-07-01

    A pilot scale field test of non-aqueous phase liquid (NAPL) removal using high molecular weight alcohols was conducted at Operable Unit 1, Hill Air Force Base, Utah. Petroleum hydrocarbons and spent solvents were disposed of in chemical disposal pits at this site, and these materials are now present in the subsurface in the form of a light non-aqueous phase liquid (LNAPL). This LNAPL is a complex mixture of aromatic and aliphatic hydrocarbons, chlorinated solvents, and other compounds. The field experiment was performed in a 5 m by 3 m confined test cell, formed by driving interlocking sheet pile walls through the contaminated zone into an underlying clay. The test involved the injection and extraction of about four pore volumes (1 pore volume=7000 L) of a mixture of 80% tert-butanol and 15% n-hexanol. The contaminants were removed by a combination of NAPL mobilization and enhanced dissolution, and the results of postflood soil coring indicate better than 90% removal of the more soluble contaminants (trichloroethane, toluene, ethylbenzene, xylenes, trimethylbenzene, naphthalene) and 70-80% removal of less soluble compounds (decane and undecane). The results of preflood and postflood NAPL partitioning tracer tests show nearly 80% removal of the total NAPL content from the test cell. The field data suggest that a somewhat higher level of removal could be achieved with a longer alcohol injection.

  18. Integration of phase separation with ultrasound-assisted salt-induced liquid-liquid microextraction for analyzing the fluoroquinones in human body fluids by liquid chromatography

    OpenAIRE

    Wang, H; Gao, M.; Wang, M.; Zhang, R.; W. Wang; Dahlgren, RA; Wang, X.

    2015-01-01

    © 2015 Elsevier B.V. Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted salt-induced liquid-liquid microextraction for determination of five fluoroquinones (FQs) in human body fluids. The integrated device consisted of three simple HDPE components used to separate the extraction solvent from the aqueous phase prior to retrieving the extractant. A series of extraction parameters were optimized using the response surface method based on centr...

  19. Centrifugal contactor with liquid mixing and flow control vanes and method of mixing liquids of different phases

    Science.gov (United States)

    Jubin, Robert T.; Randolph, John D.

    1991-01-01

    The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.

  20. Ultrahigh-pressure liquid chromatography of isoflavones and phenolic acids on different stationary phases.

    Science.gov (United States)

    Klejdus, B; Vacek, J; Lojková, L; Benesová, L; Kubán, V

    2008-06-27

    Complete separation of aglycones and glucosides of selected isoflavones (genistin, genistein, daidzin, daidzein, glycitin, glycitein, ononin, sissotrin, formononetin, and biochanin A) was possible in 1.5 min using an ultrahigh-pressure liquid chromatography (U-HPLC) on a different particular chemically modified stationary phases with a particle size under 2 microm. In addition, selected separation conditions for simultaneous determination of isoflavones together with a group of phenolic acids (gallic, protocatechuic, p-hydroxybenzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, and sinapic acid) allowed separation of all 19 compounds in 1.9 min. Separations were conducted on a non-polar reversed phase (C(18)) and also on more polar phases with cyanopropyl or phenyl groups using a gradient elution with a mobile phase consisting of 0.3% aqueous acetic acid and methanol. Chromatographic peaks were characterised using parameters such as resolution, symmetry, selectivity, etc. Individual substances were identified and quantified using UV-vis diode array detector at wavelength 270 nm. Limits of detection (3S/N) were in the range 200-400 pg ml(-1). Proposed U-HPLC technique was used for separation of isoflavones and phenolic acids in samples of plant materials (Trifolium pratense, Glycine max, Pisum sativum and Ononis spinosa) after acid hydrolysis of the samples and modified Soxhlet extraction. PMID:18501366

  1. Liquid phase sintered SiC. Processing and transformation controlled microstructure tailoring

    Directory of Open Access Journals (Sweden)

    V.A. Izhevskyi

    2000-10-01

    Full Text Available Microstructure development and phase formation processes during sintering of silicon carbide based materials with AlN-Y2O3, AlN-Yb2O3, and AlN-La2O3 sintering additives were investigated. Densification of the materials occurred by liquid-phase sintering mechanism. Proportion of alpha- and beta-SiC powders in the initial mixtures was a variable parameter, while the molar ratio of AlN/RE2O3, and the total amount of additives (10 vol. % were kept constant. Shrinkage behavior during sintering in interrelation with the starting composition of the material and the sintering atmosphere was investigated by high temperature dilatometry. Kinetics of b-SiC to a-SiC phase transformation during post-sintering heat treatment at temperatures 1900-1950 °C was studied, the degree of phase transformation being determined by quantitative x-ray analysis using internal standard technique. Evolution of microstructure resulting from beta-SiC to alpha-SiC transformation was followed up by scanning electron microscopy on polished and chemically etched samples. Transformation-controlled grain growth mechanism similar to the one observed for silicon nitride based ceramics was established. Possibility of in-situ platelet reinforced dense SiC-based ceramics fabrication with improved mechanical properties by means of sintering was shown.

  2. Growth of epitaxial sodium-bismuth-titanate films by metal-organic chemical vapor phase deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzkopf, J., E-mail: schwarzkopf@ikz-berlin.de [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Schmidbauer, M.; Duk, A.; Kwasniewski, A. [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Anooz, S. Bin [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Physics Department, Faculty of Science, Hadhramout University of Science and Technology, Mukalla 50511, Republic of Yemen (Yemen); Wagner, G. [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Devi, A. [Inorganic Materials Chemistry, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum (Germany); Fornari, R. [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany)

    2011-10-31

    The liquid-delivery spin metal-organic chemical vapor phase deposition method was used to grow epitaxial sodium-bismuth-titanate films of the system Bi{sub 4}Ti{sub 3}O{sub 12} + xNa{sub 0.5}Bi{sub 0.5}TiO{sub 3} on SrTiO{sub 3}(001) substrates. Na(thd), Ti(O{sup i}Pr){sub 2}(thd){sub 2} and Bi(thd){sub 3}, solved in toluene, were applied as source materials. Depending on the substrate temperature and the Na/Bi ratio in the gas phase several structural phases of sodium-bismuth-titanate were detected. With increasing temperature and/or Na/Bi ratio, phase transitions from an Aurivillius phase with m = 3 to m = 4 via an interleaved state with m = 3.5, and, finally, to Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} with perovskite structure (m = {infinity}) were established. These phase transitions proceed at remarkably lower temperatures than in ceramics or bulk crystals for which they had been exclusively observed so far.

  3. PWR steam generator chemical cleaning, Phase I. Final report

    International Nuclear Information System (INIS)

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI

  4. PWR steam generator chemical cleaning, Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI.

  5. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  6. Determination of the liquid crystals phase transition temperatures using optical rotation effect

    Science.gov (United States)

    Niu, Xiao-ling; Liu, Wei-guo; Liu, Peng; Cai, Chang-long

    2011-11-01

    Using optical rotation effect, a sensitive, simple optical analytical system is developed for determining the phase transition temperatures of liquid crystals (LCs). When a monochromatic polarized light passes through LCs sample and analyzer, the light intensity changes with temperature. Especially, during the phase transition process, the intensity varies greatly due to optical rotation effect. The variation of light intensity versus variation of temperature curve shows the phase transition temperatures of LCs clearly. The phase transition temperatures of three cholesteric liquid crystals (ChLCs) and a nematic liquid crystals (NLCs) were detected by this method, and compared with those of the differential scanning calorimetry (DSC) and polarized light microscope (PLM) methods.

  7. Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells

    International Nuclear Information System (INIS)

    The pathway of the biologically active molecule hydrogen peroxide (H2O2) from the plasma generation in the gas phase by an atmospheric pressure argon plasma jet, to its transition into the liquid phase and finally to its inhibiting effect on human skin cells is investigated for different feed gas humidity settings. Gas phase diagnostics like Fourier transformed infrared spectroscopy and laser induced fluorescence spectroscopy on hydroxyl radicals (·OH) are combined with liquid analytics such as chemical assays and electron paramagnetic resonance spectroscopy. Furthermore, the viability of human skin cells is measured by Alamar Blue® assay. By comparing the gas phase results with chemical simulations in the far field, H2O2 generation and destruction processes are clearly identified. The net production rate of H2O2 in the gas phase is almost identical to the H2O2 net production rate in the liquid phase. Moreover, by mimicking the H2O2 generation of the plasma jet with the help of an H2O2 bubbler it is concluded that the solubility of gas phase H2O2 plays a major role in generating hydrogen peroxide in the liquid. Furthermore, it is shown that H2O2 concentration correlates remarkably well with the cell viability. Other species in the liquid like ·OH or superoxide anion radical (O2⋅−) do not vary significantly with feed gas humidity. (paper)

  8. The phase transition of the first order in the critical region of the gas-liquid system

    Directory of Open Access Journals (Sweden)

    I.R. Yukhnovskii

    2014-12-01

    Full Text Available This is a summarising investigation of the events of the phase transition of the first order that occur in the critical region below the liquid-gas critical point. The grand partition function has been completely integrated in the phase-space of the collective variables. The basic density measure is the quartic one. It has the form of the exponent function with the first, second, third and fourth degree of the collective variables. The problem has been reduced to the Ising model in an external field, the role of which is played by the generalised chemical potential μ*. The line μ*(η =0, where η is the density, is the line of the phase transition. We consider the isothermal compression of the gas till the point where the phase transition on the line μ*(η =0 is reached. When the path of the pressing reaches the line μ* =0 in the gas medium, a droplet of liquid springs up. The work for its formation is obtained, the surface-tension energy is calculated. On the line μ* =0 we have a two-phase system: the gas and the liquid (the droplet one. The equality of the gas and of the liquid chemical potentials is proved. The process of pressing is going on. But the pressure inside the system has stopped, two fixed densities have arisen: one for the gas-phase ηG=ηc(1-d/2 and the other for the liquid-phase ηL=ηc(1+d/2 (symmetrically to the rectlinear diameter, where ηc=0.13044 is the critical density. Starting from that moment the external pressure works as a latent work of pressure. Its value is obtained. As a result, the gas-phase disappears and the whole system turns into liquid. The jump of the density is equal to ηc d, where d=(D/2G1/2 ~ τν/2. D and G are coefficients of the Hamiltonian in the last cell connected with the renormalisation-group symmetry. The equation of state is written.

  9. Research of Characteristics of Gas-liquid Two-phase Pressure Drop in Microreactor

    Directory of Open Access Journals (Sweden)

    Li Dan

    2015-01-01

    Full Text Available With the research system of nitrogen and deionized water, this paper researches the pressure drop of gas-liquid two-phase flow in the circular microchannel with an inner diameter which is respectively 0.9mm and 0.5mm, analyzes the effect of microchannel diameter on gas-liquid two-phase frictional pressure drop in the microchannel reactor, and compares with the result of frictional pressure drop and the predicting result of divided-phase flow pattern. The result shows that, the gas-liquid two-phase frictional pressure drop in the microchannel significantly increases with the decreasing microchannel diameter; Lockhart-Martinelli relationship in divided-phase flow pattern can preferably predict the gas-liquid two-phase frictional pressure drop in the microchannel, but the Tabular constant needs to be corrected.

  10. Effects of Ni addition on liquid phase separation and giant magnetoresistance of Cu-Co alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of Ni addition on the liquid phase separation and giant magnetoresistance (GMR) of Cu-Co alloys were discussed. The results reveal that Ni addition can partially restrain the liquid phase separation of Cu-Co alloys, resulting in a decrease of volume fraction for the Co-rich particles separated from the liquid phase and in refined microstructures. The composition analyses indicate that Ni is dissolved in both the Co-rich and the Cu-rich phases, but Ni content in the Co-rich phase is much higher than that in the Cu matrix. At the same time, Ni addition enhance the solubility between Cu and Co, especially Cu in Co solid solution. Ni alloying into Cu-Co alloys can fully prevent the liquid phase separation during melt spinning, which is very beneficial to improve GMR of Cu-Co alloys.

  11. Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid-liquid phase change

    Science.gov (United States)

    Huang, Rongzong; Wu, Huiying

    2015-08-01

    In this paper, phase interface effects, including the differences in thermophysical properties between solid and liquid phases and the numerical diffusion across phase interface, are investigated for the recently developed total enthalpy-based lattice Boltzmann model for solid-liquid phase change, which has high computational efficiency by avoiding iteration procedure and linear equation system solving. For the differences in thermophysical properties (thermal conductivity and specific heat) between solid and liquid phases, a novel reference specific heat is introduced to improve the total enthalpy-based lattice Boltzmann model, which makes the thermal conductivity and specific heat decoupled. Therefore, the differences in thermal conductivity and specific heat can be handled by the dimensionless relaxation time and equilibrium distribution function, respectively. As for the numerical diffusion across phase interface, it is revealed for the first time and found to be induced by solid-liquid phase change. To reduce such numerical diffusion, multiple-relaxation-time collision scheme is exploited, and a special value (one fourth) for the so-called "magic" parameter, a combination of two relaxation parameters, is found. Numerical tests show that the differences in thermophysical properties can be correctly handled and the numerical diffusion across phase interface can be dramatically reduced. Finally, theoretical analyses are carried out to offer insights into the roles of the reference specific heat and "magic" parameter in the treatments of phase interface effects.

  12. Numerical analysis of supersonic gas jets into liquid pools with or without chemical reaction using the SERAPHIM program

    International Nuclear Information System (INIS)

    Highlights: ► We perform numerical analysis on gas jet into liquid with or without reaction. ► We apply multi-fluid model and surface reaction model. ► Proposed model can reproduce behaviors of gas jet into liquid with reaction. - Abstract: A computer program called SERAPHIM has been developed to calculate multicomponent multiphase flow involving sodium-water chemical reaction in a steam generator of sodium cooled fast reactors. In this study, numerical analyses of supersonic gas jets into liquid pools with or without chemical reaction were performed to validate proposed numerical methods. The SERAPHIM program uses a multi-fluid model and a HSMAC method modified for compressible multiphase flows. An interfacial drag force was calculated from a newly constructed model. A surface reaction model, which has been developed by the authors, was applied to evaluate a mass generation rate by chemical reaction between a gas and liquid phase. As validation for a non-reaction problem, the experiment on horizontal supersonic air jet into water was analyzed. Numerical results showed that velocity of the injected air decreased by the effect of a interfacial drag force, and then the air went upward because of buoyancy. A horizontal penetration length of the air jet agreed with experimental results very well. On the other hand, we analyzed the experiment on vertical supersonic chlorine jet into Na–NaCl mixture. In this analysis, the injected gas disappeared at a certain height from chemical reaction. An estimated plume length showed good agreement with experimental data. The proposed numerical methods were found to be applicable to multiphase flow with supersonic gas jet and chemical reaction.

  13. Two phase flow of liquids in a narrow gap: Phase interference and hysteresis

    Science.gov (United States)

    Raza, Salim; Hejazi, S. Hossein; Gates, Ian D.

    2016-07-01

    Co-current flow of two immiscible liquids, such as oil and water in a planar fracture, exhibits nonlinear structures which become important in many natural and engineering systems such as subsurface flows, multiphase flows in lubrication joints, and coating flows. In this context, co-current flow of oil and water with variable rates is experimentally studied in a Hele-Shaw cell, various flow regimes are classified, and relative permeabilities for the phases are analysed thoroughly. Similar to multiphase pipe flows, multiphase flow in planar gaps shows various flow regimes, each having different flow rate/pressure gradient behaviour. As well as recovering the known results in the immiscible displacements in Hele-Shaw cell where the fluid-fluid interface remains stable/unstable for favorable/adverse viscosity ratios, it is found that the co-current flow of two fluids with different viscosities results in three distinct flow regimes. Before breakthrough of non-wetting phase, i.e, water, a "linear displacement" flow regime initially establishes at very low water injection rates. This stable movement turns into a "fingering advancement" flow regime at high water flow rates and Saffman-Taylor instability develops normal to the direction of the flow. After the breakthrough, a "droplet formation" flow regime is identified where the droplets of wetting phase, oil, are trapped in the water phase. For subsurface flow applications, we quantify these regimes through relative permeability curves. It is reported that as the water flow rate increases, the relative permeabilities and flow channels become smooth and regular. This behaviour of relative permeability and saturations shows dominance of capillary forces at low flow rates and viscous forces at higher flow rates. Variable injection rates provide the interface structures for both drainage and imbibition process, where the wetting phase saturation decreases and increases respectively. It is shown that relative permeability

  14. Alignment of liquid crystals : on geometrically and chemically modified surfaces

    NARCIS (Netherlands)

    Zhang, Jing

    2013-01-01

    This thesis consists of two main parts. The first part describes a new model to explain the complex role of surface materials and surface geometry in the liquid crystal (LC) alignment, which has been a subject of intensive debate over the last 40 years. The second part presents a potentially cost ef

  15. Phase formation, liquid structure, and physical properties of amorphous and quasicrystal-forming alloys

    Science.gov (United States)

    Wessels, Victor Medgar

    2009-12-01

    Since the discovery of quasicrystals in 1985 and the development of commercially viable bulk metallic glasses (BMGs) in the mid 1990's a great deal of attention has been given to the characterization of new alloys with desirable properties, such as larger amorphous casting thickness, higher mechanical strength, or hydrogen storage capacity. Here, the results of a number of investigations into the structures and properties of some noncrystalline solid alloys will be presented and analyzed. Beamline electrostatic levitation (BESL), a method for determining supercooled liquid structure and phase formation in-situ, was used. Using BESL, the development of structural and chemical inhomogeneity was observed in supercooled liquid Cu46Zr 54 (a BMG when cast) with an onset at 845 +/- 5°C, providing experimental support for structural changes determined from molecular dynamics (MD) simulations of these liquids. Differing segregation of Hf and Zr atoms was observed in solidified Ti45Zr(38-x)HfxNi 17 using scanning electron microscopy (SEM), and correlated to a previously observed, sharp boundary in phase formation near x = 19 that was further investigated using BESL. In addition to the BESL studies, results will be presented and discussed on changes in microstructure and devitrification mechanisms with the addition of Ag in Mg65Cu(25-x)AgxGd 10 BMGs, interesting for their light weight and resistance to oxygen during casting, using transmission electron microscopy (TEM), SEM, and differential scanning calorimetry (DSC). Previous, preliminary results on the hydrogen storage capacity of icosahedral quasicrystal Ti45Zr38Ni 17 were re-examined, using an improved apparatus and analysis method developed as part of this work, and the previous results found to be in error.

  16. Characterization of typical chemical background interferences in atmospheric pressure ionization liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Guo, Xinghua; Bruins, Andries P.; Covey, Thomas R.

    2006-01-01

    The structures and origins of typical chemical background noise ions in positive atmospheric pressure ionization liquid chromatography/mass spectrometry (API LC/MS) are investigated and summarized in this study. This was done by classifying chemical background ions using precursor and product ion sc

  17. Application of hollow fiber liquid phase microextraction and dispersive liquid–liquid microextraction techniques in analytical toxicology

    OpenAIRE

    Vahid Sharifi; Ali Abbasi; Anahita Nosrati

    2016-01-01

    The recent developments in hollow fiber liquid phase microextraction and dispersive liquid–liquid microextraction are reviewed. Applications of these newly emerging developments in extraction and preconcentration of a vast category of compounds including heavy metals, pesticides, pharmaceuticals and abused drugs in complex matrices (environmental and biological matrices) are reviewed and discussed. The new developments in these techniques including the use of solvents lighter than water, ioni...

  18. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  19. Purge and trap method to determine alpha factors of VOC liquid-phase mass transfer coefficients

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A theoretical approach and laboratory practice of determining the alpha factors of volatile organic compound (VOC) liquid-phase mass transfer coefficients are present in this study.Using Purge Trap Concentrator, VOC spiked water samples are purged by high-purity nitrogen in the laboratory, the VOC liquid-phase mass transfer rate constants under the laboratory conditions are then obtained by observing the variation of VOCs purged out of the water with the purge time.The alpha factors of VOC liquid-phase mass transfer coefficients are calculated as the ratios of the liquid-phase mass transfer rate constants in real water samples to their counterparts in pure water under the same experimental conditions. This direct and fast approach is easy to control in the laboratory, and would benefit mutual comparison among researchers, so might be useful for thestudy of VOC mass transfer across the liquid-gas interface.

  20. Rapid removal of nitrobenzene in a three-phase ozone loaded system with gas-liquid-liquid

    Science.gov (United States)

    Li, Shiyin; Zhu, Jiangpeng; Wang, Guoxiang; Ni, Lixiao; Zhang, Yong; Green, Christopher T.

    2015-01-01

    This study explores the removal rate of nitrobenzene (NB) using a new gas-liquid-liquid (G-L-L) three-phase ozone loaded system consisting of a gaseous ozone, an aqueous solvent phase, and a fluorinated solvent phase (perfluorodecalin, or FDC). The removal rate of NB was quantified in relation to six factors including 1) initial pH, 2) initial NB dosage, 3) gaseous ozone dosage, 4) free radical scavenger, 5) FDC pre-aerated gaseous ozone, and 6) reuse of FDC. The NB removal rate is positively affected by the first three factors. Compared with the conventional gas-liquid (water) (G-L) two-phase ozonation system, the free radical scavenger (tertiary butyl alcohol) has much less influence on the removal rate of NB in the G-L-L system. The FDC loaded ozone acts as an ozone reservoir and serves as the main reactive phase in the G-L-L three-phase system. The reuse of FDC has little influence on the removal rate of NB. These experimental results suggest that the oxidation efficiency of ozonation in the G-L-L three-phase system is better than that in the conventional G-L two-phase system.

  1. Effect of Liquid Ga on Metal Surfaces: Characterization of Morphology and Chemical Composition of Metals Heated in Liquid Ga

    Directory of Open Access Journals (Sweden)

    Eun Je Lee

    2013-01-01

    Full Text Available This study investigates the effect of liquid gallium (Ga on metal foils made of titanium (Ti, niobium (Nb, and molybdenum (Mo. The Ti, Nb, and Mo foils were heated in liquid Ga at 120°C for a maximum of two weeks. After heating, the changes in the morphology and the chemical composition of the metal foils were analyzed by using a field emission scanning electron microscope, energy-dispersive X-ray spectrometer, X-ray diffractometer, and X-ray photoelectron spectrometer. The results of the analysis indicated that the Nb foil showed the minimum adhesion of liquid Ga to the surface while the maximum amount of liquid Ga was observed to adhere to the Ti foil. In addition, the Nb foil was oxidized and the Mo foil was reduced during the heating process. Considering these effects, we conclude that Mo may be used as an alternative encapsulation material for Ga in addition to Nb, which is used as the conventional encapsulation material, due to its chemical resistance against oxidation in hot liquid Ga.

  2. Application of hollow fiber liquid phase microextraction and dispersive liquid–liquid microextraction techniques in analytical toxicology

    Directory of Open Access Journals (Sweden)

    Vahid Sharifi

    2016-04-01

    Full Text Available The recent developments in hollow fiber liquid phase microextraction and dispersive liquid–liquid microextraction are reviewed. Applications of these newly emerging developments in extraction and preconcentration of a vast category of compounds including heavy metals, pesticides, pharmaceuticals and abused drugs in complex matrices (environmental and biological matrices are reviewed and discussed. The new developments in these techniques including the use of solvents lighter than water, ionic liquids and supramolecular solvents are also considered. Applications of these new solvents reduce the use of toxic solvents and eliminate the centrifugation step, which reduces the extraction time.

  3. Computer Simulations of Simple Liquids with Tetrahedral Local Order : the Supercooled Liquid, Solids and Phase Transitions

    OpenAIRE

    Elenius, Måns

    2009-01-01

    The understanding of complex condensed matter systems is an area of intense study. In this thesis, some properties of simple liquids with strong preference for tetrahedral local ordering are explored. These liquids are amenable to supercooling, and give complex crystalline structures on eventual crystallisation. All liquids studied are simple, monatomic and are similar to real metallic liquids. The vibrational density of states of a glass created in simulation is calculated. We show a corresp...

  4. Probing the nature of phases across the phase transition at finite isospin chemical potential

    CERN Document Server

    Bali, Gunnar S; Gavai, Rajiv V; Mathur, N

    2016-01-01

    We compare the low eigenvalue spectra of the Overlap Dirac operator on two sets of configurations at $\\mu_I/\\mu_I^c$ = 0.5 and 1.5 generated with dynamical staggered fermions at these isospin chemical potential on $24^3 \\times 6$ lattices. We find very small changes in the number of zero modes and low lying modes which is in stark contrast with those across the corresponding finite temperature phases where one sees a drop across the phase transition. Possible consequences are discussed.

  5. Liquid phase sintering, II: Computer study of skeletal settling and solid phase extrication in a microgravity environment

    Directory of Open Access Journals (Sweden)

    Nikolić Z.S.

    2008-01-01

    Full Text Available A two-dimensional numerical method based on the Brownian motion model and on the Densification model for simulation of liquid phase sintering in microgravity environment will be developed. Both models will be based on domain topology (two-dimensional particle representation and control volume methodology and on three submodels for domain translation, solid skeleton formation and domain extrication. This method will be tested in order to conduct a study of diffusion phenomena and microgravitational effects on microstructural evolution influenced by skeletal settling combined with solid-phase extrication during liquid phase sintering of porous W-Ni system.

  6. Microstructured Films Formed on Liquid Substrates via Initiated Chemical Vapor Deposition of Cross-Linked Polymers.

    Science.gov (United States)

    Bradley, Laura C; Gupta, Malancha

    2015-07-28

    We studied the formation of microstructured films at liquid surfaces via vapor phase polymerization of cross-linked polymers. The films were composed of micron-sized coral-like structures that originate at the liquid-vapor interface and extend vertically. The growth mechanism of the microstructures was determined to be simultaneous aggregation of the polymer on the liquid surface and wetting of the liquid on the growing aggregates. We demonstrated that we can increase the height of the microstructures and increase the surface roughness of the films by either decreasing the liquid viscosity or decreasing the polymer deposition rate. Our vapor phase method can be extended to synthesize functional, free-standing copolymer microstructured thin films for potential applications in tissue engineering, electrolyte membranes, and separations. PMID:26176742

  7. Experimental analysis on adjusting performance of vapor-liquid two-phase flow controller

    Institute of Scientific and Technical Information of China (English)

    LI Hui-jun; TU Shan

    2006-01-01

    The vapor-liquid self-adjusting controller is an innovative automatic regulating valve. In order to ensure adjusted objects run safely and economically, the controller automatically adjusts the liquid flux to keep liquid level at a required level according to physical properties of vapor-liquid two-phase fluid. The adjusting mechanics, the controller' s performance and influencing factors of its stability have been analyzed in this paper. The theoretical analysis and successful applications have demonstrated this controller can keep the liquid level steady with good performance. The actual application in industry has shown that the controller can satisfactorily meet the requirement of industrial production and has wide application areas.

  8. Ultrapreconcentration and determination of organophosphorus pesticides in water by solid-phase extraction combined with dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Chen, Junhua; Zhou, Guangming; Deng, Yongli; Cheng, Hongmei; Shen, Jie; Gao, Yi; Peng, Guilong

    2016-01-01

    Solid-phase extraction coupled with dispersive liquid-liquid microextraction was developed as an ultra-preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion-methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid-phase extraction coupled with dispersive liquid-liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid-phase extraction coupled with dispersive liquid-liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9-6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.

  9. Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steel with Chromium and Carbon

    Science.gov (United States)

    Wu, Ming-Wei; Fan, Yu-Chi; Huang, Her-Yueh; Cai, Wen-Zhang

    2015-11-01

    Liquid phase sintering is an effective method to improve the densification of powder metallurgy materials. Boron is an excellent alloying element for liquid phase sintering of Fe-based materials. However, the roles of chromium and carbon, and particularly that of the former, on liquid phase sintering are still undetermined. This study demonstrated the effects of chromium and carbon on the microstructure, elemental distribution, boride structure, liquid formation, and densification of Fe-B-Cr and Fe-B-Cr-C steels during liquid phase sintering. The results showed that steels with 0.5 wt pct C densify faster than those without 0.5 wt pct C. Moreover, although only one liquid phase forms in Fe-B-Cr steel, adding 0.5 wt pct C reduces the formation temperature of the liquid phase by about 50 K (°C) and facilitates the formation of an additional liquid, resulting in better densification at 1473 K (1200 °C). In both Fe-B-Cr and Fe-B-Cr-C steels, increasing the chromium content from 1.5 to 3 wt pct raises the temperature of liquid formation by about 10 K (°C). Thermodynamic simulations and experimental results demonstrated that carbon atoms dissolved in austenite facilitate the eutectic reaction and reduce the formation temperature of the liquid phase. In contrast, both chromium and molybdenum atoms dissolved in austenite delay the eutectic reaction. Furthermore, the 3Cr-0.5Mo additive in the Fe-0.4B steel does not change the typical boride structure of M2B. With the addition of 0.5 wt pct C, the crystal structure is completely transformed from M2B boride to M3(B,C) boro-carbide.

  10. Phase coexistence properties of liquid mercury: a simulation study

    Institute of Scientific and Technical Information of China (English)

    Jean-Louis Bretonnet; Jean-Marc Bomont

    2006-01-01

    The thermophysical properties of expanded liquid mercury have been investigated along the liquid-vapor coexis tence curve by using Monte Carlo and Molecular Dynamic simulations. For the purpose, an empirical state dependent interatomic potential for the region of dense metallic liquid is used, while the state dependence is not necessary near the critical point. In order to test the validity of this potential, we determine the surface layering and the sound velocity, two properties very sensitive to the choice of the potential. Our results are in quite good agreement with other theoretical results and to the experimental data available in the literature.

  11. Chemical Potential Calculations In Dense Liquids Using Metadynamics

    CERN Document Server

    Perego, Claudio; Parrinello, Michele

    2016-01-01

    The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.

  12. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    Energy Technology Data Exchange (ETDEWEB)

    Groger, H. [American Research Corp. of Virginia, Radford, VA (United States)

    1997-10-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis.

  13. Proton beam lithography in negative tone liquid phase PDMS polymer resist

    Science.gov (United States)

    Huszank, Robert; Rajta, István; Cserháti, Csaba

    2015-04-01

    In this work we investigated the applicability of liquid PDMS polymer as a negative resist material for direct proton beam writing technique. We irradiated the polymer in liquid phase, spin-coated on different substrate materials creating various microstructures. PDMS pre-polymer was cross-linked just by PBW. As the cross-linking process increases, the irradiated area becomes more solid. The rate of the solidification strongly depends on the deposited ion dose. The effects of fluence, beam current, substrate type and developer solvent was investigated. Furthermore, at the irradiated areas the adhesion, the wettability and Young's modulus also changes due to the chemical change of the PDMS polymer. This effect makes the possibility to form microstructures in PDMS with tunable adhesion and wettability properties. In practical viewpoint, the PDMS resist can also have some advantages compared to other resists such as easy stripping, very fast developing (as the un-cross-linked PDMS is soluble in many organic solvents), not sensitive to light, high current or high fluence.

  14. Proton beam lithography in negative tone liquid phase PDMS polymer resist

    International Nuclear Information System (INIS)

    In this work we investigated the applicability of liquid PDMS polymer as a negative resist material for direct proton beam writing technique. We irradiated the polymer in liquid phase, spin-coated on different substrate materials creating various microstructures. PDMS pre-polymer was cross-linked just by PBW. As the cross-linking process increases, the irradiated area becomes more solid. The rate of the solidification strongly depends on the deposited ion dose. The effects of fluence, beam current, substrate type and developer solvent was investigated. Furthermore, at the irradiated areas the adhesion, the wettability and Young’s modulus also changes due to the chemical change of the PDMS polymer. This effect makes the possibility to form microstructures in PDMS with tunable adhesion and wettability properties. In practical viewpoint, the PDMS resist can also have some advantages compared to other resists such as easy stripping, very fast developing (as the un-cross-linked PDMS is soluble in many organic solvents), not sensitive to light, high current or high fluence

  15. The phase diagram of molybdenum at extreme conditions and the role of local liquid structures

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M

    2008-08-15

    Recent DAC measurements made of the Mo melting curve by the x-ray diffraction studies confirms that, up to at least 110 GPa (3300K) melting is directly from bcc to liquid, evidence that there is no basis for a speculated bcc-hcp or fcc transition. An examination of the Poisson Ratio, obtained from shock sound speed measurements, provides evidence that the 210 GPa (4100K) transition detected from shock experiments is a continuation of the bcc-liquid melting, but is from a bcc-to a solid-like mixed phase rather than to liquid. Calculations, modeled to include the free energy of liquid local structures, predict that the transition from the liquid to the mixed phase is near 150 GPa(3500K). The presence of local structures provides the simplest and most direct explanation for the Mo phase diagram, and the low melting slopes.

  16. Determination of phase transitions in a lyotropic liquid crystal by Positron Annihilation technique

    International Nuclear Information System (INIS)

    Positron annihilation technique was used to determine the phase transitions in a lyotropic liquid crystal, as a function of temperature. Seven different concentrations of the surfactant cetyldimethylethylammonium bromide, were studied. The liquid crystal studied consisted of a binary system, formed by the surfactant and water. Positron annihilation technique has a very high sensitivity toward changes in the microestructure, in condensed matter, this is useful in order to detect the temperatures at which phase transitions occur and the number of these, in a liquid crystalline system. Thus, phase transitions are related with changes occurred in the ortho-positronium parameters: lifetime (τ3) and intensity of formation (I3). Six different kinds of phases were detected in the system studied in a temperature range of 35 to 140 Centigrade degrees, those phases were: hexagonal, hexagonal-lamellae, lamellae, lamellae-cubic, nematic and anisotropic. Using optical microscopic the textures of these phases were assigned. (Author)

  17. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell

    Science.gov (United States)

    Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih

    2012-07-01

    A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 π rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.

  18. Electrically tunable refractive index in the dark conglomerate phase of a bent-core liquid crystal

    Science.gov (United States)

    Nagaraj, M.; Görtz, V.; Goodby, J. W.; Gleeson, H. F.

    2014-01-01

    Here we report an electrically tunable refractive index observed in an isotropic liquid crystal phase known as the dark conglomerate (DC) phase. This unusual change in the refractive index which has not been reported before in the DC phase of other bent-core liquid crystals occurs because of a series of electric-field-driven transformations that take place in the DC phase of the studied bent-core liquid crystal. These transformations give rise to a decrease in the refractive index of the system, when an electric field is applied across the device, and no change in the birefringence is seen during such behavior. The electro-optic phenomenon is described in detail and the possibility of exploiting this for a number of liquid crystal based device applications is discussed.

  19. Kinetic aspects of hollow fiber liquid-phase microextraction and electromembrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Jensen, Henrik; Rasmussen, Knut Einar;

    2012-01-01

    In this paper, extraction kinetics was investigated experimentally and theoretically in hollow fiber liquid-phase microextraction (HF-LPME) and electromembrane extraction (EME) with the basic drugs droperidol, haloperidol, nortriptyline, clomipramine, and clemastine as model analytes. In HF...

  20. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  1. Light-Weight, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  2. MODEL-BASED STUDY OF OXIDATION PROCESSES IN A JET ENGINE FUEL LIQUID PHASE

    OpenAIRE

    Orlovskaya, N.; Shupranov, D.; Bezborodov, Yu; Nadeykin, I.

    2009-01-01

    The process of oxidation in hexadecane liquid phase as a conventional model of oil hydrocarbons is investigated. The oxidation product structure is defined by means of Chromatography/Mass Spectrometry.

  3. PROCESSES OF LIQUID-PHASE RECOVERY OF SCALE IN ROTATIONAL FURNACE

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2012-01-01

    Full Text Available The data, enabling to establish peculiarities and distinction of liquid-phase reduction of oxides in rotation furnaces, are received as a result of laboratory and field observations.

  4. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M. [Guy`s & St. Thomas`s Hospitals, London (United Kingdom)

    1995-12-10

    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  5. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    Science.gov (United States)

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  6. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  7. Phase Diagrams in Chemical Engineering: Application to Distillation and Solvent Extraction

    OpenAIRE

    Coquelet, Christophe; Ramjugernath, Deresh

    2012-01-01

    Chapter 19Published under CC BY 3.0 licenseAvailable from: http://www.intechopen.com/books/advances-in-chemical-engineering/phase-diagrams-in-chemical-engineering-example-of-distillation International audience A phase diagram in physical chemistry and chemical engineering is a graphical representation showing distinct phases which are in thermodynamic equilibrium. Since these equilibrium relationships are dependent on the pressure, temperature, and composition of the system, a phase dia...

  8. Gasification and Ionization of Chemically Complex Liquids for FRC Injection

    Science.gov (United States)

    Holmes, Michael; Hill, Carrie

    2014-10-01

    Ion thrusters provide reliable and efficient spacecraft propulsion but are limited to noble gas propellants to limit chemical attack of components. However, thrusters based on Field Reversed Configuration (FRC) plasmas are becoming a reality. High beta compact-toroids are generated within an FRC thruster and then expelled to provide thrust. The closed field lines restrict the plasma from attacking thruster components. More convenient propellants such as water are therefore possible. The FRC thruster would generate a series of compact-toroids (plasmoids) to develop continuous spacecraft thrust. Each plasmoid ejection would empty the discharge region. The feed system would then refill the discharge region with partially ionized gas for the next discharge. The ionization part of this feed system is the subject of this paper. The question is how to produce a uniform, chemically complex, ionized gas within the discharge region that optimizes compact-toroid formation? We will be measuring chemical state, ionization state, and uniformity as the propellant enters the discharge region.

  9. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    Science.gov (United States)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  10. A twist-bend nematic to an intercalated, anticlinic, biaxial phase transition in liquid crystal bimesogens.

    Science.gov (United States)

    Mandle, Richard J; Goodby, John W

    2016-02-01

    In this article we describe for bimesogens the first observed transition from a "heliconical" twist-bend nematic liquid crystal to a novel biaxial, anticlinic, intercalated lamellar phase. The phase behaviour and structures of both polymorphs is similar to that of polymers, confirming that bimesogens can act as model systems for main chain liquid crystal polymers, and in principle are separate soft-matter branches of self-organising systems. PMID:26626825

  11. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  12. Influence of liquid phase on physical properties of the new triphasic bone cement

    OpenAIRE

    A. Ślósarczyk; N. Osypanka; J. Czechowska; Z. Paszkiewicz; A. Zima

    2012-01-01

    Purpose: The aim of this work was to develop a new bone cement based on hydroxyapatite (HAp), βTCP and calcium sulfate hemihydrate (CSH) and to determine the influence of a liquid phase, used for cement pastes preparation, on physical properties of the final implant material.Design/methodology/approach: The powder phase consisting of CSH (60 wt.%) and HAp+ βTCP (40 wt.%) was applied. Composite samples were prepared using distilled water, chitosan and methylcellulose solutions as the liquid ph...

  13. Liquid Crystal Phases of Colloidal Platelets and their Use as Nanocomposite Templates

    OpenAIRE

    Mourad, M.C.D.

    2009-01-01

    This thesis explores the gelation and liquid crystal phase behavior of colloidal dispersions of platelike particles as well as the use of such dispersions for the generation of nanocomposites. We report on the sol-gel, sol-glass and liquid crystal phase transitions of positively charged colloidal gibbsite platelets in water over a wide range of particle concentrations and salt concentrations. The natures of the kinetically-arrested states which enclose the sol region in this system are analyz...

  14. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation

    DEFF Research Database (Denmark)

    Riisager, Anders; Jørgensen, Betina; Wasserscheid, Peter

    2006-01-01

    A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)(2)I-2]-[BMIM]I -SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation.......A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)(2)I-2]-[BMIM]I -SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation....

  15. Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography.

    Science.gov (United States)

    Qiao, Lizhen; Li, Hua; Shan, Yuanhong; Wang, Shuangyuan; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2014-02-21

    In the present study, several geminal dicationic ionic liquids based on 1,4-bis(3-allylimidazolium)butane and 1,8-bis(3-allylimidazolium)octane in combination with different anions bromide and bis(trifluoromethanesulphonyl)imide were prepared and then bonded to the surface of 3-mercaptopropyl modified silica materials through the "thiol-ene" click chemistry as stationary phases for hydrophilic interaction chromatography (HILIC). Compared with their monocationic analogues, the dicationic ionic liquids stationary phases presented effective retention and good selectivity for typical hydrophilic compounds under HILIC mode with the column efficiency as high as 130,000 plates/m. Moreover, the influence of different alkyl chain spacer between dications and combined anions on the retention behavior and selectivity of the dicationic ionic liquids stationary phases under HILIC mode was displayed. The results indicated that the longer linkage chain would decrease the hydrophilicity and retention on the dicationic ionic liquid stationary phase, and while differently combined anions had no difference due to the exchangeability under the common HILIC mobile phase with buffer salt. Finally, the retention mechanism was investigated by evaluating the effect of chromatographic factors on retention, including the water content in the mobile phase, the mobile phase pH and buffer salt concentration. The results showed that the dicationic ionic liquids stationary phases presented a mixed-mode retention behavior with HILIC mechanism and anion exchange.

  16. Vapor-liquid (VLE) and liquid-liquid (LLE) phase equilibria calculations for polystyrene plus methyleyclohexane and polystyrene plus cyclohexane solutions

    DEFF Research Database (Denmark)

    Wilczura-Wachnik, H.; Jonsdottir, Svava Osk

    2006-01-01

    This paper presents the vapor-liquid (VLE) and liquid-liquid (LLE) phase equilibria predictions for polystyrene in two theta solvents: cyclohexane and methylcyclohexane. VLE calculations were performed with the Elbro free volume method and a modified version of the PC-SAFT method, as well...... as with three UNIFAC type group contribution models: Entropic Free Volume + UNIFAC VLE 1 coeff., Entropic Free Volume + UNIFAC VLE 2coeff., and Oishi-Prausnitz + UNIFAC VLE 2coeff. Solvent activities were calculated for the polystyrene + cyclohexane and polystyrene + methylcyclohcxane solutions, and compared...

  17. A variational approach to the liquid-vapor phase transition for hardcore ions in the bulk and in nanopores

    CERN Document Server

    Loubet, Bastien; Palmeri, John

    2016-01-01

    We employ a field-theoretical variational approach to study the behavior of ionic solutions in the grand canonical ensemble. To describe properly the hardcore interactions between ions, we use a cutoff in Fourier space for the electrostatic contribution of the grand potential and the Carnahan-Starling equation of state with a modified chemical potential for the pressure one. We first calibrate our method by comparing its predictions at room temperature with Monte Carlo results for excess chemical potential and energy. We then validate our approach in the bulk phase by describing the classical "ionic liquid-vapor" phase transition induced by ionic correlations at low temperature, before applying it to electrolytes at room temperature confined to nanopores embedded in a low dielectric medium and coupled to an external reservoir of ions. The ionic concentration in the nanopore is then correctly described from very low bulk concentrations, where dielectric exclusion shifts the transition up to room temperature fo...

  18. Phase field simulation of monotectic transformation for liquid Ni-Cu-Pb alloys

    Institute of Scientific and Technical Information of China (English)

    LUO BingChi; WANG HaiPeng; WEI BingBo

    2009-01-01

    Based on the subregular solution model, the liquid phase separation of ternary (NixCu100-x)50Pb50monotectic alloys is simulated by the phase field method. It is found that if the surface segregation potential is not incorporated, the dynamic morphologies of alloy melt show a transition from disperse microstructure into bicontinuous microstructure with the increase of fluidity parameter. When the sur-face segregation potential is coupled, Pb-rich phase migrates preferentially to the surface of the liquid alloy, and the Ni-rich phase depends on the Pb-rich phase to nucleate. With the extension of the phase separation time, the surface layer is formed through coagulation and growth, and its thickness gradu-ally increases. The Ni-rich phase migrates to the central part, and finally a two-layer core-shell micro-structure is produced. The concentration in the surface layer fluctuates more conspicuously than that inside the bulk phase, which subsequently transfers from the surface to the interior by a wave. The fluid field near the liquid-liquid interface is strong at the beginning of phase separation, and reduces later on. The surface segregation is essential to the formation of the surface layer, concentration profile variation, fluid field distribution and phase separation morphology.

  19. PEG-salt aqueous two-phase systems: an attractive and versatile liquid-liquid extraction technology for the downstream processing of proteins and enzymes.

    Science.gov (United States)

    Glyk, Anna; Scheper, Thomas; Beutel, Sascha

    2015-08-01

    Nowadays, there is an increasing demand to establish new feasible, efficient downstream processing (DSP) techniques in biotechnology and related fields. Although several conventional DSP technologies have been widely employed, they are usually expensive and time-consuming and often provide only low recovery yields. Hence, the DSP is one major bottleneck for the commercialization of biological products. In this context, polyethylene glycol (PEG)-salt aqueous two-phase systems (ATPS) represent a promising, efficient liquid-liquid extraction technology for the DSP of various biomolecules, such as proteins and enzymes. Furthermore, ATPS can overcome the limitations of traditional DSP techniques and have gained importance for applications in several fields of biotechnology due to versatile advantages over conventional DSP methods, such as biocompatibility, technical simplicity, and easy scale-up potential. In the present review, various practical applications of PEG-salt ATPS are presented to highlight their feasibility to operate as an attractive and versatile liquid-liquid extraction technology for the DSP of proteins and enzymes, thus facilitating the approach of new researchers to this technique. Thereby, single- and multi-stage extraction, several process integration methods, as well as large-scale extraction and purification of proteins regarding technical aspects, scale-up, recycling of process chemicals, and economic aspects are discussed.

  20. Synthesis of 5-(hydroxymethyl)furfural in Ionic Liquids - Paving the Way to Renewable Chemicals

    DEFF Research Database (Denmark)

    Ståhlberg, Tim; Fu, Wenjing; Woodley, John;

    2011-01-01

    The synthesis of 5-(hydroxymethyl)furfural (HMF) in ionic liquids is a field that has grown rapidly in recent years. Unique dissolving properties for crude biomass in combination with a high selectivity for HMF formation from hexose sugars make ionic liquids attractive reaction media...... for the production of chemicals from renewable resources. A wide range of new catalytic systems that are unique for the transformation of glucose and fructose to HMF in ionic liquids has been found. However, literature examples of scale-up and process development are still scarce, and future research needs...... to complement the new chemistry with studies on larger scales in order to find economically and environmentally feasible processes for HMF production in ionic liquids. This Minireview surveys important progress made in catalyst development for the synthesis of HMF in ionic liquids, and proposes future research...

  1. Chemical synthesis and modification of target phases of chalcogenide nanomaterials

    Science.gov (United States)

    Sines, Ian T.

    Inorganic nanoparticles have been at the forefront of materials research in recent years due to their utility in modern technological processes. Chalcogenide nanomaterials are of particular interest because of their wide range of desirable properties for semiconductors, magnetic devices, and energy industries. Primary factors that dictate the properties of the material are the elemental composition, crystal structure, stoichiometry, crystallite size, and particle morphology. One of the most common approaches to synthesize these materials is through solution mediated routes. This approach offers unique advantages in controlling the morphology and particle size that other methods lack. This dissertation describes our recent work on exploiting solution chemical routes to control the crystal structure and composition of chalcogenide nanomaterials. We will start by discussing solution chemistry routes to synthesize non-equilibrium phases of chaclogenide nanomaterials. By using low-temperature bottom-up techniques it is possible to trap kinetically stable phases that cannot be accessed using traditional high-temperature techniques. We used solution chemistry to synthesize and characterize, for the first time, wurtzite-type MnSe. Wurtzite-type MnSe is the end-member of the highly investigated ZnxMn1-xSe solid solution, a classic magnetic semiconductor system. We will then discuss PbO-type FeS, another non-equilibrium phase that is isostructural with the superconducting phase of FeSe. We synthesized phase-pure PbO-type FeS using a low-temperature solvothermal route. We will then discuss the post-synthetic modification of chalcogenides nanomaterials. By exploiting the solubility of Se and S in tri-n-octylphosphine we can selectively extract the chalcogen from preformed chalcogenide nanomaterials. This gives chemists a technique for purification and phase-targeting of particular chalcogenide phases. This method can be modified to facilitate anion exchange. When Te is

  2. Laser-induced microscopic phase-transition on an ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Natsuki; Datta, Alokmay; Yoshikawa, Kenichi; Ma Yue, E-mail: alokmaydatta@gmail.co [Department of Physics, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2009-02-01

    Nematic-isotropic transition is induced in a 5{mu}m 'droplet' within an oriented bulk of a mixture of a liquid crystalline material with a room-temperature ionic liquid, by a laser working at 532 nm with an output power of 200 mW and a beam diameter of 1{mu}m. No microscopic phase transition is observed either in absence of the ionic liquid or at the other wavelength of 1064 nm, available to the Nd-YAG laser. This indicates the essential role on a resonant transfer of energy to the ionic liquid from the laser radiation, which is subsequently transferred to the liquid crystal. Spectroscopy of the pure liquid crystal and ionic liquid samples confirms this concept. Spatio-temporal image of the droplet growth shows, however, that the phase transition remains confined within the microscopic domain for the first 50 s, and then spreads out rapidly. Since resonant, quantum transitions between molecular levels takes place in less than microseconds, the about seven orders of magnitude slowing down of energy transfer observed here suggests unique hierarchical dynamics including the coupling between the intra-molecular motions in the ionic liquid and the inter-molecular forces between ionic liquid and liquid crystal.

  3. Gas-Liquid Two-Phase Axial Backmixing Through Structured Packing at Elevated Pressure

    Institute of Scientific and Technical Information of China (English)

    张鹏; 刘春江; 唐忠利; 袁希钢; 余国琮

    2003-01-01

    An experimental study of the extent of axial backmixing in both gas and liquid phases was conducted in a 150 mm ID column packed with Mellapak 250Y corrugated structured packing. The column was operated at pressures ranging from 0.3 MPa to 2.0 MPa with nitrogen and water flowing countercurrently through the packing.The amount of axial backmixing was experimentally evaluated by the pulse response techniques using hydrogen in gas phase and an aqueous solution of NaC1 in liquid phase as inert tracers. The response of the tracer was monitored by means of thermal conductivity in the gas phase and electrical conductance in the liquid phase. The experimentally determined residence time distribution (RTD) curves were interpreted in terms of the diffusion-type model. The results indicated that the axial backmixing in the gas increased notably with gas flowrate and slightly with operating pressure and liquid flowrate. The liquid-phase axial backmixing was an increasing function of both gas and liquid flowrates and insensitive to pressure. Various correlations were developed for reproducing the experimental mixing data. The agreement between experimental and correlated data appeared to be acceptable and within ±20% of difference.

  4. LIQUID-LIQUID PHASE EQUILIBRIUM OF POLYMER SOLUTIONS AND POLYMER BLENDS UNDER POSITIVE AND NEGATIVE PRESSURE

    Institute of Scientific and Technical Information of China (English)

    Attila R.Imre

    2003-01-01

    In this paper we would like to give a brief review about the extensibility of the liquid-liquid locus into the negative pressure region. Negative pressure states are hardly explored; most researchers believe that the pressure scale ends at p = 0.We would like to show that this is not true, thep = 0 point is not a special point for liquids, it can be "easily" crossed. We are going to give a few example, where the extension of liquid-liquid locus for polymer blends and solutions below p = 0 gives us some interesting results, like the merging of UCST and LCST branches in weakly interacting polymer solutions or the reason why most UCST blends exhibit pressure induced immiscibility. Also, we will see what happens with the immiscibility island of aqueous polymer solutions when - reaching the critical molar mass - it "disappears".

  5. Poly(l-lactic acid)-modified silica stationary phase for reversed-phase and hydrophilic interaction liquid chromatography

    OpenAIRE

    Ohyama, Kaname; Takasago, Shizuka; Kishikawa, Naoya; Kuroda, Naotaka

    2015-01-01

    Poly(L-lactic acid) is a linear aliphatic thermoplastic polyester that can be produced from renewable resources. A poly(L-lactic acid)-modified silica stationary phase was newly prepared by amide bond reaction between amino groups on aminopropyl silica and carboxylic acid groups at the end of the poly(L-lactic acid) chain. The poly(L-lactic acid)-silica column was characterized in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography with the use of different ...

  6. Phase coexistence in thin liquid films stabilized by colloidal particles: equilibrium and non-equilibrium properties

    International Nuclear Information System (INIS)

    Phase equilibria between regions of different thickness in thin liquid films stabilized by colloidal particles are investigated using a quasi-two-dimensional thermodynamic formalism. Appropriate equilibrium conditions for the film tension, normal pressure, and chemical potential of the particles in the film are formulated, and it is shown that the relaxation of these parameters occurs consecutively on three distinct time scales. Film stratification is described quantitatively for a hard-sphere suspension using a Monte-Carlo method to evaluate thermodynamic equations of state. Coexisting phases are determined for systems in constrained- and full-equilibrium states that correspond to different stages of film relaxation. We also evaluated the effective viscosity coefficients for two-dimensional compressional and shear flows of a film and the self and collective mobility coefficients of the stabilizing particles. The hydrodynamic calculations were performed using a multiple-reflection representation of Stokes flow between two free surfaces. In this approach, the particle-laden film is equivalent to a periodic system of spheres with a unit cell that is much smaller in the transverse direction than in the lateral direction. (author)

  7. Non-congruence of liquid-gas phase transition of asymmetric nuclear matter

    CERN Document Server

    Maruyama, Toshiki

    2012-01-01

    We first explore the liquid-gas mixed phase in a bulk calculation, where two phases coexist without the geometrical structures. In the case of symmetric nuclear matter, the system behaves congruently, and the Maxwell construction becomes relevant. For asymmetric nuclear matter, on the other hand, the phase equilibrium is no more attained by the Maxwell construction since the liquid and gas phases are non-congruent; the particle fractions become completely different with each other. One of the origins of such non-congruence is attributed to the large symmetry energy. Subsequently we explore the charge-neutral nuclear matter with electrons by fully applying the Gibbs conditions to figure out the geometrical (pasta) structures in the liquid-gas mixed phase. We emphasize the effects of the surface tension and the Coulomb interaction on the pasta structures. We also discuss the thermal effects on the pasta structures.

  8. Numerical Simulation of Erosion-Corrosion in the Liquid Solid Two-Phase Flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Euierian-Lagranglan approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.

  9. Effect of Liquid Phase Additions on Microstructure and Thermal Properties in Copper and Copper-Diamond Composites

    Directory of Open Access Journals (Sweden)

    A. Rape

    2014-01-01

    Full Text Available This study details a new approach to creating copper-diamond composite materials for thermal management applications by using a two-phase (solid-liquid approach in powder metallurgy using Field Assisted Sintering Technology (FAST. Silver-copper alloyed powder at eutectic compositions was used as a nonreactive liquid phase while Cu5Si was used as a reactive liquid phase. Microstructure results are reported favorably comparing the additions of a small amount of liquid phase to pure solid state sintering. Additionally, EDX results indicate that the liquid phase material fills gaps at the interface of the matrix and diamond particle resulting in improved microstructure and density. Thermal conductivity results show that liquid phase additions improve the thermal conductivity of composites compared to composites without any liquid phase, but Si additions cause a severe drop in baseline conductivity.

  10. Liquid and chemical fluxes in precipitation, throughfall and stemflow

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2005-01-01

    Wet deposition (WD), throughfall (TF) and stemflow (SF) measurements undertaken in a deciduous forest show 85% of the WD liquid flux is observed as TF and approximately 2% as SF. TF and SF were observed to be enriched in base cations and accordingly had an average pH of 6.1 and 5.9, respectively...... relative to a WD pH of 5.1. The seasonal variability of TF pH below the deciduous canopies was more pronounced than that of WD though both exhibited a growing season maximum, and there is evidence that the seasonal variability of TF pH below the pines is inverted relative to the deciduous canopies likely...... due to enhanced dust capture and buffering by calcium carbonate. TF ion concentrations differed significantly between deciduous and pine canopies during the growing season, and there is some evidence that variation in sky view factor of 0.18-0.22 is sufficient to manifest statistically differing TF...

  11. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  12. Two-phase stopped-flow measurement of the protonation of tetraphenylporphyrin at the liquid-liquid interface.

    Science.gov (United States)

    Nagatani, H; Watarai, H

    1996-04-01

    The formation rate of the protonated form of tetraphenylporphyrin (TPP) in a dispersed two-phase system composed of dodecane and aqueous trichloroacetic acid (TCA) was studied by means of a stopped-flow method. The protonation reaction took place at the liquid-liquid interface, and the diprotonated TPP (H(2)TPP(2+)) formed was adsorbed there. In order to determine the rate-determining process, changes in absorbance at the absorption maximum wavelengths of TPP and H(2)TPP(2+) were analyzed. The obtained rate constant for the decrease of TPP in the organic phase, 21 ± 2 s(-1), was in agreement with that for the increase of diprotonated TPP at the interface, 20 ± 3 s(-1). The observed rate constants did not show any dependence on concentrations of both TPP and the acid. The experimental results suggested the rate-determining step to be the molecular diffusion process of TPP in the stagnant layer in the organic phase side at the liquid-liquid interface, and the thickness of the stagnant layer was estimated as 1.4 × 10(-4) cm. PMID:21619156

  13. Gold nanoparticle decorated graphene oxide/silica composite stationary phase for high-performance liquid chromatography.

    Science.gov (United States)

    Liang, Xiaojing; Wang, Xusheng; Ren, Haixia; Jiang, Shengxiang; Wang, Licheng; Liu, Shujuan

    2014-06-01

    In the initial phase of this study, graphene oxide (GO)/silica was fabricated by assembling GO onto the silica particles, and then gold nanoparticles (GNPs) were used to modify the GO/silica to prepare a novel stationary phase for high-performance liquid chromatography. The new stationary phase could be used in both reversed-phase chromatography and hydrophilic interaction liquid chromatography modes. Good separations of alkylbenzenes, isomerides, amino acids, nucleosides, and nucleobases were achieved in both modes. Compared with the GO/silica phase and GNPs/silica phase, it is found that except for hydrophilicity, large π-electron systems, hydrophobicity, and coordination functions, this new stationary phase also exhibited special separation performance due to the combination of 2D GO with zero-dimensional GNPs.

  14. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  15. Methods for conversion of carbohydrates in ionic liquids to value-added chemicals

    Science.gov (United States)

    Zhao, Haibo; Holladay, Johnathan E.

    2011-05-10

    Methods are described for converting carbohydrates including, e.g., monosaccharides, disaccharides, and polysaccharides in ionic liquids to value-added chemicals including furans, useful as chemical intermediates and/or feedstocks. Fructose is converted to 5-hydroxylmethylfurfural (HMF) in the presence of metal halide and acid catalysts. Glucose is effectively converted to HMF in the presence of chromium chloride catalysts. Yields of up to about 70% are achieved with low levels of impurities such as levulinic acid.

  16. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    International Nuclear Information System (INIS)

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip

  17. Chemically and temperature-induced phase transformations of metal vanadates

    Science.gov (United States)

    Patridge, Christopher James

    different individual beta'-Cu xV2O5 nanowires vary widely. Using scanning transmission X-ray microspectroscopy of individual beta'-CuxV2O 5 nanowires, correlations appear to exist between MIT characteristics and the markedly different orbital hybridization of vanadium and oxygen at the O K and V L absorption edges. These comprehensive nanostructure studies hint at the possibility of approaching the incredibly important realm of single-domain measurements which are needed to understand and exploit the intrinsic physical properties of materials. In addition to the bronze MIT studies, the classical MIT material vanadium dioxide, VO2, also shows new properties when scaling down to nanoscale dimensions as well as incorporation of substitutional dopants such as tungsten. X-ray absorption spectroscopy of the dopant local structure suggests an increased symmetry and depairing of V4+-V 4+, which is critical for transition to the lower temperature insulating phase thereby super-cooling the metallic phase to temperatures as low as 254 K. Mechanistic insight and structural changes associated with the intercalation of Li+ are key aspects in understanding and designing useful secondary Li ion batteries. In similarity to the MxV2O 5 studies, another metal vanadate, Ag2VO2PO 4, undergoes phase transformations due to introduction of Li and the vacancy of Ag ions. Employing a comprehensive study on Ag2VO 2PO4 using X-ray absorption spectroscopy, information about chemical state changes and rehybridization of frontier orbitals allows for a more precise understanding of how the material discharges, what, if any, intermediate phases exist during the process, and provides evidence for the posited structural stability at high depths of discharge.

  18. Phase equilibria and modeling of ammonium ionic liquid, C2NTf2, solutions.

    Science.gov (United States)

    Domańska, Urszula; Marciniak, Andrzej; Królikowski, Marek

    2008-01-31

    Novel quaternary ammonium ionic liquid, ethyl(2-hydroxyethyl)dimethylammonium bis(trifluomethylsulfonyl)imide (C2NTf2), has been prepared from N,N-dimethylethanolamine as a substrate. The paper includes a specific basic characterization of the synthesized compound by NMR and the basic thermophysical properties: the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, glass transition determined by the differential scanning calorimetry (DSC), temperature of decomposition, and water content. The density of the new compound was measured. The solid-liquid or liquid-liquid phase equilibria of binary mixtures containing {C2NTf2+water or an alcohol (propan-1-ol, butan-1-ol, hexan-1-ol, octan-1-ol, decan-1-ol), aromatic hydrocarbons (benzene, toluene), aliphatic hydrocarbons (n-hexane, n-octane), dimethylsulfoxide (DMSO), or tetrahydrofuran (THF)} have been measured by a dynamic method in a wide range of temperatures from 230 to 430 K. These data were correlated by means of the nonrandom two-liquid (NRTL) equation utilizing temperature-dependent parameters derived from the solid-liquid or liquid-liquid equilibrium. From the solubility results, the negative value of the partition coefficient of ionic liquid in binary system octan-1-ol/water (log P) at 298.15 K has been calculated. PMID:18179194

  19. Hydrogenation of nitriles on a well-characterized nickel surface: From surface science studies to liquid phase catalytic activity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gardin, D.E.

    1993-12-01

    Nitrile hydrogenation is the most commonly used method for preparing diverse amines. This thesis is aimed at the mechanism and factors affecting the performance of Ni-based catalysts in nitrile hydrogenations. Surface science techniques are used to study bonding of nitriles and amines to a Ni(111) surface and to identify surface intermediates. Liquid-phase hydrogenations of cyclohexene and 1-hexene on a Pt foil were carried out successfully. Finally, knowledge about the surface structure, surface chemical bond, dynamics of surface atoms (diffusion, growth), and reactivity of metal surfaces from solid-gas interface studies, is discussed.

  20. Aerosol assisted atmospheric pressure chemical vapor deposition of silicon thin films using liquid cyclic hydrosilanes

    International Nuclear Information System (INIS)

    Silicon (Si) thin films were produced using an aerosol assisted atmospheric pressure chemical vapor deposition technique with liquid hydrosilane precursors cyclopentasilane (CPS, Si5H10) and cyclohexasilane (CHS, Si6H12). Thin films were deposited at temperatures between 300 and 500 °C, with maximum observed deposition rates of 55 and 47 nm/s for CPS and CHS, respectively, at 500 °C. Atomic force microscopic analyses of the films depict smooth surfaces with roughness of 4–8 nm. Raman spectroscopic analysis indicates that the Si films deposited at 300 °C and 350 °C consist of a hydrogenated amorphous Si (a-Si:H) phase while the films deposited at 400, 450, and 500 °C are comprised predominantly of a hydrogenated nanocrystalline Si (nc-Si:H) phase. The wide optical bandgaps of 2–2.28 eV for films deposited at 350–400 °C and 1.7–1.8 eV for those deposited at 450–500 °C support the Raman data and depict a transition from a-Si:H to nc-Si:H. Films deposited at 450 oC possess the highest photosensitivity of 102–103 under AM 1.5G illumination. Based on the growth model developed for other silanes, we suggest a mechanism that governs the film growth using CPS and CHS. - Highlights: • Si films via AA-APCVD are realized using cyclopentasilane (CPS) and cyclohexasilane (CHS). • Low activation energies of CPS and CHS allow Si thin films at low temperatures (300 °C). • High growth rates of 47–55 nm/s were obtained at 500 °C • Near device quality Si thin films with 2–3 orders of photosensitivity • Si thin films via AA-APCVD are amenable to continuous roll-to-roll manufacturing

  1. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report No. 1, October 1, 1993--June 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products and Chemicals, Inc. (Air Products). This document describes major accomplishments in project development for Fiscal Year 1993. The preliminary process hazards review, project safety plan, schedule, and cost management report are included as appendices. The demonstration is sited at the Eastman Chemical Company (Eastman) complex in Kingsport. Air Products and Eastman are working on a partnership agreement which will form the Air Products Liquid Phase Conversion Company, L.P. As a limited partner in the venture, Eastman will own and operate the demonstration unit. The project involves the construction of a 260 tons-per-day (TPD) or 80,000 gallon per day methanol demonstration unit utilizing an existing coal-derived synthesis gas from Eastman. The new equipment consists of synthesis gas feed preparation and compression, liquid phase reactor and auxiliaries, product distillation, and utilities. The technology to be demonstrated was developed by Air Products in a DOE sponsored program that started in 1981. Originally tested at a small, DOE-owned experimental facility in LaPorte, Texas, the LPMEOH{trademark} process offers several advantages over current methods of making methanol. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The liquid dissipates heat from the chemical reaction away from the catalyst surface, protecting the catalyst, and allowing the gas-to-methanol reaction to proceed at higher rates. The process is ideally suited to the type of gas produced by modem coal gasifiers. At the Eastman Chemical complex, the technology will be integrated with existing coal gasifiers to demonstrate the commercially important aspects of the operation of the LPMEOH{trademark} Process to produce methanol.

  2. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel

    Science.gov (United States)

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern.

  3. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel.

    Science.gov (United States)

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern. PMID:25662662

  4. Two parametric flow measurement in gas-liquid two-phase flow

    Science.gov (United States)

    Chen, Z.; Chen, C.; Xu, Y.; Zhao, Z.

    The importance and current development of two parametric measurement during two-phase flow are briefly reviewed in this paper. Gas-liquid two-phase two parametric metering experiments were conducted by using an oval gear meter and a sharp edged orifice mounted in series in a horizontal pipe. Compressed air and water were used as gas and liquid phases respectively. The correlations, which can be used to predict the total flow rate and volumetric quality of two-phase flow or volumetric flow rate of each phase, have also been proposed in this paper. Comparison of the calculated values of flow rate of each phase from the correlations with the test data showed that the root mean square fractional deviation for gas flow rate is 2.9 percent and for liquid flow rate 4.4 percent. The method proposed in this paper can be used to measure the gas and liquid flow rate in two-phase flow region without having to separate the phases.

  5. STUDY ON THE PHASE TRANSITION KINETICS OF THERMOTROPIC LIQUID CRYSTALLINE AROMATIC-ALIPHATIC COPOLYESTER

    Institute of Scientific and Technical Information of China (English)

    LI Minhui; WANG Xiaogong; LIU Deshan; ZHOU Qixiang

    1991-01-01

    The phase transition kinetics of thermotropic liquid crystalline aromatic-aliphatic regular copolyester:(X) were studied by DSC. By means of Kissinger's method the kinetic equation and parameters including activation energy, rate order and preexponential factor for phase transition from nematic to isotropic were obtained. The activation energy from crystal to nematic was also presented.

  6. Formation of tilted smectic-C liquid crystal phase in polar Gay-Berne molecules

    International Nuclear Information System (INIS)

    We perform molecular dynamics simulation for a system of Gay-Berne molecules having two terminal dipole moments to generate tilted smectic-C liquid crystal phase. We investigate the effect of dipolar orientation with respect to the long molecular axis on phase behaviour. The study indicates that larger dipolar angle can give rise to greater tilt in molecular organization within a layer

  7. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    Science.gov (United States)

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  8. Phase equilibria and liquid phase epitaxy growth of PbSnSeTe lattice matched to PbSe

    Science.gov (United States)

    Mccann, Patrick J.; Fonstad, Clifton G.; Fuchs, Jacob; Feit, Ze'ev

    1987-01-01

    The necessary phase diagram data for growing lattice-matched layers of PbSnSeTe on PbSe are presented. Solid compounds of Pb(1-x)Sn(x)Se(1-y)Te(y) lattice-matched to PbSe were grown from liquid melts consisting of (Pb/1-x/Sn/x/)(1-z)(Se/1-y/Te/y/)(z); phase equilibria data were determined together with liquidus data for values of x(liquid) from 0 to 40 percent and y(liquid) from 0 to 40 percent for temperatures between 450 and 540 C. It was found that relatively large amounts of Te must be added to the melt to achieve lattice matching because of its low segregation coefficient relative to Se. A significant lattice-pulling effect was discovered for the 5-percent Sn case, and a similar effect is expected for the 10- and 20-percent Sn cases.

  9. Black Hole Phase Transitions and the Chemical Potential

    CERN Document Server

    Maity, Reevu; Sarkar, Tapobrata

    2015-01-01

    In the context of extended phase space thermodynamics and the AdS-CFT correspondence, we consider the chemical potential ($\\mu$) dual to the number of colours ($N$) of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining $\\mu$ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking-Page transition for AdS-Schwarzschild and RN-AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr-AdS black holes in four and five dimensions, our analysis points to the fact that $\\mu$ can change sign in the stable black hole region, i.e above the Hawking-Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss-Bonnet gravity, and find similar features for $\\mu$ as in the Kerr-AdS case.

  10. Coupling among three chemical oscillators: Synchronization, phase death, and frustration

    Science.gov (United States)

    Yoshimoto, Minoru; Yoshikawa, Kenichi; Mori, Yoshihito

    1993-02-01

    Various modes in three coupled chemical oscillators in a triangular arrangement were observed. As a well-defined nonlinear oscillator, the Belousov-Zhabotinsky reaction was studied in a continuous-flow stirred tank reactor (CSTR). Coupling among CSTR's was performed by mass exchange. The coupling strength was quantitatively controlled by changing the flow rate of reacting solutions among the three CSTR's using peristaltic pumps between each pair of the reactors. As a key parameter to control the model of coupling, we changed the symmetry of the interaction between the oscillators. In the case of the symmetric coupling, a quasiperiodic state or a biperiodic mode, an all-death mode and two kinds of synchronized modes appeared, depending on the coupling strength. On the other hand, under the asymmetric coupling, a quasiperiodic state or a biperiodic mode, an all death mode and four kinds of synchronized modes appeared. Those modes have been discussed in relation to the idea of ``frustration'' in the Ising spin system, where the three-phase mode appears as a transition from the Ising spin system to the XY spin system.

  11. Calculation of chemical quantities for the radioactive liquid waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Del Signore, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McClenahan, Robert L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2007-03-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) receives, stores, and treats both low-level and transuranic radioactive liquid wastes (RLW). Treatment of RLW requires the use of different chemicals. Examples include the use of calcium oxide to precipitate metals and radioactive elements from the radioactive liquid waste, and the use of hydrochloric acid to clean membrane filters that are used in the treatment process. The RL WTF is a Hazard Category 2 nuclear facility, as set forth in the LANL Final Safety Analysis Report of October 1995, and a DOE letter of March 11, 1999. A revised safety basis is being prepared for the RLWTF, and will be submitted to the NNSA in early 2007. This set of calculations establishes maximum chemical quantities that will be used in the 2007 safety basis.

  12. A numerical study of aerosol influence on mixed-phase stratiform clouds through modulation of the liquid phase

    Directory of Open Access Journals (Sweden)

    G. de Boer

    2013-02-01

    Full Text Available Numerical simulations were carried out in a high-resolution two-dimensional framework to increase our understanding of aerosol indirect effects in mixed-phase stratiform clouds. Aerosol characteristics explored include insoluble particle type, soluble mass fraction, influence of aerosol-induced freezing point depression and influence of aerosol number concentration. Simulations were analyzed with a focus on the processes related to liquid phase microphysics, and ice formation was limited to droplet freezing. Of the aerosol properties investigated, aerosol insoluble mass type and its associated freezing efficiency was found to be most relevant to cloud lifetime. Secondary effects from aerosol soluble mass fraction and number concentration also alter cloud characteristics and lifetime. These alterations occur via various mechanisms, including changes to the amount of nucleated ice, influence on liquid phase precipitation and ice riming rates, and changes to liquid droplet nucleation and growth rates. Alteration of the aerosol properties in simulations with identical initial and boundary conditions results in large variability in simulated cloud thickness and lifetime, ranging from rapid and complete glaciation of liquid to the production of long-lived, thick stratiform mixed-phase cloud.

  13. Lattice Boltzmann Simulation of 3D Nematic Liquid Crystal near Phase Transition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun; TAO Rui-Bao

    2002-01-01

    Phase transition between nematic and isotropic liquid crystal is a very weak first order phase transition.We avoid to use the normal Landau-de Gennes's free energy that reduces a strong first order transition, and set up adata base of free energy calculated by means of Tao-Sheng Lin's extended molecular field theory that can explain theexperiments of the equilibrium properties of nematic liquid crystal very well. Then we use the free energy method oflattice Boltzmann developed by Oxford group to study the phase decomposition, pattern formation in the flow of theliquid crystal near transition temperature.

  14. Automated screening of reversed-phase stationary phases for small-molecule separations using liquid chromatography with mass spectrometry.

    Science.gov (United States)

    Appulage, Dananjaya K; Wang, Evelyn H; Carroll, Frances; Schug, Kevin A

    2016-05-01

    There are various reversed-phase stationary phases that offer significant differences in selectivity and retention. To investigate different reversed-phase stationary phases (aqueous stable C18 , biphenyl, pentafluorophenyl propyl, and polar-embedded alkyl) in an automated fashion, commercial software and associated hardware for mobile phase and column selection were used in conjunction with liquid chromatography and a triple quadrupole mass spectrometer detector. A model analyte mixture was prepared using a combination of standards from varying classes of analytes (including drugs, drugs of abuse, amino acids, nicotine, and nicotine-like compounds). Chromatographic results revealed diverse variations in selectivity and peak shape. Differences in the elution order of analytes on the polar-embedded alkyl phase for several analytes showed distinct selectivity differences compared to the aqueous C18 phase. The electron-rich pentafluorophenyl propyl phase showed unique selectivity toward protonated amines. The biphenyl phase provided further changes in selectivity relative to C18 with a methanolic phase, but it behaved very similarly to a C18 when an acetonitrile-based mobile phase was evaluated. This study shows the value of rapid column screening as an alternative to excessive mobile phase variation to obtain suitable chromatographic settings for analyte separation. PMID:26959840

  15. Chemically selective NMR imaging of a 3-component (solid-solid-liquid) sedimenting system.

    Science.gov (United States)

    Beyea, Steven D; Altobelli, Stephen A; Mondy, Lisa A

    2003-04-01

    A novel magnetic resonance imaging (MRI) technique which resolves the separate components of the evolving vertical concentration profiles of 3-component non-colloidal suspensions is described. This method exploits the sensitivity of MRI to chemical differences between the three phases to directly image the fluid phase and one of the solid phases, with the third phase obtained by subtraction. 19F spin-echo imaging of a polytetrafluoroethylene (PTFE) oil was interlaced with 1H SPRITE imaging of low-density polyethylene (LDPE) particles. The third phase was comprised of borosilicate glass spheres, which were not visible while imaging the PTFE or LDPE phases. The method is demonstrated by performing measurements on 2-phase materials containing only the floating (LDPE) particles, with the results contrasted to the experimental behaviour of the individual phases in the full 3-phase system. All experiments were performed using nearly monodisperse particles, with initial suspension volume fractions, phi(i), of 0.1. PMID:12713970

  16. Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer-stabilized vertical alignment liquid crystal displays

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jae Jin; Lee, Jun Hyup; Kim, Kyeong Hyeon [Development Center, LCD Business, SAMSUNG Electronics Co. LTD., Tangjeong-Myeon, Asan, Chungnam 336-741 (Korea, Republic of); Kikuchi, Hirotsuku; Higuchi, Hiroki [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580 (Japan); Kim, Dae Hyun; Lee, Seung Hee, E-mail: jsquare.lyu@samsung.com, E-mail: lsh1@chonbuk.ac.kr [Department of BIN Fusion Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2011-08-17

    The polymer-stabilized vertically aligned (PS-VA) liquid crystal display (LCD) driving mode has high potential for manufacturing low power consuming displays due to the higher transmittance and fast response as compared with the existing patterned vertically aligned and multi-domain vertically aligned modes. In this paper we have investigated the reaction mechanisms of monomer-liquid crystal blends to form a surface pre-tilt angle of liquid crystal in vertical alignment LCD associated with a fishbone electrode structure. The observed sizes of polymer bumps formed on the substrates were found to be dependent on the exposed UV wavelength and were almost equal in both top and bottom substrates. When a large UV wavelength was used, the phase separation mechanism of monomer in PS-VA mode was found nearly isotropic rather than anisotropic in contrast to the previous studies.

  17. Investigation of electron transfer across the ice/liquid interface by scanning electro-chemical microscopy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The study of interfacial electron transfer (ET) reaction between ferricinium (Fc+) produced in situ in 1,2-dichloroethane (DCE) and ferrocyanide in ice matrix under low temperatures by the scanning electrochemical microscopy (SECM) is reported. Tetrabutylammonium (TBA+) is used as the common ion (potential-determining ion) in both phases to control the interfacial potential difference. The potential drop across the liquid/liquid interface can be quantitatively adjusted by changing the ratio of concentrations of TBA+ between the two phases. The apparent heterogeneous rate constants for Fc+ reduction by at the interface under different temperatures have been obtained by a best-fit analysis, where the experimental approach curves are fitted to the theoretical simulated curves. A sharp change has been observed for heterogeneous rate constants around the freezing point of the aqueous phase, which reflects the phase transition process.

  18. Migration of liquid phase from the primary/peritectic interface in a temperature gradient

    Science.gov (United States)

    Peng, Peng; Li, XinZhong; Su, YanQing; Guo, JingJie

    2016-07-01

    The migration of the liquid droplets from the primary α/peritectic β interface at the peritectic temperature TP has been observed and analyzed in a Sn-Ni peritectic alloy. During the isothermal annealing stage of the interrupted directional solidification, a concentration gradient is established across the liquid droplets along the direction of the temperature gradient due to the temperature gradient zone melting. Simultaneous remelting/resolidification at the top/bottom of the liquid droplets by this concentration gradient have been confirmed to lead to migration of these droplets towards higher temperatures. The dependence of the migration distance of the liquid droplets on isothermal annealing time has been well predicted. Furthermore, since the lengths of the liquid droplet are not uniform along the direction of the temperature gradient, the remelting/resolidification rates which are dependent on the local morphology of liquid droplet are different at different local positions of the liquid droplets. It has been demonstrated that the morphology of the liquid droplet was also influenced by the morphologies of the liquid phase themselves. Therefore, the morphology of the liquid droplet itself changes from spherical to some kinds of irregular shapes during its migration.

  19. Liquid-phase exfoliated graphene: functionalization, characterization, and applications

    Directory of Open Access Journals (Sweden)

    Mildred Quintana

    2014-12-01

    Full Text Available The development of chemical strategies to render graphene viable for incorporation into devices is a great challenge. A promising approach is the production of stable graphene dispersions from the exfoliation of graphite in water and organic solvents. The challenges involve the production of a large quantity of graphene sheets with tailored distribution in thickness, size, and shape. In this review, we present some of the recent efforts towards the controlled production of graphene in dispersions. We also describe some of the chemical protocols that have provided insight into the vast organic chemistry of the single atomic plane of graphite. Controlled chemical reactions applied to graphene are expected to significantly improve the design of hierarchical, functional platforms, driving the inclusion of graphene into advanced functional materials forward.

  20. Three-phase catalytic system of H2O, ionic liquid, and VOPO4-SiO2 solid acid for conversion of fructose to 5-hydroxymethylfurfural.

    Science.gov (United States)

    Tian, Chengcheng; Zhu, Xiang; Chai, Song-Hai; Wu, Zili; Binder, Andrew; Brown, Suree; Li, Lin; Luo, Huimin; Guo, Yanglong; Dai, Sheng

    2014-06-01

    Efficient transformation of biomass-derived feedstocks to chemicals and fuels remains a daunting challenge in utilizing biomass as alternatives to fossil resources. A three-phase catalytic system, consisting of an aqueous phase, a hydrophobic ionic-liquid phase, and a solid-acid catalyst phase of nanostructured vanadium phosphate and mesostructured cellular foam (VPO-MCF), is developed for efficient conversion of biomass-derived fructose to 5-hydroxymethylfurfural (HMF). HMF is a promising, versatile building block for production of value-added chemicals and transportation fuels. The essence of this three-phase system lies in enabling the isolation of the solid-acid catalyst from the aqueous phase and regulation of its local environment by using a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]). This system significantly inhibits the side reactions of HMF with H2O and leads to 91 mol % selectivity to HMF at 89 % of fructose conversion. The unique three-phase catalytic system opens up an alternative avenue for making solid-acid catalyst systems with controlled and locally regulated microenvironment near catalytically active sites by using a hydrophobic ionic liquid.

  1. Dislocation Model for Restacking Phase Transitions in Crystalline-B Liquid Crystals

    OpenAIRE

    Hirth, J. P.; Pershan, Peter S.; Collett, J; Sirota, E.; Sorensen, L. B.

    1984-01-01

    A dislocation-mediated model is presented for restacking phase transitions that have been observed in a variety of lamellar (liquid crystalline) systems. The model explains the existence of nonhexagonal crystalline (smectic)-B phases in terms of dislocation-induced tilting of hexagonally packed layers. Ordered dislocation arrays explain both the symmetry and the amplitude of observed modulations. It is likely that the model will also be applicable to modulated lipid-water phases.

  2. Phase Transition and Separation for Mixture of Liquid He-3 and He-4

    OpenAIRE

    MA, TIAN; Wang, Shouhong

    2008-01-01

    This article introduces a dynamical Ginzburg-Landau phase transition/separation model for the mixture of liquid helium-3 and helium-4, using a unified dynamical Ginzburg-Landau model for equilibrium phase transitions. The analysis of this model leads to three critical length scales L1 < L2 < L3, detailed theoretical phase diagrams and transition properties with different length scales of the container.

  3. Reverse phase-high performance liquid chromatographic separation of lighter lanthanides using salicylic acid as eluent

    International Nuclear Information System (INIS)

    Reversed Phase High Performance Liquid Chromatography (RP-HPLC) using salicylic acid as eluent was studied on unmodified reversed phase column to achieve the separation of lighter lanthanides (La, Ce, Pr, Nd and Sm ). Various chromatographic parameters namely concentrations of eluent and modifier, pH of mobile phase etc. were studied systematically to arrive at optimum chromatographic conditions. This methodology provides satisfactorily separation for the lighter lanthanide elements. (author)

  4. Exploring gas-phase ionic liquid aggregates by mass spectrometry and computational chemistry

    OpenAIRE

    Gray, Andrew Peter

    2012-01-01

    Ionic liquids (IL) are salts which are liquid at low temperatures, typically with melting points under 100 °C. In recent years ILs have been treated as novel solvents and used in a wide variety of applications such as analytical and separation processes, electrochemical devices and chemical syntheses. The properties of many ILs have been extensively studied; these studies have primarily focused on the investigation of key physical properties including viscosity, density and sol...

  5. Dimple coalescence and liquid droplets distributions during phase separation in a pure fluid under microgravity.

    Science.gov (United States)

    Oprisan, Ana; Oprisan, Sorinel A; Hegseth, John J; Garrabos, Yves; Lecoutre-Chabot, Carole; Beysens, Daniel

    2014-09-01

    Phase separation has important implications for the mechanical, thermal, and electrical properties of materials. Weightless conditions prevent buoyancy and sedimentation from affecting the dynamics of phase separation and the morphology of the domains. In our experiments, sulfur hexafluoride (SF6) was initially heated about 1K above its critical temperature under microgravity conditions and then repeatedly quenched using temperature steps, the last one being of 3.6 mK, until it crossed its critical temperature and phase-separated into gas and liquid domains. Both full view (macroscopic) and microscopic view images of the sample cell unit were analyzed to determine the changes in the distribution of liquid droplet diameters during phase separation. Previously, dimple coalescences were only observed in density-matched binary liquid mixture near its critical point of miscibility. Here we present experimental evidences in support of dimple coalescence between phase-separated liquid droplets in pure, supercritical, fluids under microgravity conditions. Although both liquid mixtures and pure fluids belong to the same universality class, both the mass transport mechanisms and their thermophysical properties are significantly different. In supercritical pure fluids the transport of heat and mass are strongly coupled by the enthalpy of condensation, whereas in liquid mixtures mass transport processes are purely diffusive. The viscosity is also much smaller in pure fluids than in liquid mixtures. For these reasons, there are large differences in the fluctuation relaxation time and hydrodynamics flows that prompted this experimental investigation. We found that the number of droplets increases rapidly during the intermediate stage of phase separation. We also found that above a cutoff diameter of about 100 microns the size distribution of droplets follows a power law with an exponent close to -2, as predicted from phenomenological considerations. PMID:25260326

  6. Phase separation in polymer solutions. I. Liquid-liquid phase separation of PPO poly (2, 6-dimethyl 1, 4-phenylene oxide) in binary mixtures with toluene and ternary mixtures with toluene and ethyl alcohol

    NARCIS (Netherlands)

    Emmerik, van P.T.; Smolders, C.A.

    1972-01-01

    In the system poly(2, 6-dimethy1-1, 4-phenylene oxide) (PPO)-toluene three phase separation lines can be detected: the melting point curve, the cloud point curve, and the spinodial. Because crystallization of PPO occurs very slowly, a phase transition will always be initiated by liquid-liquid phase

  7. Micellar structures in lyotropic liquid crystals and phase transitions

    Science.gov (United States)

    Saupe, A.; Xu, S. Y.; Plumley, Sulakshana; Zhu, Y. K.; Photinos, P.

    1991-05-01

    The formation of micellar nematics is discussed with emphasis on the transitions between nematic phases and nematic-smectic transitions. Phase diagrams for MTAB/l-decanol/D,O systems show a direct transition between uniaxial nematics. Electrical conductivity and birefringence measurements on a mixture of sodium decylsulfate. 1-decanol, D,O demonstrate, on the other hand, the existence of a biaxial nemantic range that separates the Uniaxial nematics. On a mixture of cesium perflouroctanoate and H 2O the electrical conductivity and rotational viscosity are used to discuss the relevant features of nematic-lamellar-smectic transitions. The formation of elongated ribbon-like micelles at the nematic-smectic transition is suggested. Transitions between different nematic phases in the MTAB system may be connected with a structural change from long micelles with a fairly circular cross section to similar micelles with a more elliptical cross section.

  8. Comparative study between gas phase and liquid phase for the production of DMC from methanol and CO2

    Institute of Scientific and Technical Information of China (English)

    Ahmed Aouissi; Salem S. Al-Deyab

    2012-01-01

    Direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide over Co1.5PW12O40 in liquid and in gas phase is investigated.The synthesized catalyst has been characterized by means of FTIR and XRD.Liquid phase experiment results showed that high pressures are favorable for the synthesis of DMC.However,DMC formation is limited by the reaction with co-produced water.DMC selectivity is more strongly dependent on the temperature than on the pressure of CO2.As for the reactions in gas phase,it has been found that both CH3OH conversion and DMC selectivity decreased with increasing temperature,owing to the decomposition of DMC at high temperatures.High temperatures and more amount of Co1.5PW12O40 catalyst favor the formation of dimethoxymethane (DMM) and methyl formate (MF).

  9. Surfactant-enhanced liquid-liquid microextraction coupled to micro-solid phase extraction onto highly hydrophobic magnetic nanoparticles

    International Nuclear Information System (INIS)

    We are presenting a simplified alternative method for dispersive liquid-liquid microextraction (DLLME) by resorting to the use of surfactants as emulsifiers and micro solid-phase extraction (μ-SPE). In this combined procedure, DLLME of hydrophobic components is initially accomplished in a mixed micellar/microemulsion extractant phase that is prepared by rapidly mixing a non-ionic surfactant and 1-octanol in aqueous medium. Then, and in contrast to classic DLLME, the extractant phase is collected by highly hydrophobic polysiloxane-coated core-shell Fe2O3(at)C magnetic nanoparticles. Hence, the sample components are the target analyte in the DLLME which, in turn, becomes the target analyte of the μ-SPE step. This 2-step approach represents a new and simple DLLME procedure that lacks tedious steps such as centrifugation, thawing, or delicate collection of the extractant phase. As a result, the analytical process is accelerated and the volume of the collected phase does not depend on the volume of the extraction solvent. The method was applied to extract cadmium in the form of its pyrrolidine dithiocarbamate chelate from spiked water samples prior to its determination by FAAS. Detection limits were brought down to the low μg L−1 levels by preconcentrating 10 mL samples with satisfactory recoveries (96.0–108.0 %). (author)

  10. Preparation and mechanical properties of liquid-phase sinterd silicon carbide; Herstellung und mechanische Eigenschaften von fluessigphasengesintertem Siliziumkarbid

    Energy Technology Data Exchange (ETDEWEB)

    Wiedmann, I.

    1998-12-01

    Liquid-phase sintered silicon carbide ceramics, LPS-SiC, were prepared, and the influence of structure and chemical secondary phase composition on the mechanical properties was investigated in order to identify LPS-SiC materials which can be produced reproducibly and with low loss of mass by simple techniques, i.e. without powder bed or encapsulation. Their profile of characteristics should be superior to conventional solid-phase sintered SiC and should be comparable with liquid-phase sintered silicon nitride ceramics. [Deutsch] In der vorliegenden Arbeit wurden fluessigphasengesinterte Siliziumkarbid-Keramiken, LPS-SiC, hergestellt und der Einfluss der Gefuegeausbildung und der chemischen Sekundaerphasenzusammensetzung auf die mechanischen Eigenschaften untersucht. Ziel war es, LPS-SiC-Materialien zu identifizieren, die ohne besonderen Vorkehrungen wie Pulverbett oder Einkapselung reproduzierbar und mit geringem Masseverlust hergestellt werden koennen. Das Eigenschaftsprofil sollte deutlich ueber dem von konventionell festphasengesintertem SiC liegen und vergleichbar zu fluessigphasengesinterten Siliziumnitrid-Keramiken sein. (orig.)

  11. Synthesis by High-Efficiency Liquid-Phase (HELP Method of Oligonucleotides Conjugated with High-Molecular Weight Polyethylene Glycols (PEGs

    Directory of Open Access Journals (Sweden)

    Bonora GM

    1998-01-01

    Full Text Available The chemical modification of synthetic oligonucleotides has recently been investigated to improve their pharmacological utilization. In addition to chemical alterations of the backbone and of the heterocyclic bases, their conjugation with amphiphylic moieties, such as the polyethylene glycol has been proposed. The large scale production of these molecules as demanded for commercial purposes is hampered by the heterogeneity of the solid-phase processes and by the low reactivity of high-molecular weight PEGs in solution. A new synthetic procedure based on the recently developed liquid-phase method (HELP, has been set up to overcome these limitations.

  12. A liquid/gas phase separator for He-I and He-II

    Science.gov (United States)

    Shirron, P. J.; Zahniser, J. L.; Dipirro, M. J.

    1991-01-01

    A liquid/gas phase separator has been developed which separates both liquid He-I and He-II from their vapor. The phase separator was designed for the Superfluid Helium On Orbit Transfer (SHOOT) Flight Demonstration both to cool the liquid He after launch (at temperatures between 2.8 and 4.3 K) to the operating temperature of 1.4 K and as a low rate vent on orbit to maintain operating temperature. The phase separator is made of high-purity copper disks held apart by 6 micron Kevlar fibers. It works on the principle of conducting heat from within the dewar to vaporize liquid as it is throttled in the slits to efficiently cool the remaining liquid. Laboratory tests have demonstrated perfect phase separation for both He at its saturated vapor pressure from 1.2 to 4.3 K and for He-II at 2.13 K at pressures from 4.6 to 112 kPa. The performance of this phase separator during lab testing as well as expected performance in space is discussed.

  13. Chemical comparisons of liquid fuel produced by thermochemical liquefaction of various biomass materials

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J.A.; Molton, P.M.; Landsman, S.D.

    1980-12-01

    Liquefaction of biomass in aqueous alkali at temperatures up to 350/sup 0/C is an effective way to convert solid wastes into liquid fuels. The liqefaction oils of several forms of biomass differing in proportions of cellulose, hemi-cellulose, lignin, protein, and minerals were studied and their chemical composition compared. It was that the proportions of chemical components varied considerably depending on the type of biomass liquefied. However, all the oils, even those produced from cellulose, had similar chemical characteristics due to the presence of significant quantities of phenols. These phenols are at least partially responsible for the corrosivity and viscosity commonly associated with biomass oils. The differences in chemical component distribution in the various biomass oils might successfully be exploited if the oil is to be used as a chemical feedstock. If the oil is to be used as a fuel, however, then reaction conditions will be a more important consideration than the source of biomass.

  14. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    Science.gov (United States)

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  15. The [BMI][Tf2N] ionic liquid/water binary system: a molecular dynamics study of phase separation and of the liquid-liquid interface.

    Science.gov (United States)

    Sieffert, N; Wipff, G

    2006-07-01

    We report molecular dynamics (MD) simulations of the aqueous interface of the hydrophobic [BMI][Tf2N] ionic liquid (IL), composed of 1-butyl-3-methylimidazolium cations (BMI+) and bis(trifluoromethylsulfonyl)imide anions (Tf2N-). The questions of water/IL phase separation and properties of the neat interface are addressed, comparing different liquid models (TIP3P vs TIP5P water and +1.0/-1.0 vs +0.9/-0.9 charged IL ions), the Ewald vs the reaction field treatments of the long range electrostatics, and different starting conditions. With the different models, the "randomly" mixed liquids separate much more slowly (in 20 to 40 ns) than classical water-oil mixtures do (typically, in less than 1 ns), finally leading to distinct nanoscopic phases separated by an interface, as in simulations which started with a preformed interface, but the IL phase is more humid. The final state of water in the IL thus depends on the protocol and relates to IL heterogeneities and viscosity. Water mainly fluctuates in hydrophilic basins (rich in O(Tf2N) and aromatic CH(BMI) groups), separated by more hydrophobic domains (rich in CF3(Tf2N) and alkyl(BMI) groups), in the form of monomers and dimers in the weakly humid IL phase, and as higher aggregates when the IL phase is more humid. There is more water in the IL than IL in water, to different extents, depending on the model. The interface is sharper and narrower (approximately 10 A) than with the less hydrophobic [BMI][PF6] IL and is overall neutral, with isotropically oriented molecules, as in the bulk phases. The results allow us to better understand the analogies and differences of aqueous interfaces with hydrophobic (but hygroscopic) ILs, compared to classical organic liquids.

  16. Mass Transfer in a closed stirred gas/liquid contactor: Part 2: The liquid phase mass transfer coefficient kL

    NARCIS (Netherlands)

    Koetsier, W.T.; Thoenes, D.

    1973-01-01

    The liquid phase mass transfer coefficient kL for the absorption of oxygen in tap water and in ionic solutions has been calculated from the quotien It is concluded that the liquid phase mass transfer coefficient is roughly proportional to the stirrer speed. The gas fraction e apparently has little

  17. Liquid Chromatography in 1982.

    Science.gov (United States)

    Freeman, David H.

    1982-01-01

    Reviews trends in liquid chromatography including apparatus, factors affecting efficient separation of a mixture (peak sharpness and speed), simplified problem-solving, adsorption, bonded phase chromatography, ion selectivity, and size exclusion. The current trend is to control chemical selectivity by the liquid phase. (Author/JN)

  18. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-06-30

    The Liquid Phase Methanol (LPMEOHTM) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOIYM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, comments from the DOE on the Topical Report "Economic Analysis - LPMEOHTM Process as an Add-on to IGCC for Coproduction" were received. A recommendation to continue with design verification testing for the coproduction of dimethyl ether (DIME) and methanol was made. DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stability is being developed. A recommendation document summarizing catalyst targets, experimental results, and the corresponding economics for a commercially successful LPDME catalyst was issued on 30 June 1997. The off-site, product-use test plan was updated in June of 1997. During this quarter, Acurex Environmental Corporation and Air Products screened proposals for this task by the likelihood of the projects to proceed and the timing for the initial methanol requirement. Eight sites from the list have met these criteria. The formal submission of the eight projects for review and concurrence by the DOE will be made during the next reporting period. The site paving and final painting were completed in May of 1997. Start-up activities were completed during the reporting period, and the initial methanol production from the demonstration unit occurred on 02 April 1997. The first extended stable operation at the nameplate capacity of 80,000 gallons per day (260 tons

  19. Transfer Kinetics at the Aqueous/Non-Aqueous Phase Liquid Interface. A Statistical Mechanic Approach

    Science.gov (United States)

    Doss, S. K.; Ezzedine, S.; Ezzedine, S.; Ziagos, J. P.; Hoffman, F.; Gelinas, R. J.

    2001-05-01

    Many modeling efforts in the literature use a first-order, linear-driving-force model to represent the chemical dissolution process at the non-aqueous/aqueous phase liquid (NAPL/APL) interface. In other words, NAPL to APL phase flux is assumed to be equal to the difference between the solubility limit and the "bulk aqueous solution" concentrations times a mass transfer coefficient. Under such assumptions, a few questions are raised: where, in relation to a region of pure NAPL, does the "bulk aqueous solution" regime begin and how does it behave? The answers are assumed to be associated with an arbitrary, predetermined boundary layer, which separates the NAPL from the surrounding solution. The mass transfer rate is considered to be, primarily, limited by diffusion of the component through the boundary layer. In fact, compositional models of interphase mass transfer usually assume that a local equilibrium is reached between phases. Representing mass flux as a rate-limiting process is equivalent to assuming diffusion through a stationary boundary layer with an instantaneous local equilibrium and linear concentration profile. Some environmental researchers have enjoyed success explaining their data using chemical engineering-based correlations. Correlations are strongly dependent on the experimental conditions employed. A universally applicable theory for NAPL dissolution in natural systems does not exist. These correlations are usually expressed in terms of the modified Sherwood number as a function of Reynolds, Peclet, and Schmidt numbers. The Sherwood number may be interpreted as the ratio between the grain size and the thickness of the Nernst stagnant film. In the present study, we show that transfer kinetics at the NAPL/APL interface under equilibrium conditions disagree with approaches based on the Nernst stagnant film concept. It is unclear whether local equilibrium assumptions used in current models are suitable for all situations.A statistical mechanic

  20. On-line comprehensive two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography for preparative isolation of toad venom.

    Science.gov (United States)

    Li, Jia-Fu; Fang, Hua; Yan, Xia; Chang, Fang-Rong; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun

    2016-07-22

    An on-line comprehensive preparative two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D NPLC×RPLC) system was constructed with a newly developed vacuum evaporation assisted adsorption (VEAA) interface, allowing fast removal of NPLC solvent in the vacuum condition and successfully solving the solvent incompatibility problem between NPLC and RPLC. The system achieved on-line solvent exchange within the two dimensions and its performance was illustrated by gram-scale isolation of crude extract from the venom of Bufo bufo gargarizans. Within separation time of ∼20h, 19 compounds were obtained with high purity in a single run. With the VEAA interface, the 2D system exhibited apparent advantages in separation efficiency and automation compared with conventional methods, indicating its promising application in the routine separation process for complicated natural products. PMID:27328884

  1. Carbon dioxide corrosion inhibition of N80 carbon steel in single liquid phase and liquid/particle two-phase flow by hydroxyethyl imidazoline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, Liaoning Province (China); Department of Applied Chemistry, Shenyang Institute of Chemical Technology, Shenyang 110142 (China); Zheng, Y.G. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, Liaoning Province (China); Okafor, P.C. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, Liaoning Province (China); Department of Pure and Applied Chemistry, University of Calabar, Calabar (Nigeria)

    2009-07-15

    CO{sub 2} corrosion inhibition of N80 steel in liquid single-phase and liquid/particle two-phase flow by 2-undecyl-1-hydroxyethyl imidazoline (HEI-11) and 2-undecyl-1-hydroxyethyl-1-hydroxyethyl quaternary imidazoline (HQI-11) was investigated using weight loss, potentiodynamic polarization, EIS, and scanning electron microscope (SEM) techniques. The results show that the corrosion rate in the absence and presence of the imidazolines is strongly dependent on the flow condition and presence of entrained sand particles. The imidazolines function via a mixed-type corrosion inhibition mechanism. The inhibition efficiencies of the imidazolines followed the trend HQI-11 > HEI-11 in all the systems studied. Inhibition mechanism has been discussed in relation to the polycentric adsorption sites on the imidazoline molecules. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Separation of Flue Gas Components by SILP (Supported Ionic Liquid-Phase) Absorbers

    DEFF Research Database (Denmark)

    Thomassen, P.; Kunov-Kruse, Andreas Jonas; Mossin, Susanne L.;

    2013-01-01

    Reversible absorption of the flue gas components CO2, NO, NO2 and SO2 has been tested for different ionic liquids (ILs) at different temperatures and flue gas compositions where porous, high surface area carriers have been applied as supports for the ionic liquids to obtain Supported Ionic Liquid....... The results show that CO2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperature, pressure and gas concentration. © 2012......-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow processes for flue gas cleaning...

  3. Phase behaviour and dynamics in primitive models of molecular ionic liquids

    Directory of Open Access Journals (Sweden)

    G.C. Ganzenmüller

    2011-09-01

    Full Text Available The phase behaviour and dynamics of molecular ionic liquids are studied using primitive models and extensive computer simulations. The models account for size disparity between cation and anion, charge location on the cation, and cation-shape anisotropy, which are all prominent features of important materials such as room-temperature ionic liquids. The vapour-liquid phase diagrams are determined using high-precision Monte Carlo simulations, setting the scene for in-depth studies of ion dynamics in the liquid state. Molecular dynamics simulations are used to explore the structure, single-particle translational and rotational autocorrelation functions, cation orientational autocorrelations, self diffusion, viscosity, and frequency-dependent conductivity. The results reveal some of the molecular-scale mechanisms for charge transport, involving molecular translation, rotation, and association.

  4. Detection of an intermediate biaxial phase in the phase diagram of biaxial liquid crystals: entropic sampling study.

    Science.gov (United States)

    Kamala Latha, B; Jose, Regina; Murthy, K P N; Sastry, V S S

    2014-05-01

    We investigate the phase sequence of biaxial liquid crystals, based on a general quadratic model Hamiltonian over the relevant parameter space, with a Monte Carlo simulation which constructs equilibrium ensembles of microstates, overcoming possible (free) energy barriers (combining entropic and frontier sampling techniques). The resulting phase diagram qualitatively differs from the universal phase diagram predicted earlier from mean-field theory (MFT), as well as the Monte Carlo simulations with the Metropolis algorithm. The direct isotropic-to-biaxial transition predicted by the MFT is replaced in certain regions of the space by the onset of an additional intermediate biaxial phase of very low order, leading to the sequence N(B)-N(B1)-I. This is due to inherent barriers to fluctuations of the components comprising the total energy, and may explain the difficulties in the experimental realization of these phases.

  5. Detection of an intermediate biaxial phase in the phase diagram of biaxial liquid crystals: Entropic sampling study

    Science.gov (United States)

    Kamala Latha, B.; Jose, Regina; Murthy, K. P. N.; Sastry, V. S. S.

    2014-05-01

    We investigate the phase sequence of biaxial liquid crystals, based on a general quadratic model Hamiltonian over the relevant parameter space, with a Monte Carlo simulation which constructs equilibrium ensembles of microstates, overcoming possible (free) energy barriers (combining entropic and frontier sampling techniques). The resulting phase diagram qualitatively differs from the universal phase diagram predicted earlier from mean-field theory (MFT), as well as the Monte Carlo simulations with the Metropolis algorithm. The direct isotropic-to-biaxial transition predicted by the MFT is replaced in certain regions of the space by the onset of an additional intermediate biaxial phase of very low order, leading to the sequence NB-NB1-I. This is due to inherent barriers to fluctuations of the components comprising the total energy, and may explain the difficulties in the experimental realization of these phases.

  6. Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase

    Energy Technology Data Exchange (ETDEWEB)

    Matthiesen, John; Hoff, Thomas; Liu, Chi; Pueschel, Charles; Rao, Radhika; Tessonnier, Jean-Philippe

    2014-06-01

    The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300°C) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.

  7. Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase

    Institute of Scientific and Technical Information of China (English)

    John Matthiesen; Thomas Hoff; Chi Liu; Charles Pueschel; Radhika Rao; Jean-Philippe Tessonnier

    2014-01-01

    The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Com-pared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (<300 °C) and in the condensed phase to pre-vent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.

  8. Partitioning Behavior of Papain in Ionic Liquids-Based Aqueous Two-Phase Systems

    OpenAIRE

    Zhiwen Bai; Yanhong Chao; Meiling Zhang; Changri Han; Wenshuai Zhu; Yonghui Chang; Huaming Li; Yang Sun

    2013-01-01

    This paper attempts to study and optimize the affinity partitioning conditions of papain in an aqueous two-phase system (ATPS). The effect of the amount of ionic liquids (ILs), the concentration of K2HPO4, temperature, pH, and the volume of papain solution were discussed concretely. The optimum conditions were determined as ionic liquid was 1.4 g and K2HPO4 was 1.4 g, the extraction efficiency of papain co...

  9. Nuclear recoil detection in liquid argon using a two-phase CRAD and DD neutron generator

    International Nuclear Information System (INIS)

    The detection of nuclear recoils in noble liquids using neutron elastic scattering off nuclei is relevant in the field of calibration of rare-event detectors for dark matter search and coherent neutrino-nucleus scattering experiments. We present here the first results on nuclear recoil detection in liquid Ar, using a two-phase Cryogenic Avalanche Detector (CRAD) and DD neutron generator. The technique to select the nuclear recoils for backward neutron scattering has been demonstrated

  10. Self-shielding effect of a single phase liquid xenon detector for direct dark matter search

    OpenAIRE

    Minamino, A.; Abe, K.; Ashie, Y.; Hosaka, J.; Ishihara, K; Kobayashi, K; Koshio, Y.; Mitsuda, C.; Moriyama, S.; Nakahata, M.(University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka, Japan); Nakajima, Y; Namba, T.; Ogawa, H.; Sekiya, H.; Shiozawa, M

    2009-01-01

    Liquid xenon is a suitable material for a dark matter search. For future large scale experiments, single phase detectors are attractive due to their simple configuration and scalability. However, in order to reduce backgrounds, they need to fully rely on liquid xenon's self-shielding property. A prototype detector was developed at Kamioka Observatory to establish vertex and energy reconstruction methods and to demonstrate the self-shielding power against gamma rays from outside of the detecto...

  11. Quantum phase transitions in semi-local quantum liquids

    CERN Document Server

    Iqbal, Nabil; Mezei, Márk

    2011-01-01

    We consider several types of quantum critical phenomena from finite-density gauge-gravity duality which to different degrees lie outside the Landau-Ginsburg-Wilson paradigm. These include: (1) a "bifurcating" critical point, for which the order parameter remains gapped at the critical point, and thus is not driven by soft order parameter fluctuations. Rather it appears to be driven by "confinement" which arises when two fixed points annihilate and lose conformality. On the condensed side, there is an infinite tower of condensed states and the nonlinear response of the tower exhibits an infinite spiral structure; (2) a "hybridized" critical point which can be described by a standard Landau-Ginsburg sector of order parameter fluctuations hybridized with a strongly coupled sector; (3) a "marginal" critical point which is obtained by tuning the above two critical points to occur together and whose bosonic fluctuation spectrum coincides with that postulated to underly the "Marginal Fermi Liquid" description of the...

  12. Theory of phase separation and polarization for dissociated ionic liquids

    CERN Document Server

    Gavish, Nir

    2015-01-01

    Room temperature ionic liquids are attractive to numerous applications and particularly, to renewable energy devices. As solvent free electrolytes, they demonstrate a paramount connection between the material morphology and Coulombic interactions: unlike dilute electrolytes, the electrode/RTIL interface is a product of both electrode polarization and spatiotemporal bulk properties. Yet, theoretical studies have dealt almost exclusively with independent models of morphology and electrokinetics. In this work, we develop a novel Cahn-Hilliard-Poisson type mean-field framework that couples morphological evolution with electrokinetic phenomena. Linear analysis of the model shows that spatially periodic patterns form via a finite wavenumber instability, a property that cannot arise in the currently used Fermi-Poisson-Nernst-Planck equations. Numerical simulations in above one-space dimension, demonstrate that while labyrinthine type patterns develop in the bulk, stripe patterns emerge near charged surfaces. The res...

  13. Liquid-gas phase transition in strange hadronic matter with relativistic models

    CERN Document Server

    Torres, James R; Menezes, Débora P

    2015-01-01

    Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthetizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low density matter composed of neutrons, protons and $\\Lambda$ hyperons using a Relativistic Mean Field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab-initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition ...

  14. Effect of heat and film thickness on a photoinduced phase transition in azobenzene liquid crystalline polyesters

    DEFF Research Database (Denmark)

    Sanchez, C; Alcala, R; Hvilsted, Søren;

    2003-01-01

    The liquid crystal to isotropic phase transition induced with 488 nm light in films of liquid crystalline azobenzene polyesters has been studied as a function of temperature, light intensity, and film thickness. That phase transition is associated with the photoinduced trans-cis-trans isomerizati......The liquid crystal to isotropic phase transition induced with 488 nm light in films of liquid crystalline azobenzene polyesters has been studied as a function of temperature, light intensity, and film thickness. That phase transition is associated with the photoinduced trans......-cis-trans isomerizations of azobenzene molecules and it has been found that the 488 nm light power needed to induce the transition to the isotropic state increases when the film thickness decreases. The irradiation with the laser beam heats the film up and this seems to be responsible for the observed thickness dependence....... Optical absorption measurements show that azobenzene aggregates present in one of the polymers are broken down in the photoinduced phase transition. The birefringence induced with low power 488 nm light in films before and after undergoing that photoinduced phase transition has also been studied...

  15. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Science.gov (United States)

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  16. Operation of a GERDA phase I prototype detector in liquid argon and nitrogen

    International Nuclear Information System (INIS)

    A GERDA phase I prototype detector, consisting of a bare non-enriched high-purity (HP) p-type germanium diode mounted in a low mass holder has been operated both in liquid nitrogen and liquid argon. Because of its high density, liquid argon has been selected as cryogenic liquid and shield for GERDA experiment. The testing of this detector assembly has been carried out in the underground detector laboratory at LNGS, and at the detector manufacturer. The best resolution achieved is 2.2 keV FWHM at 1.332 MeV, which is the same as the resolution measured in a standard test cryostat. The long-term measurements with the prototype detector are performed in liquid argon. Up to now, 38 thermal cycles have been carried out with this detector. The operations, measurements and results of the prototype detector testing are summarized. (orig.)

  17. Mixed Model for Silt-Laden Solid-Liquid Two-Phase Flows

    Institute of Scientific and Technical Information of China (English)

    唐学林; 徐宇; 吴玉林

    2003-01-01

    The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.

  18. Thermal Diffusivity and Thermal Conductivity of Five Different Steel Alloys in the Solid and Liquid Phases

    Science.gov (United States)

    Wilthan, B.; Schützenhöfer, W.; Pottlacher, G.

    2015-08-01

    The need for characterization of thermophysical properties of steel and nickel-based alloys was addressed in the FFG-Bridge Project 810999 in cooperation with a partner from industry, Böhler Edelstahl GmbH & Co KG. To optimize numerical simulations of production processes, such as remelting or plastic deformation, additional, and more accurate data were necessary for the alloys under investigation. With a fast ohmic pulse heating circuit system, the temperature-dependent specific electrical resistivity, density, and specific heat capacity for a set of five high alloyed steels were measured. Hence, using the Wiedemann-Franz law with a Lorenz number of , the thermal diffusivity and thermal conductivity could be calculated for the solid and liquid phases up to temperatures of 2500 K. This experimental approach is limited by the following requirements for the specimens: they have to be electrically conducting, the melting point has to be high enough for the implemented pyrometric temperature measurement, and one has to be able to draw wires of the material. The latter restriction is technologically challenging with some of the materials being very brittle. For all samples, electrical and temperature signals are recorded and a fast shadowgraph method is used to measure the volume expansion. For each material under investigation, a set of data including the chemical composition, the density at room temperature, solidus and liquidus temperatures, and the change of enthalpy, resistivity, density, thermal conductivity, and thermal diffusivity as a function of temperature is reported.

  19. Computational Fluid Dynamics Simulation of Liquid-Phase FCC Diesel Hydrotreating in Tubular Reactor

    Institute of Scientific and Technical Information of China (English)

    Li Hua; Liu Ningqiang; Zeng Zhiyu; Zou Ying; Wang Jiming

    2015-01-01

    The computational lfuid dynamics (CFD) code, FLUENT, was used to simulate the liquid-phase FCC diesel hy-drotreating tubular reactor with a ceramic membrane tube dispenser. The chemical reaction and reaction heat were added to the model by user-deifned function (UDF), showing the distribution of temperature and content of sulifdes, nitrides, bicyclic aromatics and monocyclic aromatics in different parts of the reaction bed. When the pressure was 6.5 MPa, the amount of mixing hydrogen was 0.84% (m), the space velocity was 2 h-1 and the inlet temperature was 633K, the temperature reached a maximum at a height of 0.15 m, and the range of radial temperature reached its maximum (2.5 K) at a height of 0.15 m. It indicated that the proper ratio of height to diameter of catalyst bed in the tubular reactor was 5-6. The increase of inlet temperature, the mixing hydrogen and the decrease of space velocity led to the decrease in the content of bicyclic aromatics, sulifdes and nitrides, and the increase in monocyclic aromatics content, while the high temperature increased. The results were in good agreement with experimental data, indicating to the high accuracy of the model.

  20. Conductive polymeric ionic liquids for electroanalysis and solid-phase microextraction.

    Science.gov (United States)

    Young, Joshua A; Zhang, Cheng; Devasurendra, Amila M; Tillekeratne, L M Viranga; Anderson, Jared L; Kirchhoff, Jon R

    2016-03-01

    Three novel electropolymerizable thiophene-based ionic liquids (ILs) were synthesized and characterized as potential candidates for developing selective extraction media for chemical analysis. Electropolymerization of the bis[(trifluoromethyl)sulfonyl]imide ([NTf2](-)) analogs successfully produced uniform polymeric thin-films on macro- and microelectrode substrates from both vinyl and methylimidazolium IL monomer derivatives. The resultant conducting polymer IL (CPIL) films were characterized by electrochemical methods and found to exhibit attractive behavior towards anionic species while simultaneously providing an exclusion barrier toward cationic species. Thermogravimetric analysis of the thiophene-based IL monomers established a high thermal stability, particularly for the methylimidazolium IL, which was stable until temperatures above 350 °C. Subsequently, the methylimidazolium IL was polymerized on 125 μm platinum wires and utilized for the first time as a sorbent coating for headspace solid-phase microextraction (HS-SPME). The sorbent coating was easily prepared in a reproducible manner, provided high thermal stability, and allowed for the gas chromatographic analysis of polar analytes. The normalized response of the poly[thioph-C6MIm][NTf2]-based sorbent coating exhibited higher extraction efficiency compared to an 85 μm polyacrylate fiber and excellent fiber-to-fiber reproducibility. Therefore, the electropolymerizable thiophene-based ILs were found to be viable new materials for the preparation of sorbent coatings for HS-SPME. PMID:26873467

  1. Liquid phase deposition methods monitoring techniques influence for solid substrates and thin metal oxide films properties

    Directory of Open Access Journals (Sweden)

    A.V. Valiulis

    2007-09-01

    Full Text Available Purpose: Liquid phase deposition (LPD method is a useful method to create thin oxide films from aqueous solutions under ambient conditions. Deposition of ceramic layers on polymers is a technological challenge because of polymer sensitivity to chemicals and high temperature processing.Design/methodology/approach: The work attempts to elucidate the role of the substrate during LPD of TiO2 films by using Kapton with different types of surface treatments.Findings: Was found that small differences in pH, temperature, and solution composition can lead to dramatic differences in the film’s crystallinity, adherence, and growth rate. Thin films are very smooth, uniform with small amount of cracks.Research limitations/implications: Independent of technique and substrate, film thicker than a few hundred nm exhibited cracks, attributed to stresses that result during drying of the film.Originality/value: Techniques for monitoring the surface chemistry of the solid substrate and the deposited ceramic film have been developed.

  2. Conductive polymeric ionic liquids for electroanalysis and solid-phase microextraction.

    Science.gov (United States)

    Young, Joshua A; Zhang, Cheng; Devasurendra, Amila M; Tillekeratne, L M Viranga; Anderson, Jared L; Kirchhoff, Jon R

    2016-03-01

    Three novel electropolymerizable thiophene-based ionic liquids (ILs) were synthesized and characterized as potential candidates for developing selective extraction media for chemical analysis. Electropolymerization of the bis[(trifluoromethyl)sulfonyl]imide ([NTf2](-)) analogs successfully produced uniform polymeric thin-films on macro- and microelectrode substrates from both vinyl and methylimidazolium IL monomer derivatives. The resultant conducting polymer IL (CPIL) films were characterized by electrochemical methods and found to exhibit attractive behavior towards anionic species while simultaneously providing an exclusion barrier toward cationic species. Thermogravimetric analysis of the thiophene-based IL monomers established a high thermal stability, particularly for the methylimidazolium IL, which was stable until temperatures above 350 °C. Subsequently, the methylimidazolium IL was polymerized on 125 μm platinum wires and utilized for the first time as a sorbent coating for headspace solid-phase microextraction (HS-SPME). The sorbent coating was easily prepared in a reproducible manner, provided high thermal stability, and allowed for the gas chromatographic analysis of polar analytes. The normalized response of the poly[thioph-C6MIm][NTf2]-based sorbent coating exhibited higher extraction efficiency compared to an 85 μm polyacrylate fiber and excellent fiber-to-fiber reproducibility. Therefore, the electropolymerizable thiophene-based ILs were found to be viable new materials for the preparation of sorbent coatings for HS-SPME.

  3. Fuel and power coproduction: The Liquid Phase Methanol (LPMEOH{trademark}) process demonstration at Kingsport

    Energy Technology Data Exchange (ETDEWEB)

    Drown, D.P.; Brown, W.R.; Heydorn, E.C.; Moore, R.B.; Schaub, E.S.; Brown, D.M.; Jones, W.C.; Kornosky, R.M.

    1997-12-31

    The Liquid Phase Methanol (LPMEOH{trademark}) process uses a slurry bubble column reactor to convert syngas (primarily a mixture of carbon monoxide and hydrogen) to methanol. Because of its superior heat management, the process is able to be designed to directly handle the carbon monoxide (CO)-rich syngas characteristic of the gasification of coal, petroleum coke, residual oil, wastes, or of other hydrocarbon feedstocks. When added to an integrated gasification combined cycle (IGCC) power plant, the LPMEOH{trademark} process converts a portion of the CO-rich syngas produced by the gasifier to methanol, and the remainder of the unconverted gas is used to fuel the gas turbine combined-cycle power plant. The LPMEOH{trademark} process has the flexibility to operate in a daily electricity demand load-following manner. Coproduction of power and methanol via IGCC and the LPMEOH{trademark} process provides opportunities for energy storage for electrical demand peak shaving, clean fuel for export, and/or chemical methanol sales.

  4. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene–azobenzene composites

    Science.gov (United States)

    Döbbelin, Markus; Ciesielski, Artur; Haar, Sébastien; Osella, Silvio; Bruna, Matteo; Minoia, Andrea; Grisanti, Luca; Mosciatti, Thomas; Richard, Fanny; Prasetyanto, Eko Adi; De Cola, Luisa; Palermo, Vincenzo; Mazzaro, Raffaello; Morandi, Vittorio; Lazzaroni, Roberto; Ferrari, Andrea C.; Beljonne, David; Samorì, Paolo

    2016-01-01

    Multifunctional materials can be engineered by combining multiple chemical components, each conferring a well-defined function to the ensemble. Graphene is at the centre of an ever-growing research effort due to its combination of unique properties. Here we show that the large conformational change associated with the trans–cis photochemical isomerization of alkyl-substituted azobenzenes can be used to improve the efficiency of liquid-phase exfoliation of graphite, with the photochromic molecules acting as dispersion-stabilizing agents. We also demonstrate reversible photo-modulated current in two-terminal devices based on graphene–azobenzene composites. We assign this tuneable electrical characteristics to the intercalation of the azobenzene between adjacent graphene layers and the resulting increase in the interlayer distance on (photo)switching from the linear trans-form to the bulky cis-form of the photochromes. These findings pave the way to the development of new optically controlled memories for light-assisted programming and high-sensitive photosensors. PMID:27052205

  5. Heat Transfer Characteristics of Liquid-Gas Taylor Flows incorporating Microencapsulated Phase Change Materials

    Science.gov (United States)

    Howard, J. A.; Walsh, P. A.

    2014-07-01

    This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM

  6. Low symmetry tetrahedral nematic liquid crystal phases: Ambidextrous chirality and ambidextrous helicity.

    Science.gov (United States)

    Pleiner, Harald; Brand, Helmut R

    2014-02-01

    We discuss the symmetry properties as well as the dynamic behavior of various non-polar nematic liquid crystal phases with tetrahedral order. We concentrate on systems that show biaxial nematic order coexisting with octupolar (tetrahedral) order. Non-polar examples are phases with D2 and S4 symmetries, which can be characterized as biaxial nematics lacking inversion symmetry. It is this combination that allows for new features in the statics and dynamics of these phases. The D2-symmetric phase is chiral, even for achiral molecules, and shows ambidextrous chirality in all three preferred directions. The achiral S4-symmetric phase allows for ambidextrous helicity, similar to the higher-symmetric D2d-symmetric phase. Such phases are candidates for nematic phases made from banana-shaped molecules.

  7. Diagnostical meaning acute phase proteins in cerebrospinal liquid in children with neuroinfections

    Directory of Open Access Journals (Sweden)

    L. A. Alekseeva

    2010-01-01

    Full Text Available In the article presented results of the examination of acute phase proteins in cerebrospinal liquid in 237 children with meningitis and encephalitis viral and bacterial etiology. The dependence between the level of acute phase proteins in cerebrospinal liquid and etiology of neuroinfectional process, the severity of brain damage and the process stage was determined. Diagnostic and prognostic efficiency of the acute phase proteins (C-reactive protein, albumin, alpha-1-antitripsin, alpha-2-macroglobulin, gaptoglobin examination in children with neuroinfections was specified. Developed method of express diagnostics of the severity of inflammatory damage of the brain in bacterial meningitis in children by determination in cerebrospinal liquid alpha-2-macroglobulin is described.

  8. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  9. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Science.gov (United States)

    Shiina, Tatsuo; Chigira, Tomoyuki; Saito, Hayato; Manago, Naohiro; Kuze, Hiroaki; Hanyu, Toshinori; Kanayama, Fumihiko; Fukushima, Mineo

    2016-06-01

    A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  10. Gamma-ray attenuation technique for measuring void fraction in horizontal gas-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The measurement of void fraction is of importance to the oil industry and chemical industry. In this article,the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a single-energy γ-ray system is described. The γ-ray source is the radioactive isotope of 241Am with γ-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed γ-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.

  11. The liquid phase separation of Bi-Ga hypermonotectic alloy under acoustic levitation condition

    Institute of Scientific and Technical Information of China (English)

    HONG ZhenYu; L(U) YongJun; XIE WenJun; WEI BingBo

    2007-01-01

    Containerless treatment of Bi-58.5at%Ga hypermonotectic alloy is successfully performed with acoustic levitation technique. Under acoustic levitation condition, the second phase (Ga) distributes almost homogeneously in solidification sample, opposite to macrosegregation in solidification sample under conventional condition. Stokes motion of the second liquid droplet (Ga) is significantly restrained under acoustic levitation condition. The analyses indicate that the melt vibration in the gravity direction forced by acoustic field can induce steady flow around the second liquid droplet, which influences droplet shape during its moving upward and consequently restrains Stokes motion velocity of the second liquid droplet.

  12. A liquid flatjet system for solution phase soft-x-ray spectroscopy

    OpenAIRE

    Maria Ekimova; Wilson Quevedo; Manfred Faubel; Philippe Wernet; Nibbering, Erik T. J.

    2015-01-01

    We present a liquid flatjet system for solution phase soft-x-ray spectroscopy. The flatjet set-up utilises the phenomenon of formation of stable liquid sheets upon collision of two identical laminar jets. Colliding the two single water jets, coming out of the nozzles with 50 μm orifices, under an impact angle of 48° leads to double sheet formation, of which the first sheet is 4.6 mm long and 1.0 mm wide. The liquid flatjet operates fully functional under vacuum conditions (

  13. Large Microwave Birefringence Liquid-Crystal Characterization for Phase-Shifter Applications

    Science.gov (United States)

    Dubois, Frédéric; Krasinski, Freddy; Splingart, Bertrand; Tentillier, Nicolas; Legrand, Christian; Spadlo, Anna; Dabrowski, Roman

    2008-05-01

    This work is concerned with the improvement of a microwave liquid-crystal phase shifter using a large birefringence nematic liquid crystal. This material is a eutectic mixture of isothiocyanatotolane molecules. Microwave dielectric properties are reported and compared to the data obtained with the 5CB cyanobiphenyl material in the 26-40 GHz frequency range using a rectangular waveguide. The phase-shifter design consists of a central cavity, where a liquid crystal is inserted, and two coplanar strip lines accesses. Its dimensions were calculated by electromagnetic simulation, using measured dielectric permittivities of the liquid crystal. The measurements were performed with a commercial Wiltron 3680 K probe test fixture. Phase-shift variations with and without bias voltage versus frequency are presented. As expected, the large-birefringence nematic liquid crystal exhibits a higher microwave dielectric anisotropy (Δɛ' = 1.06 against 0.34) and the tunability of the phase shifter strongly increases (1.8 deg·cm-1·GHz-1 against 0.8 deg·cm-1·GHz-1).

  14. A liquid-crystalline hexagonal columnar phase in highly-dilute suspensions of imogolite nanotubes

    Science.gov (United States)

    Paineau, Erwan; Krapf, Marie-Eve M.; Amara, Mohamed-Salah; Matskova, Natalia V.; Dozov, Ivan; Rouzière, Stéphan; Thill, Antoine; Launois, Pascale; Davidson, Patrick

    2016-01-01

    Liquid crystals have found wide applications in many fields ranging from detergents to information displays and they are also increasingly being used in the `bottom-up' self-assembly approach of material nano-structuration. Moreover, liquid-crystalline organizations are frequently observed by biologists. Here we show that one of the four major lyotropic liquid-crystal phases, the columnar one, is much more stable on dilution than reported so far in literature. Indeed, aqueous suspensions of imogolite nanotubes, at low ionic strength, display the columnar liquid-crystal phase at volume fractions as low as ~0.2%. Consequently, due to its low visco-elasticity, this columnar phase is easily aligned in an alternating current electric field, in contrast with usual columnar liquid-crystal phases. These findings should have important implications for the statistical physics of the suspensions of charged rods and could also be exploited in materials science to prepare ordered nanocomposites and in biophysics to better understand solutions of rod-like biopolymers.

  15. Quantitative prediction of physical properties of imidazolium based room temperature ionic liquids through determination of condensed phase site charges: a refined force field.

    Science.gov (United States)

    Mondal, Anirban; Balasubramanian, Sundaram

    2014-03-27

    Quantitative prediction of physical properties of room temperature ionic liquids through nonpolarizable force field based molecular dynamics simulations is a challenging task. The challenge lies in the fact that mean ion charges in the condensed phase can be less than unity due to polarization and charge transfer effects whose magnitude cannot be fully captured through quantum chemical calculations conducted in the gas phase. The present work employed the density-derived electrostatic and chemical (DDEC/c3) charge partitioning method to calculate site charges of ions using electronic charge densities obtained from periodic density functional theory (DFT) calculations of their crystalline phases. The total ion charges obtained thus range between -0.6e for chloride and -0.8e for the PF6 ion. The mean value of the ion charges obtained from DFT calculations of an ionic liquid closely matches that obtained from the corresponding crystal thus confirming the suitability of using crystal site charges in simulations of liquids. These partial charges were deployed within the well-established force field developed by Lopes et al., and consequently, parameters of its nonbonded and torsional interactions were refined to ensure that they reproduced quantum potential energy scans for ion pairs in the gas phase. The refined force field was employed in simulations of seven ionic liquids with six different anions. Nearly quantitative agreement with experimental measurements was obtained for the density, surface tension, enthalpy of vaporization, and ion diffusion coefficients. PMID:24605817

  16. Renewable feedstocks in green solvents: thermodynamic study on phase diagrams of D-sorbitol and xylitol with dicyanamide based ionic liquids.

    Science.gov (United States)

    Paduszyński, Kamil; Okuniewski, Marcin; Domańska, Urszula

    2013-06-13

    Experimental and theoretical studies on thermodynamic properties of three ionic liquids based on dicyanamide anion (namely, 1-butyl-3-methylimidazolium dicyanamide, 1-butyl-1-methylpyrrolidinium dicyanamide, and 1-butyl-1-methylpiperidinium dicyanamide) and their binary mixtures with sugar alcohols (D-sorbitol and xylitol) were conducted in order to assess the applicability of the salts ionic liquids for dissolution of those biomass-related materials. Density and dynamic viscosity (at ambient pressure) of pure ionic liquids are reported in the temperature range from T = 293.15 to 363.15 K. Solid-liquid equilibrium phase diagrams in binary systems {sugar alcohol + ionic liquid} were measured with dynamic method up to the fusion temperature of sugar alcohol. The impact of the chemical structure of both the ionic liquid and sugar alcohol were established and discussed. For the very first time, the experimental solubility data were reproduced and analyzed in terms of equation of state rooted in statistical mechanics. For this purpose, perturbed-chain statistical associating fluid theory (PC-SAFT) was employed. In particular, new molecular schemes for the ionic liquids, D-sorbitol, and xylitol were proposed, and then the pure chemicals were parametrized by using available density and vapor pressure data. The model allowed accurate correlation of pure fluid properties for both ionic liquids and sugar alcohols, when the association term is taken into account. The results of solid-liquid equilibria modeling were also satisfactory. However, one or two adjustable binary corrections to the adopted combining rules were required to be adjusted in order to accurately capture the phase behavior. It was shown that a consistent thermodynamic description of extremely complex systems can be achieved by using relatively simple (but physically grounded) theoretical tools and molecular schemes.

  17. Tuning the phase diagrams: the miscibility studies of multilactate liquid crystalline compounds

    Science.gov (United States)

    Bubnov, Alexej; Tykarska, Marzena; Hamplová, Věra; Kurp, Katarzyna

    2016-09-01

    Design of binary and multicomponent liquid crystalline mixtures is a very powerful tool to reach the desired self-assembling properties. Beyond many advantages, this method has a distinct negativity - it is very material-consuming. While working with unique chiral materials in the research laboratory, this problem can be solved by applying miscibility study by the contact preparation method. In this work, the miscibility studies of lactic acid derivatives and non-chiral/chiral liquid crystalline molecules of different structure have been done in order to establish the phase diagrams. Special attention is focused on the ferro(antiferro)electric smectic phases.

  18. Direct MD simulation of liquid-solid phase equilibria for two-component plasmas

    OpenAIRE

    Schneider, A. S.; Hughto, J.; Horowitz, C. J.; Berry, D. K.

    2011-01-01

    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase MD simulations. We identified liquid, solid, and interface regions using a bond angle metric. To study finite size effects, we perform 27648 and 55296 ion simulations. To help monitor non-equilibrium effects, we calculate diffusion constants $D_i$. For the carbon-oxygen system we find that $D_O$ for oxygen ions in the solid is much smaller than $D_C$ for carbon ions and that both ...

  19. Evaluation of the Component Chemical Potentials in Analytical Models for Ordered Alloy Phases

    Directory of Open Access Journals (Sweden)

    W. A. Oates

    2011-01-01

    Full Text Available The component chemical potentials in models of solution phases with a fixed number of sites can be evaluated easily when the Helmholtz energy is known as an analytical function of composition. In the case of ordered phases, however, the situation is less straightforward, because the Helmholtz energy is a functional involving internal order parameters. Because of this, the chemical potentials are usually obtained numerically from the calculated integral Helmholtz energy. In this paper, we show how the component chemical potentials can be obtained analytically in ordered phases via the use of virtual cluster chemical potentials. Some examples are given which illustrate the simplicity of the method.

  20. Chemical Investigation of Saponins in Different Parts of Panax notoginseng by Pressurized Liquid Extraction and Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Si-Jia Hong

    2012-05-01

    Full Text Available A pressurized liquid extraction (PLE and high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS method was developed for the qualitative determination of saponins in different parts of P. notoginseng, including rhizome, root, fibre root, seed, stem, leaf and flower. The samples were extracted using PLE. The analysis was achieved on a Zorbax SB-C18 column with gradient elution of acetonitrile and 8 mM aqueous ammonium acetate as mobile phase. The mass spectrometer was operated in the negative ion mode using the electrospray ionization, and a collision induced dissociation (CID experiment was also carried out to aid the identification of compounds. Forty one saponins were identified in different parts of P. notoginseng according to the fragmentation patterns and literature reports, among them, 21 saponins were confirmed by comparing the retention time and ESI-MS data with those of standard compounds. The results showed that the chemical characteristics were obviously diverse in different parts of P. notoginseng, which is helpful for pharmacological evaluation and quality control of P. notoginseng.

  1. The effect of liquid-liquid phase separation of glass on the properties and crystallization behavior

    Science.gov (United States)

    Li, J. Z.

    1985-01-01

    A theoretical discussion is given of the phase separation mechanism of amorphous materials. This includes nucleus growth, spinoidal decomposition, and nuclei agglomeration and coarsening. Various types of glass are analyzed.

  2. APPLICATIONS OF CERIUM BIS (MONOMYRISTY—LPHOSPHATE)ADSORBENT TO REVERSED PHASE LIQUID CHROMATOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    SuZhengquan; FengHuixia; 等

    1996-01-01

    The tetravalent metal salts of monoalkyl phosphates [M(O3POR)2]are a new kind of stationary phases of Chromatography-homogeneous bonded phases.This paper deals with the application of cerium bis(monomyristylphosphate)as support to reversed phase liquid chromatography.The results show that the best mobil phase is CH3CN:H2O=95:5.The good separation to the mixture containing six aromatic hydrocarbons and the determination of naphthalene in a group samples have been achieved.The regression analysis shows that detect limits,linearities and precision for six aromatic hydrocarbons are good.

  3. The cone phase of liquid crystals: Triangular lattice of double-tilt cylinders

    Indian Academy of Sciences (India)

    Yashodhan Hatwalne; N V Madhusudana

    2003-08-01

    We predict the existence of a new defect-lattice phase near the nematic–smectic-C (NC) transition. This tilt-analogue of the blue phase is a lattice of double-tilt cylinders which are disclination lines in the smectic layer normal as well as the c-field. We discuss the structure and stability of the cone phase. We suggest that many ‘nematics’ exhibiting short range layering and tilt order may in fact be in the molten cone phase, which is a line liquid.

  4. Gas-assisted dispersive liquid-phase microextraction using ionic liquid as extracting solvent for spectrophotometric speciation of copper.

    Science.gov (United States)

    Akhond, Morteza; Absalan, Ghodratollah; Pourshamsi, Tayebe; Ramezani, Amir M

    2016-07-01

    Gas-assisted dispersive liquid-phase microextraction (GA-DLPME) has been developed for preconcentration and spectrophotometric determination of copper ion in different water samples. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate and argon gas, respectively, were used as the extracting solvent and disperser. The procedure was based on direct reduction of Cu(II) to Cu(I) by hydroxylamine hydrochloride, followed by extracting Cu(I) into ionic liquid phase by using neocuproine as the chelating agent. Several experimental variables that affected the GA-DLPME efficiency were investigated and optimized. Under the optimum experimental conditions (IL volume, 50µL; pH, 6.0; acetate buffer, 1.5molL(-1); reducing agent concentration, 0.2molL(-1); NC concentration, 120µgmL(-1); Ar gas bubbling time, 6min; argon flow rate, 1Lmin(-1); NaCl concentration, 6% w/w; and centrifugation time, 3min), the calibration graph was linear over the concentration range of 0.30-2.00µgmL(-1) copper ion with a limit of detection of 0.07µgmL(-1). Relative standard deviation for five replicate determinations of 1.0µgmL(-1) copper ion was found to be 3.9%. The developed method was successfully applied to determination of both Cu(I) and Cu(II) species in water samples.

  5. STABILITY OF VORTEX STREET IN GAS-LIQUID TWO-PHASE FLOW

    Institute of Scientific and Technical Information of China (English)

    Li Yong-guang; Lin Zong-hu

    2003-01-01

    The stability of the Karmen vortex street in gas-liquid two-phase flow was studied experimentally and theoretically. The values of the parameter h/l characterizing the vortex street structure (I.e., the ratio of the vortex street width to the distance between two vortexes) for a stable vortex street in gas-liquid two-phase flow were obtained for the first time. The parameter h/l was proved to be a variable, not a constant as in single-phase flow. H/l is related to the upstream fluid void fraction. In gas-liquid two-phase fluid flow to form a steady vortex street is more difficult than in a single-phase fluid flow. Because in the unsteady vortex shedding the vortex shedding band frequency is broader than the one in the single phase fluid flow, so it is easier to induce the cross-cylinder resonance than in the single phase fluid flow, and this case should give rise to the attention of engineers.

  6. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE)

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  7. Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Peter M.; Lodge, Timothy P. (UMM)

    2008-08-26

    The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior of the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].

  8. Biological degradation of dense nonaqueous phase liquids (DNAPLs)

    Energy Technology Data Exchange (ETDEWEB)

    Ensley, B.; Strong-Gunderson, J.M.; Palumbo, A.V.

    1996-08-01

    In situ bioremediation is a very attractive, safe and efficient method of not only removing, but eliminating hazardous compounds from the environment. However, the quickest and most efficient method of restoring a hazardous waste site would be to link several remediation processes. In situ biodegradation can involve the addition of nutrients, oxygen, electron donors, electron acceptors, organisms or all the above. These amendments can be introduced and coupled to a variety of other technologies such as permeability enhancements, chemical treatments and/or physical processes. In addition to in situ technologies, bioremediation in bioreactors is an efficient tool facilitating mineralization of contaminants. Overall, biodegradation has a significant potential to increase the rate of site restoration and decrease overall costs. 37 refs., 2 figs.

  9. Possible transient liquid crystal phase during the laying out of connective tissues: {alpha}-chitin and collagen as models

    Energy Technology Data Exchange (ETDEWEB)

    Belamie, E; Mosser, G; Gobeaux, F; Giraud-Guille, M M [Laboratoire de Chimie de la Matiere Condensee, UMR 7574 CNRS, Universite Pierre and Marie Curie, Ecole Pratique des Hautes Etudes, 12 rue Cuvier, Paris, 75005 (France)

    2006-04-05

    Morphogenesis of extracellular matrices can be considered from different perspectives. One is that of ontogenesis, i.e., an organism's development, which is mostly concerned with the spatiotemporal regulation of genes, cell differentiation and migration. Complementary to this purely biological point of view, a physico-chemical approach can help in understanding complex mechanisms by highlighting specific events that do not require direct cellular control. Because of a structural similarity between some biological systems and liquid crystals, it was supposed that similar mechanisms could be involved. In this respect, it is important to determine the intrinsic self-assembly properties driving the ordering of biological macromolecules. Here we review in vitro studies of the condensed state of major biological macromolecules from extracellular matrices and related theories describing a mesophase transition in suspensions of rodlike particles. Dilute suspensions of collagen or chitin are isotropic, i.e., the macromolecules can take on any orientation in the fluid. Beyond a critical concentration, an ordered nematic phase appears with a higher volume fraction. The two-phase coexistence can be seen between crossed polarizers since the nematic phase is strongly birefringent and appears bright, whereas the isotropic phase remains dark. A widespread property of these structural macromolecular scaffolds is their chirality. Although the origin of chirality in colloidal suspensions is still a subject of debate, the helical nature of the cholesteric phase can be quantified. Small angle x-ray scattering performed on shear-aligned samples can help demonstrate the cholesteric nature of the anisotropic phase, inferred from optical observations. Liquid-like positional local order is revealed by the presence of broad interference peaks at low angle. The azimuthal profiles of these patterns are fitted to determine the value of the nematic order parameter at the transition. A few

  10. Liquid phase sintering, I: Computer study of skeletal settling and solid phase extrication in a normal gravity environment

    Directory of Open Access Journals (Sweden)

    Nikolić Z.S.

    2008-01-01

    Full Text Available In this paper we will investigate gravity induced skeletal settling during liquid phase sintering. In this approach skeletal settling will be combined with extrication of some solidphase domains. The main goal will be the need to relate dissolution, diffusion and precipitation phenomena to essential geometric and topological changes of the tungstennickel porous microstructure influenced by differential skeletal settling due to large density difference between tungsten domains and the matrix. This study will be based on domain topology (no shape restriction and control-volume methodology. The microstructural evolution will be simulated by computation of displacement of the center of mass (combined gravity induced settling and random motion and mass transport due to dissolution and precipitation at the interfaces between solid-phase and liquid matrix.

  11. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    Science.gov (United States)

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  12. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    Science.gov (United States)

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions.

  13. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    Science.gov (United States)

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  14. Determination of Bisphenol A and Bisphenol AF in Vinegar samples by two-component mixed ionic liquid dispersive liquid-phase microextraction coupled with high performance liquid chromatography

    International Nuclear Information System (INIS)

    This paper describes a sensitive and simple method for the determination of bisphenol A (BPA) and bisphenol AF (BPAF) in vinegar samples using two-component mixed ionic liquid dispersive liquid-phase microextraction coupled with high performance liquid chromatography. In this work, BPA and BPAF were selected as the model analytes, and two-component mixed ionic liquid included 1-butyl-3-methylimidazolium hexafluorophosphate ((C4Mim)PF6) and 1-hexyl-3-methyl-imidazolium hexafluorophosphate ((C6Mim)PF6) was used as the extraction solvent for the first time here. Parameters that affect the extraction efficiency were investigated. Under the optimum conditions, good linear relationships were discovered in the range of 1.0-100 micro g/L for BPA and 2.0-150 micro g/L for BPAF, respectively. Detection limits of proposed method based on the signal-to-noise ratio (S/N=3) were in the range of 0.15-0.38 micro g/L. The efficiencies of proposed method have also been demonstrated with spiked real vinegar samples. The result show this method/ procedure to be a more efficient approach for the determination of BPA and BPAF in real vinegar, presenting average recovery rate of 89.3-112 % and precision values of 0.9-13.5% (RSDs, n = 6). In comparison with traditional solid phase extraction procedures this method results in lower solvent consumption, low pollution levels, and faster sample preparation. (author)

  15. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    Science.gov (United States)

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation. PMID:18093731

  16. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    Science.gov (United States)

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation.

  17. Chromatographic behavior of small organic compounds in low-temperature high-performance liquid chromatography using liquid carbon dioxide as the mobile phase.

    Science.gov (United States)

    Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime

    2015-07-01

    Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns.

  18. Analytical study of the liquid phase transient behavior of a high temperature heat pipe

    Science.gov (United States)

    Roche, Gregory Lawrence

    1988-09-01

    The transient operation of the liquid phase of a high temperature heat pipe is studied. The study was conducted in support of advanced heat pipe applications that require reliable transport of high temperature drops and significant distances under a broad spectrum of operating conditions. The heat pipe configuration studied consists of a sealed cylindrical enclosure containing a capillary wick structure and sodium working fluid. The wick is an annular flow channel configuration formed between the enclosure interior wall and a concentric cylindrical tube of fine pore screen. The study approach is analytical through the solution of the governing equations. The energy equation is solved over the pipe wall and liquid region using the finite difference Peaceman-Rachford alternating direction implicit numerical method. The continuity and momentum equations are solved over the liquid region by the integral method. The energy equation and liquid dynamics equation are tightly coupled due to the phase change process at the liquid-vapor interface. A kinetic theory model is used to define the phase change process in terms of the temperature jump between the liquid-vapor surface and the bulk vapor. Extensive auxiliary relations, including sodium properties as functions of temperature, are used to close the analytical system. The solution procedure is implemented in a FORTRAN algorithm with some optimization features to take advantage of the IBM System/370 Model 3090 vectorization facility. The code was intended for coupling to a vapor phase algorithm so that the entire heat pipe problem could be solved. As a test of code capabilities, the vapor phase was approximated in a simple manner.

  19. Phase separation model analysis of gas-liquid two phase flow in the zones of influence in horizontal pipeline system

    International Nuclear Information System (INIS)

    A computational program is proposed to calculate the two-phase flow in the T type and Y type branch by using a mechanistic model based on the idea that the gas and liquid flows being extracted into the side branch come from the 'influence zones' bounded by 'dividing streamline'. A number of numerical calculations are carried out to give predictive results in good agreement with others' experiment work on this field. The calculation shows that the branch angle is one of the main factors effecting the phase separation in branch type systems. Meanwhile the influences of inlet parameter X1 are also discussed

  20. Liquid Phase Growth of YBa2Cu3O7-x at Low Temperatures Using KOHFLUX

    Science.gov (United States)

    Yamada, Yasuji; Funaki, Shuhei; Nakayama, Fumiya; Okunishi, Ryota; Miyachi, Yugo

    Molten KOH method, which was reported for the growth of YBa2Cu4O8 (Y124) crystal, was applied to synthesize and grow YBa2Cu3O7-x (Y123) crystal. Y123 phase was synthesized by controlling growth temperature and oxygen partial pressure. The shape of synthesized grains was cubic-like, indicating that they grew by the transportation of solute through liquid phase. Using KOH flux method, substitution of rare-earth elements for Y in Y123 phase was easily obtained. Liquid phase epitaxy of Y123 film on a single crystalline substrate was achieved by slow cooling flux method but not by top-seeded solution growth yet.

  1. Anomalous partitioning of water in coexisting liquid phases of lipid multilayers near 100% relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yicong; Ghosh, Sajal K.; Bera, Sambhunath; Jiang, Zhang; Schleputz, Christian M.; Karapetrova, Evguenia; Lurio, L. B.; Sinha, Sunil K.

    2015-11-30

    X-ray diffraction is used to determine the hydration dependence of a ternary mixture lipid multilayer structure which has phase separated into liquid-ordered (Lo) and liquid-disordered (Ld) phases. An anomaly is observed in the swelling behavior of the Ld phase at a relative humidity (RH) close to 100%, which is different from the anomalous swelling happens close to the main lipid gel-fluid transition. The lamellar repeat distance of the Ld phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries, which produces surprisingly long range effect.

  2. Microscopic Theory of Blue Phases Ⅰ and Ⅱ of Liquid Crystal

    Institute of Scientific and Technical Information of China (English)

    LIUJian-Jun; YANGGuo-Chen; SHENMan

    2004-01-01

    The microscopic theory of the blue phases of chiral liquid crystal is proposed. Beginning with the potential between two molecules, by using the cell model of liquid, applying statistical physical method, the distribution function and the free energy of the system are obtained. By using variational approach and zero-order approximation, the differential equation that the order parameter tensor of the blue phase can satisfy is obtained. Then we change the differential equation to the eigenequation problem in quantum mechanics. Considering the symmetry of the blue phases, the order parameter tensors of blue phases Ⅰ and Ⅱ can be made up of the eigenvectors. Our results are the same as the results of Ginzberg-Landau's phenomenological theory. The parameters in the order parameter tensors that we calculate in the located system are close to the predecessors' results.

  3. Microscopic Theory of Blue Phases Ⅰ and Ⅱ of Liquid Crystal

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Jun; YANG Guo-Chen; SHEN Man

    2004-01-01

    The microscopic theory of the blue phases of chiral liquid crystal is proposed. Beginning with the potential between two molecules, by using the cell model of liquid, applying statistical physical method, the distribution function and the free energy of the system are obtained. By using variational approach and zero-order approximation, the differential equation that the order parameter tensor of the blue phase can satisfy is obtained. Then we change the differential equation to the eigenequation problem in quantum mechanics. Considering the symmetry of the blue phases,the order parameter tensors of blue phases Ⅰ and Ⅱ can be made up of the eigenvectors. Our results are the same as the results of Ginzberg-Landau's phenomenological theory. The parameters in the order parameter tensors that we calculate in the located system are close to the predecessors' results.

  4. Novel guanidinium-based ionic liquids as stationary phases for capillary gas chromatography

    Institute of Scientific and Technical Information of China (English)

    Li Zhen Qiao; Kai Lu; Mei Ling Qi; Ruo Nong Fu

    2010-01-01

    The present study describes guanidinium-based ionic liquids(GBILs)as stationary phases for capillary gas chromatography(CGC)and to the best of our knowledge,no related reports are available up to now.In this study,a hexaalkylguanidinium ionic liquid(DOTMG-NTf2)was synthesized and coated statically onto capillary columns.Selectivity of the stationary phase was evaluated by separating Grob test mixture,test mixture,alcohols mixture,and fatty acid methyl esters mixture,and thermal stability was investigated as well.The present study demonstrates that GBILs as CGC stationary phases exhibit satisfactory selectivity and thermal stability and have a great potential as new candidates for CGC stationary phases.

  5. Bioproduction of benzaldehyde in a solid-liquid two-phase partitioning bioreactor using Pichia pastoris.

    Science.gov (United States)

    Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J

    2010-11-01

    The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.

  6. CIGS nanostructure: preparation and study using liquid phase method

    Science.gov (United States)

    Jakhmola, P.; Jha, P. K.; Bhatnagar, S. P.

    2016-06-01

    Present study is motivated by interesting attainment obtained for copper indium gallium diselenide compound as a light absorbing material for thin-film solar cell. Formation of copper indium gallium diselenide nanostructures via solvothermal method using starting precursors of copper, indium, gallium salts, and selenium powder is represented. Preparation is done by varying x (0.1 and 0.3) in CuIn1- x Ga x Se2 compound at a constant temperature and using ethanolamine as a solvent. Characterization of nanostructures is done using powder X-ray diffraction, scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. It is found that grown chalcopyrite structure at different x, possess agglomeration in nanostructures. Results indicate that presence of 10 % gallium in copper indium gallium diselenide compound leads to the single-phase growth, prepare at the temperature of 190 °C for 19 h.

  7. Triggering the Chemical Instability of an Ionic Liquid under High Pressure.

    Science.gov (United States)

    Faria, Luiz F O; Nobrega, Marcelo M; Temperini, Marcia L A; Bini, Roberto; Ribeiro, Mauro C C

    2016-09-01

    Ionic liquids are an interesting class of materials due to their distinguished properties, allowing their use in an impressive range of applications, from catalysis to hypergolic fuels. However, the reactivity triggered by the application of high pressure can give rise to a new class of materials, which is not achieved under normal conditions. Here, we report on the high-pressure chemical instability of the ionic liquid 1-allyl-3-methylimidazolium dicyanamide, [allylC1im][N(CN)2], probed by both Raman and IR techniques and supported by quantum chemical calculations. Our results show a reaction occurring above 8 GPa, involving the terminal double bond of the allyl group, giving rise to an oligomeric product. The results presented herein contribute to our understanding of the stability of ionic liquids, which is of paramount interest for engineering applications. Moreover, gaining insight into this peculiar kind of reactivity could lead to the development of new or alternative synthetic routes to achieve, for example, poly(ionic liquids). PMID:27470147

  8. Chemical Process for Treatment of Tellurium and Chromium Liquid Waste from I-131 Radioisotope Production

    International Nuclear Information System (INIS)

    The I-131 radioisotope is used in nuclear medicine for diagnosis and therapy. The I-131 radioisotope is produced by wet distillation at Bandung Nuclear Research Center and generated about 4,875 Itr of liquid waste containing 2,532.8 ppm of tellurium and 1,451.8 ppm chromium at pH 1. Considering its negative impact to the environment caused by toxic behaviour of tellurium and chromium, it is necessary to treat chemically that's liquid waste. The research of chemical treatment of tellurium and chromium liquid waste from I-131 radioisotope production has been done. The steps of process are involved of neutralisation with NaOH, coagulation-flocculation process for step I using Ca(OH)2 coagulant for precipitation of sulphate, sulphite, oxalic, chrome Cr3+, and coagulation-flocculation process for step II using BaCI2 coagulant for precipitation of chrome Cr6+ and tellurium from the supernatant of coagulation in step I. The best result of experiment was achieved at 0.0161 ppm of chromium concentration on the supernatant from coagulation-flocculation of step I using 3.5 g Ca(OH)2 for 100 ml of liquid waste, and 0.95 ppm of tellurium concentration on the final supernatant from coagulation-flocculation by of step II using 0.7 g BaCI2 for supernatant from coagulation of step I. (author)

  9. Cement pastes alteration by liquid manure organic acids: chemical and mineralogical characterization

    International Nuclear Information System (INIS)

    Liquid manure, stored in silos often made of concrete, contains volatile fatty acids (VFAs) that are chemically very aggressive for the cementitious matrix. Among common cements, blast-furnace slag cements are classically resistant to aggressive environments and particularly to acidic media. However, some standards impose the use of low C3A content cements when constructing the liquid manure silos. Previous studies showed the poor performance of low-C3A ordinary Portland cement (OPC). This article aims at clarifying this ambiguity by analyzing mechanisms of organic acid attack on cementitious materials and identifying the cement composition parameters influencing the durability of agricultural concrete. This study concentrated on three types of hardened cement pastes made with OPC, low-C3A OPC and slag cement, which were immersed in a mixture of several organic acids simulating liquid manure. The chemical and mineralogical modifications were analyzed by electronic microprobe, XRD and BSE mode SEM observations. The attack by the organic acids on liquid manure may be compared with that of strong acids. The alteration translates into a lixiviation, and the organic acid anions have no specific effect since the calcium salts produced are soluble in water. The results show the better durability of slag cement paste and the necessity to limit the amount of CaO, to increase the amount of SiO2 (i.e., reduction of the Ca/Si ratio of C-S-H is not sufficient) and to favor the presence of secondary elements in cement

  10. Subdiffusive dynamics of a liquid crystal in the isotropic phase

    Science.gov (United States)

    De Gaetani, Luca; Prampolini, Giacomo; Tani, Alessandro

    2008-05-01

    The isotropic phase dynamics of a system of 4-n-hexyl-4'-cyano-biphenyl (6CB) molecules has been studied by molecular dynamics computer simulations. We have explored the range of 275-330K keeping the system isotropic, although supercooled under its nematic transition temperature. The weak rototranslational coupling allowed us to separately evaluate translational (TDOF) and orientational degrees of freedom (ODOF). Evidences of subdiffusive dynamics, more apparent at the lowest temperatures, are found in translational and orientational dynamics. Mean square displacement as well as self-intermediate center of mass and rotational scattering functions show a plateau, also visible in the orientational correlation function. According to the mode coupling theory (MCT), this plateau is the signature of the β-relaxation regime. Three-time intermediate scattering functions reveal that the plateau is related to a homogeneous dynamics, more extended in time for the orientational degrees of freedom (up to 1ns). The time-temperature superposition principle and the factorization property predicted by the idealized version of MCT hold, again for both kinds of dynamics. The temperature dependence of diffusion coefficient and orientational relaxation time is well described by a power law. Critical temperatures Tc are 244±6 and 258±6K, respectively, the latter is some 10K below the corresponding experimental values. The different values of Tc we obtained indicate that ODOF freezes earlier than TDOF. This appears due to the strongly anisotropic environment that surrounds a 6CB molecule, even in the isotropic phase. The lifetime of these "cages," estimated by time dependent conditional probability functions, is strongly temperature dependent, ranging from some hundreds of picoseconds at 320K to a few nanoseconds at 275K.

  11. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    he Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOEP Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. The LPMEOHW Demonstration Facility completed its first year of operation on 02 April 1998. The LPMEOW Demonstration Facility also completed the longest continuous operating run (65 days) on 21 April 1998. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laboratory autoclave), was monitored throughout the reporting period. During a six-week test at a reactor temperature of 225oC and Balanced Gas flowrate of 700 KSCFH, the rate of decline in catalyst activity was steady at 0.29-0.36% per day. During a second one-month test at a reactor temperature of 220oC and a Balanced Gas flowrate of 550-600 KSCFH, the rate of decline in catalyst activity was 0.4% per day, which matched the pefiorrnance at 225"C, as well as the 4-month proof-of-concept run at the LaPorte AFDU in 1988/89. Beginning on 08 May 1998, the LPMEOW Reactor temperature was increased to 235oC, which was the operating temperature tier the December 1997 restart with the fresh charge of catalyst (50'Yo of design loading). The flowrate of the primary syngas feed stream (Balanced Gas) was also increased to 700-750 KSCFH. During two stable operating periods between 08 May and 09 June 1998, the average catalyst deactivation rate was 0.8% per day. Due to the scatter of the statistical analysis of the results, this test was extended to better

  12. Phase behavior of chromonic liquid crystal mixtures of Sunset Yellow and Disodium Cromoglycate

    Science.gov (United States)

    Yamaguchi, Akihiro; Smith, Gregory; Yi, Youngwoo; Xu, Charles; Biffi, Silvia; Serra, Francesca; Bellini, Tommaso; Clark, Noel

    2014-03-01

    Chromonic liquid crystals (CLCs) are formed when planar molecules dissolved in water stack into rod-like aggregates that can order as liquid crystals. Isotropic, nematic, and M-phases can be observed depending on the degree of molecular orientational and positional order by variation of the CLC concentration. We focused on mixtures of two well-known CLCs, Sunset Yellow, a food dye, and disodium cromoglycate (DSCG), an asthma medication. In order to study the phase behaviors of these mixtures, we observed their textures in glass cells and capillaries using polarized light microscopy. We report here a ternary phase diagram describing the complete phase behavior of the CLC mixtures. We observed a variety of phase behaviors depending on species ratio and concentration. In the isotropic phase, no clear phase separation of the two dyes was observed, while separation did occur in many nematic and M-phase combinations. We will also describe phase observations made using a light spectroscopy and bulk centrifugal partitioning. Grant support: NSF DMR 1207606 and NSF MRSEC DMR-0820579.

  13. Functional design criteria for project W-252, phase II liquid effluent treatment and disposal. Revision 2

    International Nuclear Information System (INIS)

    This document is the Functional Design Criteria for Project W-252. Project W-252 provides the scope to provide BAT/AKART (best available technology...) to 200 Liquid Effluent Phase II streams (B-Plant). This revision (Rev. 2) incorporates a major descoping of the project. The descoping was done to reflect a combination of budget cutting measures allowed by a less stringent regulatory posture toward the Phase II streams

  14. Space cryogenics components based on the thermomechanical effect - Vapor-liquid phase separation

    Science.gov (United States)

    Yuan, S. W. K.; Frederking, T. H. K.

    1989-01-01

    Applications of the thermomechanical effect has been qualified including incorporation in large-scale space systems in the area of vapor-liquid phase separation (VLPS). The theory of the porous-plug phase separator is developed for the limit of a high thermal impedance of the solid-state grains. Extensions of the theory of nonlinear turbulent flow are presented based on experimental results.

  15. Vertical annular gas–liquid two-phase flow in large diameter pipes

    OpenAIRE

    Aliyu, A. M.

    2015-01-01

    Gas–liquid annular two phase flow in pipes is important in the oil and gas, nuclear and the process industries. It has been identified as one of the most frequently encountered flow regimes and many models (empirical and theoretical) for the film flow and droplet behaviour for example have been developed since the 1950s. However, the behaviour in large pipes (those with diameter greater than 100 mm) has not been fully explored. As a result, the two- phase flow characteristic...

  16. Effects of an embedding bulk fluid on phase separation dynamics in a thin liquid film

    OpenAIRE

    Ramachandran, Sanoop; Komura, Shigeyuki; Gompper, Gerhard

    2010-01-01

    Using dissipative particle dynamics simulations, we study the effects of an embedding bulk fluid on the phase separation dynamics in a thin planar liquid film. The domain growth exponent is altered from 2D to 3D behavior upon the addition of a bulk fluid, even though the phase separation occurs in 2D geometry. Correlated diffusion measurements in the film show that the presence of bulk fluid changes the nature of the longitudinal coupling diffusion coefficient from logarithmic to algebraic de...

  17. The 2D Alternative Binary L—J System:Solid—Liquid Phase Diagram

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhi; CHENLi-Rong

    2002-01-01

    The Lennard-Jones potential is introduced into the Collins model and is generalized to the two-dimensional alternative binary system.The Gibbs free energy of the binary system is calculated.According to the thermodynamic conditions of solid-liquid equilibrium,the “cigar-type ” phase diagram and the phase diagram with a minimum are obtained.The results are quite analogous to the behavior of three-dimensional substances.

  18. The 2D Alternative Binary L-J System: Solid-Liquid Phase Diagram

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi; CHEN Li-Rong

    2002-01-01

    The Lennard-Jones potential is introduced into the Collins model and is generalized to the two-dimensionalalternative binary system. The Gibbs free energy of the binary system is calculated. According to the thermodynamicconditions of solid-liquid equilibrium, the "cigar-type" phase diagram and the phase diagram with a minimum areobtained. The results are quite analogous to the behavior of three-dimensional substances.

  19. Simulations of electrolytes at the liquid-liquid interface and of lanthanide cations complexes in gas phase

    International Nuclear Information System (INIS)

    Two processes related to liquid/liquid extraction of ions by extractant molecules were studied: the ion approach at the interface and the ion complexation by ligands. In the first part, the behaviour of salts at the chloroform/water interface was simulated by molecular dynamics. The aim was to understand the way these salts ions approach the interface in order to be extracted. Some ions are repelled by the interface (K+, Cl-, UO22+, Na+, NO3-) whereas others adsorb (amphiphilic molecules and also ClO4-, SCN-, guanidinium Gu+ and picrate Pic-). The surface-active counter-ions make the ion approach at the interface easier. In a perfectly homogeneous mixture of the two solvents (water and chloroform) de-mixing, the ions seem to influence the phases separation rate. Nitric acid which is known to favour liquid/liquid extraction reveals strong adsorption at the interface in its neutral form and a smaller one in its ionic form (H3O+/NO3-). HNO3 and H3O+ display particular orientations at the interface: hydrogen atoms are pointing in the direction of the water slab. The nature of the organic phase can also influence the ion approach at the interface. For example, Gu+ and Pic- adsorb much less at the supercritical CO2/water interface than at the chloroform/water interface. In the second part, complexes of La3+, Eu3+ and Yb3+ with ligands such as amide, urea, thio-amide, thiourea were studied by quantum mechanics. Our calculations show that cation-ligand interactions depend on the nature of substituents on ligands, on the presence of counter-ions or on the number of ligands in the complex. Sulfur compounds seem to less interact with cations than oxygen compounds. Ureas interact as much as amides and are potentially good ligands. (author)

  20. Chemical precipitation processes for the treatment of low- and medium-level liquid waste

    International Nuclear Information System (INIS)

    New applications of chemical precipitation processes for the treatment of various radioactive low and medium level liquid waste have been investigated. For reducing the overall management cost and improving the long-term safety of disposal, partitioning of the reprocessing concentrate into different streams for separate conditioning, packaging and disposal has been studied through chemical precipitation of the whole activity (actinides + main gamma emitters) or the actinides only. Results achieved on testing of real sample of reprocessing concentrate (lab-scale) are presented and discussed. In order to comply with the ALARA principle, an industrial flocculator prototype has been constructed and successfully operated for the treatment of utility liquid waste arising at the Chooz PWR site. Combination of chemical precipitation with ultrafiltration seems quite promising for improving both decontamination and volume reduction factors for the treatment of various radwastes. On the basis of experimental tests performed successively on lab and technical scales, a pilot plant has been designed, constructed and commissioned for the treatment of Harwell low and medium level liquid wastes. First active runs confirm the merits of the process